
Formalising Mathematics In Simple Type
Theory

Lawrence C. Paulson

Abstract Despite the considerable interest in new dependent type theories, simple
type theory [10] (which dates from 1940) is sufficient to formalise serious topics
in mathematics. This point is seen by examining formal proofs of a theorem about
stereographic projections. A formalisation using the HOL Light proof assistant is
contrasted with one using Isabelle/HOL. Harrison’s technique for formalising Eu-
clidean spaces [23] is contrasted with an approach using Isabelle/HOL’s axiomatic
type classes [27]. However, every formal system can be outgrown, and mathematics
should be formalised with a view that it will eventually migrate to a new formalism.

1 Introduction

Let’s begin with Dana Scott:

No matter how much wishful thinking we do, the theory of types is here to stay. There
is no other way to make sense of the foundations of mathematics. Russell (with the help
of Ramsey) had the right idea, and Curry and Quine are very lucky that their unmotivated
formalistic systems are not inconsistent.1 [48, p. 413]

The foundations of mathematics is commonly understood as referring to philo-
sophical conceptions such as logicism (mathematics reduced to logic), formalism
(mathematics as “a combinatorial game played with the primitive symbols”) [51,
p. 62], Platonism (“mathematics describes a non-sensual reality, which exists inde-
pendently . . . of the human mind”) [17, p. 323] and intuitionism (mathematics as “a
production of the human mind”) [26, p. 52]. Some of these conceptions, such as logi-
cism and formalism, naturally lend themselves to the idea of doing mathematics in a
formal deductive system. Whitehead and Russell’s magnum opus, Principia Math-
ematica [54], is the quintessential example of this. Other conceptions are hostile to

Computer Laboratory, University of Cambridge, England, e-mail: lp15@cam.ac.uk

1 Italics in original

1

ar
X

iv
:1

80
4.

07
86

0v
1

 [
cs

.L
O

]
 2

0
A

pr
 2

01
8

lp15@cam.ac.uk

2 Lawrence C. Paulson

formalisation. However, a tremendous amount of mathematics has been formalised
in recent years, and this work is largely indifferent to those philosophical debates.

This article is chiefly concerned with the great body of analysis and topology
formalised by John Harrison, using higher-order logic as implemented in his HOL
Light proof assistant [21]. The original motive for this work was to verify imple-
mentations of computer arithmetic, such as the calculation of the exponential func-
tion [22], prompted by the 1994 floating-point division bug that forced Intel to re-
call millions of Pentium chips at a cost of $475 million [36]. Another great body of
mathematics was formalised by Georges Gonthier using Coq: the four colour the-
orem [18], and later, the odd order theorem [19]. Here the motive was to increase
confidence in the proofs: the first four colour proof involved thousands of cases
checked by a computer program, while the proof of the odd order theorem origi-
nally appeared as a 255-page journal article. Finally there was the Flyspeck project,
to formalise Thomas Hales’s proof of the Kepler conjecture, another gigantic case
analysis; this formalisation task was carried out by many collaborators using HOL
Light and Isabelle/HOL, so again higher-order logic.

Higher-order logic is based on the work of Church [10], which can be seen as a
simplified version of the type theory of Whitehead and Russell. But while they were
exponents of logicism, today’s HOL Light and Isabelle/HOL users clearly aren’t, or
at least, keep their views secret.

Superficially, Coq users are indeed exponents of intuitionism: they regularly re-
fer to constructive proofs and stress their rejection of the excluded middle. However,
this sort of discussion is not always convincing. For example, the abstract announc-
ing the Coq proof of the odd order theorem declares “the formalized proof is con-
structive” [19, p. 163]. This theorem states that every finite group of odd order is
solvable, and therefore a constructive proof should provide, for a given group G of
odd order, evidence that G is solvable. However, the solvability of a finite group can
be checked in finite time, so no evidence is required. So does the constructive nature
of the proof embody anything significant? It turns out that some results in the theory
of group modules could only be proved in double-negation form [19, p. 174].

Analysis changes everything. Constructive analysis looks utterly different from
classical analysis. As formulated by Bishop [4], we may not assume that a real
number x satisfies x < 0∨x = 0∨x > 0 , and x 6= 0 does not guarantee that xy = 1 for
some real y. In their Coquelicot analysis library, Boldo et al. assume these classical
principles, while resisting the temptation to embrace classical logic in full [7, §3.2].

The sort of constructivism just described therefore seems to lack an overarch-
ing philosophical basis or justification. In contrast, Martin-Löf’s type theory was
intended from the start to support Bishop-style constructive analysis [34]; this for-
mal calculus directly embodies Heyting’s intuitionistic interpretation of the logical
constants [35]. It is implemented as the Agda [8] programming language and proof
assistant.

It’s worth remarking that the very idea of fixing a formalism as the foundation of
intuitionistic mathematics represents a sharp deviation from its original conception.
As Heyting wrote,

Formalising Mathematics In Simple Type Theory 3

The intuitionistic mathematician . . . uses language, both natural and formalised, only for
communicating thoughts, i.e., to get others or himself to follow his own mathematical ideas.
Such a linguistic accompaniment is not a representation of mathematics; still less is it math-
ematics itself.[26, p. 52–3]

Constructive logic is well supported on the computer. However, the choice of
proof assistant is frequently dictated by other considerations, including institutional
expectations, the availability of local expertise and the need for specific libraries.
The popularity of Coq in France is no reason to imagine that intuitionism is the
dominant philosophy there.

Someone wishing to formalise mathematics today has three main options:

• Higher-order logic (also known as simple type theory), where types are built
inductively from certain base types, and variables have fixed types. Generalising
this system through polymorphism adds considerable additional expressiveness.

• Dependent type theories, where types are parameterised by terms, embodying
the propositions-as-types principle. This approach was first realised in NG de
Bruijn’s AUTOMATH [12]. Such systems are frequently but not necessarily con-
structive: AUTOMATH was mainly used to formalise classical mathematics.

• Set theories can be extremely expressive. The Mizar system has demonstrated
that set theory can be a foundation for mathematics in practice as well as in
theory [2]. Recent work by Zhan [55] confirms this point independently, with a
high degree of automation.

All three options have merits. While this paper focuses on higher-order logic, I make
no claim that this formalism is the best foundation for mathematics. It is certainly
less expressive than the other two. And a mathematician can burst free of any for-
malism as quickly as you can say “the category of all sets”. I would prefer to see
a situation where formalised mathematics could be made portable: where proofs
could be migrated from one formal system to another through a translation process
that respects the structure of the proof.

2 Higher-Order Logic on the Computer

A succinct way to describe higher-order logic is as a predicate calculus with simple
types, including functions and sets, the latter seen as truth-valued functions.

Logical types evolved rapidly during the 20th century. For Whitehead and Rus-
sell, types were a device to forestall the paradoxes, in particular by enforcing the dis-
tinction between sets and individuals. But they had no notation for types and never
wrote them in formulas. They even proved (the modern equivalent of) V ∈ V , con-
cealing the type symbols that prevent Russell’s paradox here [14]. Their omission
of type symbols, which they termed typical ambiguity, was a precursor to today’s
polymorphism. It seems that they preferred to keep types out of sight.

Church [10] provided a type notation including a type ι of individuals and a
separate type o of truth values, with which one could express sets of individuals

4 Lawrence C. Paulson

(having type oι), sets of sets of individuals (type o(oι)) etc., analogously to the
cumulative hierarchy of sets, but only to finite levels. Church assigned all individuals
the same type.

Other people wanted to give types a much more prominent role. The mathe-
matician NG de Bruijn devoted much of his later career, starting in the 1960s, to
developing type theories for mathematics:

I believe that thinking in terms of types and typed sets is much more natural than appealing
to untyped set theory. . . . In our mathematical culture we have learned to keep things apart.
If we have a rational number and a set of points in the Euclidean plane, we cannot even
imagine what it means to form the intersection. The idea that both might have been coded
in ZF with a coding so crazy that the intersection is not empty seems to be ridiculous. If
we think of a set of objects, we usually think of collecting things of a certain type, and set-
theoretical operations are to be carried out inside that type. Some types might be considered
as subtypes of some other types, but in other cases two different types have nothing to do
with each other. That does not mean that their intersection is empty, but that it would be
insane to even talk about the intersection. [13, p. 31]2

De Bruijn also made the case for polymorphism:

Is there the drawback that working with typed sets is much less economic then with untyped
ones? If things have been said for sets of apples, and if these same things hold, mutatis
mutandis, for sets of pears, does one have to repeat all what had been said before? No. One
just takes a type variable, ξ say, and expresses all those generalities for sets of things of
type ξ . Later one can apply all this by means of a single instantiation, replacing ξ either by
apple or by pear. [13, p. 31]

His work included the first computer implementations of dependent type theories.
However, his view that apples and pears should have different types, using type vari-
ables to prevent duplication, is universally accepted even with simple type theory.

2.1 Why Simple Type Theory?

What is the point of choosing simple type theory when powerful dependent type the-
ories exist? One reason is that so much can be done with so little. HOL Light “sets a
very exacting standard of correctness” and “compared with other HOL systems, . . .
uses a much simpler logical core.”3 Thanks to this simplicity, fully verified imple-
mentations now appear to be in reach [32]. Isabelle/HOL’s logical core is larger, but
nevertheless, concepts such as quotient constructions [30], inductive and coinduc-
tive definitions [5, 44], recursion, pattern-matching and termination checking [31]
are derived from Church’s original HOL axioms; with dependent type theories, such
features are generally provided by extending the calculus itself [15].

The other reason concerns automation. Derivations in formal calculi are ex-
tremely long. Whitehead and Russell needed hundreds of pages to prove 1+1=2

2 Italics in original
3 http://www.cl.cam.ac.uk/˜jrh13/hol-light/

http://www.cl.cam.ac.uk/~jrh13/hol-light/

Formalising Mathematics In Simple Type Theory 5

[54, p. 360].4 Proof assistants must be capable of performing lengthy deductions
automatically. But more expressive formalisms are more difficult to automate. Even
at the most basic level, technical features of constructive type theories interfere with
automation. Term rewriting refers to the use of a set of identities to perform alge-
braic simplification. It has been a staple of automated theorem proving since the
1970s [9]. Isabelle/HOL has over 2800 rewrite rules pre-installed, and the full bat-
tery can be applied with the single word auto. The rewriting tactics of Coq [49,
§8.6] — the most advanced implementation of dependent types — apply a single,
explicitly named, rewrite rule. Recent versions of the Lean proof assistant (which
implements the same calculus as Coq) finally provide strong simplification [1].

It is also striking to consider the extent to which the Ssreflect proof language and
library has superseded the standard Coq libraries. Gonthier and Mahboubi write

Small-scale reflection is a formal proof methodology based on the pervasive use of com-
putation with symbolic representations. . . . The statements of many top-level lemmas, and
of most proof subgoals, explicitly contain symbolic representations; translation between
logical and symbolic representations is performed under the explicit, fine-grained control
of the proof script. The efficiency of small-scale reflection hinges on the fact that fixing a
particular symbolic representation strongly directs the behaviour of a theorem-prover. [20,
p. 96]

So Ssreflect appears to sacrifice a degree of mathematical abstraction, though no-
body can deny its success [18, 19]. The Coquelicot analysis library similarly shies
away from the full type system:

The Coq system comes with an axiomatization of standard real numbers and a library of
theorems on real analysis. Unfortunately, . . . the definitions of integrals and derivatives are
based on dependent types, which make them especially cumbersome to use in practice.” [7,
p. 41]

In the sequel, we should be concerned with two questions:

• whether simple type theory is sufficient for doing significant mathematics, and
• whether we can avoid getting locked into any one formalism.

The latter, because it would be absurd to claim that any one formalism is all that we
could ever need.

2.2 Simple Type Theory

Higher-order logic as implemented in proof assistants such as HOL Light [21] and
Isabelle/HOL [37] borrows the syntax of types in the programming language ML [43].
It provides

• atomic types, in particular bool, the type of truth values, and nat, the type of
natural numbers.

4 In fact the relevant proposition,∗54 ·43, is a statement about sets. Many of the propositions labo-
riously worked out here are elementary identities that are trivial to prove with modern automation.

6 Lawrence C. Paulson

• function types, denoted by τ1 ⇒ τ2.
• compound types, such as τ list for lists whose elements have type τ , similarly

τ set for typed sets. (Note the postfix notation.)
• type variables, denoted by ’a, ’b etc. They give rise to polymorphic types like

’a ⇒ ’a, the type of the identity function.

Implicit in Church, and as noted above by de Bruijn, type variables and polymor-
phism must be included in the formalism implemented by a proof assistant. For
already when we consider elementary operations such as the union of two sets, the
type of the sets’ elements is clearly a parameter and we obviously expect to have a
single definition of union. Polymorphism makes that possible.

The terms of higher-order logic are precisely those of the typed λ -calculus: iden-
tifiers (which could be variables or constants), λ -abstractions and function applica-
tions. On this foundation a full predicate calculus is built, including equality. Note
that while first-order logic regards terms and formulas as distinct syntactic cate-
gories, higher-order logic distinguishes between terms and formulas only in that the
latter have type bool.

Overloading is the idea of using type information to disambiguate expressions. In
a mathematical text, the expression u×v could stand for any number of things: A×B
might be the Cartesian product of two sets, G×H the direct product of two groups
and m× n the arithmetic product of two natural numbers. Most proof assistants
make it possible to assign an operator such as × multiple meanings, according to
the types of its operands. In view of the huge ambiguity found in mathematical
notations— consider for example xy, f (x), f (X), d f/dx, x2y, sin2 y—the possibility
of overloading is a strong argument in favour of a typed formalism.

2.3 Higher-Order Logic as a Basis for Mathematics

The formal deductive systems in HOL Light and Isabelle/HOL closely follow
Church [10]. However, no significant applications can be tackled from this primitive
starting point. It is first necessary to develop, at least, elementary theories of the nat-
ural numbers and lists (finite sequences). General principles of recursive/inductive
definition of types, functions and sets are derived, by elaborate constructions, from
the axioms. Even in the minimalistic HOL Light, this requires more than 10,000
lines of machine proofs; it requires much more in Isabelle, deriving exceptionally
powerful recursion principles [5]. This foundation is already sufficient for studying
many problems in functional programming and hardware verification, even without
negative integers.

To formalise analysis requires immensely more effort. It is necessary to develop
the real numbers (as Cauchy sequences for example), but that is just the beginning.
Basic topology including limits, continuity, derivatives, power series and the famil-
iar transcendental functions must also be formalised. And all that is barely a founda-
tion for university-level mathematics. In addition to the sheer bulk of material that
must be absorbed, there is the question of duplication. The process of formalisa-

Formalising Mathematics In Simple Type Theory 7

tion gives rise to several number systems: natural numbers, integers, rationals, reals
and complex numbers. This results in great duplication, with laws such as x+0 = x
existing in five distinct forms. Overloading, by itself, doesn’t solve this problem.

The need to reason about n-dimensional spaces threatens to introduce infinite
duplication. Simple type theory does not allow dependent types, and yet the param-
eter n (the dimension) is surely a natural number. The theory of Euclidean spaces
concerns Rn for any n, and it might appear that such theorems cannot even be stated
in higher-order logic. John Harrison found an ingenious solution [23]: to represent
the dimension by a type of the required cardinality. It is easy to define types in
higher-order logic having any specified finite number of elements. Then Rn can be
represented by the type n→ real, where the dimension n is a type. Through polymor-
phism, n can be a variable, and the existence of sum and product operations on types
even allow basic arithmetic to be performed on dimensions. It must be admitted that
things start to get ugly at this point. Other drawbacks include the need to write R
as R1 in order to access topological results in the one-dimensional case. Neverthe-
less, this technique is flexible enough to support the rapidly expanding HOL Light
multivariate analysis library, which at the moment covers much complex analysis
and algebraic topology, including the Cauchy integral theorem, the prime number
theorem, the Riemann mapping theorem, the Jordan curve theorem and much more.
It is remarkable what can be accomplished with such a simple foundation.

It’s important to recognise that John Harrison’s approach is not the only one. An
obvious alternative is to use polymorphism and explicit constraints (in the form of
sets or predicates) to identify domains of interest. Harrison rejects this because

it seems disappointing that the type system then makes little useful contribution, for example
in automatically ensuring that one does not take dot products of vectors of different lengths
or wire together words of different sizes. All the interesting work is done by set constraints,
just as if we were using an untyped system like set theory. [23, p. 115]

Isabelle/HOL provides a solution to this dilemma through an extension to higher-
order logic: axiomatic type classes [52]. This builds on the idea of polymorphism,
which in its elementary form is merely a mechanism for type schemes: a definition
or theorem involving type variables stands for all possible instances where types
are substituted for the type variables. Polymorphism can be refined by introducing
classes of types, allowing a type variable to be constrained by one or more type
classes, and allowing a type to be substituted for a type variable only if it belongs to
the appropriate classes. A type class is defined by specifying a suite of operations
together with laws that they must satisfy, for example, a partial ordering with the
operation ≤ satisfying reflexivity, antisymmetry and transitivity or a ring with the
operations 0, 1, +, × satisfying the usual axioms. The type class mechanism can
express a wide variety of constraints using types themselves, addressing Harrison’s
objection quoted above. Type classes can also be extended and combined with great
flexibility to create specification hierarchies: partial orderings, but also linear and
well-founded orderings; rings, but also groups, integral domains, fields, as well as
linearly ordered fields, et cetera. Type classes work equally well at specifying con-
cepts from analysis such as topological spaces of various kinds, metric spaces and
Euclidean spaces [27].

8 Lawrence C. Paulson

Type classes also address the issue of duplication of laws such as x + 0 = x.
That property is an axiom for the type class of groups, which is inherited by rings,
fields, etc. As a new type is introduced (for example, the rationals), operations can
be defined and proved to satisfy the axioms of some type class; that being done,
the new type will be accepted as a member of that type class (for example, fields).
This step can be repeated for other type classes (for example, linear orderings). At
this point, it is possible to forget the explicit definitions (for example, addition of
rational numbers) and refer to axioms of the type classes, such as x+ 0 = x . Type
classes also allow operators such as + to be overloaded in a principled manner,
because all of those definitions satisfy similar properties. Recall that overloading
means assigning an operator multiple meanings, but when this is done through type
classes, the multiple meanings will enjoy the same axiomatic properties, and a single
type class axiom can replace many theorems [45].

An intriguing aspect of type classes is the possibility of recursive definitions over
the structure of types. For example, the lexicographic ordering ≤ on type τ list

is defined in terms of ≤ on type τ . But this introduces the question of circular def-
initions. More generally, it becomes clear that the introduction of type classes goes
well beyond the naı̈ve semantic foundation of simple type theory as a notation for a
fragment of set theory. Recently, Kunčar and Popescu [33] have published an anal-
ysis including sufficient conditions for overloaded constant definitions to be sound,
along with a new semantics for higher-order logic with type classes. It remains much
simpler than the semantics of any dependent type theory.

2.4 A Personal Perspective

In the spring of 1977, as a mathematics undergraduate at Caltech, I had the immense
privilege of attending a lecture series on AUTOMATH given by de Bruijn himself,
and of meeting him privately to discuss it. I studied much of the AUTOMATH liter-
ature, including Jutting’s famous thesis [28] on the formalisation of Landau’s Foun-
dations of Analysis.

In the early 1980s, I encountered Martin-Löf’s type theory through the group at
Chalmers University in Sweden. Again I was impressed with the possibilities of this
theory, and devoted much of my early career to it. I worked on the derivation of well-
founded recursion in Martin-Löf’s type theory [40], and created Isabelle originally
as an implementation of this theory [41]. Traces of this are still evident in everything
from Isabelle’s representation of syntax to the rules for Π , Σ and + constructions
in Isabelle/ZF. The logic CTT (constructive type theory) is still distributed with
Isabelle,5 including an automatic type checker and simplifier.

My personal disenchantment with dependent type theories coincides with the de-
cision to shift from extensional to intensional equality [38]. This meant for example
that 0+n = n and n+0 = n would henceforth be regarded as fundamentally differ-

5 http://isabelle.in.tum.de

http://isabelle.in.tum.de

Formalising Mathematics In Simple Type Theory 9

ent assertions, one an identity holding by definition and the other a mere equality
proved by induction. Of course I was personally upset to see several years of work,
along with Constable’s Nuprl project [11], suddenly put beyond the pale. But I also
had the feeling that this decision had been imposed on the community rather than
arising from a rational discussion. And I see the entire homotopy type theory effort
as an attempt to make equality reasonable again.

3 Example: Stereographic Projections

An example will serve to demonstrate how mathematics can be formalised using the
techniques described in §2.3 above. We shall compare two formalisations of a theo-
rem: the HOL Light original and the new version after translation to Isabelle/HOL
using type classes.

The theorem concerns stereographic projections, including the well-known spe-
cial case of mapping a punctured6 sphere onto a plane (Fig. 1). In fact, it holds
under rather general conditions. In the two-dimensional case, a punctured circle is
flattened onto a line. The line or plane is infinite, and points close to the puncture
are mapped “out towards infinity”. The theorem holds in higher dimensions with the
sphere generalised to the surface of an n-dimensional convex bounded set and the
plane generalised to an affine set of dimension n−1. The mappings are continuous
bijections between the two sets: the sets are homeomorphic.

Fig. 1 3D illustration of a stereographic projection from the north pole onto a plane below the
sphere

The theorem we shall examine is the generalisation of the case for the sphere to
the case for a bounded convex set. The proof of this theorem is formalised in HOL
Light7 as shown in Fig. 3. At 51 lines, it is rather short for such proofs, which can
be thousands of lines long.

The HOL Light proof begins with the statement of the desired theorem. We see
logical syntax coded as ASCII characters: ! = ∀ and /\ = ∧. Moreover, the DELETE

6 Punctured means that one point is removed.
7 File https://github.com/jrh13/hol-light/blob/master/Multivariate/
paths.ml

https://github.com/jrh13/hol-light/blob/master/Multivariate/paths.ml
https://github.com/jrh13/hol-light/blob/master/Multivariate/paths.ml

10 Lawrence C. Paulson

let HOMEOMORPHIC_PUNCTURED_SPHERE_AFFINE_GEN = prove
(‘!s:realˆN->bool t:realˆM->bool a.

convex s /\ bounded s /\ a IN relative_frontier s /\
affine t /\ aff_dim s = aff_dim t + &1
==> (relative_frontier s DELETE a) homeomorphic t‘,

REPEAT GEN_TAC THEN ASM_CASES_TAC ‘s:realˆN->bool = {}‘ THEN
ASM_SIMP_TAC[AFF_DIM_EMPTY; AFF_DIM_GE; INT_ARITH
‘--(&1):int <= s ==> ˜(--(&1) = s + &1)‘] THEN

MP_TAC(ISPECL [‘(:realˆN)‘; ‘aff_dim(s:realˆN->bool)‘]
CHOOSE_AFFINE_SUBSET) THEN REWRITE_TAC[SUBSET_UNIV] THEN

REWRITE_TAC[AFF_DIM_GE; AFF_DIM_LE_UNIV; AFF_DIM_UNIV; AFFINE_UNIV] THEN
DISCH_THEN(X_CHOOSE_THEN ‘t:realˆN->bool‘ STRIP_ASSUME_TAC) THEN
SUBGOAL_THEN ‘˜(t:realˆN->bool = {})‘ MP_TAC THENL
[ASM_MESON_TAC[AFF_DIM_EQ_MINUS1]; ALL_TAC] THEN

GEN_REWRITE_TAC LAND_CONV [GSYM MEMBER_NOT_EMPTY] THEN
DISCH_THEN(X_CHOOSE_TAC ‘z:realˆN‘) THEN STRIP_TAC THEN
MP_TAC(ISPECL
[‘s:realˆN->bool‘; ‘ball(z:realˆN,&1) INTER t‘]

HOMEOMORPHIC_RELATIVE_FRONTIERS_CONVEX_BOUNDED_SETS) THEN
MP_TAC(ISPECL [‘t:realˆN->bool‘; ‘ball(z:realˆN,&1)‘]

(ONCE_REWRITE_RULE[INTER_COMM] AFF_DIM_CONVEX_INTER_OPEN)) THEN
MP_TAC(ISPECL [‘ball(z:realˆN,&1)‘; ‘t:realˆN->bool‘]

RELATIVE_FRONTIER_CONVEX_INTER_AFFINE) THEN
ASM_SIMP_TAC[CONVEX_INTER; BOUNDED_INTER; BOUNDED_BALL; CONVEX_BALL;

AFFINE_IMP_CONVEX; INTERIOR_OPEN; OPEN_BALL;
FRONTIER_BALL; REAL_LT_01] THEN

SUBGOAL_THEN ‘˜(ball(z:realˆN,&1) INTER t = {})‘ ASSUME_TAC THENL
[REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; IN_INTER] THEN
EXISTS_TAC ‘z:realˆN‘ THEN ASM_REWRITE_TAC[CENTRE_IN_BALL; REAL_LT_01];
ASM_REWRITE_TAC[] THEN REPEAT(DISCH_THEN SUBST1_TAC) THEN SIMP_TAC[]] THEN

REWRITE_TAC[homeomorphic; LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [‘h:realˆN->realˆN‘; ‘k:realˆN->realˆN‘] THEN
STRIP_TAC THEN REWRITE_TAC[GSYM homeomorphic] THEN
TRANS_TAC HOMEOMORPHIC_TRANS

‘(sphere(z,&1) INTER t) DELETE (h:realˆN->realˆN) a‘ THEN
CONJ_TAC THENL
[REWRITE_TAC[homeomorphic] THEN
MAP_EVERY EXISTS_TAC [‘h:realˆN->realˆN‘; ‘k:realˆN->realˆN‘] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [HOMEOMORPHISM]) THEN
REWRITE_TAC[HOMEOMORPHISM] THEN STRIP_TAC THEN REPEAT CONJ_TAC THENL
[ASM_MESON_TAC[CONTINUOUS_ON_SUBSET; DELETE_SUBSET];
ASM SET_TAC[];
ASM_MESON_TAC[CONTINUOUS_ON_SUBSET; DELETE_SUBSET];
ASM SET_TAC[];
ASM SET_TAC[];
ASM SET_TAC[]];

MATCH_MP_TAC HOMEOMORPHIC_PUNCTURED_AFFINE_SPHERE_AFFINE THEN
ASM_REWRITE_TAC[REAL_LT_01; GSYM IN_INTER] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [HOMEOMORPHISM]) THEN
ASM SET_TAC[]]);;

operator refers to the removal of a set element (S−{a}). Words such as convex
and bounded denote predicates defined elsewhere. Infix syntax is available, as in
the symbol homeomorphic. We see John Harrison’s representation of Rn in the
type realˆN->bool and in particular, !s:realˆN->bool abbreviates “for all
s⊆RN”. Note that the constraint on the dimensions is expressed through the concept
of affine dimension rather than some constraint on M and N. This statement is legible
enough, and yet the notation leaves much to be desired, for example in the necessity
to write &1 (the ampersand converting the natural number 1 into an integer).

!s:realˆN->bool t:realˆM->bool a.

Formalising Mathematics In Simple Type Theory 11

convex s /\ bounded s /\ a IN relative_frontier s /\
affine t /\ aff_dim s = aff_dim t + &1
==> (relative_frontier s DELETE a) homeomorphic t

We have to admit that the proof itself is unintelligible. Even a HOL Light user can
only spot small clues in the proof text, such as the case analysis on whether the set s
is empty or not, which we see in the first line, or the references to previous lemmas.
If we look carefully, we might notice intermediate statements being proved, such as

˜(t:realˆN->bool = {})

or

˜(ball(z:realˆN,&1) INTER t = {})

though in the latter case it is unclear what z is. The formal proof consists of program
code, written in a general-purpose programming language (OCaml) equipped with a
library of proof procedures and supporting functions, for that is what HOL Light is.
A HOL Light proof is constructed by calling the its proof primitives at the OCaml
command line, but one could type in any desired OCaml code. Users sometimes
write such code in order to extend the functionality of HOL Light. Even if their
code is incorrect,8 they cannot cause HOL Light to generate false theorems. All
LCF-style proof assistants employ a similar kernel architecture.

In recent years, I have been embarked on a project to translate the most fun-
damental results of the HOL Light multivariate analysis library into Isabelle. The
original motivation was to obtain the Cauchy integral theorem [24], which is the
gateway to the prime number theorem [25] among many other results. I was in a
unique position to carry out this work as a developer of both Isabelle and HOL. The
HOL family of provers descends from my early work on LCF [42], and in partic-
ular the proof tactic language, which is perfectly preserved in HOL Light. The 51
lines of HOL Light presented above are among the several tens of thousands that I
have translated Isabelle/HOL. Figure 2 presents my version of the HOL Light proof
above, as shown in a running Isabelle session. Proof documents can also be typeset
with the help of LATEX, but here we have colour to distinguish the various syntactic
elements of the proof: keywords, local variables, global variables, constants, etc.

The theorem statement resembles the HOL Light one but uses the Isabelle fixes
/ assumes / shows keywords to declare the premises and conclusion. (It is typi-
cal Isabelle usage to minimise the use of explicit logical connectives in theorem
statements.) Harrison’s construction realˆN isn’t used here; instead the variable a
is declared to belong to some arbitrary Euclidean space. An advantage of this ap-
proach is that types such as real and complex can be proved to be Euclidean spaces
despite not having the explicit form realˆN.

The proof is written in the Isar structured language, and much of it is legible.
An affine set U is somehow obtained, with the same dimension as S, which we note

8 Malicious code is another matter. In HOL Light, one can use ocaml’s String.set primitive to
replace T (true) by F. Given the variety of loopholes in programming languages and systems, not
to mention notational trickery, we must be content with defences against mere incompetence.

12 Lawrence C. Paulson

theorem homeomorphic_punctured_affine_sphere_affine:
 fixes a :: "'a :: euclidean_space"
 assumes "0 < r" "b ∈ sphere a r" "affine T" "a ∈ T" "b ∈ T" "affine p"
 and aff: "aff_dim T = aff_dim p + 1"
 shows "(sphere a r ∩ T) - {b} homeomorphic p"
proof -
 have "a ≠ b" using assms by auto
 then have inj: "inj (λx::'a. x /⇩R norm (a - b))"
 by (simp add: inj_on_def)
 have "((sphere a r ∩ T) - {b}) homeomorphic
 (+) (-a) ` ((sphere a r ∩ T) - {b})"
 by (rule homeomorphic_translation)
 also have "... homeomorphic (*⇩R) (inverse r) ` (+) (- a) ` (sphere a r ∩ T - {b})"
 by (metis ‹0 < r› homeomorphic_scaling inverse_inverse_eq inverse_zero less_irrefl)
 also have "... = sphere 0 1 ∩ ((*⇩R) (inverse r) ` (+) (- a) ` T) - {(b - a) /⇩R r}"
 using assms by (auto simp: dist_norm norm_minus_commute divide_simps)
 also have "... homeomorphic p"
 apply (rule homeomorphic_punctured_affine_sphere_affine_01)
 using assms
 apply (auto simp: dist_norm norm_minus_commute affine_scaling affine_translation [symmetric] aff_dim_translation_eq inj)
 done
 finally show ?thesis .
qed

corollary homeomorphic_punctured_sphere_affine:
 fixes a :: "'a :: euclidean_space"
 assumes "0 < r" and b: "b ∈ sphere a r"
 and "affine T" and affS: "aff_dim T + 1 = DIM('a)"
 shows "(sphere a r - {b}) homeomorphic T"
 using homeomorphic_punctured_affine_sphere_affine [of r b a UNIV T] assms by auto

corollary homeomorphic_punctured_sphere_hyperplane:
 fixes a :: "'a :: euclidean_space"
 assumes "0 < r" and b: "b ∈ sphere a r"
 and "c ≠ 0"
 shows "(sphere a r - {b}) homeomorphic {x::'a. c ∙ x = d}"
apply (rule homeomorphic_punctured_sphere_affine)
using assms
apply (auto simp: affine_hyperplane of_nat_diff)
done

proposition homeomorphic_punctured_sphere_affine_gen:
 fixes a :: "'a :: euclidean_space"
 assumes "convex S" "bounded S" and a: "a ∈ rel_frontier S"
 and "affine T" and affS: "aff_dim S = aff_dim T + 1"
 shows "rel_frontier S - {a} homeomorphic T"
proof -
 obtain U :: "'a set" where "affine U" "convex U" and affdS: "aff_dim U = aff_dim S"
 using choose_affine_subset [OF affine_UNIV aff_dim_geq]
 by (meson aff_dim_affine_hull affine_affine_hull affine_imp_convex)
 have "S ≠ {}" using assms by auto
 then obtain z where "z ∈ U"
 by (metis aff_dim_negative_iff equals0I affdS)
 then have bne: "ball z 1 ∩ U ≠ {}" by force
 then have [simp]: "aff_dim(ball z 1 ∩ U) = aff_dim U"
 using aff_dim_convex_Int_open [OF ‹convex U› open_ball]
 by (fastforce simp add: Int_commute)
 have "rel_frontier S homeomorphic rel_frontier (ball z 1 ∩ U)"
 by (rule homeomorphic_rel_frontiers_convex_bounded_sets)
 (auto simp: ‹affine U› affine_imp_convex convex_Int affdS assms)
 also have "... = sphere z 1 ∩ U"
 using convex_affine_rel_frontier_Int [of "ball z 1" U]
 by (simp add: ‹affine U› bne)
 finally have "rel_frontier S homeomorphic sphere z 1 ∩ U" .
 then obtain h k where him: "h ` rel_frontier S = sphere z 1 ∩ U"
 and kim: "k ` (sphere z 1 ∩ U) = rel_frontier S"
 and hcon: "continuous_on (rel_frontier S) h"
 and kcon: "continuous_on (sphere z 1 ∩ U) k"
 and kh: "⋀x. x ∈ rel_frontier S ⟹ k(h(x)) = x"
 and hk: "⋀y. y ∈ sphere z 1 ∩ U ⟹ h(k(y)) = y"
 unfolding homeomorphic_def homeomorphism_def by auto
 have "rel_frontier S - {a} homeomorphic (sphere z 1 ∩ U) - {h a}"
 proof (rule homeomorphicI)
 show h: "h ` (rel_frontier S - {a}) = sphere z 1 ∩ U - {h a}"
 using him a kh by auto metis
 show "k ` (sphere z 1 ∩ U - {h a}) = rel_frontier S - {a}"
 by (force simp: h [symmetric] image_comp o_def kh)
 qed (auto intro: continuous_on_subset hcon kcon simp: kh hk)
 also have "... homeomorphic T"
 by (rule homeomorphic_punctured_affine_sphere_affine)
 (use a him in ‹auto simp: affS affdS ‹affine T› ‹affine U› ‹z ∈ U››)
 finally show ?thesis .
qed

text‹ When dealing with AR, ANR and ANR later, it's useful to know that every set
 is homeomorphic to a closed subset of a convex set, and
 if the set is locally compact we can take the convex set to be the universe.›

proposition homeomorphic_closedin_convex:
 fixes S :: "'m::euclidean_space set"
 assumes "aff_dim S < DIM('n)"
 obtains U and T :: "'n::euclidean_space set"
 where "convex U" "U ≠ {}" "closedin (subtopology euclidean U) T"

Fig. 2 The stereographic projection theorem in Isabelle/HOL

to be nonempty, therefore obtaining some element z ∈U . Then we obtain a home-
omorphism between rel frontier S and sphere z 1 ∩ U, using a previous re-
sult.9 Then an element is removed from both sides, yielding a new homeomorphism,
which is chained with the homeomorphism theorem for the sphere to yield the fi-
nal result. And thus we get an idea how the special case for a punctured sphere
intersected with an affine set can be generalised to the present result.

9 Because the HOL Light libraries were ported en masse, corresponding theorems generally have
similar names and forms.

Formalising Mathematics In Simple Type Theory 13

The Isar proof language [53], inspired by that of the Mizar system [50], encour-
ages the explicit statement of intermediate results and obtained quantities. The nota-
tion also benefits from Isabelle’s use of mathematical symbols, and a further benefit
of type classes is that a number like 1 belongs to all numeric types without explicit
conversion between them.

4 Discussion and Conclusions

The HOL Light and Isabelle proofs illustrate how mathematical reasoning is done
in simple type theory. They also show what mathematics looks like in these sys-
tems. The Isabelle proof demonstrates that simple type theory can deliver a degree
of legibility, though the syntax is a far cry from normal mathematics. The greater
expressiveness of dependent type theories has not given them any advantage in the
domain of analysis: the leading development [7] is not constructive and downgrades
the role of dependent types.

As I have remarked elsewhere [46], every formal calculus is ultimately a prison. It
will do some things well, other things badly and many other things not at all. Math-
ematics write their proofs using a combination of prose and beautiful but highly
ambiguous notations, such as ∂ 2z/∂x2 = y2/x2 + exycosy. Formal proofs are code
and look like it, even if they are allowed to contain special symbols and Greek
letters. The various interpretations of anomalous expressions such as x/0 are also
foundational, and each formalism must adopt a clear position when one might pre-
fer a little ambiguity. (Both HOL Light and Isabelle define x/0 = 0, which some
people find shocking.) Develop our proof tools as we may, such issues will never
go away. But if past generations of mathematicians could get used to REDUCE and
FORTRAN, they can get used to this.

The importance of legibility can hardly be overstated. A legible proof is more
likely to convince a sceptical mathematician: somebody who doesn’t trust a com-
plex software system, especially if it says x/0 = 0. While much research has gone
into the verification of proof procedures [32, 47], all such work requires trusting
similar software. But a mathematician may believe a specific formal proof if it can
be inspected directly, breaking this vicious cycle. Ideally, the mathematician would
then gain the confidence to construct new formal proofs, possibly reusing parts of
other proofs. Legibility is crucial for this.

These examples, and the great proof translation effort from which they were
taken, have much to say about the process of porting mathematics from one sys-
tem to another. Users of one system frequently envy the libraries of a rival system.
There has been much progress on translating proofs automatically [29, 39], but such
techniques are seldom used. Automatic translation typically works via a proof ker-
nel that has been modified to generate a trace, so it starts with an extremely low-level
proof. Such an approach can never deliver legible proofs, only a set of mechanically
verified assertions. Manual translation, while immensely more laborious, yields real

14 Lawrence C. Paulson

proofs and allows the statements of theorems to be generalised to take advantage of
Isabelle/HOL’s type classes.

All existing proof translation techniques work by emulating one calculus within
another at the level of primitive inferences. Could proofs instead be translated at
the level of a mathematical argument? I was able to port many proofs that I did not
understand: despite the huge differences between the two proof languages, it was
usually possible to guess what had to be proved from the HOL Light text, along
with many key reasoning steps. Isabelle’s automation was generally able to fill the
gaps. This suggests that in the future, if we start with structured proofs, they could
be translated to similarly structured proofs for a new system. If the new system
supports strong automation (and it must!), the translation process could be driven
by the text alone, even if the old system was no longer available. The main difficulty
would be to translate statements from the old system so that they look natural in the
new one.

The huge labour involved in creating a library of formalised mathematics is not
in vain if the library can easily be moved on. The question “is simple type theory
the right foundation for mathematics?” then becomes irrelevant. Let’s give Gödel
the last word (italics his):

Thus we are led to conclude that, although everything mathematical is formalisable, it is
nevertheless impossible to formalise all of mathematics in a single formal system, a fact
that intuitionism has asserted all along. [16, p. 389]

Acknowledgements Dedicated to Michael J C Gordon FRS, 1948–2017. The development of
HOL and Isabelle has been supported by numerous EPSRC grants. The ERC project ALEXAN-
DRIA supports continued work on the topic of this paper. Many thanks to Jeremy Avigad, Johannes
Hölzl, Andrew Pitts and the anonymous referee for their comments.

References

1. J. Avigad, L. de Moura, and S. Kong. Theorem proving in Lean. Online at
https://leanprover.github.io/theorem_proving_in_lean/theorem_
proving_in_lean.pdf, Nov. 2017. Release 3.3.0.

2. G. Bancerek and P. Rudnicki. A compendium of continuous lattices in Mizar. Journal of
Automated Reasoning, 29(3-4):189–224, 2002.

3. P. Benacerraf and H. Putnam, editors. Philosophy of Mathematics: Selected Readings. Cam-
bridge University Press, 2nd edition, 1983.

4. E. Bishop and D. Bridges. Constructive Analysis. Springer, 1985.
5. J. C. Blanchette, J. Hölzl, A. Lochbihler, L. Panny, A. Popescu, and D. Traytel. Truly modular

(co)datatypes forIsabelle/HOL. In G. Klein and R. Gamboa, editors, Interactive Theorem
Proving — 5th International Conference, ITP 2014, LNCS 8558, pages 93–110. Springer,
2014.

6. S. Blazy, C. Paulin-Mohring, and D. Pichardie, editors. Interactive Theorem Proving — 4th
International Conference, LNCS 7998. Springer, 2013.

7. S. Boldo, C. Lelay, and G. Melquiond. Coquelicot: A user-friendly library of real analysis for
Coq. Mathematics in Computer Science, 9(1):41–62, 2015.

https://leanprover.github.io/theorem_proving_in_lean/theorem_proving_in_lean.pdf
https://leanprover.github.io/theorem_proving_in_lean/theorem_proving_in_lean.pdf

Formalising Mathematics In Simple Type Theory 15

8. A. Bove, P. Dybjer, and U. Norell. A brief overview of Agda — a functional language with
dependent types. In S. Berghofer, T. Nipkow, C. Urban, and M. Wenzel, editors, TPHOLs,
LNCS 5674, pages 73–78. Springer-Verlag, 2009.

9. R. S. Boyer and J. S. Moore. A Computational Logic. Academic Press, 1979.
10. A. Church. A formulation of the simple theory of types. Journal of Symbolic Logic, 5:56–68,

1940.
11. R. L. Constable et al. Implementing Mathematics with the Nuprl Proof Development System.

Prentice-Hall, 1986.
12. N. G. de Bruijn. A survey of the project AUTOMATH. In J. Seldin and J. Hindley, editors, To

H.B. Curry: Essays in Combinatory Logic, Lambda Calculus and Formalism, pages 579–606.
Academic Press, 1980.

13. N. G. de Bruijn. On the roles of types in mathematics. In P. de Groote, editor, The Curry-
Howard isomorphism, pages 27–54. Academia, 1995.

14. S. Feferman. Typical ambiguity: Trying to have your cake and eat it too. In G. Link, editor,
100 years of Russell’s Paradox, pages 131–151. Walter de Gruyter, 2004.

15. E. Giménez. Codifying guarded definitions with recursive schemes. In P. Dybjer, B. Nord-
ström, and J. Smith, editors, Types for Proofs and Programs: International Workshop TYPES
’94, pages 39–59. Springer, 1995.

16. K. Gödel. Review of Carnap 1934: The antinomies and the incompleteness of mathematics.
In S. Feferman, editor, Kurt Gödel: Collected Works, volume I, page 389. Oxford University
Press, 1986.

17. K. Gödel. Some basic theorems on the foundations of mathematics and their implications.
In S. Feferman, editor, Kurt Gödel: Collected Works, volume III, pages 304–323. Oxford
University Press, 1995. Originally published in 1951.

18. G. Gonthier. The four colour theorem: Engineering of a formal proof. In D. Kapur, editor,
Computer Mathematics, LNCS 5081, pages 333–333. Springer, 2008.

19. G. Gonthier, A. Asperti, J. Avigad, Y. Bertot, C. Cohen, F. Garillot, S. Le Roux, A. Mahboubi,
R. O’Connor, S. Ould Biha, I. Pasca, L. Rideau, A. Solovyev, E. Tassi, and L. Théry. A
machine-checked proof of the odd order theorem. In Blazy et al. [6], pages 163–179.

20. G. Gonthier and A. Mahboubi. An introduction to small scale reflection in Coq. Journal of
Formalized Reasoning, 3(2), 2010.

21. J. Harrison. HOL Light: A tutorial introduction. In M. K. Srivas and A. J. Camilleri, edi-
tors, Formal Methods in Computer-Aided Design: FMCAD ’96, LNCS 1166, pages 265–269.
Springer, 1996.

22. J. Harrison. Floating point verification in HOL Light: the exponential function. Formal Meth-
ods in System Design, 16:271–305, 2000.

23. J. Harrison. A HOL theory of Euclidean space. In J. Hurd and T. Melham, editors, Theorem
Proving in Higher Order Logics: TPHOLs 2005, LNCS 3603, pages 114–129. Springer, 2005.

24. J. Harrison. Formalizing basic complex analysis. In R. Matuszewski and A. Zalewska, editors,
From Insight to Proof: Festschrift in Honour of Andrzej Trybulec, volume 10(23) of Studies in
Logic, Grammar and Rhetoric, pages 151–165. University of Białystok, 2007.

25. J. Harrison. Formalizing an analytic proof of the prime number theorem. Journal of Automated
Reasoning, 43(3):243–261, 2009.

26. A. Heyting. The intuitionist foundations of mathematics. In Benacerraf and Putnam [3], pages
52–61. First published in 1944.

27. J. Hölzl, F. Immler, and B. Huffman. Type classes and filters for mathematical analysis in
Isabelle/HOL. In Blazy et al. [6], pages 279–294.

28. L. Jutting. Checking Landau’s “Grundlagen” in the AUTOMATH System. PhD thesis, Eind-
hoven University of Technology, 1977.

29. C. Kaliszyk and A. Krauss. Scalable LCF-style proof translation. In Blazy et al. [6], pages
51–66.

30. C. Kaliszyk and C. Urban. Quotients revisited for Isabelle/HOL. In W. C. Chu, W. E. Wong,
M. J. Palakal, and C.-C. Hung, editors, SAC ’11: Proceedings of the 2011 ACM Symposium
on Applied Computing, pages 1639–1644. ACM, 2011.

16 Lawrence C. Paulson

31. A. Krauss. Partial and nested recursive function definitions in higher-order logic. Journal of
Automated Reasoning, 44(4):303–336, 2010.

32. R. Kumar, R. Arthan, M. O. Myreen, and S. Owens. Self-formalisation of higher-order logic:
Semantics, soundness, and a verified implementation. J. Autom. Reasoning, 56(3):221–259,
2016.

33. O. Kunčar and A. Popescu. A consistent foundation for Isabelle/HOL. In C. Urban and
X. Zhang, editors, Interactive Theorem Proving — 6th International Conference, ITP 2015,
LNCS 9236, pages 234–252. Springer, 2015.

34. P. Martin-Löf. An intuitionistic theory of types: Predicative part. In H. Rose and J. Shepherd-
son, editors, Logic Colloquium ’73, Studies in Logic and the Foundations of Mathematics 80,
pages 73–118. North-Holland, 1975.

35. P. Martin-Löf. On the meanings of the logical constants and the justifications of the logical
laws on the meanings of the logical constants and the justifications of the logical laws. Nordic
Journal of Philosophical Logic, 1(1):11–60, 1996.

36. T. R. Nicely. Pentium FDIV flaw, 2011. FAQ page online at http://www.trnicely.
net/pentbug/pentbug.html.

37. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant for Higher-Order
Logic. Springer, 2002. Online at http://isabelle.in.tum.de/dist/Isabelle/
doc/tutorial.pdf.

38. B. Nordström, K. Petersson, and J. Smith. Programming in Martin-Löf’s Type Theory. An
Introduction. Oxford University Press, 1990.

39. S. Obua and S. Skalberg. Importing HOL into Isabelle/HOL. In U. Furbach and N. Shankar,
editors, Automated Reasoning: Third International Joint Conference, IJCAR 2006, Seattle,
WA, USA, August 17-20, 2006. Proceedings, LNAI 4130, pages 298–302. Springer, 2006.

40. L. C. Paulson. Constructing recursion operators in intuitionistic type theory. Journal of Sym-
bolic Computation, 2:325–355, 1986.

41. L. C. Paulson. Natural deduction as higher-order resolution. Journal of Logic Programming,
3:237–258, 1986.

42. L. C. Paulson. Logic and Computation: Interactive proof with Cambridge LCF. Cambridge
University Press, 1987.

43. L. C. Paulson. ML for the Working Programmer. Cambridge University Press, 2nd edition,
1996.

44. L. C. Paulson. Mechanizing coinduction and corecursion in higher-order logic. Journal of
Logic and Computation, 7(2):175–204, Mar. 1997.

45. L. C. Paulson. Organizing numerical theories using axiomatic type classes. Journal of Auto-
mated Reasoning, 33(1):29–49, 2004.

46. L. C. Paulson. Computational logic: Its origins and applications. Proceedings of the Royal
Society of London A: Mathematical, Physical and Engineering Sciences, 474(2210), 2018.

47. A. Schlichtkrull. Formalization of the resolution calculus for first-order logic. In J. C.
Blanchette and S. Merz, editors, Interactive Theorem Proving: 7th International Conference,
ITP 2016, Nancy, France, August 22-25, 2016, Proceedings, LNCS 9807, pages 341–357.
Springer, 2016.

48. D. S. Scott. A type-theoretical alternative to ISWIM, CUCH, OWHY. Theoretical Comput.
Sci., 121:411–440, 1993. Annotated version of the 1969 manuscript.

49. The Coq Development Team. The Coq Proof Assistant Reference Manual. Inria, 2016. Online
at https://coq.inria.fr/refman/.

50. A. Trybulec. Some features of the Mizar language. http://mizar.org/project/
trybulec93.pdf/, 1993.

51. J. von Neumann. The formalist foundations of mathematics. In Benacerraf and Putnam [3],
pages 61–65. First published in 1944.

52. M. Wenzel. Type classes and overloading in higher-order logic. In E. L. Gunter and A. Felty,
editors, Theorem Proving in Higher Order Logics: TPHOLs ’97, LNCS 1275, pages 307–322.
Springer, 1997.

http://www.trnicely.net/pentbug/pentbug.html
http://www.trnicely.net/pentbug/pentbug.html
http://isabelle.in.tum.de/dist/Isabelle/doc/tutorial.pdf
http://isabelle.in.tum.de/dist/Isabelle/doc/tutorial.pdf
https://coq.inria.fr/refman/
http://mizar.org/project/trybulec93.pdf/
http://mizar.org/project/trybulec93.pdf/

Formalising Mathematics In Simple Type Theory 17

53. M. Wenzel. Isabelle/Isar — a generic framework for human-readable proof documents. Stud-
ies in Logic, Grammar, and Rhetoric, 10(23):277–297, 2007. From Insight to Proof —
Festschrift in Honour of Andrzej Trybulec.

54. A. N. Whitehead and B. Russell. Principia Mathematica. Cambridge University Press, 1962.
Paperback edition to *56, abridged from the 2nd edition (1927).

55. B. Zhan. Formalization of the fundamental group in untyped set theory using auto2. In
M. Ayala-Rincón and C. A. Muñoz, editors, Interactive Theorem Proving —- 8th International
Conference, ITP 2017, pages 514–530. Springer, 2017.

	Formalising Mathematics In Simple Type Theory
	Lawrence C. Paulson
	1 Introduction
	2 Higher-Order Logic on the Computer
	2.1 Why Simple Type Theory?
	2.2 Simple Type Theory
	2.3 Higher-Order Logic as a Basis for Mathematics
	2.4 A Personal Perspective

	3 Example: Stereographic Projections
	4 Discussion and Conclusions
	References

