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Cochlear implants (CI) have revolutionized the treatment of patients with 
severe to profound sensory hearing loss by providing a method of bypassing 
normal hearing to directly stimulate the auditory nerve. A further advance in 
the field has been the introduction of “hearing preservation” surgery, whereby 
the CI electrode array (EA) is carefully inserted to spare damage to the delicate 
anatomy and function of the cochlea. Preserving residual function of the inner 
ear allows patients to receive maximal benefit from the CI and to combine CI 
electric stimulation with acoustic hearing, offering improved postoperative 
speech, hearing, and quality of life outcomes. However, under the current 
paradigm of implant surgery, where EAs are inserted by hand, the cochlea 
cannot be  reliably spared from damage. Robotics-assisted EA insertion is 
an emerging technology that may overcome fundamental human kinetic 
limitations that prevent consistency in achieving steady and slow EA insertion. 
This review begins by describing the relationship between EA insertion speed 
and generation of intracochlear forces and pressures. The various mechanisms 
by which these intracochlear forces can damage the cochlea and lead to 
worsened postoperative outcomes are discussed. The constraints of manual 
insertion technique are compared to robotics-assisted methods, followed by an 
overview of the current and future state of robotics-assisted EA insertion.
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Introduction

Cochlear implants (CI) have quickly become the predominant intervention for treating 
patients with severe to profound sensory hearing loss. Historically, CIs were used mostly in 
patients who had minimal to no remaining acoustic hearing, as it was thought that introduction 
of the electrode array (EA) into the cochlea would compromise any residual structure and 
function. Since the 1980s, further investigation has found that preservation of intracochlear 
anatomy and residual neural and sensory function including existing acoustic hearing was an 
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achievable and desirable goal for CI recipients (1). This functional 
preservation allowed the combination of CI electric stimulation with 
residual acoustic hearing, also called “electroacoustic stimulation” 
(EAS), initially described by von Ilberg et al. (2). The first clinical trial 
of 6 millimeter (mm) and 10 mm electrodes demonstrated the ability 
to preserve residual acoustic hearing (3). Compared to patients with 
electric stimulation alone, EAS offers improved speech understanding 
in noise, better sound localization, appreciation of music, and 
improved quality of life (4, 5). These findings provide the basis for 
“hearing preservation” surgery, whereby surgeons attempt to limit 
trauma to the delicate intracochlear tissues during insertion of the 
EA. Even in patients with non-functional acoustic hearing, EA 
insertion trauma is associated with decreased neural survival and 
poorer patient performance (6, 7). Yet despite best efforts, the fine 
structures of the cochlea cannot be reliably spared during implantation 
– at least under the current surgical paradigm. To date, a number of 
factors are known to contribute to the success of structural and 
functional preservation CI surgery, including the EA design (8), 
medications such as steroid delivery (9), surgical approach (10), and 
the technique as well as speed of EA insertion (11–14). The vast 
majority of EAs are inserted by hand, termed “manual insertion,” but 
this method suffers from the inherent limitations of human kinetics.

Robotics-assisted EA insertion is an emerging technique in 
structure and function preservation CI surgery that has the potential 
to overcome the limitations of a human operator. The scientific 
evidence supporting the use of robotic assistance during EA insertion 
is well-established and continues to quickly expand. The purpose of 
this mini-review is to explore the current understandings of the 
relationship between consistent, controlled insertion speed, and 
cochlear trauma, describe the current state of robotics-assistance EA 
insertion platforms, and discuss areas for future development. Below, 
a brief summary of the literature investigating the utilization of 
robotics-assistance in CI surgery is presented. Specifically, the current 
body of literature supports the following statements:

 1 A slow and consistent EA insertion speed reduces insertion 
forces and intracochlear pressure spikes

 2 Reduced insertion force limits intracochlear trauma and 
preserves structural integrity

 3 Reduced trauma may improve hearing outcomes

A slow and consistent EA insertion 
speed reduces insertion forces and 
intracochlear pressure spikes

EA insertion imparts a variety of intracochlear forces that act 
via different mechanisms. First, direct contact from the EA with 
cochlear structures delivers forces along the lateral wall tissues, 
basilar membrane, and osseous spiral lamina. These forces can 
increase if the electrode kinks or buckles as it meets resistance (15). 
Resistance to EA insertion typically begins at an insertion depth of 
5 mm into the cochlea, then may spike at 8–10 mm when the 
electrode tip encounters the basal turn or back wall of the cochlea 
(16). Second, EA insertion also produces frictional forces arising 
from the interaction between the EA and the endosteum lining, 
with perilymph serving as a lubricant (17). Frictional forces are 

thought to increase as the area of contact between the array and 
lateral wall increases, which may explain why insertion forces tend 
to continue rising with deeper insertion (18). The relationship 
between insertion speed and friction may not be linear. Dohr et al. 
determined that the friction coefficient in a synthetic model was 
lowest at an insertion speed of 0.01 mm/s, highest at a speed of 
1.5 mm/s, and then dropped again at a speed of 2 mm/s (17). A 
study done by Miroir et al. found no relationship between speed 
and friction forces (18). Third, the EA occupies space in the fluid 
filled compartment of scala tympani, which creates hydraulic 
pressure due to displacement of perilymph. Such increases in 
intracochlear pressure, often seen as extreme spikes during manual 
insertion, mirror exposure to excessive noise (13, 19). Slow and 
steady EA insertion, such as enabled by robotics assistance, has 
been linked to reduced hydraulic force and spikes in intracochlear 
pressure (19) by facilitating gradual perilymph egress/pressure 
equalization as the EA displaces more fluid (20), though there are 
reports that have not replicated this association (21).

When considering overall intracochlear force, studies have 
generally found that the speed of EA insertion is directly and positively 
correlated with generation of intracochlear force. In a synthetic 
cochlea model, Kontorinis et  al. demonstrated that progressive 
increases in insertion speed resulted in greater average and maximum 
insertion force, with the lowest insertion force correlating with the 
lowest speed tested of ~0.16 millimeters per second (mm/s) (14). For 
comparison, the average speed of EA insertion for cochlear implant 
surgeons is 10 times higher at approximately 1.6 mm/s (14). Other 
studies using synthetic models corroborated this general trend using 
various EAs, speeds, and insertion techniques; particularly when 
evaluating peak forces (11, 22, 23). In cadaveric bones, higher 
insertion forces are correlated with higher rates of trauma, especially 
as the EA traverses the basal turn of the cochlea (24, 25). It has also 
been demonstrated that an insertion with robotic control significantly 
reduces the force variability or “jerkiness” of insertion compared to 
manual insertion (26). Additionally, insertion of an EA is associated 
with increased intracochlear pressure transients, akin to high levels of 
noise exposure. As noted above, pressure transients can be comparable 
to ear canal sound pressure levels of approximately 134–174 dB sound 
pressure level, similar to blast explosions associated with hair cell loss 
(13). These intracochlear pressure transients are related to the speed 
of insertion and robotic assistance significantly decreases these 
potentially deleterious events (27). By slowing insertion speed, the 
amplitude and frequency of intracochlear pressure spikes can 
be  lessened (13, 20, 28, 29). Figure  1 illustrates representative 
differences in intracochlear force generation between manual and 
robotics-assisted EA insertion performed using an experimental 
phantom cochlea model.

Reduced insertion speed and forces 
limit intracochlear trauma

Very small forces applied to the cochlea can disrupt inner ear 
structure and function. As little as 42 millinewtons (mN) can damage 
the cochlea, with even lower thresholds for injury to the basilar 
membrane (26–35 mN) and Reissner’s membrane (4.2 mN) (32). 
Studies of intracochlear forces generated during manual insertion 
show wide variability with reported forces varying from 0.310 to 0.420 
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newtons (N), as summarized in Table  1. Trauma from the forces 
incurred by EA insertion is thought to be a major source of cochlear 
injury. A review by Bas et al. outlines the primary mechanisms in 
which the insertion of the EA can lead to loss of auditory function 
including (45):

 1 Direct injury to hair cells along the basilar membrane;
 2 Inflammatory response including fibrosis;
 3 Trauma to the spiral ligament and stria vascularis leading to 

disrupted endocochlear potential;
 4 Unintentional rupture of the basilar membrane resulting in 

scalar translocation of the EA; and
 5 Large pressure spikes that damage sensory cells in a fashion 

similar to acoustic injuries.

For these types of trauma, expression of proinflammatory 
molecules such as TNFα and IL-1β can be  triggered within the 
cochlea, leading to a cytokine cascade mediating apoptosis in hair cells 
(46–48). Similarly, large spikes in intracochlear pressure mimic high-
intensity noise exposure and lead to the accumulation of free radicals 
and oxidative stress in the cochlea (24). Next, any trauma that causes 
mixing of the perilymph and endolymph (such as scalar translocation) 
or a disruption of the endocochlear potentials (such as damage to the 
stria vascularis), can also result in loss of cochlear function. Finally, 
intracochlear trauma and inflammation triggers fibrosis in the cochlea 

that has been associated with loss of residual hearing and diminished 
CI performance (7, 49, 50).

In addition to reducing the direct damage caused as the EA 
contacts intracochlear structures, slow EA insertion also reduces 
hydraulic force by facilitating gradual perilymph egress/pressure 
equalization while the EA enters the confined fluid-filled intracochlear 
space (20). Taken together, there are a variety of factors by which 
insertion trauma can lead to loss of residual sensory and neural 
function in the cochlea. As this trauma has been linked to poor 
postoperative outcomes following CI, the need for slow and steady 
insertion cannot be overstated.

Reduced insertion trauma may 
improve hearing outcomes

Patients with residual acoustic hearing comprise up to 80% of 
current CI recipients and this will likely rise further in the future (51). 
The clinical research connecting intracochlear trauma to CI outcomes 
is extensive and primarily based on the improved postoperative 
outcomes observed among patients with preserved residual acoustic 
hearing. In these patients, combining both an acoustic stimulus (with 
a hearing aid) and electrical stimulus (via the CI) provides enhanced 
benefits versus electrical stimulation alone with respect to pitch 
perception (52), speech perception (3, 53, 54), noisy environments 

FIGURE 1

Force profiles obtained from a trial of manual versus robotics-assisted EA insertion. A polytetrafluoroethylene phantom model fabricated as described 
by Clark et al. (30) was used along with a MED-EL FLEX24 electrode array and 10% solution dish soap in distilled water for lubrication. A neurotology 
attending was instructed to perform insertions as slowly as possible, first via manual insertion then followed by robotics-assisted insertion with the 
iotaSOFT system. A 6-axis force sensor was used for measurements. These force profiles are representative of data comparing automated versus 
manual insertions (11, 28, 31).
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TABLE 1 Studies of cochlear implant insertion speed and maximum force or pressure.

Roland (2005) (33) Nucleus contour advance Temporal bone Automated, SIT

Automated, AOS

2.0 mm/s, 0.175 N

2.0 mm/s, 0.02 N

Todd (2007) (34) Nucleus contour advance Scala tympani model Automated, SIT

Automated, AOS

2.0 mm/s, 0.194 N

2.0 mm/s, 0.05 N

Radeloff (2009) (35) Uncoated custom electrode 

Coated custom electrode

Temporal bone Automated, SIT

Automated, SIT

0.5 mm/s, 0.329 ± 0.077 N

0.5 mm/s, 0.172 ± 0.047 N

Rau (2010) (36) Nucleus contour advance Scala tympani model Automated, AOS 0.5 mm/s, 0.04 N

Majdani (2010) (11) Nucleus contour advance Scala tympani model Manual, AOS

Automated, AOS

0.3 mm/s, 0.031 N

0.3 mm/s, 0.036 N

Kontorinis (2011) (14) Nucleus contour advance Scala tympani model Manual, SIT 0.17 mm/s, 0.18 ± 0.003 N

1.33 mm/s, 0.32 ± 0.004 N

3.33 mm/s, 0.42 ± 0.008 N

Kobler (2015) (37) MED-EL FLEX 20

MED-EL FLEX 24

MED-EL FLEX 28

Scala tympani model Automated, SIT 0.5 mm/s, 0.062 N

0.5 mm/s, 0.040 N

0.5 mm/s, 0.070 N

Avci (2017) (38) Custom electrode Temporal Bone Automated, SIT 0.5 mm/s, 0.0415–0.0530 N

Mittmann (2017) (39) Nucleus contour advance 

Nucleus slim straight

Scala tympani model Automated, SIT 0.48 mm/s, 1.12 ± 0.15 mm Hg

0.48 mm/s, 0.86 ± 0.05 mm Hg

Todt (2017) (40) MED-EL FLEX 20 Scala tympani model Manual, SIT 0.8 mm/s, 0.25 N

Hugl (2018) (23) Custom electrode Scala tympani model Automated, SIT 0.03 mm/s, 0.0127 ± 0.0027 N

0.4 mm/s, 0.0187 ± 0.0022 N

2.0 mm/s, 0.0187 ± 0.0048 N

Kaufmann (2020) (26) Various Temporal bone Manual, SIT

Automated, SIT

0.1 mm/s, 0.085 N

0.5 mm/s, 0.076 N

1 mm/s, 0.072 N

0.1 mm/s, 0.054 N

0.5 mm/s, 0.060 N

1 mm/s, 0.058 N

Various Scala tympani model Manual, SIT

Automated, SIT

0.1 mm/s, 0.115 N

0.5 mm/s, 0.062 N

1 mm/s, 0.075 N

0.1 mm/s, 0.060 N

0.5 mm/s, 0.036 N

1 mm/s, 0.045 N

Rau (2020) (41) MED-EL FLEX electrodes Scala tympani model Automated, SIT 0.03 mm/s, 0.060 N

0.4 mm/s, 0.107 N

Dhanasingh (2021) (42) MED-EL FLEX 28 Scala tympani model Automated, SIT 0.1 mm/s, 0.035 N

0.5 mm/s, 0.017 N

1 mm/s, 0.031 N

2 mm/s, 0.035 N

4 mm/s, 0.033 N

Zuniga (2021) (43) MED-EL FLEX electrodes Scala tympani model Automated, SIT 0.03 mm/s, 0.026 N

0.11 mm/s, 0.044 N

0.4 mm/s, 0.066 N

0.9 mm/s, 0.065 N

1.6 mm/s, 0.110 N

Aebischer (2022) (44) Custom Scala tympani model Automated, SIT 0.33 m/s, 0.044 ± 0.004 N

Zagabathuni (2023) (29) MED-EL FLEX 28 Scala tympani model Automated, SIT 0.15 mm/s, 133 Pa

0.3 mm/s, 137 Pa

0.6 mm/s, 144 Pa

1.2 mm/s, 402 Pa

SIT, standard insertion technique; AOS, advance off stylet; N, newtons; Pa, pascals; mm, millimeters; s, second.
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(55, 56), and music appreciation (57, 58). However, immediately post-
operatively or even years following surgery, up to 50% of these patients 
will lose their residual hearing and associated benefits (59–62).

There is some evidence to suggest that slower insertion may 
improve postoperative clinical measures. Rajan et  al. performed 
comparisons between patients implanted with a target “slow” insertion 
speed of 0.25 mm/s vs. a “fast” speed of 1 mm/s with the same EA (12). 
They found that patients undergoing slow insertion had significantly 
higher rates of postoperative hearing preservation, more complete EA 
insertions, and a decreased incidence of vestibular symptoms in a 
24-hours period after implantation. Further studies are needed to 
confirm whether slower insertion speed consistently improves hearing 
outcomes and quality of life for patients.

Although typical conversations concerning intracochlear trauma 
revolve around residual hearing preservation, patients with little to no 
residual hearing significantly benefit from atraumatic insertions. The 
mechanisms here are also multifactorial but likely involve damage and 
degeneration of tissues necessary for faithful transmission of electrical 
stimulation such as spiral ganglion neurons (63, 64). Additionally, 
inflammatory responses produced by traumatic insertions can 
produce fibrosis and scar tissue surrounding the EA, which has been 
shown to increase impedance of the electrode and distance from the 
modiolus, thus limiting the effectiveness of the CI itself (65). The 
impact of fibrosis has also been shown to negatively impact consonant-
nucleus-consonant word recognition scores, one of the major standard 
assessments of speech outcomes (66).

The significance of consistent, 
controlled speed

Considering the body of evidence, it is clear why most surgeons 
attempt to perform slow and consistent insertions by hand. Despite 
these best efforts, manual techniques cannot reliably achieve these 
slow and steady EA insertions due to the limitations of human 
kinetics. A study by Kesler et al. described that the lower limit of a 
constant forward motion manual EA insertion lies at an average speed 
of 0.87 mm/s and noted that a 0.25 mm/s insertion rate is not feasible 
for human operators to achieve, supporting the need and clinical 
utility of robotic assistance to spare trauma to the cochlea (67). 
Comparisons of robotics-assisted insertion with manual insertion 
have demonstrated that robotics-assisted insertion is associated with 
reduced intracochlear force generation (11) and rates of trauma, 
including tip fold-over (68).

It is important to note that not every study of insertion has found 
an inverse relationship between speed and forces/trauma to the 
cochlea. Avci and colleagues found no difference in insertion forces 
when inserting electrodes into an artificial model between speeds of 
0.05 and 2 mm/s (38). Dhanasingh et al. did not find a perfectly linear 
relationship between insertion speeds and forces, sometimes finding 
that relatively lower speeds produced greater forces. However, their 
overall data showed a trend towards the lowest forces at the slowest 
speeds, and maximal forces at the highest speeds (42). Kaufmann and 
colleagues found that at the slowest tested insertion speed of 
0.01 mm/s, significantly higher insertion maximal insertion forces 
were measured during both robotic and manual insertions in a 
synthetic cochlea model but not in the cadaveric specimen (26). While 
the majority of studies suggest that insertion speed and forces are 

linearly related, this may not hold true at very slow speeds. An 
inflection point may exist where very slow insertion speeds could 
generate higher intracochlear forces and trauma. The mechanism may 
be that very slow speeds would allow the EA to make more contact 
with intracochlear structures and push out fluids that form a lubricious 
intervening layer between the array and the cochlea, thereby 
increasing friction/shear forces. Similarly, if there are instances where 
the EA momentarily ceases forward movement during insertion, static 
friction forces would be applied perhaps leading to more transient 
pressure spikes. Further study is needed to further clarify the 
relationship between ultra-slow speeds, steady forward motion, and 
force generation, as well as determining the optimal speed for 
insertion of a given EA.

Varied experimental conditions must be  considered when 
assessing studies of insertion forces. Many investigations use solely 
phantom cochlear models made of acrylic or other synthetic materials. 
The composition of a given model will have a certain coefficient of 
friction, potentially influencing force measurements. Fresh frozen 
cadaveric temporal bone specimens more closely replicate in vivo 
cochlear anatomy and can be expected to have a different insertion 
force profile compared to models, which may be due to the presence 
and elasticity of the basilar membrane, among other characteristics. 
Insertion forces may be twice as high in synthetic models compared 
to cadaveric specimens (25). It is possible that reproducibility of 
results obtained from cadaveric specimens may vary given the natural 
variation in cochlear and intracochlear structures/dimensions 
between bones (69). Studies also diverge in how forces are measured, 
e.g., multi-axis versus single-axis measurement, the location of the 
force sensors, and use of open-channel models (69). Finally, studies 
have used a variety of speeds, electrode types, insertion techniques 
(e.g., standard versus advance-off stylet), and lubricating fluids.

Current state of robotics-assistance 
platforms and future directions

In current practice, there are two major robotics-assistance 
platforms used for EA insertion. The RobOtol system (Collin, France) 
is an operative platform developed to work in restricted areas through 
the external ear. It has a dedicated microinstrument holder that can 
be  used to insert an electrode via translational and rotational 
movements, at speeds as low as 0.1 mm/s (70). A clinical study using 
RobOtol for EA insertion found no difference in hearing outcomes 
between robotics-assisted and manual insertion in sequentially 
implanted patients (71). However it is important to note that this was 
a small study of <10 patients and was acknowledged to 
be underpowered to detect significant differences. Thus, larger studies 
are needed to evaluate the effectiveness of robotic-assisted cochlear 
implantation on patient outcomes.

The iotaSOFT Insertion System (iotaMotion Inc., Iowa City, IA) 
consists of a single-use sterile drive unit with a robotic drive motor 
that can also insert arrays as slowly as 0.1 mm/s (72). The current 
iotaSOFT system is compatible with lateral wall electrodes; its next 
iteration is expected be  compatible with both lateral wall and 
perimodiolar electrodes. The RobOtol system can be used for both 
lateral wall and perimodiolar EA insertion (73). Both the iotaSOFT 
and RobOtol platforms are increasingly being used for implantation 
and ongoing research studies. Various other prototype automated 
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insertion devices have been described (74, 75) including Cochlea 
Hydro Drive, a hydraulic tool using an infusion pump described by 
Rau which can insert arrays as slowly as 0.03 mm/s (41).

Both RobOtol and iotaSOFT are increasingly being used for 
implantation in the clinical setting and are also the subject of ongoing 
research. It is not clear yet if robotics-assisted EA insertion leads to 
improve postoperative outcomes; clinical work by Maheo and 
colleagues found no difference in postoperative speech outcomes 
after sequential implantation via manual insertion versus use of the 
RobOtol platform in a small subset of patients (71). Additional 
comparative clinical studies are needed to demonstrate the extent to 
which robotics-assisted EA insertion affords improves patient 
outcomes, as well as the cost-effectiveness of these technologies. Use 
of robotics systems will presumably impact costs relating to operating 
room usage (76). A study comparing manual insertion with robotics-
assistance using the Robotol system reported a mean preparation 
time of 630 ± 301 s (71). However, duration of surgery did not 
significantly differ between the manual and robotic insertion groups. 
Preparation of the Iotasoft system in a study of robotics-assisted 
implantation required a mean duration of 55.8 s (72). Mean insertion 
time was 315 s. Over time, cost per procedure using a given robotic 
platform will likely decrease due to more efficient preparation and use 
in the operating room.

There are several areas for further development of robotics-
assisted EA insertion platforms. While slower speed may reduce 
insertion forces, there still exists a need to elicit feedback from the 
cochlea to prevent injury. Incorporation of force measurement 
sensors into the robotic platform or affixed to the patient is feasible 
(77). Intraoperative electrocochleography (ECochG) is an additional 
area of investigation assessing whether changes in ECochG amplitude 
reflect or precede injury to the cochlea. Robotics-assisted EA 
insertion may facilitate more consistent ECochG responses, as the 
inability to manually hold the EA steady confounds the ECochG 
waveform (78, 79). Additionally, integration of ECochG responses or 
force measurements with a robotics-platform opens the possibility of 
automatically halting insertion based on feedback variables, avoiding 
inherent time lag required for a human response to stimuli. 
Combining robotics-assisted EA insertion with navigation software 
that can optimally orient the EA for insertion into the round window 
would be a strong adjunct, as insertion trajectory is considered a 
significant variable in force generation (34, 80, 81). Precise assessment 
of insertional depth based on tonotopic estimates is another area 
of development.

Conclusion

As the candidacy for cochlear implantation expands, patients with 
significant residual sensory and neural function in the cochlea will 
undergo surgery. This underscores the need to preserve inner ear 
function and maximize postoperative outcomes, a goal that is not 
reliably achieved with manual insertion. Robotics-assisted EA 
insertion, coupled with feedback mechanisms such as force sensors, 
ECochG and image-guidance, represents a dynamic field that holds 
great promise for the future of cochlear implantation.
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