117 research outputs found

    Flexible tactile digital feedback for clinical applications

    Get PDF
    Trauma and damage to the delicate structures of the inner ear frequently occurs during insertion of electrode array into the cochlea. This is strongly related to the excessive manual insertion force of the surgeon without any tool/tissue interaction feedback. The research is examined tool-tissue interaction of large prototype scale (12.5:1) digit embedded with distributive tactile sensor based upon cochlear electrode and large prototype scale (4.5:1) cochlea phantom for simulating the human cochlear which could lead to small scale digit requirements. This flexible digit classified the tactile information from the digit-phantom interaction such as contact status, tip penetration, obstacles, relative shape and location, contact orientation and multiple contacts. The digit, distributive tactile sensors embedded with silicon-substrate is inserted into the cochlea phantom to measure any digit/phantom interaction and position of the digit in order to minimize tissue and trauma damage during the electrode cochlear insertion. The digit is pre-curved in cochlea shape so that the digit better conforms to the shape of the scala tympani to lightly hug the modiolar wall of a scala. The digit have provided information on the characteristics of touch, digit-phantom interaction during the digit insertion. The tests demonstrated that even devices of such a relative simple design with low cost have potential to improve cochlear implants surgery and other lumen mapping applications by providing tactile feedback information by controlling the insertion through sensing and control of the tip of the implant during the insertion. In that approach, the surgeon could minimize the tissue damage and potential damage to the delicate structures within the cochlear caused by current manual electrode insertion of the cochlear implantation. This approach also can be applied diagnosis and path navigation procedures. The digit is a large scale stage and could be miniaturized in future to include more realistic surgical procedures

    Designing a Clinically Viable Brain Computer Interface for the Control of Neuroprosthetics

    Get PDF
    Currently no brain computer interfaces exist that can control the individual fingers of a hand prosthesis and is suitable for permanent implantation in and individual with a single limb amputation. Within this thesis a design for a novel minimally invasive brain computer interface system is proposed that would be relatively low risk, allow for control of a prosthesis using existing cortical structures and be suitable for patients with loss of a single limb. The early stage development and proof of concept work has been done taking into account relevant regulatory requirements, so that a finalised version of the design would be suitable for regulatory certification. This novel design is found to be worth pursuing and may in turn open up new research opportunities

    Minimally invasive mastoidectomy approach using a mouldable surgical targeting system: a proof of concept

    Get PDF
    Hearing restoration using a cochlear implant requires a surgical access to the inner ear. In order to enhance patient safety, reduce trauma, and shorten the patient’s time under anaesthesia current research focusses on minimally invasive cochlear implantation surgery by drilling only a single bore hole. This demands a highly accurate surgical assistance device to guide the drill along a predetermined trajectory planned in patient’s image data. In this study a recently developed surgical targeting system was evaluated for the first time in a human cadaver trial. After screwing a reference frame on a temporal bone specimen and imaging of both, a trajectory through the facial recess was planned in order to reach the middle ear. Based on this plan a patient specific surgical template including a linear guide for the surgical drill was composed utilizing bone cement. After the hardening of the bone cement the surgical template was mounted on top of the reference frame. The drilling could be performed as previously planned without harming facial nerve and chorda tympani. The deviation of the actual drill hole to the planned trajectory was 0.17 mm at the level of the facial recess. The minimal distance of the drill hole to the facial nerve was 0.59 mm. This proof-of-concept study demonstrates the feasibility of performing the access to the middle ear in a minimally invasive manner using the mouldable surgical targeting system. The presented process allows the patient specific individualization of a drill guide under sterile conditions. This might facilitate its integration into clinical routine

    Accuracy of image guided robotic assistance in cochlear implant surgery

    Get PDF
    [no abstract

    AUGMENTED REALITY AND INTRAOPERATIVE C-ARM CONE-BEAM COMPUTED TOMOGRAPHY FOR IMAGE-GUIDED ROBOTIC SURGERY

    Get PDF
    Minimally-invasive robotic-assisted surgery is a rapidly-growing alternative to traditionally open and laparoscopic procedures; nevertheless, challenges remain. Standard of care derives surgical strategies from preoperative volumetric data (i.e., computed tomography (CT) and magnetic resonance (MR) images) that benefit from the ability of multiple modalities to delineate different anatomical boundaries. However, preoperative images may not reflect a possibly highly deformed perioperative setup or intraoperative deformation. Additionally, in current clinical practice, the correspondence of preoperative plans to the surgical scene is conducted as a mental exercise; thus, the accuracy of this practice is highly dependent on the surgeon’s experience and therefore subject to inconsistencies. In order to address these fundamental limitations in minimally-invasive robotic surgery, this dissertation combines a high-end robotic C-arm imaging system and a modern robotic surgical platform as an integrated intraoperative image-guided system. We performed deformable registration of preoperative plans to a perioperative cone-beam computed tomography (CBCT), acquired after the patient is positioned for intervention. From the registered surgical plans, we overlaid critical information onto the primary intraoperative visual source, the robotic endoscope, by using augmented reality. Guidance afforded by this system not only uses augmented reality to fuse virtual medical information, but also provides tool localization and other dynamic intraoperative updated behavior in order to present enhanced depth feedback and information to the surgeon. These techniques in guided robotic surgery required a streamlined approach to creating intuitive and effective human-machine interferences, especially in visualization. Our software design principles create an inherently information-driven modular architecture incorporating robotics and intraoperative imaging through augmented reality. The system's performance is evaluated using phantoms and preclinical in-vivo experiments for multiple applications, including transoral robotic surgery, robot-assisted thoracic interventions, and cocheostomy for cochlear implantation. The resulting functionality, proposed architecture, and implemented methodologies can be further generalized to other C-arm-based image guidance for additional extensions in robotic surgery

    Robotic assistance during cochlear implantation: the rationale for consistent, controlled speed of electrode array insertion

    Get PDF
    Cochlear implants (CI) have revolutionized the treatment of patients with severe to profound sensory hearing loss by providing a method of bypassing normal hearing to directly stimulate the auditory nerve. A further advance in the field has been the introduction of “hearing preservation” surgery, whereby the CI electrode array (EA) is carefully inserted to spare damage to the delicate anatomy and function of the cochlea. Preserving residual function of the inner ear allows patients to receive maximal benefit from the CI and to combine CI electric stimulation with acoustic hearing, offering improved postoperative speech, hearing, and quality of life outcomes. However, under the current paradigm of implant surgery, where EAs are inserted by hand, the cochlea cannot be reliably spared from damage. Robotics-assisted EA insertion is an emerging technology that may overcome fundamental human kinetic limitations that prevent consistency in achieving steady and slow EA insertion. This review begins by describing the relationship between EA insertion speed and generation of intracochlear forces and pressures. The various mechanisms by which these intracochlear forces can damage the cochlea and lead to worsened postoperative outcomes are discussed. The constraints of manual insertion technique are compared to robotics-assisted methods, followed by an overview of the current and future state of robotics-assisted EA insertion

    Doctor of Philosophy

    Get PDF
    dissertationFor many with severe-to-profound hearing loss, a condition in which the cochlea is unable to convert sound vibration into neural information to the brain, the cochlear implant has become the standard treatment. The goal of a cochlear-implant system is to bypass the malfunctioned cochlea and directly stimulate the nerves responsible for hearing through an array of electrodes on a silicone-elastomer carrier. However, the insertion of the electrode arrays can often cause intracochlear damage and eliminate residual hearing. With increased focus on hearing preservation in cochlear implantation, methods to minimize intracochlear damage have become a priority in electrode-array insertions. This dissertation explores the application of magnetic manipulation toward improved cochlear-implant electrode-array insertions. We start with initial 3-to-1 proof-of-concept experiments to demonstrate the feasibility of this approach. Then, to achieve relevancy at clinical scale, lateral-wall-type electrode-array models, used in the clinic, are slightly modified at the tip to include a tiny magnet. Next, a scala-tympani phantom is designed with both simulated cochleostomy and round-window openings to mimic both classes of insertions typically conducted. In particular, this is the first phantom to model a round-window opening and can be used reliably to simulate insertion forces in cadaver cochleae. Electrode arrays are then magnetically guided through these phantoms with a statistically significant (p < 0.05) reduction in insertion forces, and by as much as 50% for some electrode-array models. In particular, guiding the electrode-array tip through the cochlear hook and the basal turn, in the same insertion, was demonstrated for the first time using this technology. All existing methods to guide the electrode array can only be accomplished for the basal turn. Analysis is conducted to determine the optimal size and placement of a magnetic dipole-field source for use in the clinic. Its placement is determined to be consistently lateral to and anterior to the patient’s cochlea. Its size depends on numerous factors including the patient, torque requirements, and registration error. Sensitivity curves summarizing these factors are provided. The volume of the magnetic dipole-field source can be reduced by a factor of 5, on average, by moving it from the modiolar configuration originally proposed to this optimal configuration. We verify that magnetic forces do not pose any appreciable risk to the basilar membrane at the optimal configuration. Although patient-specific optimal configurations are characterized, a one-size-fits-all version is described that may be more practical and carries the benefit of substantial robustness to registration error

    From Concept to Market: Surgical Robot Development

    Get PDF
    Surgical robotics and supporting technologies have really become a prime example of modern applied information technology infiltrating our everyday lives. The development of these systems spans across four decades, and only the last few years brought the market value and saw the rising customer base imagined already by the early developers. This chapter guides through the historical development of the most important systems, and provide references and lessons learnt for current engineers facing similar challenges. A special emphasis is put on system validation, assessment and clearance, as the most commonly cited barrier hindering the wider deployment of a system

    New Medical Device and Therapeutic Approvals in Otolaryngology: State of the Art Review of 2021

    Get PDF
    Objective To evaluate new medical devices and drugs pertinent to otolaryngology-head and neck surgery that were approved by the Food and Drug Administration (FDA) in 2021.Data SourcesPublicly available FDA device and drug approvals from ENT (ear, nose, and throat), anesthesia, neurosurgery, plastic surgery, and general surgery FDA committees. Review Methods FDA device and therapeutic approvals were identified and reviewed by members of the American Academy of Otolaryngology-Head and Neck Surgery's Medical Devices and Drugs Committee. Two independent reviewers assessed the relevance of devices and drugs to otolaryngologists. Medical devices and drugs were then allocated to their respective subspecialty fields for critical review based on available scientific literature. Conclusions The Medical Devices and Drugs Committee reviewed 1153 devices and 52 novel drugs that received FDA approval in 2021 (67 ENT, 106 anesthesia, 618 general surgery and plastic surgery, 362 neurosurgery). Twenty-three devices and 1 therapeutic agent relevant to otolaryngology were included in the state of the art review. Advances spanned all subspecialties, including over-the-counter hearing aid options in otology, expanding treatment options for rhinitis in rhinology, innovative laser-safe endotracheal tubes in laryngology, novel facial rejuvenation and implant technology in facial plastic surgery, and advances in noninvasive and surgical treatment options for obstructive sleep apnea. Implications for Practice FDA approvals for new technology and pharmaceuticals present new opportunities across subspecialties in otolaryngology. Clinicians? nuanced understanding of the safety, advantages, and limitations of these innovations ensures ongoing progress in patient care
    • …
    corecore