2,525 research outputs found

    Machine Learning Centered Energy Optimization In Cloud Computing: A Review

    Get PDF
    The rapid growth of cloud computing has led to a significant increase in energy consumption, which is a major concern for the environment and economy. To address this issue, researchers have proposed various techniques to improve the energy efficiency of cloud computing, including the use of machine learning (ML) algorithms. This research provides a comprehensive review of energy efficiency in cloud computing using ML techniques and extensively compares different ML approaches in terms of the learning model adopted, ML tools used, model strengths and limitations, datasets used, evaluation metrics and performance. The review categorizes existing approaches into Virtual Machine (VM) selection, VM placement, VM migration, and consolidation methods. This review highlights that among the array of ML models, Deep Reinforcement Learning, TensorFlow as a platform, and CloudSim for dataset generation are the most widely adopted in the literature and emerge as the best choices for constructing ML-driven models that optimize energy consumption in cloud computing

    Modeling cloud resources using machine learning

    Get PDF
    Cloud computing is a new Internet infrastructure paradigm where management optimization has become a challenge to be solved, as all current management systems are human-driven or ad-hoc automatic systems that must be tuned manually by experts. Management of cloud resources require accurate information about all the elements involved (host machines, resources, offered services, and clients), and some of this information can only be obtained a posteriori. Here we present the cloud and part of its architecture as a new scenario where data mining and machine learning can be applied to discover information and improve its management thanks to modeling and prediction. As a novel case of study we show in this work the modeling of basic cloud resources using machine learning, predicting resource requirements from context information like amount of load and clients, and also predicting the quality of service from resource planning, in order to feed cloud schedulers. Further, this work is an important part of our ongoing research program, where accurate models and predictors are essential to optimize cloud management autonomic systems.Postprint (published version

    Energy and Performance: Management of Virtual Machines: Provisioning, Placement, and Consolidation

    Get PDF
    Cloud computing is a new computing paradigm that offers scalable storage and compute resources to users on demand through Internet. Public cloud providers operate large-scale data centers around the world to handle a large number of users request. However, data centers consume an immense amount of electrical energy that can lead to high operating costs and carbon emissions. One of the most common and effective method in order to reduce energy consumption is Dynamic Virtual Machines Consolidation (DVMC) enabled by the virtualization technology. DVMC dynamically consolidates Virtual Machines (VMs) into the minimum number of active servers and then switches the idle servers into a power-saving mode to save energy. However, maintaining the desired level of Quality-of-Service (QoS) between data centers and their users is critical for satisfying users’ expectations concerning performance. Therefore, the main challenge is to minimize the data center energy consumption while maintaining the required QoS. This thesis address this challenge by presenting novel DVMC approaches to reduce the energy consumption of data centers and improve resource utilization under workload independent quality of service constraints. These approaches can be divided into three main categories: heuristic, meta-heuristic and machine learning. Our first contribution is a heuristic algorithm for solving the DVMC problem. The algorithm uses a linear regression-based prediction model to detect over-loaded servers based on the historical utilization data. Then it migrates some VMs from the over-loaded servers to avoid further performance degradations. Moreover, our algorithm consolidates VMs on fewer number of server for energy saving. The second and third contributions are two novel DVMC algorithms based on the Reinforcement Learning (RL) approach. RL is interesting for highly adaptive and autonomous management in dynamic environments. For this reason, we use RL to solve two main sub-problems in VM consolidation. The first sub-problem is the server power mode detection (sleep or active). The second sub-problem is to find an effective solution for server status detection (overloaded or non-overloaded). The fourth contribution of this thesis is an online optimization meta-heuristic algorithm called Ant Colony System-based Placement Optimization (ACS-PO). ACS is a suitable approach for VM consolidation due to the ease of parallelization, that it is close to the optimal solution, and its polynomial worst-case time complexity. The simulation results show that ACS-PO provides substantial improvement over other heuristic algorithms in reducing energy consumption, the number of VM migrations, and performance degradations. Our fifth contribution is a Hierarchical VM management (HiVM) architecture based on a three-tier data center topology which is very common use in data centers. HiVM has the ability to scale across many thousands of servers with energy efficiency. Our sixth contribution is a Utilization Prediction-aware Best Fit Decreasing (UP-BFD) algorithm. UP-BFD can avoid SLA violations and needless migrations by taking into consideration the current and predicted future resource requirements for allocation, consolidation, and placement of VMs. Finally, the seventh and the last contribution is a novel Self-Adaptive Resource Management System (SARMS) in data centers. To achieve scalability, SARMS uses a hierarchical architecture that is partially inspired from HiVM. Moreover, SARMS provides self-adaptive ability for resource management by dynamically adjusting the utilization thresholds for each server in data centers.Siirretty Doriast

    Scalable and Distributed Resource Management Protocols for Cloud and Big Data Clusters

    Get PDF
    Cloud data centers require an operating system to manage resources and satisfy operational requirements and management objectives. The growth of popularity in cloud services causes the appearance of a new spectrum of services with sophisticated workload and resource management requirements. Also, data centers are growing by addition of various type of hardware to accommodate the ever-increasing requests of users. Nowadays a large percentage of cloud resources are executing data-intensive applications which need continuously changing workload fluctuations and specific resource management. To this end, cluster computing frameworks are shifting towards distributed resource management for better scalability and faster decision making. Such systems benefit from the parallelization of control and are resilient to failures. Throughout this thesis we investigate algorithms, protocols and techniques to address these challenges in large-scale data centers. We introduce a distributed resource management framework which consolidates virtual machine to as few servers as possible to reduce the energy consumption of data center and hence decrease the cost of cloud providers. This framework can characterize the workload of virtual machines and hence handle trade-off energy consumption and Service Level Agreement (SLA) of customers efficiently. The algorithm is highly scalable and requires low maintenance cost with dynamic workloads and it tries to minimize virtual machines migration costs. We also introduce a scalable and distributed probe-based scheduling algorithm for Big data analytics frameworks. This algorithm can efficiently address the problem job heterogeneity in workloads that has appeared after increasing the level of parallelism in jobs. The algorithm is massively scalable and can reduce significantly average job completion times in comparison with the-state of-the-art. Finally, we propose a probabilistic fault-tolerance technique as part of the scheduling algorithm

    Multi-elastic Datacenters: Auto-scaled Virtual Clusters on Energy-Aware Physical Infrastructures

    Full text link
    [EN] Computer clusters are widely used platforms to execute different computational workloads. Indeed, the advent of virtualization and Cloud computing has paved the way to deploy virtual elastic clusters on top of Cloud infrastructures, which are typically backed by physical computing clusters. In turn, the advances in Green computing have fostered the ability to dynamically power on the nodes of physical clusters as required. Therefore, this paper introduces an open-source framework to deploy elastic virtual clusters running on elastic physical clusters where the computing capabilities of the virtual clusters are dynamically changed to satisfy both the user application's computing requirements and to minimise the amount of energy consumed by the underlying physical cluster that supports an on-premises Cloud. For that, we integrate: i) an elasticity manager both at the infrastructure level (power management) and at the virtual infrastructure level (horizontal elasticity); ii) an automatic Virtual Machine (VM) consolidation agent that reduces the amount of powered on physical nodes using live migration and iii) a vertical elasticity manager to dynamically and transparently change the memory allocated to VMs, thus fostering enhanced consolidation. A case study based on real datasets executed on a production infrastructure is used to validate the proposed solution. The results show that a multi-elastic virtualized datacenter provides users with the ability to deploy customized scalable computing clusters while reducing its energy footprint.The results of this work have been partially supported by ATMOSPHERE (Adaptive, Trustworthy, Manageable, Orchestrated, Secure, Privacy-assuring Hybrid, Ecosystem for Resilient Cloud Computing), funded by the European Commission under the Cooperation Programme, Horizon 2020 grant agreement No 777154.Alfonso Laguna, CD.; Caballer Fernández, M.; Calatrava Arroyo, A.; Moltó, G.; Blanquer Espert, I. (2018). Multi-elastic Datacenters: Auto-scaled Virtual Clusters on Energy-Aware Physical Infrastructures. Journal of Grid Computing. 17(1):191-204. https://doi.org/10.1007/s10723-018-9449-zS191204171Buyya, R.: High Performance Cluster Computing: Architectures and Systems. Prentice Hall PTR, Upper Saddle River (1999)de Alfonso, C., Caballer, M., Alvarruiz, F., Moltó, G.: An economic and energy-aware analysis of the viability of outsourcing cluster computing to the cloud. Futur. Gener. Comput. Syst. (Int. J. Grid Comput eScience) 29, 704–712 (2013). https://doi.org/10.1016/j.future.2012.08.014Williams, D., Jamjoom, H., Liu, Y.H., Weatherspoon, H.: Overdriver: handling memory overload in an oversubscribed cloud. ACM SIGPLAN Not. 46(7), 205 (2011). https://doi.org/10.1145/2007477.1952709 . http://dl.acm.org/citation.cfm?id=2007477.1952709Valentini, G., Lassonde, W., Khan, S., Min-Allah, N., Madani, S., Li, J., Zhang, L., Wang, L., Ghani, N., Kolodziej, J., Li, H., Zomaya, A., Xu, C.Z., Balaji, P., Vishnu, A., Pinel, F., Pecero, J., Kliazovich, D., Bouvry, P.: An overview of energy efficiency techniques in cluster computing systems. Clust. Comput. 16(1), 3–15 (2013). https://doi.org/10.1007/s10586-011-0171-xDe Alfonso, C., Caballer, M., Hernández, V.: Efficient power management in high performance computer clusters. In: Proceedings of the 1st International Multi-conference on Innovative Developments in ICT, Proceedings of the International Conference on Green Computing 2010 (ICGreen 2010), 39–44 (2010)OpenNebula: OpenNebula Cloud Software https://opennebula.org/ . [Online; accessed 12-June-2017]OpenStack: OpenStack Cloud Software. http://openstack.org . [Online; accessed 12 June 2017]VMWare: VMWare vCenter Server. https://www.vmware.com/products/vcenter-server.html . [Online; accessed 12 June 2017]De Alfonso, C., Blanquer, I.: Automatic consolidation of virtual machines in on-premises cloud platforms. In: IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, pp 1070–1079 (2017). https://doi.org/10.1109/CCGRID.2017.128Chase, J.S., Irwin, D.E., Grit, L.E., Moore, J.D., Sprenkle, S.E.: Dynamic virtual clusters in a grid site manager. In: Proceedings of the 12th IEEE International Symposium on High Performance Distributed Computing, HPDC ’03, p 90. IEEE Computer Society, Washington, DC (2003). http://dl.acm.org/citation.cfm?id=822087.823392Doelitzscher, F., Held, M., Reich, C., Sulistio, A.: Viteraas: Virtual cluster as a service. In: 2011 IEEE Third International Conference on Cloud Computing Technology and Science (CloudCom), pp 652–657 (2011). https://doi.org/10.1109/CloudCom.2011.101Wei, X., Wang, H., Li, H., Zou, L.: Dynamic deployment and management of elastic virtual clusters. In: 2011 Sixth Annual Chinagrid Conference (ChinaGrid), pp 35–41 (2011). https://doi.org/10.1109/ChinaGrid.2011.31de Assuncao, M.D., di Costanzo, A., Buyya, R.: Evaluating the cost-benefit of using cloud computing to extend the capacity of clusters. In: Proceedings of the 18th ACM International Symposium on High Performance Distributed Computing, HPDC ’09, pp 141–150. ACM, New York (2009). https://doi.org/10.1145/1551609.1551635 . http://doi.acm.org/10.1145/1551609.1551635Marshall, P., Keahey, K., Freeman, T.: Elastic site: Using clouds to elastically extend site resources. In: 2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing (CCGrid), pp 43–52 (2010). https://doi.org/10.1109/CCGRID.2010.80Niu, S., Zhai, J., Ma, X., Tang, X., Chen, W.: Cost-effective cloud hpc resource provisioning by building semi-elastic virtual clusters. In: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, SC ’13, pp 56:1–56:12. ACM, New York (2013). https://doi.org/10.1145/2503210.2503236 . http://doi.acm.org/10.1145/2503210.2503236Bialecki, A., Cafarella, M., Cutting, D., Omalley, O.: Hadoop: a framework for running applications on large clusters built of commodity hardware. Tech. rep. Apache Hadoop. http://hadoop.apache.org (2005)MIT: StarCluster Elastic Load Balancer. http://web.mit.edu/stardev/cluster/docs/0.92rc2/manual/load_balancer.htmlAppliance, C.C.S.: Creating elastic virtual clusters. http://cernvm.cern.ch/portal/elasticclusters (2015)Research project, T.G.: The games research project. http://www.green-datacenters.eu (2013)Cioara, T., Anghel, I., Salomie, I., Copil, G., Moldovan, D., Kipp, A.: Energy aware dynamic resource consolidation algorithm for virtualized service centers based on reinforcement learning. In: 2011 10th International Symposium on Parallel and Distributed Computing (ISPDC), pp 163–169 (2011). https://doi.org/10.1109/ISPDC.2011.32Farahnakian, F., Liljeberg, P., Plosila, J.: Energy-efficient virtual machines consolidation in cloud data centers using reinforcement learning. In: 2014 22nd Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), pp 500–507 (2014). https://doi.org/10.1109/PDP.2014.109Masoumzadeh, S., Hlavacs, H.: Integrating vm selection criteria in distributed dynamic vm consolidation using fuzzy q-learning. In: 2013 9th International Conference on Network and Service Management (CNSM), pp 332–338 (2013). https://doi.org/10.1109/CNSM.2013.6727854Feller, E., Rilling, L., Morin, C.: Energy-aware ant colony based workload placement in clouds. In: 2011 12th IEEE/ACM International Conference on Grid Computing (GRID), pp 26–33 (2011). https://doi.org/10.1109/Grid.2011.13Pop, C.B., Anghel, I., Cioara, T., Salomie, I., Vartic, I.: A swarm-inspired data center consolidation methodology. In: Proceedings of the 2nd International Conference on Web Intelligence, Mining and Semantics, WIMS ’12, pp 41:1–41:7. ACM, New York (2012). https://doi.org/10.1145/2254129.2254180Marzolla, M., Babaoglu, O., Panzieri, F.: Server consolidation in clouds through gossiping. In: Proceedings of the 2011 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks, WOWMOM ’11, pp 1–6. IEEE Computer Society, Washington, DC (2011). https://doi.org/10.1109/WoWMoM.2011.5986483Ghafari, S., Fazeli, M., Patooghy, A., Rikhtechi, L.: Bee-mmt: A load balancing method for power consumption management in cloud computing. In: 2013 Sixth International Conference on Contemporary Computing (IC3), pp 76–80 (2013). https://doi.org/10.1109/IC3.2013.6612165Ajiro, Y., Tanaka, A.: Improving packing algorithms for server consolidation. In: International CMG Conference, pp. 399–406. Computer Measurement Group (2007)Verma, A., Ahuja, P., Neogi, A.: pmapper: power and migration cost aware application placement in virtualized systems. In: Proceedings of the 9th ACM/IFIP/USENIX International Conference on Middleware, Middleware ’08, pp 243–264. Springer, New York (2008)Beloglazov, A., Abawajy, J., Buyya, R.: Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing. Future Gener. Comput. Syst. 28 (5), 755–768 (2012). https://doi.org/10.1016/j.future.2011.04.017Guazzone, M., Anglano, C., Canonico, M.: Exploiting vm migration for the automated power and performance management of green cloud computing systems. In: Proceedings of the First International Conference on Energy Efficient Data Centers, E2DC’12, pp 81–92. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-33645-4_8Shi, L., Furlong, J., Wang, R.: Empirical evaluation of vector bin packing algorithms for energy efficient data centers. In: 2013 IEEE Symposium on Computers and Communications (ISCC), pp 000,009–000,015 (2013). https://doi.org/10.1109/ISCC.2013.6754915Tomás, L., Tordsson, J.: Improving cloud infrastructure utilization through overbooking. In: Proceedings of the 2013 ACM Cloud and Autonomic Computing Conference on - CAC ’13, p 1. ACM Press, New York (2013). https://doi.org/10.1145/2494621.2494627Dawoud, W., Takouna, I., Meinel, C.: Elastic vm for cloud resources provisioning optimization. In: Abraham, A., Lloret Mauri, J., Buford, J., Suzuki, J., Thampi, S. (eds.) Advances in Computing and Communications, Communications in Computer and Information Science, vol. 190, pp 431–445. Springer, Berlin (2011). https://doi.org/10.1007/978-3-642-22709-7_43Tasoulas, E., Haugerund, H.R., Begnum, K.: Bayllocator: a proactive system to predict server utilization and dynamically allocate memory resources using Bayesian networks and ballooning. In: Proceedings of the 26th International Conference on Large Installation System Administration: Strategies, Tools, and Techniques, pp. 111–122. USENIX Association (2012)Hines, M.R., Gordon, A., Silva, M., Da Silva, D., Ryu, K., Ben-Yehuda, M.: Applications know best: performance-driven memory overcommit with Ginkgo. In: 2011 IEEE Third International Conference on Cloud Computing Technology and Science, pp. 130–137. IEEE. https://doi.org/10.1109/CloudCom.2011.27 (2011)Litke, A.: Manage resources on overcommitted KVM hosts. Tech. rep. IBM. http://www.ibm.com/developerworks/library/l-overcommit-kvm-resources/ (2011)De Alfonso, C., Caballer, M., Alvarruiz, F., Hernández, V.: An energy management system for cluster infrastructures. Comput. Electr. Eng. 39(8), 2579–2590 (2013). https://doi.org/10.1016/j.compeleceng.2013.05.004Moltó, G., Caballer, M, de Alfonso, C.: Automatic memory-based vertical elasticity and oversubscription on cloud platforms. Futur. Gener. Comput. Syst. 56, 1–10 (2016). https://doi.org/10.1016/j.future.2015.10.002Calatrava, A., Romero, E., Moltó, G., Caballer, M., Alonso, J.M.: Self-managed cost-efficient virtual elastic clusters on hybrid Cloud infrastructures. Futur. Gener. Comput. Syst. 61, 13–25 (2016). https://doi.org/10.1016/j.future.2016.01.018 . http://authors.elsevier.com/sd/article/S0167739X16300024 , http://linkinghub.elsevier.com/retrieve/pii/S0167739X16300024Caballer, M., Chatziangelou, M., Calatrava, A., Moltó, G., Pérez, A.: IM integration in the EGI VMOps Dashboard. In: EGI Conference 2017 and INDIGO Summit 2017 (2017)Calatrava, A., Caballer, M., Moltó, G., Pérez, A.: Virtual Elastic Clusters in the EGI LToS with EC3. In: EGI Conference 2017 and INDIGO Summit 2017 (2017)Iosup, A., Li, H., Jan, M., Anoep, S., Dumitrescu, C., Wolters, L., Epema, D.H.: The grid workloads archive. Futur. Gener. Comput. Syst. 24(7), 672–686 (2008). https://doi.org/10.1016/j.future.2008.02.003 . http://www.sciencedirect.com/science/article/pii/S0167739X08000125Nordugrid dataset, the grid workloads archive (Online; accessed 27-March-2017). http://gwa.ewi.tudelft.nl/datasets/gwa-t-3-nordugrid/report/Caballer, M., Blanquer, I., Moltó, G., de Alfonso, C: Dynamic Management of Virtual Infrastructures. J. Grid Comput. 13, 53–70 (2015). https://doi.org/10.1007/s10723-014-9296-5 . http://link.springer.com/article/10.1007/s10723-014-9296-

    Conserve and Protect Resources in Software-Defined Networking via the Traffic Engineering Approach

    Get PDF
    Software Defined Networking (SDN) is revolutionizing the architecture and operation of computer networks and promises a more agile and cost-efficient network management. SDN centralizes the network control logic and separates the control plane from the data plane, thus enabling flexible management of networks. A network based on SDN consists of a data plane and a control plane. To assist management of devices and data flows, a network also has an independent monitoring plane. These coexisting network planes have various types of resources, such as bandwidth utilized to transmit monitoring data, energy spent to power data forwarding devices and computational resources to control a network. Unwise management, even abusive utilization of these resources lead to the degradation of the network performance and increase the Operating Expenditure (Opex) of the network owner. Conserving and protecting limited network resources is thus among the key requirements for efficient networking. However, the heterogeneity of the network hardware and network traffic workloads expands the configuration space of SDN, making it a challenging task to operate a network efficiently. Furthermore, the existing approaches usually lack the capability to automatically adapt network configurations to handle network dynamics and diverse optimization requirements. Addtionally, a centralized SDN controller has to run in a protected environment against certain attacks. This thesis builds upon the centralized management capability of SDN, and uses cross-layer network optimizations to perform joint traffic engineering, e.g., routing, hardware and software configurations. The overall goal is to overcome the management complexities in conserving and protecting resources in multiple functional planes in SDN when facing network heterogeneities and system dynamics. This thesis presents four contributions: (1) resource-efficient network monitoring, (2) resource-efficient data forwarding, (3) using self-adaptive algorithms to improve network resource efficiency, and (4) mitigating abusive usage of resources for network controlling. The first contribution of this thesis is a resource-efficient network monitoring solution. In this thesis, we consider one specific type of virtual network management function: flow packet inspection. This type of the network monitoring application requires to duplicate packets of target flows and send them to packet monitors for in-depth analysis. To avoid the competition for resources between the original data and duplicated data, the network operators can transmit the data flows through physically (e.g., different communication mediums) or virtually (e.g., distinguished network slices) separated channels having different resource consumption properties. We propose the REMO solution, namely Resource Efficient distributed Monitoring, to reduce the overall network resource consumption incurred by both types of data, via jointly considering the locations of the packet monitors, the selection of devices forking the data packets, and flow path scheduling strategies. In the second contribution of this thesis, we investigate the resource efficiency problem in hybrid, server-centric data center networks equipped with both traditional wired connections (e.g., InfiniBand or Ethernet) and advanced high-data-rate wireless links (e.g., directional 60GHz wireless technology). The configuration space of hybrid SDN equipped with both wired and wireless communication technologies is massively large due to the complexity brought by the device heterogeneity. To tackle this problem, we present the ECAS framework to reduce the power consumption and maintain the network performance. The approaches based on the optimization models and heuristic algorithms are considered as the traditional way to reduce the operation and facility resource consumption in SDN. These approaches are either difficult to directly solve or specific for a particular problem space. As the third contribution of this thesis, we investigates the approach of using Deep Reinforcement Learning (DRL) to improve the adaptivity of the management modules for network resource and data flow scheduling. The goal of the DRL agent in the SDN network is to reduce the power consumption of SDN networks without severely degrading the network performance. The fourth contribution of this thesis is a protection mechanism based upon flow rate limiting to mitigate abusive usage of the SDN control plane resource. Due to the centralized architecture of SDN and its handling mechanism for new data flows, the network controller can be the failure point due to the crafted cyber-attacks, especially the Control-Plane- Saturation (CPS) attack. We proposes an In-Network Flow mAnagement Scheme (INFAS) to effectively reduce the generation of malicious control packets depending on the parameters configured for the proposed mitigation algorithm. In summary, the contributions of this thesis address various unique challenges to construct resource-efficient and secure SDN. This is achieved by designing and implementing novel and intelligent models and algorithms to configure networks and perform network traffic engineering, in the protected centralized network controller
    corecore