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 The rapid growth of cloud computing has led to a significant increase in energy 

consumption, which is a major concern for the environment and economy. To 

address this issue, researchers have proposed various techniques to improve 

the energy efficiency of cloud computing, including the use of machine 

learning (ML) algorithms. This research provides a comprehensive review of 

energy efficiency in cloud computing using ML techniques and extensively 

compares different ML approaches in terms of the learning model adopted, 

ML tools used, model strengths and limitations, datasets used, evaluation 

metrics and performance. The review categorizes existing approaches into 

Virtual Machine (VM) selection, VM placement, VM migration, and 

consolidation methods. This review highlights that among the array of ML 

models, Deep Reinforcement Learning, TensorFlow as a platform, and 

CloudSim for dataset generation are the most widely adopted in the literature 

and emerge as the best choices for constructing ML-driven models that 

optimize energy consumption in cloud computing. 
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1. INTRODUCTION  

Cloud computing is a fast-growing technology combining two significant trends: Information 

Technology (IT) efficiency and business agility [1], [2] . The National Institute of Standards and Technology 

(NIST) defines Cloud computing as a unique model for enabling convenient, on-demand network access to a 

shared pool of configurable computing resources that can be rapidly provisioned and released with the least 

service provider interactions and management efforts. These resources are networks, servers, storage, 

applications, and services. The cloud offers the ability to store data without restrictions and to hide a vast 

amount of data from other users. The users can access the required files, documents, and applications on 

demand. Users only pay for the services provided by the cloud vendors instead of buying the expensive 

Infrastructure. 

A data centre’s power consumption is divided into three categories: cooling systems, data centre 

networks and servers [1]. Cooling systems takes 15% to 30% of the power, and servers consume 40% to 55% 

[1]. The network consumes 10% to 25% of the power and it was also reported that cloud data centres alone 

consume approximately 7% of global electricity and are expected to rise to 13% by 2030 [3]. This sector is 

also responsible for an estimated 2% of global emissions, comparable to the aviation industry. The energy 

consumption of data centres is expected to exceed 140 billion kilowatt-hours per year [4]. The energy-saving 

scheduling of data centres is critical for cloud service providers and will also contribute to environmental 

sustainability. The major problem in the currently in cloud computing energy optimization research is that there 

are limited critical reviews articles for machine learning based approaches in cloud computing energy 
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optimization to direct and help researchers. There are to the best of our knowledge no reviews that can suggest 

the best ML model, tools, datasets, and evaluation metrics for current and future research. This study provides 

a comprehensive review of energy efficiency in cloud computing using ML techniques and extensively 

compares and contrasts different ML approaches in terms of the learning model adopted, ML tools used, model 

strengths and limitations, datasets used, and evaluation metrics. Below are the contributions of this review 

article: 

1. To the best of our knowledge, this study has made its first attempt to extensively compare and construct 

Machine Learning (ML)-based energy efficiency optimization approaches in cloud computing in terms 

of the approach's learning models adopted, ML tools used, datasets used, and evaluation metrics. 

2. The study investigated various ML-driven models that optimize energy consumption in cloud 

computing and then recommended to future researchers that, Deep Reinforcement Learning, 

TensorFlow as a platform, and CloudSim for dataset generation are the best options and most suitable. 

3. The study discussed the challenges and limitations of the current approaches and highlighted future 

research directions. 

This article is organized as follows. Section 2 presents related works on non-machine learning based 

energy efficiency techniques in cloud computing, categorized into Dynamic Voltage Frequency Scaling 

(DVFS), Aware consolidation, VM placement, VM migration, and VM selection. Section 3 compares and 

contrast the latest ML based energy efficiency techniques in cloud computing. Section 4 presents the results 

and discussions of the study by performing a detailed analysis of related works to deduct the most adopted 

models, objectives, tools, datasets, etc. Section 5 presents the future directions and Section 6 concludes the 

research study. 

 

2. RESEARCH METHOD  

The objective of the review paper is to provide a comprehensive overview of the state-of-the-art 

research and advancements in machine learning techniques for energy optimization in cloud computing 

environments. The review paper will focus on recent research published in peer-reviewed journals, conference 

proceedings, and other reputable sources. The time frame for selecting literature will be from 2017 to 2023. 

The review will follow a systematic approach to literature review, involving the following key steps: (1) 

Literature Searching using online academic databases including ScienceDirect, SpringerLink, IEEE Xplore, 

ACM Digital Library, Google Schoolar and Elsevier's Cloud Computing Journal to identify relevant articles 

using keywords such as "machine learning," "energy optimization," "cloud computing,", "power-efficient," 

"resource allocation". (2) Inclusion Criteria of articles that specifically address machine learning techniques 

applied to energy optimization in cloud computing between 2017 and 2023. (3) Exclusion Criteria of articles 

that are not focused on machine learning or energy optimization, or those that are not related to cloud 

computing. (4) Data Extraction of key information from selected articles, including title, authors and years, 

machine learning models, research objectives, evaluation metrics, model limitations, datasets and tools used. 

(5) Synthesis: Organizing the extracted information into a summarized table then extracting trends and patterns 

of the most adopted models, objectives, metrics, tools, and datasets. For a detailed overview of cloud 

computing, the reader is directed to [5][6][7] [8]. 

 

2.1.  Non-Machine Learning Based Cloud Computing Energy Optimization Approaches 

Figure 1 shows several non-machine learning based energy efficiency techniques in cloud computing, 

categorized into Dynamic Voltage Frequency Scaling (DVFS), Aware consolidation, VM placement, VM 

migration, and VM selection. These techniques are described in the subsequent sections. 

 

Figure 1. Energy-Efficient Approaches for Cloud Computing. 

 

(1) DVFS-Aware Consolidation Energy Efficiency Methods: Dynamic Voltage Frequency Scaling (DVFS) 

is a state-of-the-art energy-saving technique for reducing the power consumption in current computer systems. 

This technique enables CPUs to run at various combinations of clock frequencies and voltages based on system 

performance requirements at a given time [9]. Consolidation refers to the live migration of virtual machines 

from one host to another with minimum execution-related delays [10]. DVFS-Aware Consolidation changes 
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the voltage and frequency automatically to cut down on CPU heat generation and power consumption. 

Furthermore, less heat generated enables cooling systems to be switched off while saving more energy [9]. The 

author in [9] proposed an energy efficiency heuristic using VM consolidation (EEHVMC) to minimize energy 

or power consumption, VM migrations and reduces service level agreement violations. The fundamental 

concept categorizes host computers according to their CPU and memory consumption. The host machines are 

divided into three primary groups by defining two criteria related to CPU and memory utilization: host 

overloaded (HOL) and host medium loaded (HML). Lastly, the host underloaded (HUL) machines. VMs were 

moved to the HML as of HOL to reduce the power consumption in cloud data centers. The suggested method 

reassigned the VMs to the HML from the HUL hosts and switched the inactive hosts into power-saving mode 

[9]. The author [11] created an adaptive VM consolidation mechanism based on the DRL method called 

ADVMC for energy-efficient cloud data centers. It implements both the VM placement and selection for 

reducing energy consumption and eliminating the SLA violations of users as compared to many other VM 

consolidation strategies. Based on workload detection, hosts in a cloud data center are divided into three types: 

overloaded hosts, underloaded hosts, and regular hosts whose workload falls between overloaded hosts and 

underloaded hosts [11]. 

The author in [12] proposed an energy-efficient and quality of service aware VM consolidation 

strategy for improving resource utilization and saving energy on the cloud data centers. Dynamic VM 

consolidation is a highly effective strategy for increasing resource utilization and maintaining a regular 

operational state while upholding SLAs for all hosts. To efficiently reallocate VMs to hosts, this dynamic VM 

consolidation strategy is divided into several steps which are: identifying overloaded host, choosing the 

migrated VM from the overloaded host, identifying the underloaded host then placing the VM. Figure 2 shows 

a summary of the evaluation metrics, strength’s and limitations of DVFS Aware consolidation method for 

cloud computing energy optimization. 

 

 
Figure 2. Literature Summary of evaluation metrics, strength’s and limitations of DVFS Aware consolidation 

method for cloud computing energy optimization. 

  

(2) VM Placement Energy Efficiency Methods: VM placement methods are sometimes called VM Allocation 

or VM Scheduling. In large cloud data centers, VM placement (VMP) is the process of choosing the best 

suitable Physical Machine (PM) to host the user's requested virtual machines [13]. It is a technique that executes 

VMs to enhance power efficiency and maximize resource utilization. The author in [13] proposed a holistic 

resource management strategy named bio-inspired virtual machine (Bio-VMP) for cloud environment that is 

both sustainable and energy efficient. This technique used a novel flower pollination-based non-dominated 

sorting optimization (FP-NSO) method which maximizes resource utilization while minimizing energy 

consumption and carbon emissions (CE) of the data center. It is based on the concepts of non-dominated sorting 

technique-based genetic method (NSGA-II) and flower pollination optimization (FPO). It also explores the 

most possible and optimal virtual machine placement allocations subjected to energy consumption, resource 

utilization, and CE [13]. A prediction-aware deep reinforcement learning (DRL) based VM placement 

technique (PADRL) was created by the author in [11], in order to find acceptable hosts for VMs to be migrated 

in an efficient way. The PADRL scheme is comprised of two primary components, which are long short-term 

memory (LSTM) based state prediction and deep Q-learning (DQN) based VMP. The VMs that needed to be 

migrated were set up on suitable hosts, including all the VMs from underloaded hosts and a few from 

overloaded hosts. This method is achieved in terms of energy saving and reduction of service level agreement 

violations in cloud data centers [11]. 
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Using the dominance-based multi-objective artificial bee colony (MOABC) technique, the author in 

[14] presented a multi-objective VMP for achieving the best VMs to PM mapping. This technique balanced 

overall energy consumption, resource waste, and system reliability to meet QoS and SLA requirements. The 

list of migrating virtual machines, destination physical machines, number of solutions as well as the maximum 

number of repetitions is the first input parameters used by the suggested algorithm [14]. The author in [12] 

proposed a virtual machine placement heuristics strategy called CUECC for choosing a targeted host with the 

greatest reward in combination with both real-time CPU utilization and energy consumption changes when the 

virtual machine is deployed. The global manager (GM) gathered the running status of hosts in the data center 

while local manager (LM) monitored the status of hosts to check if they are underloaded or overloaded. 

Therefore, the most underloaded host migrated all the VMs to some hosts then switched the host to inactive 

state for saving energy. Figure 3 shows a summary of the evaluation metrics, strength’s and limitations of VM 

Placement method for cloud computing energy optimization. 

Figure 3. Literature Summary of evaluation metrics, strenghths and limitations of VM Placement 

method for cloud computing energy optimization. 

 

(3) VM Migration Energy Efficiency Methods: Virtual Machine (VM) migration is an enchanting feature of 

virtualization technology that plays an essential role in the administration of cloud data centers, it shifts the 

running virtual machines from a physical machine to another [15]. Author in [15] proposed a plethora of VM 

migration strategies, aiming at serving the QoS-driven user requirements and also reviewing the most recent 

and cutting-edge load balancing, energy-aware, SLA-aware, and network-aware live VM methods based on 

artificial intelligence (AI). Several methods have been proposed to achieve effective VM migration and these 

techniques are divided into non-live and live VM migration. The live VM migration as the name implies keeps 

providing services to users while the virtual machine is being moved in order to ensure continuous connectivity 

and efficient resource utilization. Whereas the non-live VM migration stops all the VM services while it is in 

the process and resumes them when it is done. The VM migration controller manages all aspects of the VM 

migration process, whether it is non-live or live [15]. To address the issues faced due to the increment of cloud 

data centers, the author in [16] offered an energy aware VM allocation and migration approach. ML based 

artificial bee colony (ABC) is used for ranking the VMs with respect to the load while considering the energy 

efficiency as a vital metric. The most efficient VMs were further selected based on the dynamics of the load 

and energy, applications were migrated from one VM to another. Also, active VM servers prevented the 

resource under-utilization by reducing the resource idling time [16].  

The author [17] in proposed a VM migration method called V2PQL which is based on Markov 

decision process and Q-learning technique. One of the main benefits of this virtual technology is that it freed 

VMs from the underlying hardware, allowing flexibly management of resources and maximizing the use of 

shared resources. By shifting VMs from overloaded PMs to light-loaded ones, a cloud system achieved load 

balancing. VMs that were operating on a light load PM were merged into another physical machine for saving 

energy by lowering the number of running PMs. A cross-data center virtual machine migration approach called 

EVMA was suggested by author in [18] considering the issue of energy consumption in multi-data center 

environment. The destination data center for the VM migration was selected first based on the bandwidth 

between data centers and this approach of choosing an overload host as well as VM was chosen based on the 

historical CPU load. Studies revealed that the algorithm performed well in lowering the data center's energy 

consumption while maintaining QoS [18]. Figure 4 shows a summary of the evaluation metrics, strength’s and 

limitations of VM Migration method for cloud computing energy optimization. 
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Figure 4. Literature Summary of evaluation metrics, strength’s and limitations of VM Migration method for 

cloud computing energy optimization. 

 

(4) VM Selection Energy Efficiency Methods: Virtual Machine Selection is a crucial strategy for enhancing 

power proficiency and asset usage in cloud infrastructures [19]. It is concerned with assigning computational 

tasks to VMs. Varying central processing unit (CPU) utilization of virtual machines is one of the leading causes 

of fluctuating CPU utilization of hosts. The virtual machine monitor (VMM) takes over when the host is 

identified as overloaded. The author in [12] used VM selection strategy called AUMT to reduce the amount of 

energy consumption from loud data centers, the number of migrations and to also improve the quality of service 

(QoS). It is based on average CPU utilization of the VMs as well as migration time. The author in [14] 

introduced a novel heuristic VM selection policy that considers migration time and total number of migrations 

to reduce the harmful impacts of migrations on QoS. Investigating task completion times while selecting VMs 

for migration is one of this policy's most vital points. In this regard, a constraint was defined for selecting only 

those VMs that could not complete their tasks before the mean first passage time in the current physical 

machine (PM) to avoid further VM migration that leads to the improvement of QoS [14].  

The author in [11] explored a dynamic influence coefficient based VM selection algorithm (ICVMS) 

to preferentially select those VMs with the largest influence coefficient (IC) value, that is the VMs with the 

most impact for migration, which helps to remove excessive workloads rapidly and accurately for overloaded 

hosts. A list of VMs were selected for migration to restore the overloaded host to a normal state. A new VMs 

selection method named MRCU (maximum ratio of CPU utilization to memory utilization) was proposed by 

author in [9], to choose VMs for migration when CPU intensive tasks overload a host. The MRCU approach 

considers both the central processing unit and memory components. Since a higher CPU workload result in a 

larger power consumption, this algorithm selects a virtual machine with the highest CPU value for migration 

and its objective is to save energy [9]. Figure 5 shows a summary of the evaluation metrics, strengths, and 

limitations of VM Selection method for cloud computing energy optimization. 

 

Figure 5. Literature Summary of evaluation metrics, strength’s and limitations of VM Selection 

method for cloud computing energy optimization. 
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2.2. Machine Learning Based Cloud Computing Energy Optimization Approaches 

Machine Learning (ML) is a kind of artificial intelligence that simulates human learning [20]. It 

enables computers to develop their predictive abilities up to the point where they can carry out tasks on their 

own without having to be programmed. Based on historical training data, ML-driven software applications 

may forecast future results [21]. It takes a lot of data, computing power, and Infrastructure to train an accurate 

ML model. ML models can be trained using a cloud ML platform, which offers the computation, storage, and 

services needed. ML is made more affordable, flexible, and accessible due to cloud computing, which also 

enables faster ML algorithm development. The benefits of Machine Learning in the Cloud are as follows; 

According to authors in [22], many businesses have the resources to develop ML models internally using open-

source frameworks like Scikit Learn, TensorFlow, or PyTorch. Even if internal teams are competent at creating 

algorithms, they frequently struggle to scale models for usage with real-world workloads and deploy them in 

production, which frequently calls for sizable computing clusters. ML workloads that come in bursts function 

well on the pay-per-use cloud [22]. Enterprises can quickly scale up as initiatives go into production and 

demand rises due to the cloud's ease of ML experimentation. The Limitations of Machine Learning in the Cloud 

are as follows; Although ML has transformed several industries, it frequently falls short of expectations. This 

can be attributed to several factors, including a lack of appropriate data, a lack of data availability, data bias, 

challenges with confidentiality, poorly planned goals and algorithms, improper tools and personnel, a shortage 

of resources, and evaluation concerns [23]. It can be challenging to switch systems across clouds or services 

when running ML models on the cloud. To accomplish this, the data must be moved in a way that preserves 

model performance. Little changes in the input data can often have a big impact on ML models [24]. The same 

security issues apply to cloud-based ML as they do to any cloud computing platform. Attackers may hack 

cloud-based ML systems, which are frequently exposed to public networks and susceptible to manipulation of 

ML results or infrastructure cost increases. 

Nevertheless, there are several applications for ML. ML algorithms are essential in situations when 

deployment is required for development. One of the main factors influencing ML solutions' widespread 

acceptance is their dynamic nature. These algorithms can be used to replace some human tasks because of how 

flexible they are. The finest illustration of this is the fact that chatbots that use natural language processing are 

replacing customer service representatives. These chatbots operate by evaluating consumer inquiries and 

responding to them automatically [23]. ML focuses on the process through which computers learn how to carry 

out activities without having received specialized training [23]. Computers are used to analyze and identify 

trends from data. Figure 6 shows various ML types and techniques or algorithms. ML algorithms can be trained 

using various techniques, each of which has advantages and disadvantages of its own. The ML algorithms are 

generally divided into three groups: supervised, unsupervised, and reinforcement learning. 

 
Figure 6. ML types and techniques or algorithms. 
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(1) Supervised Learning: The first category in the ML hierarchy is supervised learning. When given 

a dataset, which includes both the inputs and the matching labelled outputs, then it is modeled by supervised 

algorithms [23]. The training samples in the dataset have inputs that have been mapped to the matching outputs. 

Each training example in the mathematical model is described by an array called a feature vector, and the 

training data is represented by a matrix through an iterative process. A function that is created by supervised 

learning algorithms can be used to forecast the results of brand-new inputs. That task has been learned by an 

algorithm that gradually improves the precision of its predictions over time. Classification and regression are 

other divisions of supervised learning [23]. Supervised ML allows the collection or production of data output 

from previous experience and helps optimize performance criteria [25]. Also, it helps solve various types of 

real-world computation issues. A lot of computation time is required for supervised learning training. Unlike 

unsupervised learning, it cannot cluster or classify data by independently determining its features [25]. 

 

(2) Supervised Learning: The second category in the ML hierarchy is unsupervised learning. 

Unsupervised learning techniques start with a data set that only contains the inputs and looks for patterns, such 

as grouping or clustering of data points [23]. In this type of learning, algorithms are trained on test data that 

has not been labelled. Unsupervised learning algorithms operate by finding commonalities rather than 

responding to feedback. It is used in the identification of anomalies, clustering, and determination of the 

probability density function. It deals with clustering.  It is utilized to uncover hidden patterns that are of utmost 

value to the industry and have several real-time applications since it can perceive things that human minds 

cannot [20]. Compared to the supervised learning task, it is less complex. As there is no label or output measure 

to prove its usefulness, it is not always certain that the results will be valuable. An unsupervised task's output 

and sorting cannot be precisely defined. It strongly depends on the model and on the machine. Results are often 

less accurate [20]. 

(3) Reinforcement Learning: The third category in the ML hierarchy is Reinforcement Learning 

(RL). According to the author in [26], an agent is trained in RL (a decision-making technique) to learn a desired 

behaviour in an interactive environment based on the events it encounters. In essence, the agent gets rewarded 

for every action it does in a specific state, and this reward represents the success of the selected action in that 

state. With enough practice, the agent learns which activities produce the highest cumulative reward over time. 

The environment in which the RL agent functions is frequently modeled using the Markov Decision Process 

(MDP). As a result, it is believed that state transitions and rewards are governed by the Markov property, which 

holds that the future state and reward only depend on the present state and the action the agent takes in the 

current. Reinforcement learning can be used to address immensely challenging issues that are unsolvable using 

conventional methods [26]. Long-term outcomes, which are very difficult to accomplish, are best achieved 

with this technique. The model can correct errors made during the training process.  For real physical systems, 

the curse of dimensionality severely restricts reinforcement learning, and it requires a lot of data and 

computation [26]. A state overload brought on by excessive reinforcement learning may have a negative effect 

on the results.  

This section will present a review of related works which adopted or developed ML models to solve 

the energy efficiency optimization problem in cloud computing. This is a review of articles over the last five 

years. The extracted information will be presented in the form of a table, as shown in Table 1. Each column in 

the table will represent the features of the related work in question. The table rows represent several related 

works (the authors) and the years they were published. The table will present the reviewed article with its 

author and the years, the ML model that was proposed to solve the energy efficiency problem in cloud 

computing, the proposed objective, the evaluation metrics, e.g., accuracy, the limitation of the proposed model, 

and the datasets and tools adopted. Table 1 shows the reviewed related works on ML models for energy 

efficiency in cloud computing. A detailed analysis of related works in Table 1 will be presented at the end of 

the table, showing graphically the most adopted ML models, the most adopted objectives, the most adopted 

ML evaluation metrics with ranges, e.g., ML model accuracy ranges, prevalent ML model limitations, and 

most adopted ML datasets and tools. From Table 1, trends and patterns on the most adopted features will be 

drawn. This review will then specify and suggest the discovered trends and patterns of the reviewed features 

as a recommendation to current and future researchers. 
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Table 1. Related Works on Machine Learning based Energy Efficiency in Cloud Computing 

    Authors & 
Years 

      Machine 
Learning Models 

  ML Research 
    Objectives 

       ML Evaluation 
             Metrics & Performance 

    ML Model 
    Limitations 

  ML Datasets 
    and Tools 

1.   Liu et al., 
(2017) 
[27] 

Deep 
Reinforcement 
Learning (DRL) 

To adaptively 
allocate resources in 
cloud computing 
system. 

- Power Consumption 
   (16% reduction) 
- Latency  

(10% reduction) 

Partially solves 
the resource 
allocation 
problem  

Dataset: Actual 
Google cluster-
usage traces  
 
ML Tool: Keras 

2. Cai et al., 
(2017) 
[20] 
 

K-Means and 
Page Rank 

To minimize the 
energy consumption 
of data centre. 

- Energy consumption 
(25% reduction) 

High 
Computation 

Dataset: Used the 
customized dataset 
 
ML Tool: Hadoop 

3. Zhong et al., 
(2017) 
[25] 

Wavelet Support 
Vector Machine 
(WSVM) 

To analyze the cycle 
and frequency of the 
input signal by 
replacing the kernel 
function of SVM by 
a wavelet function. 

- CPU Usage  
(3% increase) 

- Mean absolute error  
(6.5% minimized) 

- Root mean square error 
 (30% minimized) 

Does not 
address 
workload 
prediction. 

Dataset: Google 
cloud computing 
center dataset. 
 
ML Tool: 
TensorFlow  

4. McGough et 
al., (2018) 
[28] 

Random Forest 
(RF) And 
Multilayer 
Perceptron (MLP) 

To minimize the 
energy consumption 
of data center. 

- Accuracy  
 (70% achieved) 
- Energy consumption         
(51.4% reduction)  
- Overhead  
(4.9% increase) 

Uses real trace-
logs for 
complex. 
situations to 
occur in the 
presented 
platform. 

Dataset: 2010 
exemplar dataset. 
 
ML Tool: Scikit-
Learn  

5. Li et al., 
(2018) 
[29] 

Deep 
Reinforcement 
Learning 

To reduce 
power/energy 
consumption by 
enhancing 
computation speed 
and hardware 
footprint reduction 

- Power usage 
(54.1% reduced) 
- Average job latency 
(18.7% increase) 

The action space 
in the DRL 
framework 
needs to be 
reduced. 

Dataset: Google 
cluster workload 
traces  
 
ML Tool: 
TensorFlow 

6. Zhang et al., 
(2018) 
[30] 

Linear and 
Logistic 
Regression 

To model and 
analyze the multi-
dimensional cloud 
resource allocation 
problem. 

- Accuracy (98% achieved) 
- CPU utilization 
   (100% achieved)  
- Storage utilization  
   (100% achieved) 
- Memory utilization  
   (100% achieved) 

The resource 
allocation 
algorithm does 
not satisfy the 
strategy proof of 
the auction 
mechanism. 

Dataset:  Grid 
Workloads 
Archive. 
 
ML Tool: GNU 
Octave 4.2.1 

7. Jararweh et 
al., (2018) 
[31] 

Logistic 
Regression Model  
 

To predict physical 
machine overloading 

- Energy consumption 
(Reduced by 67%) 

- No. of VM migrations  
(Reduced by 91%) 

- No. of host shutdowns 
(reduced by 86%)  

- SLA violation 
(Reduced by 45%) 

The proposed 
algorithm was 
not applied with 
varying 
workloads that 
represent 
different cloud 
customers. 

Dataset: CloudSim 
4.0 dataset. 
  
 
ML Tool: 
TensorFlow 

8. Moreno-
Vozmediano 
et al., (2019) 
[32] 

Support Vector 
Machine (SVM) 
Regression 

To optimize the 
latency of the 
service and reduce 
VM over-
provisioning. 

- Mean Absolute Error 
(94% MAE reduction)  

- Root Mean Squared Error 
(11% RMSE reduction) 

- SLA Violation  
  (8% reduction) 

Only based on 
normalized 
polynomial 
kernels. 

Dataset: Real web 
service logs from 
Complutense 
University of 
Madrid.  
ML Tool: Weka 

9. Rajalakshmi 
et al., (2019)  
[33] 

Reinforcement 
Learning 

To improve the 
quality of the VM 
consolidation  
algorithm for energy 
consumption. 

- SLA violation  
(8.5% reduction) 

- Energy consumption 
  (32% reduction) 

The number of 
hosts can be 
increased to 
simulate the 
behaviour of the 
proposed work. 

Dataset: CloudSim 
PLANET LAB 
workload. 
 
ML Tool: 
TensorFlow 

10. Sui et al., 
(2019) 
[34] 

K-Means 
Clustering 
Algorithm 

To reduce cost and 
response times  

- Average utilization,  
  (100% Improvement) 
- VM migration number 
  (Reduced by 94.5%) 
-  Energy consumption 
  (Reduced by 49.13%) 

Only addressed 
the prediction of 
the distribution 
of resource 
demand. 

Dataset: CloudSim 
4.0 dataset. 
 
ML Tool: Eclipse 
4.5.1 

11. Thein et al., 
(2020)  
[35] 

Reinforcement  
Learning And  
Fuzzy Logic 

To provide the 
effective 
management of 
physical resources. 

- Power Usage Effectiveness 
  (between 1.78 and 1.96) 
- Resource utilization  

(Above 50%) 
- SLA Violation 
(24% reduction) 

For a very large 
number of 
infrastructure 
resources, the 
scheduling 
process may 
become slow. 
 

Dataset: PlanetLab 
Virtualized 
Research datasets. 
 
ML Tool: MLBox 
 
 

Table 1 (Continued) Related Works on Machine Learning based Energy Efficiency in Cloud Computing 
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 Authors &             
Years 

       Machine 
Learning Models 

    ML Research 
       Objectives 

     ML Evaluation 
             Metrics & Performance 

      ML Model 
      Limitations 

    ML Datasets 
       and Tools 

12. Tong et al., 
(2020) 
[36] 

Deep Q Learning 
 

To solve the 
problem of 
scheduling tasks in 
cloud computing 
environment. 

- Makespan  
 (5% Improvement) 
-Load Standard deviation 
  (32% Improvement) 

 

Does not cut 
costs when after 
reaching task 
deadlines  

Dataset: CloudSim 
4.0 dataset 
 
ML Tools: 
TensorFlow 

13. Ding et al., 
(2020) 
[24] 

Q Learning Proposed a Q-
learning based task 
scheduling 
framework for 
energy-efficient 
cloud computing. 

- Energy consumption 
(25% reduction) 

- Average response time 
(68.7% reduction) 

- CPU utilization rate 
(20% increase) 
 

The model 
evaluation did 
not consider 
scalability with 
the increase in 
the number of 
VMs. 

Dataset: CloudSim 
4.0 dataset. 
 
 
ML Tool: 
TensorFlow 

14. Asghari et al., 
(2020) 
[37] 

Cooperative 
Reinforcement 
Learning  
(RMFW Model) 
 

To reduce user costs, 
energy consumption, 
and perform load 
balancing of 
resources. 

- Scheduling time  
(61% reduction) 

- Makespan (20% reduction) 
- Resource Utilization 

(29% improvement) 
- Cost (32% reduction) 
- Energy (50% reduction) 
 

Loss of 
accuracy due to 
discretization of 
state space. 

Dataset: CloudSim 
4.0 dataset. 
 
 
Tool: TensorFlow 

15. Madhusudha 
et al., (2021) 
[38] 

Random Forest  
(GA-RF Model) 

To minimize power 
consumption while 
maintaining load 
balance yet 
maximizing resource 
utilization. 

- Energy Consumption 
  (39% reduction) 
- Execution Time 
  (37% reduction) 
- Resource Utilization 
  (11% improvement) 
- Average Start Time  

(46% reduction) 
- Average Finish Time  

(43% reduction) 

The model was 
not tested with 
various ML and 
deep learning 
approaches for 
the better 
solutions 

Dataset: Real 
workload traces 
from PlanetLab. 
 
ML Tool: 
TensorFlow 

16 Yan et al., 
(2021) 
[39] 

Deep Q-Learning  
(Dueling-DDQN) 

To reducing power 
consumption, 
ensuring resource 
load balance, and 
improving user 
service quality. 

- Average Reward 
(20% Improvement) 

- Power Consumption 
  (30% reduction) 

Do not have 
specific 
optimization 
goals. 

Dataset: CloudSim 
4.0 dataset. 
 
ML Tool: 
TensorFlow (TF) A 
Jararweh gents 

17. Wang et al., 
(2021) 
[4] 

Deep 
Reinforcement 
Learning 

Proposed a DRL 
model based on QoS 
feature learning to 
optimize data centre 
resource scheduling. 

- Energy consumption 
  (22% improvement) 
-  SLA rate 
 (4.5%–26% improvement) 

Affected by 
response time, 
reliability, and 
other 
parameters. 

Dataset: 1998 
World Cup website 
workload  
ML Tool: 
TensorFlow 

18. Caviglione et 
al., (2021) 
[40] 

Deep 
Reinforcement 
Learning 
(DRL VMP) 

To selects the most 
suitable PMs to 
deploy VMs 
requested by users 

- QoE (50% improvement) 
- Consumed power 

(7% reduction)   
- Total reward 

(75% improvement) 

Optimization 
problem 
(indirectly acted 
by means of 
heuristics). 

Dataset: Traces 
taken from Netalia 
(www. Netalia.it). 
ML Tool: 
TensorFlow 

19. Shaw et al., 
(2022) 
[3] 

Reinforcement 
Learning 

To solve the VM 
consolidation 
problem for 
improved cloud 
resource 
management. 

- Energy Consumption 
(47% reduction) 

- Energy efficiency 
(Improved by 25%)   

- Service violations 
(Reduced by 63%) 

A limitation of 
the tradeoff 
between 
exploration and 
exploitation. 

Dataset: Real 
workload data from 
PlanetLab. 
 
ML Tool: 
TensorFlow 

20. Jayanetti et 
al., (2022) 
[26] 

Deep 
Reinforcement 
Learning 
 

Energy-efficient 
resource scheduling 
in edge-cloud 
environment. 

- Energy consumption 
(56% improvement) 

- Execution time 
(46% improvement) 

Only operates in 
a centralized 
manner. 

Dataset: CloudSim 
4.0 dataset. 
 
ML Tool: Keras 

21. Chen et al., 
(2023) 
[41] 
 

Deep 
Reinforcement 
Learning 
(DQTS) 

To dynamically and 
collaboratively 
schedule high-
dimensional cloud 
objectives. 

- Makespan 
2484 

(16.6% improvement) 
- Fairness 
  (Improve by 5.3%.) 

Performance 
degradation in 
larger-scale 
workflow 
scheduling  

Dataset: 
CyberShake, 
Epigenomics,  
ML Tools: 
PyTorch 

22. Cui et al., 
(2023) 
[42] 

Deep 
Reinforcement 
Learning 
(DQN) 

Optimizing the 
computing, caching, 
and communication 
resources 

- Network Delay  
(44% reduction) 

- Reward per episode 
(39% improvement) 

A tradeoff 
between energy 
consumption 
and network not 
considered 

Dataset: Not 
Specified 
ML Tools: Not 
Specified 
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Table 1 (Continued) Related Works on Machine Learning based Energy Efficiency in Cloud Computing 

 Authors &             
Years 

Machine 
Learning 
Models 

 ML Research    
Objectives 

    ML Evaluation 
             Metrics & Performance 

     ML Model 
     Limitations 

ML Datasets 
and Tools 

23. Sen et al, 
(2019) 
[43] 
 

Reinforcement 
Learning based 
Task 
Assignment 
approach 
(RILTA) 

Ensures 
the timeliness 
guaranteed execution 
of intelligent 
cognitive assistants’ 
tasks with high 
energy efficiency. 

- Guarantee ratio (13%- 
22% improvement) 
- Average energy 
consumption  
(25% reduction of 1MJ) 
-Task allocation time 
(25% improvement) 
- Task running time 
(34%-51% faster) 
- Percentage deadline 
(63%-68% decrease) 

State space only 
consists of processor 
capacity and available 
bandwidth. Cannot 
always find the 
optimal solution due 
to limitation in 
finding the best policy 
using Q-learning, 
with high variance 
error bars. 

Dataset: 
Generated via 
uniform 
distribution 
from iFogSim 
 
 
Tool:  
iFogSim 

24. Kumar et al.,  
(2022) 
[44] 
 

ML frameworks 
among them: 
Supervised 
learning, neural 
networks, 
support vector 
regression, etc 

A Review: Reviews 
the ML based cloud 
improvement through 
dynamic load 
allocation, task 
scheduling, energy 
optimization, live 
migration, etc  

The review table 
presented compares 
reviewed literature 
based on the year, 
authors, learning model, 
benefits, limitations, 
platforms adopted and 
the performance. 

No dataset 
comparison. No 
analysis of most 
adopted datasets, 
tools, metrics, 
performance, etc. 
Outdated articles up 
to 2021.  

Dataset: The 
review does not 
compare any 
datasets. 
 
ML Tool: 
several tools 
compared. 

25. Demirci, 
(2016) 
[45] 
 
 
 

Presenting 
several ML 
schemes: 
Supervised, 
Unsupervised, 
Reinforcement 
and Hybrid 

A review: Provides a 
comparative 
classification of ML 
models in the cloud 
for energy reduction. 
 

The review table 
presented compares 
reviewed literature based 
on the year, authors, 
learning model and 
objectives. 

Does not compare 
based on metrics, 
performance, tools 
limitation, datasets. 
Outdated articles up 
to 2016.  

Dataset: No 
comparison. 
ML Tools: No 
comparison. 

26.      Khan et al., 
(2022) 
[46] 

Presents several 
ML centric 
resource 
management in 
cloud computing 

A review: The review 
compares several ML 
approaches based on 
experiments 
configuration, 
datasets, performance, 
limitations. 

Energy Consumption 
(Best reviewed article 
has 38% energy 
reduction) 
Several other 
performance metrics of 
articles were presented; 
accuracy, latency, etc. 

No analysis of most 
adopted datasets, 
tools, metrics, 
performance, etc. 
Outdated with articles 
up to 2021. Missing 
values on 
performance for some 
article 

Dataset: Several 
datasets were 
compared with. 
 
ML tools: 
Several tools 
were compared 
with. 

27. Soni  et al., 
(2022) 
[47] 

Presents several 
ML schemes 
generally in 
cloud computing 

A review: Compares 
machine learning 
techniques in 
emerging cloud 
computing integrated 
paradigms 

Several performance 
metrics; power 
consumption, latency, 
delay, accuracy, cost, 
utilization, etc. 

No comparison on; 
performance but only 
accuracy performance 
presented. No 
comparison based on 
ML tools. 

Dataset: 
MNIST, LSTM, 
Cifar10, etc. 
 
ML tools: No 
comparison. 

  

3. RESULTS AND DISCUSSIONS 

This section presents a detailed analysis of the literature review presented previously in Table 1. This 

section will provide a detailed analysis of the most adopted ML models, the prevalent objectives of current 

approaches, the most adopted evaluation metrics used in current approaches with ranges, e.g., the minimum 

and maximum accuracy that has ever been achieved in current works, the most prevalent limitations of current 

related works, the most adopted ML datasets and tools. 

 

4.1. The Most Adopted ML Models from Literature 

Figure 7 shows an analysis of the most adopted ML models from the literature for cloud computing 

energy optimization. The analysis shows that Deep Reinforcement Learning (DRL), Support Vector Machine 

(SVM) Regression, K-means, Random Forest (RF), and Linear and Logistic Regression were among the ML 

models adopted. Figure 6 shows that 60% of related works adopted the DRL model to solve energy efficiency 

problems on the cloud. The reason why DRL is the most adopted model is because, compared to other models, 

the DRL algorithm [43]–[45]: 

- Can handle complex and high-dimensional state and action spaces, which are common in many real-

world applications. 

- Learn complex policies that are difficult to specify manually by learning to maximize a reward signal 

over a long-time horizon. 

- Can learn online and adapt to changing environments, making them suitable for applications where 

the environment is dynamic or uncertain. 

- Can leverage large amounts of data to improve performance by training on massive datasets or using 

techniques such as data augmentation or transfer learning. 
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Figure 7. Most adopted ML model from literature for cloud computing energy optimization. 

 

4.2. The Most PREVALENT Objectives from Current Approaches 

Figure 8 shows an analysis of research articles from the literature with the most prevalent objectives 

of using ML for cloud energy minimization. It can be observed from Figure 8 that the most dominant research 

objective is power or energy consumption reduction at 28%. Other objectives in addition to energy reduction 

are load balancing at 14%, task/resource scheduling at 10%, VM consolidation at 10%, response time at 7%, 

resource allocation at 7%, reduce costs at 7%, SLA and resource utilization at 4%, low overhead at 4% and 

many others. The main reasons for energy consumption reduction as the dominant research objective in 

literature are because: 

- By minimizing energy usage, data centers can reduce their operating expenses and pass on some of 

the savings to their customers.  

- By reducing energy consumption, data centers can operate with fewer resources and plan for future 

expansion more efficiently. 

- By minimizing energy consumption, data centers can operate more sustainably and reduce their 

overall carbon footprint. 

- Minimizing energy consumption can also improve the reliability of cloud computing services. By 

reducing the load on servers and other hardware components, data centers can extend their lifespan 

and reduce the risk of hardware failures. 

 

  

Figure 8. Most adopted research objectives from literature for cloud computing energy optimization 
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4.3. The Most Adopted ML Datasets from Literature 

Figure 9 shows a summary analysis of the most adopted ML datasets from the literature, with a larger 

percentage of 40% being dominated by the CloudSim datasets simulation toolkit, whilst other datasets were 

taken from different sources and databases. The main reasons for the CloudSim dataset being dominant in 

literature is because: 

- CloudSim is a widely used simulation tool for modeling and simulating cloud computing 

environments and is used to simulate a variety of cloud computing scenarios. The dataset 

includes parameters such as the number of hosts, the number of virtual machines, the amount 

of memory and storage, and the network bandwidth. 

- CloudSim dataset is based on real-world cloud computing environments, which makes the 

simulations more realistic and accurate. 

- CloudSim dataset is flexible and can be customized to suit specific research needs. 

Researchers can modify the input parameters to simulate different cloud computing scenarios 

and evaluate the performance of different cloud computing architectures and algorithms. 

 Figure 9. Most adopted ML datasets from literature for cloud computing energy optimization 

 

 

4.4. The Most Adopted ML Model Evaluation Metrics from Literature.  

Figure 10 shows a summary of the most adopted ML evaluation metrics for cloud energy minimization 

from literature, which is comprised of energy consumption at 13%, accuracy at 9%, power consumption at 4%, 

execution time at 4%, resource utilization at 4%, average reward at 4%, Makespan at 4%, power usage at 4%, 

average job latency at 4% and many others. The most adopted metric is energy consumption (28%) followed 

by accuracy (9%), and the explanation for this is that; for energy consumption, the reasons are similar to why 

energy consumption is the dominant objective, and this was presented in the previous sections. The reason for 

accuracy being the next dominant metric is that: 

- The accuracy of a model is a primary measure of its performance. High accuracy means that the model 

is making accurate predictions, while low accuracy indicates that the model is making errors. 

- Accuracy is a convenient metric for comparing the performance of different models. It allows us to 

determine which model is better suited for a particular task based on their accuracy scores. 

- Accuracy is also used in the training process to optimize the model's parameters. By monitoring the 

accuracy of the model during training, we can adjust the parameters to improve the model's 

performance. 
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 Figure 10. Most adopted ML metrics from literature for cloud computing energy optimization 

 

4.5. The Most Prevalent Limitations with the Current Approaches   

Figure 11 shows a percentage summary of the most prevalent limitations of current ML-based 

approaches for cloud computing energy reduction. A larger portion of current literature approaches is being 

dominated by poor performance or poor model accuracy or loss of accuracy (15%), model optimization 

problems (15%) followed by resource allocation problems at 10% and other limitations like high computation 

(5%), centralized approaches (5%) which are a single point of failure, etc. The poor performance/ loss of 

accuracy is a major limitation because. 

- When a model loses accuracy, it is less effective at making predictions. This can result in reduced 

performance and lower quality results. 

- A model with reduced accuracy is more likely to misclassify data. In some applications, 

misclassification can have serious consequences. 

- Loss of accuracy can also be a symptom of overfitting or underfitting. Overfitting occurs when the 

model is too complex and fits the training data too closely, leading to poor performance on new 

data. Underfitting occurs when the model is too simple and does not capture the   underlying 

patterns in the data resulting in poor accuracy. When a model loses accuracy, its predictions become 

less reliable. This can make it difficult to trust the model's outputs and can lead to poor decision-

making. 
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 Figure 11. Most prevalent limitations with current approaches for cloud computing energy reduction 

 

The prevalence of optimization problems at 15% of the literature as shown in Figure 11 are also major 

limitations in ML models for cloud computing energy minimization due to the following. 

- Time Complexity: Optimization problems can be very time-consuming to solve, especially for large 

datasets and complex models. This can make it difficult to train models in a reasonable amount of 

time. 

- Resource Requirements: Optimization problems require significant computational resources, such as 

memory and processing power. This can limit the scalability of machine-learning algorithms and make 

them difficult to implement on low-power devices. 

- Local Minima: Optimization problems can have multiple local minima, which can make it difficult to 

find the global minimum. This can result in suboptimal solutions that do not fully capture the 

underlying patterns in the data. 

- Sensitivity to Initialization: Optimization problems can be sensitive to the initialization of the model's 

parameters. This can lead to different solutions for different initializations, which can make it difficult 

to compare the performance of different models. 

In addition, the resource allocation problem, which is prevalent in 10% of current literature, is also a 

major limitation in ML models for cloud computing energy minimization because it can significantly impact 

the performance and cost of cloud services. Resource allocation refers to the process of distributing computing 

resources, such as processing power, memory, and storage, to different applications and users in a cloud 

environment. If resources are not allocated efficiently, it can result in wasted resources and increased costs for 

cloud providers and their customers. If resources are not allocated optimally, it can result in degraded 

performance, which can lead to user dissatisfaction and loss of business. Resource allocation is particularly 

challenging in cloud environments with dynamic workloads. In such environments, the demand for resources 

can vary significantly over time, making it difficult to allocate resources effectively. 

 

 

4.6. Most Adopted ML Tools from Literature 

Figure 12 shows a summary of the most adopted ML tools for cloud energy minimization from the 

literature. As shown in Figure 12, 52% of the current literature has adopted the TensorFlow ML tool. 

TensorFlow is one of the most popular open-source machine learning frameworks available today, and it has 

several advantages over other reviewed ML tools hence its prevalent adoption in literature because it offers 

high flexibility, scalability, and seamless integration with other software libraries. It supports various tasks, is 
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scalable, and integrates with popular programming languages. Its active developer community provides 

resources, and it supports production environments for easy deployment and scaling. 

 

 
Figure 12. Most adopted ML tools from literature for cloud computing energy optimization 

 

Even though DRL has been the most adopted in literature, from Table 1, Jararweh et al [31] achieved 

an energy reduction performance of 67% using Logistic Regression Model which is the best and maximum 

achieved from the reviewed literature showing that adoption and performance are different. The DRL 

algorithms balance exploration (trying out new tactics) and exploitation (leveraging current techniques), which 

is why many authors have adopted them. DRL can capture highly complex and dynamic cloud settings with a 

huge number of variables and interactions that logistic regression and other models may struggle with. DRL 

can adapt to the challenges of cloud environments, which include resource allocation, workload scheduling, 

and server provisioning. This is critical in the cloud setting, where the ideal trade-off between energy efficiency 

and performance must be found. DRL might assist with near-real-time decision-making. DRL can learn from 

historical data and previous experiences, which is useful for recognizing workload patterns and trends and 

making more informed decisions. 

 

 

4.7. Related Works Performance  

  The performance metrics of related works and their values are clearly presented in Table 1 under the 

"ML Evaluation Metrics and Performance" column. This section will present the literature performance results 

and give a critical performance analysis to deduce any trends or patterns that emerge. The performance of 

related works was presented in the form of a percentage improvement for every metric in Table 1, which can 

either be a percentage increase (if the metric is maximized) or a percentage decrease (if a metric is minimized). 

The values of the performance percentages were calculated by critically examining the findings found in the 

article’s results section on tables, graphs, figures, or clearly stated in the abstract, discussion, and conclusion 

sections. In any article reviewed, the proposed framework was compared with the baseline framework within 

that article for any metric, and the percentage improvement was then calculated using equation (1). 

 

𝑃𝑒𝑟𝑓𝑜𝑚𝑎𝑛𝑐𝑒 =
𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑𝐹𝑟𝑎𝑚𝑒𝑤𝑜𝑟𝑘𝑀𝑒𝑡𝑟𝑖𝑐_𝑀_𝑉𝑎𝑙𝑢𝑒−𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐹𝑟𝑎𝑚𝑒𝑤𝑜𝑟𝑘(𝑀𝑒𝑡𝑟𝑖𝑐_𝑀_𝑉𝑎𝑙𝑢𝑒) 

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐹𝑟𝑎𝑚𝑒𝑤𝑜𝑟𝑘𝑀𝑒𝑡𝑟𝑖𝑐_𝑀_𝑉𝑎𝑙𝑢𝑒
× 100              (1) 

 

Performance refers to measurable outcomes in the form of a percentage to show either improvement 

or degradation in performance. The Metric_M_Value refers to the exact value of metric M from the results. 

refers to the exact value of metric M for the proposed framework of that article. The refers to the exact value 

of metric M for the baseline framework of that article. If the performance value is a positive number and the 

objective is to maximize M, then there is good performance. If the performance value is a negative number and 

the objective is to maximize M, then there is poor performance. If the performance value is a negative number 

and the objective is to minimize M, then there is good performance. If the performance value is a positive 

number and the objective is to minimize M, then there is poor performance. If performance in (1) gives a value 

of zero, then both the baseline and the proposed frameworks have the same performance. 
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Figure 13 shows the performance analysis of reviewed frameworks that considered energy 

consumption as a metric, and the results show that 67% has been the maximum energy reduction performance 

in literature from [31], and the lowest performance was from [35] at 2%. The average energy consumption 

performance based on Fig. 13 is 38%. Figure 14 shows the performance analysis of reviewed frameworks that 

considered accuracy as a metric, and the results show that 98% has been the maximum achieved accuracy 

performance in literature from [30], and the lowest performance was from [39] at 20%. The average accuracy 

achieved based on Fig. 14 is 55%. Figure 15 shows the performance analysis of reviewed frameworks that 

considered latency, delay, and response time as metrics, and the results show that 68.7% has been the maximum 

achieved value performance in literature from [24], and the lowest performance was from [27] at 10%. The 

average accuracy achieved based on Fig. 15 is 41%. Figure 16 shows the performance analysis of reviewed 

frameworks that considered SLA as a metric, and the results show that 63% has been the maximum achieved 

performance in literature from [3], and the lowest performance was from [32] at 8%. The average SLA achieved 

based on Fig. 16 is 45%. In Figure 17, the maximum resource utilization was achieved by Sui [34] and Zhang 

[30] at 100% performance. Nevertheless, the lease performance from reviewed articles was attained by Zhong 

in [25] at 2%. 

 

 
Figure 13. Performance analysis of related works based on energy consumption metric. 

 

 
 

Figure 13. Performance analysis of related works based on accuracy metric 
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Figure 15. Performance analysis of related works based on delay/latency/response time metric. 

 

 
 

Figure 16. Performance analysis of related works based on Service Level Violation. 

 

 
Figure 17. Performance analysis of related works based on Resource Utilization. 
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5. CONCLUSION 

In conclusion, machine learning-based energy minimization techniques in cloud computing have 

shown significant promise in reducing energy consumption while maintaining performance. The results show 

that 67% has been the maximum energy reduction performance from literature with an average performance 

at 38%. These techniques leverage various algorithms, such as Deep Reinforcement Learning (DRL), 

Reinforcement Learning (RL), Random Forest (RF), and Support Vector Machines (SVM), to optimize 

resource utilization in cloud environments. The review analysis revealed that 60% of related works adopted 

the DRL model to solve energy efficiency problems on the cloud because DRL can adapt to changing 

environments and leverage large amounts of data to improve performance. The review analysis has also shown 

that the most dominant research objective is power or energy consumption optimization in cloud computing 

because high energy consumption leads to high costs and degraded performance. In addition, 40% of the 

literature has used the CloudSim datasets for their ML models because they are flexible, open source, and can 

be customized to suit specific research needs. The review also concluded that the most adopted or dominant 

evaluation metrics are energy consumption (28%), followed by accuracy (9%). A larger portion of current 

literature approaches are dominated by the limitations of poor performance, poor model accuracy, or loss of 

accuracy (15%), model optimization problems (15%), resource allocation problems (10%), and other 

limitations like high computation (5%), centralized approaches (5%) that are a single point of failure. 

Furthermore, 52% of the current literature has adopted the TensorFlow ML tool for cloud computing ML-

based optimization models due to its flexibility, scalability, large and active community support, etc. This 

review therefore concludes and recommends DRL as the best ML model to optimize energy in cloud 

computing, CloudSim as the best tool to generate the dataset, and TensorFlow as the best ML platform for 

building the DRL model. The future direction of cloud computing energy optimization using machine learning 

algorithms is likely to focus on several key areas like exploring the combination of multiple optimization 

techniques to overcome the limitations of individual techniques, dynamically assigning resources in real time, 

and incorporating additional data sources such as weather data, occupancy patterns, and workload 

characteristics. Future research may focus on developing algorithms that simultaneously optimize multiple 

objectives, such as energy consumption, cost, and performance. Machine learning-based energy optimization 

may be integrated with other technologies, such as blockchain, edge computing, and IoT, to enhance the 

efficiency and scalability of cloud systems. As renewable energy sources become more prevalent, machine 

learning-based energy optimization algorithms may be developed to take advantage of these energy sources, 

further reducing the carbon footprint of cloud computing.  
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