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Abstract: Metagenomics promises to provide new valuable insights into the role of microbiomes in
eukaryotic hosts such as humans. Due to the decreasing costs for sequencing, public and private
repositories for human metagenomic datasets are growing fast. Metagenomic datasets can contain
terabytes of raw data, which is a challenge for data processing but also an opportunity for advanced
machine learning methods like deep learning that require large datasets. However, in contrast to
classical machine learning algorithms, the use of deep learning in metagenomics is still an exception.
Regardless of the algorithms used, they are usually not applied to raw data but require several prepro-
cessing steps. Performing this preprocessing and the actual analysis in an automated, reproducible,
and scalable way is another challenge. This and other challenges can be addressed by adjusting
known big data methods and architectures to the needs of microbiome analysis and DNA sequence
processing. A conceptual architecture for the use of machine learning and big data on metagenomic
data sets was recently presented and initially validated to analyze the rumen microbiome. The same
architecture can be used for clinical purposes as is discussed in this paper.
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1. Introduction

Current studies are showing the importance and contribution of communities of
microorganisms, known as the microbiota, for human development [1], diet–microbiota
interactions [2], interactions with the immune system [3,4], and diseases [5,6]. Although
the relationships between individual microorganisms and host status are straightforward,
we still lack information regarding the exact role of the vast majority of individual mi-
croorganisms in their respective environment and how they work together. Metagenomics
studies, or the study of the whole genomic content of a given microbial community, or
microbiome, are attempting to answer these questions [7,8].

The traditional way to attempt to answer these and other research questions would be
to take samples of the microorganisms from their environment and to culture these in a
lab. Afterward, they could be studied and compared to other samples to detect similarities
or differences in the composition of microorganisms between samples. This process is,
however, fundamentally flawed as less than 1% of microorganisms in microbiomes can
typically be cultured in this way [9]. A more modern approach is the sequencing of such
microbiomes using high-throughput sequencing (HTS) platforms. Until a few years ago,
sequencing could be quite expensive. At the beginning of the 21st century, when the
human genome project terminated, the cost for sequencing one million bases was still
several thousand dollars. Nowadays, sequencing the same number would cost less than
one cent [10]. This price reduction opens up new opportunities for research and practical
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applications [7]. The increase in the number of metagenomic applications together with
the decrease in costs and the desire for a deeper understanding of microbiota functions
leads to a rapidly growing quantity of genetic data. The total quantity of data produced
by sequencing in 2025 is estimated to be on par or above that of astronomy, YouTube,
or Twitter [11]. Metagenomics will contribute a significant subset of this data. A single
microbiome study can contain hundreds of gigabytes or more of raw sequencing data.
During processing, this can get multiplied many times as intermediate results in different
formats need to be produced. Therefore, it is crucial to have algorithms and system
architectures capable of handling this quantity of data [12,13].

Machine Learning Trends

Another topical research trend in the last decade has been the development of new
and improved Machine Learning (ML) algorithms and techniques often summarized under
the term, “deep learning” [14,15]. The word “deep” refers to the fact that ML models
often use many processing layers. The level of abstraction and the ability to learn complex
relationships increases with every layer [14]. For example, a deep learning algorithm, such
as a Convolutional Neural Network (CNN) that is trained on images might detect simple
edges in an image in the first layer. In the second layer, it might combine several of these
edges to detect simple shapes such as rectangles. Finally, in the last layer, it could combine
these shapes to detect complex objects. Adding yet another layer could enable the network
to recognize the composition of objects to describe or classify a scene.

These algorithms are only possible by taking advantage of the increase in processing
power and especially General-Purpose computation on the Graphics Processing Unit
(GPGPU) as they can be computationally expensive and often require a large set of data
for processing [15]. Deep learning achieved promising results (often record-breaking) in
multiple classification benchmarks as well as real-life applications, with a broad range of
input data such as image, video, audio, or text [14]. It has also been successfully applied to
the field of genetics [16] including metagenomics [17].

CNNs are one of the most popular deep learning models. CNNs are able to automat-
ically detect significant features from biological data and eliminate the need for manual
feature extraction. However, challenges do exist in applying deep learning models to meta-
genomics classification problems [18]. Deep models have been used in prediction tasks,
but how users interpret such a model remains an open challenge. A concern also arises
in the application of deep learning models to metagenomics classification of phenotypes
(linking metagenomic data to observable characteristics of the microorganisms or hosts),
where there are more features than samples, which is often the case in predictive modeling
of metagenomes. Therefore, accurate classification of diseases or disease subtypes is a key
challenge in biomedicine driven by metagenomics [19]. These, and other challenges, are
detailed in Section 5.

2. Structure of Metagenomic Studies

The overall idea in metagenomic studies is to sequence (read) and analyze the metage-
nomic content of one or more samples [7]. Analyzing these samples is a process involving
multiple steps. Although there is not a single template that can be applied to every study,
there are some recurring steps that are similar or identical in multiple research studies.

Most approaches can be distinguished into two broad categories: (1) those using
amplicon sequencing, and (2) those using shotgun sequencing [20]. Amplicons, in this
case, are short deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) sequences that
are specifically selected and “amplified” to serve as a unique marker and molecular clock
to identify species and judge evolutionary distances in the phylogenetic tree [21] after
sequencing. A popular choice for amplicons is the ribosomal RNA (rRNA) and more
specifically the 16S subunit for bacteria and archaea and the 18S subunit for eukaryotes.
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In contrast to amplicon sequencing, shotgun sequencing (or “whole genome sequenc-
ing”) attempts to sample sequences from the whole genome. As most sequencing platforms
can only sequence up to a sequencer-specific length, the DNA needs to be fragmented
first [22]. After this step, the fragments from all contained microorganisms in the sample
will be mixed. This also explains the name of “shotgun sequencing”, as the exact fragments
sampled from the complete metagenome are random like the pattern produced by firing
a shotgun.

Having access to the complete metagenome allows for a broader range of studies
than using amplicons alone, e.g., by analyzing genes instead of taxa. Regardless, amplicon
sequencing is a wise choice for many applications. Compared to shotgun sequencing,
the cost can be reduced significantly, as only a tiny part of the metagenome is sequenced
and less data needs to be analyzed and processed [23]. At the same time, the taxonomic
composition of a sample can often be determined with higher precision because all reads
are focused on regions that are well known and vast reference databases exist for them.
Hence, amplicon sequencing is a popular choice in particular for ecosystems where most
organisms are expected to be closely related to existing entries in a reference database.

Figure 1 shows the typical process for these two approaches as a loose sequence of
steps. The diagram was adapted from Krause et al. [24] and focuses on bioinformatic
processes. Sample preparation steps necessary before sequencing are not included. On the
left side of the diagram processing steps typically associated with amplicon sequencing
are shown, while on the right side, typical steps for shotgun sequencing are shown. Most
studies will only use a subset of these steps depending on the goals of the study. Arrows
in the diagram indicate a relative order, but do not necessarily imply that one step is a
prerequisite of another step. To simplify discussions and to provide a generic structure
in spite of this heterogeneity, the steps are grouped into five phases. These phases are
displayed as separate sections in Figure 1 and labeled on the left side.

2.1. Five Phases of Metagenomic Studies

The “Preparation” phase encompasses preprocessing of the raw sequence data to
make it available to subsequent processes. In metagenomic processing solutions (see
Section 6), this can include all necessary steps for data ingestion and format conversion.
It also includes steps to ensure the necessary quality of data by trimming or removing
low-quality sequences [20].

In the “Aggregation” phase, the sequences are sorted, grouped, and assembled as
necessary. For amplicon sequencing, this usually includes a clustering step to identify
clusters of closely related microorganisms or Operational Taxonomic Units (OTUs) [25]. In
shotgun sequencing, it is often desired to reassemble whole genomes or larger sequences
from the short reads produced by the sequencing platform. “Read Binning” can support
this process by identifying reads that have a high probability of originating from the same
or at least a closely related microorganism so that the “Read Assembly” can be performed
more rapidly and precisely [26]. For the assembly, overlaps between sequencing reads are
identified and used as an indicator to determine the relative order of fragments. A set of
overlapping sequencing reads is called a “contig” [20].

The “Feature Engineering” phase was previously split into two distinct phases called
“Annotation” and “Summarization” in the original paper [24]. As “Feature Engineering” is
a more established and broader term, and better describes the intent of creating features for
the analysis phase, we decided to merge these two phases. During this phase, databases
can be used to map sequences to known reference data [26]. In the case of amplicon
sequencing, they contain common amplicons and their taxonomic interpretation (e.g.,
name of the species). Shotgun sequencing, on the other hand, is more often used for
“Functional Annotation”, where the focus is no longer on organisms as a whole, but rather
on individual genes, which might or might not be shared between organisms. Common
databases for gene sequences can include much metadata that can reveal specific functions
of a gene within an organism or within an environment as a whole, which can then be
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used for further analysis. As a general optimization, or in case it is desired to identify
unknown genes, it can be useful to perform “Gene Prediction” on sequences beforehand.
This process attempts to identify patterns that indicate coding regions within the sequence.
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Figure 1. Typical processing steps for amplicon and shotgun sequencing. Most studies will use only
a subset of these steps. Steps are grouped into five phases.
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In general, the feature engineering phase is a transitional phase where the focus shifts
from gathering data to the analysis and interpretation of said data [24]. This includes
all transformational tasks such as the computation of relative abundances, where the
previously identified genes or taxa are counted and put into relation to other genes or
taxa in the same sample, or other more complex transformations known as “Feature
Selection” [27] and “Feature Extraction”, that simplify and reduce the amount of input
data for the analysis phase while preserving important information.

As the name implies, the “Analysis” phase contains analytical processes that try to
derive new information from the input features. Often it will be the most important step
in metagenomic studies, directly supporting the study goals. Therefore, the processing
steps are quite heterogeneous, depending heavily on the goal of the study. That being said,
frequently used steps include the classification of phenotypes or computing correlations
between genes or taxa. Finally, during “Interaction & Perception”, results from analysis
or previous steps are presented to the user in a suitable fashion such as interactive visu-
alizations or dialog systems. As with the analysis phase, visualizations are also heavily
dependent on the study goals. Note that “Interaction & Perception” was originally named
“Visualization” in [24] but was changed to match the AI2VIS4BigData reference model
established by Reis et al. [28] and to better describe the possible interactive nature of
result presentation.

2.2. Example: Microbiome Analysis on Four Human Body Sites

Wassan et al. [29] considered various data sets containing identified OTUs from
16S rRNA amplicon data on various human body sites. They then demonstrated how
metagenomic ML models can benefit from using hierarchical, phylogenetic information
(e.g., considering evolutionary distances between OTUs). This section provides an overview
of the study and shows how it can be aligned with the five phases mentioned earlier. For
the purpose of brevity, only the Human Microbiome Project dataset [30] is used in this
description (Figure 2).

Feature Selection &
Extraction

Phenotype
Classification

Environmental
Metadata
(Labels)

OTU Abundance Table

Ta
xa A B C

Sa
m

pl
e 

1

+++ + ++

Sa
m

pl
e 

2

++++ ++++ +

Sa
m

pl
e 

n

+ ++ +++

"Who is there?" "How are they related?"

Performance of
Classification Analysis

(Accuracy, Kappa)

Phylogenetic Tree

A

C

B

Figure 2. Study performed by Wassan et al. [29]. Abundance information is combined with phyloge-
netic information to improve classification performance.
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The tasks matching the “Preparation”, “Aggregation”, and part of the “Feature En-
gineering” are described in the supplementary documents of The Human Microbiome
Project Consortium [30]. For “Preparation”, QIIME [31] and custom scripts are used to
discard low-quality sequences and to de-multiplex sequence data from different samples.
To cluster sequences and to pick representative OTUs, UCLUST [32] is used (“Aggregation”
phase). Then, the RDP classifier [33] is used in the “Feature Engineering” phase to assign a
taxonomy and an OTU table is created while applying additional quality controls.

Wassan et al. [29] continued the “Feature Engineering” phase by creating a phyloge-
netic tree from the OTU table and then using this tree to conduct feature selection using
various algorithms, such as random forest (Section 3.4). Figure 2 outlines this idea. For the
“Analysis” phase, Support Vector Machines (SVMs) (Section 3.2), naïve Bayes (Section 3.5),
and logistic regression (Section 3.6) were compared for classifying phenotypes given in the
original dataset.

The analysis phase forms a promising direction of metagenomic research by uncover-
ing knowledge from the information of compositional profiles obtained from the steps of
aggregation and feature selection.

An additional key focus of studies by Wassan et al. is integrating biological domain
knowledge of phylogeny [34] with abundance profiles of OTUs, aiding in inferring metage-
nomic functions from the microbial profiles. Research by Wassan et al. [29] suggests that
the use of computation techniques using ML over integrative profiles could improve our
understanding of microbial profiles and their functions.

The random forest classification method has typically been employed in the prediction
of high-dimensional metagenomic data [35,36] assuming independence between features.
By integrating biological knowledge of phylogeny with the quantitative profiles, the pre-
diction of metagenomic functions built upon considering these relationships could better
inform metagenomic studies. Wassan et al. [29] employed the incorporation of both quanti-
tative (abundances) and qualitative (biological domain knowledge of phylogenetic relation-
ships) aspects into the construction of new feature space for the prediction of metagenomic
phenotypes. A novel framework was proposed to determine metagenomic functions
involving (i) engineering of new feature space via integration of biological and quanti-
tative profiles, (ii) application of feature selection strategies over the engineered space,
and (iii) application of the classical predictive models (such as random forest, SVM, naïve
Bayes, and logistic regression) over the selected features. By employing the integrative
approach, an improvement in predictive performance was observed by Wassan et al. [29],
in comparison to previously employed approaches [35,36]. Furthermore, features space
modeling has been characterized by different levels of varying phylogenetic depth (phy-
lum to genus) in the study by Wassan et al. [29] which seems to be advantageous over
traditional work where only features at genus level were considered [35,36]. The studies
by Wassan et al. [29] improved modeling over the high-dimensional and integrative mi-
crobial feature space for determining functional predictions by involving phylogenetic
analysis. Proposed approaches demonstrated high prediction accuracy.

The phylogenetic similarity between microbial genes may also play an important role
in determining metagenomic functions. Applying the ordination of Principle Coordinate
Analysis (PCoA) over phylogeny and/or abundance wise similar matrix could provide
some more support for differentiating microbial samples based on the functional pheno-
type [37]. As this paper focuses on demonstrating classification improvements for ML
algorithms, the visualizations included herein consist of tables showing Accuracy and
Kappa values for the different configurations. These visualizations can be generated by
using validation metadata obtained during the analysis phase. The same data could also
be used in graphical representations.

3. Machine Learning

The two primary uses of ML within metagenomics are classification and clustering.
Classification algorithms learn to classify data points into a predetermined set of categories
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or “labels” from a set of training samples (supervised learning). Clustering algorithms
on the other hand try to find and group similar data points without using predetermined
classes (unsupervised learning).

Another unsupervised type of ML often used in metagenomics that can be distin-
guished from classification and clustering is dimensionality reduction [13]. The goal of
dimensionality reduction is to decrease the sparsity and complexity of data while pre-
serving key information. These algorithms can be used as a preparational step for other
algorithms that do not work well with highly-dimensional data or in the creation of visual-
izations that are by nature limited to few dimensions.

3.1. Vector Space Transformations

Most ML techniques require their input to be vectors with n dimensions [38], where
each dimension corresponds to a feature in the input data that can be used to distinguish
the data. A dimension could be something as detailed as the nucleotide present at a specific
position within a sample or something more general as the fraction of guanine and cytosine
present in the sample (GC content). As the vector components must be numeric, suitable
transformations must be applied if the original input data does not fit this criterion [38].

Encoding methods can be distinguished into sparse encoding methods, where most
vector components are zero, and dense encoding where the same information is encoded us-
ing fewer dimensions and most components are non-zero [39]. For example, the nucleotide
at a specific position could be encoded in four dimensions using 0 and 1 to determine the
presence or absence of a base or in a single dimension if each possible base is assigned a
unique number (e.g., A = 0.25, C = 0.5, G = 0.75, T = 1).

Some (simple) ML techniques perform better on sparse vectors, while more powerful
techniques tend to perform better on dense vectors.

3.2. Support Vector Machines

Support Vector Machines (SVMs) [40] are used to separate input data into exactly
two distinct classes. This works by computing a hyperplane in the vector space with the
largest possible margin between data points of the two classes. A hyperplane is defined as
a subspace with one dimension less than the vector space it is contained in. Therefore, in a
2D space, the hyperplane would be a simple line, while in a 3D space it would be a plane
and so on.

If such a hyperplane exists the data is called linearly separable. Training an SVM
on representative, linearly separable data would result in a perfect classifier with 100%
accuracy. Unfortunately, most real-world data is not completely linearly separable due to
outliers or complex dependencies between the dimensions that cannot be expressed in a
linear way. Thus, most SVM implementations, allow for such errors and try to minimize
the error introduced by the outliers while at the same time maximizing the margin between
the data points that are linearly separable.

Sparse vector representations improve linear separability as there are more dimensions
than the hyperplane can “use” to separate the data. Figure 3 visualizes this using a two-
dimensional vector space. The features x1 and x2 are arbitrary examples of features that
could occur during a metagenomic analysis. The dots represent samples that were used to
train the SVM. The correct classification is indicated by the color of the dots—white dots
belong to one class and black dots to another. The hyperplane (in this two-dimensional case
a simple line), separates the two classes almost perfectly with only one outlier (the white
dot below the line). The dots on the edge of the margin (i.e., the vectors that define the
margin) on both sides of the hyperplane are called “support vectors” (circled in Figure 3).

Another way to improve linear separability is to project the input vectors into a
higher-dimensional space using a kernel function [40]. This is known as the “kernel trick”.
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Figure 3. Linear separation of samples in a two-dimensional vector space using SVM. Dots are
colored according to their correct classification. The line represents the hyperplane that determines
the classifier result.

SVMs are a popular choice as they are efficient to train and provide favorable results
on many data sets [41]. Their performance drops if the data has complex dependencies
and cannot be made linearly separable. Another disadvantage of using SVMs is that they
require careful selection of features used as input vectors, as having many dimensions that
do not contribute to the classification decision can reduce performance [41].

3.3. Decision Trees

A decision tree is a tree structure where each node splits a data set into two subsets
based on a predicate (e.g., x1 dimension has a value of 0.5 or less). This process can be
repeated at subnodes which divide the dataset further into smaller and smaller subsets. A
decision tree can be used as a classifier by assigning class labels to the leaf nodes of the tree.
The nodes should be constructed in a way that maximizes the predictive value at each level
of the tree, i.e., the dimensions and values should be chosen in a way that best separates
the data points into the target classes. Figure 4 demonstrates how a decision tree splits
the dataset used in the previous section into distinct subsets that only contain one class of
points (black dots or white dots). The lines represent a node in the decision tree and the
predicate is written in the label. Each side of the line is a sub-branch of this node and can
contain further decision nodes.

Using a decision tree alone as a classifier is one of the fastest ways to build a classifier
as the tree can be constructed very efficiently [38]. By using a simple binary decision at
each level of the tree, the classification decisions are also easily comprehensible by humans
which improves the overall explainability of the model (see also Section 5.4).

Unfortunately, decision trees are too simple for many real-world problems and are
prone to overfitting, meaning the tree can classify the training data perfectly, but fails to
classify new data accurately [42].
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Figure 4. Consecutive splitting of dimensions in a decision tree. Colored points represent samples
belonging to two classes, lines represent the binary decisions taken at the nodes of the tree.

3.4. Random Forest

The random forest ML method [43] tries to tackle the shortcomings of the decision tree
classifier. It uses not one but several (often hundreds or thousands) decision trees and then
bases the final classification decision on a majority vote. As constructing multiple decision
trees from the same dataset using the same dimensions would result in the same or very
similar trees without improving the classification performance, a special construction logic
must be used for the trees. This construction logic consists in using only a subset of the
total data for each tree and limiting the dimensions from which predicates can be chosen to
a random subset of the total dimensions in each level of the constructed trees. It can be
proven that constructing the trees in this way avoids the risk of overfitting even if a large
number of trees is used [43].

3.5. Naïve Bayes Classifier

Naïve Bayes classifiers are simple models that assume that all dimensions of the input
data are completely independent of each other [38], meaning they contribute on their own
to the probability of a data point belonging to a specific class or not without taking into
account the values of other dimensions. Even if this assumption is often not true, naïve
Bayes classifiers can still perform quite well in many cases. Depending on the distribution
and type of values (e.g., categorical or continuous), various subtypes exist. For example,
the Gaussian naïve Bayes classifier assumes a normal distribution for continuous values,
while a multinomial naïve Bayes classifier can deal with categorical values.

Figure 5 shows an example where the normal distribution for black and white dots
was computed and shown as crosses originating at the mean and extending to one standard
deviation (SD) in each dimension. The probability that a data point belongs to a class
depends on this probability distribution. The curve shows the decision boundary where
the probability for both classes is the same. Even though there are two outliers, the overall
separation works well and categorizes almost all points correctly. Naïve Bayes is popular
because of its simplicity and its capability to perform well with very few training samples.



Biomedinformatics 2021, 1 147

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x1

x
2

“White” Class
“Black” Class
Mean and SD

Decision Boundary

Figure 5. Naïve Bayes classifier with decision boundary. Mean and SD for both classes is shown as
two crosses. The curve represents the decision boundary resulting from the probabilities.

3.6. Logistic Regression

Logistic regression [44] is another simple model that can be used for classification. The
model computes a weighted sum of its input vector and then applies the sigmoid function,
which is also known as the “logistic function”, to this sum [44]. The result of the sigmoid
function can be interpreted as the probability that a data point belongs to a given class.
The training of a logistic regression classifier consists in adjusting the weights for the input
vector so that the output function best matches the training data set.

As the only input to the logistic function in the classifier is a linear combination of the
input values (“weighted sum”), the classifier requires the input data to be mostly linearly
separable to perform well (see Section 3.2). Figure 6 shows the result of applying logistic
regression to our example dataset. The line represents the decision boundary where the
sigmoid function has the value 0.5, indicating a 50% probability for both classes.

The computations performed in a logistic regression classifier are the same as those in
a single neuron of a neural network (see Section 3.8) that uses the sigmoid function as the
activation function.
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Figure 6. Classification using logistic regression function. The line shows the decision boundary
where the sigmoid function is equal to 0.5.
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3.7. Clustering Algorithms

As the clustering algorithms used in metagenomics are generally simpler and less
diverse than the classification algorithms, they will be described only briefly in this sec-
tion. In general clustering algorithms try to create clusters by finding similarity between
input data and grouping it in a way that maximizes the similarity within a cluster while
simultaneously minimizing the similarity between clusters. Similarity, in this case, has to
be defined in some way using a distance metric. For metagenomic sequences this could be
character-based, i.e., checking what percentage of characters between two sequences is the
same, or based on more general properties (e.g., GC-content).

Finding optimum solutions to these problems is generally not possible—even with
small datasets—as it requires trying prohibitively many combinations. Therefore, heuristic
algorithms are used that aim for a satisfactory balance between runtime and quality. One
of the popular algorithms is Lloyd’s algorithm [38], which is often referred to as “k-Means
clustering”. In Lloyd’s algorithm, a list of data points is chosen randomly to act as starting
cluster centers (centroids). All data points are then assigned to the cluster with the nearest
centroid. Afterward, new cluster centroids are chosen by calculating the mean of all data
points within each cluster. This last step could change the nearest cluster centroid for some
of the data points, thus assignment to clusters and calculating new centroids are repeated
until there are no more re-assignments.

While popular due to its simplicity, Lloyd’s algorithm has several problems, which are
also relevant in metagenomics. First, the number of clusters must be chosen beforehand,
which can be difficult as the best number of clusters is often not known. However, this is
solvable by using variants where the number of clusters is chosen dynamically. Another
problem is that calculations of mean and distance are based on Euclidean distance and
hence require input data to be presented in a vector space (see Section 3.1). While this is
also true for most classification algorithms described in this section, clustering algorithms
in metagenomics are often used early within metagenomic workflows (see Section 4.3)
where other forms of distance metrics (e.g., based on character data) are easier to compute.
Finally, Lloyd’s algorithm has a worst-case superpolynomial complexity [45]. Processing
huge data sets, as sometimes required in metagenomics, is therefore not always feasible.

While Lloyd’s algorithm has several problems that limit its use in metagenomics, its
simplicity and general principles are a sound basis for understanding clustering algorithms
in general. Some specific uses will be discussed in Sections 4.3 and 4.4.

3.8. Neural Networks

Neural networks are inspired by biological neurons. Common to both biological
and artificial neurons is the idea that they are interconnected and that each neuron only
performs simple computations while the combined network can perform complex tasks
such as classification based on many input variables and complex dependencies [46].

The neurons in most models take several real numbered inputs, compute a weighted
sum, and then output a value based on a threshold. If the weighted sum is below this
threshold the output strives towards one value (e.g., 0 or −1 depending on the model) and
if the sum is above the threshold the output strives towards another value (e.g., 1 or the
sum itself depending on the model).

Artificial neural networks are usually organized in layers where the output of the
neurons in one layer is the input of the next layer [47,48]. The input of the first layer is
the features obtained from the samples and the last layer outputs the desired result, e.g.,
one output for each possible category in a classification task. Intermediate layers serve to
enhance the computational strength of the network by allowing the network to “recognize”
more complex dependencies within the input data that are required to determine the
result [46].

Compared to, e.g., SVMs, neural networks depend less on the data being linearly
separable as they are inherently more powerful. An SVM can be mathematically expressed
as a single neuron (single layer network), but in contrast, the computations performed in
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multi-layer networks are generally not expressible in an SVM [49]. This increased power
also allows the use of dense encoding techniques as discussed in Section 3.1 and empirical
data shows that deep neural networks (see Section 3.9) benefit from this approach [39,50].

On the downside, the complexity of neural networks also demands more computa-
tional power to find the optimum values for all weights in the network. Furthermore, the
number of variables in the model increases the risk of overfitting [51]. Overfitting occurs
when a classifier tries to optimize its parameters to correctly classify all training samples as
perfectly as possible at the expense of generalization.

Figure 7 shows the same data points as were used in the previous examples. Here,
the dots were used to train a hypothetical neural network. The gray background shows
which area is classified as the “black dot” category, whereas the white background shows
which are classified as the “white dot” category. The neural network was able to classify all
points in the training set correctly. However, it seems unlikely that these irregular areas
represent an underlying truth in the data. If the network is overfitted to the data used
during training it is likely to misclassify new data points given to it. Intuitively the SVM
did a better job at generalization in this example.

Both this risk of overfitting and the required computational power limited the applica-
tion of larger neural networks for some time. A collection of new techniques together with
increased computational power using GPGPUs led to new popularity for neural networks
under the label, “deep learning”.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x1

x
2

“White” Class
“Black” Class

NN Classification

Figure 7. Neural network classification indicating the decision boundaries using distinct background
colors. The network is possibly overfitted as the complex boundaries are unlikely to represent an
underlying truth in the data.

3.9. Deep Learning

Deep learning summarizes a collection of techniques and advancements in recent
years [14]. While some of these techniques can be applied to other ML methods, they are
most often used in the context of neural networks. The term “deep” in deep learning refers
to the higher number of layers compared to classical neural networks, which can improve
the predictive power of these networks significantly [14]. In classical neural networks
several factors limited the use of many layers:

1. Increasing the number of neurons leads to a higher number of variables which in-
creases the risk of overfitting [51].

2. The processing power for training large networks was not available [15].
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3. The popular “activation functions” used in neurons to compute the final output
value of the neuron based on its inputs were proven to perform poorly in the context
of many layers (known as the vanishing and exploding gradient problems in the
literature) [52].

With deep learning these challenges are addressed as follows:

1. Deep learning networks are often trained with a significantly larger quantity of data.
Many breakthroughs come from big tech companies like Google that have access
to huge datasets (e.g., billions of images) which decreases the risk that the network
only memorizes its training input and fails to generalize. Some computational tech-
niques were also developed which keep the network from overfitting (e.g., “Dropout”,
see Srivastava et al. [51]).

2. The processing power was increased by offloading the training to the Graphics
Processing Unit (GPU) and utilizing large computing clusters. The advent of cloud
computing enabled this possibility not only for big companies but also for smaller
research teams.

3. The problem of vanishing or exploding gradients was mitigated by using vastly
simpler activation functions, which do not exhibit this problem.

Due to these improvements over classical neural networks, deep learning has been
able to solve problems that have previously been impossible. It broke records in many
disciplines such as speech or image recognition [14] and many products such as digital
assistants or search engines now use deep learning.

4. Role of Machine Learning in Metagenomics

In metagenomic studies, there are several steps that use ML algorithms or could
potentially use them in the future. This section will cover typical processing steps and
identify ML applications. Unless otherwise mentioned, the process will focus on sequencing
results from high-throughput platforms like Illumina.

The section is structured along the phases and steps shown in Figure 1. Readers are
invited to use the figure as a reference while reading this section.

4.1. Obtaining Raw Sequence Data

The sequencing of DNA fragments works by reconstructing one of the two DNA
strands base by base using specially modified fluorescent nucleotides with different
dyes [22]. The original bases can then be detected by taking a photo at each step of
the reaction and finding the dominating color. Determining the correct base from the
images is a process called base-calling. Base-calling is complicated by multiple sources of
errors during this reconstruction.

Machine learning has been applied to this problem. One example is the use of SVMs,
which showed promising results in a comparison of various base-calling algorithms [53].
However, the literature on base calling using more modern deep learning techniques is
sparse. One explanation for this may be that the results of simple algorithms already
have low error rates and that there is therefore little room for improvement. In nanopore
sequencing (an alternative, emerging sequencing method), where the error rate for base
calling is significantly higher, deep learning has been applied successfully, which further
supports this assumption [54,55].

After base calling the (digital) result of the sequencing operation will be a collection
of “reads” representing the fragments that were sequenced with corresponding bases and
quality metrics [20].

4.2. Preprocessing

Common preprocessing steps to be applied on raw sequencing data include demulti-
plexing reads from various samples by identifying attached barcode sequences, discarding
or trimming low-quality reads, and removing sequencing artifacts.
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A review of relevant literature revealed no significant use of ML in these areas. State-
of-the-art toolsets like QIIME 2 [31] use relatively simple rules for these steps.

Some authors [19], however, do see potential for deep learning models that cover the
entire processing pipeline, including preprocessing steps, in the future.

4.3. OTU Clustering

For amplicon sequencing a common next step is to cluster reads belonging to the same
species or higher taxonomic rank into OTUs for later processing by searching for reads
with similar sequences (typically, 97%) [25]).

The goal of clustering into OTUs is to reduce the quantity of data that needs to be
processed in later steps. Clustering was discussed in Section 3 as one of the two important
branches of ML types. Accordingly, there are several algorithms that can be used in this
task [13].

One popular algorithm is UPARSE-OTU [56]. UPARSE-OTU is a greedy algorithm
(Section 3.7) and thus assigns clusters in a single iteration. The algorithm starts by ordering
input sequences by abundance as a high abundance indicates a non-erroneous read and
therefore might be good OTU candidates. Starting from the first sequence, the algorithm
will either assign the sequence to an existing cluster, create a new cluster using the sequence
as the OTU reference sequence, or discard the sequence if it is believed to be chimeric. A
sequence is assigned to an existing OTU cluster if its similarity is above 97%. Similarity
is defined here by the UPARSE-REF algorithm [56] which uses a maximum parsimony
model, i.e., defining similarity by the number of “events” that need to occur to go from
one sequence to another sequence (e.g., a sequencing error). As the Maximum Parsimony
model is a satisfactory approximation of similarity, there is little practical usage of more
advanced ML models.

4.4. Read Binning

Another use of clustering algorithms is for the purpose of “Read Binning” in shotgun
sequencing—often used as an optimization step before sequence reassembly. Binning tries
to separate reads from different organisms so that the reassembly process is easier and less
prone to false overlaps between only far-related organisms [26].

In contrast to OTU clustering, where sequence reads are expected to map to the same
position/amplicon, the actual overlap between two sequences belonging to the same “bin”
can be less or non-existent as the individual reads map to a longer sequence. Instead of
relying on sequence similarity, binning algorithms hence often rely on other similarity
measures such as k-mer distribution or probabilistic models [13]. The former relies on the
fact that the distribution of k-mers (i.e., short subsequences) is similar within a genome
while the latter attempts to model probabilities for reads to belong to the same bin and
then uses expectation maximization to find the most likely result. Early attempts also used
neural networks for this task [57].

4.5. Read Assembly

HTS platforms are limited to DNA fragments with a few hundred bases at best for
technical reasons [22]. This can be sufficient for many metagenomic applications. For
example, phylogenetic studies based on amplicon sequencing can use rRNA regions that
are short enough to be read completely but still unique enough to differentiate species [23].

When complete genomes or larger sequences need to be sequenced, they need to be
split up into fragments smaller than the maximum read length of the sequencer first [22].
However, this creates two problems: First, the order in which the fragments originally
occurred within the genome is lost, and second, the organism from which the fragment
originated is also unclear as the fragment gets mixed with fragments of all other organisms
in the sample [9]. This is not necessarily a problem if only the presence and abundance of
certain genes in the sample need to be known. In this case, it can be sufficient to match
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the fragments directly to adequate databases for the research topic [26]. However, in other
cases, the reassembly of the original genomes present in the sample is desired.

Reassembly happens by finding overlaps between the reads and aligning them on
each other. Several strategies and tools exist for this [20] and some of them are specialized
for metagenomics [26]. There are some promising results for genome reassembly using
both classical ML algorithms as well as deep learning techniques, but most of them are still
relatively new and their performance on real-world samples is yet to be determined [58].

4.6. Taxonomic Annotation

Taxonomic assignment is the task of choosing a label for each sequence or cluster
based on a chosen taxonomy, e.g., finding the species that a sequence is associated with. To
facilitate this, reference databases with sample sequences for the various labels can be used.
The methods for taxonomic annotation can broadly be separated into two groups. The
first group of methods is used in amplicon sequencing and utilizes rRNA databases. Here,
one of the most popular tools is RDP classifier [33], an ML approach using a naïve Bayes
classifier. The second group constitutes methods for assignment of reads or clusters of reads
taken from shotgun sequencing in whole-genome studies. In this group, non-machine
learning-based approaches like Kraken [59] which rely on exact substring matches seem to
be more popular.

One challenge faced by ML algorithms is the large number of possible species and
similarities between substrings in even distant species [60]. However, there are some indi-
cations that less reliance on exact matches could also be a strength for ML algorithms when
dealing with species not part of the training set [13,60]. This is particularly important when
comprehensive reference databases for the chosen environment do not exist. For many
microbiome environments, whole-genome samples only exist for common or otherwise
interesting species [26].

4.7. Functional Annotation

While taxonomic annotation tries to answer the question of “what is a sample com-
posed of?”, functional annotation tries to answer the question of “what do the components
do?”. Initially, the task can be very similar to that of taxonomic annotation. However,
the reference databases used in functional annotation consist of individual genes and
associated functional categories. In this case, the challenges for ML algorithms are very
similar to taxonomic annotation, and ML is hence not often used for this task [13].

4.8. Gene Prediction

However, machine learning is often used in gene prediction [13]. Gene prediction
tries to find genes within samples without matching them to existing databases and is thus
often one of the first steps when exploring new genomes. A challenge in metagenomics is
that complete genomes can often not be assembled so that the analysis can only be based
on individual reads or partial assemblies. Most gene prediction algorithms are based on
hidden Markov models [13]. Other popular tools for metagenomic gene prediction use
neural networks [61] and there have also been successful attempts to apply deep learning
to the task [18,62].

4.9. Feature Selection and Extraction

“Feature Selection and Extraction” is usually applied for removing irrelevant and
redundant features from the high-dimensional metagenomic datasets. Three standard tech-
niques are [27] (i) filter-based techniques that use heuristic functions over general statistical
characteristics of data to determine important features such as correlation between features,
(ii) wrapper-based approaches that iterate an ML algorithm over the input features to
determine important features, and (iii) embedded methods intended to determine features
by measuring performance while the model is being constructed.
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Wassan et al. [63] conducted a comprehensive analysis of metagenomic data from
human microbiomes with application of different feature selection strategies. They recom-
mended the application of embedded feature selection methods, namely, extreme gradient
boosting (XgBoost) [64] and penalized logistic regression to determine important micro-
bial genes in metagenomic studies. Automatic selection and weighting of features is one
of the promises of deep learning, which could make this separate step obsolete in the
future [14,15].

4.10. Phenotype Classification

In phenotype classification, one trains a classifier to predict certain characteristics
based on metagenomic sample data. Starting from training data where both the metage-
nomic sequences and the associated phenotype are known, the classifier learns to apply
the categories to previously unseen data. This helps us to answer questions like “How can
sick and healthy individuals be distinguished by their blood microbiome” [65], “How does
the maternal microbiome affect the development of newborns?” [1], “What role do micro-
biomes play in the relationship between diet and metabolism?” [2], “How do microbiomes
interact with the immune system?” [3,4], and “How do they relate to diseases?” [5,6]. These
classifications can be based on relative abundances of taxa or genes, and additional features
obtained from the samples [13,63].

All of the supervised learning algorithms discussed in Section 3 can be used for this
task. The example introduced in Section 2.2 used, for example, SVMs (Section 3.2), naïve
Bayes (Section 3.5), and logistic regression (Section 3.6). While still rare, some studies also
use deep learning for phenotype classifications [17], although successful application is
often a challenge due to an insufficient number of samples [19] (see also Section 5.7).

Nevertheless, recent advances open up a new avenue for applying deep learning
models in data analysis [66]. For example, Zhu et al. [67] successfully applied a new
deep learning model called Deep Forest [68] to investigate microbiome associations. One
key advantage exhibited by Deep Forest is that it can work well even with small-scale
training data.

4.11. Other Common Analysis Tasks

Other frequent analysis tasks include, for example, diversity estimation, phylogenetic
analysis, or correlation analysis. Diversity estimations are statistical measures to determine
the variety of species present within a sample (alpha diversity) or the different composition
between samples (beta diversity) [37]. Correlation analysis measures the relationships
between different genes or species across samples. In a positive correlation, the increase of
one gene or one species increases the abundance of another gene or species. In a negative
correlation, the increase in one leads to a decrease in the other. Both analyses are based on
statistical measures and can be computed directly from the compositional data of samples.
To our knowledge, there are no attempts to provide alternative measures using ML.

Phylogenetic analysis tries to determine the evolutionary relationships between mi-
croorganisms and to order them within a phylogenetic tree. In general, algorithms in this
category treat genetic mutations as a distance measure. The closeness on the phylogenetic
tree depends on the number of mutations required to explain sequence differences between
two species. The algorithms to compute these distances and to construct phylogenetic
trees from the set of all sequences range from simple distance methods to more complex
probability-based models [69]. Machine learning algorithms are not frequently used.

4.12. Interaction and Perception

Visualizations are an important tool to understand the data generated at various steps.
One example is the visualization of sample composition using taxonomic or functional an-
notation data. Figure 8 shows a sunburst diagram created with the free software Krona [70]
and using the dataset from [71]. The rings of the sunburst diagram represent different
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levels in the phylogenetic tree, with the outer rings being more and more specific. The size
of the ring sections is determined by the relative abundance within the sample.

Figure 9 shows another example of taxonomic composition using a phylogram. It
was created with the software Megan [72] using a dataset from [73] (sample file AS53_18).
In contrast to the sunburst diagram, the hierarchical structure of the phylogenetic tree is
emphasized more while the relative abundances are only shown as a heat map and, thus,
more difficult to compare. Both visualizations are examples of combining a “Composition
Diagram” with a “Phylogenetic Tree”, emphasizing one or the other aspect.

For simple graphics or diagrams, ML algorithms are not needed. However, there are
often cases where highly-dimensional data needs to be presented to the user in a way that
highlights important features while discarding non-essential data. This is a typical use
case for dimensionality reduction algorithms. Examples include the creation of correlation
networks or visualizations of clustering and binning (see Sections 4.3 and 4.4). A practical
application for this is described in Laczny et al. [74].
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5. Challenges for Machine Learning in Metagenomics

Machine learning can be used successfully in many key areas of metagenomics. How-
ever, there are several challenges when applying ML to metagenomics, some of which
might also impede broader usage of more advanced techniques like deep learning.

5.1. Model Selection

As seen in Section 3, many ML approaches can be used in the field of metagenomics.
Within complex approaches such as neural networks, the models themselves have infinite
possible configurations (e.g., number of layers and neurons) to choose from. Finding a
satisfactory model is often a difficult and time-consuming task even for experts in the field.
It can involve a lot of trial and error without a guarantee that the result will outperform
older or simpler models [75]. The necessary time and knowledge to select the best model
for a specific task from a myriad of options are often lacking.

5.2. Deep Learning and Feature Engineering

Deep Learning requires new approaches to really gain an advantage compared to
simpler ML models. While simple models require careful feature selection and will fail
to detect meaningful patterns if the input space is too large and complex, deep learning
promises to find suitable representations and meaningful connections in a large feature
space without requiring the same level of domain expertise and feature engineering before-
hand [14,15]. Just switching out algorithms and using the same features for deep learning
neural networks that were used for simple ML models will limit their potential or might
even make them perform worse than the simpler models.

On the contrary, the feature space should be extended by adding data from additional
data sources where possible to take full advantage of these advanced ML models. Ex-
amples in the clinical field include models that not only take into account data from the
metagenomic data itself, but also the patient’s medical history or other laboratory data.
As with the model selection itself, using deep learning and selecting relevant features is
a difficult task requiring suitable architectures and ML expertise, which are not always
available. Including additional data sources increases its complexity even further.

5.3. Accessibility

Deeply related to the challenges of selecting a model and features is the accessibility
for these processes in analysis systems. Assuming that experts in metagenomics are
not usually experts in ML and that hiring ML experts for a metagenomics project is not
always an option, the process of selecting models and features should also be accessible
for non-data scientists. This is a challenge specifically relevant for the user interface used
in these systems, which needs to allow flexible configuration of analysis tasks and model
configuration for all kinds of use cases while still being easy to use.

5.4. Explainability

Explainability strives to make the reasoning behind decisions taken by automated
algorithms, such as ML methods, more transparent. More explainability is in high demand.
For example, the European Commission has committed itself to a more trustworthy and
secure use of artificial intelligence (AI), which includes explainable AI [76]. This is particu-
larly important for the field of medicine as decisions can have far-reaching consequences
and there is a high demand for understanding what specific reasoning led to them [77].

However, explainability is not straightforward with complex ML algorithms as these
are often black boxes. Specifically with deep learning, the large number of layers and
neurons can make it impossible to understand the reasoning behind a decision taken by
the algorithm. Designing models in a way that improves explainability is possible but
could lead to decreased accuracy, although there is some debate about whether this is
necessarily true [77]. It is worth questioning the practical importance of explainability [78].
Assuming that there is in fact a trade-off between accuracy and explainability, there are
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certainly patients and physicians that would prefer a hypothetical black-box algorithm that
is 99% accurate in predicting a medical condition instead of another hypothetical algorithm
that is only 90% accurate but provides full transparency in its decision process. There are
also numerous examples in classical medicine of effective treatments that have been used
without knowing why they work [78].

Both determining the need for explainability and managing the possible trade-offs
between explainability and accuracy are challenges when implementing new clinical
solutions utilizing ML.

5.5. Reproducibility

Closely related to explainability is the concept of reproducibility. In a metagenomic
analysis, multiple steps are needed between the initial raw data and the final visualization
or result data. It is crucial to be able to reproduce these steps whenever necessary. While
this can be done by vigorously documenting each processing step, it is not an easy task
as results can depend on the exact parameters of the involved tooling or even a specific
environment or version number [79]. It is also easy to make mistakes if these steps have to
be performed by hand. The use of ML and trainable classifiers, such as neural networks,
can increase this problem as the classification results can change with every retraining of
the model, even if the input data remains the same.

5.6. Biological Diversity

The microbiome in human hosts and other environments can contain millions of
species and genes [13]. Many of those are still unknown, which can make taxonomic
or functional annotation of sequencing data difficult. Existing computational methods
and databases also have a bias towards bacterial data, which makes analyzing the whole
metagenome including archaea and fungi more difficult [13,80].

Even phylogenetically distant species often share a lot of similarities, which can be a
problem with using ML algorithms looking for these patterns. Simple algorithms relying on
exact matches are thus often preferred to less strict ML algorithms in taxonomic annotation
tasks based on shotgun sequencing (see Section 4.6) [60]. On the other hand, less reliance
on exact matches could also be a strength for ML algorithms when dealing with species
that are not part of the training set [13,60]. This can be important when comprehensive
reference databases for the chosen environment do not exist yet [26].

5.7. High Dimensionality and Low Number of Samples

The nature of metagenomics often leads to relatively few samples (e.g., blood samples
from a dozen patients) with very high dimensionality, i.e., thousands or millions of species
in the sample [19]. This combination makes it difficult for ML algorithms to find clear
patterns in the data that can be used in their decision processes. Modern ML algorithms
like deep learning neural networks work by training many parameters and do not need
the same level of feature selection as classical algorithms. The ability to infer suitable data
representations on its own is one of the greatest strengths and a defining characteristic of
deep learning [14,15].

However, this ability usually requires access to large data sets, to allow the algorithm
to recognize complex patterns [15,81]. Having access to such datasets with labeled data is,
therefore, crucial for metagenomics. Large datasets of, e.g., patient data, can be difficult to
obtain, however, as the process of collecting and processing a large number of samples is
still expensive, and legal requirements also need to be taken into account.

5.8. Big Data

Big Data is often defined by the three V’s: volume, velocity, and variety [82]. Each of
these can be relevant in metagenomics and represent a unique challenge. The volume of
data results from the usually large number of sequencing reads required to identify and
differentiate the microorganisms found in metagenomic samples. These can lead to many
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gigabytes or even terabytes for a single study. During processing (e.g., for metagenomic
assembly), the required system memory can also reach several terabytes. This is out of
reach for desktop computers and requires special infrastructure [13,26]. The secure archival
and storage of intermediate and final results presents another challenge as archiving of all
intermediate results can increase the amount of storage needed manyfold [79]. Archival
must also comply with all legal requirements including minimum and maximum retention
times for various types of data in an automated way.

The second “V”, “Velocity”, refers to the speed at which new data is being generated
and specifically for metagenomics the rapid growth of data. The total quantity of sequence
data has been growing exponentially, doubling approximately every seven months, and
is expected to reach the quantity of data produced by other big data applications such as
astronomy, YouTube, or Twitter [11]. Metagenomic applications need to be able to scale
with this increasing quantity of data, which is a challenge both for algorithms that need to
be efficient and for infrastructure, which needs to be scalable [79].

For deep learning the volume and growth of metagenomic data could become a prob-
lem for training the algorithms “on-site”. Looking at fields like image or text processing
some models are trained using such large quantities of data in order to improve classi-
fication performance that the cost of training becomes prohibitive for all but a few very
large corporations [83,84]. There is a growing trend of separating training and usage of
ML models or to use transfer learning, where existing models are adapted and retrained to
specific use cases [85]. Metagenomic systems that integrate ML models should be prepared
to allow these hybrid approaches.

Last, the “Variety” of data results from different data formats used and the combination
of sequencing data with other data sources for analysis, which can include unstructured
or semi-structured data such as scientific publications or medical histories. Integrating all
these types of data so that they can be processed together is a challenge [86].

A common approach in big data applications is to split the processing of data into
individual steps. These steps can then be optimized separately, e.g., by using parallelization.
This separation also facilitates configuration of study-specific workflows in the form of
metagenomic pipelines, which is the topic of the Section 6.

6. Metagenomic Processing Pipelines

Many projects aim to facilitate metagenomic or biomedical analyses in general by
providing step-by-step processing pipelines. In a pipeline, individual components work
together to create a result. The output of one step in the pipeline is the input for one or
more following steps. This allows flexible reconfiguration of the pipeline or individual
steps depending on the requirements. At the same time, configured pipelines can be saved
and reused later for similar studies. Individual steps can easily be replaced with alternative
approaches as long as the input and output formats stay the same. This section will provide
some examples of these projects.

6.1. Galaxy

The Galaxy project [87] is a web-based platform for biomedical analyses including
tools for metagenomic research [88,89]. It integrates several thousand tools in its “ToolShed”
ready to be used in custom workflows that can be defined in a visual interface. There are
tools to cover the complete metagenomic workflow from the processing of raw sequence
data up to visualizations. Galaxy also provides access to a wide range of ML tools and
algorithms including popular libraries like scikit-learn [90] and Keras [91]. The project is
enabled to support many concurrent users using an infrastructure scalable across multiple
computing nodes. It can be used on free public servers, pay-as-you-go cloud services, or
installed locally.

Galaxy processing is based on files. Individual processing steps can consume files
from previous processing steps and output their results as new files. This facilitates adding
existing tools to Galaxy by creating a wrapper that describes its expected inputs and
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outputs. However, this reliance on files can have disadvantages. First of all, data has to be
constantly written into suitable output formats only to be parsed again by the next step
in the pipeline, which is inefficient. Furthermore, the execution of new steps cannot start
until the files from previous steps have been written completely. Finally, parallelization of
individual processing steps is more difficult as the data contained in files cannot be easily
split without reading and parsing the whole file.

6.2. MG-RAST and MGnify

MG-RAST [92] is an open submission platform for metagenomic data, that integrates
automatic processing like taxonomic and functional annotation of sequence data. Data
submission is possible using the web-based interface, a scripting interface, or a REST-based
API. As the focus of MG-RAST is on ease of use, fast processing, and using standard
procedures across all submissions, the pipeline is fixed and customization is limited to
setting several parameters before starting an analysis. As an archive, MG-RAST has an
extensive repository of metagenomic data with over 473,000 metagenomes containing
more than 2000 billion sequences (as of November 2021, www.mg-rast.org, accessed on
4 November 2021). As MG-Rast does not allow custom pipelines to be used, it is not
possible to extend the processing with new machine learning-based steps. There is also
little use of ML in the fixed pipeline itself.

A similar solution is offered by the European Bioinformatics Institute (EBI) as MGnify
(formerly EBI Metagenomics) [93]. Like MG-Rast the platform allows free submission
and analysis of metagenomic data using fixed pipelines. Depending on the type of study
performed (e.g., shotgun or amplicon-based analysis) different pipelines are available
providing all usual processing steps like functional and taxonomic annotation and a range
of visualization and comparison options.

6.3. QIIME 2

In contrast to the other tools in this section, QIIME 2 [31] does not aim to be a full-
fledged platform with ready-made workflows accessible through an easy-to-use interface.
Rather than that, it is a collection of python scripts that can be used together to do metage-
nomic analyses locally. Using the command line as the primary interface provides a lot of
possibilities for customization and facilitates integrating other command line-based tools
into the workflow. Documentation of the steps in a metagenomic study is also straight-
forward through providing the executed command lines within the paper or in a shell
script in an accompanying source repository. The commands are designed to be run locally
by default, although it is possible to run some of the jobs in parallel or on a cluster. For
developers, the script-based nature of QIIME 2 facilitates integrating ML algorithms as new
processing steps. The source code repository includes an example of training a random
forest model for phenotype classification [94].

Although QIIME 2 provides a GUI as an API as alternatives mean to access its func-
tionality, the focus is clearly on the script-based interface, which makes it difficult to use the
tools as a user not familiar with command-line interfaces and scripting. Setting up clusters
to run commands in parallel is also not straightforward and to our knowledge, there is no
hosted, web-based interface that allows complete access to the functionality of QIIME 2.
QIIME 2 is not a complete workflow system on its own as the user is entirely responsible
for the execution of tasks and the management of intermediate and final results. However,
QIIME 2 can be integrated into other biomedical workflow systems such as Galaxy.

6.4. MetaPlat and Successors

The idea of MetaPlat is not only to provide comprehensive analysis tools for meta-
genomic data, but to support the complete life cycle of metagenomic studies, including
archiving, taxonomy management, and visualization of results. To achieve this, it is inte-
grated with the Knowledge Management Ecosystem Portal (KM-EP) [12]. The architecture
was designed based on best practices of big data systems, to ensure scalability. Another

www.mg-rast.org
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goal was to use new and innovative ML models and visualizations to help researchers in
understanding the collected data [95,96].

The system supports reproducibility and tracks the phenotypic information associated
with each sequence, including its origin, quality, taxonomical position, and associated bio-
logical genome, and produces automated reports and visualizations. Additional objectives
of MetaPlat include the following:

1. Sample gut collection, from cattle, for sequencing
2. Collection of publicly available databases to create a new classification of previously

unclassified sequences, using ML algorithms
3. Development of accurate classification algorithms
4. Real-time or time-efficient comparison analyses
5. Production of statistical and visual representations, conveying more useful information
6. Platform integration
7. Insights into probiotic supplement usage, methane production and feed conversion

efficiency in cattle

The bioinformatic workflow engine used by default in MetaPlat is called Simplic-
ity [97], developed by the company NSilico. MetaPlat is an EU-funded Horizon 2020
project developed by several universities and other organizations, including some of the
organizations represented by the authors of this paper. MetaPlat was validated and used
for the use case of rumen microbiome analysis.

Partly inspired by MetaPlat, but with an even stronger focus on AI and the goal of
expanding its use beyond rumen microbiome analysis, another conceptual architecture was
recently presented and initially validated. The “AI2VIS4BigData Conceptual Architecture
for Metagenomics supporting Human Medicine” is described in detail in the Section 7.

7. AI2VIS4BigData Conceptual Architecture for Metagenomics Supporting
Human Medicine

To support the applications discussed in this paper, including addressing some of
the challenges described in earlier sections, a conceptual architecture for AI and big data
supporting metagenomics research (Figure 10) was introduced in Reis et al. [98]. It is based
on the general AI2VIS4BigData reference model [28] for AI and big data applications.

7.1. Description of the Conceptual Architecture

The AI2VIS4BigData architecture is split vertically into three pillars to separate data
ingestion from analysis and visualization, applying the design principle of Separation of
Concerns (SoC) [99]. Each of these pillars is split into three layers, following the Model
View Controller (MVC) [100] pattern, to separate the persistence (Model) from the user
interface (View) and the application logic (Controllers). The persistence layer is shared
between all three pillars.

The first pillar is responsible for data ingestion. Data such as metagenomic sequences
or other laboratory data as well as subject-independent reference data is imported into
the system and processed using a mediator/wrapper approach [101]. The wrapper is
responsible for transforming the data into a common schema and the mediator is respon-
sible to facilitate communication between the individual data sources and the rest of the
system. The intent behind this is that the data formats that can be imported should be
easily extensible. Another important aspect of the data ingestion pillar is the storage of
raw data in a data lake. This allows better transparency and reproducibility as all steps can
be repeated starting from raw data.

In the second pillar, data is taken from the persistence layer and then processed for
analysis using a workflow engine to orchestrate the required metagenomic tasks. The
configuration for these tasks is provided by domain and data science experts using a
configuration user interface. The results are persisted into structured storage again.

Finally, the third pillar is responsible for presenting the persisted analysis results to the
end-user and possibly entering into a dialog with the user to further adjust the presentation.
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Figure 10. A conceptual architecture for AI and big data supporting metagenomics research. Architecture is split into three
pillars with each pillar having three layers. Diagram from Reis et al. [98].

7.2. Use in Clinical Settings

In Section 2.2, an example was introduced in which human metagenomic data is used
for the classification of phenotypes. So far, the conceptual architecture presented in this
section was only validated for the use case of rumen microbiome analysis. While it seems
trivial at first to apply the same architecture for human microbiome analysis in a clinical
setting, there are some details to consider that merit another validation by comparing both
use cases.

Looking at “Knowledge & Data Input”, there is no fundamental technical differ-
ence between the raw sequencing data used in our example compared to the examples
in Krause et al. [24] using rumen samples. There might be different supplementary data
like medical history or specific databases targeted for human diseases that differentiate
these use cases. As the conceptual architecture does not impose limits on the type of data
to be used this is not a problem. Likewise, the roles of “Domain Expert” and “Diagnostic
Expert” were chosen broadly so that they can be filled by experts in biology, medicine, or
others as needed. The “AI Integration & Fusion” layer allows the integration of various
data types, bridging their technical differences. This will allow different types of data by
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implementing suitable wrappers, thus supporting both use cases. The “Persistence” layer
does not impose schema restrictions that would either impede clinical use cases.

For the “Model & Configuration Input” layer there may be different legal require-
ments, like stronger data protection requirements, when comparing both use cases. As
the architecture uses a policy model and the role of a “Governance Officer”, these legal
requirements can be presented in implementations using the architecture, for example,
by using access policies and auditing the use of data. The analysis steps and algorithms,
like the use of QIIME 2, UCLUST, and RDP classifier in the human example are similar or
identical to the tools used in rumen microbiome analysis. The specific tools used vary from
study to study in both use cases, which is addressed in the model by using a configurable
workflow engine and a registry allowing for different analysis and processing services to
be used.

The “End User Interface” and “AI Input/Output” layers are also very generic to
support a wide range of use cases. For rumen microbiome analysis the use of dialog
systems or multilingual reports might not be necessary if the role of “End User” is filled
by a researcher, who is also a “Domain Expert”. For clinical settings, the “End User” may
actually be the patient, who wants an easily understandable report of his diagnosis. As it
is, the conceptual architecture does support both use cases.

This initial validation shows that all layers are generic enough to support both use
cases. It can thus be assumed that the conceptual architecture as a whole also supports
both use cases.

8. Remaining Challenges, Conclusions, and Outlook

The increased use of sequencing technology in the biomedical field and the volu-
minous quantity of associated data provide several challenges for data processing and
opportunities for leveraging advanced ML techniques. This paper provides an extensive
overview of both metagenomics and ML in the hope of further bridging the gap between
these two disciplines.

With the same goal, several existing use cases for ML in biomedical workflows have
been documented. The use case of using phylogenetic information to improve phenotype
classification was discussed in detail. Integrating phylogeny directly at the level of the ML
model, instead of at data preparation and modeling level, has the potential to provide new
microbial features for classifiers such as deep learning neural networks and to improve
overall phenotype classification performance.

Possible reasons for the perceived lack of advanced ML techniques like deep learn-
ing have been identified, like the lack of sizable training data, accessibility, and general
challenges related to big data. Automatization pipelines can help to address some of the
challenges associated with big data processing, metagenomics, and ML by improving repro-
ducibility, accessibility, and dividing the work into smaller processable units. With this in
mind, they also provide a foundation for the use of advanced, computationally-expensive
ML algorithms like deep learning neural networks.

The AI2VIS4BigData Conceptual Architecture for Metagenomics was given as a so-
lution to integrate automated biomedical pipelines while taking into account additional
research aspects such as data ingestion, management, archiving, and visualization. It was
built with advanced, machine learning-based analysis methods in mind and supports large
quantities of data using a distributed and modular architecture. Taken together, these
features improve the accessibility of machine learning-based analysis methods and the
handling of big data. It was demonstrated that the architecture is suitable for studies
in human metagenomics such as the one discussed in this paper, therefore providing an
initial validation for the architecture that was previously only validated for use in rumen
microbiome analysis.

Future research could address the remaining challenges of advanced ML methods like
the quality and size of training corpora, problems arising from the biological diversity of
samples, the need for explainability, and further advancements to increase the accessibility
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of these methods for scientists without an ML background. The AI2VIS4BigData concep-
tual architecture could be further validated by evaluating additional use cases, adding a
technical architecture, and finally providing an implementation.
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