
Florida International University Florida International University

FIU Digital Commons FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

3-20-2020

Scalable Profiling and Visualization for Characterizing Scalable Profiling and Visualization for Characterizing

Microbiomes Microbiomes

Camilo Valdes
Florida International University, cvalde03@fiu.edu

Follow this and additional works at: https://digitalcommons.fiu.edu/etd

 Part of the Bacteria Commons, Bioimaging and Biomedical Optics Commons, Bioinformatics

Commons, Computer and Systems Architecture Commons, Digital Communications and Networking

Commons, Disease Modeling Commons, Hardware Systems Commons, and the Other Computer

Engineering Commons

Recommended Citation Recommended Citation
Valdes, Camilo, "Scalable Profiling and Visualization for Characterizing Microbiomes" (2020). FIU
Electronic Theses and Dissertations. 4411.
https://digitalcommons.fiu.edu/etd/4411

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It
has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU
Digital Commons. For more information, please contact dcc@fiu.edu.

https://digitalcommons.fiu.edu/
https://digitalcommons.fiu.edu/etd
https://digitalcommons.fiu.edu/ugs
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F4411&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/985?utm_source=digitalcommons.fiu.edu%2Fetd%2F4411&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/232?utm_source=digitalcommons.fiu.edu%2Fetd%2F4411&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=digitalcommons.fiu.edu%2Fetd%2F4411&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=digitalcommons.fiu.edu%2Fetd%2F4411&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=digitalcommons.fiu.edu%2Fetd%2F4411&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=digitalcommons.fiu.edu%2Fetd%2F4411&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=digitalcommons.fiu.edu%2Fetd%2F4411&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/814?utm_source=digitalcommons.fiu.edu%2Fetd%2F4411&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/263?utm_source=digitalcommons.fiu.edu%2Fetd%2F4411&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=digitalcommons.fiu.edu%2Fetd%2F4411&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=digitalcommons.fiu.edu%2Fetd%2F4411&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/4411?utm_source=digitalcommons.fiu.edu%2Fetd%2F4411&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

SCALABLE PROFILING AND VISUALIZATION FOR CHARACTERIZING

MICROBIOMES

A dissertation submitted in partial fulfillment of

the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Camilo Valdes

2020

ii

To: Dean John L. Volakis
 College of Engineering and Computing

This dissertation, written by Camilo Valdes and entitled Scalable Profiling and
Visualization for Characterizing Microbiomes, having been approved in respect to style
and intellectual content, is referred to you for judgement.

We have read this dissertation and recommend that it be approved.

Leonardo Bobadilla

Kalai Mathee

Jennifer Clarke

Ruogu Fang

Giri Narasimhan, Major Professor

Date of Defense: March 20, 2020

The dissertation of Camilo Valdes is approved.

Dean John L. Volakis

College of Engineering and Computing

Andrés G. Gil

Vice President for Research and Economic Development
And Dean of the University Graduate School

Florida International University, 2020

c©Copyright 2020 by Camilo Valdes

All rights reserved.

iii

DEDICATION

For Kobie and my Family. Thank you for the love and support.

iv

ACKNOWLEDGMENTS

The work in this dissertation would not have been possible without the help and

support of many people that have helped me throughout many years.

First and foremost I would like to thank my advisor, Dr. Giri Narasimhan, for

his patience, advise, mentorship, and drive for excellence. Throughout the many

years that the work in this dissertation has spanned, Dr. Giri has taught me how to

improve ideas and not settle for good enough. Without his direction and leadership,

the work here would not have been possible.

My committee members, Dr. Ruogu Fang, Dr. Jennifer Clarke, Dr. Kalai

Mathee, and Dr. Leonardo Bobadilla have been an instrumental source of growth,

instruction, counsel and advice. Without their support, suggestions, and advice I

would have never been exposed to a lot of the topics that have driven my curiosity

over the past couple of years.

I would also like to thank my lab-mates, and the members of the Bioinformatics

Research Group (BioRG), who have been a constant source of discussion, criticism,

and support. With their help the work here has been made all the better.

v

ABSTRACT OF THE DISSERTATION

SCALABLE PROFILING AND VISUALIZATION FOR CHARACTERIZING

MICROBIOMES

by

Camilo Valdes

Florida International University, 2020

Miami, Florida

Professor Giri Narasimhan, Major Professor

Metagenomics is the study of the combined genetic material found in microbiome

samples, and it serves as an instrument for studying microbial communities, their bio-

diversities, and the relationships to their host environments. Creating, interpreting,

and understanding microbial community profiles produced from microbiome samples

is a challenging task as it requires large computational resources along with innovative

techniques to process and analyze datasets that can contain terabytes of information.

The community profiles are critical because they provide information about what

microorganisms are present in the sample, and in what proportions. This is partic-

ularly important as many human diseases and environmental disasters are linked to

changes in microbiome compositions.

In this work we propose novel approaches for the creation and interpretation of

microbial community profiles. This includes: (a) a cloud-based, distributed compu-

tational system that generates detailed community profiles by processing large DNA

sequencing datasets against large reference genome collections, (b) the creation of

vi

microbiome maps: interpretable, high-resolution visualizations of community pro-

files, and (c) a machine learning framework for characterizing microbiomes from the

microbiome maps that delivers deep insights into microbial communities.

The proposed approaches have been implemented in three software solutions:

Flint, a large scale profiling framework for commercial cloud systems that can process

millions of DNA sequencing fragments and produces microbial community profiles at a

very low cost; Jasper, a novel method for creating microbiome maps, which visualizes

the abundance profiles based on the Hilbert curve; and Amber, a machine learning

framework for characterizing microbiomes using the microbiome maps generated by

Jasper with high accuracy.

Results show that Flint scales well for reference genome collections that are an

order of magnitude larger than those used by competing tools, while using less than a

minute to profile a million reads on the cloud with 65 commodity processors. Micro-

biome maps produced by Jasper are compact, scalable representations of extremely

complex microbial community profiles with numerous demonstrable advantages, in-

cluding the ability to display latent relationships that are hard to elicit. Finally,

experiments show that by using images as input instead of unstructured tabular in-

put, the carefully engineered software, Amber, can outperform other sophisticated

machine learning tools available for classification of microbiomes.

vii

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . 1

1.1 Motivation and Goals . 2

1.2 Research Contributions . 4

1.3 Hardware and Software Environments 6

1.3.1 Spark EMR Cluster . 7

1.3.2 EMR Cluster Provisioning . 8

1.4 Road Map for the Dissertation . 8

2 BACKGROUND AND REVIEW . 11

2.1 High-Throughput DNA Sequencing 11

2.2 Cloud Computing . 14

2.2.1 Spark and MapReduce . 15

2.3 Streaming Techniques . 18

2.4 Visualizing Data . 19

2.5 Space Filling Curves . 20

2.5.1 Hilbert Curve . 22

2.6 Artificial Intelligence and Machine Learning 24

2.6.1 Deep Learning . 24

3 MICROBIAL REFERENCE GENOMES AND CLOUD INFRASTRUC-

TURE . 28

3.1 Reference Genomes . 28

viii

3.2 Reference Genome Preprocessing . 29

3.2.1 Partitioning and Indexing the Reference Genomes 30

3.3 Cloud Infrastructure . 32

3.3.1 AWS Cloud Cluster . 32

4 LARGE-SCALE MICROBIAL COMMUNITY PROFILING IN THE CLOUD 35

4.1 Microbial Community Profiling . 36

4.2 Approach . 37

4.2.1 Spark and MapReduce . 37

4.2.2 Streaming Techniques . 39

4.3 Methods . 42

4.3.1 A “Double” MapReduce . 42

4.3.2 Reference Genome Preparation 44

4.3.3 Cluster Provisioning . 45

4.4 Results and Discussion . 46

4.4.1 Benchmarking the Mapping of Reads 46

4.4.2 Mapping Reads on the Cloud 46

4.4.3 Comparing Flint to Existing Tools 47

4.4.4 Reference Genome Collections 48

4.4.5 Experimental Setup . 51

4.4.6 Measuring Accuracy Using Simulated Datasets 52

4.4.7 Human Metagenomic Samples 54

4.4.8 Scaling to Larger Reference Collections 58

ix

4.5 Conclusion . 62

5 MICROBIOME MAPS: HILBERT CURVE VISUALIZATIONS OF MI-

CROBIAL COMMUNITY PROFILES . 63

5.1 Introduction . 63

5.2 Approach . 64

5.2.1 Space-Filling Curves . 66

5.2.2 The Hilbert Curve . 66

5.2.3 Ordering the Genomes Along the Space-Filling Curve 68

5.3 Methods . 69

5.3.1 Microbial Neighborhoods . 70

5.4 Results and Discussion . 77

5.4.1 Comparison to Other Methods 77

5.4.2 Metagenomic Visualizations 78

5.5 Summary and Conclusion . 81

6 APPLICATIONS OF MICROBIOME MAPS 82

6.1 Existing Tools for Visualizing Microbial Profiles 83

6.2 Overview of Experiments with Microbiome Maps 84

6.2.1 Experiments with Orderings 84

6.2.2 Reference Genome Collections 92

6.3 Processing the Microbiome Datasets 94

6.3.1 HMP Sample Processing . 94

6.3.2 Chronic Kidney Disease Sample Processing 97

x

6.3.3 Infant Gut Sample Processing 98

6.4 Visualizations with Microbiome Maps 99

6.4.1 HMP Taxonomic Ordering . 99

6.4.2 HMP Labeled Ordering . 101

6.5 Visualizations - CKD Study . 104

6.5.1 CKD Taxonomic Ordering . 105

6.5.2 CKD Labeled Ordering . 106

6.6 Variations on Microbiome Maps . 119

6.6.1 Differential Profiles . 119

6.6.2 Animated Movies . 119

6.6.3 Composite Maps . 120

6.7 Metagenomic Hilbert Inspector . 123

7 CHARACTERIZING MICROBIOMES WITH CONVOLUTIONAL NEU-

RAL NETWORKS . 125

7.1 Introduction . 125

7.2 Approach . 126

7.2.1 Convolutional Neural Networks 126

7.2.2 U-Net . 129

7.3 Methods . 132

7.3.1 Convolutions for Microbial Neighborhoods 132

7.3.2 The Amber CNN Model . 134

7.4 Results and Discussion . 138

7.4.1 Comparison to other Classifiers 138

xi

7.4.2 Training with HMP Body Site Maps 142

7.4.3 Training with Chronic Kidney Disease Maps 150

7.4.4 Training with No Borders . 154

7.4.5 Training with Two Datasets 154

7.5 Profile Classification Comparison . 156

7.6 Summary & Conclusion . 158

8 CONCLUSION . 160

8.1 Microbial Community Profiling in the Cloud 160

8.2 Visualizations of Microbial Community Profiles 161

8.3 Characterizing Microbiomes . 163

8.4 Future Work . 164

8.4.1 The Future of Flint . 164

8.4.2 Peering Down the Road for Jasper 165

8.4.3 Variations on the Theme of Amber 172

APPENDIX . 189

VITA . 190

xii

LIST OF TABLES

TABLE PAGE

4.1 Reference Database Partitions. Average size of a partition (“Partition
Disk Size (GB)”) after splitting the reference collection, along with
estimated running times for aligning 66k HMP reads against the par-
tition (“Bowtie2 Map Time”). 46

4.2 HiSeq Synthetic Datasets. Average alignment times and alignment
rates for three synthetic datasets aligned against Ensembl’s 44K bac-
terial genomes. Alignment rate measures the number of paired reads
that were correctly aligned, and sensitivity is the proportion of aligned
paired reads that were mapped correctly to the genome from which
they were generated. Evaluations were performed on a 64 worker-node
Spark cluster. Note that the number of reads aligned can be obtained
by multiplying the number of paired reads in the first column by 2. . 53

4.3 Initial Cluster Benchmarks. Average alignment times on a 64 worker-
node cluster for a set of randomly selected reads from a HMP throat
sample. The number of alignments column contains the output align-
ments that were generated by each set of reads; these alignments were
processed as soon as they were produced and were not stored, there-
fore minimizing the local storage requirements necessary for profiling
metagenomic samples. 55

4.4 HMP Sample Analysis. Diversity classes were established based on the
number of unique genera in 753 HMP samples. Three samples were
selected from each diversity class and analyzed in a 64 worker-node
cluster. Alignment execution time measures the total time to align
all the sample reads against Ensembl’s 44K bacterial genomes. The
“Streamed Shards” are the number of 250K read sets that are streamed
into the cluster, and the “Alignments per Shard” is the average number
of alignments produced by each shard. 56

xiii

6.1 HMP Samples. Eight (8) body sites were selected from the HMP
(version 1 project repository) based on their representative number
of samples (how many samples each body site contained), as well as
the number of DNA sequencing reads that passed a HMP complexity
filter (MAPQ score > 20) for each sample. 95

6.2 Infant Gut Samples. Fifteen days of a patient’s antibiotic treatment
(Vancomycin and Ticarcillin-Clavulanate). Day 28.2 through day 34.5
are before treatment, while day 37 through 64.5 are after treatment. . 98

7.1 HMP Classification Report (12 Classes). Evaluation of the perfor-
mance of the Amber CNN model in classifying the twelve classes of
the HMP dataset. The model performs very good for many of the
classes, but fails notably for a couple of classes (those with an F1 score
of 0.00). Classes with an F1 score of 0.00 should probably be dropped,
as their number of samples is not enough to be used. The “No. Sam-
ples” column contains the number of input samples for each class. The
“Precision” column contains the proportion of positive classifications
that was correct, the “Recall” column contains the proportion of ac-
tual positive classifications, and the “F1 Score” column contains the
harmonic mean of the precision and recall columns. 147

7.2 HMP Classification Report (8 Classes). Evaluation of the performance
of the Amber CNN model in classifying a reduced set of eight classes of
the HMP dataset. The model performs very good achieving a training
accuracy of 0.99% and a testing accuracy of 0.94%. 148

7.3 CKD Classification Report. Evaluation of the performance of the Am-
ber CNN model in classifying the six classes of the CKD dataset.
The model performs best when discriminating among the CKD 2 and
CKD 3 classes, and worst for the CKD 5 class. The “No. Samples”
column contains the number of input samples for each class. The “Pre-
cision” column contains the proportion of positive classifications that
was correct, the “Recall” column contains the proportion of actual pos-
itive classifications, and the “F1 Score” column contains the harmonic
mean of the precision and recall columns. 153

xiv

LIST OF FIGURES

FIGURE PAGE

1.1 Cluster layout of the basic distributed architecture in our application.
The Bowtie2 mapper is pre-installed in each worker node during the
cluster provisioning step. Reference database partitions (“Index”) are
also copied into each worker node. 7

2.1 Cost of Sequencing 1 Million DNA Nucleobases. NHGRI estimated
costs through the years (2001-2019) of generating 1 million DNA nu-
cleic bases (A, T, G, C). Costs only include wet-lab resources, and does
not reflect costs of analyzing the generated data [111]. 12

2.2 Cost of Sequencing a Human-Sized Genome. NHGRI estimated costs
from 2001-2019 of generating a human-sized genome, or of generating
over 3 billion DNA nucleobases [111]. 13

2.3 RefSeq Bacteria. Number of unique accession identifiers in NCBI’s
RefSeq database. The blue line tracks the growth of new bacterial
species submitted to the RefSeq project database. The red line, “Total
Accessions”, tracks the overall number of unique identifiers for bacterial
sequence records in RefSeq. The orange line, “Nucleotides”, tracks
the number of unique nucleotide bacterial records derived from the
International Nucleotide Sequence Database Collaboration (INSDC)
project. The green and purple lines track the number of unique records
for bacterial “Transcripts” (mRNA sequences) and bacterial “Proteins”
in RefSeq. 14

2.4 Distributed Execution Framework. Typical layout of a distributed
computational cluster such as the ones available in AWS. The Master
node contains the Driver Program, a piece of software that contains
the main logic. The Cluster Manager handles communication between
the master node and any Worker Nodes, whose primary task is to exe-
cute jobs. Each Worker Node is usually a cheap, off-the-shelf machine
that contains moderate resources. The power of the such a setup is
that all the Worker Nodes run at the same time, and developers can
utilize this parallelization to process very large datasets quickly and at
reduced costs [153]. 17

xv

2.5 Visualizing Microbial Community Profiles with Bar Charts. An anal-
ysis of the structure and function of healthy human microbiomes. The
bar charts do a great job of summarizing large amounts of data for
the conditions in the study, but details are lost for individual samples.
Figure 2 from the paper by Huttenhower et al. [72], and reproduced
with permission. 20

2.6 Circos Plot for Microbial Ecology. A Circos diagram showing the re-
lationships between genus-level microbes in solar panels. A Circos
plot uses a circular backbone structure to display entities, and ribbons
drawn between pairs of entities to display relationships. Figure 5 from
Porcar et al. [121], and reproduced with permission. 21

2.7 Microbial Ecology Sankey Diagram. A taxonomic analysis using a
sankey diagram showing a hierarchical structure of microbes. Figure 3
from Porcar et al. [121], and reproduced with permission. 22

2.8 Hilbert Curve Levels. First four iterations (levels) of the Hilbert curve
show the 2D square recursively partitioned into 4 sections at each it-
eration (level) of the curve. 23

2.9 Artificial Intelligence, Machine Learning, and Deep Learning. The re-
lationship between the fields of Artificial Intelligence, Machine Learn-
ing, and Deep Learning reproduced and based on the book by François
Chollet, Deep Learning with Python [31]. 25

2.10 Character Classification. A stylized depiction of a Deep Learning neu-
ral network for classifying character letters (“A”, “B”, “C”, etc.) Each
layer in the model can learn to represent the network’s input into in-
creasing levels of relevant and abstract representations. Inspired by
Figure 1.6 from the book by François Chollet, Deep Learning with
Python [31]. 26

3.1 Bacterial genome reference database partitions. Red labels indicates
the average disk size in gigabytes (GB, y-axis) of a single partition when
partitioning the full reference database into N -number of partitions (x-
axis). 31

xvi

4.1 Overview of the Flint System. Reference genomes are partitioned so
that a large reference set is be distributed across a Spark cluster, and
the number of partitions matches the number of worker nodes. Sam-
ples are streamed into the cluster to avoid storage overheads as shards
of 250K reads. Reads are aligned to the distributed reference genomes
using a double MapReduce pipeline that continually updates metage-
nomic profiles as samples streamed into the cluster. Read alignments
are never stored, and processed by each worker node as soon as they
are produced. 41

4.2 MapReduce Workflow. Metagenomic samples can be streamed in from
a distributed filesystem into the cluster were they are stored in an
RDD. The first map step generates alignments through Bowtie2 and
feeds its resulting pairs to the first reduce step, which aggregates the
genomes that a single reads aligns to. The second map step generates
read contributions that are used in the second reduce step to aggre-
gate all the read contributions for a single genome. This results in an
abundance matrix containing the abundances of each genome in the
sample being analyzed. 43

4.3 Bowtie2 Partition Map Time. Run times for aligning 66k HMP reads
using Bowtie2 against different reference database partitions. 47

4.4 Kraken2 Comparison. Community abundance profile comparison for
an HMP anterior nares sample (SRS019067) generated by Flint and
Kraken. Red branches are lineages identified only by Flint, blue branches
are lineages identified by Kraken only, and green branches are lineages
identified by both. The outermost ring represents the species identified
by either Flint (red), Kraken (blue), or both (green). 49

4.5 Phylogenetic tree showing taxa identified by Flint using 44K Ensembl
bacterial genomes (blue), and using 5K NCBI’s Genomes references
(red) with an input of 1M randomly selected reads from the HMP an-
terior nares sample (SRS015996). Genomes are considered as identified
if the average coverage in their genomic sequence is 80% or more. . . 50

xvii

4.6 Initial Benchmarks. Figure A displays the running time for 12 paired-
end read datasets on a 64 worker-node cluster. These 12 datasets were
used to estimate the optimal number of reads that a 64 worker-node
cluster could handle without memory saturation or network overload-
ing. Note that while 1 million paired-end reads can be mapped in 67
seconds against 44K bacterial strains, it is not ideal to ingest 1M reads
at once as the cluster’s memory will be overwhelmed with the align-
ments that are produced. Figure B displays the logarithmic running
time of the 12 datasets, and the 250K paired-end read dataset was
chosen as a good trade-off between speed and resource availability. . . 57

4.7 Modified Cluster Architecture. Support for larger reference collections
such as RefSeq could be achieved by having each worker node in the
cluster work on multiple partitions, rather than a single one as is the
case in the current architecture. 60

5.1 Hilbert Curve Visualization of Metagenomic Samples. (A) The first
five iterations of the Hilbert curve: the “Level 1” curve is obtained by
connecting the centers of the four initial squares as shown; the Level
k curve is obtained by a recursive partitioning of each square from
Level k-1, creating four Level k-1 curves and connecting them as out-
lined by the “Level 1” curve, rotated appropriately. At level k, the
original square is divided into 2k × 2k small squares, each of whose
centers is visited by the Level k Hilbert curve. (B) A representative
image of a mWGS Buccal Mucosa sample (SRS045254) from the Hu-
man Microbiome Project (HMP) created using a “taxonomic ordering”
of 44K reference genomes from the Ensembl database. The intensity of
each position in the image represents the abundance of one microbial
genome. Groups of segments are labeled by the groups induced by the
ordering of the taxa on the Hilbert curve. 65

5.2 Detailed Hilbert Curve Levels. First four iterations (levels) of the
Hilbert curve show the 2D square recursively partitioned into 4 sections
at each iteration (level) of the curve. 67

xviii

5.3 Taxonomic Ordering. A Taxonomic Ordering of 44,048 microbial ref-
erence genomes from Ensembl Bacteria. Microbial neighborhoods are
drawn based on a taxonomic tree for microbial classification. The im-
age depicts the distribution of Genera in the reference genome database,
and the size of each neighborhood is consistent with the number of
genomes that belong to it. (B) A taxonomic hierarchical tree with
three (3) levels of rankings for the genomes in the reference database:
Genus, Species, and Strain. The taxonomic tree is linearized to create
a 1D linear order for the tree’s leaves (Strains). (C) The 1D linear
order is then laid out onto a 2D plane using a Hilbert curve, which
creates microbial neighborhoods of related taxa. 69

5.4 Labeled Ordering. (A) Samples are processed in a M x N matrix that
contains M labeled samples, and N microbial taxa. The user specifies
the ordering of the biological conditions that the M samples belong
to. For each labeled grouping, the taxa with the highest mean relative
abundance is identified and used as an anchor for a linear order in
the Hilbert curve. (B) Resulting Hilbert curve image for 3 samples
(SRS024557, SRS045254, SRS063478) for a buccal mucosa condition,
built using an averaging ordering scheme from 8 HMP body sites. . . 71

5.5 Chronic Kidney Disease Stages. Hilbert curve visualizations for 16S
samples of five stages of chronic kidney disease, along with a control
sample. Each panel represents the mean relative abundance of 3 sam-
ples for each stage, and displays 5,127 species. Regions marked A shows
a group of microbes that appear in all stages, while region marked B
appears in almost all stages except CKD3 (absent), and Control (low-
ered abundance). 76

6.1 Tongue Dorsum Profile. A tabular representation of a typical commu-
nity abundance profile as generated by the Flint software. Only the
first 10 rows out of 44K are shown. 84

6.2 Tongue Dorsum Profile - Pie Chart. A pie chart of the abundance
values for the full profile of Figure 6.1 generated by the Tableau [141]
software. 85

xix

6.3 Tongue Dorsum Profile - Bubble Plot. A bubble plot of the abundance
values for the tongue dorsum profile of Figure 6.1. The size of the
bubble represents a relative abundance value of the profiled genome at
the strain level (note that labels display the genus and species, and are
truncated for display purposes). Plot generated by the Tableau [141]
software. 86

6.4 Metagenomic Profile - Krona Plot. A screenshot of an interactive
Krona plot displaying the abundance profile of the tongue dorsum sam-
ple from Figure 6.1. The black bands at the bottom and bottom-right
of the plot are caused by the need to pack a large number of reference
genomes in a small section of the circle. 87

6.5 16 Samples - Stacked Bar Chart. A stacked bar chart representation
of a community abundance profile for 16 time points generated by the
Tableau software [141] for the study from [51]. 88

6.6 Taxonomic Ordering. Basic layout of the taxonomic ordering. Each
unit of the map is assigned to one taxon in the taxonomic ordering.
Each clade in the taxonomy tree appears consecutively on the tax-
onomic ordering and gets assigned a region in the map. As shown,
these clades can be outlined, if needed, creating microbial neighbor-
hoods of taxonomically related taxa. The size of an outlined region is
proportional to the number of species in that taxonomic clade. 89

6.7 Taxonomic Ordering at the genus level. Clades at the genus level are
outlined as microbial neighborhoods. The sizes of the neighborhoods
correspond to the number of child species in the taxonomy tree. . . . 90

6.8 Labeled Ordering. A labeled ordering of an example profile that con-
tains 7 biological conditions. The ordering is for 44K genomes from
Ensembl, and they are ordered based on their mean relative abundance
in the samples with that condition. 91

6.9 HMP Samples. Sample class distribution for the collection from the
Human Microbiome Project. Four body sites dominate the distribution
– Buccal Mucosa, Gastrointestinal Tract, Nares, and Posterior Fornix. 96

xx

6.10 Sample SRS024557 from the HMP Buccal Mucosa set. 100

6.11 Sample SRS014683 from the HMP Gastrointestinal Tract set. 101

6.12 Sample SRS011105 from the HMP Nares set. 102

6.13 Sample SRS015061 from the HMP Palatine Tonsils set. 103

6.14 Sample SRS014343 from the HMP Posterior Fornix set. 104

6.15 Sample SRS017088 from the HMP Supragingival Plaque set. 105

6.16 Sample SRS013948 from the HMP Throat set. 106

6.17 Sample SRS013502 from the HMP Tongue Dorsum. 107

6.18 Buccal Mucosa Average Abundance 108

6.19 Gastrointestinal Tract Average Abundance 109

6.20 Nares Average Abundance . 110

6.21 Palatine Tonsils Average Abundance 111

6.22 Posterior Fornix Average Abundance 112

6.23 Supragingival Plaque Average Abundance 113

6.24 Throat Average Abundance . 114

xxi

6.25 Tongue Dorsum Average Abundance 115

6.26 CKD Stage 1, Taxonomic Ordering 116

6.27 CKD Stage 2, Taxonomic Ordering 116

6.28 CKD Stage 3, Taxonomic Ordering 116

6.29 CKD Stage 4, Taxonomic Ordering 117

6.30 CKD Stage 5, Taxonomic Ordering 117

6.31 CKD Control Normals: Taxonomic Ordering 117

6.32 CKD Stage 1 & 2, Labeled Ordering 118

6.33 CKD Stage 3 & 4, Labeled Ordering 118

6.34 CKD Stage 5 & Normal Control, Labeled Ordering 118

6.35 Differential Abundance. P-value microbiome map of an analysis of dif-
ferentially abundant taxa in buccal mucosa and gastrointestinal tract.
Color intensity corresponds to p-value significance with lower p-values
being more bright. Only p-values ≤ 0.05 are displayed. 120

6.36 Animated Microbiome Map. Selected frames of an animated time-
series visualization of 12,116 strains for a single patient from [51]. Panel
(A): zoomed regions of the Enterococcus neighborhood as it progresses
through the antibiotic response. Panel (B): Full resolution animated
microbiome map is available at the project’s repository via links from
biorg.cs.fiu.edu/jasper . 121

xxii

biorg.cs.fiu.edu/jasper

6.37 Buccal Mucosa Average Map. A composite map created from the
averaged abundance profiles of six HMP buccal mucosa samples. Note
the Streptococus neighborhood, a signature region for buccal mucosa
samples. 122

6.38 Image Viewer. The Jasper image viewer utility being used to inspect
a CKD image. The hand (top) clicked on the Streptomyces neighbor-
hood, and the program displayed the image segment Streptomyces sp.
gba 94-10 as the species that was clicked on. 124

7.1 Convolutional Operations. Input images are turned into an input vol-
ume and small patches (convolutional kernels) and are slid across the
input. The kernels compute the dot product with the input values at
the same location, and the result is a output feature map of filters
applied to the image. 129

7.2 Higher Levels of Abstractions. A simple look at how a CNN would
arrive at the answer for a Dog. Initial layers will learn to recognize
local features such as lines, curves, and blobs of color; while succeeding
layers will learn to recognize legs, ears, and snouts. 130

7.3 U-Net Architecture. The Ronneberger U-Net used for image segmen-
tation. The architecture gets its name from the distinctive “U” shape
formed by its two paths: the left side performs the convolutional op-
erations, while the right side performs the deconvolutional operations.
The output of a U-Net is a feature segmentation map. 131

7.4 Convolutions on Microbial Neighborhoods. A microbiome map (panel
(A)) created using the Hilbert curve, and scaled for display purposes.
The native resolution for each image is 256×256, which corresponds to
a Hilbert curve at level eight. Panel (B) shows how the Hilbert curve
is recursively built by recursive partitioning of a square into four, and
the first three levels of the curve are shown. Panel (C) shows the first
stage of our convolutional architecture that we use for our microbiome
classifier. Patches of size (5 × 5) are used in the initial convolutional
layers, and they create 64 filters which comprise the “Output Feature
Map”. A max() pooling layer is used to downsample the feature map
in the following round of convolutional layers. 133

xxiii

7.5 Amber CNN Architecture I. The primary architecture of the Amber
CNN model when 44K genomes are profiled. The network starts with
the typical CNN architecture of having alternating convolutional and
pooling layers (lines 5-23). After the last pooling layer, we introduce a
dropout layer (line 25) and flatten its output (line 27). The flattened
input is used as input to a densely connected layer (line 29) which feeds
into another dropout layer before delivering its output to a softmax
layer (line 33) which contains 12 neurons (one for each class in the
HMP dataset). 135

7.6 Amber CNN Architecture II. Illustrated version of the Amber CNN
model. The model starts with an input volume measuring width ×
height × depth, where the width and height are the corresponding
width and height of the input images (256×256 for mWGS, and 128×
128 for 16S), and the depth corresponds to the number of channels:
three for RGB images, one for grayscale. The model starts by using
a 7 × 7 kernel, and learning 16 filters. Notice that as the model gets
deeper and deeper, we learn more and more filters (16, 32, 64, and
128) and the dimensions of the output volumes get smaller and smaller
(250, 125, 62, 31, and 15) which is typical for a CNN that is learning
higher levels of abstraction with each subsequent layer. 137

7.7 Synthetic Data Classification. Seven classifiers were tested with syn-
thetic datasets created with the scikit-learn library [117], using code
adapted from scikit-learn examples [118]. The “Original Data” depicts
the original data points (x,y) created for the trials with two classes,
A and B, for three datasets. Overall accuracy for each classifier is
displayed in each box (label in dark font). 139

7.8 HMP Data. Mean accuracy of the seven classifiers when run with
profiles created with Flint. The community profiles contained 44K
microbial genomes (features), and 12 classes from HMP human body
sites. Panel (A) contains the results of the classifiers with a tabular
(numerical) profile used as input. Panel (B) is used for comparison,
and displays the mean accuracy of running the Amber CNN with the
two orders (taxonomic and labeled) using the same tabular profiles
converted to microbiome maps. 141

xxiv

7.9 Chronic Kidney Disease Data. Mean accuracy of the seven classifiers
when run with profiles created with Kraken 2. Unlike the profiles
created with Flint, these profiles only contained 5K microbial genomes,
and 6 classes (CKD stages plus control). Panel (A) contains the results
of the classifiers with a tabular (numerical) profile used as input. Panel
(B) is used for comparison, and displays the mean accuracy of running
the Amber CNN with the two orders (taxonomic and labeled) using
the same tabular profiles converted to microbiome maps. 142

7.10 Training with HMP Data. Accuracy (purple, gray lines) and loss (red,
blue lines) for training and testing the Amber CNN with the 328 HMP
samples for 100 epochs. While both training (99%) and testing (92%)
accuracy are high, the diverging paths of the training and testing loss
indicate that the model is overfitting the data. 143

7.11 Augmented microbiome maps. Representative images of performing
data augmentation for reducing overfitting. The HMP training dataset
used by the Amber CNN was augmented by a set of augmented im-
ages that were modified by rotating them, as well as adjusting the
luminosity, and transparency properties, as well as RGB color channel
levels. 145

7.12 HMP Training Corrected for Overfitting. Accuracy (purple, gray lines)
and loss (red, blue lines) for training and testing the Amber CNN (with
dropout layers) with 328 augmented HMP samples for 200 epochs (all
12 classes). Training and testing accuracies decreased to 87% and
89% respectively, but there was no separation in the trajectories of the
training and testing losses. 146

7.13 HMP CNN Activations. Visualization of the convolutional layer’s ac-
tivations for the HMP buccal mucosa class. The buccal mucosa class is
characterized by having a significantly abundant Streptococcus genus,
and we can see that the model is learning that in the initial convolu-
tional layers (top) when it learns 16 and 32 filters. 149

7.14 Bull Abstractions, 1945. A series of lithographs by Pablo Picasso to
represent higher levels of abstractions of a bull. The images show
that to represent a bull, it is not necessary to learn fine details, but
sometimes, a simple set of lines suffices 150

xxv

7.15 Training with CKD Data. Accuracy (purple, gray lines) and loss (red,
blue lines) for training and testing the Amber CNN with the 200 HMP
samples for 200 epochs. For the CKD dataset, the training accuracy
was high (99%), however, the testing accuracy was low (40%). Note
the diverging paths of the training and test losses, which indicate that
the model is overfitting the data substantially. 151

7.16 CKD Data Corrected for Overfitting. Accuracy (purple, gray lines) and
loss (red, blue lines) for training and testing the Amber CNN (with
dropout layers) with 200 augmented CKD samples for 200 epochs.
Training accuracy was retained at 99%, while the testing accuracy
dropped slightly to 39%. Overfitting was reduced, but not completely
eliminated, which suggests that more training data should be used. . 152

7.17 Alternative Training Images. Training and testing accuracies were
much higher when training with microbiome maps with borders around
neighborhoods. 155

7.18 Accuracy with No Border. Training and testing accuracy when evalu-
ation the Amber CNN for 160 epochs with the HMP dataset, but the
microbiome maps contained no visible neighborhood borders. Training
accuracy finished at 94%, while testing finished at 84%. 156

7.19 Loss with No Border. Training and testing loss when evaluation the
Amber CNN for 160 epochs with the HMP dataset, but the microbiome
maps contained no visible neighborhood borders. 157

7.20 Profile Comparison. Testing accuracies for seven classifiers and the
Amber CNN model. Panel (A) contains seven classifiers whose input
is numerical tab-separated data, and panel (B) contains results for
the Amber CNN model which uses microbiome map images as input.
“Neural Net (baseline)” represents the simplest model for a neural net-
work which consisted of a single 10-neuron layer trained for 10 epochs.
The “Neural Net” classifier consisted of 10, 100-neuron layers trained
for 1, 000 epochs. 158

8.1 A 3D Hilbert Curve. The top two volumes represent two variants of the
first iteration of the curve in 3D space, while the bottom two volumes
represent the second iteration of the top volume above it. 167

xxvi

8.2 Two Maps Side by Side. A visual DIFF of two microbiome maps for a
HMP buccal mucosa (left) and anterior nares (right) samples. 168

8.3 Difference Slices. Overlaid differences in Kaleidoscope of two micro-
biome maps for a HMP buccal mucosa (left) and anterior nares (right)
samples. The two images are layered on top of each other, and the
pendulum in the middle (black line) allows the user to see what is
“behind” (right image) and “above” (left image) the two images. . . . 169

8.4 Color Difference. A Kaleidoscope color difference image of two micro-
biome maps for a HMP buccal mucosa (left) and anterior nares (right)
samples. The two images are layered on top of each other two display
what is common on both images (green) and what is different (dark
areas), with red-tinted areas being what is unique to the left image,
and blue-tinted images being what is unique to the right image. . . . 170

8.5 Zoom. Kaleidoscope can zoom into the image from Figure 8.4, and
users can navigate by using the navigation map in the top-right. . . . 171

xxvii

CHAPTER 1

INTRODUCTION

Microbes are everywhere [171], and a microbiome is the collection of all the ge-

netic material of all microbes that inhabit a particular environmental niche such as

the human body, earth soil, and the water in oceans and lakes. When we think

of microbes, we usually think about the bad ones, pathogens, the ones that cause

disease [3] and make us sick. But not all microbes are bad: some help us digest

foods [100, 101], while others keep us safe even before we are born [1]. Studying

and understanding the relationships between us and the microbes that inhabit us is

a crucial step in understanding our relationship to our surroundings as many human

diseases and environmental disasters are linked to changes in microbiome composi-

tions [63, 80, 168, 175].

Metagenomics is one of the the lens through which we study microbiomes. Profil-

ing a microbiome is a critical step to probe the microbial diversity and to tell us what

microorganisms are present, and in what proportions. When combined with other

omics studies, it can serve as an instrument to go beyond microbial biodiversities and

to study their complex relationships to their hosts and environments.

A powerful tool for creating microbial community profiles from microbiome sam-

ples is high-throughput DNA sequencing [105]. Advances in recent years have steadily

reduced the cost of sequencing, and have led to the generation of an increasing number

of extremely large and complex metagenomic datasets [13, 26]. Current approaches for

generating community profiles from metagenomic whole-genome sequencing (mWGS)

datasets do not “scale”, often opting to deal with: (i) a smaller, curated collection of

microbial reference genomes, and/or (ii) mWGS datasets that contain a small amount

of sequenced genetic material. However, the arrival of low-cost DNA sequencing has

created a “data deluge” – the genome collections have been growing exponentially, as

1

have the mWGS dataset sizes and cohorts. To put things in perspective, the RefSeq

database (v.92) [109, 113] contains 173,055 bacterial genomes, comprising over 400

GB of data (see Figure 2.3); also, the sequence repository for the Human Micro-

biome Project (HMP) [71] contains many terabytes of sequence data from thousands

of healthy human microbiome samples. The consequence of readily available low-cost

DNA sequencing has been that microbiome samples are out-pacing the computational

resources that are required to analyze them.

Standard genomics and transcriptomics analyses for DNA sequencing datasets

usually begin by aligning sequencing reads to a reference genome [147, 158], and

producing abundance counts [148]; but in microbial community profiling analyses,

the alignment step is performed against a collection of reference genomes that can

be extremely large, slowing down the entire operation. Fast k-mer based strategies

have been developed to improve metagenomic profiling [132, 167], but they achieve

high speeds by confining their searches to small, curated reference databases created

from a subset of selected genomes from a larger database. Alternative k-mer index-

building strategies exist, but only at species-level resolutions [177]. LiveKraken [142]

is a real-time classification tool for metagenomics, and is based on the Kraken [167]

method for profiling microbiome samples. It is implemented as a instrument module

that classifies reads as soon as they are produced by the sequencer, and uses the

same approach as the HiLive [95] mapper, but extends it to metagenomic datasets.

Since LiveKraken uses a k-mer based index for the reference genomes, its scalability

is limited by the size of the index that can be stored, and is therefore not well suited

for large genome collections [109].

1.1 Motivation and Goals

The analysis of massive metagenomic datasets poses a computational challenge

as current tools generate large intermediate results, and require the creation of enor-

2

mous indexes to catalog the ever increasing sets of reference genome collections [156].

New analysis paradigms are needed that leverage modern streaming architectures for

processing large amounts of data, and that use cloud-based distributed computational

pipelines. Such computational strategies must be matched with visualization strate-

gies to create interpretable results from all the data that low-cost DNA sequencing is

generating. The goal of this dissertation is to address these needs, and to create pow-

erful computational tools that create interpretable results from microbial community

profiles. This dissertation focuses on three questions for processing and analyzing

metagenomics DNA sequencing data.

Profile: How to design a scalable distributed computational framework for profiling

large mWGS datasets in a commercial cloud environment using a large collection

of reference microbial genomes?

Microbial community profiling for mWGS datasets usually starts by aligning the

sequenced DNA reads to a collection of microbial reference genomes. Current

profiling tools are designed to work against a small representative collection of

microbial genomes, and do not scale well to larger genome collections. However,

large reference genome collections are capable of providing a more complete and

accurate profile of the bacterial population in a microbiome sample. Chapter

4 presents Flint, a scalable, efficient, and affordable approach to this problem

that runs on commercial cloud platforms, thus bringing big data solutions within

the reach of laboratories with modest resources.

Visualize: How to visualize microbial community profiles from microbiome samples

at high resolution?

Microbial community profiles from mWGS datasets synthesize information from

billions of sequenced DNA reads coming from the genomes of the thousands of

microbes present in a microbiome. Analyzing and understanding these pro-

3

files can be a challenge since the data they represent is complex. Particularly

challenging is their visualization and interpretability, as existing techniques are

inadequate when the number of identified taxa is in the thousands. Chapter 5

presents Jasper, a technique for visualizing microbial community profiles suc-

cinctly using a space-filling Hilbert curve that transforms community profiles

into interpretable 2D images called Microbiome Maps.

Characterize: How to build a distributed machine learning framework for charac-

terizing microbiomes and creating interpretable results?

Chapter 7 presents Amber, a custom machine learning framework and architec-

ture for recognizing patterns in microbial community profiles from microbiome

samples. The method uses as input the 2D microbial images that are created

using the Hilbert curve (Chapter 5), and is able to classify microbiome samples

with high accuracy. As described later, by using the Hilbert order imposed

on the 2D images, the classifier is able to outperform competing classifiers by

learning the unique characteristics, and latent relationships, present in a micro-

biome.

1.2 Research Contributions

The contributions of this dissertation are as follows: a scalable approach for

profiling microbiome samples against a large collection of microbial reference genomes,

a scalable technique for visualizing microbial community profiles using a space-filling

Hilbert curve, and a machine learning framework based on custom-built artificial

neural networks that capitalizes on the properties of scalable visualizations. Finally,

we present novel applications of the approaches described above, some of which are

explored in detail, while others are only briefly discussed. Specifically, the work in

this dissertation resulted in the following software systems:

4

1. Flint: is a pipeline for fast real-time profiling of microbiome samples. It is

designed to process large mWGS datasets mapped against a large collection

of reference genomes. It takes advantage of parallel computational pipelines

and streaming architectures to quickly align DNA reads against a reference

collection of 44K microbial reference genomes. Flint runs on Amazon’s Elastic

MapReduce cloud service, and is able to profile 1 million Illumina paired-end

reads against 44K genomes on 64 machines in 67 seconds – an order of magnitude

faster than the state of the art.

2. Jasper: is a system that offers techniques for creating Microbiome Maps by

transforming microbial community profiles into a 2D image using a space-filling

Hilbert curve. We describe how we convert mWGS, and 16S rRNA gene se-

quencing, microbial community profiles into synthetic 2D images using two

different arrangements: a Taxonomic Ordering which creates taxonomic neigh-

borhoods of related taxa, and a Labeled Ordering which creates neighborhoods

of related taxa relevant to specific biological conditions.

3. Amber: is a machine learning framework for characterizing microbiome samples

from images constructed from microbial community profiles. Our framework

takes advantage of the custom metagenomic Hilbert images created by Jasper

and as a first step, we implement a custom convolutional neural network (CNN)

that can accurately classify samples using a custom network architecture tuned

to perform well with metagenomic Hilbert images as inputs. We show that

the microbiome maps created by Jasper give Amber an advantage over other

classifiers that use raw tabular data as inputs.

This dissertation addresses the lack of powerful computational tools for profiling

large microbiome samples against large collections of bacterial genomes. In addition,

this proposal also addresses the need to develop improved analysis pipelines that

5

produce results that are readily interpreted and deciphered without the assistance of

expert data scientists.

1.3 Hardware and Software Environments

Here we describe the software and hardware environments used in our experi-

ments. Some of the concepts and technical terms used in the description here are

reviewed and described in more detail in Chapter 2.

All software development and experiments with data sets were carried out on mul-

tiple systems spanning single machines, local servers, and remote clusters hosted on

third-party cloud providers. A GitHub repository is available at https://github.

com/camilo-v that contains all the source code, along with documentation and in-

structions on how to run the software, and set up any computational clusters.

All software development was carried out on a MacBook Pro, running macOS

Mojave (version 10.14) with an Intel Core i7 processor, 16 GB of RAM, and 512 GB

of storage. Initial testing and experiments were also carried out in a server machine at

the Computer Science Department at Florida International University [133]; the ma-

chine has 792 GB of RAM, and 48 Intel Xeon processors (E5-2650, 2.20 GHz). Testing

and development in a cloud environment was performed in Amazon Web Services [11]

using the Amazon S3 storage service, Elastic Compute Cloud (EC2), and Elastic Map

Reduce (EMR) service. Multiple cluster configurations were tested in EMR, and the

instance type “c4.2xlarge” was selected for offering a good balance of performance

and cost (see section 1.3.1 for more information). All the necessary Python packages,

and external libraries, are documented in [52], as well as the default runtime param-

eters and configurations for launching the EMR cluster. The project websites for the

three software systems resulting from this dissertation are located at the following

three URLs: https:/biorg.cs.fiu.edu/flint, https:/biorg.cs.fiu.

edu/jasper, and https:/biorg.cs.fiu.edu/amber.

6

https://github.com/camilo-v
https://github.com/camilo-v
https:/biorg.cs.fiu.edu/flint
https:/biorg.cs.fiu.edu/jasper
https:/biorg.cs.fiu.edu/jasper
https:/biorg.cs.fiu.edu/amber

Figure 1.1: Cluster layout of the basic distributed architecture in our ap-
plication. The Bowtie2 mapper is pre-installed in each worker node during
the cluster provisioning step. Reference database partitions (“Index”) are
also copied into each worker node.

1.3.1 Spark EMR Cluster

The computational framework for the work described in Chapter 4 was primarily

implemented using the MapReduce model [34], and deployed in a cluster launched in

Amazon Web Services’s [11] Elastic Map Reduce (EMR) service. The cluster consisted

of multiple worker machines (a computational “worker” node), each with 15 GB of

RAM, 8 vCPUs (each being a hyperthread of a single Intel Xeon core), and 100 GB

of disk storage. Each of the worker computational nodes work in parallel to align the

input sequencing DNA reads to a shard of the reference database (Figure 1.1); after

the alignment step is completed, each worker node acts as a regular Spark executor

node. By leveraging the work of multiple machines working at the same time, we are

able to align a large number of reads to a large database of reference genomes much

more efficient manner than only using a single powerful machine.

7

1.3.2 EMR Cluster Provisioning

A Spark [173] cluster was created using the AWS Console with the following soft-

ware configuration: EMR-5.7.0, Hadoop 2.8.4, Ganglia 3.7.2, Hive 2.3.3, Hue 4.2.0,

Spark 2.3.1, and Pig 0.17.0. The cluster was composed of homogeneous machines for

both the driver node and worker nodes, and each machine was an Amazon machine

instance of type “c4.2xlarge”. These instances contain 8 vCPUs, 15 GB of RAM,

100 GB of EBS storage, and each cost on average $0.123 USD to run per hour on

the “us-east” availability zone on the Spot market as of this writing. Newer instances

(“c5.2xlarge”) are also available for use, but their availability is infrequent in

large numbers, in addition to having a higher cost per hour to run.

A custom provisioning bash shell script was used to pre-install all the necessary

utilities, security certificates, third-party library/packages, and DNA mapper exe-

cutables in the cluster; the shell script was included as a “Bootstrap Action” in the

EMR provisioning step to copy all the run-time assets into the local file system of

each worker node so that it was available to each worker during runtime. Once the

cluster was created, each reference database shard was copied into each worker node

directly from the S3 bucket storage. Deploying the EMR cluster was relatively fast,

and the entire process took about 15 minutes using 64 “c4.2xlarge” instances. The

machines were acquired from Amazon’s EC2 Spot Market [10], which offers machine

instances at reduced cost.

1.4 Road Map for the Dissertation

The dissertation is organized as follows. Chapter 2 contains a review of the

relevant literature on the methods, datasets, and systems used by researchers for

the analysis of microbiome samples. These methods, datasets, and systems span

the spectrum from computational pipelines and infrastructure, to visualization tech-

8

niques for displaying community profiles, and also machine learning frameworks and

architectures for characterizing microbiomes.

Chapter 3 describes the primary data foundation for our projects: a large collec-

tion of microbial reference genomes from the Ensembl repository [42]. These reference

genomes are the bedrock upon which Flint (Chapter 4), Jasper (Chapter 5), and

Amber (Chapter 7) are built on. Chapter 3 contains detailed information on how we

process the microbial genome collections, and the steps that are required for preparing

the genomes so that we can use them to profile microbiomes samples.

Chapter 4 describes the Flint system which was developed to support this

work, and published in [153]. Flint is a large scale microbial community profiling

system that runs on cloud infrastructure such as Amazon Web Services [11], and can

profile millions of whole-genome sequencing reads very fast and at reduced cost. The

community abundance profiles from Flint have strain-level resolution for a collection

of 44K microbial reference genomes.

Chapter 5 describes the Jasper framework for visualizing microbial community

profiles. It describes the basic space-filling curve technique that we use to convert

microbial community profiles into 2D image representations that form the basis of a

Microbiome Maps. The resulting 2D images are easy to interpret, and can synthesize

the very complex information present in a microbiome sample.

Chapter 6 contains some applications for the Microbiome Maps created by the

technique in Chapter 5. These applications are animated movies of time-series micro-

biome samples that show how different microbiomes behave across time; how micro-

biomes change from site to site in the human body; and finally, how the microbiome

of patients with chronic kidney disease (CKD) progresses through different stages of

disease.

9

Chapter 7 describes a machine learning framework and architecture that can

learn and identify microbial patterns present in microbiomes by learning the patterns

found in Microbiome Maps. We create and train custom artificial neural networks

that can learn to recognize patterns in large collections of 2D microbial images gen-

erated with the technique in Chapter 5, and also discuss how the interpretability

of the microbial community profile models can be a useful device for characterizing

microbiome samples.

Lastly, in Chapter 8, we provide some concluding remarks and perspectives, and

suggestions for future work.

10

CHAPTER 2

BACKGROUND AND REVIEW

Metagenomic DNA sequencing datasets are very complex, and their analysis ne-

cessitates a collection of tools and technologies that straddle the boundaries between

the fields of computer science and biology. This chapter describes some of the un-

derlying technologies and methods that researchers use to generate the samples in

laboratories, as well as some of the analytical tools and computational infrastructure

that are required to profile, visualize, and characterize them.

2.1 High-Throughput DNA Sequencing

High-throughput DNA sequencing technologies provide powerful tools that can

be used for profiling microbiomes [105]. These technologies have revolutionized the

study of organisms by giving researchers powerful instruments with which to study

their genomes. These technologies became widely available to researchers around 2008

[108] and have become increasingly affordable over the years. The National Human

Genome Research Institute (NHGRI) has tracked the costs of sequencing technologies

since 2001 [111]. Figures 2.1 and 2.2 show the trajectories of sequencing costs for

generating 1 million DNA bases and 3 billion DNA bases (roughly the size of the

human genome), respectively. NHGRI notes that sequencing costs have plummeted

since about 2008 when high-throughput technologies became widely available, and

they superimpose the cost of sequencing with that of Moore’s Law [107], or the

observed trend of computing hardware to reduce in cost by a factor of two about

every 18 months.

The key to Figures 2.1 and 2.2 is that the cost of producing DNA sequencing data

keeps out-pacing the costs of the computing resources that are required to analyze

11

Figure 2.1: Cost of Sequencing 1 Million DNA Nucleobases.
NHGRI estimated costs through the years (2001-2019) of generating 1 mil-
lion DNA nucleic bases (A, T, G, C). Costs only include wet-lab resources,
and does not reflect costs of analyzing the generated data [111].

the data, and the general observation is that there is a “DNA data deluge” as DNA

sequencing keeps getting cheaper and cheaper.

Reduced sequencing costs has created a boom in the sequencing of new microbial

genomes [110, 97], and as of January 6, 2020, the RefSeq Bacteria [113] database from

the National Center for Biotechnology Information (NCBI) has cataloged over 60K

bacterial species (Figure 2.3).

The types of datasets that high-throughput DNA sequencing technologies create

depend on the extraction protocols that are used by laboratories to generate the

necessary sequencing libraries that are used as input to the sequencing instruments

[13, 67, 105]. Protocols exist for capturing messenger-RNA [108, 138, 158, 162], as

well as the raw DNA sequence of an organism [65, 99, 134]. In the context of microbial

studies, technologies that capture the raw DNA sequence generate “Whole Genome

12

Figure 2.2: Cost of Sequencing a Human-Sized Genome. NHGRI
estimated costs from 2001-2019 of generating a human-sized genome, or of
generating over 3 billion DNA nucleobases [111].

Sequencing” data, while technologies that capture DNA from gene regions generate

“16S rRNA gene sequencing” data. These two technologies, whole-genome and 16S

rRNA gene sequencing, capture different parts of a microbe’s genome: whole-genome

sequencing captures pieces of the microbe’s genome, while 16S rRNA gene sequencing

captures parts of the 16S rRNA gene. From a analysis perspective, the taxonomic

tree lineage that defines relationship among close microbial organisms is the main

factor that differentiates the two technologies: whole-genome sequencing datasets

provide a higher resolution of detection than 16S rRNA gene sequencing experiments

[124]. 16S rRNA gene sequencing experiments are cheaper to produce, and also

generate much less data [124], and their advantage is that we can generate a larger

number of samples to study a given biological condition. Standard genomics and

transcriptomics analyses for sequencing datasets usually begin by aligning sequencing

reads to a reference genome [147, 158], and producing abundance counts [148]; but

13

Figure 2.3: RefSeq Bacteria. Number of unique accession identifiers in
NCBI’s RefSeq database. The blue line tracks the growth of new bacterial
species submitted to the RefSeq project database. The red line, “Total Acces-
sions”, tracks the overall number of unique identifiers for bacterial sequence
records in RefSeq. The orange line, “Nucleotides”, tracks the number of
unique nucleotide bacterial records derived from the International Nucleotide
Sequence Database Collaboration (INSDC) project. The green and purple
lines track the number of unique records for bacterial “Transcripts” (mRNA
sequences) and bacterial “Proteins” in RefSeq. More information can be ac-
cessed at https://www.ncbi.nlm.nih.gov/refseq/statistics/.

in metagenomic analyses, the alignment step is performed against a collection of

reference genomes that can be extremely large, slowing down the entire operation.

2.2 Cloud Computing

To deal with the barrage of DNA sequencing data, distributed cloud computing

platforms and frameworks such as Amazon Web Services [11], Apache Hadoop [143],

and Apache Spark [173] have been used by researchers to take advantage of parallel

computational pipelines, and economies of scale: large DNA sequencing workloads

14

https://www.ncbi.nlm.nih.gov/refseq/statistics/

can be distributed in a computational cluster that is comprised of many cheap, off-

the-shelf computational nodes, that is located off-site and requested on demand, i.e.,

using “cloud services”.

These cloud-based solutions have been successfully used in the past for human ge-

nomics [85], human transcriptomics [127], and more recently for microbial community

profiling applications [70, 178]. An example of one of these cloud setups is a clus-

ter deployed in AWS that is composed of homogeneous Amazon Machine Instances

(AMI) of type c4.2xlarge: These instances contain 8 vCPUs, 15 GB of RAM, 100 GB

of EBS storage, and cost on average $0.123 USD each to run per hour through the

Spot [10] market. Newer instances (such as those of c5.2xlarge variety) are available

for use, but their availability is infrequent in large numbers, in addition to having a

higher cost per hour to run.

Another advantage of these cloud-based solutions is their support for software

assets and resources that provide researchers with powerful tool-chains with which

to build scalable solutions that can handle large datasets. The following sub-sections

describe some of the more recent software libraries that are used to deal with large

amounts of data in a distributed computational infrastructure.

2.2.1 Spark and MapReduce

The MapReduce model [34] provides a fast computational model for developing

programs that execute in parallel across a cluster of machines (see Figure 2.4). The

Spark framework [173] extended the MapReduce model by offering a rich API and

a computational engine that allows in-memory computation of all steps in a map-

reduce pipeline. Both the MapReduce model and the Spark framework have been

popular in DNA sequencing contexts as they have been used in speeding up the

crucial read-alignment steps in the analysis of single-organism sequencing datasets,

as researchers have framed the read-alignment and quantification tasks in terms of

15

map and reduce operations. For example, Langmead et al. used it to align human

sequencing reads using the Bowtie read-mapping utility [86] and searched for single

nucleotide polymorphisms (SNPs); while Roberts et al. [127] used it to speed up

the quantification of human gene transcripts by the expectation-maximization (EM)

algorithm.

Spark has been used in metagenomic analyses [60] for mapping sequencing reads

against small genome reference and for clustering metagenomes [125]. Zhou et al.

developed MetaSpark [178] to align metagenomic reads to reference genomes. The

tool employs Spark’s Resilient Distributed Dataset (RDD) [174] to cache reference

genome and read information across worker nodes in the cluster. MetaSpark was

developed with two reference datasets: a 0.6 GB reference, and a larger 1.3 GB

from RefSeq’s archived bacterial repository. SparkHit [70] developed by Huang et al.

includes a metagenomic mapping utility called “SparkHit-recruiter” that performs

much faster than MetaSpark, albeit with similar small sets of reference genomes.

Zhou et al. developed MetaSpark [178] to align metagenomic reads to reference

genomes. The tool employs Spark’s Resilient Distributed Dataset (RDD) [174] – the

main programming abstraction for working with large datasets – to cache reference

genome and read information across worker nodes in the cluster. By using Spark’s

RDD, MetaSpark is able to align more reads than previous tools. MetaSpark was

developed with two reference datasets of bacterial genomes: a 0.6 GB reference, and

the larger 1.3 GB from RefSeq’s bacterial repository. These reference sets are small

compared to the 170 GB reference set of Ensembl, and because of MetaSpark’s use

of an RDD to hold its index, it is unlikely that MetaSpark can scale to use them: the

contents of an RDD are limited to available memory, and large reference sets would

require correspondingly large memory allocations. It is worth pointing out the RDD

memory limitations of MetaSpark in aligning reads: it took 201 minutes (3.35 hours)

to align 1 million reads to the small 0.6 GB reference using 10 nodes [178].

16

Figure 2.4: Distributed Execution Framework. Typical layout of a
distributed computational cluster such as the ones available in AWS. The
Master node contains the Driver Program, a piece of software that contains
the main logic. The Cluster Manager handles communication between the
master node and any Worker Nodes, whose primary task is to execute jobs.
Each Worker Node is usually a cheap, off-the-shelf machine that contains
moderate resources. The power of the such a setup is that all the Worker
Nodes run at the same time, and developers can utilize this parallelization
to process very large datasets quickly and at reduced costs [153].

SparkHit [70] was developed by Huang et al. as a toolbox for scalable genomic

analysis and also included the necessary optimizations for the preprocessing. SparkHit

includes a metagenomic mapping utility called “SparkHit-recruiter” that performs

much faster than MetaSpark with similar sets of reference genomes. SparkHit per-

forms well with large dataset of reads and small reference genome sets — the authors

profiled 2.3 TB of whole genome sequencing reads against only 21 genomes in a little

over an hour and a half. The limitation of SparkHit is that it builds its reference index

using a k-mer strategy that does not scale to large collections of reference genomes

[109], as well as having to rebuild the index for the reference database with each run,

17

as it assumes that the reference genomes being profiled will be changed with each

new analysis as is the case with metagenomic sequence assembly experiments [50].

This assumption, and the method of index building, makes SparkHit unsuitable for

profiling large metagenomic datasets against large collections of reference genomes.

2.3 Streaming Techniques

In order to process the large quantities of both input metagenomic datasets,

and the large collections of reference genomes to profile against, new paradigms are

required that take advantage of highly parallelizable cloud infrastructure, as well as

real-time data streams for consuming large input datasets that cannot be held in

memory.

LiveKraken [142] was developed as a real-time classification tool that improves

overall analysis times, and is based on the popular Kraken [167] method for pro-

filing metagenomic samples in Kraken-based workflows. LiveKraken uses the same

approach as the HiLive [95] real-time mapper for Illumina reads, but extends it to

metagenomic datasets. LiveKraken can ingest reads directly from the sequencing

instrument in illumina’s binary basecall format (BCL) before the instrument’s run

finishes, allowing real-time profiling of metagenomic datasets. Reads are consumed

as they are produced at the instrument, and the metagenomic profile produced by

LiveKraken is continuously updated. LiveKraken points the way to future classifica-

tion systems that use streams of data as input, but its limitation is that it uses a k-mer

based reference index — in its publication, LiveKraken was tested with an archived

version of RefSeq (circa 2015) that only contained 2,787 bacterial genomes. Since

then, RefSeq has grown to over 50k genomes in the latest release (version 92), and

creating a K-mer based index of it would require substantial computational resources.

More recently, a Spark streaming-based aligner has been developed that uses

streams of data to map reads single reference genomes. The tool, StreamAligner [126],

18

is implemented with Spark and the Spark-streaming API, and uses novel MapReduce-

based techniques to align reads to the reference genome of a single organism. Unlike

other methods, it creates its own reference genome index using suffix arrays in a dis-

tributed manner that reduces index-build times, and can then be stored in memory

during an analysis run. By using the Spark streaming API, StreamAligner can contin-

uously align reads to a single reference genome without the need of storing the input

reads in local storage, and although StreamAligner has high performance when using

a single genome, there is no evidence if it can scale to metagenomic workflows where

tens of thousands of genomes are used, and the footprint of the reference genomes

are much larger than could be fit in memory.

2.4 Visualizing Data

Visualizing the results of an analysis is a critical step that can help reveal patterns

and structures that are sometimes not evident in the raw numbers alone. Many tech-

niques exist for visualizing tabular data and their corresponding descriptive statistics,

and tools such as box plots, gene pies, scatter plots, bar charts, and histograms are all

very popular for visualizing biological data [39]. These tools are also very popular in

the field of metagenomics because they can be used to aggregate the results of many

microbial community profiles, creating large descriptive charts that summarize a lot

of information, albeit at higher levels of abstraction [49, 72, 149], see Figure 2.5.

Box plots, histograms, and other tools for generic tabular data can also be used

in metagenomics studies to display the results of individual microbiome samples,

however, because of the hierarchical nature of microbial taxonomies, they are not

suitable for displaying the underlying structure and relationships that are present in

the large reference genome collections that are being profiled.

Alternative plotting devices exist that can display relationships among entities,

and the Circos tool [82] has been very popular for its ability to create “ribbons”

19

Figure 2.5: Visualizing Microbial Community Profiles with Bar
Charts. An analysis of the structure and function of healthy human micro-
biomes. The bar charts do a great job of summarizing large amounts of data
for the conditions in the study, but details are lost for individual samples.
Figure 2 from the paper by Huttenhower et al. [72], and reproduced with
permission. Copyright 2012, Springer Nature.

among pairs of related objects. In metagenomics, Circos has been used to display the

relationship of microbes, and the study by Porcar et al. [121]

Plotting hierarchical data can be achieved using many types of plots such as

trees, and a particularly effective one is a Sankey diagram [161], which creates a flow

diagram (usually from left to right) of bifurcating structures that clearly depict a

parent-child relationship — it is similar to a tree drawn sideways. The Plotly library

[120] for the R language [123] is a popular library for creating such plots. Figure 2.7

contains such a plot from a paper by Porcar [121] displaying a hierarchy of microbes

in a study of taxonomic composition in solar panels from Berkeley, CA, United States.

2.5 Space Filling Curves

Space-filling curves are popular in scientific computing applications for their abil-

ity to speed-up computations, optimize complex data structures, and simplify algo-

rithms [18]. Trees are particularly interesting structures that can be optimized with

space-filling curves because it is possible to generate sequential orderings of the nodes

20

Figure 2.6: Circos Plot for Microbial Ecology. A Circos diagram
showing the relationships between genus-level microbes in solar panels. A
Circos plot uses a circular backbone structure to display entities, and ribbons
drawn between pairs of entities to display relationships. Figure 5 from Porcar
et al. [121], and reproduced with permission. Copyright 2018, Porcar, Louie,
Kosina, Van Goethem, Bowen, Tanner and Northen.

of the tree in which parent and children nodes are neighbors in a two-dimensional

plane. The combination of trees and space-filling curves is useful in many fields [16].

In metagenomics we can use them because the taxonomy of bacteria is represented

21

as a classification tree based on the biological characteristics of bacterial taxa, with

the leaf nodes representing individual bacterial strains.

2.5.1 Hilbert Curve

The Hilbert Curve [66] is one of the more prominent examples of space-filling

curves; and its construction is based on a recursive partitioning of a 2D plane into

four sub-squares (Figure 2.8). Many applications exploit the order that space-filling

curves impose on data, and a particular application has been the visualization of

high-dimensional data. The first use of the Hilbert Curve as a visualization tool was

proposed by Keim in 1996 [77] to represent stock market data, and since then, it

has been used for visualizing genomic data [35, 12], and also for visualizing DNA

alignments of whole bacterial genomes [165].

Figure 2.7: Microbial Ecology Sankey Diagram. A taxonomic analysis
using a sankey diagram showing a hierarchical structure of microbes. Figure
3 from Porcar et al. [121], and reproduced with permission. Copyright 2018,
Porcar, Louie, Kosina, Van Goethem, Bowen, Tanner and Northen.

22

Figure 2.8: Hilbert Curve Levels. First four iterations (levels) of the
Hilbert curve show the 2D square recursively partitioned into 4 sections at
each iteration (level) of the curve.

In human genomics, using the HCV is a straightforward affair as the natural

linear order of genomic positions can be easily visualized by the curve, and there are

tools and software libraries for creating Hilbert curve images from human sequencing

experiments such as HilbertVis [12] and HilbertCurve [59]. Both HilbertVis and

HilbertCurve apply HCV to genomics in the context of a single human genome: a

single genome scaffold is modeled as a one-dimensional (1D) line in which each interval

is taken to be a single genomic position, but the HilbertCurve library can also stitch

together multiple chromosomes so that they can all be displayed on a single image,

but the display is nevertheless that of a single genome. To date, the HCV technique

has not been applied to metagenomics datasets.

23

2.6 Artificial Intelligence and Machine Learning

The field of artificial intelligence (AI) is a field in computer science that studies

so-called thinking by machines, and can be defined as “the effort to automate intel-

lectual tasks normally performed by humans” [31]. AI has practical applications in

the fields of computer vision [40], self-driving cars [29, 45, 130], and medical imag-

ing [61, 64] to name a few. Machine Learning is a sub-field of artificial intelligence

(see Figure 2.9) and is a set of technologies that can learn to recognize patterns in

a dataset by being exposed to those patterns in a different training dataset [31, 54].

Machine learning techniques differentiate themselves from other techniques in AI in

that machine learning systems do not have a predefined set of rules that govern the

behavior of the system — the system automatically learns the rules. The Deep Learn-

ing technique itself is a sub-field of machine learning (Figure 2.9), and differentiates

itself from other shallow learning techniques by creating successive layers of represen-

tations [31, 54]. Consider the case of trying to classify pictures of a dog using a Deep

Learning system: different layers would learn different characteristics and traits, so

say the first layer would learn to identify lines, another layer would learn to identify

shapes such as eyes, noses, and ears; and another layer would learn to identify faces,

and so on until the final layer would decide if the picture we are looking at contains

a dog or not. The following section, section 2.6.1, contains a detailed explanation of

the technique.

2.6.1 Deep Learning

Deep learning is a Machine Learning technique that allows for the development

of systems that accumulate knowledge from experience by modeling problems as a

hierarchy of concepts, with higher level concepts defined by connected simpler con-

cepts [54]. The method is called Deep Learning because if we were to visualize the

procedure, then we end up with concepts layered one on top of each other, spread

24

Figure 2.9: Artificial Intelligence, Machine Learning, and Deep
Learning. The relationship between the fields of Artificial Intelligence, Ma-
chine Learning, and Deep Learning reproduced and based on the book by
François Chollet, Deep Learning with Python [31].

out in many layers (Figure 2.10). Artificial Neural Networks (ANNs) are prototypical

examples of deep learning networks. The recent advent of accessible low-cost com-

puting, especially with inexpensive graphical processing units (GPU), has allowed the

development of large deep learning systems that can extract patterns from raw data;

researchers have successfully used this capacity in fields as wide ranging as law en-

forcement [136], biomedical image segmentation [62], and the analysis of non-coding

RNA sequences [14].

A type of specialized neural network known as a Convolutional Neural Network

(CNN) [89] has been found to be particularly effective for processing data that have

grid-like topologies. Unlike traditional neural networks which use matrix multiplica-

tion to model the interactions between input and output neurons in each layer, CNNs

use convolution operations in at least one layer, which has the effect of creating a

sparse connectivity graph between the input and output units. The benefit of using

convolutions over matrix multiplications is that it allows CNNs to describe complex

interactions between many variables only using simple sparse connections between the

units in adjacent layers. CNNs also have the advantage of producing high-level ab-

25

Figure 2.10: Character Classification. A stylized depiction of a Deep
Learning neural network for classifying character letters (“A”, “B”, “C”,
etc.) Each layer in the model can learn to represent the network’s input into
increasing levels of relevant and abstract representations. Inspired by Figure
1.6 from the book by François Chollet, Deep Learning with Python [31].

stract objects rather than just a class for a classification job, or continuous real-values

for regression problems.

Modern deep learning frameworks [2] are able to detect, classify, and diagnose

diseases such as skin cancer [41] (using 2D images), segment brain tumors [64] (using

2D image slices taken from CT or MRI scans), detect anomalies in electrocardiograms

[36, 150] (using numerical signal data) and more recently, they have also been used

in metagenomics to classify multiple diseases [87, 112] (using OTUs) and to clas-

sify disease stages [46] (using numerical OTU abundance and phylogenetic distance

matrices). These deep learning frameworks are remarkably robust, and CNNs in par-

ticular are particularly powerful when working with image datasets as can be seen in

many applications such as hand-written digit recognition [89], the modeling of digital

pathology images [98], and the segmentation of 2D and 3D microscopy biomedical

imaging datasets [62].

26

Generative adversarial networks (GAN) [55] are a compelling combination of

two CNN models working against each other (hence the word “adversarial”) to create

new content. A GAN is comprised of two models, a generator which learns to cre-

ate feasible data, and a discriminator which learns to identify the generator’s data

from real data. As the GAN is trained with real data, the generator model becomes

progressively better at generating data that looks “real”, while the discriminator

models becomes progressively worse at distinguishing real data from generated data.

GANs are useful for simulating real-like images, and they have applications in driv-

ing simulators [130], medical image analysis [170], and reducing overfitting via data

augmentation [22].

27

CHAPTER 3

MICROBIAL REFERENCE GENOMES

AND CLOUD INFRASTRUCTURE

This chapter describes the primary genomic reference data that we used to build

the software systems described in this dissertation, i.e., the collection of microbial

reference genomes. It also provides details on the preprocessing applied to these

datasets. Finally, this chapter also describes the cluster infrastructure used for car-

rying out our experiments. When appropriate, the chapter provides details on the

commands, parameters, and environments used in the steps.

3.1 Reference Genomes

Bacterial Genomes for our reference database were downloaded from the En-

sembl Bacteria [42] repository. Multiple versions of the Ensembl Bacteria database

were processed and analyzed, from Ensembl Bacteria versions 38 through 45. The

version we use, 45, contains 44,048 bacterial genomes (strain level), and these were

downloaded in FASTA format, accounting for over 4.7 million individual FASTA

reference files. The collection included reference sequences for fully assembled chro-

mosomes and plasmids, as well as sequences for draft-quality supercontigs, the latter

accounting for most of the reference files in our database.

In total, the 44K bacterial genomes had a data footprint of 170 GB. It took four

days to download the data from the Ensembl repository with a custom user script

that employed the wget command.

In addition, genome annotations were also downloaded for each of the 44K

genomes; the annotations were downloaded from the Entrez database [131] at the

National Center for Biotechnology Information (NCBI) using the Bio package in a

Python script.

28

3.2 Reference Genome Preprocessing

Before the microbial genomes could be used with our analysis pipelines, and

before they were deployed on our cluster, they were prepared appropriately. The

preprocessing of the genomes involved expanding/extracting the downloaded refer-

ence sequence files, reformatting FASTA headers so that the reference files contained

specific taxonomic lineage information, partitioning the big FASTA file into a specific

number of partitions (denoted by the parameter N , and finally indexing each of the

resulting partitions. In summary, our preprocessing pipeline consisted of the following

steps:

1. Genome Download

2. FASTA Extraction

3. Annotation Preparation

4. Reference Database Partitioning

5. Reference Database Indexing

The following subsections describe the particulars of each of the aforementioned

steps. The machine named “castalia” at the School of Computing and Information

Sciences at Florida International University [133] was used in all the preprocessing

steps described below, as well as to obtain a benchmark performance with a single

machine. The machine runs the Linux operating system, has over 10 TB of disk

storage, 768 GB of RAM, and 48 Intel Xeon CPUs (E5-2650 v4, 2.20GHz).

Downloading the Genomes

We downloaded the Ensembl database (v.45) from the public FTP site located

at ftp.ensemblgenomes.org. Ensembl stores the genome FASTA files in “col-

29

ftp.ensemblgenomes.org

lection” directories, and we recursively downloaded the “dna” directory in each of

the bacterial sub-folders. In total, 4,672,683 FASTA files were downloaded, with a

data footprint on disk of just over 170 GB — these accounted for 44,048 bacterial

strains.

FASTA Extraction

Ensembl distributes the FASTA files in the “gzip” [47] format, and in order for

us to be able to further enhance them for use in our cluster, we needed to extract them.

Extracting all the 4.6 million FASTA files took over one day on the “castalia”

machine.

Annotation Preparation

Each FASTA record from the Ensembl database contains minimal information

about the lineage of each bacteria. In order to create meaningful reports, as well

as to compare the advantages and disadvantages of using a large bacterial refer-

ence database, we added additional annotations to each of the header strings of the

FASTA records in all of the sequences. The additional information that we added in-

cluded information such as the “Taxonomic ID”, “start coordinate”, “end

coordinate”, and a optimized “Sequence ID” string that we could efficiently

parse in the MapReduce operations [34].

3.2.1 Partitioning and Indexing the Reference Genomes

Reference Database Partitioning

Note that if all the sequences were to be concatenated into a single file, it would

be of size 170 GB, then the indexers such as Bowtie2 [84] and Kallisto [24] would

30

Figure 3.1: Bacterial genome reference database partitions. Red
labels indicates the average disk size in gigabytes (GB, y-axis) of a single
partition when partitioning the full reference database into N -number of
partitions (x-axis).

either be too slow, run out of memory, or would crash since they were designed for

human genomes, which are approximately of size 3 GB.

Partitioning is a powerful technique that has been shown to be useful for detecting

bacterial genomes [152] and mapping long-reads from nanopore sequencing [48] in

resource-constrained platforms.

The idea of partitioning is to split the reference database such that each partition

when indexed is just small enough to fit in the memory space of a small to medium-

sized Amazon Elastic Compute Cloud (EC2) machine, since otherwise the individual

machines would end up slowing down due to thrashing. The average partition sizes

as a function of the number of partitions are shown in Figure 3.1). Once partitioned,

the index of each partition would be placed on a Spark worker nodes [173]. Note that

the partitions are not all exactly the same size because each partition has to contain

only complete genomes, not partial ones as in [48].

31

Indexing the Reference Database

Part of the process of preparing a reference database of genomes for DNA map-

ping is to create a reference Index [147] — an optimized data structure that the DNA

mapper uses to map the input sequencing DNA reads to the putative reference se-

quences of origin. The process is resource intensive and often took multiple days to

complete. The resulting reference database shards were each indexed independently

and sequentially on the “castalia” machine, a process that took roughly two and

a half days using the “bowtie2-build” utility. Since the partitions were not all of

the same exact size, the resulting indexes showed some variations in size, as shown in

Table 4.1).

3.3 Cloud Infrastructure

Once all the shards of the reference genome database have been indexed, we

upload all of them into a bucket in Amazon’s Simple Storage Service (S3) [11]. Up-

loading the partitioned reference genome through the AWS website is not a feasible

option as the web user-interface is designed for relatively small files, so instead, we

used the AWS command line utility (CLI) to perform the upload to the S3 bucket.

Uploading the reference genome’s shards took 50 minutes with 57 seconds using the

command in Listing 3.1.

1 aws s3 cp /ensembl/partitions s3://references/ensembl/partitions

--recursive

Listing 3.1: The command used to upload partitions to the S3 bucket.

3.3.1 AWS Cloud Cluster

The cluster consists of multiple “commodity” worker machines (a computational

“worker” node), each with 15 GB of RAM, 8 vCPUs (each being a hyperthread of

32

a single Intel Xeon core), and 100 GB of disk storage. A Spark [173] cluster was

created using the AWS Console with the following software configuration: EMR-

5.7.0, Hadoop 2.8.4, Ganglia 3.7.2, Hive 2.3.3, Hue 4.2.0, Spark 2.3.1, and Pig 0.17.0

in the US East (N. Virginia) region.

The cluster is composed of homogeneous machines for both the driver node and

worker nodes, and each machine is an Amazon machine instance of type c4.2xlarge.

These instances contain 8 vCPUs, 15 GB of RAM, 100 GB of EBS storage, and each

cost on average $0.123 USD to run per hour on the “us-east” availability zone on the

Spot [10] market as of this writing in January 2019. Newer instances (c5.2xlarge) are

also available for use, but their availability is infrequent in large numbers, in addition

to having a higher cost per hour to run.

Cost Analysis

All experiments were conducted using Amazon’s Elastic MapReduce service

(EMR) [6] and used the c4.2xlarge machine instance type. These machines con-

tain 8 vCPUs, 15 GB of RAM, and 100 GB of EBS storage, and provide a good

balance between cost and performance. At the time of this writing, each machine

instance type costs around $0.123 USD in the Amazon’s Spot market [10]. The Spot

market offers machines at a reduced cost as they are machines that have been re-

served by other customers but are currently not being used, and rather than have the

machines be idle, the purchasing customer offers them at a reduced cost.

Read Data Streaming

Resilient Distributed Datasets (RDD) [174] are robust programming abstractions

that can be used to persist data across a cluster of machines. The primary source

of input to the cluster are sequencing reads taken from a datastream in batches that

33

are processed by the MapReduce pipeline. Reads are consumed either directly from

their location in an Amazon S3 bucket, the local file system of the master node, or

from a datastream source. The stream of reads in transformed into an RDD that is

consumed by the master node, which then broadcasts it out into all the worker nodes

in the cluster. Note that the input RDD of reads is partitioned into sets of reads that

are each independently aligned to a reference genome partition in each of the worker

nodes of the cluster.

34

CHAPTER 4

LARGE-SCALE MICROBIAL COMMUNITY PROFILING

IN THE CLOUD

Bacterial metagenomics profiling for metagenomic whole sequencing (mWGS)

usually starts by aligning sequencing reads to a collection of reference genomes. Cur-

rent profiling tools are designed to work against a small representative collection

of genomes, and do not scale well to larger reference genome collections. However,

large reference genome collections are capable of providing a more complete and ac-

curate profile of the bacterial population in a metagenomics dataset. In this paper,

we discuss a scalable, efficient, and affordable approach to this problem, bringing

big data, high-performance computing solutions within the reach of laboratories and

researchers with modest resources.

We developed Flint, a metagenomics profiling pipeline that is built on top of

the Apache Spark framework [173], and is designed for fast real-time profiling of

metagenomic samples against a large collection of reference genomes. Flint takes

advantage of Spark’s built-in parallelism and streaming engine architecture to quickly

map reads against a large (170 GB) reference collection of 44,048 bacterial genomes

from Ensembl. Flint runs on Amazon’s Elastic MapReduce service, and is able to

profile 1 million Illumina paired-end reads against over 40K genomes on 64 machines

in 67 seconds – an order of magnitude faster than the state of the art, while using a

reference genome collection that is an order of magnitude larger than that used by

the competing tools. Streaming the sequencing reads allows this approach to sustain

mapping rates of 55 million reads per hour, at an hourly cluster cost of $8.00 USD,

while avoiding the necessity of storing large quantities of intermediate alignments.

Such prices make microbiome profiling using high-performance computing affordable

for all researchers.

35

4.1 Microbial Community Profiling

Microbes are ubiquitous and a microbiome is a community of microbes that

inhabit a particular environmental niche such as the human body, earth soil, and

the water in oceans and lakes. Metagenomics is the study of the combined genetic

material found in microbiome samples, and it serves as an instrument for studying

microbial biodiversities and their relationships to humans. Profiling a microbiome is

a critical task that tells us what microorganisms are present, and in what proportions;

this is particularly important as many human diseases are linked to changes in human

microbiome composition [63, 80, 168, 175], and large research projects have started

to investigate the relationships between the two [33].

A powerful tool for profiling microbiomes is high-throughput DNA sequencing

[105], and whole metagenome sequencing experiments generate data that give us a

lens through which we can study and profile microbiomes at a higher resolution than

16S amplicon-based sequencing analyses [124].

Advances in sequencing technologies have steadily reduced the cost of sequencing

and have led to an ever increasing number of extremely large and complex metage-

nomic data sets [13, 26]. The resulting computational challenges for analysis tools

include the storage management of even larger intermediate results and larger indexes

of the reference genome collections [156], and the resulting increase in processing time

that make it impossible to process the data sets on commodity workstations or lap-

tops. Powerful multi-user servers and clusters are an option, but the cost of systems

with higher processor speeds, greater storage volumes, and huge memory sizes are

out of reach for small laboratories.

To deal with the deluge of sequencing data, distributed cloud computing plat-

forms and frameworks such as Amazon Web Services [11], Apache Hadoop [143], and

Apache Spark [173] have been used by researchers to take advantage of parallel com-

36

putation and economies of scale. Thus, large sequencing workloads are distributed on

a cloud cluster that is comprised of many inexpensive, off-the-shelf compute nodes.

These cloud-based solutions have been successfully used for human genomics [85],

transcriptomics [127], and more recently for metagenomics applications [178, 70] (see

Section 4.2).

Standard genomics and transcriptomics analyses for sequencing datasets usually

begin by aligning sequencing reads to a reference genome [147, 158], and producing

abundance counts [148]; but in metagenomic analyses, the alignment step is performed

against a collection of reference genomes that can be extremely large, slowing down

the entire operation. The MapReduce model [34] along with the Spark framework

have been popular in speeding up these crucial steps when dealing with sequence

datasets from a single organism. This was achieved by framing the read alignment

and quantification tasks in terms of map and reduce operations [86, 127].

4.2 Approach

4.2.1 Spark and MapReduce

The MapReduce model was originally developed by researchers from Google [34],

and most notably popularized by the Apache Hadoop [143] open-source project from

the Apache Foundation [144]. The Apache Spark [173] project further expanded the

Hadoop project and introduced new optimizations for enhanced calculation speeds

and improved programming paradigms [174]. The MapReduce model abstracts away

much of the boiler-plate programming details of developing distributed applications,

freeing developers to focus more on algorithm-specific issues. The framework requires

the user to flesh out two distinct steps: the map() step, and the reduce() step.

These functions are executed on two clusters of processors, each map() working on

a different fragment of the dataset. The map() function produces as output a set

of tuples, each consisting of a (key, value) pair; while the reduce() function

37

merges the output of the map() function by coalescing or aggregating tuples with

the same key.

The MapReduce model and the Spark framework have been employed in a num-

ber of sequence data analysis workflows [27, 60]. The Crossbow project from 2009 used

Spark’s MapReduce implementation to identify Single Nucleotide Polymorphisms

(SNPs) in human samples [85]; eXpress-D used Spark to implement the expecta-

tion maximization (EM) algorithm for ambiguous DNA-fragment assignment [127].

Spark has also been used in metagenomic analyses [60] for mapping sequencing reads

against small reference databases and for clustering metagenomes [125].

A natural approach to use the Spark framework for the analysis of mWGS

datasets is to partition the input of reads into smaller subsets of reads to be pro-

cessed by worker nodes in a Spark cluster. This strategy works well when the dataset

of reads is large. The limitation of this strategy is that it does not scale to large

collections of reference genomes because a data structure (index) of the reference col-

lection of genomes must either be duplicated in each of the worker nodes, or multiple

passes of the input will need to be used. Indexes built from large reference collections

using a k-mer based strategy are often too large to be accommodated on a single

commodity machine on the cloud [109]. Fast k-mer based strategies have been used

for profiling mWGS datasets [132, 167]. But they trade-off speed for the size of the

indexes. More recently, alternative index-building strategies were developed [177].

However, these were achieved only at species-level resolutions and were not designed

for use with a cloud-based infrastructure.

Zhou et al. developed MetaSpark [178] to align metagenomic reads to reference

genomes. The tool employs Spark’s Resilient Distributed Dataset (RDD) [174] – a

critical programming abstraction for working with large datasets. RDDs were used to

cache information on reference genomes and reads across worker nodes in the cluster.

By using Spark’s RDD, MetaSpark is able to align more reads than previous tools.

38

MetaSpark was developed with two reference datasets of bacterial genomes: a small

reference collection of size 0.6 GB, and a larger one from RefSeq’s bacterial repository

of size 1.3 GB. These reference sets are small compared to the 170 GB reference set

of Ensembl. Since MetaSpark uses an RDD to hold the index of the reference genome

collection, it is unlikely that MetaSpark can scale to use them because the contents of

an RDD are limited by the available memory, which are not standard in commodity

machines on the cloud. More specifically, MetaSpark took 201 minutes (3.35 hours)

to align 1 million reads to the small 0.6 GB reference using 10 nodes [178].

SparkHit [70] was developed by Huang et al. as a toolbox for scalable genomic

analysis and also included the necessary optimizations for the preprocessing. SparkHit

includes a metagenomic mapping utility called “SparkHit-recruiter” that performs

much faster than MetaSpark with similar sets of reference genomes. SparkHit per-

forms well with large dataset of reads and small reference genome sets — the authors

profiled 2.3 TB of whole genome sequencing reads against only 21 genomes in a little

over an hour and a half. The limitation of SparkHit is that it builds its reference index

using a k-mer strategy that does not scale to large collections of reference genomes

[109], especially if the reference database changes with each study that is analyzed.

Thus, SparkHit does not scale well and is unsuitable for profiling large metagenomic

datasets against large collections of reference genomes.

4.2.2 Streaming Techniques

In order to process the large quantities of both input metagenomic datasets, and

the large collections of reference genomes to profile against, new analysis paradigms

are required that take advantage of highly parallelizable cloud infrastructure, as well

as real-time data streams for consuming large input datasets.

LiveKraken [142] was developed as a real-time classification tool that improves

overall analysis times, and is based on the popular Kraken [167] method for pro-

39

filing metagenomic samples in Kraken-based workflows. LiveKraken uses the same

approach as the HiLive [95], a real-time mapper for Illumina reads, but extends it

to metagenomic datasets. LiveKraken can ingest reads directly from the sequencing

instrument in Illumina’s binary basecall format (BCL) before the instrument’s run

finishes, allowing real-time profiling of metagenomic datasets. Reads are consumed

as they are produced at the instrument, and the metagenomic profile produced by

LiveKraken is continuously updated. LiveKraken points the way to future classifi-

cation systems that use streams of data as input, but its limitation is that it uses

a k-mer based reference index. In fact, as reported in their publication, LiveKraken

was tested with an archived version of RefSeq (circa 2015) that only contained 2,787

bacterial genomes. Since then, RefSeq has grown to over 50K genomes in the latest

release (version 92), and creating a k-mer based index of it would require substantial

computational resources, not available on commodity machines.

More recently, a Spark streaming-based aligner was developed that uses streams

of data to map reads single reference genomes. The tool, StreamAligner [126], was

implemented with the Spark-streaming API and used novel MapReduce-based tech-

niques to align reads to the reference genome of a single organism. Unlike other

methods, it creates its own reference genome index using suffix arrays in a distributed

manner that reduces index-build times, and can then be stored in memory during an

analysis run. With the Spark streaming API, StreamAligner can continuously align

reads to a single reference genome without the need to store the input reads in local

storage. Although StreamAligner has high performance when using a single genome,

there is no evidence that it can be scaled up to metagenomic workflows where tens

of thousands of genomes are involved, and the footprint of the index of the reference

genomes are too large to fit in memory.

40

Figure 4.1: Overview of the Flint System. Reference genomes are
partitioned so that a large reference set is be distributed across a Spark
cluster, and the number of partitions matches the number of worker nodes.
Samples are streamed into the cluster to avoid storage overheads as shards
of 250K reads. Reads are aligned to the distributed reference genomes using
a double MapReduce pipeline that continually updates metagenomic profiles
as samples streamed into the cluster. Read alignments are never stored, and
processed by each worker node as soon as they are produced.

41

4.3 Methods

4.3.1 A “Double” MapReduce

A natural approach to using MapReduce for large metagenomic analyses tasks

is as follows. The map step divides the task of mapping the reads against a genomic

index by having each map processor work on a part of the index, and the reduce

step aggregates all the hits to each genome and constructs the microbial profile of

the metagenomic sample. Since the full genomic index is too large to be farmed out

to each map node in the cluster, we adopt the approach of building indexes from

each “shard” of the reference genome database and providing each cluster node with

a smaller index. Such an approach allows for much larger reference databases to be

processed for mapping the reads.

Following up on the aforementioned idea, one way to perform the MapReduce

is to have the map function produce tuples of the form 〈g, 1〉, for every read r that

is aligned to genome g, while the reduce function aggregates all tuples of the form

〈g, 1〉 to obtain the abundance of genome g in the sample being analyzed, effectively

generating output tuples of the form 〈g,A(g)〉, where A(g) is the reported abundance

of genome g in the sample being analyzed.

Unfortunately, a read may align to multiple genomes. Instead of counting a hit

for every genome that the read aligns to, or counting it for only one of the genomes

that the read aligns to, we follow the algorithm of Valdes et al. [152], which as-

signs fractional counts for the genomes that a read aligns to. In order to implement

fractional counts, we employ a novel double MapReduce algorithm. In the modified

MapReduce, the map function generates alignments in SAM format [93] by dispatch-

ing a subprocess of the Bowtie2 aligner and produces tuples of the form 〈r, (g, 1)〉, for

every read r that is aligned to genomes g. All tuples for the same read are aggregated

by the first reduce step to generate tuples of the form 〈r, (g, 1/C(r))〉. The second

42

map step generates contributions of reads for a given genome, and the second reduce

step aggregates all tuples of the form 〈g, c〉 to obtain the abundance of genome g in

Figure 4.2: MapReduce Workflow. Metagenomic samples can be
streamed in from a distributed filesystem into the cluster were they are
stored in an RDD. The first map step generates alignments through Bowtie2
and feeds its resulting pairs to the first reduce step, which aggregates the
genomes that a single reads aligns to. The second map step generates read
contributions that are used in the second reduce step to aggregate all the
read contributions for a single genome. This results in an abundance matrix
containing the abundances of each genome in the sample being analyzed.

43

the sample being analyzed, effectively generating output tuples of the form 〈g,A(g)〉,

where A(g) is the reported abundance of genome g in the sample being analyzed

obtained by aggregating all the fractional contributions of reads that map to that

genome. Note that all intermediate tuples are stored in RDDs, one for each step.

4.3.2 Reference Genome Preparation

Before we can use the bacterial genomes in the cluster, they need to be pre-

pared. The process entails creating a Bowtie2 index for each shard of the reference

database, and specific details on this procedure can be found in Section 3.2. Briefly,

the reference genomes are divided into smaller partitions that are each independently

indexed by Bowtie2. The index preparation step can take considerable computational

resources and time with a single machine. A parallel version of the indexing system

can greatly improve performance and will be automated in the next release of Flint.

As described in Section 3.2.1, once the partitions have been indexed they are then

copied to an Amazon S3 [8] bucket that serves as a staging location for the reference

shards. The staging S3 bucket holds the index so that worker nodes can copy it during

their provisioning step and the analysis can start; the S3 bucket is also public, and

researchers can download copies of the prepared indices for their use.

It should be noted that Ensembl’s bacterial genome collections have grown only

modestly in the last couple of releases to minimize redundancy, and reference indices

for new Ensembl releases can be built relatively quickly with utility scripts provided

by Flint. The cost of building a partitioned reference index is only accrued the first

time it is built for a cluster of a particular size, and as part of the release of the Flint

project, we are making available partitioned indices of Ensembl (v.45) with 48, 64,

128, 256, and 512 fragments. We anticipate that such precomputed indexes would

be useful for researchers employing clusters of those sizes. These indices, along with

the scripts necessary to build future versions, can be found in the GitHub repository

through the project website.

44

We currently use minimal annotations that keep track of basic attributes for each

bacterial strain; these include taxonomic identifiers, assembly lengths, etc. Future

releases of the software will include a more robust annotations package that will

contain data on gram staining, pathogenicity, and other properties.

Flint uses a streaming model to quickly map a large number of reads to a

large collection of reference bacterial genomes by using a distributed index. Resilient

Distributed Datasets (RDD) [174] are robust programming abstractions that can be

used to persist data across a cluster of machines. We ingest reads from datastreams

in batches of 500,000 reads that are processed by our mapreduce pipeline. Reads

are consumed either directly from their location in an Amazon S3 bucket, or from a

datastream source. An RDD of the input read stream is created in the master node

that is then broadcasted out into all the worker nodes in the cluster. The input RDD

of reads is partitioned into sets of reads that are each independently aligned to a

reference genome partition in each of the worker nodes. The Bowtie2 DNA aligner

is used internally in Spark worker nodes to align reads to the local partition of the

reference index, by using a MapReduce that continuously streams reads into worker

nodes. Output alignments are parsed and tabulated by worker nodes, and then sent

back to master node as alignment tasks finish. Flint can be deployed on any Spark

cluster, as long as the necessary software dependencies are in place; the partitioned

reference index for Ensembl’s 44K genomes is made available at the Flint website,

and scripts are provided as part of the provisioning step that copy the partitions into

worker nodes.

4.3.3 Cluster Provisioning

Our computational framework is primarily implemented using the MapReduce

model [34], and deployed in a cluster using the Elastic Map Reduce (EMR) service

offered by AWS (Amazon Web Services) [11]. Each of the worker computational

nodes will execute in parallel to align the input sequencing DNA reads to a “shard”

45

of the reference database (Figure 4.2); after the alignment step is completed, each

worker node acts as a regular Spark executor node. By leveraging the work of multiple

machines working at the same time, Flint is able to align a large number of reads

to a large database of reference genomes in a much more efficient manner than that

achieved by using a single powerful machine.

4.4 Results and Discussion

4.4.1 Benchmarking the Mapping of Reads

With the goal of benchmarking our experimental setup, we used a prototypi-

cal microbiome data set from HMP – reads from a Nasopharynx sample (sample ID

SRS072346), which contained 66,780 paired-end reads. Bowtie2 took 12 hours to com-

plete the mapping using up almost all the 768 GB RAM available on the “castalia”

machine. Note that “castalia” is not a commodity machine because it has 48 pro-

cessors and has a large RAM.

4.4.2 Mapping Reads on the Cloud

No. Partitions Partition Disk Size (GB) Bowtie2 Map Time
1 170 12:05:31
4 40 0:30:24
6 28 0:15:28
8 21 0:10:53
12 13 0:06:48
16 10 0:05:27
24 7 0:05:00
32 5 0:04:25
48 3.5 0:01:30
64 2.6 0:00:52
128 1.3 0:00:35

Table 4.1: Reference Database Partitions. Average size of a partition
(“Partition Disk Size (GB)”) after splitting the reference collection, along
with estimated running times for aligning 66k HMP reads against the parti-
tion (“Bowtie2 Map Time”).

46

Figure 4.3: Bowtie2 Partition Map Time. Run times for aligning 66k
HMP reads using Bowtie2 against different reference database partitions.

Table 4.1 shows the time taken to map all the reads against the indexed partitions

for different values of N , the size of the cluster on the cloud. Our benchmarking

experiments with a partition into four shards took roughly 30 minutes, while with

a partition into 64 shards, it took less than a minute to map all the reads. This is

shown in Figure 4.3.

Note that the benchmarking runtimes from Table 4.1 are for only one randomly

chosen partition, and they do not reflect the actual times that we achieved in the

cluster using all the partitions for a given partition size class.

4.4.3 Comparing Flint to Existing Tools

As part of its evaluation, we compared the abundance profiles generated by

Flint to those provided by HMP and those generated by Kraken [167]. Note that

Kraken is a k-mer-based algorithm to align reads to genomic sequences and is known

to be one of the most accurate ones [103].

47

We selected an anterior nares sample (SRS019067) with 528k reads from the

Human Microbiome Project (HMP) and analyzed it with Kraken (2.0.7-beta) and

Flint and compared the results to those provided by HMP in their community

abundance profiles. HMP reported 36.7% aligned reads using a bacterial database of

1,751 genomes, while Kraken was able to classify 36% of the reads using their RefSeq

bacterial database of 14,506 genomes; in contrast, Flint was able to align 81% of the

reads using Ensembl’s 44K bacterial genomes. The increased number of aligned reads

is due to the larger number of genomes in Ensembl. Kraken uses RefSeq’s bacterial

genomes collection, while Ensembl contains many draft genomes that increases the

probability for mapping a read. Flint also aligns reads with Bowtie2 directly to

the bacterial strain genomes, and does not apply lowest common ancestor (LCA)

assignment to reads as Kraken does, which should mitigate any database diversity

influences (genus, species, and strain ratios) as noted by Nasko et al. [109]. As shown

in Figure 4.4, both Flint and Kraken identify roughly the same set of genera, but

at the species level, Flint identifies significantly more species.

MetaSpark [178] and SparkHit [70] are methods built on the Spark framework

with a cluster infrastructure similar to that of Flint, but their lack of support for

large genome references makes direct comparison impossible. MetaSpark has a 201

minute runtime for 1 million reads with 10 nodes, profiled against a 0.6 GB reference

of bacterial genomes from NCBI. In comparison, Flint takes 67 seconds to profile 1

million paired-end reads against Ensembl’s 44,048 genomes (170 GB) with 64 nodes.

4.4.4 Reference Genome Collections

Creating the Bowtie2 index for the sharded collection of bacterial genomes is

a one-time operation and the index can be reused across cluster deployments until

an updated collection is available. With a 64 worker-node cluster, we created 64

reference shards, each of average size 2.6 GB. The total sequential indexing time for

the 64 shards was 1d 20h 4m 33s on a single machine. When we used an LSF cluster

48

Figure 4.4: Kraken2 Comparison. Community abundance profile com-
parison for an HMP anterior nares sample (SRS019067) generated by Flint
and Kraken. Red branches are lineages identified only by Flint blue
branches are lineages identified by Kraken only, and green branches are lin-
eages identified by both. The outermost ring represents the species identified
by either Flint (red), Kraken (blue), or both (green).

49

[145] that indexed the 64 shards in parallel, the total indexing time came down to

just over three hours.

Figure 4.5: Phylogenetic tree showing taxa identified by Flint using 44K
Ensembl bacterial genomes (blue), and using 5K NCBI’s Genomes references
(red) with an input of 1M randomly selected reads from the HMP anterior
nares sample (SRS015996). Genomes are considered as identified if the av-
erage coverage in their genomic sequence is 80% or more.

Existing metagenomic profiling tools such as MetaSpark and SparkHit use an

archived version of RefSeq as their reference genomes database — MetaSpark’s col-

lection of RefSeq bacterial references has a size of 1.3 GB and contains about 5K

genomes. The Ensembl database used by Flint contains roughly nine times the

number of genomes (and has size 170 GB), and we looked into how a metagenomic

profile could be different by looking at how many genomes are identified by using a

50

large or small reference collection. To do this, we randomly selected 1M reads from

an HMP anterior nares sample (SRS015996) and aligned its reads using Bowtie2 to

two genome reference indices: the large collection created from the 44K Ensembl

bacterial genomes, and a small collection created from 5,591 bacterial representative

and reference genomes from NCBI’s Genomes (RepNG) (these are not the same 5K

genomes from the MetaSpark collection, as our collection was sourced from the bac-

terial genomes in GenBank at

ftp://ftp.ncbi.nih.gov/genomes/genbank/bacteria).

We investigated how many clades were identified by both references. Figure 4.5

displays the results and shows a phylogenetic tree (created with the Interactive Tree

Of Life (iTOL) visualization tool [92]) showing the differences in the phylogenetic

diversity of the taxa identified in the anterior nares sample. Genomes are called as

“present” by selecting only those genomes that have an average coverage greater than

80% along their genomic sequence. Nodes at the inner level of the figure represent the

phylum taxonomic level, while nodes in the outer rings are at the species level. Green

branches represents the clades identified by both references, blue branches represent

clades identified only using Ensembl, and red branches are clades identified only using

the RepNG reference set. Note that the number of clades identified by Ensembl at

the higher Class and Genus taxonomic levels outnumber those identified when only

using the RepNG subset. We had expected RepNG to be contained in the Ensembl

collection. However, this turned out not to be the case.

4.4.5 Experimental Setup

As mentioned earlier, the computational framework is primarily implemented

using the MapReduce model [34], and deployed on a cluster launched using Amazon

Web Services [11] Elastic Map Reduce (EMR) service. Each of the worker computa-

tional nodes will work in parallel to align the input sequencing DNA reads to a shard

of the reference database; after the alignment step is completed, each worker node

51

acts as a regular Spark executor node. By leveraging the work of multiple machines

working at the same time, we are able to align millions of reads to the over 44K

reference genomes in a much more efficient manner than either using only a single

machine with considerable computational resources, or using other parallel computa-

tion approaches. Benchmarking tests were performed on Spark clusters of size 48, 64,

and 128 worker nodes, all deployed using Amazon’s EMR service at very low costs.

4.4.6 Measuring Accuracy Using Simulated Datasets

To get a measure of the accuracy of Flint’s read-alignment pipeline and to

test the robustness of the streaming infrastructure, we simulated synthetic Illumina

reads using the InSilicoSeq metagenomic simulator [58]. These were meant to test

the accuracy of the overall pipeline, to verify that the streaming system would not

introduce any duplicate artifacts, and to verify that the reduce steps in the Spark

cluster did not exclude any of the output alignments. We created 12 datasets ranging

in size from one read to one million reads, created with a log-normal abundance profile,

and using the default error model for the HiSeq sequencing instrument available in

InSilicoSeq. For each size setting, we created three replicates.

Table 4.2 outlines the results for the synthetic datasets described above. Dataset

evaluations were performed on a 64 worker-node cluster on AWS, with each worker

node containing 8 vCPUs and 15 GB of memory. Flint achieves good performance

with the HiSeq dataset achieving 99% sensitivity across all three HiSeq replicates.

Alignment times on the 64 node Spark cluster using the database of 44K Ensembl

bacterial genomes show that 1 million reads are aligned in just over 1 minute with

no loss of sensitivity. The “Reads” column contains the number of reads that were

generated; note that reads are mated in a unique pair, as either the left mate (ori-

ented 3′ − 5′), or the right mate (oriented 5′ − 3′), forming a “paired-end fragment”.

The “Alignments” column contains the number of alignments that are produced by

correctly aligning a single unique pair of reads with the correct orientation: the left

52

Paired Reads
(×2)

Number of
Alignments

Running
Time

Alignment
Rate

% Sensitivity

1 1 2s 344ms 100% 100%
5 23 2s 400ms 100% 100%
50 172 2s 376ms 100% 100%
500 1,356 2s 455ms 100% 100%

2,500 8,592 2s 517ms 90% 98%
5,000 23,791 3s 193ms 94% 99%
25,000 74,543 5s 138ms 96% 100%
50,000 103,835 8s 320ms 93% 99%
125,000 187,349 15s 788ms 95% 100%
250,000 275,917 29s 18ms 93% 97%
375,000 513,954 45s 91ms 95% 99%
500,000 617,933 1m 14s 713ms 96% 99%

Table 4.2: HiSeq Synthetic Datasets. Average alignment times and
alignment rates for three synthetic datasets aligned against Ensembl’s 44K
bacterial genomes. Alignment rate measures the number of paired reads that
were correctly aligned, and sensitivity is the proportion of aligned paired
reads that were mapped correctly to the genome from which they were gen-
erated. Evaluations were performed on a 64 worker-node Spark cluster. Note
that the number of reads aligned can be obtained by multiplying the number
of paired reads in the first column by 2.

read aligns 3′ − 5′, and the right read aligns 5′ − 3′, with an insert gap in between

them (the gap varies, and can be as low as 50 bases, or as high as 250). Note that

these output alignments are not stored by the system, but rather they are processed

as soon as they are generated by the worker nodes in the cluster. The “Alignment

Rate” is calculated by dividing the number of correctly aligned read pairs by the total

number of pairs generated for each dataset (note that a read can only be found in a

single pair). The “Sensitivity” is conditional on the number of correctly aligned read

pairs, and measures the proportion of aligned paired-end reads that were mapped

correctly to the genome from which they were generated by InSilicoSeq.

53

4.4.7 Human Metagenomic Samples

After verifying the performance of the Flint system on simulated datasets, we

tested the capabilities of the system on real metagenomic samples from the Human

Microbiome Project (HMP) [71], which was generated using an Illumina-based se-

quencing system. We therefore expected a comparable performance with the HMP

data as with the synthetic dataset.

Cluster Benchmarks

Before testing the system with sequencing data from metagenomic studies of hu-

man microbiome samples, we ran a benchmark of randomly sampled paired-end reads

from a HMP anterior nares sample (SRS015996) to confirm our previous observations

on the synthetic datasets. Each of these read datasets was then processed through

the Flint system running on a 64 worker-node cluster in AWS. Table 4.3 presents

the runtimes for each of the datasets. As expected, Flint processed 1 million reads

from this HMP sample in about 67 seconds.

Sequencing Data from Human Samples

For the experiments reported here, we considered 753 HMP samples for their

abundance profiles and surveyed the number of unique genera (i.e., genus richness)

as reported in the community abundance profiles provided by HMP. Based on the

distribution of genus richness values, we selected three representative samples with

varying richness values (and, thus, varying diversity). We picked (i) an anterior nares

sample (SRS019067, 528k reads) with 8 unique genera (low diversity class), (ii) a stool

sample (SRS065504, 116M reads) with 60 unique genera (medium diversity class), and

(iii) a supragingival plaque sample (SRS017511, 56M reads) with 133 unique genera

(high diversity class). We speculated that the high diversity samples would contain

54

Paired Reads
(×2)

Number of
Alignments

Running
Time

Cluster Memory
(GB)

1 0 2s 320ms 4
5 36 2s 422ms 4
50 902 2s 336ms 4
500 9252 2s 316ms 4.3

2,500 53,918 2s 455ms 4.5
5,000 106,160 2s 700ms 4.9
25,000 538,594 5s 437ms 5.2
50,000 1,006,122 8s 318ms 5.8
125,000 2,349,518 17s 164ms 6.4
250,000 5,327,040 33s 950ms 7.6
375,000 8,439,356 50s 880ms 9.5
500,000 10,710,420 1m 7s 609ms 10.3

Table 4.3: Initial Cluster Benchmarks. Average alignment times on
a 64 worker-node cluster for a set of randomly selected reads from a HMP
throat sample. The number of alignments column contains the output align-
ments that were generated by each set of reads; these alignments were pro-
cessed as soon as they were produced and were not stored, therefore min-
imizing the local storage requirements necessary for profiling metagenomic
samples.

reads from a larger number of organisms, and the alignment system would spend

more time and resources locating their origins in comparison to the samples with low

diversity.

Table 4.4 contains the results from processing the reads from the three selected

samples using Flint. The sample with the biggest number of paired-end reads,

sample SRS065504 with 116 million paired-end reads, was profiled against Ensembl’s

44K genomes in about 105 minutes. The sample with 56 million paired-end reads was

profiled in about 94 minutes; while the sample with the lowest number of paired-end

reads was profiled in 53 seconds. Note that the sample with 56 million paired-end

reads had the highest genus richness of the 3 samples and took the most amount of

time per read.

55

We conjecture that among all the HMP body sites, the gut is the most rigorously

studied with the most sequenced genomes in the Ensembl database. Consequently, a

much larger number of strains of each of the gut microbiomes are likely to be present

in the Ensembl collection. As a result, the indexes are likely to be more dense, making

the mapping of every read more time consuming.

Diversity
Class

Unique
Genera

Paired-End
Reads

Alignment
Time

Streamed
Shards

Alignments
per Shard

Low 8 528,988 0h 0m 53s 2 1,763,227
Medium 60 116,734,970 1h 45m 30s 234 1,471,036

High 133 56,085,526 1h 34m 51s 113 1,535,626

Table 4.4: HMP Sample Analysis. Diversity classes were established
based on the number of unique genera in 753 HMP samples. Three samples
were selected from each diversity class and analyzed in a 64 worker-node clus-
ter. Alignment execution time measures the total time to align all the sample
reads against Ensembl’s 44K bacterial genomes. The “Streamed Shards” are
the number of 250K read sets that are streamed into the cluster, and the
“Alignments per Shard” is the average number of alignments produced by
each shard.

Streaming Performance

The samples in Table 4.4 were streamed into the cluster through Spark’s stream-

ing engine. The entire sample is not ingested all at once, but rather, we stream in

shards of each sample so that clusters do not get overwhelmed with too much data

and cause a cluster failure. To determine the ideal number of reads to include in a

stream shard, we studied the results in Table 4.3 and Figure 4.6. Panel B in Figure 4.6

displays a logarithmic curve of the alignment times for all 12 sizes of the paired-end

read datasets, and while we can align one million reads in about 67 seconds, doing

so creates so many alignments that each of the Spark executor processes running in

each worker node could run out of memory. We looked for the “knee-in-the-curve” in

56

Figure 4.6: Initial Benchmarks. Figure A displays the running time for
12 paired-end read datasets on a 64 worker-node cluster. These 12 datasets
were used to estimate the optimal number of reads that a 64 worker-node
cluster could handle without memory saturation or network overloading.
Note that while 1 million paired-end reads can be mapped in 67 seconds
against 44K bacterial strains, it is not ideal to ingest 1M reads at once
as the cluster’s memory will be overwhelmed with the alignments that are
produced. Figure B displays the logarithmic running time of the 12 datasets,
and the 250K paired-end read dataset was chosen as a good trade-off between
speed and resource availability.

57

Figure 4.6 panel B, marked by the vertical magenta line, and identified a size of 250K

paired-end reads as a good trade-off between shard size and cluster performance.

When we analyzed the three HMP samples in table 4.4 we set the streaming shard

size to this optimal size of 250K reads, and 2 shards were created for the anterior

nares sample (low diversity, 500K reads), 234 shards were created for the stool sample

(medium diversity, 116M reads), and 113 shards for the supragingival plaque sample

(high diversity, 56M reads). The performance results suggest that the choice of shard

size was good.

Cloud Cost Analysis

All experiments were conducted using Amazon’s Elastic MapReduce service

(EMR) [6] and used the c4.2xlarge machine instance type. At the time of the

experimental runs, each machine cost $0.123 USD in the Amazon’s Spot market [10].

All results reported here were obtained on a cluster of 65 total machines (64 worker-

nodes, one master node) with a cost of $0.123 USD per node, for an overall cluster

cost of $8.00 per hour. Thus, processing cost averages to $ 0.15 USD per million

reads and $ 150 USD for a billion reads, making it extremely affordable for even the

average researcher across the globe.

4.4.8 Scaling to Larger Reference Collections

The current architecture of Flint is designed to work with large reference col-

lections such as Ensembl’s “Bacteria” collection. Figure 4.1 illustrates the current

architecture of the system, and one of the primary concepts of the current cluster lay-

out is that each worker node is provided with a single piece of the partitioned reference

collection. This layout works well with the current size of Ensembl (44K genomes)

but much larger collections such as RefSeq’s full catalog might pose a problem as

they contain upwards of 170K genomes.

58

It must be noted though, that RefSeq’s full catalog contains a lot of redundancy

as closely related genomes are part of the catalog; this is in contrast to Ensembl’s

strategy of maintaining a very well curated database that aims to have a wide breadth

of taxonomic coverage, while mitigating redundant species. Our discussion here is not

specific to RefSeq’s 170K genome catalog, but to how our architecture will handle

scalability as the reference genome collection grows in the future.

One approach to handle larger reference genome collections is to modify the

system so that each worker node is given multiple partitions of the reference collection,

rather than just a single one like in the current implementation (Listing 4.1). In this

modified layout, RefSeq’s 170K genomes could be partitioned into N partitions (say

256), and each worker node could be given a small subset of these (say four per node).

As long as we maintain the size of each partition small enough (say 3 GB), we should

be able to keep using clusters of size 64 with the current configurations from Section

4.3.3. However, if we wanted to support larger partitions, then we would need to

increase the capacity of the worker machines so that we could handle the increase

partition sizes (we would need more RAM memory and CPU resources).

Creating the necessary number of partitions to support a larger collection would

proceed with the same steps as those outlined in Section 3.2.1, with the only differ-

ence being that the number of partitions to generate would be much higher. Before

partitioning the reference collection, we would have to establish what type of cluster

we would be using (number of CPUs, RAM, etc.) and how many worker machines

the cluster would have. Care would have to be taken so that the number of partitions

given to each worker node is uniform, this would mitigate any issues with workers

being idle because they have a small number of partitions compared to others. In-

dexing would remain unchanged from the steps in Section 3.2.1 as the indexing step

follows the partitioning step.

59

Each worker node in the cluster would now be responsible for aligning the input

set of reads across multiple partitions, instead of aligning them across a single one as

before. The process of aligning reads against multiple partitions would cause a delay

in getting data back to the master node, so the streaming settings and task managers

would have to be modified to account for the delays, but the distributed architecture

of the cluster should be able to support it without much engineering modifications.

Figure 4.7: Modified Cluster Architecture. Support for larger ref-
erence collections such as RefSeq could be achieved by having each worker
node in the cluster work on multiple partitions, rather than a single one as
is the case in the current architecture.

The script for handling the alignment to a reference genome is spark jobs.py,

and the function align with bowtie2() is main code block that needs modifica-

60

tion. The current function dispatches a Bowtie2 subprocess to align the reads. The

function relies on having a single index path and a single index name. To sup-

port multiple reference indices, we would need to modify the function in Listing 4.1

so that it can loop through a collection of multiple partitions. Lines 4 through 14 in

Listing 4.1 would be placed in a loop that would iterate through the different parti-

tions, and append its set of resulting alignments to the alignments[] list declared

in line two.

1 def align_with_bowtie2(iterator):

2 alignments = []

3 reads_list = broadcast_sample_reads.value

4 bowtieCMD = getBowtie2Command(bowtie2_node_path=bowtie2_node_path,

5 bowtie2_index_path=bowtie2_index_path,

6 bowtie2_index_name=bowtie2_index_name,

7 bowtie2_number_threads=bowtie2_number_threads)

8 try:

9 align_subprocess = sp.Popen(bowtieCMD, stdin=sp.PIPE,

stdout=sp.PIPE, stderr=sp.PIPE)

10 pickled_reads_list = pickle.dumps(reads_list)

11 alignment_output = align_subprocess.communicate(

12 input=pickled_reads_list.decode(’latin-1’)

13)

14 for a_read in alignment_output.strip().decode().splitlines():

15 alignment = a_read.split("\t")[0] + "\t" +

a_read.split("\t")[2]

16 alignments.append(alignment)

17 except sp.CalledProcessError as err:

18 sys.exit(-1)

19

20 return iter(alignments)

Listing 4.1: Original alignment function (single partition).

61

4.5 Conclusion

In this chapter we have shown how large metagenomic samples comprising mil-

lions of paired-end reads can be profiled against a large collection of reference bacterial

genomes in a fast and economical way. Our implementation relies on the Spark frame-

work to distribute the job of aligning millions of sequencing reads against Ensembl’s

large collection of 44K bacterial genomes.

By combining streaming, a sophisticated double MapReduce algorithm, afford-

able cloud computing services, Flint brings sophisticated metagenomic analyses

within reach of small research groups with modest resources.

Additional materials, simulation datasets, partitioned reference indices, and links

to the GitHub website with the source code and installation instructions can be found

on the Flint project website at

http://biorg.cs.fiu.edu/flint.

62

http://biorg.cs.fiu.edu/flint

CHAPTER 5

MICROBIOME MAPS: HILBERT CURVE VISUALIZATIONS OF

MICROBIAL COMMUNITY PROFILES

5.1 Introduction

Microbiome samples are now routinely created by means of low-cost, high through-

put metagenomics DNA sequencing. The next steps in the analysis is the creation

of microbial community abundance profiles [25], obtained by mapping the sequenced

reads against a collection of microbial genomes from a reference genome collection like

Ensembl [42] or RefSeq [113]. Tools such as Flint [153] and Kraken 2 [166] facilitate

the process to create detailed microbial abundance profiles for tens of thousands of

genomes for both metagenomic whole-genome DNA sequencing (mWGS) as well as

16S-amplicon sequencing (16S).

Metagenomic profiles contain relative abundance values for the entire collection

of microbial taxa present in a sample, and these profiles can be easily viewed with

stacked bar charts, pie charts, Krona plots [115], or using data analysis software suites

such as Tableau [141], or MS Excel [106]. Such tools are readily available to the public

and allow for data exploration, but are designed for the analysis of generic tabular

data, and do not consider domain-specific information (taxonomic, phylogenetic, etc.)

that may be crucial for the interpretation of metagenomics datasets. Recent tools such

as WHAM! [38] allow for explicit metagenomics-focused analyses, making it possible

to dig down into the data and create useful visualizations for descriptive analyses.

We argue that the complex latent properties of microbiomes embedded in com-

munity abundance profiles such as taxonomic hierarchies and other relationships are

not easily described and visualized in traditional generic plotting mechanisms such

as stacked bar-charts or line-plots. The problem gets more acute as the sizes of our

63

reference genome collections continues to grow exponentially over time [109], and

even novel tools such as Krona are not able to keep up and display large amounts of

reference genomes (Figure 6.4).

In this work we consider the problem of succinctly visualizing a microbiome, and

specifically, visualizing metagenomic community abundance profiles, along with their

latent structured labels (e.g., taxonomic description or biological property) with the

use of a visualization technique called the Hilbert Curve Visualization (HCV). We dis-

cuss the challenges of scalable visualization of billions of measurements for hundreds of

thousands of microbial genomes, and argue that alternative visualization techniques

are useful when trying to combine many factors of metagenomic information in order

to create interpretable images that can lead to improved understanding.

5.2 Approach

As mentioned earlier, we use a technique called the Hilbert curve visualization

(HCV) to succinctly visualize the microbial community abundance profiles of a large

number of genomes (up to 44K). These profiles contain the relative abundance mea-

surements of thousands of genomes, and they are ordered along a space-filling curve

in a 2D square using the Hilbert curve [66], thus making it possible to visualize the

profile of a single metagenomic sample. In the resulting Hilbert image, each position

is a genome from the reference database, and the intensity of the position’s color

value represents the abundance of a genome in the sample.

As discussed below, depending on the ordering of the genomes that is selected,

different “microbial neighborhoods” are created, allowing for different interpretations

of the clusters of bright segments, i.e., “hotspots”, of abundant genomes in the im-

ages. Fixing the position of a genome results in visualizations that allow for quick

comparisons of the abundance of the same genome or sets of genomes in multiple

microbiome samples.

64

Figure 5.1: Hilbert Curve Visualization of Metagenomic Samples.
(A) The first five iterations of the Hilbert curve: the “Level 1” curve is
obtained by connecting the centers of the four initial squares as shown; the
Level k curve is obtained by a recursive partitioning of each square from
Level k−1, creating four Level k−1 curves and connecting them as outlined
by the “Level 1” curve, rotated appropriately. At level k, the original square
is divided into 2k × 2k small squares, each of whose centers is visited by
the Level k Hilbert curve. (B) A representative image of a mWGS Buccal
Mucosa sample (SRS045254) from the Human Microbiome Project (HMP)
created using a “taxonomic ordering” of 44K reference genomes from the
Ensembl database. The intensity of each position in the image represents the
abundance of one microbial genome. Groups of segments are labeled by the
groups induced by the ordering of the taxa on the Hilbert curve. Additional
Hilbert curve images for more mWGS samples, as well as other 16S samples
at full resolution, are available via links from biorg.cs.fiu.edu/jasper

65

biorg.cs.fiu.edu/jasper

5.2.1 Space-Filling Curves

Space-filling curves are popular in scientific computing applications for their abil-

ity to speed-up computations, optimize complex data structures, and simplify algo-

rithms [18]. Trees are particularly interesting structures that can be optimized with

space-filling curves because it is possible to generate sequential orderings of the nodes

of the tree in which parent and children nodes are neighbors in a 2D plane. The

combination of trees and space-filling curves has been shown to be useful in many

fields [16], and in metagenomics this can be useful because the microbial genomes in

a reference database are classified using a taxonomy tree with a hierarchy of levels

(Strain, Species, Genus, etc.). For data from mWGS experiments, we can presume

the leaf nodes of the taxonomy tree to be microbial strains (Figure 5.3, panel (B));

for 16S data, the leaf nodes are usually species or genera. Clades of the taxonomy

tree correspond to microbial neighborhoods in the resulting visualization.

5.2.2 The Hilbert Curve

The Hilbert Curve is one of the more prominent examples of space-filling curves,

and its construction is based on a recursive partitioning of a square region in the

2D plane and connecting the centers of these squares in a specific order. To provide

a recursive definition of the curve, Figure 5.1 (A) shows the curve at Level 1 when

there are only four squares to connect. The curve at Level k is defined recursively by

dividing the original square into four squares, each with a Level k− 1 curve in it and

then connecting these pieces using the template of the Level 1 curve after appropriate

rotations of the four curves (Figure 5.2).

Many applications exploit the order that space-filling curves impose on data, and

a particular application has been the visualization of high-dimensional data. The first

use of the Hilbert Curve as a visualization tool was proposed by Keim in 1996 [77] to

represent stock market data, and since then, it has been used for visualizing genomic

66

Figure 5.2: Detailed Hilbert Curve Levels. First four iterations (levels)
of the Hilbert curve show the 2D square recursively partitioned into 4 sections
at each iteration (level) of the curve.

data [35, 12], and also for visualizing DNA alignments of whole bacterial genomes

[165].

In human genomics, using the HCV is a straightforward affair as the natural

linear order of genomic positions can be easily visualized by the curve, and there are

tools and software libraries for creating Hilbert curve images from human sequencing

experiments such as HilbertVis [12] and HilbertCurve [59]. Both HilbertVis and

HilbertCurve apply HCV to genomics in the context of a single human genome: a

single genome scaffold is modeled as a one-dimensional (1D) line in which each interval

is taken to be a single genomic position, but the HilbertCurve library can also stitch

together multiple chromosomes so that they can all be displayed on a single image,

but the display is nevertheless that of a single genome. To date, the HCV technique

has not been applied to metagenomics datasets.

67

5.2.3 Ordering the Genomes Along the Space-Filling Curve

Visualizing microbial community profiles is non-trivial as there exists no natural

linear ordering for the thousands of genomes in the reference database, and we argue

that in trying to order thousands of genomes the answer is not a single “true” or-

der, but rather, multiple different orderings that provide different perspectives of the

metagenomics data being visualized.

Custom orderings based on a single sample (say, ordered by decreasing abundance

values in a single sample) are not that informative when using a HCV, since the main

advantage of these visualizations is in the ability to locate the same genome in the

same position on the image for different related samples. Even using the average

abundance value from a cohort is not so useful because different cohorts cannot be

readily visually compared.

Thus, the value of our visualizations lies in specifying useful orderings that are

not dependent on a single attribute of one, or multiple samples, but rather, on some

global properties and biological interpretations that are useful for the researcher.

Linear Orderings: Below, we discuss two classes of orderings that are shown to

be useful for the visualization.

1. Taxonomic Ordering: Ordering of reference genomes as per the taxonomic

tree from Ensembl Genomes [43].

2. Labeled Ordering: Ordering as per a user-supplied labeling scheme.

We show with experiments in Chapter 6 that the microbiome maps resulting

from the orderings mentioned above are expressive in that researchers can use them

to quickly identify groups of taxa that are abundant or differentially abundant without

losing any context imposed by the ordering (i.e., taxonomic hierarchies or biological

68

Figure 5.3: Taxonomic Ordering. (A) A Taxonomic Ordering of 44,048
microbial reference genomes from Ensembl Bacteria. Microbial neighbor-
hoods are drawn based on a taxonomic tree for microbial classification. The
image depicts the distribution of Genera in the reference genome database,
and the size of each neighborhood is consistent with the number of genomes
that belong to it. (B) A taxonomic hierarchical tree with three (3) levels
of rankings for the genomes in the reference database: Genus, Species, and
Strain. The taxonomic tree is linearized to create a 1D linear order for the
tree’s leaves (Strains). (C) The 1D linear order is then laid out onto a 2D
plane using a Hilbert curve, which creates microbial neighborhoods of related
taxa.

conditions). Other useful orderings may exist and Jasper provides a basic framework

that allows one to creatively explore other possible orderings.

Microbiome Maps offer a quick and visual way to readily identify “hotspots” in

“microbial neighborhoods”, i.e., groups of related microbes, that can contextualize

the important features of the metagenomic samples under study.

5.3 Methods

Visualizing a microbiome’s abundance profile starts by aligning, or classifying,

sequencing reads against a reference collection of microbial genomes, and creating

counts of the number of reads that align (or are classified) to each genome. The Flint

69

[153] software facilitates the profiling of mWGS datasets, while the Kraken 2 software

does it for 16S datasets. For the images shown in this paper, Flint uses a reference

collection of 44,408 microbial genomes from the Ensembl Bacteria database [42], while

Kraken 2 uses a “16S” reference of 5,127 genomes which contains references from

Greengenes [37], SILVA [122], and RDP [32]. Once the profiles have been created, we

use them as input to the Jasper tool which creates a Hilbert image for each sample.

The input to Jasper can represent a single metagenomic sample, or multiple

ones if given in a labeled matrix, and its output will be metagenomic Hilbert images

for each sample provided as input. Documentation on the type of profiles, along

with matrix formatting guidelines, are all available in the documentation page of the

GitHub repository, and detailed parameters, along with sample command calls for

both Flint and Kraken 2 are available in the project website.

Different linear orderings of the taxa on the Hilbert curve result in different im-

ages. Users may select from two options: a taxonomic ordering (Figure 5.3) which

uses the linear order from Ensembl’s taxonomic tree, or a user-defined labeled order-

ing (Figure 5.4) which determines the order based on a labeling from a biological

grouping of samples provided by the user. Both orderings place microbial genomes

along the curve in a specific order. Note that unlike other genomic HCV techniques,

metagenomic Hilbert images do not depict single genomic positions, but rather, they

display thousands of genomes.

5.3.1 Microbial Neighborhoods

Different linear orderings produce different Hilbert visualizations, with each re-

sulting in clusters of related microbes along neighboring regions in the 2D plane. The

clustering creates unique areas that resemble community neighborhoods in popular

consumer mapping applications like Google Maps [56], and we term these areas Mi-

crobial Neighborhoods (Figure 5.3, panel (A)) as they represent microbes belonging to

70

Figure 5.4: Labeled Ordering. (A) Samples are processed in a M x
N matrix that contains M labeled samples, and N microbial taxa. The
user specifies the ordering of the biological conditions that the M samples
belong to. For each labeled grouping, the taxa with the highest mean rela-
tive abundance is identified and used as an anchor for a linear order in the
Hilbert curve.(B) Resulting Hilbert curve image for 3 samples (SRS024557,
SRS045254, SRS063478) for a buccal mucosa condition, built using an aver-
aging ordering scheme from 8 HMP body sites.

either the same taxonomic group, or the same biological condition — the idea being

that they are clustering around a common theme (taxonomic or biological).

One advantage of the Microbial Neighborhoods, using the Taxonomic Ordering is

that when the genomes are laid out in the Hilbert image without any abundance color

mappings, the distribution of the reference genome database can be quickly illustrated

(Figure 5.3, panel (A)). Larger clades with more taxa (leaves) occupy larger tracts

of the image. Thus, we can see from Figure 5.1 (B) and 5.3 (A) that the Ensembl

database contains a large number of strains from the Streptococcus and Staphylococcus

genera. Displaying a reference genome database using the Hilbert curve is a way of

understanding the microbial diversity of the database.

71

Taxonomic Neighborhoods

The first option for ordering genomes along the Hilbert curve is the taxonomic

ordering which determines a 1D linear order based on a genome’s taxonomic lineage.

In this ordering, pairs of taxa belonging to the same taxonomic group (say the same

Genus or Species) are placed close to each other along the curve, and consequently,

close to each other in the Hilbert image. This ordering scheme creates Taxonomic

Neighborhoods that envelop related taxa based on their taxonomic lineage, and as seen

in Figure 5.3, multiple taxonomic levels can be displayed at the same time in a single

image. The ability of the Hilbert image to display multiple levels of the taxonomic tree

all at once, while at the same time providing high-resolution abundance information

for single genomes, is a compelling advantage over visualizing data with other means

as the sheer number of data points (single genome measurements) would overwhelm

any other 1D visualization.

Linearizing Trees

Illustrating a taxonomic tree as a 2D Hilbert curve starts by finding a linear order

of the leaf nodes in the tree. Figure 5.3, panel (B), depicts a fictitious taxonomic tree

with 16 leaf nodes (microbial strains in this example) that are ordered along a 1D

line using a taxonomic ordering scheme (section 5.3.1) which groups the 16 strains

according to their parent species and genus groups. Figure 5.3, Panel (C), illustrates

how the 16 strains would be laid out on a 2D plane, and how the taxonomic hierarchies

are represented as strain, species, and genus areas in the Hilbert image.

Note that establishing a linear order for a tree structure is non-trivial as trees

do not have a “start” or “finish”, nor do they have a “right” side or a “left” side.

Different orderings result by performing a permutation of the children at any given

node of the tree. Algorithms for finding an optimal order have been proposed such

72

as the one described in [17], but the optimal order relies on the tree having a certain

property such as it being a binary tree, and for a distance measure to be calculated.

The taxonomic ordering linearizes a tree by using taxonomic data taken from

Ensembl’s Pan-taxonomic Compara [44] and Ensembl Genomes [43] databases, and

we use Ensembl’s taxonomic information as the basis for building a taxonomic tree

structure that is linearized and used as the foundation for the Hilbert image. The

genomes in the reference database are annotated so that we can establish a lineage up

to the phylum level, and in the case when we profile mWGS data, the leafs of the tree

are taken to be microbial strains; in the case when we profile 16S data, then the leafs

of the tree are taken to be microbial species. For both mWGS data and 16S data,

the 2D square that bounds the Hilbert image represents all the genus-level groups in

our taxonomic tree; we do this because we found that drawing the curve at the genus

level amounts to a good compromise between information and visual appeal.

Condition Neighborhoods

The second option for ordering genomes along the Hilbert curve is the labeled

ordering (Figure 5.4), which creates “Condition Neighborhoods” by using an ordering

scheme that determines the 1D linear order based on a user-supplied labeling of

samples provided as a labeled m × n sample matrix M , where m are sample rows,

and n are the genomes in the reference database; if we have i samples, and j reference

genomes, then the cells in the matrix correspond to abundance values for genome nj

in sample mi.

Establishing the 1D linear order for multiple biological conditions (Figure 5.4,

panel (A)) starts by ordering the number of conditions k in some meaningful order,

C1, C2, ..., Ck, provided by the user. Note that the conditions may represent different

disease states (if we are comparing disease samples), time intervals (if we are com-

73

paring a time series), or locations (if we are comparing body sites, or environmental

sites); the conditions are not limited to the aforementioned list, as users can supply

their own. Once we have a condition ordering established, the next task is to identify

taxa whose average relative abundance is highest in C1 and order them first, followed

by taxa whose average relative abundance is highest in C2, and so on, until we termi-

nate the ordering by taxa that are not abundant in any of the conditions. Once we

have established the ordering, we can then draw the Hilbert images for each of the

samples from the input sample matrix M .

Although one can argue that every taxon must be highest in one of the k condi-

tions, this is not meaningful unless its presence is above the threshold of noise, which

we determine when we normalize the input matrix M . In general, if a taxon is most

abundant in multiple conditions (something that we have not seen in practice), then

we assign it to the first condition as determined by the input ordering criteria. After

the conditions have been organized along the curve, taxonomic information is used

to order genomes within the range of the condition.

Note that in this ordering, the Hilbert image is still visualizing one sample, but

it is displaying the abundance characteristics of the biological condition for which the

sample is most prevalent in — “hotspots” will therefore appear in one of the condi-

tions, and users can readily tell what condition the sample belongs by identifying the

area, i.e., neighborhood, that represents the condition in the image. Clusters of bright

positions will also appear in other neighborhoods (Figure 5.5), as other conditions

will contain taxa with high relative abundances, but not in the same quantities as for

the condition that the sample belongs to.

74

Adding New Samples and Genomes

For the taxonomic order, the preservation of a genome’s locality in the plot is

a key advantage when adding new samples, as they can be added to a dataset of

microbiome maps without having to modify the map’s topology significantly: the

dimensions of each microbiome map (width × height) correspond to the number of

genomes in our reference database, and as long as the reference database does not

change, then the microbiome map’s underlying topology should remain constant for

new samples.

For the labeled ordering, the preservation of locality for a genome is a little more

delicate as the assignment of a genome to a neighborhood is done by identifying taxa

whose mean relative abundance is highest in a group of samples. If the new sample

to be added changes a taxa’s mean relative abundance in the sample’s group, then

it could affect the map’s topology. Note that this is a disadvantage to all mapping

orders that rely on precomputing a value to place taxa in a neighborhood — specially

when that value is computed across a group of samples, as new samples will require

their re-evaluation.

Adding new genomes to the reference collection could affect all existing plots

because the positions of the existing genomes in the map could change when new

genomes are added in the middle of the ordering. One possible solution is to leave

“blank” (i.e., unassigned) pixels or areas on the map to allow for future additions

to the reference database. This could be implemented by inserting the gap so that

the next clade always starts at the boundary of a square region of size 2k × 2k, for

a predetermined value of k. Nevertheless, the addition of new taxa into an existing

ordering will also change the relative abundance of all or almost all taxa changing the

intensities of the pixels by some amount.

75

Figure 5.5: Chronic Kidney Disease Stages. Hilbert curve visualiza-
tions for 16S samples of five stages of chronic kidney disease, along with a
control sample. Each panel represents the mean relative abundance of 3 sam-
ples for each stage, and displays 5,127 species. Regions marked A shows a
group of microbes that appear in all stages, while region marked B appears in
almost all stages except CKD3 (absent), and Control (lowered abundance).

76

5.4 Results and Discussion

We created “microbiome maps” for two groups of metagenomic datasets: 24

mWGS normal samples taken from the Human Microbiome Project (HMP) [71],

and 18 fecal samples (16S) from a collaboration with Kangwon National University

and Seoul National University in Korea. The 24 samples from HMP represent 8

different body sites, and the 18 samples from the Korea study represent five stages

of Chronic Kidney Disease (CKD), along with a normal control set. We analyzed the

mWGS HMP samples with the Flint software [153], and the 16S CKD samples with

Kraken 2 [166]. For the HMP samples, the metagenomic profiles contained relative

abundance measurements for 44,048 microbial strains, and for the CKD samples, the

metagenomic profiles contained relative abundance measurements for 5,127 microbial

species.

Three samples were selected for our study from HMP from each of the eight

following body sites: Buccal Mucosa, Gastro-Intestinal Tract, Nares, Palatine Tonsils,

Posterior Fornix, Supragingival Plaque, Throat, and Tongue Dorsum.

Eighteen fecal samples were obtained from CKD patients of Kangwon and Seoul

National University Hospitals. The samples were selected based on their glomerular

filtration rate (see Kidney Disease Improving Global Outcomes (KDIGO) [78]), and a

total of six groups were created: Control, CKD Stage 1 (CKD 1), CKD Stage 2 (CKD

2), CKD Stage 3 (CKD 3), CKD Stage 4 & 5 non-dialysis dependent (CKD 4-5ND),

and CKD Stage 5 dialysis dependent (CKD 5). The CKD stages were determined

based on the worsening function of the kidney patients, and three samples from each

group were used.

5.4.1 Comparison to Other Methods

The WHAM! and iMAP suite of tools for exploring the profiles create standard

visualizations including stacked-bar plots, cluster heatmaps, etc., which are helpful

77

for condensing the summarized information for multiple samples. However, they lack

the ability to convey nuanced information on about 44,000 bacterial strains in a

single sample while retaining the perspective of the latent metagenomic relationships

(common and/or unique taxa). The Hilbert curve visualizations are easy to interpret:

with a quick glance, one can capture the prominent taxonomic groups and even

capture groups of co-occurring taxa. With a shift in perspective, the visualization can

help to identify the body site (for HMP) or disease condition (CKD) that characterizes

the samples.

5.4.2 Metagenomic Visualizations

The community abundance profiles from Flint and Kraken 2 for the HMP and

CKD datasets were converted into Hilbert curve visualizations: for both datasets we

created a set of images using a taxonomic ordering, and another set using a labeled

ordering. Note that the images with the taxonomic ordering contain taxonomic clade

border lines at the Genus level, because we found this level of resolution to be a

good trade-off between image interpretability and taxonomic lineages. Going to a

higher level would have resulted in images with vast neighborhoods, and going a level

deeper would have resulted in images that contained too many borders. For images

done with the labeled ordering, the clade border lines are drawn so as to fence off the

different labels specified by the user.

Metagenomic Hilbert images for mWGS and 16S data communicate abundance

information at different levels of a genome’s lineage: for mWGS samples, each position

in the image displays information about microbial strains (the resolution at which

abundances are reported by Flint[153]); for 16S samples, each position in the image

displays information about microbial species (the resolution at which abundances are

reported by Kraken 2 [166]).

78

Figure 5.3, panel (A), contains a representative image from one sample of the

HMP dataset (sample SRS019119, Nares) ordered using the taxonomic ordering scheme.

In this image we can clearly see that the Streptococcus and Staphylococcus groups are

abundant in the Nares sample. While the dominant group would have been obvious

even in a traditional 1D plot, the Hilbert curve visualization ensures that the smaller

taxonomic groups are not overshadowed by the more abundant groups. Identifying

the most abundant taxonomic clades in a sample only takes a quick glance at the

image.

Figure 5.4, panel (B), contains another representative image from a Buccal Mu-

cosa sample from the set of 18 HMP samples. This image also contains the same 44K

reference genomes from 5.3, panel (A), but they have been ordered using the labeled

ordering scheme. Using this scheme, we have ordered the reference genomes based

on the highest mean relative abundance of a genome in its labeled cohort, and the

resulting image can then display the profile of any sample (or the cohort’s average)

using the computed order. The advantage of this ordering scheme is that identifying

the biological condition that the sample belongs to is effortless: one need only look at

the neighborhood that contains the most hotspots (Buccal Mucosa in this case). Ad-

ditionally, one can readily see that the buccal mucosa site shares some microbes with

those typically abundant in the throat, palatine tonsils, posterior fornix, supragingival

plaque, tongue dorsum, and the GI tract.

Figure 5.5 comprises 16S samples from the CKD analysis arranged using the

labeled ordering scheme. Here, we observe five stages of CKD, and the control, and are

displaying the abundances for 5,127 species. Just as we did with the ordering in Figure

5.4, we ordered each of the species in the profiles based on mean relative abundance

of each CKD stage: the most prominent taxa in CKD Stage 1 are surrounded by

the labeled border of the CKD 1 area, the most prominent taxa in CKD Stage 2 are

surrounded by the border of the CKD 2 area, and so on. Each image on the panel

79

corresponds to the highest mean relative abundance in the samples from each of the

CKD conditions. It is not surprising that the respective regions are more lit up when

the samples are from the appropriate cohort. Thus, we can readily identify the stage

of each sample by looking at the density of hotspots in each labeled area.

What is more significant is the way these plots show the microbes shared by

different stages of the disease. For example, region marked A in the figure shows a

group of microbes that appear in all stages, while the region marked B appears in

almost all stages except CKD3 (absent) and Control (lowered abundance).

A significant point to note is that by fixing the orderings of the taxa, Jasper’s

visualizations can be used to effectively present groups of metagenomic samples that

can be partitioned temporally (longitudinal studies), spatially (body sites or environ-

mental sites), by disease types or subtypes (e.g., ulcerative colitis vs Crohn’s disease),

by disease stages (as in CKD), and by developmental stages (infant gut at different

stages of development). Additionally, it is readily possible to create average micro-

biome maps (Figure), aggregate maps (Figure), and differential maps (Figure 6.35)

showing either average, aggregate, or differential abundances, respectively. Finally,

animations can help enhance the visual appeal for some of these groups of samples,

as discussed in Chapter 6.6.2.

Visual Inspector Tool

Jasper also offers the Visual Inspector, a tool for interactively inspecting and

exploring the “microbiome maps”. The inspector can load an image along with a

set of annotations, and users can mouse over and click on a location of the loaded

“microbiome map” to get information about the microbial genome represented at that

location. Details on the inspector can be found at the project’s website and Section

6.7. An obvious enhancement to the visual inspector tool is the ability to zoom into

80

specific regions of the “microbiome map”, and/or to select a region of the image for

inspection and further exploration.

5.5 Summary and Conclusion

In this chapter we have shown how the Hilbert curve visualization technique can

be used to compactly visualize metagenomic community abundance profiles from both

mWGS and 16S rRNA gene sequencing datasets. The resulting microbiome maps

display the relative abundance of microbial genomes in an interpretable manner, and

can convey information about multiple latent factors of the reference genomes in the

samples under study.

The Hilbert curve is used to lay out the microbes from the reference database in

two different ordering schemes that can be used to draw a microbiome map image:

the first, the taxonomic ordering relies on taxonomy information from the Ensembl

Genomes database, and can be used to create images that express abundance values

in the context of the taxonomic clades that the microbial genomes belong to. The

second, the labeled ordering is dependent on a user-specified labeling of biological

conditions for a cohort of samples, and can express the abundance values of the

profile in the context of a user-defined biological interpretation.

81

CHAPTER 6

APPLICATIONS OF MICROBIOME MAPS

As discussed in Chapter 5, Jasper uses a technique called the Hilbert curve

visualization (HCV) to visualize the microbial community abundance profiles of a

large number of genomes (up to 44K). These profiles contain the relative abundance

measurements of thousands of genomes. These genomic taxa are ordered along a

space-filling curve in a 2D square using the Hilbert curve and the relative abun-

dance values are translated into intensities of pixel values along the curve. In the

resulting Microbiome Map, each position corresponds to a genome from the reference

database, and the intensity of the position’s color value represents the abundance of

that genome in the sample. The impetus for the Jasper project is that traditional

visualization techniques that display community abundance profiles do not take into

account underlying information.

To showcase the potential of our technique, we analyzed 12 samples from the

Human Microbiome Project (HMP) and created detailed abundance profiles and mi-

crobiome maps. We also analyzed a set of 18 samples from a Chronic Kidney Disease

(CKD) study, and 15 samples from a Infant Gut Microbiome study.

For the experiments reported here, community abundance profiles from Flint

and Kraken 2 for the HMP and CKD sample datasets were converted into microbiome

maps using Jasper. The input to Jasper can represent a single metagenomic sam-

ple, or multiple ones if given in a labeled matrix, and its output will be microbiome

maps for each sample provided as input.

This chapter contains detailed discussions on the results of our experiments with

Jasper on visualizing these data sets.

82

6.1 Existing Tools for Visualizing Microbial Profiles

Visualizing a microbiome’s abundance profile is achieved by mapping each read

against a reference collection of microbial genomes and creating counts of the number

of reads that map to each genome. A typical community abundance profile of a

microbiome sample (HMP tongue dorsum, SRS019389) is shown in Figure 6.1, and it

is simply stored as a text file with strain names and abundance values. We can choose

to plot the single tongue dorsum profile from Figure 6.1 using a pie chart (Figure 6.2),

or a bubble plot (Figure 6.3), but what we immediately notice is that these plots

cannot display the abundance profiles of large genome collections such as the 44K

from Ensembl. Recently, the Krona visualization software [115] was developed for

interactively displaying microbial abundance profiles (Figure 6.4), but the software

is also not able to display profiles with a large number of genomes; Krona (version

2.4) will not even run with the full profile for the tongue dorsum sample from Figure

6.1 which contains 44K genomes: the plot in Figure 6.4 is only able to display 20K

genomes, as trying to use the software with 44K genomes crashes the program. Bar

charts are another popular tool for displaying abundance profiles, and they can even

be used to display multiple samples, and not just a single one. Figure 6.5 contains

such a plot, and it displays fifteen bars representing fifteen time-points at which the

microbiome of a single patient was sampled [51].

In all of the aforementioned visualization techniques, one can readily see the top

players, i.e., the taxa with the highest abundance. However, all of them have poor

resolution for the taxa with relatively small abundance, making visual comparisons

of two samples difficult — this is exacerbated when one sample contains a different

set of highly abundant taxa than other samples, as trying to only focus on the most

abundant would result in a different set of taxa displayed. In particular, quickly de-

termining the change in abundance of a single taxon is not convenient. Furthermore,

83

none of them have the ability to visually compare clades or groups of taxa between

two samples. These differences are further discussed in the sections to follow.

Figure 6.1: Tongue Dorsum Profile. A tabular representation of a
typical community abundance profile as generated by the Flint software.
Only the first 10 rows out of 44K are shown.

6.2 Overview of Experiments with Microbiome Maps

6.2.1 Experiments with Orderings

In a metagenomics context, different linear orderings of the taxa on the Hilbert

curve result in different microbiome maps. Users may select from one of two options:

a taxonomic ordering which uses the linear order from Ensembl’s taxonomic tree, or

a user-defined labeled ordering which determines the order based on a labeling from

a biological grouping of samples provided by the user. For both datasets (HMP and

CKD) we created both a taxonomic ordering and a labeled ordering, converting each

into corresponding visualizations.

Taxonomic Ordering

The taxonomic ordering scheme is based on a taxonomic hierarchy of microbial

lineages. Each level of the taxonomic tree is parsed and laid out on the curve (see

Figure 5.2 from Chapter 5). We take taxonomic information from Ensembl Genomes

84

Figure 6.2: Tongue Dorsum Profile - Pie Chart. A pie chart of the
abundance values for the full profile of Figure 6.1 generated by the Tableau
[141] software.

[43] and use it to create the basic structure for our microbiome maps. For optimization

purposes, we compute the orderings at the Genus, Species, and Strain levels. In

our visualizations, one image represents one sample, and the outermost 2D square

represents a union of all the different genera in our reference database.

Lines are drawn to fence off different genera, and these create the “microbial

neighborhoods” mentioned in 5.3.1 and that encompass related clades of microbial

species and strains in the taxonomy 6.6. Thus, a useful byproduct of the taxonomic

ordering and its microbiome map is that the area of a “microbial neighborhood”

corresponding to a specific genus reflects its size (i.e., the number of reference genomes

from that genus) in the database. In Figure 6.7, we can see that the Streptococcus and

Staphylococcus genera contain a lot of genomes in our database, while the Yersinia

85

Figure 6.3: Tongue Dorsum Profile - Bubble Plot. A bubble plot of
the abundance values for the tongue dorsum profile of Figure 6.1. The size of
the bubble represents a relative abundance value of the profiled genome at the
strain level (note that labels display the genus and species, and are truncated
for display purposes). Plot generated by the Tableau [141] software.

86

Figure 6.4: Metagenomic Profile - Krona Plot. A screenshot of an
interactive Krona plot displaying the abundance profile of the tongue dorsum
sample from Figure 6.1. The black bands at the bottom and bottom-right of
the plot are caused by the need to pack a large number of reference genomes
in a small section of the circle.

87

genus contains a relatively smaller set. Visualizations such as these for a reference

database are helpful because they inform future sequencing projects if we wanted to

achieve better parity for the references.

Labeled Ordering

The second option for ordering genomes along the Hilbert curve is the labeled

ordering. This is an ordering scheme that determines the 1D linear order based on a

user-supplied labeling of samples provided as a labeled m×n sample matrix M , where

each of the m rows correspond to samples, and each of the n columns correspond to

genomes in the reference database; if we have m samples, and n reference genomes,

then the cells in the matrix corresponds to abundance values for a genome ni in a

sample mj. Figure 6.8 contains the basic layout for a case of 8 body sites from HMP.

Figure 6.5: 16 Samples - Stacked Bar Chart. A stacked bar chart
representation of a community abundance profile for 16 time points generated
by the Tableau software [141] for the study from [51].

88

Figure 6.6: Taxonomic Ordering. Basic layout of the taxonomic order-
ing. Each unit of the map is assigned to one taxon in the taxonomic ordering.
Each clade in the taxonomy tree appears consecutively on the taxonomic or-
dering and gets assigned a region in the map. As shown, these clades can
be outlined, if needed, creating microbial neighborhoods of taxonomically
related taxa. The size of an outlined region is proportional to the number of
species in that taxonomic clade.

Note that in this ordering, each taxon is assigned a condition that it best “rep-

resents”. A taxon is grouped under condition i if its average abundance is highest

in the samples corresponding to condition i. Then, the conditions are ordered along

89

Figure 6.7: Taxonomic Ordering at the genus level. Clades at the
genus level are outlined as microbial neighborhoods. The sizes of the neigh-
borhoods correspond to the number of child species in the taxonomy tree.

the Hilbert curve. Within the condition, all taxa are ordered using the taxonomic

ordering described earlier. Note that the labeled arrangement is still visualizing one

sample, but it is effectively displaying the abundance characteristics of the biologi-

cal condition to which the sample belong. In other words, if the sample belongs to

condition i, then it is most likely to display “hotspots” in the region of the map cor-

90

Figure 6.8: Labeled Ordering. A labeled ordering of an example profile
that contains 7 biological conditions. The ordering is for 44K genomes from
Ensembl, and they are ordered based on their mean relative abundance in
the samples with that condition.

responding to that condition, making it easy for users to visually classify samples by

their visualizations. With real samples that may be part of more than one condition

or in between two conditions (e.g., stages of a disease), hotspots may also appear

in other neighborhoods. However, the utility is best recognized with the examples

shown. See Figures 6.18 - 6.25 for some examples.

As mentioned above, the conditions need to be ordered along the Hilbert curve.

Deciding the ordering of the biological conditions, C1, C2, ..., Ck, is obvious if a natural

91

ordering exists based on the biological description or if it is provided by the user. For

example, natural orderings exist if the conditions represent different stages of disease

progression, time points in a longitudinal study, or sampling locations (ordering of

the organs within the digestive system, or in environmental sites). After ordering the

conditions, we identify all taxa whose average relative abundance is highest in C1 and

order them first, followed by taxa whose average relative abundance is highest in C2,

and so on, breaking ties arbitrarily. Once we have established the ordering, we can

then draw the labeled ordering for each of the samples from the input matrix M .

6.2.2 Reference Genome Collections

Ensembl Genomes

Our starting reference database of microbial genomes was downloaded from the

Ensembl Bacteria [42] repository (version 45). A total of 44,048 bacterial genomes

(Strain level) were downloaded in FASTA format, accounting for about 4.7 million

individual FASTA references. The collection included reference sequences for fully

assembled chromosomes and plasmids, as well as sequences for draft-quality super-

contigs, the latter amounting for most of the reference files in our database. We

followed the same preprocessing steps used in Valdes et al. for the Flint project

[153], and in Section 3.2.

Kraken 2 Genomes

For processing 16S amplicon sequencing data, we used the RDP database of

bacterial and archaeal 16S rRNA sequences [32]. Downloading the library with tax-

onomy information and indexing reference genomes were performed by Kraken 2 [166]

taxonomic classification tool by utility “kraken2-build"” using the command in

Listing 6.1.

92

1 THREADS=32

2

3 kraken2-build --threads ${THREADS} --download-taxonomy \

4 --db /path/to/Kraken2/database

5 kraken2-build --threads ${THREADS} --download-library bacteria

--no-masking \

6 --db /path/to/Kraken2/database

7 kraken2-build --threads ${THREADS} --build --db

/path/to/Kraken2/database

Listing 6.1: The command used to process data with Kraken 2.

To estimate relative abundance from Kraken 2 classification results, we used

Bracken [96]. Therefore, we built the Bracken database of read-length k-mers derived

from the Kraken 2 RDP database mentioned above using the “bracken-build”

command in Listing 6.2.

1 THREADS=32

2

3 bracken-build -d /path/to/Kraken2/database -t ${THREADS}

Listing 6.2: The command used to process data with Bracken.

This completes the description of the processing of the genomes used in the

profiling by Kraken 2.

RefSeq Bacterial Genomes

A total of 12,116 “complete” (i.e., their genomes have no gaps) bacterial genomes

were downloaded from RefSeq v.92 [113]. We will refer to this set as the RefSeq collec-

tion. The indexing and annotation step was performed with the Flint prepossessing

module [153].

93

6.3 Processing the Microbiome Datasets

We created microbiome map visualizations for three groups of datasets: 24

mWGS samples from the Human Microbiome Project (HMP) [71] obtained from

healthy individuals, 18 16S disease samples from a collaboration with Kangwon Na-

tional University School of Medicine in Korea, and 15 mWGS gut microbiome samples

taken from a single patient ([51]). The 24 samples from HMP represent 8 different

body sites, the 18 samples from the Kangwon study represent 5 stages of Chronic Kid-

ney Disease (CKD), along with a normal control set, and the 15 gut microbiome sam-

ples represent 15 days from an infant patient’s antibiotic treatment with Vancomycin

and Ticarcillin-Clavulanate (6 days before treatment, 9 days after treatment). We

analyzed the mWGS HMP samples with the Flint software [153], Since Flint is not

designed for profiling data from 16S rRNA sequencing data, the 16S CKD samples

were analyzed with Kraken 2 [166], and the 15 gut microbiome samples were profiled

directly with Bowtie2 in a single machine (no Flint cluster) to test the visualization

of a reduced set of reference genomes. For the HMP samples, the abundance profiles

contained relative abundance measurements for 44,048 microbial strains (details in

Section 6.3.1); for the CKD samples, the abundance profiles contained relative abun-

dance measurements for 5,127 microbial species (dtails in Section 6.3.2); and for the

gut microbiome samples, the abundance profiles contained measurements for 12,116

microbial strains (details in Section 6.3.3).

6.3.1 HMP Sample Processing

Samples from the human microbiome project (Figure 6.9) were downloaded and

then processed using the Flint software. Table 6.1 shows the samples and their body

sites that were selected from HMP for processing.

HMP samples were processed using Flint (version RC4.B20191120) running

on AWS [9]. Samples were downloaded and preprocessed, and then analyzed with

94

Body Site Sample 1 Sample 2 Sample 3

Buccal Mucosa SRS045254 SRS024557 SRS063478
Gastrointestinal Tract SRS014683 SRS050422 SRS064276

Nares SRS011105 SRS014901 SRS019119
Palatine Tonsils SRS015061 SRS019126 SRS063351
Posterior Fornix SRS014343 SRS047335 SRS078197

Supragingival Plaque SRS017088 SRS047265 SRS065310
Throat SRS013948 SRS015062 SRS065335

Tongue Dorsum SRS045127 SRS013502 SRS055495

Table 6.1: HMP Samples. Eight (8) body sites were selected from the
HMP (version 1 project repository) based on their representative number of
samples (how many samples each body site contained), as well as the number
of DNA sequencing reads that passed a HMP complexity filter (MAPQ score
> 20) for each sample.

the following command-line parameters (Listing 6.3) using a “c4.8xlarge” EMR

instance.

1 URL_FOR_SPARK_CLUSTER="yarn"

2 YARN_QUEUE="default"

3 DEPLOY_MODE="client"

4

5 spark-submit --jars ${KINESIS_LIB_PATH} \

6 --master ${URL_FOR_SPARK_CLUSTER} \

7 --deploy-mode ${DEPLOY_MODE} \

8 --queue ${YARN_QUEUE} \

9 ${PROJECT_DIR}/flint.py --samples ${CONF_SAMPLES_JSON} \

10 --output_local \

11 --report_all \

12 --coalesce_output \

13 --stream_dir

Listing 6.3: Flint parameters for AWS EMR.

95

Figure 6.9: HMP Samples. Sample class distribution for the collec-
tion from the Human Microbiome Project. Four body sites dominate the
distribution – Buccal Mucosa, Gastrointestinal Tract, Nares, and Posterior
Fornix.

The JSON configuration from Listing 6.4 was used to run the Flint software in an

EMR cluster in AWS. Note the use of Ensembl version 45, and the use of 32 threads

for the read-alingment step using Bowtie2.

1 {

2 "partition_size": "64",

3 "bowtie2_path": "/home/hadoop/apps/bowtie2-2.3.4.1-linux-x86_64",

4 "bowtie2_index_path": "/mnt/bio_data/index",

5 "bowtie2_index_name": "ensembl_v45",

6 "bowtie2_threads": "32",

7 "annotations": {

8 "bucket": "your_bucket_name",

9 "path": "path/to/ensembl/annotations.txt" },

10 "streaming_app_name": "HMP Analysis",

11 "batch_duration": "0.25",

12 "output_dir": "/home/hadoop/flint/output",

13 "samples_bucket": "hmp-samples",

96

14 "samples":[

15 { "id": "SRS0XXXXX",

16 "sample_format": "tab5",

17 "sample_type": "paired",

18 "sample_dir": "batch-analysis/batch-01",

19 "shard_dir": "shards"

20 }

21]

22 }

Listing 6.4: JSON configuration for Flint.

6.3.2 Chronic Kidney Disease Sample Processing

18 samples were obtained from a study from Kangwon National University School

of Medicine for Chronic Kidney Disease (CKD). The samples represented samples

from healthy subjects along with samples from patients at one of five stages of

CKD, where disease stage is defined by Kidney Disease Improving Global Outcomes

(KDIGO) [78].

The taxonomic profiles were obtained using the Kraken 2 taxonomic classifier,

followed by a Bracken abundance estimator with the following commands:

1 kraken2 --db /path/to/Kraken2/database \

2 --report-zero-counts \

3 --threads ${THREADS} \

4 --report /path/to/Kraken2/report \

5 --paired /path/to/fastq/pair1 /path/to/fastq/pair2 >

/path/to/output/Kraken-report

6

7 bracken -d /path/to/Kraken2/database \

8 -i /path/to/Kraken2/report \

9 -o /path/to/output/Braken-report

Listing 6.5: Kraken and Bracken run parameters for the CKD dataset.

97

6.3.3 Infant Gut Sample Processing

Premature Infant Gut mWGS samples were obtained from a study (BioProject

ID PRJNA301903) by Gibson et al. [51]. For our analysis, we have selected the

patient with anonymized ID “107.2” who was sampled at 15 time points, or Days of

Life (DOL), as listed in Table 6.2.

Sample ID Day of Life (DOL)

SRX1551579 28.2
SRX1551431 29.5
SRX1551337 31.5
SRX1551595 32
SRX1551531 33.1
SRX1551823 34.5
SRX1551847 37
SRX1552075 38.3
SRX1551997 38.8
SRX1551533 41.7
SRX1551367 41.9
SRX1551561 46.4
SRX1551739 56.2
SRX1552021 57.9
SRX1552055 64.5

Table 6.2: Infant Gut Samples. Fifteen days of a patient’s antibiotic
treatment (Vancomycin and Ticarcillin-Clavulanate). Day 28.2 through day
34.5 are before treatment, while day 37 through 64.5 are after treatment.

To obtain the abundance profile for each sample, we mapped raw metagenomic

reads against 12,116 RefSeq bacterial reference genomes with Bowtie2 [84]. Then,

using the alignment file, we calculated the average coverage of each genome using the

following formula:

C =
NL

G
, (6.1)

where C is the average coverage, N is the total number of reads that align to the

given sequence, L is the length of the metagenomic read, G is the genome sequence

length. Finally, we obtained a relative abundance by normalizing average coverage.

98

6.4 Visualizations with Microbiome Maps

This section discusses microbiome maps for the HMP samples mentioned in Sec-

tion 6.3.1. Two sets of images were created using the taxonomic ordering and labeled

ordering. Full resolution images are available for download via a github link from the

project’s website, biorg.cs.fiu.edu/jasper/. The goal here is to use a small

sample of visualizations to highlight the strengths and weaknesses of Jasper.

6.4.1 HMP Taxonomic Ordering

Figures 6.10 - 6.17 contain 3 sets of microbiome map images for each of the 8

conditions that we analyzed from HMP. Captions contain the HMP sample IDs for

each image. The community abundance profiles for each of these were generated

with Flint. We can see in these figures one of the inherent advantages of using the

Hilbert curve with a static taxonomic order: the location of the genomes in each of

the figures does not change, and we can easily compare and contrast images quickly

by just glancing at them. The color intensity of each pixel region corresponds to the

same genome across all the images, so we can identify what genomes are present, or

absent, in the images by focusing on an area. Overlay of images can readily help to

identify differences between images. Neighborhoods remain fixed for all maps, so we

can easily see when a neighborhood (say Streptococus) is missing, i.e., not colored,

from a sample as in Figure 6.11.

Figure 6.10 shows that for the buccal mucosa sample, the dominant genus is

Streptococcus, and is quite distinct form the gut microbiome, which is dominated

by Bifidobacterium (Figure 6.11), or anterior nares, which consists overwhelmingly

of Staphylococcus species (Figure 6.12). We can see that for the posterior fornix

sample (Figure 6.14) the dominant genus is Lactobacillus, but the Streptococcus and

Eneterococcus genera also turn up, but not at the intensity of Lactobacillus. The

supragingival plaque sample (Figure 6.15) has the Streptococcus neighborhood show-

99

biorg.cs.fiu.edu/jasper/

ing a strong presence, which contrasts to the throat sample (Figure 6.16) in which a

lot of smaller neighborhoods predominate. Lastly, the tongue dorsum sample (Figure

6.17) has high abundance across the entire Neisseria and Streptococus neighborhoods,

and interestingly, both neighborhoods contain hotspots corresponding to species and

strains from these genera whose abundance is high (relative to the rest of that genus).

Figure 6.10: Sample SRS024557 from the HMP Buccal Mucosa set.

100

Figure 6.11: Sample SRS014683 from the HMP Gastrointestinal Tract set.

6.4.2 HMP Labeled Ordering

Figures 6.18 - 6.25 contain two sets of metagenomic Hilbert images that represent

the average relative abundance of each taxon (i.e., averaged over all HMP samples

from Table 6.1 for that site). Each image represents the 44K genomes from Ensembl,

and their ordering is based on the highest mean relative abundance for the samples

101

Figure 6.12: Sample SRS011105 from the HMP Nares set.

in each condition. Captions contain the HMP body site that the samples belong to.

Community abundance profiles for each of these were generated with Flint.

It is interesting to see that for samples from a specific body site the hotspots

are mostly confined to that labeled region on the microbiome map. For example, the

hotspots in Figure 6.18 and 6.20 are largely confined to the region labeled “Buccal

Mucosa” and “Nares”, respectively. However, due to the proximity of the other

102

Figure 6.13: Sample SRS015061 from the HMP Palatine Tonsils set.

oral sampling sites, it does show smaller hotspots in other regions such as throat,

supragingival plaque, etc. The samples from the GI tract appear to share fewer

hotspots with other regions 6.19. Similar conclusions can be drawn from Figures 6.21

through 6.25.

103

Figure 6.14: Sample SRS014343 from the HMP Posterior Fornix set.

6.5 Visualizations - CKD Study

This section contains metagenomic Hilbert curve visualizations for the CKD

samples from section 6.3.2. As with the HMP samples, two sets of images were

created using the taxonomic ordering and labeled ordering. Full resolution images are

available for download via a github link from the project’s website:

biorg.cs.fiu.edu/jasper.

104

biorg.cs.fiu.edu/jasper

Figure 6.15: Sample SRS017088 from the HMP Supragingival Plaque set.

6.5.1 CKD Taxonomic Ordering

Figures 6.26 - 6.31 contain three sets of metagenomic Hilbert images for each of

the five CKD stages, and also for the control normal. Community abundance profiles

for each of these CKD images were generated with Kraken 2, and each image segment

represents the relative abundance of 5,127 bacterial species.

105

Figure 6.16: Sample SRS013948 from the HMP Throat set.

6.5.2 CKD Labeled Ordering

Figures 6.32 - 6.34 contain two sets of metagenomic Hilbert images that represent

the average relative abundnace for the CKD samples. Each image represents the 5,127

genomes from the Kraken 2 16S database, and the genome’s ordering is based on the

highest mean relative abundance for the samples in each CKD stage. Community

abundance profiles for each of these were generated with Kraken 2.

106

Figure 6.17: Sample SRS013502 from the HMP Tongue Dorsum.

107

Figure 6.18: Buccal Mucosa Average Abundance

108

Figure 6.19: Gastrointestinal Tract Average Abundance

109

Figure 6.20: Nares Average Abundance

110

Figure 6.21: Palatine Tonsils Average Abundance

111

Figure 6.22: Posterior Fornix Average Abundance

112

Figure 6.23: Supragingival Plaque Average Abundance

113

Figure 6.24: Throat Average Abundance

114

Figure 6.25: Tongue Dorsum Average Abundance

115

(a) Sample 1 (b) Sample 2 (c) Sample 3

Figure 6.26: CKD Stage 1, Taxonomic Ordering

(a) Sample 4 (b) Sample 5 (c) Sample 6

Figure 6.27: CKD Stage 2, Taxonomic Ordering

(a) Sample 7 (b) Sample 8 (c) Sample 9

Figure 6.28: CKD Stage 3, Taxonomic Ordering

116

(a) Sample 10 (b) Sample 11 (c) Sample 12

Figure 6.29: CKD Stage 4, Taxonomic Ordering

(a) Sample 13 (b) Sample 14 (c) Sample 15

Figure 6.30: CKD Stage 5, Taxonomic Ordering

(a) Sample 16 (b) Sample 17 (c) Sample 18

Figure 6.31: CKD Control Normals: Taxonomic Ordering

117

(a) CKD 1 Average Abundance (b) CKD 2 Average Abundance

Figure 6.32: CKD Stage 1 & 2, Labeled Ordering

(a) CKD 3 Average Abundance (b) CKD 4 Average Abundance

Figure 6.33: CKD Stage 3 & 4, Labeled Ordering

(a) CKD 5 Average Abundance (b) CKD Control Average Abundance

Figure 6.34: CKD Stage 5 & Normal Control, Labeled Ordering

118

6.6 Variations on Microbiome Maps

6.6.1 Differential Profiles

In addition to being able to display relative abundances, a microbiome map can

also be useful do display the p-values from a differential abundance analyses. Figure

6.35 contains a figure which displays the p-values from a differential analysis of the

buccal mucosa and gastrointestinal tract datasets from HMP. Each image location

corresponds to a genome, but the color of the location is the intensity of the p-value

for the hypothesis that the relative abundance for the two conditions are different,

with lower p-values having a brighter intensity, and only p-values≤ 0.05 being colored.

Note how one can visually identify taxa that are significantly different between the

two body sites.

6.6.2 Animated Movies

Jasper produces a single image for each sample it is given as input, using either

a taxonomic ordering or a labeled ordering. Images can be used as a single frame

of animations that show abundance hotspots, and their evolution across samples or

biological conditions. Figure 5.5 displays an example of how the microbiome “evolves”

as the disease stage progresses. Figure 6.36 contains image frames from a study

by [51], and shows how the microbiome of a single patient evolves over the course

of several days. One can see the changes in the map due to the administration

of antibiotics (Vancomycin & Ticarcillin-Clavulanate) on day 35, and the changes

during the recuperation period that ensues (days 38 - 64). In particular, the figure

highlights how one could focus on the genus Enterococcus and see how it is nearly

exterminated after the antibiotic is administered, but bounces back with a vengeance,

barely three days layer (see day 41), and remaining at that level for a month (see day

64). Neighboring genera seem to remain unaffected by the treatment. Full resolution

images and movies are available on the project’s website.

119

Figure 6.35: Differential Abundance. P-value microbiome map of an
analysis of differentially abundant taxa in buccal mucosa and gastrointestinal
tract. Color intensity corresponds to p-value significance with lower p-values
being more bright. Only p-values ≤ 0.05 are displayed.

6.6.3 Composite Maps

A meaningful advantage of fixing the locations of taxa in the microbiome maps

is that visualizations can be used to effectively present composite images of multiple

maps. One concept for a composite map is that of an “average” map that displays

the mean abundance values of a set of samples, and Figure 6.37 contains such a plot

120

Figure 6.36: Animated Microbiome Map. Selected frames of an an-
imated time-series visualization of 12,116 strains for a single patient from
[51]. Panel (A): zoomed regions of the Enterococcus neighborhood as it
progresses through the antibiotic response. Panel (B): Full resolution ani-
mated microbiome map is available at the project’s repository via links from
biorg.cs.fiu.edu/jasper

created from six (HMP) buccal mucosa samples (SRS024557, SRS045254, SRS063478,

SRS014683, SRS050422, and SRS064276). Figure 6.37 displays the mean abundance

of the six samples (as pixel intensities). In the buccal mucosa average map, the

signature Streptococus neighborhood of the buccal mucosa can be clearly seen as the

neighborhood with the largest concentration of hot spots of abundant taxa. Also note

that almost all the neighborhoods have a hot spot, but their density is not as high

as in Streptococus. Another type of composite plot is that of a “aggregate” plot that

collects the abundance values for a group of samples — grouped in any meaningful

way that is valuable to a user. An example would be to create an aggregate map of

a set of samples that have a common factor to them, say the general location from

which they where collected: one could see the creation of an aggregate map of the

human mouth that displayed the aggregate abundance values of samples taken from

the “palatine tonsils”, “buccal mucosa”, and “supragingival plaque” regions, as an

example. To aggregate the samples in such a map, we could use a SUM() function

that sums all the abundance values for the strains found. Note that an aggregate

121

biorg.cs.fiu.edu/jasper

map that uses the SUM() would be similar to an average map that use the mean,

the only difference would be that the intensities shown in the average map would be

normalized by the number of samples it represents.

Figure 6.37: Buccal Mucosa Average Map. A composite map created
from the averaged abundance profiles of six HMP buccal mucosa samples.
Note the Streptococus neighborhood, a signature region for buccal mucosa
samples.

122

6.7 Metagenomic Hilbert Inspector

As part of the Jasper release, we also offer a way for users to interactively

inspect the microbiome maps they have created. We provide a tool with which users

can load an image along with a set of annotations, and then click on a given segment

of the Hilbert image and get information about the underlying microbial genome,

along with other metadata. Details on the inspector can be found at the project’s

website and Section 6.7.

The inspector tool runs on python and relies on the OpenCV [23] and hilbertcurve

[4] libraries. Users are able to load a microbiome map generated by Jasper by calling

the “jasper-image-viewer.py” script supplied in the “utilities” folder of

the main project directory. The program relies on three parameters to run:

1. “-i” The path to an image created by Jasper in .png format.

2. “-l” A text file with an ordered set of annotations that describes the order of

the genomes in the image (this is provided by Jasper as part of its output).

3. “-p” The level of the curve that Jasper used to create the image (also provided

as part of the output).

The basic command call for the image viewer is outlined in Listing 6.6, and users

can click on any area of the image and the program will provide information on the

genome that was located at the position of the mouse click. Figure 6.38 contains a

screenshot of the image viewer displaying an image from the CKD dataset.

1 jasper-image-viewer.py -i /path/to/jasper-image.png

2 -l /path/to/ordered-annotations.txt

3 -p 7

Listing 6.6: Command call for launching the Jasper visual inspector.

123

Figure 6.38: Image Viewer. The Jasper image viewer utility being
used to inspect a CKD image. The hand (top) clicked on the Streptomyces
neighborhood, and the program displayed the image segment Streptomyces
sp. gba 94-10 as the species that was clicked on.

124

CHAPTER 7

CHARACTERIZING MICROBIOMES WITH

CONVOLUTIONAL NEURAL NETWORKS

7.1 Introduction

Community abundance profiles give us a lens through which we can study mi-

crobiomes in varying levels of detail. In previous chapters we showed how to compute

these community profiles and how to visualize them succinctly. Here we consider

the problem of studying collections of microbiome profiles. An important followup

challenge is to identify distinctive sets of features of cohorts of microbiomes so that

these cohorts can be characterized. Characterizing microbiomes is an important

task because it can help us understand the micro-ecosystem, and its functional and

compositional characteristics under different biological and environmental conditions.

This has practical applications in several fields including food safety and agronomy

[19, 20, 57], and monitoring of foods during fermentation [76, 90, 102, 119, 140]. For

example, in planetary exploration, it is important for NASA to characterize all Mars-

bound probes and rovers so that they do not contaminate Mars with Earth’s microbes

[163, 28, 83, 146, 155]. Characterizing cohorts of microbiomes thus has applications

in associating the features with spatial location, identifying features that characterize

diseased samples from healthy, one disease subtype from another, treated samples

from untreated, different types or dosages of drugs, stages of development, and so

much more.

Characterizing microbiomes can be done in one of two ways. One possible ap-

proach is to identify microbiome-related biomarkers for cohorts of samples. For exam-

ple, the presence of Gardnerella species in vaginal microbiomes is often a biomarker

for bacterial vaginosis [15, 104]. A second and more general approach is to build

a computational model, i.e., a machine learning (ML) model that can automatically

125

label or classify a new microbiome sample based on its community abundance profile.

We follow the latter approach of building computational models.

In this chapter, we consider the problem of characterizing microbiomes using

existing and well-known ML techniques on their abundance profiles. Our favored

method represents a departure from the standard ML approaches in the following

sense. While the obvious approach is to consider the abundance profiles as a matrix

of values to be input into any of multiple standard ML tools, we use the microbiome

maps computed in Chapter 5 and then train a convolutional neural network (CNN)

model [89]. We discuss the challenges of training CNNs when the number of samples

is small, as well as how to optimize microbiome maps for CNNs. We discuss how

current machine learning frameworks can be successfully employed in the field of

metagenomics, and used to interpret the diverse relationships in a microbiome.

7.2 Approach

Modern deep learning frameworks [2] are able to detect, classify, and diagnose

diseases such as skin cancer [41] (using 2D images), segment brain tumors [64] (using

2D image slices taken from CT or MRI scans), detect anomalies in electrocardio-

grams [36, 150] (using numerical signal data) and more recently, they have also been

used in metagenomics to classify multiple diseases [87, 112] (using OTUs) and to

classify disease stages [46] (using numerical OTU abundance and phylogenetic dis-

tance matrices). These deep learning frameworks are robust. CNNs are particularly

powerful at classification and segmentation tasks when working with image datasets

[54, 62, 89, 98, 157]. CNN architectures are primarily designed to work with images,

and we take advantage of this assumption to analyze microbiome map visualizations.

7.2.1 Convolutional Neural Networks

Convolutional Neural Networks (CNN) [89] are a specific type of neural network

that work well with data whose structure has a grid-like topology. Unlike traditional

126

neural networks in which each neuron of each layer uses matrix multiplication to model

the interactions between its inputs and output, CNNs use convolution operations in at

least one layer, which has the effect of creating a sparse connectivity graph between the

input and output units. The benefit of using convolutions over matrix multiplications

is that it allows CNNs to describe complex interactions between many variables only

using simple sparse connections between the units in adjacent layers — this gives

CNNs the ability to learn local patterns, unlike traditional fully-connected networks

that learn global patterns [31]. CNNs also have the advantage of producing high-

level abstract objects rather than just a class for a classification job, or continuous

real-values for regression problems.

Convolutional layers in a CNN are specifically designed to work well with images,

and take as input a volume with shape “width, height, depth” where “width”

and “height” are the width and height of the input images, and “depth” is the

number of channels that the image has: a color image would have “depth=3”, the

depth being a channel for each color in the RGB spectrum. CNNs are primarily built

using three types of layers: convolutional layers, pooling layers, and fully-connected

layers. These layers are defined below:

Fully Connected Layer: Typically found in traditional neural networks, each neu-

ron in such a layer is connected to every neuron in the previous layer, allowing

the entire previous layer to impact its output.

Pooling Layer: This layer downsamples its inputs from the previous effectively

decreasing the “width” and “height” without changing the “depth”.

Convolutional Layer: In this type of layer each neuron is only connected to a

subset (neighborhood) of neurons in the preceding layer.

127

Convolutional networks transform the input volume of images (“width, height,

depth”) into an output volume of feature maps: convolutional layers create small

patches (usually 3 × 3, or 5 × 5) over the input feature map and slide them across

every position. These patches are called convolutional kernels and they compute the

dot product of the kernel at each position with the values of the input at the same

position. The depth of the output volume is arbitrary, and it is set by a parameter

in the convolutional layer — each depth-level in the output volume represents a filter

on the image that creates a feature map of the kernel that was used to create the

filter. Figure 7.1 contains a visual representation of how a convolutional layer works.

Pooling layers as mentioned previously, downsample the feature maps that they

take as input. Similar to convolutional layers, these layers operate through small

patches (usually 2× 2) that are slid across the feature map, but unlike the convolu-

tional layers, they use a hard-coded max() function, a type of aggregation or aver-

aging function to transform the output of the previous layer. The purpose of these

layers is to make succeeding convolutional layers look at wider patches of the original

image — this downsampling is what makes convolutional networks understand higher

levels of abstractions (Figure 7.2).

The last set of layers in most CNNs are fully connected layers. These layers

operate in the same manner as traditional feed-forward neural networks, and their

function is to classify the input images. The very last output layer will often be

composed of neurons that have a softmax activation function that will create a

probability distribution across the classes that are being graded: if we were trying to

classify images that contained “dogs” using a convolutional network (does the image

contain a dog? Yes? No?), then the output layer would have a single neuron whose

output would be the probability that the image contains a dog.

128

Figure 7.1: Convolutional Operations. Input images are turned into an
input volume and small patches (convolutional kernels) and are slid across
the input. The kernels compute the dot product with the input values at the
same location, and the result is a output feature map of filters applied to the
image. Figure inspired by Francois Chollet in Deep Learning with Python,
(Figure 5.4, page 125) [31].

7.2.2 U-Net

The strength of convolutional networks is in their ability to perform classification

tasks on images, and their traditional applications concern the assignment of a class

label to an image. A “U-Net” is a modified convolutional architecture proposed by

Ronneberger in 2015 [128] that contains two symmetrical paths of layers that first

129

Figure 7.2: Higher Levels of Abstractions. A simple look at how a
CNN would arrive at the answer for a Dog. Initial layers will learn to recog-
nize local features such as lines, curves, and blobs of color; while succeeding
layers will learn to recognize legs, ears, and snouts. Inspired by Figure 5.2
(page 123) from Deep Learning with Python by Francois Chollet [31]

perform a contraction and downsampling of the input, and then perform an expansion

and upsampling. The architecture has been popular for segmenting objects of interest

in images, and it has been particularly useful in biomedical imaging applications

[69, 81, 151, 169].

Figure 7.3 contains the Ronneberger U-Net architecture from [128], and we can

see that the network creates a distinct “U” shape by the union of its contracting path

(left side) and expanding path (right side). The left side of a U-Net is a convolutional

network with convolutional and pooling layers, but unlike a full convolutional network,

it does not have any fully connected layers. The interesting part of this contracting

path is that the depth of the output volume after each convolutional layer is doubled

130

from that of the preceding convolutional layer, and this is done to make the network

sensitive to the complex objects in the input. In the contracting path, the first

four levels of contraction are comprised by two convolutional layers followed by a

pooling layer until we reach the “bottom” of the “U” where the two convolutional

layers are followed by a “up-convolution” layer, sometimes called a “deconvolution”

layer, but more accurately described as a transposed convolutional layer. It is at this

point that the expanding path starts, and the right side of the U-Net is basically the

mirror image of the left side, but going in the opposite direction. The function of the

transposed convolutional layers is to upsample the input feature maps coming from

the contracting path on the left side of the U-Net, and each upsampling of the input

is followed by two convolution operations to reduce upsampling artifacts.

Figure 7.3: U-Net Architecture. The Ronneberger U-Net used for im-
age segmentation. The architecture gets its name from the distinctive “U”
shape formed by its two paths: the left side performs the convolutional op-
erations, while the right side performs the deconvolutional operations. The
output of a U-Net is a feature segmentation map. Figure 1 from the pa-
per by Ronneberger [128], and reproduced with permission. Copyright 2015,
Springer Nature.

131

7.3 Methods

The CNN architecture in the Amber framework is designed specifically for the

characterization of microbiome samples generated from DNA sequencing experiments.

Our characterization framework takes advantage of a convolutional network’s powerful

set of techniques for image classification (through a convolutional network architec-

ture). Our framework is able to process samples using whole-genome or 16S rRNA

gene metagenomic sequencing datasets. We start by creating detailed microbial com-

munity profiles with tools such as Flint and Kraken 2. The community profiles for

both mWGS and 16S rRNA data are then transformed into microbiome maps by the

Jasper system using the taxonomic ordering. A CNN-based neural network is then

trained to learn patterns in those images by designing a CNN architecture. CNNs can

take advantage of the proximity of related taxonomic groups in a microbial neighbor-

hood of a microbiome map (see Section 5.3.1 for more on microbial neighborhoods).

Our framework is designed around the traditional layer architecture of a convo-

lutional network (Section 7.2.1). We use the convolutional architecture to develop a

classification framework that is able to classify microbiome samples using synthetic

2D microbiome maps.

After the training is completed with profile images of labeled microbiome sam-

ples, the trained CNNs are able to classify or label new and unlabeled samples by

analyzing the presence or absence of the same patterns that are coded into the CNNs.

7.3.1 Convolutions for Microbial Neighborhoods

The primary instrument employed in our framework is convolutional operations

on microbiome maps created with the Hilbert curve. The convolutional architecture

and a typical microbiome map are shown in Figure 7.4. The native resolution of the

image shown here is 256× 256, which corresponds to a Hilbert curve at level 8. (For

more on the level of the curve, refer to Figure 5.1 and Section 5.2.2.) The divisions in

132

Figure 7.4: Convolutions on Microbial Neighborhoods. A micro-
biome map (panel (A)) created using the Hilbert curve, and scaled for dis-
play purposes. The native resolution for each image is 256 × 256, which
corresponds to a Hilbert curve at level eight. Panel (B) shows how the
Hilbert curve is recursively built by recursive partitioning of a square into
four, and the first three levels of the curve are shown. Panel (C) shows the
first stage of our convolutional architecture that we use for our microbiome
classifier. Patches of size (5× 5) are used in the initial convolutional layers,
and they create 64 filters which comprise the “Output Feature Map”. A
max() pooling layer is used to downsample the feature map in the following
round of convolutional layers.

the image called Microbial Neighborhoods represent different taxa as per a taxonomic

ordering of microbial genomes. (See Section 5.3.1 for more on taxonomic ordering.)

The patterns in the same neighborhoods in cohorts of images are spotted and learned

by the CNN. We start by creating convolutional kernels of size 5× 5 and slide them

across the image to create 64 filters. All the filters taken together represent the output

feature map of the first layer, which is then feed to a pooling layer that downsamples

the images. Note that the architecture for the transposed convolutional layers is

133

similar to the ones depicted in Figure 7.4, but we use a transposed convolutional

layer rather than a convolutional one.

7.3.2 The Amber CNN Model

We implemented our framework using the TensorFlow library [2] version 2.1.0 in

Python. The images that we are using are of relatively small sizes, as each pixel in the

image represents a bacterial genome from a reference genome collection. Two sizes of

images are used which correspond to the sizes of the reference genome database that

is used to create the community profiles: a 256× 256 image is created for community

profiles that use 44K genomes, and a 128×128 image is used when we use 5K genomes;

these sizes also correspond to the underlying DNA sequencing technology that was

used to create them: the whole-genome datasets profile a larger set of microbes which

result in the larger images (256 × 256 pixels), while the 16S rRNA gene sequencing

dataset profiles a smaller set of microbes which result in the smaller image (128×128

pixels).

Figure 7.5 contains a textual description of the Amber CNN model. In typical

CNN fashion, the model starts with a set (five here) of alternating convolutional and

pooling layers. Note that in the figure, we see that the first convolutional layer’s

output shape is 250 × 250 × 16 which corresponds to the model used when 44K

genomes (mWGS data) are used in the microbiome map; the output shapes changes

to 120 × 120 × 16 when 5K genomes are used (16S rRNA). Following the convolu-

tional and pooling layers, we see that a pair of dropout layers are used to prevent

overfitting — these layers randomly set a fraction of its input neurons to zero during

the weight updates throughout the training run. The last layer of the network is a

densely-connected layer with a softmax activation function that creates a proba-

bility distribution over the output classes of the dataset (12 body sites for the HMP

dataset, and six conditions for the CKD dataset). The model uses the Adam optimizer

[79] to update the network’s weights, with a learning rate set to 0.001.

134

Figure 7.5: Amber CNN Architecture I. The primary architecture
of the Amber CNN model when 44K genomes are profiled. The network
starts with the typical CNN architecture of having alternating convolutional
and pooling layers (lines 5-23). After the last pooling layer, we introduce a
dropout layer (line 25) and flatten its output (line 27). The flattened input is
used as input to a densely connected layer (line 29) which feeds into another
dropout layer before delivering its output to a softmax layer (line 33) which
contains 12 neurons (one for each class in the HMP dataset).

Although the images are small, training on a laptop computer is not feasible as

the underlying hardware components are not designed for training with a large set

of images. A powerful machine with 48 CPUs and 768 GB of RAM memory might

seem like a good option, but such machines are slow to train a large CNN model —

we tried such a setup using the “castalia” machine (see Section 3.2) and it took

135

over 14 hours to train a test network of four convolutional layers and four pooling

layers, using a subset of 250 (256× 256) images. Training CNNs is much faster using

computing machines with graphical processing units (GPU) [94, 137, 154], as the

GPUs have a lot of small processing cores that can perform many simple operations

very quickly and in parallel; this benefits CNNs because the weight updates in the

training step are nothing more than matrix multiplications which can be performed

by the GPU extremely quickly. We first trained our model using the “castalia”

machine and saw training runs taking multiple hours: as low as six hours, and as high

as 10 hours for 200 epochs (the discrepancy being due to the load that the machine

was under while running the experiments as other users were also executing jobs).

We then moved the training of the model to another machine equipped with two

NVIDIA GeForce GTX 1080 Ti GPUs, each with 3, 584 cores and 11GB or RAM

memory. Training on the NVIDIA GPU was substantially faster as we saw average

training runs lasting no more than 5 minutes depending on the machine’s job loads.

Training in the Cloud

We previously developed the capability of running the Flint system on Amazon

Web Services (AWS) [9] (Section 4.2) using a distributed cluster architecture that runs

on commodity machines (Section 4.3.3) running in a master-worker configuration.

The primary building block of a cloud cluster is a simple machine (worker node) that

is configured with the desired software libraries. Such machines are usually quite

affordable through the AWS Spot Market [10]. AWS provides a basic building block

for machine learning workflows called a Amazon Deep Learning AMI [5] which we

use to bootstrap the process of creating a cluster used to run our training models.

Training a TensorFlow model in a distributed cluster is similar to the processing

previously performed in Chapter 3 and 4, with a cluster architecture similar to the

layout in Figure 1.1. A master node is deployed which will serve as the primary execu-

136

Figure 7.6: Amber CNN Architecture II. Illustrated version of the
Amber CNN model. The model starts with an input volume measuring
width × height × depth, where the width and height are the corresponding
width and height of the input images (256× 256 for mWGS, and 128× 128
for 16S), and the depth corresponds to the number of channels: three for
RGB images, one for grayscale. The model starts by using a 7 × 7 kernel,
and learning 16 filters. Notice that as the model gets deeper and deeper,
we learn more and more filters (16, 32, 64, and 128) and the dimensions of
the output volumes get smaller and smaller (250, 125, 62, 31, and 15) which
is typical for a CNN that is learning higher levels of abstraction with each
subsequent layer.

tion point for the training script. Multiple worker nodes are also deployed, and these

nodes are the ones that will perform the bulk of the computation. A configuration

script runs during the cluster provisioning step that loads all the necessary software

libraries that we will be using; libraries such as Pandas, Numpy, Scikit-Learn, Scikit-

Image, and others are all installed on both the master and worker nodes during the

provisioning step.

Training runs are started on the master node using a Python script that con-

tains the code for creating the convolutional network using TensorFlow. This script

performs any preprocessing that is required and prepares the training, test, and val-

137

idation datasets. Once everything is assembled, and the convolutional network has

been created, the script compiles the network and initiates the training run on the

worker nodes. The Tensorboard tool [2] is available in the cluster for visualizing the

graph that TensorFlow has created and for debugging purposes.

7.4 Results and Discussion

Flint [153] (Chapter 4) and Jasper (Chapter 5) make the process of creating

microbial profiles and microbiome maps relatively straightforward. We used Flint

and Jasper to create profiles and microbiome maps from 328 samples from healthy

human subjects from the Human Microbiome Project (HMP) [149]. We also used

Kraken 2 and Jasper to create profiles and maps from a dataset of samples from

patients at one of five different stages of Chronic Kidney Disease (CKD). The 328

samples from the HMP dataset were sampled from 12 different body sites: “At-

tached & Keratinized Gingiva”, “Buccal Mucosa”, “Gastrointestinal Tract”, “Nares”,

“Oral”, “Palatine Tonsils”, “Posterior Fornix”, “Retroauricular Crease”, “Supragingi-

val Plaque”, “Throat”, “Tongue Dorsum”, and “Vaginal”. The CKD samples were se-

lected based on their glomerular filtration rate (see Kidney Disease Improving Global

Outcomes (KDIGO) [78]), and a total of six classes were created: Control, CKD

Stage 1 (CKD 1), CKD Stage 2 (CKD 2), CKD Stage 3 (CKD 3), CKD Stage 4 &

5 non-dialysis dependent (CKD 4-5ND), and CKD Stage 5 dialysis dependent (CKD

5). The CKD stages were determined based on the worsening function of the kidney

patients [78].

7.4.1 Comparison to other Classifiers

The ability to correctly classify microbiome samples using Microbiome Maps was

tested by first evaluating seven well-known classifiers with the community abundance

profiles that were used to create the microbiome maps. The community profiles were

used as input in their tabular form to the following classifiers: “Nearest Neighbor”,

138

Figure 7.7: Synthetic Data Classification. Seven classifiers were tested
with synthetic datasets created with the scikit-learn library [117], using code
adapted from scikit-learn’s examples [118]. The “Original Data” depicts the
original data points (x, y) created for the trials with two classes, A and B,
for three datasets, Dataset 1 (created using the make_moons() function),
Dataset 2 (created using the make_circles() function), and Dataset 3
(created using a randomized make_classification() function). Overall
accuracy for each classifier is displayed in each box (label in dark font).

139

“Support Vector Machine (linear)”, “Support Vector Machine (Radial)”, “Random

Forest”, “Näıve Bayes”, “Multi-Layer Perceptron (Neural Net)”, and “AdaBoost”.

To start the comparison, we created three synthetic datasets of random (x, y)

coordinate points using the scikit− learn library [117]. To start the comparison, we

created three datasets of random (x, y) coordinate points using the scikit− learn li-

brary [117] (Figure 7.7). The three datasets were created using the make_moons(),

make_circles(), and make_classification() functions from scikit-learn.

These functions create a series of pseudo-random points suitable for classification

trials by first creating points along a sine wave (make_moons()), or along a circle

(make_circles()), and then adding Gaussian noise to spread them out. The third

dataset was created by calling the make_classification() function and modify-

ing the return set of points with a random set of numbers drawn from a uniform distri-

bution using the numpy library [114] (note that we use make_classification()

as a convenience function to get the correct input shape as required by the classi-

fiers). These three datasets were benchmarked against the seven classifiers, and their

classification boundaries plotted (Figure 7.7). The goal of this experiment was to

get familiar with the classifier’s decision boundaries, as well as to try to understand

on what type of dataset each classifier would perform the best. Note that detailed

parameters for the classifiers tested are available in Appendix 1.

After running the seven classifiers with synthetic data, we tested their perfor-

mance with the 328 samples from HMP and 12 classes (body sites). We took the

community profiles generated by Flint in their tabular form and used it as input.

Figure 7.8 contains the results of the trial. When using the tabular-numerical profile,

the “Neural Net” classifier performed the best with 85% accuracy, and “Näıve Bayes”

came in second with 84%. The “AdaBoost” classifier performed the worst with 51%.

The Amber CNN obtained a classification accuracy of 92% when trained with a set

140

Figure 7.8: HMP Data. Mean accuracy of the seven classifiers when run
with profiles created with Flint. The community profiles contained 44K
microbial genomes (features), and 12 classes from HMP human body sites.
Panel (A) contains the results of the classifiers with a tabular (numerical)
profile used as input. Panel (B) is used for comparison, and displays the
mean accuracy of running the Amber CNN with the two orders (taxonomic
and labeled) using the same tabular profiles converted to microbiome maps.

of images created the taxonomic ordering scheme; Amber obtained a accuracy of

81% when trained with labeled-order images.

We also tested the seven classifiers with community profiles for the CKD set.

The data for these profiles was created from 16S rRNA gene sequencing and therefore

had a lower resolution (less microbes to profile against) than the mWGS profiles from

the HMP set. We used the Kraken 2 software [166] to create the profiles using their

“16S” database. The results for this trial are displayed in Figure 7.9. Note that the

overall accuracy for this set is below that of the HMP set, a likely result due to the

smaller number of microbes present in the profile which is to be expected since the

16S rRNA gene sequencing experiments are very different from HMP’s whole-genome

sequencing. Just like in the HMP trial, the “Neural Net” classifier is the one with the

141

highest accuracy at 38%. Section 7.4.3 contains more details on training the model

using the 16S CKD dataset.

Figure 7.9: Chronic Kidney Disease Data. Mean accuracy of the seven
classifiers when run with profiles created with Kraken 2. Unlike the profiles
created with Flint these profiles only contained 5K microbial genomes, and
6 classes (CKD stages plus control). Panel (A) contains the results of the
classifiers with a tabular (numerical) profile used as input. Panel (B) is used
for comparison, and displays the mean accuracy of running the Amber CNN
with the two orders (taxonomic and labeled) using the same tabular profiles
converted to microbiome maps.

7.4.2 Training with HMP Body Site Maps

After gauging the performance of the seven classifiers with tabular data (Section

7.4.1), we proceeded to test the performance of our custom convolutional neural

network (Section 7.3.2) trained with two datasets of microbiome map images: the

first, a collection of 328 healthy human subjects from the human microbiome project

(HMP); the second, a collection of 200 samples from patients with multiple stages

of chronic kidney disease collected from Kangwon and Seoul National University

Hospitals (Section 7.4.3). Each of the two previously mentioned datasets were divided

142

out corresponding training and testing sets, with a 70/30 split, or 70% of the dataset

being distributed into the training set, and 30% for the testing set.

HMP Body Sites

The HMP dataset is comprised of 12 classes representing the collection sites

from healthy human subjects: “Attached & Keratinized Gingiva”, “Buccal Mucosa”,

“Gastrointestinal Tract”, “Nares”, “Oral”, “Palatine Tonsils”, “Posterior Fornix”,

“Retroauricular Crease”, “Supragingival Plaque”, “Throat”, “Tongue Dorsum”, “Vagi-

nal”, and “Vaginal Introitus”. Figure 6.9 displays a distribution of the number of

samples in each class.

Figure 7.10: Training with HMP Data. Accuracy (purple, gray lines)
and loss (red, blue lines) for training and testing the Amber CNN with the
328 HMP samples for 100 epochs. While both training (99%) and testing
(92%) accuracy are high, the diverging paths of the training and testing loss
indicate that the model is overfitting the data.

Microbial community abundance profiles were generated for each of the samples

in the HMP dataset using the Flint software (Chapter 4), and then the profile for

each sample was converted into a set of microbiome maps (Chapter 5) using the two

143

ordering schemes described in Sections 5.3.1. Note that the microbiome maps in

this dataset consist of the transformed abundance profiles for 44K genomes profiled

against each of the HMP samples using mWGS data. For these microbiome maps,

each image has dimension 256×256 and contains 3 RGB color channels. Each pixel in

the image corresponds to a genome in the database (see Section 5.3.1). The training

accuracy of the model with 12 classes (each a body site from which the sample was

collected from) after 160 epochs of training is 0.99, and testing accuracy is 0.85.

Figure 7.10 displays a representative training experiment done with the HMP

dataset (12 body site classes). The experimental run consisted of training the Am-

ber CNN for 100 epochs with the HMP microbiome maps. After the 100 epochs

of training, we see that the training accuracy of the model is 99%, and the testing

accuracy is 92%. However, we can see from the traces of the training and testing

losses that our model overfits the data by a large amount. We can see this by the

characteristic overfitting indication of diverging training and testing losses. Overfit-

ting starts from about epoch 15, and lasts for the duration of the training run. The

loss outlines tell us how good the model is performing after each epoch, and while

our training loss is decreasing after each epoch, our testing loss is increasing, which

tells us right away that our model is not generalizing well.

After analyzing the results for the HMP body site dataset, and determining that

the model was overfitting the data, we applied two well-known techniques [91] for

minimizing overfitting: regularization [30, 172, 176] and data augmentation [68, 116,

135]. We implemented the regularization technique by adding two dropout layers [75]

to the network: the first layer right after the last pooling layer, and the second layer

right before the last densely connected softmax layer (lines 25 and 31 in Figure 7.5).

Data augmentation was implemented by using a custom ImageDataGenerator

class using the Keras and Tensorflow libraries. Appendix 1, Section A1.2 contains

the particulars on the data augmentation procedures.

144

Figure 7.12 displays the results after applying the two techniques to address

overfitting. The overall accuracy for the model went down, to 87% training accuracy

and 89% testing accuracy, but we can see the effect that the dropout layers and the

data augmentation had: the trajectory of both the training and test losses follow the

same path without any divergence as in the original model. Note that it is unusual

for the training accuracy to be lower than the testing accuracy as the model is being

optimized with the training set. This effect is usually the result of applying the

dropout regularization technique as dropout layers set the input of some fraction of

neurons to zero, effectively disabling them. However, dropout layers only apply their

effects during the training step, and not during the testing step, and their effect is

generally reflected in the training accuracy being lower than the testing accuracy.

Table 7.1 contains a detailed classification report for the HMP dataset. In the

table, the “No. Samples” column contains the number of representative samples for

(a) Augmented buccal mucosa microbiome map. (b) Augmented nares microbiome map.

Figure 7.11: Augmented microbiome maps. Representative images of
performing data augmentation for reducing overfitting. The HMP training
dataset used by the Amber CNN was augmented by a set of augmented im-
ages that were modified by rotating them, as well as adjusting the luminosity,
and transparency properties, as well as RGB color channel levels.

145

Figure 7.12: HMP Training Corrected for Overfitting. Accuracy
(purple, gray lines) and loss (red, blue lines) for training and testing the
Amber CNN (with dropout layers) with 328 augmented HMP samples for
200 epochs (all 12 classes). Training and testing accuracies decreased to 87%
and 89% respectively, but there was no separation in the trajectories of the
training and testing losses.

a given class, and we can see that when the number of samples is greater than 5,

then the performance of the model is generally very good (for the exception of the

tongue dorsum class). Classes with such a small number of samples are probably not

being represented very well in the training and testing datasets, and the model might

not be being exposed to a sufficiently large number of samples to learn from them.

To test this hypothesis, we removed the classes that had less than seven samples

(the classes that had a f1 score of 0.00), and this resulted in a new dataset that

contained only eight classes and 310 samples (the “Attached/Keratinized Gingiva”,

“Oral”, “Palatine Tonsils”, and “Vaginal” classes and their samples were removed).

We re-trained the Amber CNN model with the new eight-class dataset and saw

146

Class No. Samples Precision Recall F1 Score

Attached/Keratinized Gingiva 4 0.00 0.00 0.00
Buccal Mucosa 74 1.00 1.00 1.00

Gastrointestinal Tract 49 0.67 1.00 0.80
Nares 94 0.82 0.95 0.88
Oral 4 0.00 0.00 0.00

Palatine Tonsils 5 0.00 0.00 0.00
Posterior Fornix 54 0.96 0.92 0.94

Retroauricular Crease 15 0.50 1.00 0.67
Supragingival Plaque 10 1.00 1.00 1.00

Throat 7 1.00 0.92 0.96
Tongue Dorsum 7 0.25 0.50 0.33

Vaginal 5 0.00 0.00 0.00

Table 7.1: HMP Classification Report (12 Classes). Evaluation of the
performance of the Amber CNN model in classifying the twelve classes of the
HMP dataset. The model performs very good for many of the classes, but
fails notably for a couple of classes (those with an F1 score of 0.00). Classes
with an F1 score of 0.00 should probably be dropped, as their number of
samples is not enough to be used. The “No. Samples” column contains the
number of input samples for each class. The “Precision” column contains the
proportion of positive classifications that was correct, the “Recall” column
contains the proportion of actual positive classifications, and the “F1 Score”
column contains the harmonic mean of the precision and recall columns.

that the training accuracy went up to 99%, and the testing accuracy went to 94%,

suggesting that the model sees a substantial improvement in accuracy when classes

are represented in sufficient (i.e., at least seven) classes. Table 7.2 contains a detailed

report on the model’s performance across the eight classes.

In order to better understand how the Amber CNN model is learning to charac-

terize the HMP classes, we created a visualization of the model’s convolutional layer’s

activation functions. Figure 7.13 displays the activations at each layer, starting at

the initial layers (top of figure) all the way to the fifth layer (bottom). Following the

design of our model (Figure 7.5), the initial layers of our model start by learning to

identify classes by focusing on concrete visual features that we can readily identify.

147

Class No. Samples Precision Recall F1 Score

Buccal Mucosa 74 1.00 0.88 0.93
Gastrointestinal Tract 49 1.00 1.00 1.00

Nares 94 1.00 1.00 1.00
Posterior Fornix 54 0.93 1.00 0.96

Retroauricular Crease 15 0.33 0.50 0.40
Supragingival Plaque 10 0.95 0.95 0.95

Throat 7 1.00 1.00 1.00
Tongue Dorsum 7 0.80 1.00 0.89

Table 7.2: HMP Classification Report (8 Classes). Evaluation of
the performance of the Amber CNN model in classifying a reduced set of
eight classes of the HMP dataset. The model performs very good achieving
a training accuracy of 0.99% and a testing accuracy of 0.94%.

As we go deeper and deeper into the convolutional layers, we start to see that the

model is learning to identify classes (buccal mucosa in Figure 7.13) by focusing more

on higher levels of abstraction, and less on details that we can understand visually.

This is the result of applying the pooling layers after each convolutional layer, as we

are forcing the deeper layers to focus more on higher levels of abstractions.

A great example of what is happening in Figure 7.13 comes from the Spanish

artist Pablo Picasso [160]: in 1945 he created a series of lithographs to portray a bull

at various levels of abstraction. Figure 7.14 shows the Picasso images, with the bull

drawn in great detail in the drawings of the first column, and then progressively being

drawn at higher levels of abstraction in the remaining columns, finishing with the bull

in its most simple (and unmistakable) form in the last drawing of the last column. The

bull abstractions from Picasso are analogous to how the CNN is learning to identify

microbiome map classes: the early layers of the model are learning to identify maps

in great detail, but by the time we get to the deeper layers (“Convolution 5” in

Figure 7.13), the CNN is learning to identify maps at higher levels of abstractions.

148

To human eyes, the abstracted layers in the deeper layers are not as attractive as the

ones sketched by Picasso, but we can “observe” the abstracted microbiome images.

Figure 7.13: HMP CNN Activations. Visualization of the convolutional
layer’s activations for the HMP buccal mucosa class. The buccal mucosa class
is characterized by having a significantly abundant Streptococcus genus, and
we can see that the model is learning that in the initial convolutional layers
(top) when it learns 16 and 32 filters.

149

Figure 7.14: Bull Abstractions, 1945. A series of lithographs by Pablo
Picasso to represent higher levels of abstractions of a bull. The images show
that to represent a bull, it is not necessary to learn fine details, but some-
times, a simple set of lines suffices.
Image taken from https://drawpaintacademy.com/the-bull

7.4.3 Training with Chronic Kidney Disease Maps

After training the Amber CNN with the HMP/mWGS datasets, we proceeded

to train with the 16S rRNA gene sequencing data for the chronic kidney disease

(CKD) patients. This dataset consisted of 200 samples obtained from CKD patients

of Kangwon and Seoul National University Hospitals, and comprised a total of 6

classes, (5 stages of CKD, and control). Representative microbiome map images for

this dataset can be seen in Section 6.5, and they depict the community abundance

profiles generated by the Kraken 2 software using their “16S” database of 5K microbial

genomes. The native resolution of the images is 128× 128 pixels.

150

https://drawpaintacademy.com/the-bull

Figure 7.15: Training with CKD Data. Accuracy (purple, gray lines)
and loss (red, blue lines) for training and testing the Amber CNN with
the 200 HMP samples for 200 epochs. For the CKD dataset, the training
accuracy was high (99%), however, the testing accuracy was low (40%). Note
the diverging paths of the training and test losses, which indicate that the
model is overfitting the data substantially.

Figure 7.15 displays the accuracy and loss for training the Amber model with

the CKD dataset across 200 epochs. Note that training accuracy converges to 99%

after about 80 epochs, but the testing accuracy does not match it, and it settles to

41% — this is slightly higher than the “neural net” classifier from figure 7.9 which

achieved 38% testing accuracy. An issue that is present with training the model

using the CKD dataset is that the model overfits the data, and this can be seen in

the characteristic diverging training and testing loss lines in Figure 7.15. We can see

151

that the loss traces start to diverge early on, and their gap grows considerably by the

end of the training.

Figure 7.16: CKD Data Corrected for Overfitting. Accuracy (purple,
gray lines) and loss (red, blue lines) for training and testing the Amber CNN
(with dropout layers) with 200 augmented CKD samples for 200 epochs.
Training accuracy was retained at 99%, while the testing accuracy dropped
slightly to 39%. Overfitting was reduced, but not completely eliminated,
which suggests that more training data should be used.

We applied the same two techniques to tackle overfitting as we did with the

HMP dataset, namely the use of dropout layers in the model and data augmentation

for the microbiome maps. Figure 7.16 contains the updated results for training the

model, and we can see that trajectories of the training and testing losses are not

diverging as much as they did in Figure 7.15. The model is still overfitting the

data, but not to the level it was before. Table 7.3 contains detailed performance

152

Class No. Samples Precision Recall F1 Score

CKD 1 27 0.25 0.17 0.20
CKD 2 31 0.44 0.73 0.55
CKD 3 28 0.75 0.50 0.60
CKD 4 28 0.25 0.17 0.20
CKD 5 31 0.17 0.20 0.18
Control 55 0.50 0.33 0.40

Table 7.3: CKD Classification Report. Evaluation of the performance
of the Amber CNN model in classifying the six classes of the CKD dataset.
The model performs best when discriminating among the CKD 2 and CKD
3 classes, and worst for the CKD 5 class. The “No. Samples” column con-
tains the number of input samples for each class. The “Precision” column
contains the proportion of positive classifications that was correct, the “Re-
call” column contains the proportion of actual positive classifications, and
the “F1 Score” column contains the harmonic mean of the precision and
recall columns.

measures for the model’s accuracy over the six classes, and we can see that the model

performs best at distinguishing between CKD 2 and CKD 3 (F1 scores of 0.55 and

0.60 respectively), and worst at distinguishing CKD 5 (F1 score of 0.18). While the

dropout and data augmentation techniques helped mitigate overfitting in the HMP

data, it is not helping as much in this case. A reason for this could be that the CNN

model is too complex to generalize well to 16S data and its reduced number of profiled

genomes. The current Amber model contains 13 million trainable parameters (Figure

7.5) and this could just prove to be an overly-complex model for training with 16S

data and its smaller number of profiled genomes. A solution could be to design the

Amber model to be adaptive to the number of genomes that are represented in a

microbiome map: large reference collections could use the current CNN model with

its 15 layers and 13M parameters, but smaller collections could use a modified CNN

model with less layers and parameters.

The resulting accuracy for the CKD dataset is not as high as those achieved

with the HMP dataset. We attribute this to multiple factors. The images from the

153

HMP dataset generated by Flint were larger and more detailed than the ones from

the CKD dataset, since each image from the HMP dataset represented abundance

information from 44K strain-level genomes. In contrast, the CKD images generated

by Kraken 2 were coarser and represented abundance information on only about

5K genus, or species-level, with lot less differentiation between the genomes [124].

Consequently, there are more subtle patterns in the HMP images from which the

CNN could learn and exploit for its performance. We see further evidence of this

claim in Figure 7.20 below, which shows that Amber performs better with Flintś

profiles of 44K genomes than with profiles from the same samples but constructed

with only 2K genomes in the reference collection.

Alternative Training Strategies

In addition to the main training schemes outlined in Sections 7.4.2 and 7.4.3,

we also explored alternative strategies for training the Amber CNN with modified

HMP and CKD datasets. These alternative training strategies are described in the

following subsections.

7.4.4 Training with No Borders

As part of the development of the Amber CNN model, we experimented with

training our network with microbiome maps that contained no visible borders around

their respective neighborhoods. Our initial hypothesis was that the neighborhood

demarcation lines would have a negative impact on the accuracy of our network, but

as we found out, both the training and testing accuracies were much higher when we

trained our network with images with borders around the neighborhoods.

7.4.5 Training with Two Datasets

In the primary training scheme for the Amber CNN, we trained the network

7.4.2 with two independent datasets: the HMP dataset and the CKD dataset. The

154

CNN was trained independently with each dataset, that is, we trained and evaluated

the CNN with the HMP dataset and we separately trained and evaluated the CNN

with the 16S rRNA gene dataset.

We explored a scheme that combined both sets of images and trained and eval-

uated the CNN with both. Our hypothesis was that the increased number of images

(by combining the datasets) would give us a larger dataset to train our network.

Unfortunately that was not the case as both datasets are generated with different

reference collections (44K for HMP, 5K for CKD) and different sequencing technolo-

gies (mWGS vs 16S). The result is that the microbiome maps for both datasets have

different dimensions (256×256 for HMP/mWGS, and 128×128 for CKD/16S) which

caused the CNN to not generalize well for either dataset. The best training accuracy

we could achieve was 71%, with a testing accuracy of 67%. We tried to normalize

both sets of images to the same dimensions (scale both datasets up to 256×256, scale

down to 128 × 128) but it did not help increase accuracy of the model as the HMP

(a) Microbiome Map with Border. (b) Microbiome Map with No Border.

Figure 7.17: Alternative Training Images. Training and testing accu-
racies were much higher when training with microbiome maps with borders
around neighborhoods.

155

Figure 7.18: Accuracy with No Border. Training and testing accuracy
when evaluation the Amber CNN for 160 epochs with the HMP dataset, but
the microbiome maps contained no visible neighborhood borders. Training
accuracy finished at 94%, while testing finished at 84%.

maps were too distorted and compacted (scaling down), or the CKD maps were too

blurry (scaling up).

7.5 Profile Classification Comparison

Recall that the HMP dataset is comprised of 12 classes representing the collec-

tion sites from healthy human subjects: “Attached & Keratinized Gingiva”, “Buccal

Mucosa”, “Gastrointestinal Tract”, “Nares”, “Oral”, “Palatine Tonsils”, “Posterior

Fornix”, “Retroauricular Crease”, “Supragingival Plaque”, “Throat”, “Tongue Dor-

sum”, and “Vaginal”.

We compared the profiles generated by Flint (using 44K genomes) to those

available publicly available from the HMP website. The HMP profiles are publicly

156

Figure 7.19: Loss with No Border. Training and testing loss when
evaluation the Amber CNN for 160 epochs with the HMP dataset, but the
microbiome maps contained no visible neighborhood borders.

available and were generated by profiling a custom curated reference genome database

of 2K genomes. Both sets of profiles use mWGS data. Figure 7.20 depicts the results

of training with the HMP profiles (orange bars) and training with profiles created

with Flint (blue bars). We can see that for the tabular data (panel (A)), the results

are comparable, with the HMP profiles generating better results with the “Near-

est Neighbors”, “SVM-Linear”, and “AdaBoost” classifiers; Flint profiles generate

slightly better results with “Naive Bayes”, and both basically being the same for

“Random Forest”, and the “Neural Net”. For the image data (panel (B)) the results

are a little different. The results in these bars show the performance of the Amber

CNN model using microbiome maps created by both Flint and the public HMP

profiles using the taxonomic 5.3.1 and labeled orderings 5.3.1. We can see that the

157

profiles created by Flint yield a higher accuracy than those from HMP in both sets

of Amber orderings, with the Amber taxonomic set with Flint profiles producing

a testing accuracy of 92%, compared to 82% for HMP. These results are encourag-

ing as they demonstrate the utility of converting the numerical tabular profiles to a

microbiome map, and not just using the tabular profiles directly.

Figure 7.20: Profile Comparison. Testing accuracies for seven classifiers
and the Amber CNN model. Panel (A) contains seven classifiers whose
input is numerical tab-separated data, and panel (B) contains results for the
Amber CNN model which uses microbiome map images as input. “Neural
Net (baseline)” represents the simplest model for a neural network which
consisted of a single 10-neuron layer trained for 10 epochs. The “Neural
Net” classifier consisted of 10, 100-neuron layers trained for 1, 000 epochs.

7.6 Summary & Conclusion

This chapter highlights the importance of the microbiome maps presented in

Chapters 5 by showing that its value goes well beyond succinct representations and

the useful applications discussed in Chapter 6. This chapter shows the enormous value

of the resulting images in machine learning applications such as Amber. This chapter

shows that it is possible to leverage the information and patterns in microbiome maps

158

to create a convolutional neural network model that is able to classify microbiome

samples with high accuracy. The resulting software called Amber performs its best

when the number of classes is sufficiently large (seven or more samples per class),

and also when the number of genomes that are part of the profile is large. The

results of our experiments with the 16S CKD dataset once again showed that the

microbiome maps lead to machine learning models with higher accuracies. However,

the experiments with 16S datasets suggested a lot of room for improvement because

the accuracy was much lower than the ones achieved with wMGS data.

The Amber CNN model continues to undergo fine-tuning and improvements.

The source code, along with all training datasets and resources, will be made available

at the project’s website at

http://biorg.cs.fiu.edu/amber.

159

http://biorg.cs.fiu.edu/amber

CHAPTER 8

CONCLUSION

The analysis of massive metagenomic datasets poses a computational challenge

because (i) current tools generate large intermediate results and (ii) require the cre-

ation of enormous indexes to catalog the ever increasing sets of reference genome

collections [156]. New paradigms are needed that go beyond exploiting basic paral-

lelism in computations, that leverage modern streaming architectures for processing

large amounts of data, and that use cloud-based distributed computational pipelines.

Such computational strategies must be matched with visualization strategies to create

interpretable results from all the data that low-cost DNA sequencing is generating.

Finally, sophisticated machine learning techniques can be fine-tuned and engineered

to learn more patterns from the metagenomic datasets and microbiome maps than

has been achieved so far.

8.1 Microbial Community Profiling in the Cloud

Microbial community profiling for mWGS datasets usually starts by aligning the

sequenced DNA reads to a collection of microbial reference genomes. Current profil-

ing tools are designed to work against a small representative collection of microbial

genomes, and do not scale well to larger genome collections. However, large reference

genome collections are capable of providing a more complete and accurate profile of

the bacterial population in a microbiome sample.

The Flint system outlined in Chapter 4 address the computational challenge by

showing how large metagenomic datasets can be profiled against a large collection of

reference bacterial genomes in a fast and economical way. Our implementation relies

on the freely available Spark framework to distribute the alignment of millions of

sequencing reads against Ensembl’s collection of 44K bacterial genomes. The reference

160

genomes are partitioned in order to distribute the genome sequences across worker

machines, and this allows us to use large collections of reference sequences. By using

the well-known Bowtie2 aligner under the hood in the worker-nodes, we are able to

maintain fast alignment rates, without loss of accuracy.

To date, profiling metagenomic samples against thousands of reference genomes

has not been possible for research groups with access to modest computing resources.

This is due to the size of the reference genomes and the financial costs of the computing

resources necessary to employ them. By using distributed frameworks such as Spark,

along with affordable cloud computing services such as Amazon’s EMR, we are able

to distribute a large collection of reference genomes (totaling 170 GB of reference

sequence, and 4.6 million assembly FASTA files) and use a MapReduce strategy to

profile millions of metagenomic sequencing reads against them in a matter of hours,

and at minimal financial costs, thus bringing sophisticated metagenomic analyses

within reach of small research groups with modest resources and achieving a small

measure of much-needed democratization in metagenomics.

Flint is open source software written in Python and available under the MIT

License (MIT). The source code can be obtained at the GitHub repository which

includes instructions and documentation on provisioning an EMR cluster, deploying

the necessary partitioned reference genome indices into worker nodes, and launching

an analysis job. Links to additional materials, simulation datasets, source code, and

partitioned reference indices can be found on the Flint project website at

http://biorg.cs.fiu.edu/.

8.2 Visualizations of Microbial Community Profiles

Microbial community profiles from mWGS datasets synthesize information from

billions of sequenced DNA reads coming from the genomes of the thousands of mi-

crobes present in a microbiome. Analyzing and understanding these profiles can

161

http://biorg.cs.fiu.edu/

be a challenge since the data they represent is complex. Particularly challenging is

their visualization and interpretability, as existing techniques are inadequate when the

number of identified taxa is in the thousands. The Jasper system (Chapters 5 and 6)

shows how the Hilbert curve visualization technique can be used to visualize metage-

nomic community abundance profiles from both mWGS and 16S DNA sequencing

datasets. The resulting “microbiome maps” display the relative abundance of micro-

bial genomes in a succinct, intuitive and interpretable manner, and can communicate

multiple latent factors of the reference genomes in the samples under study.

The Hilbert curve is used to lay out the microbes from the reference database in

two different ordering schemes that can be used to draw a microbiome map. The first

is the taxonomic ordering, which relies on taxonomy information from the Ensembl

Genomes database, and can be used to create maps that express abundance values in

the context of the taxonomic clades that the microbial genomes belong to. The second

is the labeled ordering, which is dependent on a user-specified labeling of biological

conditions for each sample, and can express the abundance values of the profile in the

context of a biological interpretation for a cohort of samples.

Jasper is accessible through the command line, but we are working on creating

a full graphical user interface (GUI) that will allow users to explore and immerse

themselves in the maps by clicking on microbial neighborhoods that will bring a

neighborhood into full view, allowing users to inspect individual members of the

microbiome in greater detail. This envisions a Google Maps for microbiomes. Jasper

is open source software written in Python and R, and uses OpenCV [23], hilbert curve

[4], and HilbertCurve (R) [59]. It is available under a GPL 3 license, and obtained

from biorg.cs.fiu.edu/jasper, where additional materials are also available.

162

biorg.cs.fiu.edu/jasper

8.3 Characterizing Microbiomes

The microbiome maps generated with the technique from Chapter 5 are a power-

ful visualization tool for representing the dynamicity of microbiome samples: they can

display thousands of microbial genomes and their corresponding relative abundances,

while at the same time embedding the context of microbial relationships and their

taxonomies under multiple biological conditions. The embedding of this information

creates distinctive visual patterns in a microbiome map that could be used to uniquely

identify the biological conditions for the sample from which the map originated. Tha

maps could also be used to identify the microbial taxonomic clades dominant in a set

of samples.

Chapter 7 addresses the problem of characterizing microbiomes using microbiome

maps created from the microbial community abundance profiles generated with DNA

sequencing data from whole-genome and 16S rRNA gene sequencing technologies.

We addressed the problem of developing and training convolutional neural networks

(CNNs) [89] directly with microbiome maps. CNNs are a type of artificial neural

network (ANN) useful for characterization of cohorts of inputs.

The CNN architecture in the Amber framework is designed specifically for the

characterization of microbiome maps generated from microbiome sequencing data.

The framework takes advantage of a CNN’s established ability to segment and classify

images. The framework automatically takes advantage of patterns in the images,

which appear in the images because of the proximity of related taxonomic groups in

the various microbial neighborhoods of a microbiome map.

The Amber framework is available under the GNU public license (version 3.0),

and is available to download at the project’s url: biorg.cs.fiu.edu/amber,

which also contains links to the GitHub source.

163

biorg.cs.fiu.edu/amber

8.4 Future Work

8.4.1 The Future of Flint

The Flint system described in Chapter 4 outlines a fast and efficient software

framework for creating microbial community profiles. The output of the system is a

set of abundance profiles for each sample given as input. An enhancement for the

system that we have explored is the real-time reporting of the abundance values as

they are being generated. Such a system would allow users to see microbial community

profiles in real time. A pipeline currently exists for this type of system with the use

of data warehousing solutions such as Amazon RedShift [7]. The RedShift service

is a cloud service for maintaining data warehouses that can easily connect to client

applications such as visual analytics tools like Tableau [141]. The Flint system

works by accumulating microbial abundances from worker machines, and we could

modify it to also send data to a RedShift instance; a client machine such as a desktop

or laptop computer could run Tableau at the same time, and use a data connector

to connect to the RedShift instance that is receiving data from Flint. By doing the

above, the Tableau tool would be able to visualize the community profile in real-time

as its being generated, and this would create a powerful visualization and reporting

solution for researchers in the field.

A Fleet of Cooperating Clusters

The Flint system (Chapter 4) describes a single cluster of commodity machines

running in the cloud. An exciting extension of the system would be to create a fleet

(pipeline or network) of clusters: one could deploy a task force of multiple clusters,

each working on a different task, but cooperating to analyze multiple datasets and

synchronizing their output. The system could activate clusters as they are needed,

and decommission them after they are no longer needed. The fleet would not have

164

to be composed of the same types of cluster, as different roles could be assigned to

different clusters. Some clusters could be dedicated to performing abundance profiling

tasks such as the current Flint cluster, but others could be provisioned to support

other types of tasks such as annotation and visualization (similar to the PlotTwist

web app [53], but built on a cloud cluster and not as a Shiny RStudio app [129]).

Another interesting role for clusters in the fleet could be that of knowledge-guided

analysis clusters – a take on the platform provided by KnowEnG [21]; in this role,

clusters in the fleet could be assigned a task that relies on prior knowledge to enhance

the analysis based on a pre-existing knowledge bank of microbial signatures [159],

gene-set enrichment [139], and functional annotations [88].

Sequencing Instrument Integration

The current implementation of Flint assumes that the input files are stored in

a distributed file system such as Amazon’s S3 [8] or Hadoop’s HDFS [143]. The files

are assumed to be a collection of pre-processed sequencing read that were created by

a high-throughput sequencing instrument such as an Illumina Hi-Seq instrument [74].

An extension to the Flint system could be a instrument plug-in that streams the

reads as soon as they are created inside the instrument; this could create a highly

automated and integrated system that is constantly producing and analyzing data.

8.4.2 Peering Down the Road for Jasper

The Jasper system from Chapter 5 creates microbiome maps as 2D image repre-

sentations of microbial community profiles. As part of the first release of Jasper we

released a basic image inspector that users can use to inspect the microbiome maps

they create: users can load an image alongside a set of annotations, and the inspector

tool will allow them to use a computer-mouse to point to specific locations in the

image and have the tool display the name of the microbial genome that they clicked

165

on. The tool is a proof of concept and a natural next-step is to create a fully featured

tool with a graphical user interface. We envision a tool that will allow users to not

only click on a region of the image and get feedback, but also to mouse-over regions to

get quick visual feedback, as well as to allow them to zoom into particular microbial

neighborhoods — a behavior similar to that of a consumer mapping application like

Google Maps [56], and a visual “DIFF” tool like Kaleidoscope [73].

The tool could also have a back-end connected to multiple annotation providers,

API servers, and online resources. Similar to the proposed connections of prior-

knowledge resources in the Flint fleet, the Jasper toolkit could integrate with

a data source of microbial signatures [159], gene-set enrichment collections [139],

and functional annotations [88], but also contain additional sources for inspecting

individual genomes in details such as connections to organism-specific databases such

as the pseudomonas.com database [164].

As a visual tool, the Jasper toolkit could facilitate context-switching for users so

that they can analyze their microbiome maps through different factors. This could be

done by giving users the ability to switch between different orderings with the click of

a button, and the mechanism would give users the ability to apply different orderings

and not have to decide between one or the other: a window could be implemented

that displays two orders side-by-side (similar to Figure 8.2), and give the user the

ability to mark a microbial strain in one order and have it highlighted in the other.

Having an interactive visual tool would open the possibilities for exploring more

immersive experiences for creating Hilbert curves in higher dimensions. We could

start by generalizing the Hilbert curve to three dimensions, so that we construct a

space filling curve to occupy the unit cube, and not the unit square. This would give

us an extra dimension to use in the building of our microbiome maps, and we could

construct Microbiome Cubes that contain an additional layer of information. Time

could be used as the extra dimension such that the same microbial strain occupies

166

pseudomonas.com

the a sub-volume of the cube, but the values at each vertex point in the 3D folding

of the curve contain the abundance values of that strain across a time-series analysis.

Having a 3D Microbiome Cube could also enhance the Amber framework as we could

use 3D convolutions in the model.

Figure 8.1: A 3D Hilbert Curve. The top two volumes represent two
variants of the first iteration of the curve in 3D space, while the bottom two
volumes represent the second iteration of the top volume above it. Figure 8.2
from the book by Michael Bader, “Space-Filling Curves” [16] and reproduced
with permission. Copyright 2016, Springer.

Kaleidoscope is a visual “DIFF” tool that can identify differences between two

text files, two images, and two directories. We present it here as a example of what

a GUI Jasper toolkit app can be, and Figures 8.2 through 8.5 contain a set of

microbiome map images that have been loaded into it. The Kaleidoscope tool allows

167

for a visual inspection of two images side by side, but we see a Jasper toolkit app that

can interactively do what Kaleidoscope is doing: zoom into the images and clicking on

a pixel to get an inspector with copious details about the genome that was clicked. The

inspector would contain data from multiple sources, and could present the user with

data about the microbe’s pathogenicity, shape, taxonomic lineage, metabolism, etc.

The screenshots presented in Figures 8.2 through 8.5 are used as an example of what

the interactivity model for the Jasper toolkit could be like, and while Kaleidoscope

is great to prototype such a tool, it was not meant to explore microbiome maps as it

is just a “DIFF” tool designed for tracking changes (but it does give us a glimpse of

what could be built).

Figure 8.2: Two Maps Side by Side. A visual DIFF of two microbiome
maps for a HMP buccal mucosa (left) and anterior nares (right) samples.

Exploring Optimal Orderings

Establishing a linear order for a tree structure is an important step for setting

the order that microbial strains are laid out in the microbiome map using the Hilbert

168

Figure 8.3: Difference Slices. Overlaid differences in Kaleidoscope of
two microbiome maps for a HMP buccal mucosa (left) and anterior nares
(right) samples. The two images are layered on top of each other, and the
pendulum in the middle (black line) allows the user to see what is “behind”
(right image) and “above” (left image) the two images.

curve. The set of terminal nodes in the taxonomic tree (microbial strains) do not

have a “start” or “finish”, nor does it have a “right” side or a “left” side. Different

orderings of this set can result by performing a permutation of tree’s nodes, or of any

node, at any given level of the taxonomic tree. Algorithms for finding an optimal

order have been proposed such as the one described in [17], but they rely on the tree

having a certain property such as it being a binary tree, and for a distance measure

169

Figure 8.4: Color Difference. A Kaleidoscope color difference image of
two microbiome maps for a HMP buccal mucosa (left) and anterior nares
(right) samples. The two images are layered on top of each other two display
what is common on both images (green) and what is different (dark areas),
with red-tinted areas being what is unique to the left image, and blue-tinted
images being what is unique to the right image.

to be calculated. We can continue to explore this space in future work, and look into

ways of representing taxonomic trees as binary trees such that we can establish a

linear order.

Recall that in the labeled ordering 5.3.1, each taxon is assigned a condition that

best “represents” it (a condition given by the user). A taxon is grouped under con-

170

Figure 8.5: Zoom. Kaleidoscope can zoom into the difference image from
Figure 8.4, and users can navigate by using the navigation map in the top-
right.

dition i if its average abundance is highest in the group of sample corresponding to

condition i. One issue with this construction is that there are taxa that should belong

to another condition on account of being “lowest” for that condition, or that “should”

belong to another condition owing to them being prominent biomarkers for that con-

dition. More work here is needed to allow for representative taxa to be anchored to

a user-specified condition, or to a condition that is supported by the literature —

171

this could be achieved by automatically connecting Jasper to a reference annotation

authority database that contains such information.

8.4.3 Variations on the Theme of Amber

Finally, the Amber framework from Chapter 7 is a machine learning framework

for characterizing microbiomes using microbiome maps. The model proves quite ef-

fective at discriminating the HMP body sites, and we show that it outperforms other

models even when we select a smaller number of genomes as in Section 7.4.2. The

model does not perform as well with the smaller 16S CKD dataset 7.4.3, and part of

the future work for this project is to create an adaptive model that takes into account

the number of genomes that are being profiled. The current model architecture in

Section 7.3.2 contains a lot of convolutional-pooling layer pairs that might not be

suitable for abundance profiles with a smaller amount of profiled genomes, and an

enhancement to the implementation would be a architecture that grows and shrinks

depending on the size of the profile (the number of genomes), so that profiles with a

smaller set of genomes would use a less-complex model, i.e., a model with a smaller

set of convolutional-pooling layer pairs.

We also want to explore the area of data augmentation for time-series analyses

by means of generative adversarial nets (GAN) [55]. In some time-series analyses,

data points are not able to be collected, and by training a GAN with a set of related

microbiome maps, we could explore how to create completely synthetic samples to

interpolate between two time points. A GAN could also be used as the basis for a

simulator that generates simulated community profiles for benchmarking purposes, a

valuable tool that could be useful for researchers doing tool development.

172

BIBLIOGRAPHY

[1] Kjersti Aagaard, Jun Ma, Kathleen M. Antony, Radhika Ganu, Joseph Pet-
rosino, and James Versalovic. The Placenta Harbors a Unique Microbiome.
Science Translational Medicine, 6(237):237ra65–237ra65, May 2014.

[2] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems,
2015. Software available from tensorflow.org.

[3] Jennifer Ackerman. The Ultimate Social Network. Scientific American,
306(6):36–43, June 2012.

[4] Gabriel Altay. The Hilbert Curve Python package. https://pypi.org/
project/hilbertcurve. Accessed: 2020-01-25.

[5] Amazon Web Services. Amazon Deep Learning AMI. https://aws.
amazon.com/machine-learning/amis. Accessed: 2020-02-17.

[6] Amazon Web Services. Amazon EMR. https://aws.amazon.com/emr.
Accessed: 2018-11-16.

[7] Amazon Web Services. Amazon RedShift. https://aws.amazon.com/
redshift. Accessed: 2020-02-18.

[8] Amazon Web Services. Amazon Simple Storage Service, S3. https://aws.
amazon.com/s3. Accessed: 2018-11-16.

[9] Amazon Web Services. Amazon Web Services. https://aws.amazon.com.
Accessed: 2019-11-17.

[10] Amazon Web Services. EC2 Spot Market. https://aws.amazon.com/
ec2/spot. Accessed: 2018-11-16.

[11] Amazon.com Inc. Amazon Web Services. https://aws.amazon.com. Ac-
cessed: 2018-10-17.

[12] Simon Anders. Visualization of Genomic Data with the Hilbert Curve. Bioin-
formatics (Oxford, England), 25(10):1231–1235, May 2009.

[13] Wilhelm J Ansorge. Next-generation DNA Sequencing Techniques. New biotech-
nology, 25(4):195–203, April 2009.

173

https://pypi.org/project/hilbertcurve
https://pypi.org/project/hilbertcurve
https://aws.amazon.com/machine-learning/amis
https://aws.amazon.com/machine-learning/amis
https://aws.amazon.com/emr
https://aws.amazon.com/redshift
https://aws.amazon.com/redshift
https://aws.amazon.com/s3
https://aws.amazon.com/s3
https://aws.amazon.com
https://aws.amazon.com/ec2/spot
https://aws.amazon.com/ec2/spot
https://aws.amazon.com

[14] Genta Aoki and Yasubumi Sakakibara. Convolutional Neural Networks for
Classification of Alignments of Non-Coding RNA Sequences. Bioinformatics
(Oxford, England), 34(13):i237–i244, July 2018.

[15] Alla Aroutcheva, Jose Simoes, Kian Behbakht, and Sebastian Faro. Gardnerella
vaginalis Isolated from Patients with Bacterial Vaginosis and from Patients
with Healthy Vaginal Ecosystems. Clinical Infectious Diseases, 33(7):1022–
1027, 2001.

[16] Michael Bader. Space-Filling Curves: An Introduction with Applications in
Scientific Computing. Springer Publishing Company, Incorporated, 2012.

[17] Ziv Bar-Joseph, David K Gifford, and Tommi S Jaakkola. Fast Optimal Leaf Or-
dering for Hierarchical Clustering. Bioinformatics, 17(suppl 1):S22–S29, 2001.

[18] John J. Bartholdi and Loren K Platzman. Heuristics Based on Spacefilling
Curves for Combinatorial Problems in Euclidean Space. Management Science,
34(3):291–305, March 1988.

[19] Roeland Berendsen, Corne Pieterse, and Peter Bakker. The Rhizosphere Mi-
crobiome and Plant Health. Trends in Plant Science, 17(8):478–486, 2012.

[20] Gabriele Berg, Armin Erlacher, and Martin Grube. The Edible Plant Micro-
biome: Importance and Health Issues. Principles of Plant-Microbe Interactions,
1(1):419–426, 2014.

[21] Charles Blatti III, Amin Emad, Matthew J Berry, Lisa Gatzke, Milt Epstein,
Daniel Lanier, Pramod Rizal, Jing Ge, Xiaoxia Liao, Omar Sobh, Mike Lam-
bert, Corey S Post, Jinfeng Xiao, Peter Groves, Aidan T Epstein, Xi Chen, Sub-
hashini Srinivasan, Erik Lehnert, Krishna R Kalari, Liewei Wang, Richard M
Weinshilboum, Jun S Song, C Victor Jongeneel, Jiawei Han, Umberto Ra-
vaioli, Nahil Sobh, Colleen B Bushell, and Saurabh Sinha. Knowledge-guided
Analysis of “Omics” Data using the KnowEnG Cloud Platform. PLoS biology,
18(1):e3000583, January 2020.

[22] Christopher Bowles, Liang Chen, Ricardo Guerrero, Paul Bentley, Roger Gunn,
Alexander Hammers, David Alexander Dickie, Maria Valdés Hernández, Joanna
Wardlaw, and Daniel Rueckert. GAN Augmentation: Augmenting Training
Data using Generative Adversarial Networks. ArXiv, October 2018.

[23] Gary Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools,
2000.

[24] Nicolas L Bray, Harold Pimentel, Páll Melsted, and Lior Pachter. Near-optimal
Probabilistic RNA-seq Quantification. Nature biotechnology, 34(5):525–527,
May 2016.

[25] M. Luz Calle. Statistical Analysis of Metagenomics Data. Genomics & Infor-
matics, 17(1), March 2019.

174

[26] Gregory Caporaso, Christian L Lauber, William A Walters, Donna Berg-Lyons,
James Huntley, Noah Fierer, Sarah M Owens, Jason Betley, Louise Fraser,
Markus Bauer, Niall Gormley, Jack A Gilbert, Geoff Smith, and Rob Knight.
Ultra-high-throughput Microbial Community Analysis on the Illumina HiSeq
and MiSeq Platforms. The ISME journal, 6(8):1621–1624, March 2012.

[27] Giuseppe Cattaneo, Raffaele Giancarlo, Stefano Piotto, Umberto Ferraro
Petrillo, Gianluca Roscigno, and Luigi Di Biasi. MapReduce in Computational
Biology - A Synopsis. In Advances in Artificial Life, Evolutionary Computation,
and Systems Chemistry, pages 53–64. Springer, Cham, October 2016.

[28] Aleksandra Checinska, Alexander J. Probst, Parag Vaishampayan, James
R. White, Deepika Kumar, Victor G. Stepanov, George E. Fox, Henrik R.
Nilsson, Duane L. Pierson, Jay Perry, and Kasthuri Venkateswaran. Micro-
biomes of the Dust Particles Collected from the International Space Station
and Spacecraft Assembly Facilities. BMC Microbiome, 1(1), 2015.

[29] T Chen, Z Chen, Q Shi, and X Huang. Road Marking Detection and Classi-
fication Using Machine Learning Algorithms. Intelligent Vehicles Symposium
(IV), 2015 IEEE, pages 617–621, 2015.

[30] Junghee Cho, Junseok Kwon, and Byung-Woo Hong. Adaptive Regularization
via Residual Smoothing in Deep Learning Optimization. IEEE Access, 2019.

[31] Francois Chollet. Deep Learning with Python. Manning Publications Co., USA,
1st edition, 2017.

[32] James R Cole et al. Ribosomal Database Project - Data and Tools for High
Throughput rRNA Analysis. Nucleic Acids Research, 42(D1):D633–D642, 2014.

[33] The Integrative HMP iHMP Research Network Consortium. The Integrative
Human Microbiome Project: Dynamic Analysis of Microbiome-Host Omics
Profiles during Periods of Human Health and Disease. Cell Host & Microbe,
16(3):276–289, September 2014.

[34] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing
on Large Clusters. Communications of the ACM, 51(1):107–113, January 2008.

[35] Xuegong Deng, Xuemei Deng, Simon Rayner, Xiangdong Liu, Qingling Zhang,
Yupu Yang, and Ning Li. DHPC: A New Tool to Express Genome Structural
Features. Genomics, 91(5):476 – 483, 2008.

[36] Elif Derya Übeyli. Recurrent Neural Networks Employing Lyapunov Exponents
for Analysis of ECG Signals. Expert Systems with Applications, 37(2):1192–
1199, March 2010.

[37] Todd DeSantis, Hugenholtz Philip, Neils Larsen, Mark Rojas, Eoin Brodie,
Keith Keller, Thomas Huber, Daniel Dalevi, Ping Hu, and Gary Andersen.

175

Greengenes, a Chimera-checked 16S rRNA Gene Database and Workbench
Compatible with ARB. Applied and Environmental Microbiology, 72(7):5069–
5072, 2006.

[38] Joseph C Devlin, Thomas Battaglia, Martin J Blaser, and Kelly V Ruggles.
WHAM!: A Web-based Visualization Suite for User-defined Analysis of Metage-
nomic Shotgun Sequencing Data. BMC genomics, 19(1):493, June 2018.

[39] Sorin Drăghici. Data Analysis Tools for DNA Microarrays. Chapman & Hal-
l/CRC Mathematical & Computational Biology. Taylor & Francis, 2003.

[40] Xinxin Du and Kok Kiong Tan. Comprehensive and Practical Vision System
for Self-Driving Vehicle Lane-level Localization. IEEE Trans. Image Processing,
25(5):2075–2088, 2016.

[41] Andre Esteva, Brett Kuprel, Roberto A Novoa, Justin Ko, Susan M Swetter,
Helen M Blau, and Sebastian Thrun. Dermatologist-level Classification of Skin
Cancer with Deep Neural Networks. Nature, 542(7639):115–118, February 2017.

[42] European Bioinformatics Institute (EMBL-EBI). Ensembl Bacteria. https:
//bacteria.ensembl.org/index.html. Accessed: 2018-10-15.

[43] European Bioinformatics Institute (EMBL-EBI). Ensembl Genomes. http:
//ensemblgenomes.org. Accessed: 2018-10-17.

[44] European Bioinformatics Institute (EMBL-EBI). Pan Taxonomic Compara.
http://ensemblgenomes.org/info. Accessed: 2018-10-17.

[45] Nathaniel Fairfield and Chris Urmson. Traffic Light Mapping and Detection.
Google, pages 1–6, February 2011.

[46] Diego Fioravanti, Ylenia Giarratano, Valerio Maggio, Claudio Agostinelli,
Marco Chierici, Giuseppe Jurman, and Cesare Furlanello. Phylogenetic Con-
volutional Neural Networks in Metagenomics. BMC bioinformatics, 19(Suppl
2):49, March 2018.

[47] Jean-loup Gailly and Mark Adler. GNU GZIP. https://www.gzip.org.
Accessed: 2018-10-23.

[48] Hasindu Gamaarachchi, Sri Parameswaran, and Martin Smith. Featherweight
Long Read Alignment Using Partitioned Reference Indexes. bioRxiv, page
386847, August 2018.

[49] Dirk Gevers, Rob Knight, Joseph F Petrosino, Katherine Huang, Amy L
McGuire, Bruce W Birren, Karen E Nelson, Owen White, Barbara A Methé,
and Curtis Huttenhower. The Human Microbiome Project: A Community Re-
source for the Healthy Human Microbiome. PLoS biology, 10(8), August 2012.

176

https://bacteria.ensembl.org/index.html
https://bacteria.ensembl.org/index.html
http://ensemblgenomes.org
http://ensemblgenomes.org
http://ensemblgenomes.org/info
https://www.gzip.org

[50] Dirk Gevers, Mihai Pop, Patrick D Schloss, and Curtis Huttenhower. Bioin-
formatics for the Human Microbiome Project. PLoS Computational Biology,
8(11):e1002779, 2012.

[51] Molly K. Gibson, Bin Wang, Sara Ahmadi, Carey-Ann D. Burnham, Phillip I.
Tarr, Barbara B. Warner, and Gautam Dantas. Developmental Dynamics of the
Preterm Infant Gut Microbiota and Antibiotic Resistome. Nature Microbiology,
1(4):16024, March 2016.

[52] GitHub, Inc. GitHub, Hosting and Version Control using Git. https://
github.com. Accessed: 2018-11-15.

[53] Joachim Goedhart. PlotTwist: A Web App for Plotting and Annotating Con-
tinuous Data. PLoS biology, 18(1):e3000581, January 2020.

[54] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

[55] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative Adver-
sarial Nets. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and
K. Q. Weinberger, editors, Advances in Neural Information Processing Systems
27, pages 2672–2680. Curran Associates, Inc., 2014.

[56] Google, LLC. Google maps. https://www.google.com/maps. Accessed:
2018-11-17.

[57] Chiara Gorni, Donatella Allemand, Dario Rossi, and Paola Mariani. Micro-
biome Profiling in Fresh-Cut Products. Trends in Food Science and Technology,
46(2):295–301, 2015.

[58] Hadrien Gourlé, Oskar Karlsson-Lindsjö, Juliette Hayer, and Erik Bongcam-
Rudloff. Simulating Illumina Metagenomic Data with InSilicoSeq. Bioinfor-
matics (Oxford, England), July 2018.

[59] Zuguang Gu, Roland Eils, and Matthias Schlesner. HilbertCurve - An R/Bio-
conductor Package for High-Resolution Visualization of Genomic Data. Bioin-
formatics, 32(15):2372–2374, 2016.

[60] Runxin Guo, Yi Zhao, Quan Zou, Xiaodong Fang, and Shaoliang Peng. Bioin-
formatics Applications on Apache Spark. GigaScience, 7(8), August 2018.

[61] Zhe Guo, Xiang Li, Heng Huang, Ning Guo, and Quanzheng Li. Medical Image
Segmentation Based on Multi-Modal Convolutional Neural Network: Study on
Image Fusion Schemes. arXiv.org, October 2017.

[62] Matthias G Haberl, Christopher Churas, Lucas Tindall, Daniela Boassa,
Sébastien Phan, Eric A Bushong, Matthew Madany, Raffi Akay, Thomas J
Deerinck, Steven T Peltier, and Mark H Ellisman. CDeep3M-Plug-and-Play

177

https://github.com
https://github.com
http://www.deeplearningbook.org
https://www.google.com/maps

cloud-based deep learning for image segmentation. Nature methods, 15(9):677–
680, September 2018.

[63] Henry J Haiser, David B Gootenberg, Kelly Chatman, Gopal Sirasani, Emily P
Balskus, and Peter J Turnbaugh. Predicting and Manipulating Cardiac Drug
Inactivation by the Human Gut Bacterium Eggerthella lenta. Science (New
York, NY), 341(6143):295–298, 2013.

[64] Mohammad Havaei, Axel Davy, David Warde-Farley, Antoine Biard, Aaron
Courville, Yoshua Bengio, Chris Pal, Pierre-Marc Jodoin, and Hugo Larochelle.
Brain Tumor Segmentation with Deep Neural Networks. Medical image analy-
sis, 35:18–31, January 2017.

[65] Hawkins, R David, Hon, Gary C, and Ren, Bing. Next-generation Genomics:
an Integrative Approach. Nature reviews Genetics, 11(7):476–486, June 2010.

[66] David Hilbert. Über die stetige Abbildung einer Linie auf ein Flächenstück. In
Dritter Band: Analysis · Grundlagen der Mathematik · Physik Verschiedenes,
pages 1–2. Springer, Berlin, Heidelberg, 1935.

[67] Robert Holt and Steven Jones. The New Paradigm of Flow Cell Sequencing.
Genome Research, 18(1):839–846, 2008.

[68] Benlin Hu, Cheng Lei, Dong Wang, Shu Zhang, and Zhenyu Chen. A Prelimi-
nary Study on Data Augmentation of Deep Learning for Image Classification.
CoRR, cs.CV, 2019.

[69] Xuegang Hu and Hongguang Yang. DRU-net - A Novel U-net for Biomedical
Image Segmentation. IET Image Processing, 14(1):192–200, 2020.

[70] Liren Huang, Jan Krüger, and Alexander Sczyrba. Analyzing Large Scale Ge-
nomic Data on the Cloud with Sparkhit. Bioinformatics (Oxford, England),
34(9):1457–1465, 2018.

[71] Human Microbiome Project Consortium. A Framework for Human Microbiome
Research. Nature, 486(7402):215–221, June 2012.

[72] Curtis Huttenhower, Dirk Gevers, Rob Knight, Sahar Abubucker, Jonathan
Badger, Asif Chinwalla, Heather Huot Creasy, Earl AM, Michael Fitzgerald,
Robert Fulton, Michelle Giglio, Kymberlie Pepin, Lobos EA, Ramana Madupu,
Vincent Magrini, John Martin, Makedonka Mitreva, Muzny DM, Sodergren
EJ, and Owen White. Structure, Function and Diversity of the Healthy Human
Microbiome. Nature, 486:207–214, 06 2012.

[73] Hypergiant, LLC. Kaleidoscope, Spot the Differences, Merge in Seconds.
https://www.kaleidoscopeapp.com. Accessed: 2020-4-10.

[74] Illumina, Inc. Illumina Sequencing Platforms. https://www.illumina.
com/systems/sequencing-platforms.html. Accessed: 2020-4-08.

178

https://www.kaleidoscopeapp.com
https://www.illumina.com/systems/sequencing-platforms.html
https://www.illumina.com/systems/sequencing-platforms.html

[75] Ishan Jindal, Matthew S Nokleby, and Xuewen Chen. Learning Deep Networks
from Noisy Labels with Dropout Regularization. 16th IEEE International Con-
ference on Data Mining (ICDM), 1(1):967–972, 2016.

[76] Ji Young Jung, Se Hee Lee, Hyun Mi Jin, Yoonsoo Hahn, Eugene Madsen,
and Che Ok Jeon. Metatranscriptomic Analysis of Lactic Acid Bacterial Gene
Expression During Kimchi Fermentation. International Journal of Food Micro-
biology, 163(2):171–179, 2013.

[77] Daniel A Keim. Pixel-Oriented Visualization Techniques for Exploring Very
Large Data Bases. Journal of Computational and Graphical Statistics, 5(1):58–
77, February 1996.

[78] Kidney Disease Improving Global Outcomes Foundation. Kidney Disease Im-
proving Global Outcomes Guidelines. https://kdigo.org/guidelines.
Accessed: 2018-11-17.

[79] Diederik Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimiza-
tion. ArXiv, 1(1), 2014.

[80] Robert A Koeth, Zeneng Wang, Bruce S Levison, Jennifer A Buffa, Elin Org,
Brendan T Sheehy, Earl B Britt, Xiaoming Fu, Yuping Wu, Lin Li, Jonathan D
Smith, Joseph A DiDonato, Jun Chen, Hongzhe Li, Gary D Wu, James D Lewis,
Manya Warrier, J Mark Brown, Ronald M Krauss, W H Wilson Tang, Fred-
eric D Bushman, Aldons J Lusis, and Stanley L Hazen. Intestinal Microbiota
Metabolism of L-Carnitine, a Nutrient in Red Meat, Promotes Atherosclerosis.
Nature medicine, 19(5):576–585, May 2013.

[81] Tadashi Kondo, Junji Ueno, and Shoichiro Takao. Medical Image Analysis
of Brain X-ray CT Images By Deep GMDH-Type Neural Network. JRNAL,
3(1):17–23, 2016.

[82] Martin I Krzywinski, Jacqueline E Schein, Inanc Birol, Joseph Connors, Randy
Gascoyne, Doug Horsman, Steven J Jones, and Marco A Marra. Circos: An
Information Aesthetic for Comparative Genomics. Genome Research, 2009.

[83] Myron La Duc, Wayne Nicholson, Roger Kern, and Kasthuri Venkateswaran.
Microbial Characterization of the Mars Odyssey Spacecraft and its Encapsula-
tion Facility. Environmental Microbiology, 5(10):977–985, 2003.

[84] Ben Langmead and Steven L Salzberg. Fast Gapped-Read Alignment with
Bowtie 2. Nature methods, 9(4):357–359, 2012.

[85] Ben Langmead, Michael C Schatz, Jimmy Lin, Mihai Pop, and Steven L
Salzberg. Searching for SNPs with Cloud Computing. Genome biology, 10(11),
2009.

179

https://kdigo.org/guidelines

[86] Ben Langmead, Cole Trapnell, Mihai Pop, and Steven L Salzberg. Ultrafast and
Memory-Efficient Alignment of Short DNA Sequences to the Human Genome.
Genome biology, 10(3):R25, 2009.

[87] Nathan LaPierre, Chelsea J-T Ju, Guangyu Zhou, and Wei Wang. MetaPheno:
A Critical Evaluation of Deep Learning and Machine Learning in Metagenome-
Based Disease Prediction. Methods (San Diego, Calif), 166:74–82, August 2019.

[88] Malo Le Boulch, Patrice Déhais, Sylvie Combes, and Géraldine Pascal. The
MACADAM database - A MetAboliC Pathways Database for Microbial Taxo-
nomic Groups for Mining Potential Metabolic Capacities of Archaeal and Bac-
terial Taxonomic Groups. Database, The Journal of Biological Databases and
Curation, V2019(baz049):1–14, 2019.

[89] Yann LeCun, Bernhard E. Boser, John S. Denker, Donnie Henderson,
Richard E. Howard, Wayne E. Hubbard, and Lawrence D. Jackel. Backprop-
agation Applied to Handwritten Zip Code Recognition. Neural Computation,
1(4):541–551, 1989.

[90] Frederick Lee, Douglas Rusch, Frank Stewart, Heather Mattila, and Irene New-
ton. Saccharide Breakdown and Fermentation by the Honey Bee Gut Micro-
biome. Environmental Microbiology, 17(3):796–815, 2014.

[91] Pirmin Lemberger. On Generalization and Regularization in Deep Learning.
CoRR, 2017.

[92] Ivica Letunic and Peer Bork. Interactive Tree of Life (ITOL) v3: An Online
Tool for the Display and Annotation of Phylogenetic and Other Trees. Nucleic
Acids Research, 44:gkw290, 04 2016.

[93] Heng Li, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan, Nils Homer,
Gabor Marth, Goncalo Abecasis, Richard Durbin, and 1000 Genome Project
Data Processing Subgroup. The Sequence Alignment/Map format and SAM-
tools. Bioinformatics (Oxford, England), 25(16):2078–2079, August 2009.

[94] Xiaqing Li, Guangyan Zhang, H. Howie Huang, Zhufan Wang, and Weimin
Zheng. Performance Analysis of GPU-based Convolutional Neural Networks.
45th International Conference on Parallel Processing, 1(1), 2016.

[95] Martin S Lindner, Benjamin Strauch, Jakob M Schulze, Simon H Tausch, Pi-
otr W Dabrowski, Andreas Nitsche, and Bernhard Y Renard. HiLive: Real-
time Mapping of Illumina Reads while Sequencing. Bioinformatics (Oxford,
England), 33(6):917–319, March 2017.

[96] Jennifer Lu, Florian P Breitwieser, Peter Thielen, and Steven L Salzberg.
Bracken: Estimating Species Abundance in Metagenomics Data. PeerJ Com-
puter Science, 3:e104, 2017.

180

[97] MacLean, D, Jones, J, and Studholme, D. Application of “Next-generation”
Sequencing Technologies to Microbial Genetics. Nature Reviews Microbiology,
7(1):96–97, 2009.

[98] Anant Madabhushi and George Lee. Image Analysis and Machine Learning
in Digital Pathology - Challenges and Opportunities. Medical image analysis,
33:170–175, 2016.

[99] Mardis, Elaine R. Next-generation DNA Sequencing Methods. Annual review
of genomics and human genetics, 9(1):387–402, 2008.

[100] J. Bull Matthew and Nigel Plummer. Part 1: The Human Gut Microbiome in
Health and Disease. Integrative Medicine: A Clinician’s Journal, 13(6):17–22,
2014.

[101] Emeran Mayer, Tor Savidge, and Robert Shulman. Brain–Gut Microbiome
Interactions and Functional Bowel Disorders. Gastroenterology, 146(6):1500–
1512, 2014.

[102] Joshua McCann, Ahmed Elolimy, and Juan Loor. Rumen Microbiome, Probi-
otics, and Fermentation Additives. Veterinary Clinics: Food Animal Practice,
33(3):539–553, 2017.

[103] Alexa McIntyre, Rachid Ounit, Ebrahim Afshinnekoo, Robert J Prill, Elizabeth
Hénaff, Noah Alexander, Samuel S Minot, David Danko, Jonathan Foox, Sofia
Ahsanuddin, Scott Tighe, Nur A Hasan, Poorani Subramanian, Kelly Moffat,
Shawn Levy, Stefano Lonardi, Nick Greenfield, Rita R Colwell, Gail L Rosen,
and Christopher E Mason. Comprehensive Benchmarking and Ensemble Ap-
proaches for Metagenomic Classifiers. Genome biology, 18(1):182, September
2017.

[104] Jean Pierre Menard, Florence Fenollar, Mireille Henry, Florence Bretelle,
and Didier Raoult. Molecular Quantification of Gardnerella vaginalis and
Atopobium vaginae Loads to Predict Bacterial Vaginosis. academic.oup.com,
47(1):33–43, 2008.

[105] Michael L. Metzker. Sequencing Technologies - The Next Generation. Nature
reviews Genetics, 11(1):31–46, 2010.

[106] Microsoft Corporation. Microsoft Excel. https://products.office.
com/en-us/excel. Accessed: 2020-01-14.

[107] Gordon E. Moore. Cramming More Components onto Integrated Circuits. Elec-
tronics, 38(8):114, 1965.

[108] Ali Mortazavi, Brian A Williams, Kenneth McCue, Lorian Schaeffer, and Bar-
bara Wold. Mapping and Quantifying Mammalian Transcriptomes by RNA-Seq.
Nature methods, 5(7):621–628, July 2008.

181

https://products.office.com/en-us/excel
https://products.office.com/en-us/excel

[109] Daniel J Nasko, Sergey Koren, Adam M Phillippy, and Todd J Treangen. Ref-
Seq Database Growth Influences the Accuracy of k-mer-based Lowest Common
Ancestor Species Identification. Genome biology, 19(1):165, October 2018.

[110] National Center for Biotechnology Information, U.S. National Library of
Medicine. RefSeq Growth Statistics. https://www.ncbi.nlm.nih.gov/
refseq/statistics. Accessed: 2020-02-12.

[111] National Human Genome Research Institute. DNA Sequencing Costs: Data
from the NHGRI Genome Sequencing Program (GSP). https://www.
genome.gov/sequencingcostsdata. Accessed: 2020-4-13.

[112] Thanh Hai Nguyen, Edi Prifti, Yann Chevaleyre, Nataliya Sokolovska, and
Jean-Daniel Zucker. Disease Classification in Metagenomics with 2D Embed-
dings and Deep Learning. arXiv.org, June 2018.

[113] Nuala A O’Leary, Mathew W Wright, J Rodney Brister, Stacy Ciufo, Diana
Haddad, Richard McVeigh, Bhanu Rajput, Barbara Robbertse, Brian Smith-
White, Danso Ako-Adjei, Alexander Astashyn, Azat Badretdin, Yiming Bao,
Olga Blinkova, Vyacheslav Brover, Vyacheslav Chetvernin, Jinna Choi, Eric
Cox, Olga D Ermolaeva, Catherine M Farrell, Tamara Goldfarb, Tripti Gupta,
Daniel H Haft, Eneida Hatcher, Wratko Hlavina, Vinita S Joardar, Vamsi K
Kodali, Wenjun Li, Donna R Maglott, Patrick Masterson, Kelly M McGarvey,
Michael R Murphy, Kathleen O’Neill, Shashikant Pujar, Sanjida H Rangwala,
Daniel Rausch 0002, Lillian D Riddick, Conrad L Schoch, Andrei Shkeda, Su-
san S Storz, Hanzhen Sun, Françoise Thibaud-Nissen, Igor Tolstoy, Raymond E
Tully, Anjana R Vatsan, Craig Wallin, David Webb, Wendy Wu, Melissa J
Landrum, Avi Kimchi, Tatiana A Tatusova, Michael Dicuccio, Paul A Kitts,
Terence D Murphy, and Kim D Pruitt. Reference sequence (RefSeq) Database
at NCBI - Current Status, Taxonomic Expansion, and Functional Annotation.
Nucleic Acids Research, 44(D1):D733–45, 2016.

[114] Travis Oliphant. NumPy: A guide to NumPy. Trelgol Publishing, 2006. Ac-
cessed: 2018-04-17.

[115] Brian Ondov, Nicholas Bergman, and Adam Phillippy. Interactive Metagenomic
Visualization in a Web Browser. BMC Bioinformatics, 1(1), 2011.

[116] Ahmet Haydar Ornek and Murat Ceylan. Comparison of Traditional Transfor-
mations for Data Augmentation in Deep Learning of Medical Thermography.
42nd International Conference on Telecommunications and Signal Processing
(TSP), 1(1):191–194, 2019.

[117] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine Learning in Python . Journal of Machine Learning Research, 12:2825–
2830, 2011.

182

https://www.ncbi.nlm.nih.gov/refseq/statistics
https://www.ncbi.nlm.nih.gov/refseq/statistics
https://www.genome.gov/sequencingcostsdata
https://www.genome.gov/sequencingcostsdata

[118] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Classifier Compar-
ison., 2020. Accessed: 2020-02-14.

[119] Catia Pinto, Diogo Pinho, Remy Cardoso, Valeria dos Santos Custodio, Joana
Fernandes, Susana Sousa, Miguel Pinheiro, Conceicao Egas, and Ana Gomes.
Wine Fermentation Microbiome: A Landscape from Different Portuguese Wine
Appellations. Frontiers in Microbiology, 1(1), 2015.

[120] Plotly Technologies Inc. Plotly: Collaborative Data Science. https://plot.
ly, 2015.

[121] Manuel Porcar, Katherine Louie, Suzanne Kosina, Marc W. Van Goethem,
Benjamin Bowen, Kristie Tanner, and Trent Northen. Microbial Ecology on
Solar Panels in Berkeley, CA, United States. Frontiers in Microbiology, 9:3043,
12 2018.

[122] Christian Quast et al. The SILVA ribosomal RNA gene database project:
improved data processing and web-based tools. Nucleic Acids Research,
41(D1):D590–D596, 11 2012.

[123] R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria, 2020.

[124] Ravi Ranjan, Asha Rani, Ahmed Metwally, Halvor S McGee, and David L
Perkins. Analysis of the Microbiome: Advantages of Whole Genome Shotgun
versus 16S Amplicon Sequencing. Biochemical and biophysical research commu-
nications, 469(4):967–977, January 2016.

[125] Zeehasham Rasheed and Huzefa Rangwala. A Map-Reduce Framework for Clus-
tering Metagenomes. In International Symposium on Parallel & Distributed
Processing, pages 549–558. IEEE, 2013.

[126] Sanjay Rathee and Arti Kashyap. StreamAligner: A Streaming-based Sequence
Aligner on Apache Spark. Journal of Big Data, 5(1):8, December 2018.

[127] Adam Roberts, Harvey Feng, and Lior Pachter. Fragment Assignment in the
Cloud with eXpress-D. BMC bioinformatics, 14(1), 2013.

[128] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional
Networks for Biomedical Image Segmentation. In Medical Image Computing
and Computer-Assisted Intervention – MICCAI 2015, pages 234–241. Springer,
Cham, October 2015.

[129] RStudio Team. RStudio: Integrated Development Environment for R, 2015.

[130] Eder Santana and George Hotz. Learning a Driving Simulator. arXiv.org,
August 2016.

183

https://plot.ly
https://plot.ly

[131] Eric W Sayers, Richa Agarwala, Evan Bolton, J Rodney Brister, Kathi Canese,
Karen Clark, Ryan Connor, Nicolas Fiorini, Kathryn Funk, Timothy Hefferon,
J Bradley Holmes, Sunghwan Kim 0002, Avi Kimchi, Paul A Kitts, Stacy Lath-
rop, Zhiyong Lu, Thomas L Madden, Aron Marchler-Bauer, Lon Phan, Va-
lerie A Schneider, Conrad L Schoch, Kim D Pruitt, and James Ostell. Database
Resources of the National Center for Biotechnology Information. Nucleic Acids
Research, 47:D23, 2019.

[132] Lorian Schaeffer, Harold Pimentel, Nicolas Bray, Páll Melsted, and Lior Pachter.
Pseudoalignment for Metagenomic Read Assignment. arXiv.org, October 2015.

[133] School of Computing and Information Sciences. Computer and information
sciences, florida international university. https://www.cis.fiu.edu. Ac-
cessed: 2018-10-23.

[134] Jay Shendure and Hanlee Ji. Next-generation DNA Sequencing. Nature biotech-
nology, 26(10):1135–1145, October 2008.

[135] Connor Shorten and Taghi M Khoshgoftaar. A Survey on Image Data Aug-
mentation for Deep Learning. J. Big Data, 6(1):60, 2019.

[136] Panagiotis Stalidis, Theodoros Semertzidis, and Petros Daras. Examining Deep
Learning Architectures for Crime Classification and Prediction. arXiv.org, De-
cember 2018.

[137] Daniel Strigl, Klaus Kofler, and Stefan Podlipnig. Performance and scalability
of GPU-based convolutional neural networks. 18th Euromicro Conference on
Parallel, Distributed and Network-based Processing, 1(1), 2010.

[138] Su, Zhenqiang, Labaj, Pawel P, Li, Sheng, Thierry-Mieg, Jean, Thierry-Mieg,
Danielle, Shi, Wei, Wang, Charles, Schroth, Gary P, Setterquist, Robert A,
Thompson, John F, Jones, Wendell D, Xiao, Wenzhong, Xu, Weihong, Jensen,
Roderick V, Kelly, Reagan, Xu, Joshua, Conesa, Ana, Furlanello, Cesare,
Gao, Hanlin, Hong, Huixiao, Jafari, Nadereh, Letovsky, Stan, Liao, Yang, Lu,
Fei, Oakeley, Edward J, Peng, Zhiyu, Praul, Craig A, Santoyo-Lopez, Javier,
Scherer, Andreas, Shi, Tieliu, Smyth, Gordon K, Staedtler, Frank, Sykacek,
Peter, Tan, Xin-Xing, Thompson, E Aubrey, Vandesompele, Jo, Wang, May D,
Wang, Jian, Wolfinger, Russell D, Zavadil, Jiri, Auerbach, Scott S, Bao, Wen-
jun, Binder, Hans, Blomquist, Thomas, Brilliant, Murray H, Bushel, Pierre R,
Cain, Weimin, Catalano, Jennifer G, Chang, Ching-Wei, Chen, Tao, Chen,
Geng, Chen, Rong, Chierici, Marco, Chu, Tzu-Ming, Clevert, Djork-Arne,
Deng, Youping, Derti, Adnan, Devanarayan, Viswanath, Dong, Zirui, Dopazo,
Joaqúın, Du, Tingting, Fang, Hong, Fang, Yongxiang, Fasold, Mario, Fernan-
dez, Anita, Fischer, Matthias, Furio-Tari, Pedro, Fuscoe, James C, Caimet,
Florian, Gaj, Stan, Gandara, Jorge, Gao, Huan, Ge, Weigong, Gondo, Yoichi,
Gong, Binsheng, Gong, Meihua, Gong, Zhuolin, Green, Bridgett, Guo, Chao,
Guo, Lei, Guo, Li-Wu, Hadfield, James, Hellemans, Jan, Hochreiter, Sepp,

184

https://www.cis.fiu.edu

Jia, Meiwen, Jian, Min, Johnson, Charles D, Kay, Suzanne, Kleinjans, Jos,
Lababidi, Samir, Levy, Shawn, Li, Quan-Zhen, Li, Li, Li, Peng, Li, Yan, Li,
Haiqing, Li, Jianying, Li, Shiyong, Lin, Simon M, Lopez, Francisco J, Lu, Xin,
Luo, Heng, Ma, Xiwen, Meehan, Joseph, Megherbi, Dalila B, Mei, Nan, Mu,
Bing, Ning, Baitang, Pandey, Akhilesh, Perez-Florido, Javier, Perkins, Roger
G, Peters, Ryan, Phan, John H, Pirooznia, Mehdi, Qian, Feng, Qing, Tao,
Rainbow, Lucille, Rocca-Serra, Philippe, Sambourg, Laure, Sansone, Susanna-
Assunta, Schwartz, Scott, Shah, Ruchir, Shen, Jie, Smith, Todd M, Stegle,
Oliver, Stralis-Pavese, Nancy, Stupka, Elia, Suzuki, Yutaka, Szkotnicki, Lee T,
Tinning, Matthew, Tu, Bimeng, van Deft, Joost, Vela-Boza, Alicia, Venturini,
Elisa, Walker, Stephen J, Wan, Liqing, Wang, Wei, Wang, Jinhui, Wang, Jun,
Wieben, Eric D, Willey, James C, Wu, Po-Yen, Xuan, Jiekun, Yang, Yong, Ye,
Zhan, Yin, Ye, Yu, Ying, Yuan, Yate-Ching, Zhang, John, Zhang, Ke K, Zhang,
Wenqian, Zhang, Wenwei, Zhang, Yanyan, Zhao, Chen, Zheng, Yuanting, Zhou,
Yiming, Zumbo, Paul, Tong, Weida, Kreil, David P, Mason, Christopher E, and
Shi, Leming. A comprehensive assessment of RNA-seq accuracy, reproducibil-
ity and information content by the Sequencing Quality Control Consortium.
Nature biotechnology, 32(9):903–914, September 2014.

[139] Aravind Subramanian, Pablo Tamayo, Vamsi K. Mootha, Sayan Mukherjee,
Benjamin L. Ebert, Michael A. Gillette, Amanda Paulovich, Scott L. Pomeroy,
Todd R. Golub, Eric S. Lander, and Jill P. Mesirov. Gene Set Enrichment Anal-
ysis: A Knowledge-based Approach for Interpreting Genome-wide Expression
Profiles. National Acad Sciences, 102(43):15545–15550, 2005.

[140] Pen Sun, Jia Wang, and Li Deng. Effects of Bacillus subtilis natto on Milk
Production, Rumen Fermentation and Ruminal Microbiome of Dairy Cows.
Animal, Cambridge Core, 7(2):1–7, 2013.

[141] Tableau Software, LLC. Tableau. https://www.tableau.com. Accessed:
2020-01-14.

[142] Simon H Tausch, Benjamin Strauch, Andreas Andrusch, Tobias P Loka, Mar-
tin S Lindner, Andreas Nitsche, and Bernhard Y Renard. LiveKraken: Real-
time Metagenomic Classification of Illumina Data. Bioinformatics (Oxford,
England), 34(21):3750–3752, June 2018.

[143] The Apache Software Foundation. Apache Hadoop. http://hadoop.
apache.org. Accessed: 2018-10-17.

[144] The Apache Software Foundation. The Apache Projects. https://www.
apache.org. Accessed: 2018-10-17.

[145] The International Business Machines Corporation. IBM Spectrum LSF.
https://www.ibm.com/support/knowledgecenter/en/SSWRJV/
product_welcome_spectrum_lsf.html. Accessed: 2019-03-20.

185

https://www.tableau.com
http://hadoop.apache.org
http://hadoop.apache.org
https://www.apache.org
https://www.apache.org
https://www.ibm.com/support/knowledgecenter/en/SSWRJV/product_welcome_spectrum_lsf.html
https://www.ibm.com/support/knowledgecenter/en/SSWRJV/product_welcome_spectrum_lsf.html

[146] Benjamin Thompson. NASA, the Spacecraft Assembly Facility, and the Ex-
tremotolerant Bacteria. Microbiology Society, 1(1), 2013.

[147] Cole Trapnell and Steven L Salzberg. How to Map Billions of Short Reads onto
Genomes. Nature biotechnology, 27(5):455–457, May 2009.

[148] Cole Trapnell, Brian A Williams, Geo Pertea, Ali Mortazavi, Gordon Kwan,
Marijke J van Baren, Steven L Salzberg, Barbara J Wold, and Lior Pachter.
Transcript Assembly and Quantification by RNA-Seq Reveals Unannotated
Transcripts and Isoform Switching During Cell Differentiation. Nature biotech-
nology, 28(5):511–515, May 2010.

[149] Peter J Turnbaugh, Ruth E Ley, Micah Hamady, Claire M Fraser-Liggett,
Rob Knight, and Jeffrey I Gordon. The Human Microbiome Project. Nature,
449(7164):804–810, October 2007.

[150] Elif Derya Übeyli. Combining Recurrent Neural Networks with Eigenvector
Methods for Classification of ECG Beats. Digital Signal Processing, 19(2):320–
329, March 2009.

[151] Kensuke Umehara, Junko Ota, Naoki Ishimaru, Shunsuke Ohno, Kentaro
Okamoto, Takanori Suzuki, Naoki Shirai, and Takayuki Ishida. Super-resolution
Convolutional Neural Network for the Improvement of the Image Quality of
Magnified Images in Chest Radiographs. Medical Imaging - Image Processing,
2017.

[152] Camilo Valdes, Meghan Brennan, Bertrand Clarke, and Jennifer Clarke. Detect-
ing Bacterial Genomes in a Metagenomic Sample using NGS Reads. Statistics
and Its Interface, 8(4):477–494, 2015.

[153] Valdes, Camilo, Stebliankin, Vitalii, and Narasimhan, Giri. Large Scale Micro-
biome Profiling in the Cloud. Bioinformatics (Oxford, England), 35(14):i13–i22,
July 2019.

[154] Nicolas Vasilache, Jeff Johnson, Michael Mathieu, Soumith Chintala, Serkan
Piantino, and Yann LeCun. Fast Convolutional Nets with FBFFT: A GPU
Performance Evaluation. arxiv.org, 2014.

[155] Kasthuri Venkateswaran, Parag Vaishampayan, Jessica Cisneros, Duane Per-
son, Scott Rogers, and Jay Perry. International Space Station Environmental
Microbiome—Microbial Inventories of ISS Filter Debris. Applied Microbiology
and Biotechnology, 98(1):6453–6466, 2014.

[156] George Vernikos, Duccio Medini, David R Riley, and Hervé Tettelin. Ten Years
of Pan-genome Analyses. Current opinion in microbiology, 23:148–154, Febru-
ary 2015.

186

[157] Noorul Wahab, Asifullah Khan, and Yeon Soo Lee. Transfer Learning Based
Deep CNN for Segmentation and Detection of Mitoses in Breast Cancer
Histopathological Images. Microscopy (Oxford, England), 68(3):216–233, Febru-
ary 2019.

[158] Zhong Wang, Mark Gerstein, and Michael Snyder. RNA-Seq: A Revolutionary
Tool for Transcriptomics. Nature reviews Genetics, 10(1):57–63, January 2009.

[159] Alice R Wattam, James J Davis, Rida Assaf, Sébastien Boisvert, Thomas Bret-
tin, Christopher Bun, Neal Conrad, Emily M Dietrich, Terry Disz, Joseph L
Gabbard, Svetlana Gerdes, Christopher S Henry, Ronald W Kenyon, Dustin
Machi, Chunhong Mao, Eric K Nordberg, Gary J Olsen, Daniel E Murphy-
Olson, Robert Olson, Ross Overbeek, Bruce Parrello, Gordon D Pusch, Maulik
Shukla, Veronika Vonstein, Andrew Warren, Fangfang Xia, Hyunseung Yoo,
and Rick L Stevens. Improvements to PATRIC, the All-Bacterial Bioinformatics
Database and Analysis Resource Center. Nucleic Acids Research, 45(D1):D535–
D542, January 2017.

[160] Wikipedia. Pablo picasso. https://en.wikipedia.org/wiki/Pablo_
Picasso. Accessed: 2020-04-03.

[161] Wikipedia. Sankey Diagram. https://en.wikipedia.org/wiki/
Sankey_diagram, 2020. Accessed: 2020-02-14.

[162] Wilhelm, Brian T, Marguerat, Samuel, Watt, Stephen, Schubert, Falk, Wood,
Valerie, Goodhead, Ian, Penkett, Christopher J, Rogers, Jane, and Bähler,
Jürg. Dynamic Repertoire of a Eukaryotic Transcriptome Surveyed at Single-
Nucleotide Resolution. Nature, 453(7199):1239–1243, June 2008.

[163] Niki Wilson. A Microbial Hitchhiker’s Guide to the Galaxy: Researchers Race
to Understand Effects of Deep Space on the Microbiome. Bioscience, 69(1):5–
11, 2019.

[164] Geoffrey L Winsor, Emma J Griffiths, Raymond Lo, Bhavjinder K Dhillon,
Julie A Shay, and Fiona S L Brinkman. Enhanced Annotations and Features for
Comparing Thousands of Pseudomonas Genomes in the Pseudomonas Genome
Database. Nucleic Acids Research, 44(D1):D646–D653, 2016.

[165] Pak Chung Wong, Kwong Kwok Wong, H. Foote, and J. Thomas. Global
Visualization and Alignments of Whole Bacterial Genomes. IEEE Transactions
on Visualization and Computer Graphics, 9(3):361–377, July 2003.

[166] Derrick E Wood, Jennifer Lu, and Ben Langmead. Improved Metagenomic
Analysis with Kraken 2. Genome biology, 20(1):1–13, December 2019.

[167] Derrick E Wood and Steven L Salzberg. Kraken: Ultrafast Metagenomic Se-
quence Classification using Exact Alignments. Genome biology, 15(3):R46,
March 2014.

187

https://en.wikipedia.org/wiki/Pablo_Picasso
https://en.wikipedia.org/wiki/Pablo_Picasso
https://en.wikipedia.org/wiki/Sankey_diagram
https://en.wikipedia.org/wiki/Sankey_diagram

[168] Gary D Wu and James D Lewis. Analysis of the Human Gut Microbiome and
Association With Disease. Clinical Gastroenterology and Hepatology, 11(7):774–
777, July 2013.

[169] Lin Xu, Cheng Xu, Yi Tong, and Yu Chun Su. Detection and Classification of
Breast Cancer Metastates Based on U-Net. arXiv.org, September 2019.

[170] Xin Yi, Ekta Walia, and Paul Babyn. Generative Adversarial Network in Med-
ical Imaging: A Review. Medical Image Analysis, 58, 2019.

[171] Ed Yong. I Contain Multitudes: The Microbes Within Us and a Grander View
of Life. Life Sciences. HarperCollins, 2016.

[172] K Yu, W Xu, Y Gong Advances in Neural Information Processing, and 2009.
Deep Learning with Kernel Regularization for Visual Recognition. Advances in
Neural Information Processing Systems 21, 2009.

[173] Matei Zaharia. Apache Spark. http://spark.apache.org. Accessed:
2018-10-17.

[174] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauly, Michael J Franklin, Scott Shenker, and Ion Stoica. Re-
silient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Clus-
ter Computing. 9th USENIX Symposium on Networked Systems Design and
Implementation, pages 15–28, 2012.

[175] Yinfeng Zhang, Cheuk-Yin Lun, and Stephen Kwok-Wing Tsui. Metagenomics:
A New Way to Illustrate the Crosstalk between Infectious Diseases and Host
Microbiome. International journal of molecular sciences, 16(11):26263–26279,
2015.

[176] Z Zhang, C Xu, J Yang, Y Tai, and L Chen. Deep Hierarchical Guidance and
Regularization Learning for End-to-End Depth Estimation. Pattern Recogni-
tion, 83:430–442, 2018.

[177] Wei Zhou, Nicole Gay, and Julia Oh. ReprDB and panDB: Minimalist
Databases with Maximal Microbial Representation. Microbiome, 6(1):15, Jan-
uary 2018.

[178] Wei Zhou, Ruilin Li, Shuo Yuan, ChangChun Liu, Shaowen Yao, Jing Luo,
and Beifang Niu. MetaSpark: A Spark-based Distributed Processing Tool to
Recruit Metagenomic Reads to Reference Genomes. Bioinformatics (Oxford,
England), 33(7):1090–1092, April 2017.

188

http://spark.apache.org

APPENDIX 1

A1.1 Classifier Parameters

The code-block in Listing 1.1 declares the classifier instances and their respective
paramenters. When no parameters are explicitly listed, then the default parameters
are used. Details can be found at the scikit-learn API url
https://scikit-learn.org/stable/modules/classes.html.

1 classifiers = [
2 KNeighborsClassifier("3"),
3 SVC(kernel="linear", C="0.025"),
4 SVC(gamma="2", C="1"),
5 RandomForestClassifier(max_depth="5", n_estimators="10",

max_features="1"),
6 GaussianNB(),
7 MLPClassifier(alpha="1", max_iter="100"),
8 AdaBoostClassifier()
9]

Listing 1.1: Classifier parameters.

A1.2 Data Augmentation

Data augmentation for the Amber CNN was performed by implementing a cus-
tom ImageDataGenerator using the Keras and Tensorflow libraries. The main
function is in Listing 1.2.

1 from tensorflow.keras.preprocessing.image import ImageDataGenerator
2

3 img_h, img_w = 256
4

5 train_datagen = ImageDataGenerator(rotation_range=10,
6 width_shift_range=0.1,
7 height_shift_range=0.1, shear_range=0.15,
8 zoom_range=0.1, channel_shift_range=0.2,
9 horizontal_flip=False)

10

11 for subsite_dir in listdir(train_dir):
12 for hilbert_img in listdir(subsite_dir_path):
13 image_gen = train_datagen.flow(img,

save_to_dir=subsite_augmented_dir,
14 save_prefix=’aug’, save_format=’png’, batch_size=1)
15 total_aug_imgs = 0
16 for aug_img in image_gen:
17 total_aug_imgs += 1
18 overall_imgs_created += 1
19 if total_aug_imgs == files_to_generate or
20 overall_imgs_created == target_number_samples:
21 break

Listing 1.2: Code for creating augmented microbiome maps.

189

https://scikit-learn.org/stable/modules/classes.html

VITA

CAMILO VALDES

2015-2020 Ph.D., Computer Science

Florida International University
Miami, Florida

2015-2019 M.S., Computer Science
 Florida International University
 Miami, Florida

2010 B.S., Computer Science

Florida International University
Miami, Florida

2010 B.S., Biological Sciences

Florida International University
Miami, Florida

My primary research interests lie in developing high-performance, real time distributed
applications for the analysis of very large datasets. Recently, I have been involved in
projects that study how microbes affect human disease, and how to visualize their results.
The underlying theme to my projects is their massive datasets, and I am interested in
developing algorithms and methods for improving their analysis, as well as creating new
techniques for visualizing and creating interpretable results.

Lead developer and architect of Flint, a cloud profiling framework for metagenomic
whole-genome sequencing. (https://github.com/camilo-v/flint)

Lead developer and architect of Jasper, a framework for visualizing and characterizing
metagenomic DNA sequencing datasets. (https://github.com/camilo-v/jasper)

GRANTS & FELLOWSHIPS
Amazon AWS Cloud Credits for Research. Awarded $25,000 in AWS credits to study
algorithms and methods for the profiling and characterization of sequencing datasets. The
award resulted in the Flint and Jasper projects.
Dissertation Year Fellowship. Awarded a Florida International University dissertation
year fellowship for the completion of PhD dissertation work (2019 Fall - 2020 Spring).

Experience in the design and implementation of probabilistic models for human gene
expression datasets, resulting in research publications and open source software tools.
Experience in the design and application of statistical hypothesis testing methods as
applied to human genomics and transcriptomics cancer datasets, as well as very large
metagenomic datasets.

190

PUBLICATIONS AND PRESENTATIONS

Valdes C, Stebliankin V, Ruiz-Perez D, Park J, Lee H, Narasimhan G. Microbiome
Maps: Hilbert Curve Visualizations of Metagenomic Profiles. In Review. International
Conference on Intelligent Systems for Molecular Biology (ISMB). 2020.

Valdes C, Stebliankin V, Narasimhan G. Large Scale Microbiome Profiling in the Cloud.
Oxford Bioinformatics 35 (14), i13-i22. 2019.

Ayad N, Valdes C, Clarke J, et al. Time Series Modeling of Cell Cycle Exit Identifies
Brd4-dependent Regulation of Cerebellar Neurogenesis. Nature Communications 10 (1),
1-11. 2019.

Dobra A, Valdes C, Clarke B, Clarke J. Modeling Association in Microbial Communities
with Clique Loglinear Models. The Annals of Applied Statistics 13 (2), 931-957. 2019.

Zheng Xu, Valdes C, Clarke J. Existing and Potential Statistical and Computational
Approaches for the Analysis of 3D CT Images of Plant Roots. Agronomy. 2018.

Capobianco E, Valdes C, Sarti S, Jiang Z, Poliseno L, Tsinoremas N. Ensemble Modeling
Approach Targeting Heterogeneous RNA-Seq data: Application to Melanoma
Pseudogenes. Nature, Scientific Reports. 7 (1), 17344. 2017.

Valdes C, Brennan M, Dobra A, Clarke B, Clarke J. Detecting Bacterial Genomes in a
Metagenomic Sample Using NGS Reads. Statistics and Its Interface. Statistics and Its
Interface 8 (4), 477-494. 2015.

Clarke B, Valdes C, Dobra A, Clarke J. A Bayes Testing Approach to Metagenomic
Profiling in Bacteria. Statistics and Its Interface. Volume 8, Number 2, pp. 173-185.
2015.

Valdes, C; Capobianco, E. Methods to Detect Transcribed Pseudogenes: RNASeq
Discovery Allows Learning through Features. Methods in Molecular Biology, Volume
1167, 2014, pp.157–183.

Valdes, C; P, Seo; N, Tsinoremas; & J, Clarke. Characteristics of Cross-Hybridization
and Cross-Alignment of Expression in Pseudo-Xenograft Samples by RNA-Seq and
Microarrays. Journal of Clinical Bioinformatics, 3, 2013, 8.

Valdes C. (July 2019) Flint: Large Scale Microbiome Profiling in the Cloud. Paper
presented at the proceedings of the Intelligent Systems for Molecular Biology, and the
European Conference on Computational Biology. Basel, Switzerland.

191

	Scalable Profiling and Visualization for Characterizing Microbiomes
	Recommended Citation

	Cover Page
	Signature Page
	Copyright Page
	Dedication Page
	Acknowledgments Page
	Abstract Page
	Table of Contents
	List of Tables
	List of Figures
	CHAPTER 1: INTRODUCTION
	CHAPTER 2: Background and Review
	CHAPTER 3: Microbial Reference Genomes and Cloud Infrastructure
	CHAPTER 4: Large-Scale Microbial Community Profiling in the Cloud
	CHAPTER 5: Microbiome Maps: Hilbert Curve Visualizations of Microbial Community Profiles
	CHAPTER 6: Applications of Microbiome Maps
	CHAPTER 7: Characterizing Microbiomes with Convolutional Neural Networks
	CHAPTER 8: Conclusion
	List of References
	APPENDIX
	VITA

