351 research outputs found

    Deep Learning for Metagenomic Data: using 2D Embeddings and Convolutional Neural Networks

    Full text link
    Deep learning (DL) techniques have had unprecedented success when applied to images, waveforms, and texts to cite a few. In general, when the sample size (N) is much greater than the number of features (d), DL outperforms previous machine learning (ML) techniques, often through the use of convolution neural networks (CNNs). However, in many bioinformatics ML tasks, we encounter the opposite situation where d is greater than N. In these situations, applying DL techniques (such as feed-forward networks) would lead to severe overfitting. Thus, sparse ML techniques (such as LASSO e.g.) usually yield the best results on these tasks. In this paper, we show how to apply CNNs on data which do not have originally an image structure (in particular on metagenomic data). Our first contribution is to show how to map metagenomic data in a meaningful way to 1D or 2D images. Based on this representation, we then apply a CNN, with the aim of predicting various diseases. The proposed approach is applied on six different datasets including in total over 1000 samples from various diseases. This approach could be a promising one for prediction tasks in the bioinformatics field.Comment: Accepted at NIPS 2017 Workshop on Machine Learning for Health (https://ml4health.github.io/2017/); In Proceedings of the NIPS ML4H 2017 Workshop in Long Beach, CA, USA

    Biomedical Data Classification with Improvised Deep Learning Architectures

    Get PDF
    With the rise of very powerful hardware and evolution of deep learning architectures, healthcare data analysis and its applications have been drastically transformed. These transformations mainly aim to aid a healthcare personnel with diagnosis and prognosis of a disease or abnormality at any given point of healthcare routine workflow. For instance, many of the cancer metastases detection depends on pathological tissue procedures and pathologist reviews. The reports of severity classification vary amongst different pathologist, which then leads to different treatment options for a patient. This labor-intensive work can lead to errors or mistreatments resulting in high cost of healthcare. With the help of machine learning and deep learning modules, some of these traditional diagnosis techniques can be improved and aid a doctor in decision making with an unbiased view. Some of such modules can help reduce the cost, shortage of an expertise, and time in identifying the disease. However, there are many other datapoints that are available with medical images, such as omics data, biomarker calculations, patient demographics and history. All these datapoints can enhance disease classification or prediction of progression with the help of machine learning/deep learning modules. However, it is very difficult to find a comprehensive dataset with all different modalities and features in healthcare setting due to privacy regulations. Hence in this thesis, we explore both medical imaging data with clinical datapoints as well as genomics datasets separately for classification tasks using combinational deep learning architectures. We use deep neural networks with 3D volumetric structural magnetic resonance images of Alzheimer Disease dataset for classification of disease. A separate study is implemented to understand classification based on clinical datapoints achieved by machine learning algorithms. For bioinformatics applications, sequence classification task is a crucial step for many metagenomics applications, however, requires a lot of preprocessing that requires sequence assembly or sequence alignment before making use of raw whole genome sequencing data, hence time consuming especially in bacterial taxonomy classification. There are only a few approaches for sequence classification tasks that mainly involve some convolutions and deep neural network. A novel method is developed using an intrinsic nature of recurrent neural networks for 16s rRNA sequence classification which can be adapted to utilize read sequences directly. For this classification task, the accuracy is improved using optimization techniques with a hybrid neural network

    SARS-CoV-2 virus RNA sequence classification and geographical analysis with convolutional neural networks approach

    Full text link
    Covid-19 infection, which spread to the whole world in December 2019 and is still active, caused more than 250 thousand deaths in the world today. Researches on this subject have been focused on analyzing the genetic structure of the virus, developing vaccines, the course of the disease, and its source. In this study, RNA sequences belonging to the SARS-CoV-2 virus are transformed into gene motifs with two basic image processing algorithms and classified with the convolutional neural network (CNN) models. The CNN models achieved an average of 98% Area Under Curve(AUC) value was achieved in RNA sequences classified as Asia, Europe, America, and Oceania. The resulting artificial neural network model was used for phylogenetic analysis of the variant of the virus isolated in Turkey. The classification results reached were compared with gene alignment values in the GISAID database, where SARS-CoV-2 virus records are kept all over the world. Our experimental results have revealed that now the detection of the geographic distribution of the virus with the CNN models might serve as an efficient method

    Recent Advances in the Phylogenetic Analysis to Study Rumen Microbiome

    Get PDF
    Background: Recent rumen microbiome studies are progressive due to the advent of next-generation sequencing technologies, computational models, and gene referencing databases. Rumen metagenomics enables the linking of the genetic structure and composition of the rumen microbial community to the functional role it plays in the ecosystem. Systematic investigations of the rumen microbiome, including its composition in cattle, have revealed the importance of microbiota in rumen functions. Various research studies have identified different types of microbiome species that reside within the rumen and their relationships, leading to a greater understanding of their functional contribution. Objective: The objective of this scoping review was to highlight the role of the phylogenetic and functional composition of the microbiome in cattle functions. It is driven by a natural assumption that closely related microbial genes/operational taxonomical units (OTUs)/amplicon sequence variants (ASVs) by phylogeny are highly correlated and tend to have similar functional traits. Methods: PRISMA approach has been used to conduct the current scoping review providing state-of-the-art studies for a comprehensive understanding of microbial genes’ phylogeny in the rumen microbiome and their functional capacity. Results: 44 studies have been included in the review, which has facilitated phylogenetic advancement in studying important cattle functions and identifying key microbiota. Microbial genes and their inter-relations have the potential to accurately predict the phenotypes linked to ruminants, such as feed efficiency, milk production, and high/low methane emissions. In this review, a variety of cattle have been considered, ranging from cows, buffaloes, lambs, Angus Bulls, etc. Also, results from the reviewed literature indicate that metabolic pathways in microbiome genomic groupings result in better carbon channeling, thereby affecting methane production by ruminants. Conclusion: The mechanistic understanding of the phylogeny of the rumen microbiome could lead to a better understanding of ruminant functions. The composition of the rumen microbiome is crucial for the understanding of dynamics within the rumen environment. The integration of biological domain knowledge with functional gene activity, metabolic pathways, and rumen metabolites could lead to a better understanding of the rumen system

    Scalable Profiling and Visualization for Characterizing Microbiomes

    Get PDF
    Metagenomics is the study of the combined genetic material found in microbiome samples, and it serves as an instrument for studying microbial communities, their biodiversities, and the relationships to their host environments. Creating, interpreting, and understanding microbial community profiles produced from microbiome samples is a challenging task as it requires large computational resources along with innovative techniques to process and analyze datasets that can contain terabytes of information. The community profiles are critical because they provide information about what microorganisms are present in the sample, and in what proportions. This is particularly important as many human diseases and environmental disasters are linked to changes in microbiome compositions. In this work we propose novel approaches for the creation and interpretation of microbial community profiles. This includes: (a) a cloud-based, distributed computational system that generates detailed community profiles by processing large DNA sequencing datasets against large reference genome collections, (b) the creation of Microbiome Maps: interpretable, high-resolution visualizations of community profiles, and (c) a machine learning framework for characterizing microbiomes from the Microbiome Maps that delivers deep insights into microbial communities. The proposed approaches have been implemented in three software solutions: Flint, a large scale profiling framework for commercial cloud systems that can process millions of DNA sequencing fragments and produces microbial community profiles at a very low cost; Jasper, a novel method for creating Microbiome Maps, which visualizes the abundance profiles based on the Hilbert curve; and Amber, a machine learning framework for characterizing microbiomes using the Microbiome Maps generated by Jasper with high accuracy. Results show that Flint scales well for reference genome collections that are an order of magnitude larger than those used by competing tools, while using less than a minute to profile a million reads on the cloud with 65 commodity processors. Microbiome maps produced by Jasper are compact, scalable representations of extremely complex microbial community profiles with numerous demonstrable advantages, including the ability to display latent relationships that are hard to elicit. Finally, experiments show that by using images as input instead of unstructured tabular input, the carefully engineered software, Amber, can outperform other sophisticated machine learning tools available for classification of microbiomes

    Literature on applied machine learning in metagenomic classification: A scoping review

    Get PDF
    Applied machine learning in bioinformatics is growing as computer science slowly invades all research spheres. With the arrival of modern next-generation DNA sequencing algorithms, metagenomics is becoming an increasingly interesting research field as it finds countless practical applications exploiting the vast amounts of generated data. This study aims to scope the scientific literature in the field of metagenomic classification in the time interval 2008–2019 and provide an evolutionary timeline of data processing and machine learning in this field. This study follows the scoping review methodology and PRISMA guidelines to identify and process the available literature. Natural Language Processing (NLP) is deployed to ensure efficient and exhaustive search of the literary corpus of three large digital libraries: IEEE, PubMed, and Springer. The search is based on keywords and properties looked up using the digital libraries’ search engines. The scoping review results reveal an increasing number of research papers related to metagenomic classification over the past decade. The research is mainly focused on metagenomic classifiers, identifying scope specific metrics for model evaluation, data set sanitization, and dimensionality reduction. Out of all of these subproblems, data preprocessing is the least researched with considerable potential for improvement

    Gut microbiota and artificial intelligence approaches: A scoping review

    Get PDF
    This article aims to provide a thorough overview of the use of Artificial Intelligence (AI) techniques in studying the gut microbiota and its role in the diagnosis and treatment of some important diseases. The association between microbiota and diseases, together with its clinical relevance, is still difficult to interpret. The advances in AI techniques, such as Machine Learning (ML) and Deep Learning (DL), can help clinicians in processing and interpreting these massive data sets. Two research groups have been involved in this Scoping Review, working in two different areas of Europe: Florence and Sarajevo. The papers included in the review describe the use of ML or DL methods applied to the study of human gut microbiota. In total, 1109 papers were considered in this study. After elimination, a final set of 16 articles was considered in the scoping review. Different AI techniques were applied in the reviewed papers. Some papers applied ML, while others applied DL techniques. 11 papers evaluated just different ML algorithms (ranging from one to eight algorithms applied to one dataset). The remaining five papers examined both ML and DL algorithms. The most applied ML algorithm was Random Forest and it also exhibited the best performances

    Applications of Machine Learning in Human Microbiome Studies: A Review on Feature Selection, Biomarker Identification, Disease Prediction and Treatment

    Get PDF
    COST Action CA18131 Cierva Grant IJC2019-042188-I (LM-Z) Estonian Research Council grant PUT 1371The number of microbiome-related studies has notably increased the availability of data on human microbiome composition and function. These studies provide the essential material to deeply explore host-microbiome associations and their relation to the development and progression of various complex diseases. Improved data-analytical tools are needed to exploit all information from these biological datasets, taking into account the peculiarities of microbiome data, i.e., compositional, heterogeneous and sparse nature of these datasets. The possibility of predicting host-phenotypes based on taxonomy-informed feature selection to establish an association between microbiome and predict disease states is beneficial for personalized medicine. In this regard, machine learning (ML) provides new insights into the development of models that can be used to predict outputs, such as classification and prediction in microbiology, infer host phenotypes to predict diseases and use microbial communities to stratify patients by their characterization of state-specific microbial signatures. Here we review the state-of-the-art ML methods and respective software applied in human microbiome studies, performed as part of the COST Action ML4Microbiome activities. This scoping review focuses on the application of ML in microbiome studies related to association and clinical use for diagnostics, prognostics, and therapeutics. Although the data presented here is more related to the bacterial community, many algorithms could be applied in general, regardless of the feature type. This literature and software review covering this broad topic is aligned with the scoping review methodology. The manual identification of data sources has been complemented with: (1) automated publication search through digital libraries of the three major publishers using natural language processing (NLP) Toolkit, and (2) an automated identification of relevant software repositories on GitHub and ranking of the related research papers relying on learning to rank approach.publishersversionpublishe

    Applications of Machine Learning in Human Microbiome Studies: A Review on Feature Selection, Biomarker Identification, Disease Prediction and Treatment

    Get PDF
    The number of microbiome-related studies has notably increased the availability of data on human microbiome composition and function. These studies provide the essential material to deeply explore host-microbiome associations and their relation to the development and progression of various complex diseases. Improved data-analytical tools are needed to exploit all information from these biological datasets, taking into account the peculiarities of microbiome data, i.e., compositional, heterogeneous and sparse nature of these datasets. The possibility of predicting host-phenotypes based on taxonomy-informed feature selection to establish an association between microbiome and predict disease states is beneficial for personalized medicine. In this regard, machine learning (ML) provides new insights into the development of models that can be used to predict outputs, such as classification and prediction in microbiology, infer host phenotypes to predict diseases and use microbial communities to stratify patients by their characterization of state-specific microbial signatures. Here we review the state-of-the-art ML methods and respective software applied in human microbiome studies, performed as part of the COST Action ML4Microbiome activities. This scoping review focuses on the application of ML in microbiome studies related to association and clinical use for diagnostics, prognostics, and therapeutics. Although the data presented here is more related to the bacterial community, many algorithms could be applied in general, regardless of the feature type. This literature and software review covering this broad topic is aligned with the scoping review methodology. The manual identification of data sources has been complemented with: (1) automated publication search through digital libraries of the three major publishers using natural language processing (NLP) Toolkit, and (2) an automated identification of relevant software repositories on GitHub and ranking of the related research papers relying on learning to rank approach
    • …
    corecore