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Thesis Summary  

 

Trauma and damage to the delicate structures of the inner ear frequently occurs during insertion 

of electrode array into the cochlea.  This is strongly related to the excessive manual insertion 

force of the surgeon without any tool/tissue interaction feedback. The research is examined tool-

tissue interaction of large prototype scale (12.5:1) digit embedded with distributive tactile 

sensor based upon cochlear electrode and large prototype scale (4.5:1) cochlea phantom for 

simulating the human cochlear which could lead to small scale digit requirements. This flexible 

digit classified the tactile information from the digit-phantom interaction such as contact status, 

tip penetration, obstacles, relative shape and location, contact orientation and multiple contacts. 

The digit, distributive tactile sensors embedded with silicon-substrate is inserted into the 

cochlea phantom to measure any digit/phantom interaction and position of the digit in order to 

minimize tissue and trauma damage during the electrode cochlear insertion. The digit is pre-

curved in cochlea shape so that the digit better conforms to the shape of the scala tympani to 

lightly hug the modiolar wall of a scala.  

 

The digit have provided information on the characteristics of touch, digit-phantom interaction 

during the digit insertion. The tests demonstrated that even devices of such a relative simple 

design with low cost have potential to improve cochlear implants surgery and other lumen 

mapping applications by providing tactile feedback information by controlling the insertion 

through sensing and control of the tip of the implant during the insertion.  In that approach, the 

surgeon could minimize the tissue damage and potential damage to the delicate structures within 

the cochlear caused by current manual electrode insertion of the cochlear implantation. This 

approach also can be applied diagnosis and path navigation procedures. The digit is a large scale 

stage and could be miniaturized in future to include more realistic surgical procedures. 

 

Keywords: Cochlear implantation, minimally invasive surgery, minimally access surgery, 

Flexible digit, tool/tissue interaction, distributive tactile system, cochlear electrode insertion, 

tactile information. 
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1 Chapter 1 INTRODUCTION 

 

This thesis demonstrates the potential for the application of distributed tactile sensing methods 

to provide information about tool-tissue interaction during minimally invasive surgical 

procedures. Minimally invasive surgery is better for the patient because it has quicker healing 

time, small incision, and less pain and trauma than with conventional surgery. However, this 

technique has more challenges for the surgeon including reduced dexterity and perception, 

reduced accessibility, limited vision information and lack of sensation information.  

 

Providing more information about the tool-tissue interaction during a surgical procedure can 

have a positive impact on the surgical outcome of a surgical procedure. The thesis presents an 

instrumented flexible digit prototype for the application of cochlear implantation surgery. 

1.1 AIM AND OBJECTIVES OF THE THESIS 

  

The aim of this research is to develop a flexible digit to aid palpation and navigation in lumen 

for clinical applications. More specifically, a tactile electrode digit that can provide tool/tissue 

feedback to reduce tissue damage and trauma to the delicate structure of the cochlea during 

electrode insertion of the current cochlear implant surgery techniques is focused on in this 

study. Future improvement of the cochlear electrode implant insertion needs to minimise the 

exerted force which causes tissue damage and trauma.  The research hypothesises that a 

reduction in the tool/tissue interaction forces with the walls of the cochlear will result in a 

significant decrease in the risk of trauma to the delicate structures of the cochlear. Tactile 
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feedback of tool/tissue interaction information to the surgeon will enhance surgeons operation 

in cochlear electrode insertion and many other palpation and navigation procedures and that is 

the main contribution of this thesis. 

 

Principal objectives are  

 To design and build a cost effective novel flexible tactile digit to reduce 

intracochlear damage associated with surgical electrode array insertion 

 To investigate the challenges of cochlear implant surgery procedures 

 To build a distributive tactile digit for lumen mapping applications  

 To build and test a rig which can verify the performance of the digit that can lead to 

a small scale digit 

 To analyse and interpret information about tool-tissue interaction  

 To test and demonstrate the overall system at the appropriate scale in a phantom 

device 

 

1.2 SCOPE OF THE STUDY 

 
A cochlear implant operates as an integrated system that includes intracochlear stimulating 

electrode array. Electrode array insertion in the cochlea is one of the key factors for restoration 

of hearing loss. The research is examined tool-tissue interaction of large prototype scale (12.5:1) 

digit embedded with distributive tactile sensor based upon cochlear electrode and large 

prototype scale (4.5:1) cochlea phantom for simulating the human cochlear which could lead to 
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small scale digit requirements. This flexible digit classified the tactile information from the 

digit-phantom interaction such as contact status, tip penetration, obstacles, relative shape and 

location, contact orientation and multiple contacts. 

The distributive tactile sensors embedded the digit provided useful feedback information about 

the digit and the phantom interactions which resembles tool-tissue interaction during the 

surgery.  This research is exploring feedback opportunities within minimal access surgery 

(MAS) with a view to minimising trauma during electrode array insertion of the cochlear 

implantation. 

 

1.3 BACKGROUND  

 
Studies have shown the need for developing steerable tools to aid palpation and navigation of 

corners and tight turns in lumen for clinical applications without excess force [1-2]. Although 

there have been remarkable advances in minimal access surgery  instruments in recent years, 

these instruments are inadequate to perform path finding or lumen mapping which are 

challenging and demanding for many medical diagnoses and surgeries and where the surgeon 

does not have adequate information about what is happening inside the lumen or hidden 

tool/tissue interaction [1-6]. Minimally Invasive Surgery techniques, also called minimum- 

access surgery (MIS) allows access to the internal organs without the use of traditional open 

surgery [4]. These techniques have been introduced throughout surgery, including endoscopy, 

arthroscopy orthopaedics and traumatology. The surgeon is mainly reliant on a visual camera 

which gives important anatomic tissue information, however it is not sufficient and haptic and 
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tactile feedback information are crucial for these MAS operations [1, 2, 5].  For instance, 

cochlear implant (CI) electrode array insertion requires tool-tissue interaction information 

including any contact between the tool and object, feed force, shape and distance fed into the 

cochlea.   

 

Modern cochlear implant surgery uses an electrode array which is inserted into the cochlea 

manually. The electrode arrays interact with auditory nerve during cochlear implant procedure 

and exert force on cochlea which has delicate spiral lamina and outer wall which has canal is 

filled with fluid (endolymph) and surrounded by fluid (perilymph) is needed [31]. The main 

challenge of cochlear implant is locating the electrode array closer to the spiral ganglion without 

tissue damage and exerted force on the scala tympani [6]. Trauma and damage during insertion 

of electrode arrays is related to lack of tactile or haptic feedback of the interactions between 

cochlear implant electrode and the cochlea during the insertion process. 

Mechanical properties such as Size and stiffnes of the electrode arrays also contribute 

complications of the cochlear implantation. Small size which is not precluding small incision 

inside the human body and flexible of electrode arrays are needed to minimize exerted forces on 

the cochlea walls during electrode insertion.  

 

Consequently, to avoid damage to delicate tissue, it is crucial to have instruments which have 

haptic ability, measure small and delicate tissue contact, determine obstacles and what is 

happening inside the human body during surgery, and can be used for diagnoses and 

preoperative procedures which the surgeon does not have the ability to see [2]. Moreover, tactile 
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tools/probes which provide feedback information from very soft tissues, such as inside a 

patient's body, to the surgeon during minimally invasive procedures are key components of 

current minimally invasive surgery including the cochlear implantation.  

 

A flexible and steerable tool which can eliminate excessive force during the surgery has 

attracted considerable attention [2-5] in recent years due to its application in minimal access 

surgery procedures such as biopsies and cochlear implants which require tactile sensors that can 

provide tool-point interaction information for Minimally Invasive Surgery (MIS); however, 

these reports have focused on matrix tactile which uses more sensors and is not suitable for 

human body insertion because of the size which preclude to go inside the human body.  

The expected benefit of these instruments/tools is that it will determine tactile feedback that can 

be used to assist the surgery for cochlear implant insertion procedures as well as other lumen 

mapping and diagnosis in minimally access surgery as well as lumen mapping and diagnosis 

procedures. 

 

Prototype digit and phantom which resemble electrode array and human cochlear respectively 

but in a large scale were introduced in this research. Using the distributive sensing approach, 

texture, stiffness, shape, and relative motion and position of the tissue can be determined [1]. 

This digit will feedback  to the surgeon the tactile information such as contact status, tip 

penetration, obstacles, relative shape and location, contact orientation and multiple contacts. 

Furthermore, the tool will provide tactile information feedback to the surgeon during 

microsurgery. This in turn will yield minimal interaction forces with the walls of the cochlea 
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and important information retrieved by the digit could map the lumen. This flexible digit has 

been demonstrated in a series of laboratory experimental phantom trials.   It uses tactile 

feedback information as a performance to quantify the potential advantage of a flexible tactile 

digit for reduction of trauma in cochlear implant surgery.  

 

The flexible digit produced tactile feedback information on interaction with the cochlea 

phantom such as contact direction and intensity, information about the digit shape, tip 

penetration, time and position of the contact during the digit insertion. In addition, this digit can 

be used for other similar applications like surgical and diagnostic tools which involve 

interaction of surgical tools with soft biological tissue in surgery. These could be guidelines to 

assist in the improvement of the surgical technique and to minimise trauma caused by excessive 

force application. Such a digit can help better the performance of cochlear implants with lower 

cost.  

 

1.4 THESIS OUTLINE 

 
This thesis is organised as follows: 

 

Chapter 2 reviews the current state-of-the-art of existing research in the area of minimum-

access surgery (MAS) and instruments. This chapter focuses on the challenges and problems of 
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current MAS instruments. It highlights some of the solutions that have been attempted and the 

main challenges that need to be solved, particularly cochlear electrode insertion procedures.    

 

Chapter 3 describes the clinical environment, procedures, techniques, challenges and 

requirements of cochlear implants. This chapter provides the mechanics of the ear system, a 

brief history of cochlear implants, and presents the current state of minimally invasive cochlear 

implant technology with particular reference to the cochlear electrode arrays insertion 

techniques. The challenges and problems of existing techniques of cochlear implants will be 

highlighted at the end.    

 

Chapter 4 provides an overview of tactile sensors, with the primary emphasis placed on 

distributive tactile sensing techniques. Concerning the interpretation of tactile information, this 

chapter describes the general overview of tactile sensing techniques and presents two case 

studies of distributive tactile techniques. The first involves cantilever tactile sensing, i.e., 

detecting the load of the object and estimating contact locations of the loads from the sensors. 

The second involves flexible probes for identifying tumours and voids or holes of an object, i.e., 

estimating the surface condition such as lumps or gaps and the direction of the contact.  

 

Chapter 5 demonstrates the principle of operation and implementation of flexible tactile 

electrode arrays for a cochlear prosthesis. This digit is a hand held tool for enhancing the 

capabilities of surgeons. Design of an electrode which contains embedded sensors for wall 

contact and a digit that hugs the scala tympani wall of the phantom cochlea in order to minimise 
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tissue damage during array insertion is discussed. The digit collects signals related to tissue 

properties and provides tool-tissue interaction feedback to enhance surgeon’s tactile capability. 

Effectiveness of a developed flexible tactile digit through different experiments and their results 

have been demonstrated.  

 

Chapter 6 presents the results of the response analysis of the steerable tactile digit. 

Measurements of the frequency response under different surface conditions were made and are 

discussed. Also, touch characteristics of location with direction of the contact and shape 

characteristics of the digit were analysed. To verify the digit’s performance an investigation of 

the contact conditions are required.  During the digit insertion, desired output parameters needed 

for clinical applications including touch characteristics and shape characteristics are mentioned.  

 

Chapter 7 presents results of a research study of evaluating efficacy of flexible tactile digits for 

cochlear implant surgery. It describes user studies which were performed with steerable sense 

touch digits inserted into the cochlear phantom. The user experiments will identify where the 

digit is and the pressing point where the contacts are taking place. It will provide tactile 

feedback that can be used to assist the surgery for cochlear implant insertion procedures for less 

trauma and sensitive tissue damage. The experimental method is presented in the first section, 

followed by different insertion procedures and tool/tissue interaction states and transitions 

analysis. In this study, we set the steerable digit as a contact and the cochlea phantom as a target 

to allow contact between the electrode and cochlea during the electrode insertion. 
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Chapter 8 In this chapter, thesis contributions and limitations are summarised, and the scope 

for future work is discussed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

- 23 - 

 

 
  

2 Chapter 2 LITERATURE REVIEW 

 
This chapter provides an overview of the minimally invasive surgeries that have been presented 

in the literature, with emphasis on instruments used by surgeons during the surgical operations. 

It highlights some proposals to the problems that have been attempted and the main challenges 

that need to be solved, particularly cochlear electrode insertion procedures.    

 

2.1 MINIMALLY INVASIVE SURGERY 

 

Minimally invasive surgery and minimal access surgery are becoming more and more common 

in medical and surgical practice and they have improved on the quality of surgery procedures 

and diagnosis as well as patient health, such as small incisions which cause less pain and 

trauma, less strain and reduced cost of health [4].  However, these procedures have drawbacks 

including limited vision information, lack of touch sense and haptic feedback/sensation, limited 

degree of mobility, and difficult hand-eye coordination [2, 4, 5, 7]. 

 

Instead of directly seeing and touching the tissues and organs as in open surgery, in these 

techniques, the surgeons rely on the images provided by miniaturised imaging systems inserted 

inside the patient, and use surgical instrumentation to perform the operations [4]. These surgical 

operations are carried out in procedures such as endoscopy, laparoscopy, thoracoscopy, 

arthroscopy, ophthalmic, orthopaedics and traumatology, hernia, gall bladder and thoracic spine. 

Endoscopic surgery (Figure 2.1) is now widespread in many fields and is used to treat and 
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diagnose many conditions including problems in the ear, gallbladder, knee, nose, and throat, and 

in tubal ligation and plastic surgery [8].  In most cases, manipulation of the endoscope is narrow 

and difficult due to the small diameter of the vessel, and causes excessive force and stress 

applied on the vessels [9]. Endoscope procedure has vision limitation due to the colon contract 

and this can cause problems for the surgeon [8]. Similarly, making an incision or  to find hidden 

anatomical features of tumours and placing a sponge or inserting a suture is difficult for the 

surgeon to know the condition of the contacted tissue during the endoscope operation as well as 

the catheter operation [8, 9].  

 

Arthroscopy, shown in Figure 2.2, is used to diagnose and repair many joint problems and is 

one of the most common orthopaedic procedures which use a real-time image obtained by 

endoscopic camera during the invasive minimum surgery to get interaction between the tool and 

the tissue [11].  

Figure 2.1: Different applications of endoscopic minimally invasive surgery [7] 
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Similarly, laparoscopy (Figure 2.3) which is used to diagnose and treat many types of 

abdominal problems, including some cancers, obstetric/gynaecological problems, and urological 

problems uses a visual camera to enable the surgeons to look into the abdomen and at the 

reproductive organs [13]. Laparoscope and previous MAS/MIS procedures are needed for 

locating hidden anatomical structures and evaluating tissue properties to detect tumours. 

 

 

 

 

 

 

In conventional open surgery procedures, it is the effect of haptic and visual feedback that 

controls the tool-tissue interaction, accessing hidden tissues and enables optimal surgical 

outcomes, however, all of these procedures, endoscope, arthroscopy, laparoscope, and others 

such as catheter and thoracoscopy share common problems: they lack tool-tissue interaction 

feedback, that is they lack tactile and haptic feedback information which could improve the 

quality of the operation [6,8,9,13]. Tactile and haptic feed can provide to the surgeon vital 

Figure 2.3: Minimal invasive laparoscopy techniques [12] 
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information about hidden tissue characteristics as well as haptic perception of that part of the 

body compared to the visual camera feedback.  

Minimally invasive cochlear implant (CI) surgery (Figure 2.4) which is one of the MAS 

operations, has achieved recognition as an approved medical procedure for the treatment of 

profound hearing loss in adults and children and has given rise to a great deal of many 

researches in last two  decades [6, 14]. However, CIs need to reduce possible damage to the 

inner ear, deeper insertion for better hearing frequency spectrum and increased efficiency of 

reduction in comfortable loudness level charges [15]. 

 

 

 

 

 

 

This improvement needs flexible tools with tactile and haptic feedback of the tool-tissue 

interaction during the cochlear implantation due to the anatomical cavity of the cochlea. 

   

These MAS/MIS operations in general have challenges of tool point deployment to the working 

site or to navigate towards the working site, controlled interaction between the tissue and tool 

Figure 2.4: Cochlear implant [14] 
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[19], navigating through minimal access [16], path planning [17] or mapping [18], interpretation 

of haptics and reduced excessive force on the sensitive tissues.  To solve these challenges, it is 

needed to examine current instruments/tools of the MIS/MAS. Research efforts are currently 

devoted to enhance the dexterity and sensory capabilities of surgical instrumentation for MIS, to 

improve visual and tactile rendering to the surgeon [1,4,5]. 

 

2.2 CURRENT RESEARCH ON MIS INSTRUMENTS  

 

 
During minimally access surgery, the surgical instruments as illustrated in Figure 2.5 are 

introduced into the body through small incisions [8,9]. These instruments are fundamentally 

altered (size, flexibility) by the continuing development of minimally invasive surgical 

procedures.  

 

 

 

 

 

 

 

 
Figure 2.5: Endoscopic surgery instruments (endoscope) [20] 
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To avoid the drawbacks of MIS, tactile sensory feedback instruments can play an important 

role. The tactile instruments will make it easy for a surgeon to get into inaccessible regions of 

the body by having information about the location, dexterity and tissue contact through tactile 

feedback.  

 

A variety of hand-held instruments have been developed to improve MIS operations. A robot 

assisted by tactile sensing instrument (Figure 2.6) for minimally invasive surgery was developed 

for tumour detection [21].  

 

 

 

 

 

  

 

This study has shown experimentally the difference between robot and human tissue palpation 

and indicated that tissue trauma is decreased while tumour detection is increased. However, this 

experiment used 60 sensing elements with a 385mm probe shaft length which is not suitable to 

incision surgery such as cochlea due to the size and wiring system. Also, this study analysed 

only force parameters instead of sense of touch, particularly tip contact.  

 

Figure 2.6: Tactile sensing instruments [21] 
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Dario [2] has presented a novel mechatronic tool for arthroscopic surgery which is equipped 

with a position sensor and force sensor (Figure 2.7) to provide location and contact information. 

 

 

 

 

 

 

 

 

 Although this tool provided more information compared to a traditional Arthroscopy surgery 

tool, no information about the contact object can be retrieved such as shape and stiffness.  

 

To improve flexibility of MIS instruments and enhance the working site an active bending 

catheter tube which is made of Shape Memory Alloy (SMA) coil and metal spring coated with 

polymer [22] was developed. This tool is designed for catheter and endoscopic procedures and 

surgeons can control the bending motion of the tip of the tube from outside the body. However, 

it will not give information about the tissue contacted with the tool. Another study [23] has 

compared vision and force feedback for tissue characterisation of laparoscopic procedures 

which concluded that the force feedback plays a significant role in MIS. 

 

Figure 2.7: Arthroscopy tool [2] 
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Sensor-based position control for guidance in the advancement in tubular, compliant and 

slippery environment of colonoscopy was developed [24] and this Colobot (Figure 2.8) design 

has shown a possibility to guide the exploration of the tube with a sensor-based steering control 

method. 

 

 

Although this approach of position control is showing improvement, this study uses only tip 

pressure information which can not be generalised to other MIS applications, also it uses a lot of 

parameters as shown Figure 2.8 (c) and lastly there is no sense of touch for the Colobot. 

Shimachi [5] also has designed a new sensing method of force acting on an instrument for 

laparoscopic robot surgery (Figure 2.9) where gravity and acceleration forces of the instrument 

in motion are compensated for. This research focused only on force compensation. Other 

information about the tissue is needed for the surgeon to do a fine operation. 

 

 

 

Figure 2.9: Active bending catheter tip (1.6mm) [5] 

  Figure 2.8:  a) colobot ,    b) cross section of Colobot , c) kinematic parameters of the Colobot [24] 

(a) (b) (c) 
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Sedaghati et al [18] designed and fabricated an endoscopic piezoelectric tactile sensor which 

only measures the applied force and softness of the tissue. Also, Javad Draghai et al [25] have 

designed a tactile probe for measurement of tissue softness. These investigations have focused 

on tissue softness which has many MIS applications but more tactile information about the 

shape and interaction tool-tissue, lumens, and contact directions are needed for intricate surgical 

operations. 

 Similarly, Oleynikova [13] designed in vivo miniature camera robots to assist a surgeon during 

laparoscopic surgery. Additional camera angles were provided that augmented surgical 

visualisation and improved orientation while abdominal procedures were performed. The in vivo 

miniature camera robots can provide surgeons with additional visual information that can 

increase procedural safety but lacks tactile feedback information. Navigation and mapping 

corners and tight turns without excess force are challenging areas in surgery.  Murayama et al 

[26] have developed simple tactile mapping technology to obtain a contour image and 

topographical Young’s modulus information rather than mapping the lumen or contacting the 

tissue directly. Brett et al [1] have designed a flexible digit with tactile feedback for invasive 

clinical applications. These works have shown good tactile feedback information; however, 

further work to collect more information that could be used for lumen mapping would be a 

significant advantage. Furthermore these works are limited to specific applications. Similarly, 

Onders et al [27] have done work on phrenic nerve motor mapping which has shown good 

results, however, this system is bulky and it requires electrode wires and external power. 
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Surgeons need to know more about hidden cavities as well as tumours and its depth to get better 

images or shapes of the tissue to carry out suitable surgical tasks [3]. Similarly, Current MIS 

instruments are inadequate to perform path finding or lumen mapping which are challenging 

and demanding for many medical diagnoses and surgeries. Human natural fingertips unlike MIS 

tools can detect multi-objects and their characteristics of mechanical features which can help the 

surgeon.  Multi-axis force sensing arrays have been fabricated using Micro-Electro-Mechanical 

Systems (MEMS), but this is not suitable for soft and delicate tissue surgeries due to the size of 

the design [28].  

All the above attempts share the goal of extending the surgeons’ ability to perceive and act. The 

improvement can be dexterity and tactile perception enhancement or creating access, and that is 

what these instruments are lacking. A realistic tool-object interaction with collision-free contact 

position, which provides sufficient tactile information to perform lumen mapping, contact 

condition discrimination, and locate arteries and tumours hidden in the tissues is needed. At the 

same time these are likely to need to meet the additional requirements of miniaturisation, 

simplicity, disposability and to be cost-efficient. These tools/instruments embedded with tactile 

sensors can provide tactile feedback information which can be inferred features of the tissue and 

surrounding environment to perform difficult medical operations.  

 

Thus, there is a need for a pragmatic approach to tactile sensing that requires: few sensor 

elements, few connections, good use of the cross-section of the instrument, is able to actuate 

sufficiently for controlled tissue-toolpoint interaction, toolpoint motion, tool-object interaction 

with collision-free position contact, toolpoint delivery and to react to tool point forces to 
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minimise excessive force applied on the delicate tissue.  Furthermore, the means to feedback to 

the surgeon needs also to be pragmatic and to naturally give a clearer perception of interaction 

with the tissue and spatial awareness with respect to the tissue/ lumen and tool orientation.  

 

2.3 COCHLEAR IMPLANT SURGERY 

 

Cochlear implantation is an implant hearing technology for patients who are severely and 

profoundly deaf which has been expanding since last three decades. The current technology of 

cochlear implantation involves surgeons implanting a thin electrode array into the scala tympani 

canal [29] as shown in Figure 2.10.  

 

Electrode array insertion which requires access to the cochlea plays a major role in hearing 

preservation. The position and how the electrode arrays (20-24 wires of each  20µm diameter or 

less) interact  with auditory nerve during cochlear implant (size of 1.3mm diameter x 31.5mm 

Figure 2.10: Cochlea implantation [30] 
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length) procedure without exerting force on cochlea which has delicate spiral lamina and outer 

wall which has canal is filled with fluid (endolymph) and surrounded by fluid (perilymph) is 

needed [31]. 

  

Thus, optimal success of the cochlear implantation probably depends on the electrode 

technology and insertion techniques. Wang et al [32] have developed a prototype position array 

sensor to overcome these challenges. There is no sense of touch feedback for this study that can 

cover all relevant tissue surfaces which can give tool-tissue contact information inside the 

cochlea.  Although this study has indicated some improvements such as tip contact response, 

approximate position of the tip, and curvature equivalent to one turn, the report did not mention 

tool-tissue contact discrimination and complete shape of the cochlea with these many array 

sensors used. Similarly, Wise et al [33] have used tip sensor and position sensors to provide tip 

information and position sensors but many array sensors were used rather than few sensor-

distributive tactile sensing methods which uses less sensing elements and less power.  

 

Direction of the electrode insertion and excessive force need consideration during the electrode 

insertion of the CI operation. Roland et al [34] reported that deep and forceful electrode array 

insertion procedures can lead to severe destruction of the delicate intracochlear structure. 

Similarly, Donnelly et al [35] reported that insertion of a cochlear implant electrode into the 

scala tympani had a variable effect on stapes displacement, which may have an effect on 

residual low frequency hearing thresholds.  Factors that may affect the incidence of the damage 

include mechanical properties of electrode design, variations in size and shape of each cochlea, 
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and the specific surgical techniques used for insertion [15]. Reducing forces on the cochlear 

outer walls, obtaining more consistent perimodiolar position should result in a favourable 

outcome. A number of approaches have been used to improve electrode array insertion to avoid 

cochlear trauma and increase depth of insertion. David Schramm [36] has revised one of the 

electrode array insertion techniques and highlighted that electrode location has reached only one 

turn of the cochlea turns (Figure 2.11). This is the typical depth of insertion while cochlea 

trauma was not reported in this study. 

 

 

 

 

 

Frinjns et al [37] have shown a new electrode which is able to attain the desired position with 

minimal damage to the intracochlear structures. This electrode has contacts directed towards the 

modiolus. It has a very thin tip and is broader at the base. It is precurved with a large radius to 

follow the outer wall curvature. The electrode dimensions are chosen in such a way that it fits in 

even the smallest cochleae [37]. 

 Furthermore, David Schramm [36] has implemented another electrode insertion (Figure 2.12).  

 

 

 

Figure 2.11:  Intraoperative x-ray [36] 

Figure 2.12: HiFocus Helix Electrode 
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These attempts have tried to reach optimum insertion of the electrode cochlear, however these 

techniques can not reach the optimal position (full insertion of the inner depth of the cochlea) 

[6], but also with all electrode arrays inserted into cochlea, there is a risk of surgical trauma 

particularly to the basilar membrane, the partition on which the organ of hearing rests as 

reported by Chen et al [38].  

 

Today, all the cochlear implantation operations insert the electrode array into the cochlea 

manually where insertion is stopped until further advancement of electrode array could not be 

made [39]. However, this manual insertion which is required to insert or to reach sensitive 

regions of the cochlea wall can damage the tissue or the walls [4]. 

 

Successful electrode array insertion requires further improvement of the insertion tools which 

can reduce trauma damage and can be inserted more deeply. Companies like Med-El have 

manufactured flexible electrode array (Figure 2.13) which have played a significant role in 

reducing excessive force. However, Adunka et al [41] carried out experiments and reported that 

all insertions were atraumatic and covered one cochlear turn. Besides limited insertion depth, 

intracochlear trauma could happen due to lack of tool-tissue interaction feedback.  

 

  

 

 

 

Figure 2.13:  FLEXEAS electrode array [40] 
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Also, increased electrode insertion to a  depth of up to two turns have been reported recently 

[42] which improved speech reception,  however  insertion technique is still using force without 

tactile feedback and that will have an effect on the delicate tissue of the cochlea. Also this study 

did not report trauma effects.  Wilson and Michael [43] have a remarkable review of cochlear 

implants and mentioned future improvements including continued development of electrical 

simulation patterns and new designs or placements of electrode arrays. Similarly, Andress et al 

[44] proposed an automation tool to reduce trauma during the electrode insertion. Nevertheless, 

the proposal did not use tactile feedback which is essential to avoid cochlear trauma.   

 

Surgical instruments which provide sufficient tactile information to perform lumen mapping, 

tool-tissue interaction and at the same time are flexible, disposable and cost effective are 

required by major MIS techniques including cochlear implants. These tools can provide tactile 

feedback information which serve as an extension of the surgeon’s ability to do fine operations 

and by these efforts MIS will get safer in the future. 
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3 Chapter 3 COCHLEAR IMPLANTS 
 

 

The aims of this chapter are to provide the anatomy of the ear system and principal causes of 

hearing loss, along with a brief history of cochlear implants and the current state of minimally 

invasive cochlear implant technology. Lastly, this chapter highlights challenges and problems of 

the electrode insertion procedure of the cochlear implantation. 

 

3.1 ANATOMY OF THE HUMAN EAR 

 

The human ear is made up of three basic structures [46] shown in Figure 3.1: the outer ear, the 

middle ear, and the inner ear. The outer ear consists of: 

o the ear lobe (pinna or auricle)  

o the ear (or auditory) canal, through which sound waves pass to the ear drum  

o the ear drum (which separates the outer ear from the middle ear)  

The outer ear collects sound waves and directs them into the ear canal. The ear canal carries 

sound waves to the eardrum [45, 48].  
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The middle ear consists of [46]: 

o the inner part of the ear drum  

o the hammer (malleus)  

o the anvil (incus)  

o the stirrup (stapes). 

The main task of the middle ear is to ensure that sufficient sound energy is conveyed to the fluid 

within the cochlear [49]. It transmits sound from the outer ear to the inner ear where it is 

processed into a signal that the brain can recognise. 

The inner ear consists of: cochlea for hearing, vestibular labyrinth dedicated for balance and 

semicircular canals for letting us if we are moving. With its series of winding interconnected 

chambers and tubes (fluid-filled), the inner ear has been called a labyrinth. The inner ear (Figure 

Figure 3.1: Human ear anatomy [47] 
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3.2) is responsible for interpreting and transmitting sound and balance sensations to the brain 

[45]. 

 

 

 

 

 

 

 

 

 The human hearing system has an ability to detect, collect and amplify and encode acoustic 

information to hear a sound [45, 51]. Sound waves are collected by the outer ear and are 

funnelled through the ear canal to the tympanic membrane (eardrum) and cause the tympanic 

membrane to vibrate. The vibration from the tympanic membrane is transmitted to the bones in 

the middle ear. Then the bones in the middle ear amplify the sound and transmit it to the inner 

ear. The middle ear also matches the impedance between sound from the air and water (fluids in 

Figure 3.2: Inner ear structure [47, 50] 
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the inner ear) for the optimum sound transfer [45, 49]. These vibrations pass through the oval 

window to the inner ear, setting the fluid inside the cochlea in motion. Special nerve cells or 

spiral ganglion (hair cells) within the cochlea then turn the sound waves into electrical impulses 

and the auditory nerve sends these electrical impulses to the brain’s auditory cortex, where it is 

processed as sound [45].  

 

3.1.1 Concept of Hearing Loss 

 

 
A problem in any part of the ear may cause a reduction of sound transmission due to the hearing 

disorder or hearing loss. When describing hearing loss, generally three attributes are considered: 

type of hearing loss, degree of hearing loss, and the configuration of the hearing loss.  

There are a variety of diseases that can affect the ear, causing a hearing loss. The root causes of 

the hearing loss are severed, missing, compromised or complete loss or destruction of the 

sensory hair cells [45]. In general, hearing loss is categorised by three basic types depending on 

the area of the ear or auditory system that is damaged or compromised and Table 3.1 shows 

these types and their area of auditory system with possible causes [49]. 
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Table 3.1: Types of hearing loss and possible causes 

Type of hearing loss Position/location of the ear Possible causes 

Conductive loss outer or middle ear wax in the ear canal, a perforation in the eardrum, 

or fluid in the middle ear disruption or fixation of 

the ossicles. 

Sensorineural loss  the inner ear or along the nerve 

pathway between the inner ear 

and the brain 

ageing, infection or other disease, noise exposure, 

or it may be related to a genetic disorder. 

Mixed loss Conductive loss and a sensorineural loss occurring at the same time 

 

Conductive loss can often be treated by medical management or minor surgery whereas 

sensorineural hearing loss due to the result of damage to the inner or outer hair cells within the 

cochlea or the hearing nerve (or both) is irreversible and cannot be cured [49]. 

The severity of hearing impairment experienced is referred to as the degree of hearing loss and 

is measured in decibels (dB). Table 3.2 is one of the more commonly used classification 

systems with their technology intervention [49].  Decibel is the scale of amplitude of sounds. 

The larger the decibels, the louder the sound are. For example, speech range is between 0 and 

15 dB  is a whisper while 100-110 dB is how loud a motorbike engine is and a jet plane in close 

proximity is heard at a painful level of 140 dB or louder. 0dB is defined as the faintest sound 

that a young sensitive human ear can hear. As such the dB hearing level numbers are 

representative of the patient's thresholds, or the lowest sound intensity they can perceive. 

Normal ear can detect a range of pitches or frequencies over a wide range of loudness or 

intensity.  The normal threshold is of 20 dB for very quite sounds to very loud sounds of 120 
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dB.  In another way, the audible range of frequencies is usually to be 20 Hz to 20 kHz. 

Similarly, frequency (pitch) threshold of low pitch is 125 Hz to high pitch of 8000 HZ. 

The configuration of the hearing loss refers to the pattern or shape of the hearing loss on the 

hearing thresholds and normal healthy auditory person can pick up and process a wide range of 

sound frequencies but profound or deaf person do not have that ranges and this could be hearing 

loss of high frequencies or low frequencies or both of them [49]. Situation is different from one 

person to another, a person with high frequency hearing loss or the inability to hear higher 

pitched sounds may have a bad hearing in the low frequencies but poor hearing in the high 

frequencies. If only the person’s low frequencies are affected, the configuration would indicate 

poorer hearing for low tones and may have better hearing for high frequencies. Also, some 

people may have affected low and high frequencies and this person has no ability to hear sounds 

of all ranges of frequencies (low and high) [49].  

 

According to the Royal National Institute for Deaf People (RNID) [52], there are around 9 

million people who are deaf or hard of hearing in the UK. Most have lost their hearing gradually 

with increasing age, with over 50% of people aged over 60 are hard of hearing or deaf. Hearing 

loss can also occur at a younger age, with approximately one in every 1,000 children showing a 

profound hearing loss at three years old, rising to to two in every 1,000 children between the 

ages of nine and sixteen. These people have a lower quality of life compared to those without 

hearing impairments shown in Figure 3.3. 
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Table 3.2: Degree of hearing loss and technology intervention 

Degree of hearing loss Hearing loss range ( dB Hearing Level) Technology intervention 

Normal  -10 to 15 None 

Slight  16 to 25 None 

Mild  26 to 40 (soft sounds may be difficult to 

distinguish). 

 

Moderate   41 to 55 (conversational speech is hard to hear, 

especially if there is background noise such as a 

television or radio). 

   

      

 

Hearing aid Moderately severe 56 to 70 (it is very difficult to hear ordinary 

speech). 

Severe    71 to 90 (conversational speech can't be heard). 

profound  91+ almost all sounds are inaudible. Most people 

with profound hearing loss benefit from a hearing 

aid, while some don't. 

        

       Cochlear implant  

 

People with moderate, severely moderate or severe hearing loss may use hearing aids of 

different technology, but people with severe and profound hearing loss require cochlear device 

implantation.   
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In patients with severe to profound sensorineural hearing loss is resulted from damage to the 

sensory hair cells or to the nerves that supply in the cochlea, the inner ear. [45]. A cochlear 

implant, however, bypasses these damaged sensory cells and directly electrically stimulates the 

nerve responsible for hearing through series of microelectrodes inserted into the cochlea, which 

directly electrically stimulates the auditory nerves to the brain as a sound [45, 49]. 

 

3.2 COCHLEAR IMPLANT DEVELOPMENT  

 

Many scientific discoveries and research has contributed to the current design and development 

of the cochlear implant.  Figure 3.4 shows a timeline history of the cochlear development [45, 

54-57]. This timeline starts in the 8
th
 century (1790), when a researcher named Volta stimulated 

Figure 3.3: Position of the deafness in the quality of life [53] 
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his own ears electrically by placing metal rods in his  ear canal, and connected them to an 

electric circuit generating an unpleasant jolt sound and it is considered the first known attempt 

at using electricity to hear [45, 54, 55].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the nineteen thirties, an important advance was made when Weaver and Bray discovered that 

electrical energy can be transformed into sound before reaching the inner ear [54]. This was 

indirect electrical simulation in the human.  It was in the year 1957 when the first cochlear 

implant concept was introduced through direct electrical stimulation in the human with an 

1790          1930 1950        1960                1970          1980            1990         2000    2010          

                                    Figure 3.4: Timeline history of cochlear implants   
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electrode by the scientists Djourno and Eyries [55]. In that experiment, the patient whose nerve 

was being stimulated, could hear background noise but could not discriminate and understand 

speech. They continued experiments but could not achieve speech comprehension by means 

other than through lipreading and noise hearing [55].   

 

The important legacy of this period was the first clinical application of this technique..  Dr. 

William House took the work of Djourno and in 1961 he implanted the first single electrode 

cochlear implant in two patients [55].  Dr. William’s initial results indicated that the patients 

could perceive the rhythm of speech. These successful discoveries encouraged many scientists 

around the world in attempts to restore the hearing of deaf people. A few years later, in 1964 to 

1966, better results were observed when an array of electrodes was placed in the cochlea [54]. 

These developments made a significant impact on the development of cochlear implants, and 

implant technology leaped forward in the seventies due to the speech processor development. In 

the early seventies the patient could only understand lipreading and could recognise 

environmental sounds [54], but in 1972, the single-electrode implant was the first to be 

commercially marketed by House 3M which the Food and Drug Administration (FDA) 

approved in the late eighties [56]. In the eighties, the FDA started cochlear implant regulations 

and Dr. House implemented the first cochlear implant on children and after that more children 

followed on receiving cochlear implantation [55]. These activities triggered fundamental 

research in industrial development and clinical trials where the activities involved electrical 

stimulation of the auditory system using an electrode or array of electrodes inserted into the 

scala tympani [55].   
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Through the 1990’s, researchers learned even more about the positioning of electrodes and the 

impact of that positioning on speech frequencies. These researchers were looking at more 

flexible and smaller devices including different electrode arrays and speech processors to 

produce higher performance levels of hearing [1, 6].  Continual development of multichannel 

signal processors, higher stimulation rates and more efficient electrodes such as perimodular 

contour electrodes and split electrodes resulted in dramatic improvement of cochlear implants in 

the late 1990’s and early 2000’s [29, 32, 36]. These efforts brought practical solutions to 

thousands of deaf people.   

Currently, feedback from thousands of cochlear implant users has indicated remarkable 

increases in speech perception and this has improved their quality of life [33, 35, 55]. Improved 

performance is due to a number of factors including improved cochlear implant technology such 

as speech processors, electrode array insertion techniques and the size of implant, which as the 

technology advances the cochlear implants demonstrate better performance, as shown in Figure 

3.5 [57]. Beyond that, it has been reported that many patients have achieved more than 90% 

score on standard tests of sentence intelligibility in quiet conditions [55].  The significance and 

role of the cochlear implants to overcome severe-to-profound hearing impairment problems is 

now well accepted and is available in the market.  

 

 

 

 

 

Figure 3.5: Cochlear implant performance   
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Three forerunners of the current cochlear implant providers are: 1) Advanced Bionics; 2) 

Cochlear Corporation; and 3) The Med-El Cochlear Implant. Also AllHear, Nurobiosys, MXM 

laboratories and House 3M companies produce cochlear implants. Because all implants have 

differences as well as similarities in their design, there is no clear indication about superiority 

among them. These companies manufacture basic parts of the cochlear implants. The basic parts 

of the device are grouped into external and internal components (Figure 3.6)  

 

External parts consist of a microphone, speech processor and transmitter. The microphone 

which picks up the sound is worn behind the ear and replaces the function of the outer ear; a 

speech processor which is worn externally on the body analyzes and digitizes the sound signals 

and sends them through a thin cable to the transmitter; a transmitter, which is a coil held in 

position by a magnet placed behind the external ear (Figure 3.7) transmits the processed sound 

signals to the implanted receiver just under the skin. 

 

Figure 3.6: Cochlear implant components [58] 
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Internal parts are: a receiver and stimulator which convert the signals into electric impulses and 

send them to electrode arrays through an internal cable; an array of up to 22 electrodes 

(diameter of ≈ 0.5 mm at the apex (distal tip) to ≈ 1.3 mm at the proximal with length of ≈ 

13mm and the total length is 31.5mm) [60] serve to send the impulses from the transmitter to 

the nerves in the scala tympani and then directly to the auditory nerve.  The internal parts are 

used to implant into the scala tympani of the human cochlea using invasive surgery with 

different ways of transmitting electrical stimuli to the electrode array [61], and the surgical 

procedure of implantation plays a significant role on cochlear implantation.  

The way in which the cochlear implant replaces the human hearing organ (functions of the 

cochlea) may be summarised as follows: the concept of the cochlear implant is that early 

scientists positioned wires on bare nerves during an operation and applied an electric current, 

and reported that the patient heard sounds like "a roulette wheel" and "a cricket"[62]. Today, 

Microphone detects speech and sounds from the surrounding environment and these signals are 

Figure 3.7:  Cochlear implant parts [59] 
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sent to the speech processor. The speech processor translates the information received by 

microphone and converts into an electrical impulses by decomposing the input signal into 

audible frequency components. These electrical impulses are delivered directly to the 

transmitting coil in the headset through a cable. Radio waves from the transmitter coil carry the 

coded signal through the skin to the implant inside. The internal implant decodes the signal 

where the signal determines how much electrical current will be sent to the different electrodes. 

These code signals are used to determine the stimulus characteristics which are sent to the 

suitable electrodes. The suitable amount of electrical current determines the intensity of the 

sounds and sends these electrical currents to the appropriate lead wires to the chosen electrodes. 

The number of electrodes and the spacing between the electrodes within the cochlea determine 

the frequency or pitch of the sounds. The coded signals are sent to the brain where the 

electrodes stimulate the auditory nerves.  Finally, stimulated information is sent to the brain for 

interpretation as a meaningful sound [62].  

  

3.3 MINIMALLY INVASIVE SURGERY FOR COCHLEAR 

IMPLANTS    

Modern cochlear implant surgery uses an electrode array which is inserted into the scala 

tympani (Figure 3.8) in order to stimulate the nerves of the inner ear.  
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(a) 

Figure 3.9: Cochlear  implantation; a) electrode insertion [65];  b) electrode insertion with    

insertion tools [36] 

(b) 

 

 

 

 

 

 

 

The electrode array is inserted into the cochlea smoothly (Figure 3.9) through a cochleostomy 

near the round window as far as possible using a claw instrument provided by the manufacturer 

[64] and precise technique specific to each manufacturer’s device is followed. The challenge for 

the cochlear implant surgeon is to place the electrode arrays close to the scala with minimal 

insertion trauma [39, 65].  Exciting different auditory precepts through stimulation of electrodes 

on different locations inside the cochlea made successful current multichannel cochlear 

implants. 

Figure 3.8: Cochlea implant cross-section [63] 
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It is generally noted that intracochlear insertion of the stimulation electrode contributes 

significantly to the performance of the cochlear implants [39]. Dimensions and three 

dimensional arrangements of the cochlea and the ganglion cells have influenced the design of 

electrode arrays. Electrodes located near the round window evoke a high pitch of hearing 

frequency, whereas electrodes at the pitch end (electrode’s front tip) of the cochlea transmit low 

pitch sensations [65].  It is vital that the electrode arrays are placed in close proximity with 

corresponding auditory neurons that goes along with the length of the cochlea. 

 

Mathieu et al [66] reported that that deeper insertion of the electrodes arrays into the cochlea 

can improve hearing performance.  Current electrode array manufacturers include significant 

features of the electrode to bring better results such as easy insertion, biocompatibility, long-

term reliability, safety during insertion, exert no static forces on intracochlear tissue and be 

relatively simple to manufacture [67]. Similarly, some of the considerations associated with 

electrode design in the literature include [61]: (1) electrode placement, (2) number of electrodes 

and spacing of contacts, (3) orientation of electrodes with respect to the excitable tissue, and (4) 

electrode configuration.  

In an attempt to develop a suitable electrode array which lies close to the modiolar wall but does 

not cause damage to the delicate tissues in the cochlea has been the focus of research for many 

decades [67].  Different electrodes have been developed to improve the performance of the 

cochlear implants and some of the forerunner companies that manufacture electrode arrays of 

the cochlear implant are shown in Table 3.3. At present electrodes differ in overall length, 
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diameter, contact design and distribution as well as stiffness and can be classified based on their 

shapes such as straight, contour, curved and spiral electrode shapes as shown in Table 3.3.   

 

First generation, straight electrode arrays (Figure 3.10) such as the Banded array of cochlear 

Limited and FLEX
EAS

 electrode of MED-EL  use different techniques to insert into the cochlea 

with a claw instrument provided by the manufacturer such as an electrode plus space filling 

positioned and an array with positioning wire [67-69]. These straight electrode arrays are not 

curved at all before they are placed into the cochlea. 

 

Table 3.3: Electrode array manufacturers  

Company  Electrode /Internal implant Electrode array  type  

Cochlear 

Limited 

Cochlear bandedTM 

Cochlear contourTM  

Contour advancedTM  

NucleusR24  

NucleusR24  

Straight 

Spiral 

Spiral 

Contour 

Straight  

Advanced 

Bionics   

Spiral clarionTM 

HiFocusIITM 

HelixTM  

Spiral 

Straight/Curve 

Spiral 

MEDEL  Combi 40+ 

Flexsoft 

Straight  

Nurobiosys  Nurobiosys Straight 
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Second generation designs (Figure 3.11) including the contour electrode array of Cochlear 

Limited and spiral clarion electrode of Advanced Bionics are designed to coil or follow the 

shape of the cochlea during or after insertion to occupy a position closer to the modiolar wall of 

the cochlea to increase operating efficiency and channel selectivity and to reduce damage and 

trauma of the cochlea [6, 66, 67, 69].  

 

 

 

 

 

 

Figure 3.10: First electrode array generations: 

 a) banded electrode (Cochlear Limited) [6]; b) FLEXEAS electrode (MED-EL) [68] 

(a) (b) 

(a) (b) (c) 

Figure 3.11: Second electrode array generation   a) Nucleus Contour
TM

 electrode array (cochlear 

limited) [67]; b) Spiral clarion electrode (Advanced Bionics) [70]; c) HiFocusII
TM

 electrode 

(Advanced Bionics) [70] 
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In these electrodes, the precoiled electrode array is straightened with a stylet (Figure 3.12a) and 

is pushed off the stylet as the electrode is advanced into the cochlea. Then, the precoiled 

electrode array returns to a spiral shape intended to facilitate insertion and ultimately position 

the electrode array near the modiolus as shown in Figure 3.12b [36]. This technique has been 

termed advance off stylet (AOS) [6]. 

3.3.1 Electrode Array Insertion Problems and Challenges  

In spite of the considerable progress of the cochlear implant procedures, the electrode insertion 

procedures have recommendations [6, 71] such as to increase electrode insertion of depth of up 

to two turns, inserting electrode arrays in to the cochlea without any trauma or damage and to be 

cost effective. These have faced some challenges and problems.  

Standard straight electrode arrays cause tissue damage and this mostly happens due to the 

penetration of the basilar membrane or lateral walls, which is caused by the mechanical property 

(stiffness) of the electrode [6, 29, 49, 72].  Twisting and compression forces exerted on the 

(a) (b) 

Figure 3.12 : Contour electrodes :(a) contour electrode and contour advance electrode 

with stylet. b) The contour advance after advancing off the stylet [64] 
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electrode array are another cause of the trauma or damage of the cochlea [44, 72].  It is reported 

in the literature [73] that in cases using the straight electrode trauma happens at two points 

during insertion: first, when the straight electrode tip lies against the outer wall upward (Figure 

3.13), it can burst the basilar membrane; secondly, when the electrode is pushed to its final 

depth. Another challenge for the straight electrode array is that it is still not reaching optimal 

frequency [46]. That is, it will not cover whole frequency due to the limited depth insertion. 

 

 

 

 

 

 

 

 

 

Second generation electrodes can be placed well in the basal and middle cochlear turns using 

different insertion devices [51, 71]. Contour and flexibility features of these electrodes made it 

possible to reach a greater depth into the cochlea compared to a straight one [45]. Adunka et al 

[39] highlighted that deeper electrode insertion increases the trauma and damage of delicate 

tissues of the cochlear. Similarly, Catherine [74] reported that Nucleus® 24 Contour™ and 

Nucleus® 24 Contour Advance™ electrode insertion has indicated that forces transmitted on 

Figure 3.13: Possible cochlea damage of the straight electrode arrays 

Electrode arrays 

         Cochlea   
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the scala tympani during insertion are coming from the electrode strength, trajectory and 

frictional forces between the tool-tissue interfaces, and these can cause trauma and damage to 

the cochlea. However, contour electrode arrays have fewer traumas compared to straight 

electrodes in the basilar membrane and it is reported that the minimal force application was 

achieved using the Contour Advance electrode in an AOS technique insertion [70].  Other 

studies mentioned that there is no significant difference between the trauma caused by these two 

generations [48, 73].  

 

Studies on standard straight and contour electrode have shown that stiffness of the electrode 

array has a great impact on the trauma and damage during the insertion of the electrodes array 

into the human cochlea [71].  Some companies manufactured a flexible electrode tip to 

minimise trauma, however, Adunka et al [39] reported that increased flexibility could impair the 

surgeon’s perception of intracochlear resistance and the approach depth exceeding one full 

cochlear turn was not achieved. Other studies have recommended that the pre-curved electrodes 

discussed earlier could solve extensive damage observed in deep insertion of the cochlea in the 

middle turn (first one –half turn) stage [39, 74]. In contrast, other studies have shown that the 

contour electrodes can be inserted easily and can be deeper into the scala tympani but have the 

same rate of trauma as straight banded electrodes [66]. Deep insertion of the contour electrode 

takes place in the middle turn and that force can cause trauma [39]. It means, extensive damage 

due to the deep insertion has link with the dimension of the cochlea in the middle turn stage as 

well as the greater forces which usually are necessary to place an array in the middle turn [39].   

In addition, latest studies have reported that none of the current electrodes (i.e., Spiral, straight, 
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Figure 3.14: The images of the final position of the banded [68], contourTM  [68], HiFocus helix  [36 ]and 

COMBI40+ electrodes [55 ] 

 

curve, or curved with positioner) have met all the criteria for an ideal CI electrode including 

insertion without damage to the cochlear [14]. Flexible contour electrodes have shown better 

performance compared to straight techniques but optimum electrode array insertion has not 

been achieved so far to produce optimal hearing [39]. 

 

Some of the common electrode arrays and their limited insertion depth are shown in Figure 

3.14. One of the latest studies on the Med-El Combi40+ has suggested the possibility of 

covering the whole range of the cochlea [66].  

 

A further study suggested that both the Clarion™ spiral and HiFocus II™ with positioner can 

be inserted with minimal trauma, but in many cases not to the maximum depth allowed by the 

design, and significant insertion trauma was observed attempting full insertion [70]. The study 

added that injury appeared in the majority of temporal bones when full insertion into the scala 
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tympani is attempted. Attempting full insertion of the scala tympani, it is hard for the surgeon to 

feel electrode resistance and that can cause trauma [70].  

Other factors that may affect the incidence of damage besides the mechanical properties of a 

particular electrode design include variations in the size and shape of each cochlea, the specific 

surgical techniques used for insertion [14], forces that are applied on the tissue and dimensions 

of the fluid space [38]. 

It is noted that current electrode cochlear insertion techniques are manual and do not have any 

tool-tissue feedback information, similarly electrode insertion is stopped at the depth specified 

by the manufacturer or after resistance to the insertion was felt by the surgeon [69, 70].  

Many studies suggested different ways that can minimise trauma and increase the depth 

insertion as well. Initial studies by Zhang et al [75] mentioned that a proposed steerable 

electrode array and robotic insertions with a phantom model can reduce insertion forces. 

Similarly, Wise et al [33] have used tip sensor and position sensors to provide tip information 

and position sensors but many array sensors were used rather than few sensors-distributive 

tactile sensing method.  

To avoid any cochlea damage rather than using surgeon’s hand during the depth insertion, there 

should be a way to detect this force that is imparted on the scala tympani during insertion which 

is dependent on the electrode strength, trajectory and frictional force between tool/tissue 

interfaces [71]. Trauma and damage during insertion of electrode arrays is related to lack of 

tactile or haptic feedback of the interactions between cochlear implant electrode and the cochlea 
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during the insertion process. Without the feedback of the insertion trajectory and 

electrode/tissue contact feedback, the problem will continue to exist. 

 

Development of a new steerable or flexible electrode array with embedded sensitive touch 

feedback is proposed and described in this thesis. This approach will provide tactile information 

feedback to the surgeon during the precise surgical task, working through sensitive and minimal 

access regions of the cochlear. The information retrieved by the tool can be used to map the 

lumen in real time.  That is, current existing flexible contour electrode arrays and AOS 

technique with tactile feedback approach could eliminate trauma and damage of the cochlea and 

can facilitate deeper insertion of the electrode arrays. Similarly, the risk of damaging the basilar 

membrane during insertion of the electrode array into the human cochlear is expected to be 

significantly reduced with the ability to redirect the tip of the electrode array at the critical hook 

region. The bending behaviour of the steerable electrode array and its trajectories during 

insertion into the scale tympani could be predicted and the final position of the electrode array 

can also be adjusted to lie beneath the basilar membrane inside the scala tympani.   
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4 Chapter 4 FLEXIBLE TACTILE DIGIT 

 
This chapter demonstrates the ways in which the digit can be constructed including the 

specification, the materials required for construction of a digit and the process of manufacturing 

of the digit. 

 

4.1 SPECIFICATION 

 

 

Current electrode arrays of the cochlear may be classified based on their shapes such as straight, 

contour, curved and spiral electrode shapes as discussed in section 3.3. The contour electrode 

has flexibility as well as being pre-shaped to match the form of the cochlea. The contour and 

flexibility features of these electrodes make it possible to reach a greater depth into the cochlea 

compared to a straight one [45]. Flexible contour electrodes have shown better performance 

compared to straight techniques but optimum electrode array insertion has not thus far been 

achieved to produce optimal hearing [39]. Roland [63] reported that current perimodiolar 

electrodes have some additional advantages over straight electrodes such as reducing damage to 

the cochlear, lower power consumption and more selective stimulation of the cochlea. It can 

therefore be assumed that the future development of cochlear implantation electrodes will be in 

the direction of flexible forms, and as such this research will use prototype prosthesis similar in 

form to a conventional flexible cochlear electrode. The prototype will hitherto be referred to as 

a `digit’.   
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Flexible cochlear electrodes are held in a straight configuration prior to insertion by inserting a 

stylet into the lumen (Figure 4.1).  

 

 

 

 

 

 

 

 

 

This then relaxes to a shape matching the curvature of the cochlea when the stylet is removed 

(withdrawn). This action will be replicated in the digit enabling investigation of the effect of the 

stylet on the geometry of and loads exerted upon the digit, but also the interaction of the digit 

with the structure of the cochlea, or cochlear phantom, throughout the insertion process.  

When the tip of the digit comes into contact with the wall of the cochlea phantom (Fig 4.1(a)) it 

is expected to deform and bend as it slides around the wall due to the manual withdrawing of 

the stylet (Fig 4.1(b)). The digit will need to detect any contact of the tissue in order to prevent 

any inadvertent tissue damage.  

As the digit is inserted further into the cochlea (Fig. 4.1(c)) the tip will touch the wall where it 

will need to detect curvature (wall) contact and tissue contact, and the digit bends and conforms 

Figure 4.1:  Sequence insertion plot of the  flexible cochlear electrode; a-c: curving stages of stylet withdrawn 

(a) 

(b) 

(c) 
(d) 

Flexible electrode  

Stylet withdrawn 
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to the curvature of the cochlear wall by pulling out the stylet further. If the digit touches the 

cochlear phantom, the digit can be withdrawn and re-inserted (Fig.4.1(d))  such that the digit is 

not touching the walls of the phantom. As the digit progresses through the first and second turns 

of the cochlea this process will continue until the flexible digit  reaches the optimum electrode 

array location. This concept demonstrates the benefit of controlling insertion through sensing 

and control of the digit during insertion into the cochlea (phantom). 

Besides contour shape and flexibility feature of the digit, the digit requires tactile sensing to 

feedback information about contacts between the digit’s tip and the side walls of the cochlea 

phantom, as well as contact points along the digit and the side walls. Similarly, the digit needs 

ability to give information about relative position of the electrode insertion (location) in the 

cochlea. Furthermore the digit will be required to detect when a force occurs at the tip arising 

from contact with obstacles in the cochlear. 

Mathematically, the morphology of the digit prototype can be considered to be similar to a 

slender beam (aspect ratio > 25). As such a relationship between the stresses, strains, radius of 

curvature and the material of the digit can be accurately predicted using the Bernoulli-Euler 

bending moment-curvature relationship for a slender rectangular beam of uniform-section 

composed of a linear elastic material  and expressed in equation 4.1 [75]: 

     

 

where E is the Young's modulus of the material (N/M
2
), M and  are the bending moment and 

the curvature at any point of the beam respectively, (1/) is a radius of curvature,  is the stress, 

EI

M

I

Mc

EcEcc

mm 
11 


 (4.1) 
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 is strain, c is distance from the neutral axis of the beam and I is the moment of inertia (the 

second moment of area) of the beam cross-section about the neutral axis. 

Furthermore, since the behaviour of structure can be modelled, it can also be scaled up for ease 

of manufacture and manipulated whilst preserving geometric similitude. 

 

This could also allow the prototype digit appropriate for application to access different areas at a 

surgical site such as the catheter and endoscope insertion processes where tool-tissue/object 

interaction without damaging the soft tissue is of potential concern.  

 

4.2 TACTILE SENSORS 

 

Tactile sensors are becoming increasingly important in many fields and several tactile sensors 

have already been developed for handling objects in robotics and automation as well as 

minimum access surgery (MAS) [76-78].  Eltaib and Hewit [76], and Nichols and Lee [76] 

provided comprehensive early surveys of tactile sensing technologies whilst Howe [77] has 

done more surveys recently. One of the clearest definitions of tactile sensor is given by Lee and 

Nicholls [77]: 

“a device or system that can measure a given property of an object or contact event through physical 

contact between the sensor and the object.” 

 

 Tactile sensing plays a significant role in gathering information about an object and contact 

conditions as well as in grasping. Tactile sensors can coordinate a group of sensors and measure 
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surface contact parameters between the sensor and object to get feature parameters such as 

touch, vibration, pressure and tickle senses [79].   

The importance of tactile sensing for exploration and response are most evident for fine surgery 

of MAS/MIS operatoins where the surgeon copes with loss of direct contact information and 

reduced visual information. This is particularly applicable when dealing with the mapping of 

lumen within the body (Figure 4.2) [79, 80].   

 

 

 

 

The constituent elements in a tactile sensing and feedback system are shown in Figure 4.3 [76]. 

The digit collects signals related to tissue properties and provides tool-tissue interaction 

feedback to enhance the surgeon’s tactile capability. Tactile sensing technology and tool-tissue 

interaction information are the key elements of this design. 

Figure 4.2:  Path mapping digit  Lumen Path  

Tool tip 

Fig 4.3:  Basic components of the tactile sensing system [73] 
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Humans employ tactile sensing to support different activities such as manipulation, exploration 

and response. The information provided by tactile sensors are used to detect and measure 

manipulation activities such as identifying contact location and object shape, measuring contact 

forces, stiffness, assessing surface condition and determining contact conditions [81, 82]. On the 

other hand, lack of tactile information increases the risk of tissue damage and sometimes 

amputation [82].  

The following general specifications of a touch or tactile sensor are proposed in the literature 

which can be used as an excellent basis for defining the basic requirement of a touch or tactile 

sensor suitable for the majority of industrial applications [76, 82]:  

 small spatial resolution (1 to 2 mm): small spatial makes easy for coverage area of  

distributive sensing system 

 minimum installation space: smaller space will reduce body insertion if any) 

 as large as possible area coverage: more coverage cover will minimise the number of 

sensors and hence reduces needed space 

 biocompatible: required to function in intimate contact with living tissue 

 small sensing element size: contribute less overall space of  embedded tool 

 toughness against impact and shear forces. 

 easy to manufacture 

 low Cost   

 miniaturisation  

 

http://en.wikipedia.org/wiki/Biological_tissue
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4.3 TACTILE SENSOR TECHNOLOGY 

 

Industrial tactile sensors may be divided into the following categories to accomplish 

manipulation (grasping), exploration (texture) and response (detection) operations [81, 83]:  

 Proprioceptive: provides information about the individual’s touch and movement 

through muscles and joints (robot appendage). 

 kinematic: provide geometric information for manipulation and exploration of finger 

movements in a normal subject  

 force: forces exerted by or on a robot appendage  

 dynamic tactile: provides information about motion of a moving or displacing object. 

 array tactile sensors: grid or matrix of sensing elements coordinating together to provide 

information about  a measured pressure or deflection of an object.  

 distributive tactile sensors: small number of sensors which can estimate the nature of a 

surface through a measured pressure or deflection of an object 

 Tactile sensors can provide information about a simple contact, magnitude of force, slip, shape, 

texture and thermal properties [84-86]. Although the basic function of tactile sensors remains 

the same, a wide variety of technologies have been applied to solve the problem of tactile 

sensing in robotics and medicine. The most popular tactile sensor technologies use conductive 

elastomer, strain gauge, piezoelectric effects, capacitive and optoelectronics [82, 85].  These 

technologies can be further grouped by their operating principles into two categories: force-

sensitive and displacement-sensitive. The force-sensitive sensors (conductive elastomer, strain 

gauge and piezoelectric) measure the contact forces, while the displacement-sensitive 
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(optoelectronic and capacitive) sensors measure the mechanical deformation of an elastic 

overlay [81, 85].  

4.3.1 Tactile Array Sensors 

Tactile sensing devices are simple contact measurement devices where one parameter or one 

sensor can be used to measure or detect changes in an object. These tactile sensors are used to 

describe: 

 presence of an object 

 object’s contact area-shape, location and orientation 

 pressure and pressure distribution 

 force magnitude and location. 

Tactile array sensors consist of a grid or matrix of sensing elements that can measure force 

distribution or mechanical deformation and they are used for gripping and guiding robot 

manipulation tasks [80, 81]. This type of sensor provides higher spatial resolution but they have 

some disadvantages such as [86]: 

 large number of sensing elements  

 high computational load  

 complex construction 

 higher power consumption than single element sensor equivalent. 

These sensors typically consist of individual sensors arranged in a rectangular array over the 

contact surface. The majority of applications can be undertaken by an array of 10-20 sensors 
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square, with a spatial resolution of 1-2 mm and are typically used in conjunction with one or 

more parameters such as touch with vision or audio [79, 83]. For instance, Medical Tactile Inc. 

has produced SureTouch, the world's first Food and Drug Administration (FDA)-approved 

device using tactile sensing for breast cancer documentation [88].  Hsin-Yun Yao and Vincent 

Hayward developed a surgical probe with tactile and auditory feedback [80].  

4.3.2 Distributive Tactile Sensors 

 

Distributive tactile sensing is different from the array tactile sensing approach. The principle of 

this novel approach employs deformation of a substance monitored by a small number of 

sensors that can estimate (or predict) the nature of a surface on the substance or object and this 

type of tactile sensing offers many advantages over tactile array sensors including [89-92]: 

 lower  data processing speed requirement 

 can cover large area with fewer  sensors for equivalent spatial resolution 

 lower  computational load 

 lower cost than tactile array equivalent 

 less space and wiring requirement 

The distributed tactile sensing technique is well suited to many clinical applications which need 

tactile information feedback such as detection of anatomical features for navigation and 

diagnosis and this applies to surgical tools such as endoscopes, laparoscopes, catheters and 

some implants such as cochlear electrodes [1,76]. These current tools provide vision 

information while there is no haptic feedback information.  Effectiveness of this technique relies 

on the interpretation algorithm, and optimum location of the sensors and this tactile sensor 
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depends on the distributed deformation of the surface response where few sensors are applied 

on the surface area [93]. These issues are needed to emphasis to get appropriate design.  

Brett was the first to name this approach “Distributive” where Stone & Brett used the 

distributive approach to derive information describing the distribution of contacting force 

directly from the sensory data [89].   Ma and Brett [90] have extended this approach and used it 

to measure force distribution in minimally invasive surgical procedures. Eight strain gauge 

tactile sensors were used to detect slip and other movements of the surface of contacting objects 

using a trained neural network as an interpreting tool. This approach integrated actuators and 

sensing elements using a neural network algorithm. Brett and Li [94] have extended this further 

for 2-D contact position of normal force applied on a planar surface. This system combined a 

high-level interpretation method of a neural network and hardware with real time information 

which enables automatic determination of the contact position in real time. 

Tongpadungrod et al [91] used a similar approach to determine the type, position and 

orientation of an object using the distributive sensing method. This system describes an 

optimisation technique through sensor placement using a genetic algorithm rather than equal 

pitch spacing. 

Further extension is distributive tactile perception with a neural network which is investigated at 

Aston University [95] has shown good estimation of load as well as its position. Ma and Brett 

[89] and Tongpadungrod et al [91] have used similar approaches to determine the description of 

a load in contact with a surface of 1-D such as the type, position, weight and orientation of an 

object using the distributive sensing method. Also, Ma et al [96] investigated a flexible digit 

with tactile feedback for invasive clinical applications and Petra et al [97] added an embedded 
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system with distributive tactile approach using a flexible digit for clinical applications. 

Similarly, Brett et al [98] have used distributive tactile approach to track moving contact load in 

real-time. 

A distributive tactile sensing system was selected for this research due its benefits of few 

sensors, small space and wiring requirements with larger covering area ability, and reduced data 

processing overhead.   

Strain gauge technology was selected for the tactile sensors as they require minimal space and 

are readily available in comparison with other technologies such as conductive elastomer and 

piezoelectric force sensors. 

Dimensions of the tactile sensors drive diameter of the digit and consequently the digit 

dimensions also drives the dimension of the cochlea phantom. The width of the sensors controls 

the width of the digit-------smaller sensor width, smaller digit width size. Consequently, the 

width of the digit controls the width of the cochlea phantom. The size of the sensing material 

has impact overall dimension design of the system.  This interlink dimensions have caused 

limitations and the sizes of the prototype.  From there, the size of the was digit depend on the 

size of the strain gauges and the embedding techniques while the cochlea phantom dimensions 

was controlled by the digit size. Nevertheless, the concept of digit-cochlea interaction contacts 

can be applied besides the size.  
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4.4 DESIGN 

 

4.4.1 Geometric similitude  

 

Before attempting to design the digit or try to perform any operation on or with it, the outcome 

of size reduction or enlargement has to be considered. A model is a representation of a physical 

system that may be used to predict the behavior of the system in some desired respect. There are 

three types of similitudes (geometric, kinematic and dynamic) that constitute the complete 

similarity between problems of same kind but it is often difficult to achieve all types in a single 

study. In this study, geometric similitude is considered. 

The basic requirement for the physical similarity between two problems is that the physics of 

the problems must be the same. This similarity or similitude as sometimes called can be 

geometric, kinematic or dynamic similarity but geometric similarity is perhaps the most obvious 

requirement in a model system (Model) designed to correspond to a given prototype (Prototype) 

system [75]. 

Geometric similarity exists between model ( real or existing design)  and prototype (proposed 

one) if the ratio of all corresponding dimensions in the model and prototype are equal. For the 

length similarity, we have  

 

        and  

  And the diameter similarity, we have;  
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Dmodel

Dprototype
= Draio and 

Dm

Dp
= Dratio  

The model geometry must be in the same proportions as the real or prototype condition. 

      

 

Currently existing cochlear implants have different dimensions. For instance one cochlear  

[MED-EL standard] has the length of 31.5 mm with a diameter of 1.3 mm and another cochlear 

implant [MED-EL FLEX20]  has length of 20 mm with diameter of 0.8 mm [44,101,102]. In 

this study, the cochlear which has length of 20 mm with a diameter of 0.8 mm was considered 

as the dimensions of the model where the prototype has length of 250 mm and diameter of 10 

mm. The geometry similarity was calculated as follows: 

 
   

In that case, this prototype design has a geometric similarity with scale ratio of 0.08. In another 

way, the prototype is 12.5 times bigger than the actual (model).  

Table 4.1:  Cochlear sizes with model ratio  

 

 

 

 

Cochlear implant Length 

Lm/Lp=(Lr) 

Diameter   

Dm/Dp = Dr 

Scale ratio 

Lr = Dr 

MEDEL-STANDARD 31.5/250 1.3/10 0.13 

MEDEL- FLEX
20

 20/50 0.8/10 0.08 
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4.5 MATERIALS 

 

 

One of the key requirements of the digit's material is flexibility. Smaller size with flexibility 

will make the digit better design to match future design.  The main requirement for the material 

of the design is that it should have high allowable strain, high stuffiness and high strength to 

match the functionality of the digit. 

 

4.5.1 Silicone substrate material 

 

Based on the required features (shape and flexibility) of the proposed digit, silicone was 

selected as the material of the substrate because of its high allowable strain, and its high 

stiffness and strength in comparison to rubber or plastic materials. The prototype digit is 

constructed from RTV C250
1
 silicone. This material has following features [104]: 

 available as an easy-to-apply single-component coating  

 cures at room temperature, yet is usable over a temperature range of -60
o
C to +290

 o
C 

 has a low modulus of elasticity ( flexible structures)  

 provides good short-term protection from water; resists many chemicals 

Silicone moulding compounds are used to coat sensors with flexible silicone.  A flexible silicon 

substrate provides a biologically compatible [103]. 

                                                 
1
 Alchemie Ltd, Warwick, UK 
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4.5.2 Silicone Substrate  

 
Flexures of the digit play a significant role whenever a minimum contact touch is detected and 

fed back to the surgeon, remedial action can be taken by manipulating position of the digit and a 

risk of trauma could be avoided. Taking out the stylet or using any other form of actuation 

based on the feedback information will facilitate easy insertion within the cochlea by 

deforming/curving the electrode slowly around the scala wall.  

The prototype flexible lumen digit, the design for which is shown in Figure 4.4 consists of a 

flexible silicone substrate that is bent to the required anatomical shape, but which is held 

straight by a rigid stylet. The stylet will make it easy to advance the digit and keep the pre-

curved shape of the digit during or after it has been released. Stylet withdrawal results in the 

digit returning to the precurled state as shown in Figure 4.4 b. 

 

 

 

 

 

 

 

 

 
 Figure 4.4:  Main parts of the Flexible digit:  a) straightened through stylet during the insertion   b) the digit 

with original pre-curved shape (stylet off) before the insertion. 

 (b) 

 Stylet withdrawn 

(a) 

Sensor 3 Sensor 1 Sensor 2 

Silicone substrate  
Single Lumen tube 
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The flexible digit contained a single lumen that was 3 mm in diameter into which the stylet was 

inserted in order to control the digit curvature. To enhance the bending flexibility of the digit a 

serrated section shown on the end tip was added to make tip deflection easier as the digit was 

guided along with the basilar membrane wall of the cochlear phantom. In addition, the end tip 

should bend earlier than the other parts of the whole digit when stylet is removed to shape the 

curve shape of the cochlea.    

The main function of this digit is to detect any tool- tissue contact and obstacles during insertion 

process of implant into the body (phantom), monitor the position of the digit and return object 

shape information.   Sequential insertion of the flexible digit causes a curling trajectory of the 

flexible digit which conforms to the inside of the spiral shaped cochlear.  For instance, the tip of 

the flexible digit should be able to detect the tissue contact of the CI as the electrode array (EA) 

goes deeper inside the cochlea in order to avoid any tissue damage. When the stylet is 

withdrawn, the deformation of the digit will be non-linear, however the curve shape and size of 

the tip are kept unchanged. This is the key point of the design as when the tip contacts with the 

basilar membrane wall the sensors will feedback the status of the contact and the digit is 

expected to deform and bend as it slides around the wall by pushing back the stylet. Using the 

sense of touch, the digit could obtain information about important parameters during the 

procedure such as penetration, contact and its direction, location and magnitude, and shape of 

the path or the digit. 
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4.5.3 The sensors 

  

The tactile sensors used in this design were strain gauge sensors
2
. Using strain gauges is one of 

the simplest methods of measuring small deformations of relatively soft tissues. Three strain 

gauge sensors are used as tactile sensors to collect information about the interaction between the 

digit and the phantom. Furthermore, strain gauges could be used to measure bending strains, 

which are proportional to curvature, allowing a distributive tactile sensing approach that can 

monitor both contact and shape through the bending strains induced by flexure. These sensors 

have a gauge factor of 2.09  1.0 %, gauge length of 2 mm, gauge resistance of 120.2  0.2   

and adoptable thermal expansion of 11.7 PPM/
°
C [103]. The strain gauges have small strain 

changes and they need signal conditioning and an amplifier.  

 

These strain gauge need to be integrated into the digit where proper placement of the strain 

gauge then becomes important ensuring accurate and repeatable measurements of micro 

touch/contact. Although the optimal location to place a strain gauge is where the largest strain 

occurs, the location of the sensor is important and sensitive when using few sensors. The 

locations of the sensors within the digit prototype (shown in Figure 4.5) are based on the contact 

locations of the typical cochlear electrode array insertion along the outer wall into the scala 

tympani of the human cochlea. 

 

 

                                                 
2
 Model KFG-2-120, manufactured by KYOWA, Japan 

  



   

- 79 - 

 

 
  

 

 

 

 

 

 

 

 

 

 Normally assuming 2 ¼, 2 ¾ or even one turn of the cochlear, there are three insertion stages: 

basal turn, second turn and the last turn. The optimal sensor locations were identified as being 

0.12 L, 0.32 L and 0.54 L when measured from the fixed end, which are very close to 58%, 29% 

and 13% respectively of the anatomical measurements of the organ of Corti [103] as well as 

three stage locations which could cause contact with the electrode array insertions [31,44]. 

These positions could show possibility of sensing the contacts along the digit during the digit 

insertion into the phantom through tactile sensing system feedback.  

These three stages can cause contacts with cochlea as shown in Figure 4.6.   

Based on these contacts three sensors were allocated along the digit to detect any contact 

between the digit and the phantom. 1
st
 sensor (tip sensor) can detect any tip contacts, inner wall 

contacts as well as outer wall contact as shown Figure 4.6 (A,C). The 2
nd

 sensor can detect outer 

            Figure 4.5:  Locations of the sensors along the digit    

Sensor 3 Sensor 1 Sensor 2 

       L 

0.54L 
0.32L 
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wall contacts of the basal turn and the final turn of the digit as shown in Figure 4.6(C). The 3
rd

 

sensor senses outer wall of the last (rest) turn of the digit.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. 6 possible contacts between the digit and the cochlea: (A,C) outer wall contact,  B) inner 

wall contact. 

 

Outline of the      

cochlear wall 
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4.5.4 Single lumen tube 

 

A steel stylet wire of 2.5 mm diameter is required to actuate the digit manually or control the 

curvature of the digit. Flexible lumen is needed within the digit where the digit can be 

straightened, and held in a straight configuration by inserting the stylet into the lumen; the digit 

relaxes to a shape matching the curvature of the cochlea when the stylet is removed (stressless 

shape). A soft PVC single lumen tube of 3 mm diameter (Figure 4.7a) was selected to be the 

lumen for the stylet. The soft PVC has relative similarity with the silicone substrate in terms of 

flexibility and elongation at break. This lumen could also be used for hydraulic or fluid control 

instead of manual control (stylet). The lumen tube was used so that the stylet will go through 

this lumen to control the shape of the digit and depth insertion of the digit.   

 

 

 

 

 

 

 

 

 

 Figure 4.7:  Main parts of the Flexible digit:  a) straightened through stylet during the insertion   b) the digit 

with original pre-curved shape (stylet off) before the insertion. 

Silicone substrate  
Single Lumen tube 
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4.6 MANUFACTURING THE FLEXIBLE DIGIT 

 
 

A correspondingly simple, low-cost and easy manufacturing process was developed where 

sensors were attached to a thin sheet metal with silicone lumen tube and a room-temperature 

vulcanizing RTV silicone was moulded into the desired shape (cochlea shape).  

Three strain gauge sensors were glued (Sil-Poxy-Silicone Adhesive ) on a thin sheet metal (0.3 

mm) to keep the space between the sensors as well as alignments of the sensors in one direction 

(Figure 4.7). Connectivity and sensor resistance were checked before the sensors were glued on 

a PVC tube.  The three sensors with sheet metal were glued on a PVC lumen tube (3mm 

diameter) as shown Figure 4.8.   

 

 

 

 

 

 

 

 

 

 

Figure 4.8:  a) Lumen tube glued on three sensors with thin sheet metal 

     b) cross-section of the tube with sensors and sheet metal  

b 

a 

Sensors  
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Sheet 
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The overall digit was manufactured using a 2 part split mould. The mould was constructed from 

Accura Si10 photocuring resin using a Viper Si2 Stereolithographic Apparatus from 3D 

Systems Inc. The instrumented lumen was located within the lower mould and then 

overmoulded with RTV 250 silicone as shown in Figure 4.9. 

 

 

 

 

 

 

 

 

 

Then the sensors with silicone tube were over moulded by a 250 silicone. Room-temperature 

vulcanizing (RTV) 250 silicone was poured into the bottom mould and then sealed with a top 

mould to have a pre-curl shape as shown in Figure 4.10.  

 

 

 

 

Figure 4.10: Silicone digit inside complete mould 

Figure 4.9: Lumen tube with sensors lied down on the bottom mould 

Bottom mould 

Lumen tube 
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Pouring uncured silicone liquid rubber into a mould was the process which was chosen since it 

was the simplest shaping process to perform. After curing, the digit is shown in Figure 4.11. 

 

 

 

 

 

 

 

 

 

 

With 10% catalyst added to the base material, the curing time was about 48 hours. Two-part 

RTV silicone rubbers must be stirred which causes air bubbles to become trapped in the rubber, 

creating voids in the cured product which tend to accumulate near the surface. These voids 

change the mechanical properties of the rubber, which makes accurate testing of the sensor 

difficult. To mitigate this, the silicone rubber was degassed using a partial vacuum.  

 

 

 

Figure 4.11: Flexible digit after cured 
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4.6.1 Manufacturing process 

  

The shape of the cochlea is one of the roots of the challenges of cochlear implantation 

operations. The cochlea (Figure 4.12) is the auditory part of the inner ear and it is ‘snail-shaped’ 

structure which is roughly 2½ to 2¾ turns around its axis (the bony core of the cochlea). The 

shape of the cochlea affects the human hearing range, for instance, the basal affects high-

frequency hearing frequency where the apex shows low-frequency range [108].  

In CI insertion experiments, different phantom models are used such as making casts of human 

cadaver cochleae using epoxy and silicone elastomer and silicone only [109] to resemble the 

cochlea of the inner ear. In this research, it is focused the shape of the cochlear rather than the 

stiffness (or filled fluid) properties. The 1
st
 turn of the cochlea was considered which can give us 

tool-tissue contact information of the cochlea phantom.  

Figure 4.12 cochlea shape with its frequency spectrum [107] 



   

- 86 - 

 

 
  

The phantom cochlea (Figure 4. 13) was designed using Solidworks
3
 software and then 

manufactured using a Viper Si2 stereolithographic apparatus (SLA) from Accura Si10
4
.  

 

 

 

 

 

 

A 4.5:1 scale prototype which has a length of 158 mm, thickness of 1 mm and a varying 

diameter of 24.5 mm – 26 mm was used in this study where the human cochlea has the length of 

about 35 mm and diameter of 2mm [109,110]. The phantom is large compared to real size of the 

cochlea (4.5 times bigger) but it is only conceptual to investigate the interaction between 

cochlea and the digit during the cochlear implant operation.  

The shape of this cochlea prototype resembles the human shape and this makes comparison 

analysis for the inserting electrodes into cochlea. The main parameter was detecting the contact 

between the cochlea and the digit.   

 

 

 

                                                 
3
 Solidworks V 2010, Dassault Systèmes SolidWorks Corp, Massachusetts, USA 

4
 Viper™ SLA® System, 3D systems corporation, Rock Hill, USA 

Figure 4.13:  Cochlear Phantom 
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4.7 EVALUATION EXPERIMENTS 

 

 

Data acquisition and signal processing were used with a PC to collect the measured data (Figure 

4.14). FLYDE
5
 signal processing circuits were attached to the digit’s strain gauge sensors. Data 

from the FLYDE amplifier is acquired using Computer Board’s NI PCI-6034E data acquisition 

board (DAQ) and recorded using MatLab
6
 software.  

 

 

 

 

 

 

 

 

 

 

 

                                                 

5
 FF-MM4 FLYDE,  Fylde Electronic Laboratories Ltd, Preston, Lancashire, UK 

6
 MATLAB V6.5  R13, 2002, Mathworks, USA  

Figure 4.14: Flexible tactile digit system   
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That data is analysed to obtain information about digit–phantom contact. The Output signal of 

the DAQ can be expressed in different parameters such as voltage, force and strain. The digit is 

subject to a bending strain which varies in a linear way with the output voltage  

The output voltage, Vo of the quarter bridge (Figure 4.15) as a function of the strain is given by 

[102]: 

     

 

Where Vi is the excitation voltage (input voltage), Gf is the gauge factor and   is the strain.  

 

 

 

 

 

 

 

 

 

 With gain, G included, equation (4.2) becomes 

    

And the strain,   becomes 

( 4.2) 

(4.3) 


4

fiGV
Vo 


4

fiGGV
Vo 

Figure 4.15:  Quarter bridge (one-active gauge) configuration 
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Knowing that stress,  and strain are related by Young’s modulus, E and is given by 

 

Consequently, axial force that is normal to the contact tissue becomes 

 

 

Where A is the cross sectional area of the digit. 

An equation that describes the relationship between bending strain and curvature with sensor 

output is detailed in [111].  Let us consider the strains experienced by a single gauge-pair with 

substrate as shown in Figure 4.16(a).  It is possible to directly relate the radius of curvature of 

the substrate, rave, to the original length of the strain gauge, L0 (L0 = Lg, the gauge length). 

Assuming a constant curvature in the localised area of the gauge-pair, gives the relationship: 

 

 

where s is the arc-length and θ is the angle inscribed by that arc length. However, since the 

substrate mid-line is inextensional, the portion of the substrate corresponding to the length of 

each strain gage is always equal to L0. Therefore, the inscribed angle for that portion of the 

sensor is simply: 
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Output voltage in terms of the strain gauge and substrate thickness (Figure 4.15) could be 

approximated by assuming current length, L of the arc length of the curve with substrate 

thickness ts and gauge thickness, tg.  

).
2

(
gs

ave

tt
rL


   

Where rave is the curvature of the membrane centreline, ts is the thickness of the membrane 

substrate, tg is the gauge thickness, and  is the angle inscribed by arc length. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( 4.8) 

Figure 4.16: Modelling the digit  (a) dimensions of the sensor substrate and strain gauge in flattened view. (b) The 

radius of the curve of object related with curvature of the substrate. 
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The current length, L of the curve could be expressed  

  And knowing that 
ave

o

r

L
   equation 4.8 is 
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To compute the strain of the gauges, the formula for strain and equation are used to get  
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The change in resistance is given by  
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r
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R

2

)( 
   

where Rg is gauge resistance before strain is applied.   

The output voltage of the quarter bridge strain gauge can be obtained by substituting equation 

4.10 into a standard Wheatstone-bridge configuration, the equation for measuring bending 

strains with quarter-bridge strain gauges becomes; 
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The average curvature  of the digit for i
th
 gauge could be estimated by 
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4.8 GENERAL DESIGN CONSIDERATION 

 

 

The digit was easily manufactured and still has room for additional functionality. First, it has a 

very simple physical structure. So, all electrical parts are readily available at low cost and 

mechanical parts are simple to procure or produce. Secondly, the digit is large scale. This design 

is intended to serve as proof of concept, but it can be miniaturised to fit the purpose. 

Micromachining processes could be used to fabricate the digit integrated with tactile sensors. 

 

As shown in equation 4.11, decreasing the thickness of the substrate and strain gauge ts, and tg 

respectively, will decrease the curvature,  of the digit. Also Stoney’s equation which is used to 

describe thin film curvature is given by [103]   

   

2

)1(61

h

t

ER


   

Where R is the radius of curvature;  is the film stress; E is the Young’s modulus,  is the 

Poisson’s ratio of the material; t and h are thicknesses of the film and the substrate/plate, 

respectively. This equation indicates that decreasing substrate thickness, h will decrease the 

curvature of the digit.   

  

(4.14) 
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4.8.1 Configurations 

 

The design of the steerable tactile digit allows for several different configurations. Besides the 

original purpose for electrode insertion for cochlear implants, it is also possible to use it for path 

navigation, surface condition sensing and as a guiding feedback tool.  

In summary, this steerable digit incorporating tactile sensors will facilitate insertion of the tip 

into the scala tympani as it is subjected to resistance (force). In this design the main features 

include, continuous sense touch feedback with a flexible curling path of the tympani, simplicity 

in design, few sensors (effective distributive tactile), cost effectiveness and few complications. 

These concepts will be implemented in the next chapter. 
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5 Chapter 5 FLEXIBLE DIGIT ANALYSIS 
 

  

After optimising the design parameters and phantom design, it was necessary to determine the 

response of the prosthesis and empirically assess its viability for determining the required 

categories of manual stimulation. This chapter presents the results of the response analysis of 

the flexible tactile digit. Experiments leading to understanding the proposed flexible digit under 

different surface conditions conducted. The sensing characteristics of the digit to stimuli of 

varying lumen contact conditions (including location, direction and shape) were analysed and 

used to formulate a functional specification of the digit.  

 

5.1 FUNCTIONAL ANALYSIS 

 

 

To verify the performance of the digit, investigations on the tool/tissue interaction in lumen 

contact conditions were investigated.   The tactile digit signal-response strategy is summarised 

in Figure 5.1:  
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Although there are other potential signals for the digit such as texture/stiffness of the contact 

and lumen mapping, contact conditions, their directions and the relative position parameters of 

the digit are essential to minimise trauma during electrode insertion.  Based on these 

parameters, a series of experiments were devised to evaluate the digit’s performance. Many of 

these characteristics are common in path navigation, lumen mapping and palpation procedures. 

 

 

 

 

Figure 5.1: Signal discrimination strategies 

 



   

- 96 - 

 

 
  

5.2 FUNDAMENTAL TOUCH CHARACTERISTICS 

ANALYSIS 

 

The aim of this experiment was to ascertain the ability of the digit to identify the basic 

touch characteristics that discriminate between contact versus no-contact status, tip 

penetration, obstacles, and contact locations. For instance, the insertion force due to 

contact between the digit and the cochlear phantom depends on the contact angle or the 

relative orientation of the digit with respect to the walls of the cochlear. Before the digit 

was inserted into the phantom, a few experimental tests were done to discern the digit’s 

ability to detect the position of the contacts with time.  In this situation the flexible digit 

with stylet in place was tested outside of the cochlea phantom, the digit was then 

stimulated at various locations along its length, and the strain gauge tactile sensors were 

used to detect these contacts (taps) and their locations.  

 

Experiment 5.1: validating and calibration of the experiment  

To minimise measurement errors a calibration process was undertaken through applying the 

known loads to the system and observing the resultant sensor output voltages. Once this 

relationship was established or verified, the load types and magnitudes could then be inferred 

from the measured voltages. 

Aim: To calibrate the digit to detect surface conditions of an object. 

Method: A number of known loads were suspended from the digit using a hook apparatus as 

shown in Figure 5.2, and the resulting voltage signals were recorded.  
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Results: results of this experiment were shown in Figure 5.3 and 5.4, as well as Table 5.1. 

 

 

 

 

 

 

 

 

Figure 5.3 shows response of the digit when 208g was applied to the digit suspended on the 

hook. The experiment was repeated 5 times and the result was -0.042V ±0.001V. The difference 

is negligible and this has verified that the digit can identify specific loads. 
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Figure 5.3: Digit responses when 208g of load was attached on to it. 

Figure 5.2:  Testing the digit with different loads 

Hook with weights 
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Figure 5.3 shows response signal of the digit with and without loading. The graph shows that 

initially the system was monitored in an unloaded condition in order to establish a no-load 

reference. This methodology was repeated for each load case in order to observe the effect of 

self-load. After approximately 4 seconds (0.06 min) figure 5.3 shows the effect of applying a 

208 g (2.0 N) load to the digit. At this point the result shows a change in Sensor 3 of -0.045V 

from the no load state of the digit. There was no significant change to the readings from sensor 

1 and 2. The applied load (weight) caused the digit to bend down. The bending effect is greatest 

under the location of sensor 3 which is the furthest sensor from the point of loading, and the 

most sensitive due to its position. This location has the largest extension effect compared to 

other positions of the sensor 1 and 2.  

 

 

 

 

 

 

 

 

Figure 5.4 shows the loading process for a 128 g load (60% of that applied previously), again it 

may be seen that only sensor 3 has significant deviation as a consequence of the applied load, 
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Figure 5.4:  Digit response when 128g of load was attached on to it. 
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and the magnitude of the deviation from the no-load condition is approximately 60 % of that 

found for the previous load. These results are shown in Table 5.1 

Table 5.1 Loading for digit calibration 

Load  Output signals 

 Sensor 1 Sensor 2 Sensor 3 

No load 0.005 V  0.004 V  0.002 V  

128 g 0.002 V  0.001 V  -0.029 V  

208 g 0.002 V  0.001 V  -0.045 V  

 

Analysing this experiment, using known inputs (Loads), a strain and the young’s Modulus of 

the used material was calculated.  

Using equation 4.4, strain, ε caused by 128 g (V0 =-0.032 V) is 0.00128 = 

1280 µstrain where input voltage (excited voltage) , Vi = 5 V, gain of the system, G, is  10 and 

the gain factor, Gf of the strain gauge is 2.00.  

Young's modulus, E or Tensile modulus of this experiment can be expressed as follows: 

 Area of the digit (A= πd
2
/4) with diameter (d) of 10 mm is 7.85 x 10

-5
 m

2
.
.  

Load is expresses as 

weight /force (w=mg) =0.128*9.81= 1.25 N. Based on the force, area and strain calculated 

above, the Young Modulus, є (є = F/A) of this material, is 0.0124 GPa where F is the applied 

force (N). 

Through the same methodology the strain caused by the load of 208 g which produced -0.042 V 

can be said to exhibit a strain ε of  -1680 µstrain.   
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Experiment 5.2: multiple contact locations 

During the cochlear implantation or endoscope insertion, there is a contact between the tissue 

and the endoscope or electrode arrays. These contacts could be single or multiple contacts with 

different directions and knowledge of the nature of the contacts between the tool and the tissue 

could reduce the risk of excessive force being applied to the sensitive structures within the ear 

during implantation. 

 

Aim: to detect any momentary contacts with the outer surface of the digit and establish 

directions of these contacts.  

Method: three different locations along the digit were momentarily stimulated whilst the digit 

was held in its straight position through the use of the stylet (Figure 5.5).  Different methods 

could be used to represent analogy of momentary tissue contacts but manual tapping was 

selected as a contact method for simplicity. Tapping on the outer surfaces of the digit was used 

to approximate delicate tissue-tool contacts. Each time before the contacts are made, the reading 

of the system is set to zero. 

 

 

 

 

 

The three tap contacts were made in the sequence of L1, followed by L2, and lastly L3; As 

shown in Figure 5.5, Ll and L2 were top contacts which caused bending strain, resulting from a 

Figure 5.5: Diagram of the instrumented digit. Tap contact locations L1, L3 (distal) 

and L2 (medial) are indicated with respect to the Sensor locations.  
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linear force exerted in the vertical direction where L3 is bottom contact, and all contacts were 

made in a direction normal to the surface of the digit. The location and magnitude of the applied 

force were different and were random, just to see how sensors can detect different contacts with 

their directions was the aim of this experiment. It was expected that the strain at the top in 

bending (L1 and  L2) or tensile side will have increase in resistance which produces positive 

signal of strain and stress, where compressive side (L3) will have negative signal of stress and 

stress due to decrease in resistance.   

In that way, the top contacts would result in a positive signal, a positive curvature of the digit 

(reporting a positive strain in the strain gauge sensors and a subsequent reduction in the output 

sensor voltages) and vice verse for bottom contacts due to the strain gauge deflection behaviour.  

 

Results: The output responses of the digit with above contact locations are shown in Figure 5.6. 

The experiment was repeated five times to test repeatability and the result was statistically 

significant (p=0.0703) showing different contacts with their locations. The experiment has 

shown same results of directions of these contacts. 
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Figure 5.6: Digit response with style in place (multiple contacts and their directions); Li: tap contacts  
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As can be seen, the result conveys rich dynamic information about the sequence of  contacting 

stimuli, the time at which each contact begins and ends, and the magnitude (bending forces 

exerted by each digit on the object). These output signals indicate direction of the three tap 

contacts L1, L2, and L3 respectively.  The magnitudes of the response indicate that there are 

three contact locations that have different directions and magnitudes.  In addition, it can be seen 

that contact with the L3 occurs later than contact with L2, L3 and L1. The timeline of these 

three signals happened different time and this shows that the contacts occurred differently. 

 

Additional observations were made from the digit’s responses (Figure 5.6) where L1 and L2  

signals have positive (upward) direction while L3 has a negative (downward) direction. This 

coincides with the directions of contact indicated in the Figure 5.5; positive spikes show top 

contacts whereas negative spikes indicate bottom contacts. The magnitudes and directions of the 

output signals depend on location of the sensors along the digit and force applied on the digit. In 

this case contact L3 were applied higher force through tapping compare to other contacts. 

Further study of sensing algorithm is needed that can incorporate the magnitude of the applied 

forces and the location of the sensors with contact status and their directions.   

 

Another multiple tap experiment with its results is shown in Figures 5.7 and 5.8 respectively. 

Like the previous experiment the contacts with the digit were made sequentially at different 

locations, but two additional contact locations were considered, most notably an axially acting 

tip contact.  
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These output signals are similar to the previous experiment (section 5.7) except that there is an 

extra tip contact (L1). Although the tip is subjected to an axial load (compressing the digit), the 

axial load made the digit bend down (flexible digit) rather compressing and subsequently 

reducing the length of the strain gauge which reduces the resistance and therefore voltage goes 

up (positive signal) at the same the digit bounced back and caused an upward force.  This 

upward force created the negative signal shown in Figure 5.8. 

 

 

 

 

 

 

 

 

 

 

Figure 5.7:  Identification of the contact locations:  Lis are tapping contact locations  
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Figure 5.8:  Digit response with tip and multiple contacts 
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Experiment 5.3: multiple contact locations with partially removed stylet 

Electrode insertion during cochlear implant processes can have different stages and each stage 

can make contact with the cochlea as discussed in section 4.1.2. Electrode straight insertion can 

cause tip and side contacts, similarly second stage (1
st
 curve) can make different direction 

contacts.  

Aim: to detect any contact of the digit through tapping contacts. This experiment aims to detect 

digit contacts that can occur during the electrode insertion procedure for the first turn or second 

turn.  

Method: three different locations along the digit were manually stimulated (tapped) whilst the 

digit was in a curved configuration (with the stylet partially withdrawn) as shown in Figure 5.9.  

The reading of the system is set to zero before the contacts were made. 

 

The contacts with the digit were made at different times – first location L1 of the probe were 

touched, afterwards location L2 of the probe was touched, and then L3, and lastly L4. The 

Figure 5.9:  Multiple tapping contacts of the digit with partially stylet withdrawn, L1-L4: tapped 

contacts  

L2 

L4 

L1 
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output transient signals from the sensors were recorded.  The experiment was repeated five 

times to test repeatability. 

 

Results:    The output responses of the digit with above contact locations are shown in Figure 

5.10.  The three positive signals correspond to stimulation at locations L1, L3, and L4 whilst the 

negative signal corresponds to location L2.  The negative voltage at L2 is caused by bottom tap 

contact of the sensor 3 where the tap caused an upwards flexure in the digit, inducing a 

compressive strain to be induced across sensor 3 thereby reducing resistance and increasing the 

voltage signal. This confirmed that the digit was able to detect different position along the digit 

in any situation. However, in this case, the digit can classify direction contacts (top and bottom 

contacts) only and needs further investigation algorithm which can classify radius contacts from 

top and bottom contacts. The tap contacts were very soft and the digit is flexible, this feature 

suggested further algorithm investigation for radius and compression contacts classification.   
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Figure 5.10:  Tactile response of tapping contacts 
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Finally, results depicted on Figure 5.10 showed statistically significant (p =0.007) of detecting 

different contact conditions of the digit. Although these results are preliminary,  there is 

evidence of measurable change in sensor voltage as a consequence of momentary contact in 

both straightened and flexed conditions. The results are useful prove for the tissue contact 

detection.  The compression force was not detectable easily due to the flexibility of the digit 

which is easier to bend down or up rather than compressing and needs further investigation.   

5.3 SURFACE CONDITION ANALYSIS 

 

Three surface conditions were considered; tumour detection, gap/crack detection and surface 

condition.  This analysis was performed as a way of assessing the effectiveness of the digit for 

the determination of tumour and crack presence.  

 

Experiment 5.4: crack/hole detection 

The human ear has cavity in the middle ear (tympanum) and inner ear (the bony labyrinth). In 

the case of inner ear, the winding tubular cavity within the inner ear can have a crack or hole (a 

perilymph fistula) which must be detected for appropriate treatment. Similarly, other MIS 

applications can have cracks in the body. This experiment is expected to identify the difference 

between normal contact of output of smooth continuous surface and the output of the crack or 

hole phantom contact. This could potentially help the surgeon to identify surface conditions 

including holes or cracks in a hidden anatomy such as within the cochlea. 

Aim: To be able to obtain information about consistency of tissue structures (particularly 

hole/cracks) by investigating the effects of the tissue/object on the tactile digit and thus to be 
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able to recognize and assess anatomical or pathological structures, even if they are hidden in the 

tissue.  

Method: A stationary digit was placed in contact with a rotating target object (connected to a 

electrical motor). The target incorporated two notches of 2 mm and 3 mm (Figure 5.11) each 

representing cracks in the human body or any abnormality gaps/cracks in the cochlea during the 

electrode insertion. The digit was clamped at the root and orientated horizontally such that the 

front tip of the digit was placed under the rotating target with speed of 10 mm/s. This target was 

selected for simplicity, reproducibility and in order to avoid any manual disturbance or 

uncontrolled contact through manual movement of the digit. The data from the sensors of the 

digit was collected through MATLAB and a data acquisition computer card, 6034E NI DAQ. 

Like the previous experiments, the reading of the system is set to zero before the contacts were 

made. 

 

The digit was brought into contact with the target until a deflection of less than 3 mm was 

observed at the tip to avoid any physical deformation of the digit. At that point sensors were 

ready to detect any force/pressure changes.  After about 2900 degrees rotation of the target, with 

the digit in continuous contact, the target was stopped and the data from the digit sensors was 

recorded.  

 

 

 

 

Figure 5.11: Tactile digit used to detect holes/notch of an object 
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Rotating target  

Hole  
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To verify that this result was reproducible this experiment was repeated five times and each 

time the digit response was observed and results were recorded. Results were 0.083V±0.001V. 

This readings (0.083V) refer to the average difference between the notch and non-notch across 

all 3 sensors and the hole or crack detecting was statistically significant (p=0.03125). This 

result verifies that the digit possibility of identifying notches/cracks or gaps.  

Results: Figure 5.12 depicts a response of the digit to the holes of the object.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hole

s  

Sensor1 

Hole

s  

Sensor2 

Hole
s  

Sensor3 

Figure 5.12: Tactile sensor response for Gap contact detection condition 
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The digit was placed under the object (direct contact) in order for a longitudinal load to be 

maintained with a positive output flexure signal. Similarly, constant output voltages represent 

unchanged surface condition where different signal rise indicate change of surface conditions. 

Outputs were analysed and the transient signal demonstrated the amplitude and temporal 

spacing of excitation of the digit.  The positive rises of the signal of the two sensors indicated 

contact between the digit and the object. However, whenever there was a notch/hole in the 

surface, the tip of the digit dipped slightly in to the hole and this produced a transient signal that 

was detected by the flexture of the tip which goes down to the zero.  No doubt whenever the 

output signal changes (either goes up or down) there is a indication of object surface change. If 

continuous positive signal indicated contacts between the object and the digit due to the upward 

force of the digit, the other part of the signal which goes down to zero showed that the surface 

condition has changed (upward force has disappeared)- a hole/notch indication.  

These results, and other cues, suggest that they could be used by surgeons to detect and 

characterise surface anomalies.  This will help the surgeon to identify if there are 

normal/abnormal cracks which exist in the cochlea and this could improve the cochlear implant 

surgery compare to lack of detecting any analogy of the cochlea. Similarly, information about 

surface anomalies can be applied to other invasive surgeries such as endoscopic instruments. 

Experiment 5.5: tumour detection 

The cochlear nerve is involved with the tumours in most cases. One of them occurs distal end of 

the tumour in the inner ear structures (vestibule and cochlear). Similarly, other operations such 

as thoracoscopic are used to detect mediastinal tumours. Besides these normal existing tumours, 
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there could be abnormal tumours in the human body such as lung tumour and colon tumour that 

also need to be detected.  Knowing the contact surface conditions could make it easier for the 

surgeon to locate tumours during MIS and locating these underlying tumours during MIS 

procedures would reduce collateral tissue trauma. 

Aim: the aim of this experiment was to detect a tumour (Figure 5.13) in a hidden anatomy such 

as within the cochlea. It is expected to show positive signal for any  tumour phantom on the 

object.   

 

 

 

 

 

 

 

 

Method: this experiment employed a stationary digit with rotating target featuring an irregularly 

shaped protuberance. The digit was placed under the object, as in the preceding study 

(experiment 5.4) and the object was rotated at same speed in the preceding experiment 5.4. 

Placing the tumour to contact with the top surface of the digit is considered as top contact 

(downward force). The experiment was repeated five times to test repeatability. Like the 

previous experiments, the reading of the system is set to zero before the contacts were made.  

Figure 5.13: Experimental set up to detect a tumour on an object 

tumour   
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Results: Figure 5.14 and 5.15 show tactile response for tumour phantom detection. Figure 5.9 

shows top location tumour detection response. The experiment was repeated five times to test 

repeatability with result of 3.9 V (increase above a normal non-tumour baseline) ± 0.08 V for 

sensor 2.  The experiment was repeated five times to test repeatability with results of 2.01V ± 

0.05V for sensor 3. The results showed that the results were very close to each other. The result 

was found to be statistically significant (p=0.0313). 

When the digit touched the protuberance, sensor 1 and 2 have showed positive signal. The 

object behaves like a bending load (downward force) on the digit and that way the tactile 

sensors (shown in Figure 5.14) behave as if exposed to a contact from the top (positive signal) 

by placing the tumour to contact with the top surface of the digit.  

 

 

 

 

 

 

Sensor 3 shows a negative voltage due to the compressive pressure during the tip contacts. The 

digit was subject to a compressive load with buckling which made sensor 3 behave as if 

exposed to a bottom contact. 

 

 Figure 5.14:  Steerable digit (straightened through stylet during the insertion)   with sensor locations  

Sensor 3 Sensor 1 Sensor 2 

Silicone substrate  
Single Lumen tube 

Top surface 

Bottom surface  
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Figure 5.12 shows bottom tumour detection response. The digit was placed on the object and 

contacted with the tumour phantom. Placing the tumour to contact with the bottom surface of 

the digit is considered as bottom contact (upward force).   

Placing the tumour to contact with the bottom surface of the digit which was considered as top 

contact (downward force) has shown opposite signal direction. It was seen that contact with the 

tumour phantom induced a change in voltage at all 3 sensor locations. The negative direction of 

the measured voltage change in each sensor indicated that the tumour phantom was in contact 

with the bottom surface (upward force) of the digit. 

 

 

Figure 5.15:  Tactile digit responses of top location tumour contact detection 
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By showing responses of the sensor output to surface conditions, it is clear that this tactile digit 

would be able to detect different surface conditions of a tissue.  

The results were expressed in voltage output signals but the contacts can be expressed as a 

strain. For example, top contacts of the experiment 1 have shown 0.14V (L1). Using equation 

4.4 in chapter 4, the magnitude of this signal is equivalent to strain of 5600 mm. This strain has 

caused by magnitude force (F = E.ε.A) of  5.5 N where the L3 showed 0.09V which is -3600 

mm and force of 3.5 N. Experiment 2, signals were close to each other. L4 = -0.1V which 

correspondents to -4000 mm and has a force of 4 N.    

A more logical continuation of your discussion would be to make use of your mathematical 

models to explain the magnitudes of the voltages and how they relate to the forces experienced 

Figure 5.16: Tactile digit responses of bottom location tumour contact detection 
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in the studies. This would address one of the examiner’s comments on how you do not appear to 

have applied your mathematical models to your results, and it would not require as much work 

as recreating your plots in other physical units. 

These results demonstrate that the from interpreting the data from the 3 sensors together, 

although not entirely independent, can be used to infer the presence, applied force, and direction 

of action of protuberance in moving system. Curvature contact classification needs further 

investigation.  In this case, the sensor will detect contacts and their respective directions.  To 

identify the curvature contacts, it needs to make link the position of contact along with the 

active length of the sensor with the output sensor signals. An algorithm that can analysis the 

angle of the contact based on the contact information of the sensors can be derived curvature 

contacts. 

 

Experiment 5.6: obstacle detection. 

There is a significant chance of intra-cochlear damage by penetration of the digit. Such injury 

may occur if the tip of an electrode strikes the modiolar wall during insertion or if the body of 

the array is pushed into contact with the modiolus by a positioner device. Thus, it is crucial to 

discriminate obstacles from other contact conditions. 

Aim: the aim of this experiment was to assess the possibility of detecting an obstacle in the 

hidden anatomy such as within the cochlea. 
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Method: This experiment uses Kawasaki FS03N robot with D controller, a linear drive system 

supplied by Baldor (LMSS0602-2WW0) which consists of a stepper motor
7
 on a linear etched 

platen and NextMove ST
8
 controller using Mint ActiveX. Moving digit (10mm/s) with 

stationary object was set up. The digit was moved towards the object until contact occurred 

(Figure 5.17) 

 

 

 

 

 

 

 

 

 

 

Results: Figure 5.15 shows digit’s response. The experiment was repeated five times to test 

repeatability with results of 0.16V ± 0.05V and showed statistically significant (p=0.0083).  

 

 

                                                 
7
 LMSS0602-2WW0, Baldor, Fort Smith, Arkansas USA 

8
 NST002-501, Baldor, Fort Smith, Arkansas USA 

Figure 5.17: Tactile digit is pushed towards stationary object to test obstacle 

detection 

Tactile digit 

Stationary object 
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Quantitatively, the result depicted on Figure 5.18 is different from the previous digit responses 

in terms of timeline frame. All the sensors had output response at the same time. The small 

difference between the sensor responses indicates that all sensors are experiencing 

approximately the same loading, and consequently are indicating the same change in resistance. 

 

The experiment was repeated five times to test repeatability and it has shown same pattern 

response. In normal contact conditions (as in the preceding studies), signals had different 
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Figure 5.18: Tip obstacle responses 
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(6.1) 

directions and magnitudes and occurred at different times whereas when encountering 

obstructions at the tip, the signals from each transducer occurred simultaneously and were of 

similar magnitude and operating in the same direction. That is, if they all have the same pattern 

(voltage rise) at the same time, the obstruction is at the tip.  The typical directions of the signals 

are positive whenever there is tip obstruction due to the buckling direction of the digit.  

In this experiment, Figure 5.15 shows an output signal of 0.15 V. This voltage which is created 

by the bounce (obstacle contact) has a force of 6.4 N.  The digit's response of the obstacle 

detection and tap contacts are close to each other.  It is can be deduced that, that is possible to 

detect obstacle contacts before more force are applied on the tissue. 

When an axial force is applied on a strut, this axial force causes buckling (deflection) if the load 

is critical.  This critical load, Pcr depends on the end conditions of the strut, column dimensions 

(actual length, L, and  area moment of inertia, I) [75 ]: 

 Pr = critical force/load 

E = Modulus elasticity 

I = Area moment inertia,  

n = column effective length factor (dependent on end conditions) 

 

 

 

In this experiment, one end  of the digit is fixed and the other is unrestrained (n=2).  The critical 

load of this experiment can be calculated using above equation (6.1) where  Diameter of the 

digit, d= 10 mm (0.01 m) 
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Elastic modulus, є = 0.0124 GPa 

Length of the digit, L = 250 mm (.25 m) 

Moment inertia,  

The critical load,   

The applied force of the digit was calculated as  

where A = 0.0000785 m
2
, the Young Modulus,  є =  0.0124 GPa  

strain, ε  = 0.00064 (Vo = 0.16 V) 

The applied force F = 6.9 N. 

Buckling will happen when applied force (F) is greater than the critical load, Pcr   

and buckling did not happen in this experiment. 

 

5.4 SHAPE CHARACTERISTICS ANALYSIS 

 

This analysis was performed with a goal of determining whether the digit can discern the 

difference between normal curling responses whilst the digit is not inserted into the phantom 

cochlear compared with the response to contacts made by the digit during the insertion 

processes. In that way it is possible to minimise the interaction forces between the digit and the 

walls of the cochlea. In order to achieve the electrode array position close to the inside wall of 

the cochlea, the electrode was designed in such a way that it can resemble the shape of the 

cochlea easily during the electrode insertion into the cochlea. The morphological design of the 

electrode is a particular challenge as it must resemble the form of the cochlea, conforming to the 

shape of the modiolar whilst permitting a simple insertion process which causes minimal trauma 
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to the sensitive structures of the cochlea.  In this sense it has been found to be desirable for the 

electrode array to be generally straight during the insertion procedure before the curl shape is 

reached. 

 

The digit has been designed such that the stylet keeps the digit straight during initial insertion 

and then through withdrawing the stylet, the flexible tactile digit returns to its non-stressed 

(curled) shape that will match/hug the modiolar wall of the cochlea phantom which allows the 

wall position to be determined.  Response of the tactile sensors attached along the digit can be 

used to determine the relative shape of the digit. Three tactile strain gauge sensors were used to 

measure the local deflection of the digit, allowing overall array shape to be determined.   

  

This approach was demonstrated in Figure 5.19; this figure shows successive stages of curling 

of the flexible digit and the relative position of the stylet. The states a1, a2, and a3 indicate 

different amount of digit curvature.  

 

 

 

 

 

 

 

Figure 5.19:  Curvature stages of the digit and relative stylet position  
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Experiment 5.7: digit shape identification 

Aim: the aim of this experiment was to determine the relative shape of the digit. 

Method: First, the digit was straightened through stylet insertion and the strain gauge amplifiers 

were all zeroed. Then the stylet was withdrawn from the digit slowly whilst data was recorded.  

Results: Figure 5.20 shows read-out voltages (all the three sensor readings are combined) 

observed during stylet withdrawal without inserting the digit into the cochlea phantom. Five 

replicates were made of this experiment with results of 1.25V ± 0.03V.  This variance is small 

and it came from the digit’s self-weight. This result showed  self bending strain of  50 mm 

strain. 
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Figure 5.20:  Digit responses with smooth stylet release (standby): normal down facing digit response. 
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The peak outputs of three signals (a1, a2 & a3) decreased quickly show when the stylet has 

passed by the location of each sensor as it was withdrawn. When the stylet passed the location 

of a sensor, the digit curled to its original shape. For sensor 1, the first spike falling indicated 

that the first curl of the digit has taken place and the sudden positive rise exhibited the 

beginning of the curl.  

 

The three peaks (a1, a2, and a3) of Figure 5.17 show curving stages which are depicted on the 

right side of the figure. These peaks are caused when the stylet has passed by the location of 

each of the sensors. For instance, when the stylet passed the location of a sensor 1, the digit 

curled to its original shape in that part which has no stylet which is shown as a1. Similarly, the 

other peaks a2 and a3 are caused by sensor 2 and 3 respectively when the stylet passed by their 

locations.  

 

Overall pattern of this signal showed subsequent curling shape stages of the digit. These results 

presented three spikes (a1, a2 & a3) which represent three locations that the stylet has passed 

and three different stages of the flexible digit’s shape. More tactile sensors could make 

monitoring of the shape more accurate. Knowing how far the stylet was withdrawn and with 

responses due to contacts, the depth to which the digit was inserted into the cochlear could be 

inferred. Having information of how far the digit was inserted in to the cochlear phantom and 

this is correlated with information from the tactile sensors, the relative positions of the stylet 

and digit could be inferred from the output results. This showed how far the digit is advanced, 

which is 83 mm, unless there is an obstacle or resistance.   
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In summary, the signals of the digit experiments have shown that the flexible  tactile digit has 

the ability to detect and identify any load contact condition whether it is single or multiple 

contacts as well as their directions. However, some tool-digit contact classifications such as the 

curvatures and close boundaries of the signal locations needed more complex algorithm and 

needs further research. In this experiment it was seen that having strain gauge sensor outputs 

other parameters such as direction of the contact, magnitude of the contact, applied force, stress 

and strain of the contact can be deducted.  This information is useful in many surface and 

diagnosis clinical applications. The sensing scheme often has the potential to provide tactile 

information feedback to the surgeon during precise surgical tasks, working through minimal 

access. Important information retrieved by the digit such as texture, relative shape of the object, 

location and direction of different contact conditions can be used to determine the lumen in real 

time. Using the distributive sensing approach, the texture, stiffness and shape can be 

discriminated. 

 

These analyses could be typical tool/tissue interactions of surgical procedures in MIS and these 

findings are relevant to the design of future implant devices and to various important issues 

regarding the surgical technique used for implantation. Furthermore, the features of position 

detection and wall contact sensing should improve the depth of insertion possible in cochlear 

implants and hence the range of pitch perceived by the patient as well as reducing any insertion 

damage to surviving structures.  

Further experiments of digit- cochlear phantom insertion intersection will be discussed in the 

next chapter.    
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6 Chapter 6 SIMULATION   EXPERIMENTS 
 

 

This chapter presents the experiments that have been carried out in order to evaluate the digit 

performance. Experiments were performed with a flexible tactile digit inserted into the cochlear 

phantom and the resulting contact data was recorded. The experiments identified digit location 

within the phantom, and the points where contact with the phantom was made. The digit 

provided tactile feedback that can be used to assist the surgery for cochlear implant insertion 

procedures yielding less trauma and sensitive-tissue damage. The experimental method was 

presented in the first section, followed by different insertion procedures and digit/phantom 

interaction states and transitions analysis. In this study, the steerable digit was set to insert into 

the cochlea phantom as a target to allow contact between the electrode and cochlea during the 

electrode insertion analogically. It should be noted that this system is an up-scaled prototype 

and is not a stage at which it can be used clinically.  

6.1 EXPERIMENTAL METHOD   

 

The experiments designed in this chapter aim to investigate the ability of the flexible digit to 

provide tactile feedback in terms of the contact intensity, time and position of the digit, and tool 

and phantom interaction for the process of inserting the digit into the cochlea phantom. In this 

study, different insertion techniques with the steerable tactile digit were performed; 1) digit 

insertion without stylet; 2) manual stylet withdrawal during insertion; 3) and semi-automatic 
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digit insertion. All of the experiments demonstrated the interaction between the digit and the 

phantom during the digit insertion process.   

The experiments were performed using the apparatus shown in Figure 6.1. The phantom was 

clamped in position and orientation using a retort stand and adjustable clamp. The fixed distal 

end of the flexible digit was connected to the end effector of a Kawasaki FS03N robot and its 

position with respect to the phantom was controlled using a computer linked to a D series 

controller. The root of the stylet was connected to a linear drive system supplied by Baldor 

(LMSS0602) comprising of a stepper motor
9
 on a linear etched platen which is mounted on the 

top of the Robot so that it moved dependently of the robot and NextMove ST
10

 controller using 

Mint ActiveX controls through MATLAB
11

. All strain gauge signals were amplified using FE-

MM4 FLYDE
12

  and recorded into MATLAB using and a National Instruments 6034E data 

acquisition board.  

 

The flexible digit with tactile sensors was 250 mm in overall axial length and the sensors were 

placed at 0.012L, 0.032L and 0.054L as measured from the fixed (distal) end.  

 

 

 

 

                                                 
9
 LMSS0602-2WW0, Baldor, Fort Smith, Arkansas USA 

10
 NST002-501, Baldor, Fort Smith, Arkansas USA 

11
 Solidworks V 2010, Dassault Systèmes SolidWorks Corp, Massachusetts, USA 

12
 FE-MM4 FLYDE, Fylde Electronic Laboratories Ltd, UK 
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            Figure 6.1:  Experimental set-up for steerable tactile digit 
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Experiment 6.1: Digit insertion without Stylet   

Aim: The aim of this experiment was to investigate the interaction between the digit and the 

cochlea phantom when a stylet was not used to aid insertion. 

 

Method: In this experiment the steerable digit without stylet was inserted into the cochlea 

phantom; thus its bending was not controlled. Initially, the tip of the electrode was positioned at 

the beginning of the cochlea phantom before the electrode was pushed forward into the cochlea 

phantom. The digit was moved slowly forward into the cochlea a predetermined distance by the 

robot. As the digit moved into the cochlea, the digit slid along the inner wall and touched the 

lateral outer wall of the phantom. During the insertion, the geometrical curvature of the digit 

and the digit/phantom interaction can be recovered from the output signals of the sensors.  

 

Results: Figure 6.2 depicts the contacts between the digit and the phantom during the digit 

insertion into the phantom. Generally, negative signals indicate where the bottom of the digit 

made contact with the phantom, and positive signals indicate contacts with the top of the digit as 

detailed in Chapter 5. However sometimes curvature location could affect the direction of the 

contact (as seen experiment 5.5).   
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The result of Figure 6.2 versus the pictorial representation of the Phantom and location and 

curvature of the digit are shown in Figure 6.3.  
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Figure 6.2:  Interaction response of the digit and phantom during the phantom insertion 

(styletless insertion) 
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Here is a summary of the contact conditions of the digit and the phantom shown in Figure 6.3: 

1. digit has made initial contact but was not moving   

2. bottom contact (negative peak) 

3. tip curling of the digit started (1
st
 curvature) 

4. 2
nd

 curvature of the digit started 

5. 3
rd

 curvature of the digit started 

Initially after the digit started to move, the tip pressed against the phantom causing a  negative 

strain as detected by sensors 1 and 2. Sensor 2 has a lower magnitude when compared with 

sensor 1 which indicates a bias in the location of the contact towards sensor 1. As the digit 

Figure 6.3:  Interaction response of the digit and phantom versus pictorial of the digit and phantom 
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advanced, the digit moved against the outer wall (sensor 1 and 2).  Peak output signals followed 

by immediate decrease (sawteeth) indicate the digit is following the shape of the modiolus. For 

example, sharp rises in the strain measured by sensor 1 at position (3) of figure 6.3 indicates the 

digit starting to curve and continues to rise until the first part of the curve is complete where this 

signal shows steady output. Since the locations of the sensors on the digit are known the 1
st
 

curvature occurred at 0.01L (2.5 mm) from the proximal/distal end of the digit.  

 The negative strain as reported by sensor 2 at position 2 on Figure 6.3 shows a sliding contact 

with the inner wall (bottom). The second stage of the curvature trajectory (0.032 L) starts at the 

position of the second peak (4) but rises sharply due to the outer wall contact of the digit as 

reported by a positive strain. The final stage of curvature (0.54 L) was shown by step 5. The 

output response of the sensor 3 depends on contact force/load as well as how far the digit goes 

into the phantom. The higher the load and the further the digit goes inside, the higher the 

magnitude of the sensor 3 signal. In this case, there was a small curve of step 5 which showed 

by sensor 3. 

The continuous steady output of the signals after peak rises indicated modiolus-hugging 

curvature. That is, the continued rise of sensors 1 & 2 confirm that the digit was taking its 

unstressed trajectory curve with inner wall contact (negative signal). The deep negative signal 

indicates a strong inner contact but the digit immediately takes its path and there was no 

significant resistance compared to its weight. If there was no inner wall (bottom) contact, there 

should be a sudden drop of their signals. The insertion contact force tended to drop off (sensor 3 

followed by others) after three minutes approximately because the digit was not moving and 

hence not penetrating further into the phantom. These steady outputs of the three sensors are 
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modiolus hugging contacts of the digit along the cochlea phantom which shows that the 

penetration has taken place. From this information shown in Figure 6.3 it was possible to 

estimate the shape of the digit (modiolus hugging curvature) or have a clue and identify any 

contact conditions; the digit/phantom interaction states; interaction duration versus time and the 

overall completion time of the procedure. 

 

This experiment results showed similar outputs in terms of the pattern of the sensor outputs: - 

that is, peak rises and sequences of the sensors (1, 2, and 3).  Sometimes there were a few top 

contacts while other times there were bottom contacts or both direction contacts. Amplitude of 

the signals, contacts conditions and locations depend on the interaction of the digit and 

phantom. Due to interaction differences, the responses will vary in terms of the magnitude, 

location and condition of the contacts and that has made difficult to compare these experimental 

results. This means, each time the digit and the phantom made a contact, result is different from 

the previous ones because the contact locations, magnitudes and the directions are not same due 

to new contacts and its magnitude.   Each digit-phantom interaction has its own magnitude, 

location and direction results but the pattern of results are same.  This experiment has shown 

strain of 0.0324 (32.4 mm strain) which is caused by a contact force of 17.496 N (equation 4.6)  

 

Experiment 6.2: Digit insertion with stylet (manually withdrawn) 

Some insertion techniques require that the electrode is set in a straight shape outside the 

cochlea. The tip of the electrode and stylet can then be positioned at the beginning of the first 

turn before the stylet is withdrawn as the electrode is advanced restoring a curved shape and 
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minimising undesired contact with the sensitive cochlea.  It was expected in this insertion 

technique that the minimum digit and cochlear phantom interaction may be achieved by 

detecting any contact between walls of the cochlea using information gathered from the digit.  

 

Aim: the aim of this experiment was to investigate digit and phantom interaction feedback 

during insertion of the electrode whilst the stylet was withdrawn. 

 

Method: Initially the stylet was withdrawn from the digit without insertion into the phantom to 

compare with insertion results. Then, the digit was maintained in a straightened position using 

the stylet and then inserted into the phantom. The stylet was withdrawn slowly stage by stage to 

control the shape of the digit so as to hug the modulus of the phantom. As the digit was 

advanced further into the cochlea phantom, the stylet was slowly withdrawn further, and the 

digit allowed to relax to its stress-free state unless there was a digit/phantom interaction.   

 

Results:  Figure 6.4 shows the response of the digit’s sensors as the stylet was withdrawn and 

the digit was inserted into the phantom and sectioned of Figure 6.4 is shown in Figure 6.5  

The comparison between the two illustrates the interaction between the digit and the phantom 

during insertion. 
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Figure 6.4:  Digit and phantom contact response during the insertion with stylet withdrawn 
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                                 Figure 6.5:  Tool/tissue interaction states during the Digit insertion 

 



   

- 136 - 

 

 
  

This experiment showed digit/phantom interaction similar to experiment 6.1 and these 

interactions could be summarized as follows: 

Section A: there was neither any contact nor any bending of the flexible digit; it may be 

considered to be in an “idle” state, where the digit was advancing into the cochlea without 

making any contact with the cochlea phantom. This section also showed when the digit was not 

moving. 

Section B: First curvature of the digit is showed by sensor 1. Response signal of sensor 1 

(section B) of Figure 6.6 is similar with response signal of sensor 1 in Figure 6.4 (without 

insertion response). This similarity indicates that sensor 1 (tip of the digit) did not make 

significant contact except sliding or hugging the modulus of the digit. Also this section showed 

top contact which showed by positive signal of sensor 2. Similarly, there was no contact 

between the phantom and location of sensor 3 which is far from the cochlea in this experiment. 

 

 

 

 

 

 

 

 

 

Figure 6.6:  Digit response during stylet withdrawal without phantom insertion.  
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Section C: 2
nd

 curvature of the digit has started as shown by the rising value of sensor 2. Also 

there is digit contact with the under side of the phantom (negative signal of the sensor 3). 

Section D: here the 3
rd

 stage of curvature of the digit has started and is shown by rising signal of 

the sensor 3. Finally, the flexible digit has conformed to the shape of its unstressed curvature 

state where there was not any further digit/phantom interaction, it matches the modiolus of the 

scala tympani and penetration has taken place. The magnitude/strength of the three signal 

responses can be used to identify the digit’s curvature trajectory and location based on the 

distance of the stylet along the length of the digit before insertion and on the sensors’ locations. 

As shown in experiment 6.2 in addition to phantom and digit contacts, the shape of the digit can 

also be deduced from these strain readings shown in Figure 6.6. When the stylet passes by the 

location of the sensor, signal spikes occur. Combining the strain signal spikes with knowledge 

of sensor locations and how far the robot has moved indicates how far the digit has penetrated 

the phantom and gives the relative position of the contact locations. Similarly, the shape of the 

digit can be deduced from the strain data (1
st
 curvature, 2

nd
 curvature and 3

rd
 curvature) yielded 

by the sensors. This experiment has strain of 14.4 mm strain (7.78 N). The magnitude of the 

contact between the digit and phantom of this experiment was less than the previous experiment 

(Exp 6.1). The motion of the robot which was not smooth during the stylet removal and this 

created higher magnitude where when the removal was manual, the disturbances were less. 

There are different digit/phantom interaction states in this experiment.  The bending of the digit 

was controlled by withdrawing the stylet smoothly according to the depth of penetration of the 

cochlea phantom. The pattern of the signals (signal spikes) had indication of the curvature shape 
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of the digit. The signal's curvature also has clue of the insertion length of the digit into the 

cochlea phantom. The curvature signal tells when the bending has passed certain length 

depending on the location of the sensor. For instance, the first bending of this experiment 

occurred at 0.12 L = 30 mm.  The location of the sensors has a great impact on the response and 

analysis of the digit and phantom interaction. Slight changes of the sensor locations could 

change the response signals pattern. A similar digit but with different sensor locations shown in 

Figure 6.7 was considered and its response to digit/phantom interactions during the digit 

insertion was shown in Figure 6.8 

 

 

 

 

 

 

A higher spikes of sensor 2 in Figure 6.8 and 9 (sectioned signals of Figure 6.8) shows 

sensitivity location of sensor 2. Position of the first curve’s centre and the location of the sensor 

2 coincide with each other and maximum displacement of the sensor happens in this position.  
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  Figure 6.7: Curvature stages of the digit and relative stylet position  
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Figure 6.8:  Digit insertions responses. a)  free stylet withdrawal (no insertion) response,  

b) digit insertion with stylet response 
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Compared to previous experiments, all other signals remain approximately the same in 

magnitude that the studies are otherwise identical.  

 In this case, sensor 1 was very close to the tip and has less effect on the curvature of the digit 

but has more effect on penetration and obstacle effects.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.9:  Digit/phantom interaction states during the Digit insertion with sensor locations 
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Another experiment was performed with disturbance (contacts) and the aim of this experiment 

was to verify the digit’s performance during the tool/tissue contacts. While the digit was moving 

forward, brief `tapping’ contacts were made intentionally.  The result was shown in Figure 6.10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.10 shows more interaction of the digit and the phantom. Bottom tap contacts of the 

digit are shown by (1) where top tap contacts are shown by (2). Similar to previous experiments 

a sharp increase followed by a little decrease, a ‘sawtooth’ shape signal, shows the digit’s curve 

stages and these signals are marked as B, C and D.  The curve trajectory of the digit takes place 
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Figure 6.10:  Digit insertion with disturbances analysis 
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during the stylet withdrawn.  Finally, the digit rests in its free-state where there are no further 

contacts except hugging the modiolus of the scala tympani contacts. 

Experiment 6.3: Stylet Insertion with Motion Driver  

Aim: to investigate interaction between the digit and the cochlea phantom through the action of 

the linear motion driver. Intracochlear trauma caused by electrode insertion could be minimised 

by controlling the flexure of the digit through a non-manual mechanisms.  

Method: In this experiment, the steerable digit was inserted into the cochlea phantom where a 

linear motion driver was used to actuate the withdrawal of the stylet instead of manual 

withdrawal.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.11:  Response of the flexible digit due to driver stylet off action 
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Results: the results obtained from the tactile sensors of the digit are plotted in Figure 6.11. 

In this experiment, as in previous studies there are contacts with the bottom of the digit (1) as 

well as with the top (2).  There are a lot of disturbances compared to previous experiments. At 

the beginning, there was a motion disturbance caused by the movement of the linear actuator. 

These disturbances occur as a result of a mismatch between the resolutions of the linear actuator 

which was not as smooth as that of the robot.  The controller was making irregular movements 

due to its less resolution.  Motion controller which has high resolution could eliminate these 

disturbances but this has not been implemented due to economic limitations.  

 
The results show that before the pre-curve of the digit starts, there was an inner wall contact 

(negative signal of the sensor 1) between the digit and the phantom. Then the digit slides on the 

inner wall and continues to hug the modiolus of the scala tympani with later and inner wall 

contacts.  There are deep inner contacts indicated by sensor 3 (1) before the digit slides further 

along the scala tympani. Finally, the digit rests on the final shape of the cochlea where there was 

not any further digit/phantom interaction.  

 

Besides the motion disturbances and deep contacts, the overall pattern of the graph was similar 

to previous results (Figure 6.4 and 6.6). As the other results, step A, B and C show stages of the 

curvature stages of the digit as well as digit and phantom contacts.  
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CONCLUSIONS 

This flexible digit has provided tactile feedback information about interaction between the digit 

and the cochlea phantom such as contact direction and its magnitude, information about the 

digit shape, time and position of the contact, relative displacement of the digit (depth insertion).  

 

It was seen that manual stylet insertion had the smallest disturbance compared to the other two 

experiments. Manual stylet withdrawn has shown small contact force and easy insertion due to 

few disturbances. The small magnitude of contact forces indicates less insertion force, where 

less disturbances shows easy insertion and easy lumen mapping due to lack of obstacles. The 

stylet linear actuator withdrawal procedure has shown a higher magnitude of contact due to the 

poor selection of linear motor step size. Smaller step size (high resolution) with smooth 

stationary platen could improve this performance.   

 

One common problem encountered during these studies was repeatability of the above 

experiments. There are a number of experimental variables and sources of variation that might 

impact the repeatability and validity of digit/phantom contact interaction data, and this can limit 

the data’s biological relevance and applicability.  

 

All the experiments have shown that the responses produced by the digit have displayed 

information about what was happening in this digit-phantom interaction, relative position of the 

digit and the shape of the digit which may be retrieved from these results. Also, time spent 

while performing each tool/tissue interaction and overall completion time. Similarly, how far 
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the digit was advanced with the time can be obtained from these peak signals of A, B and C by 

knowing when the stylet passed the position of the relative sensor location as explained in 

chapter 5.  Also, the robot can give feedback of how far the robot has moved forward which 

indicates the advancement of the digit into the cochlea. Surface contacts with interference 

identification needs further algorithm that can filter interferences. 

 

These can be guidelines to assist in the improvement of the surgical technique and to minimise 

trauma caused by excessive force application.  Furthermore, this digit can be used for other 

similar applications like surgical and diagnostic tools, which involve interaction of surgical 

tools with soft biological tissue in surgery. 
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7 Chapter 7 CONCLUSIONS AND FUTURE WORK 
 

 

In this chapter, the research goals, objectives, and key results are summarized. Also, 

recommendations for future work on the flexible tactile digit are provided. 

 

7.1 CONCLUSIONS 

 

The purpose of this research was the design and development of a flexible tactile digit to aid 

palpation and navigation of lumen for clinical applications. More specifically, the design of a 

steerable tactile digit that can provide tool/tissue interaction feedback to reduce damage to 

tissues and delicate structures within the cochlea during electrode insertion during the current 

cochlear implant surgery techniques.  It is reported in the literature [33, 67, 71, 74] that trauma 

and damage during insertion of electrode arrays of the cochlear implantation is related to lack of 

tactile or haptic feedback of the interactions between cochlear implant electrode and the cochlea 

during the insertion process.  Towards the development of the steerable tactile digit to prevent 

damaging cochlear membranes through excessive forces requires contact/force sensing 

capabilities. this research has presented: 1) the design of a distributive tactile digit with digit-

phantom contact measurements, 2) the development of a steerable tactile digit for cochlear 

electrode insertion of tactile information feedback, 3) preliminary experiments evaluating the 

steerable digit with tactile feedback capability through digit contact characterisation, and 4) 
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experimental studies evaluating the role of digit/cochlear phantom interaction status feedback in 

cochlear implant surgery.  

  

A flexible tactile digit has been designed to enhance the sense of touch, which could be used 

during the surgical tool/tissue interaction, diagnosis or path navigation procedures. The rationale 

that underlies this study is that the ability to know or understand what is happening inside the 

lumen or the hidden tissue information from tool/tissue interaction which may help the surgeon 

to realise the full potential of cochlear implant surgery and other clinical applications such as 

diagnosis and navigation procedures. The risk of damaging the basilar membrane during 

insertion of an electrode array into the human cochlear is expected to be significantly reduced 

through facilitating contact and force feedback to the surgeon about what is happening during 

the procedure. 

 

The successful prototype trials have shown great promise and the projected outcomes have the 

potential to make important advancements in minimally invasive surgery. The tests 

demonstrated that even devices of a relatively simple design have the potential to improve 

cochlear implant surgery and other lumen mapping applications by providing tactile feedback 

information which reflects contact condition and magnitude. Equipped with such information 

the surgeon could reduce the exerted force on the scala tympani during the electrode 

implantation and consequently minimise the tissue damage and potential damage to the delicate 

structures within the cochlear caused by current electrode insertion of the cochlear implant. 
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The digit was also demonstrated to be capable of enhancing tactile sensation for surface texture 

and irregularities.  

 

The flexible digit has shown the ability to identify different touch characteristics including:  

 Contact versus Non Contact. 

 Multiple contacts. 

 Direction of the contact load.   

 Shape of the contact. 

 Tip penetration and depth insertion of the digit. 

 Relative texture.  

 Obstacles. 

 

This additional information could allow the surgeon to plan and place electrode arrays safely 

and appropriately in the cochlea or in a cavity. Also, the additional information could allow the 

surgeon to have better understanding of depth insertion and location of the digit as well as 

overall pictures of what is happening inside the cochlea. Tactile information provided by the 

digit could be applied to many other palpation and navigation procedures which do not have 

tactile feedback instruments to enhance their ability.  

 

 

The main contributions of this study are: 
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1. The primary contribution of this study is the development of a steerable tactile digit 

with distributive sense of touch feedback capabilities for minimally invasive surgeries, 

specifically cochlear electrode insertion procedures. The digit provided tactile feedback 

that can be used to assist the surgery for cochlear implant electrode insertion procedures 

for less trauma and damage to sensitive tissue.  

2. This tactile feedback approach has shown the feasibility of getting interaction between 

the digit and the phantom cochlear. The digit can collect signals related to object 

properties and the provided interaction feedback can enhance the surgeon’s tactile 

capability.  

3. Incorporating haptic feedback will enhance the safety, performance and acceptance of 

surgical technology. 

4. The digit provides information about digit-phantom interaction analogy of tool-tissue 

interaction.  

5. The digit can be applied to other lumen mapping and navigation procedures such as 

endoscope and catheters. The digit can perform lumen mapping through tactile feedback 

information.   

 

The author foresee future studies carried out using steerable tactile digit enabling enhanced 

models of cochlear electrode insertion and eventually improved cochlear electrode array 

placement, minimizing trauma to the cochlea. 
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7.2 FURTHER WORK 

 

 

This project is still at an early stage, however, an encouraging start and many improvements are 

possible building on the basic principle described here.  

Far more fundamental to this work is the development of the tactile sensing technology such as 

the interpretation software/hardware. Evaluation of other sensing technologies (fibre bragg 

gratings to reduce complexity and facilitate miniaturisation) is another further development of 

this digit. 

This digit has demonstrated basic digit phantom contact information and the next logical thing 

is to evaluate that this can be do more robustly through an algorithm to present the data more 

simply to the user. And then that the activities within this project can be replicated by tactile 

feedback alone (or at least the contact conditions and magnitudes can be discerned 

electronically and agree with physical reality). 

Tactile sensing of this application is quite demanding not only in terms of hardware but also of 

software. The extraction of information from tactile sensors may require the implementation of 

complicated algorithms.  The hardware and software available, even at an experimental level, 

are still not adequate for some already defined needs.  Software must also be developed in order 

to analyse the information gathered by the sensors in a more easy and dynamic way. Current 

this research mainly used Matlab (Solid works V 2010, Dassault Systèmes SolidWorks Corp, 

Massachusetts, USA) for data analysis and extraction. The display method was basic graphic 

style.  Dynamic analysis and quicker time for data extraction and analysis is needed to present 

actual tool/tissue interaction. That is, the tactile information of the embedded system must be 
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introduced to the surgeon with real time.  A software interface is needed to develop to automate 

the calibration process and to provide a visual display of the array against a shape of the cochlea 

as an aid to surgeons during the insertion process in real time.  

 

The next step is to evaluate smaller sensing technologies (fibre bragg optical gratings and the 

microcoils) and their miniaturisation resulting in the development of a smaller and more 

readily/reliably manufacturable solution. Future work to optimise the design through custom 

sensors or the incorporation of tactile sensors through nanotechnology manufacturing to current 

electrode array insertion procedures could further improve the tool. The strain gauge sensors 

required for this application have special requirements. One of them has to do with size. Smaller 

sensors would give what is going on tool/tissue interaction in smaller access regions.  Generally 

speaking, the surface where sensing means are to be installed should be small, ranging from 

0.11 m
2
 to 1 mm

2
 or even less. This will allow incorporation of sensors within the digit and this 

can reduce its current bigger size (10mm) to the existing cochlear electrode size (1.3mm). Other 

potential sensors for this application include optic sensors. Micro and nano-technologies are 

particularly attractive to tactile sensing implementation because they can produce not only high 

density arrays of sensors but also devices incorporating both the sensors, the required 

conditioning electronic circuits and even the hardware for signal acquisition, digital signal 

processing and transmission. That embedded system will minimize the cost and will make easy 

the miniaturization.  
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Generally the tactile sensor is required to have size miniaturization. The approach outlined in 

this study could be extended by miniaturisation of the digit and its integration with the existing 

MIS tools to include more realistic surgical procedures. Then it would be ready to be tested with 

animal tissues. Miniaturization process may need different tactile sensor rather than strain gauge 

and optic sensors. The sensor elements with a very small size of 80×80×80 μm
3 
[103] are shown 

in literature which is made superelastic carbon microcoils.  Similarly during the miniaturisation, 

the silicon or the substrate must have good thermal conduction and must be uniformly bonded to 

the gauges in order to dissipate heat and reduce temperature gradients between the gauges.  

Finally, miniaturisation and other technology used in the further work should underpin the cost 

effective of the tool. In that way, the digit will it be cheap, will it help minimise trauma, will it 

provide a better solution to the cochlear implantation and other similar application areas.  
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