126 research outputs found

    Development of a Physical Shoulder Simulator for the Training of Basic Arthroscopic Skills

    Get PDF
    Increasingly, shoulder surgeries are performed using arthroscopic techniques, leading to reduced tissue damage and shorter patient recovery times. Orthopaedic training programs are responding to the increased demand for arthroscopic surgeries by incorporating arthroscopic skills into their residency curriculums. A need for accessible and effective training tools exists. This thesis describes the design and development of a physical shoulder simulator for training basic arthroscopy skills such as triangulation, orientation, and navigation of the anatomy. The simulator can be used in either the lateral decubitus or beach chair orientation and accommodates wet or dry practice. Sensors embedded in the simulator provide a means to assess performance. A study was conducted to determine the effectiveness of the simulator. Novice subjects improved their performance after practicing with the simulator. A survey completed by experts, recognized the simulator as a valuable tool for training novice surgeons in basic arthroscopic skills

    Augmented visual, auditory, haptic, and multimodal feedback in motor learning: A review

    Get PDF
    It is generally accepted that augmented feedback, provided by a human expert or a technical display, effectively enhances motor learning. However, discussion of the way to most effectively provide augmented feedback has been controversial. Related studies have focused primarily on simple or artificial tasks enhanced by visual feedback. Recently, technical advances have made it possible also to investigate more complex, realistic motor tasks and to implement not only visual, but also auditory, haptic, or multimodal augmented feedback. The aim of this review is to address the potential of augmented unimodal and multimodal feedback in the framework of motor learning theories. The review addresses the reasons for the different impacts of feedback strategies within or between the visual, auditory, and haptic modalities and the challenges that need to be overcome to provide appropriate feedback in these modalities, either in isolation or in combination. Accordingly, the design criteria for successful visual, auditory, haptic, and multimodal feedback are elaborate

    Efectos auditivos en la percepción háptica durante la simulación de perforación con taladro

    Get PDF
    1 recurso en línea (páginas 6-15).La realidad virtual ha proporcionado inmersión e interacción a través de entornos generados por computador que intentan reproducir experiencias de la vida real a través de estímulos sensoriales. El realismo puede lograrse a través de interacciones multimodales que pueden mejorar la inmersión y las interacciones si se diseñan adecuadamente. Los avances más notorios están relacionados con la computación gráfica, donde el foto-realismo es la tendencia actual. Asimismo, se tienen otros avances relacionados con el sonido, la háptica y en menor medida, el olfato y el gusto. En la actualidad, las características de los sistemas de realidad virtual (sonido visual-háptico) se están utilizando masivamente en entretenimiento (por ejemplo, cine, videojuegos, arte) y en otros escenarios (por ejemplo, inclusión social, educación, capacitación, terapia y turismo). Por otra parte, la reducción de costos de las tecnologías de realidad virtual ha dado lugar a la disponibilidad a nivel de consumo, de varios tipos de dispositivos hápticos. Dichos dispositivos ofrecen experiencias de baja fidelidad debido a las propiedades de los sensores, pantallas y otros dispositivos electromecánicos, que pueden no ser adecuados para experiencias de alta precisión o en situaciones reales que requieran destreza. Sin embargo, se han realizado investigaciones sobre cómo superar o compensar la falta de fidelidad para proporcionar una experiencia de usuario atractiva utilizando historias, interacciones multimodales y elementos de juego. Nuestro trabajo se centra en analizar los posibles efectos de la percepción auditiva sobre la retroalimentación háptica dentro de un escenario de perforación con taladro, que implica interacciones multimodales. Esta tarea tiene múltiples aplicaciones en medicina, elaboración y construcción. Comparamos dos escenarios en los que dos grupos de participantes tuvieron que perforar madera mientras escuchaban sonidos contextuales y no contextuales. Además, recopilamos su percepción utilizando una encuesta después de completar la tarea. A partir de los resultados, establecemos que el sonido influye en la percepción háptica, pero se requieren más experimentos para comprender mejor las implicaciones y posibles aplicaciones médicas.Virtual reality has provided immersion and interactions through computer generated environments attempting to reproduce real life experiences through sensorial stimuli. Realism can be achieved through multimodal interactions which can enhance the user’s presence within the computer generated world. The most notorious advances in virtual reality can be seen in computer graphics visuals, where photorealism is the norm thriving to overcome the uncanny valley. Other advances have followed related to sound, haptics, and in a lesser manner smell and taste feedback. Currently, virtual reality systems (multimodal immersion and interactions through visual-haptic-sound) are being massively used in entertainment (e.g., cinema, video games, art), and in non-entertainment scenarios (e.g., social inclusion, educational, training, therapy, and tourism). Moreover, the cost reduction of virtual reality technologies has resulted in the availability at a consumer-level of various haptic, headsets, and motion tracking devices. Current consumer-level devices offer low-fidelity experiences due to the properties of the sensors, displays, and other electro-mechanical devices, that may not be suitable for high-precision or realistic experiences requiring dexterity. However, research has been conducted on how to overcome or compensate the lack of high fidelity to provide an engaging user experience using storytelling, multimodal interactions and gaming elements. Our work focuses on analyzing the possible effects of auditory perception on haptic feedback within a drilling scenario. Drilling involves multimodal interactions and it is a task with multiple applications in medicine, crafting, and construction. We compare two drilling scenarios were two groups of participants had to drill through wood while listening to contextual and non-contextual audios. We gathered their perception using a survey after the task completion. From the results, we believe that sound does influence the haptic perception, but further experiments are required to better comprehend the implications and possible medical applications.Bibliografía y webgrafía: páginas 14-15

    Virtuality Supports Reality for e-Health Applications

    Get PDF
    Strictly speaking the word “virtuality” or the expression “virtual reality” refers to an application for things simulated or created by the computer, which not really exist. More and more often such things are becoming equally referred with the adjective “virtual” or “digital” or mentioned with the prefixes “e-” or “cyber-”. So we know, for instance, of virtual or digital or e- or cyber- community, cash, business, greetings, books .. till even pets. The virtuality offers interesting advantages with respect to the “simple” reality, since it can reproduce, augment and even overcome the reality. The reproduction is not intended as it has been so far that a camera films a scenario from a fixed point of view and a player shows it, but today it is possible to reproduce the scene dynamically moving the point of view in practically any directions, and “real” becomes “realistic”. The virtuality can augment the reality in the sense that graphics are pulled out from a television screen (or computer/laptop/palm display) and integrated with the real world environments. In this way useful, and often in somehow essentials, information are added for the user. As an example new apps are now available even for iphone users who can obtain graphical information overlapped on camera played real scene surroundings, so directly reading the height of mountains, names of streets, lined up of satellites .., directly over the real mountains, the real streets, the real sky. But the virtuality can even overcome reality, since it can produce and make visible the hidden or inaccessible or old reality and even provide an alternative not real world. So we can virtually see deeply into the matter till atomic dimensions, realize a virtual tour in a past century or give visibility to hypothetical lands otherwise difficult or impossible to simple describe. These are the fundamental reasons for a naturally growing interest in “producing” virtuality. So here we will discuss about some of the different available methods to “produce” virtuality, in particular pointing out some steps necessary for “crossing” reality “towards” virtuality. But between these two parallel worlds, as the “real” and the “virtual” ones are, interactions can exist and this can lead to some further advantages. We will treat about the “production” and the “interaction” with the aim to focus the attention on how the virtuality can be applied in biomedical fields, since it has been demonstrated that virtual reality can furnish important and relevant benefits in e-health applications. As an example virtual tomography joins together 3D imaging anatomical features from several CT (Computerized axial Tomography) or MRI (Magnetic Resonance Imaging) images overlapped with a computer-generated kinesthetic interface so to obtain a useful tool in diagnosis and healing. With the new endovascular simulation possibilities, a head mounted display superimposes 3D images on the patient’s skin so to furnish a direction for implantable devices inside blood vessels. Among all, we chose to investigate the fields where we believe the virtual applications can furnish the meaningful advantages, i.e. in surgery simulation, in cognitive and neurological rehabilitation, in postural and motor training, in brain computer interface. We will furnish to the reader a necessary partial but at the same time fundamental view on what the virtual reality can do to improve possible medical treatment and so, at the end, resulting a better quality of our life

    A simulation-enhanced intraoperative planning tool for robotic-assisted total knee arthroplasty

    Get PDF
    The purpose of the present study was to investigate current methods of surgical planning used in conjunction with robotics-assisted total knee arthroplasty (raTKA) to determine if improvements could be made using advanced computational techniques. Thus, through the use of musculoskeletal multi-body dynamic simulations, an enhanced surgical planning tool was developed, which provides insight on active postoperative joint mechanics. Development of the tool relied on patient-specific simulations using single-leg and full-body models. These simulations were constructed using two publicly-available datasets (Orthoload and SimTK); in particular, joint loading data obtained from subjects during various activities. Simulation parameters were optimized using a design-of experiments (DOE) methodology and validation of each of the models was conducted by calculating the root mean square error (RMSE) between joint loading calculated using the model and the corresponding results given in the appropriate dataset. Optimized and validated variants of each of the models were used in conjunction with the results of DOE studies that characterized the influence of a number of surgical planning variables on various biomechanical responses and linear regression analysis to derive knee performance equations (KPEs). In literature studies, some of the aforementioned responses have been strongly correlated with two outcomes commonly reported by dissatisfied TKA patients, namely, anterior knee pain and poor proprioception. In a proof-of-concept study, KPEs were used to calculate optimal positions and orientations of the femoral and tibial components in the case of one subject featured in the SimTK dataset. These results differed from corresponding ones reportedly achieved for the implant components in the subject. This trend suggests there is potential to improve robotic surgical planning for current-generation raTKA systems through the use of musculoskeletal simulation. Use of the proposed surgical planning tool does not require computational resources beyond what are used with a specified current-generation raTKA system (Navio Surgical System). Furthermore, there are only minimal differences between the workflow involving the proposed planning tool and that when Navio Surgical System is used. A number of recommendations for future studies are made, such as larger scale simulation validation work and use of more complex regression techniques when deriving the KPEs

    Biomechanical Spectrum of Human Sport Performance

    Get PDF
    Writing or managing a scientific book, as it is known today, depends on a series of major activities, such as regrouping researchers, reviewing chapters, informing and exchanging with contributors, and at the very least, motivating them to achieve the objective of publication. The idea of this book arose from many years of work in biomechanics, health disease, and rehabilitation. Through exchanges with authors from several countries, we learned much from each other, and we decided with the publisher to transfer this knowledge to readers interested in the current understanding of the impact of biomechanics in the analysis of movement and its optimization. The main objective is to provide some interesting articles that show the scope of biomechanical analysis and technologies in human behavior tasks. Engineers, researchers, and students from biomedical engineering and health sciences, as well as industrial professionals, can benefit from this compendium of knowledge about biomechanics applied to the human body

    Flexible robotic device for spinal surgery

    No full text
    Surgical robots have proliferated in recent years, with well-established benefits including: reduced patient trauma, shortened hospitalisation, and improved diagnostic accuracy and therapeutic outcome. Despite these benefits, many challenges in their development remain, including improved instrument control and ergonomics caused by rigid instrumentation and its associated fulcrum effect. Consequently, it is still extremely challenging to utilise such devices in cases that involve complex anatomical pathways such as the spinal column. The focus of this thesis is the development of a flexible robotic surgical cutting device capable of manoeuvring around the spinal column. The target application of the flexible surgical tool is the removal of cancerous tumours surrounding the spinal column, which cannot be excised completely using the straight surgical tools in use today; anterior and posterior sections of the spine must be accessible for complete tissue removal. A parallel robot platform with six degrees of freedom (6 DoFs) has been designed and fabricated to direct a flexible cutting tool to produce the necessary range of movements to reach anterior and posterior sections of the spinal column. A flexible water jet cutting system and a flexible mechanical drill, which may be assembled interchangeably with the flexible probe, have been developed and successfully tested experimentally. A model predicting the depth of cut by the water jet was developed and experimentally validated. A flexion probe that is able to guide the surgical cutting device around the spinal column has been fabricated and tested with human lumber model. Modelling and simulations show the capacity for the flexible surgical system to enable entering the posterior side of the human lumber model and bend around the vertebral body to reach the anterior side of the spinal column. A computer simulation with a full Graphical User Interface (GUI) was created and used to validate the system of inverse kinematic equations for the robot platform. The constraint controller and the inverse kinematics relations are both incorporated into the overall positional control structure of the robot, and have successfully established a haptic feedback controller for the 6 DoFs surgical probe, and effectively tested in vitro on spinal mock surgery. The flexible surgical system approached the surgery from the posterior side of the human lumber model and bend around the vertebral body to reach the anterior side of the spinal column. The flexible surgical robot removed 82% of mock cancerous tissue compared to 16% of tissue removed by the rigid tool.Open Acces

    Combining Sensors and Multibody Models for Applications in Vehicles, Machines, Robots and Humans

    Get PDF
    The combination of physical sensors and computational models to provide additional information about system states, inputs and/or parameters, in what is known as virtual sensing, is becoming increasingly popular in many sectors, such as the automotive, aeronautics, aerospatial, railway, machinery, robotics and human biomechanics sectors. While, in many cases, control-oriented models, which are generally simple, are the best choice, multibody models, which can be much more detailed, may be better suited to some applications, such as during the design stage of a new product

    Robotic Assisted Fracture Surgery

    Get PDF

    Medical Robotics

    Get PDF
    The first generation of surgical robots are already being installed in a number of operating rooms around the world. Robotics is being introduced to medicine because it allows for unprecedented control and precision of surgical instruments in minimally invasive procedures. So far, robots have been used to position an endoscope, perform gallbladder surgery and correct gastroesophogeal reflux and heartburn. The ultimate goal of the robotic surgery field is to design a robot that can be used to perform closed-chest, beating-heart surgery. The use of robotics in surgery will expand over the next decades without any doubt. Minimally Invasive Surgery (MIS) is a revolutionary approach in surgery. In MIS, the operation is performed with instruments and viewing equipment inserted into the body through small incisions created by the surgeon, in contrast to open surgery with large incisions. This minimizes surgical trauma and damage to healthy tissue, resulting in shorter patient recovery time. The aim of this book is to provide an overview of the state-of-art, to present new ideas, original results and practical experiences in this expanding area. Nevertheless, many chapters in the book concern advanced research on this growing area. The book provides critical analysis of clinical trials, assessment of the benefits and risks of the application of these technologies. This book is certainly a small sample of the research activity on Medical Robotics going on around the globe as you read it, but it surely covers a good deal of what has been done in the field recently, and as such it works as a valuable source for researchers interested in the involved subjects, whether they are currently “medical roboticists” or not
    corecore