554 research outputs found

    Using Ontologies in Formal Developments Targeting Certification

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer Verlag via the DOI in this recordIFM 2019: 15th International Conference on integrated Formal Methods, 4-6 December 2019, Bergen, NorwayA common problem in the certification of highly safety or security critical systems is the consistency of the certification documentation in general and, in particular, the linking between semi-formal and formal content of the certification documentation. We address this problem by using an existing framework, Isabelle/DOF, that allows writing certification documents with consistency guarantees, in both, the semi-formal and formal parts. Isabelle/DOF supports the modeling of document ontologies using a strongly typed ontology definition language. An ontology is then enforced inside documents including formal parts, e.g., system models, verification proofs, code, tests and validations of corner-cases. The entire set of documents is checked within Isabelle/HOL, which includes the definition of ontologies and the editing of integrated documents based on them. This process is supported by an IDE that provides continuous checking of the document consistency. In this paper, we present how a specific software-engineering certification standard, namely CENELEC 50128, can be modeled inside Isabelle/DOF. Based on an ontology covering a substantial part of this standard, we present how Isabelle/DOF can be applied to a certification case-study in the railway domain.IRT System

    Cyber-Virtual Systems: Simulation, Validation & Visualization

    Full text link
    We describe our ongoing work and view on simulation, validation and visualization of cyber-physical systems in industrial automation during development, operation and maintenance. System models may represent an existing physical part - for example an existing robot installation - and a software simulated part - for example a possible future extension. We call such systems cyber-virtual systems. In this paper, we present the existing VITELab infrastructure for visualization tasks in industrial automation. The new methodology for simulation and validation motivated in this paper integrates this infrastructure. We are targeting scenarios, where industrial sites which may be in remote locations are modeled and visualized from different sites anywhere in the world. Complementing the visualization work, here, we are also concentrating on software modeling challenges related to cyber-virtual systems and simulation, testing, validation and verification techniques for them. Software models of industrial sites require behavioural models of the components of the industrial sites such as models for tools, robots, workpieces and other machinery as well as communication and sensor facilities. Furthermore, collaboration between sites is an important goal of our work.Comment: Preprint, 9th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2014

    Correct synthesis and integration of compiler-generated function units

    Get PDF
    PhD ThesisComputer architectures can use custom logic in addition to general pur- pose processors to improve performance for a variety of applications. The use of custom logic allows greater parallelism for some algorithms. While conventional CPUs typically operate on words, ne-grained custom logic can improve e ciency for many bit level operations. The commodi ca- tion of eld programmable devices, particularly FPGAs, has improved the viability of using custom logic in an architecture. This thesis introduces an approach to reasoning about the correctness of compilers that generate custom logic that can be synthesized to provide hardware acceleration for a given application. Compiler intermediate representations (IRs) and transformations that are relevant to genera- tion of custom logic are presented. Architectures may vary in the way that custom logic is incorporated, and suitable abstractions are used in order that the results apply to compilation for a variety of the design parameters that are introduced by the use of custom logic

    Lessons from Formally Verified Deployed Software Systems (Extended version)

    Full text link
    The technology of formal software verification has made spectacular advances, but how much does it actually benefit the development of practical software? Considerable disagreement remains about the practicality of building systems with mechanically-checked proofs of correctness. Is this prospect confined to a few expensive, life-critical projects, or can the idea be applied to a wide segment of the software industry? To help answer this question, the present survey examines a range of projects, in various application areas, that have produced formally verified systems and deployed them for actual use. It considers the technologies used, the form of verification applied, the results obtained, and the lessons that can be drawn for the software industry at large and its ability to benefit from formal verification techniques and tools. Note: a short version of this paper is also available, covering in detail only a subset of the considered systems. The present version is intended for full reference.Comment: arXiv admin note: text overlap with arXiv:1211.6186 by other author

    Formalising Mathematics in Simple Type Theory

    Get PDF
    Despite the considerable interest in new dependent type theories, simple type theory (which dates from 1940) is sufficient to formalise serious topics in mathematics. This point is seen by examining formal proofs of a theorem about stereographic projections. A formalisation using the HOL Light proof assistant is contrasted with one using Isabelle/HOL. Harrison's technique for formalising Euclidean spaces is contrasted with an approach using Isabelle/HOL's axiomatic type classes. However, every formal system can be outgrown, and mathematics should be formalised with a view that it will eventually migrate to a new formalism

    Hammering towards QED

    Get PDF
    This paper surveys the emerging methods to automate reasoning over large libraries developed with formal proof assistants. We call these methods hammers. They give the authors of formal proofs a strong “one-stroke” tool for discharging difficult lemmas without the need for careful and detailed manual programming of proof search. The main ingredients underlying this approach are efficient automatic theorem provers that can cope with hundreds of axioms, suitable translations of the proof assistant’s logic to the logic of the automatic provers, heuristic and learning methods that select relevant facts from large libraries, and methods that reconstruct the automatically found proofs inside the proof assistants. We outline the history of these methods, explain the main issues and techniques, and show their strength on several large benchmarks. We also discuss the relation of this technology to the QED Manifesto and consider its implications for QED-like efforts.Blanchette’s Sledgehammer research was supported by the Deutsche Forschungs- gemeinschaft projects Quis Custodiet (grants NI 491/11-1 and NI 491/11-2) and Hardening the Hammer (grant NI 491/14-1). Kaliszyk is supported by the Austrian Science Fund (FWF) grant P26201. Sledgehammer was originally supported by the UK’s Engineering and Physical Sciences Research Council (grant GR/S57198/01). Urban’s work was supported by the Marie-Curie Outgoing International Fellowship project AUTOKNOMATH (grant MOIF-CT-2005-21875) and by the Netherlands Organisation for Scientific Research (NWO) project Knowledge-based Automated Reasoning (grant 612.001.208).This is the final published version. It first appeared at http://jfr.unibo.it/article/view/4593/5730?acceptCookies=1

    Towards the Model-Driven Engineering of Secure yet Safe Embedded Systems

    Full text link
    We introduce SysML-Sec, a SysML-based Model-Driven Engineering environment aimed at fostering the collaboration between system designers and security experts at all methodological stages of the development of an embedded system. A central issue in the design of an embedded system is the definition of the hardware/software partitioning of the architecture of the system, which should take place as early as possible. SysML-Sec aims to extend the relevance of this analysis through the integration of security requirements and threats. In particular, we propose an agile methodology whose aim is to assess early on the impact of the security requirements and of the security mechanisms designed to satisfy them over the safety of the system. Security concerns are captured in a component-centric manner through existing SysML diagrams with only minimal extensions. After the requirements captured are derived into security and cryptographic mechanisms, security properties can be formally verified over this design. To perform the latter, model transformation techniques are implemented in the SysML-Sec toolchain in order to derive a ProVerif specification from the SysML models. An automotive firmware flashing procedure serves as a guiding example throughout our presentation.Comment: In Proceedings GraMSec 2014, arXiv:1404.163

    On the Extensibility of Formal Methods Tools

    Get PDF
    Modern software systems often have long lifespans over which they must continually evolve to meet new, and sometimes unforeseen, requirements. One way to effectively deal with this is by developing the system as a series of extensions. As requirements change, the system evolves through the addition of new extensions and, potentially, the removal of existing extensions. In order for this kind of development process to thrive, it is necessary that the system have a high level of extensibility. Extensibility is the capability of a system to support the gradual addition of new, unplanned functionalities. This dissertation investigates extensibility of software systems and focuses on a particular class of software: formal methods tools. The approach is broad in scope. Extensibility of systems is addressed in terms of design, analysis and improvement, which are carried out in terms of source code and software architecture. For additional perspective, extensibility is also considered in the context of formal modelling. The work carried out in this dissertation led to the development of various extensions to the Overture tool supporting the Vienna Development Method, including a new proof obligation generator and integration with theorem provers. Additionally, the extensibility of Overture itself was also improved and it now better supports the development and integration of various kinds of extensions. Finally, extensibility techniques have been applied to formal modelling, leading to an extensible architectural style for formal models
    • …
    corecore