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A B S T R A C T

Software Defined Networking (SDN) is revolutionizing the architecture and operation of

computer networks and promises a more agile and cost-efficient network management.

SDN centralizes the network control logic and separates the control plane from the data

plane, thus enabling flexible management of networks. A network based on SDN consists

of a data plane and a control plane. To assist management of devices and data flows,

a network also has an independent monitoring plane. These coexisting network planes

have various types of resources, such as bandwidth utilized to transmit monitoring data,

energy spent to power data forwarding devices and computational resources to control

a network. Unwise management, even abusive utilization of these resources lead to the

degradation of the network performance and increase the Operating Expenditure (Opex)

of the network owner. Conserving and protecting limited network resources is thus among

the key requirements for efficient networking.

However, the heterogeneity of the network hardware and network traffic workloads ex-

pands the configuration space of SDN, making it a challenging task to operate a network

efficiently. Furthermore, the existing approaches usually lack the capability to automati-

cally adapt network configurations to handle network dynamics and diverse optimization

requirements. Addtionally, a centralized SDN controller has to run in a protected environ-

ment against certain attacks. This thesis builds upon the centralized management capability

of SDN, and uses cross-layer network optimizations to perform joint traffic engineering, e.g.,

routing, hardware and software configurations. The overall goal is to overcome the man-

agement complexities in conserving and protecting resources in multiple functional planes

in SDN when facing network heterogeneities and system dynamics. This thesis presents

four contributions: (1) resource-efficient network monitoring, (2) resource-efficient data

forwarding, (3) using self-adaptive algorithms to improve network resource efficiency, and

(4) mitigating abusive usage of resources for network controlling.

The first contribution of this thesis is a resource-efficient network monitoring solution.

In this thesis, we consider one specific type of virtual network management function: flow

packet inspection. This type of the network monitoring application requires to duplicate

packets of target flows and send them to packet monitors for in-depth analysis. To avoid

the competition for resources between the original data and duplicated data, the network

operators can transmit the data flows through physically (e.g., different communication

mediums) or virtually (e.g., distinguished network slices) separated channels having differ-

ent resource consumption properties. We propose the REMO solution, namely Resource

Efficient distributed Monitoring, to reduce the overall network resource consumption in-
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curred by both types of data, via jointly considering the locations of the packet monitors,

the selection of devices forking the data packets, and flow path scheduling strategies.

In the second contribution of this thesis, we investigate the resource efficiency prob-

lem in hybrid, server-centric data center networks equipped with both traditional wired

connections (e.g., InfiniBand or Ethernet) and advanced high-data-rate wireless links (e.g.,

directional 60GHz wireless technology). The configuration space of hybrid SDN equipped

with both wired and wireless communication technologies is massively large due to the

complexity brought by the device heterogeneity. To tackle this problem, we present the

ECAS framework to reduce the power consumption and maintain the network perfor-

mance.

The approaches based on the optimization models and heuristic algorithms are consid-

ered as the traditional way to reduce the operation and facility resource consumption in

SDN. These approaches are either difficult to directly solve or specific for a particular

problem space. As the third contribution of this thesis, we investigates the approach of

using Deep Reinforcement Learning (DRL) to improve the adaptivity of the management

modules for network resource and data flow scheduling. The goal of the DRL agent in

the SDN network is to reduce the power consumption of SDN networks without severely

degrading the network performance.

The fourth contribution of this thesis is a protection mechanism based upon flow rate

limiting to mitigate abusive usage of the SDN control plane resource. Due to the centralized

architecture of SDN and its handling mechanism for new data flows, the network controller

can be the failure point due to the crafted cyber-attacks, especially the Control-Plane-

Saturation (CPS) attack. We proposes an In-Network Flow mAnagement Scheme (INFAS) to

effectively reduce the generation of malicious control packets depending on the parameters

configured for the proposed mitigation algorithm.

In summary, the contributions of this thesis address various unique challenges to con-

struct resource-efficient and secure SDN. This is achieved by designing and implementing

novel and intelligent models and algorithms to configure networks and perform network

traffic engineering, in the protected centralized network controller.
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K U R Z FA S S U N G

Software Defined Networking (SDN) revolutioniert die Architektur und den Betrieb von

Computernetzwerken und stellt ein agileres und kostengünstigeres Netzwerkmanagement

in Aussicht. Wie andere Netzwerkinfrastrukturen auch kann ein SDN-basiertes Netzwerk

als ein System modelliert werden, das Ressourcen anbietet, z.B. Netzwerkbandbreite für

die Datenübertragung, und Betriebskosten verursacht, beispielsweise die benötigte Energie

für den Betrieb der Anlagen. Eine unvernünftige Verteilung und Nutzung der Ressourcen

reduziert die Leistungsfähigkeit des Netzwerks unt steigert die Betriebskosten (Operating

Expense/Opex) des Netzwerkbesitzers. Folglich zählen der sparsame Umgang mit den

begrenzten Netzwerkressourcen und die Senkung der Betriebskosten zu den wichtigsten

Anforderungen an einen effizienten Netzwerkbetrieb.

Die Heterogenität der Netzwerkhardware und -nutzlast erweitern die Konfigurations-

möglichkeiten von SDNs massiv, wodurch es zu einer Herausforderung wird, ein solches

Netzwerk effizient zu betreiben. Darüber hinaus sind die vorhandenen Ansätze in der Regel

nicht in der Lage, die Netzwerkkonfiguration automatisch an die Dynamik des Netzes und

die zahlreichen Optimierungsanforderung anzupassen, da ihre Modelle und Algorithmen

lediglich auf den Netzwerkeigenschaften und der erwarteten Netzwerklast basieren. Diese

Arbeit macht sich sowohl die zentralisierten Verwaltungsfunktionen von SDN als auch

schichtenübergreifende Netzwerkoptimierungen zunutze, um sog. “Traffic Engineering”

(z.B. Routing), sowie weitere Hard- und Softwarekonfigurationen auszuführen. Das über-

geordnete Ziel besteht darin, die Komplexitäten der Netzwerkverwaltung infolge der Het-

erogenität und Systemdynamik zu überwinden. Zusätzlich wird im Rahmen dieser Arbeit

ein Verfahren entworfen, das es einem zentralisierten SDN-Controllers erlaubt innerhalb

einer gegen spezifische Angriffe geschützten Umgebung ausgeführt zu werden.

Durch innovative Software, die kontinuierlich im Gebiet des Anwendungs- und Net-

zwerkmanagements entsteht, werden verschiedenste Arten von Datenflüssen im SDN-

Netzwerk erzeugt. In dieser Arbeit betrachten wir einen eine bestimmte Art virtueller Net-

zwerkfunktionen: die Inspektion von Paketen in Datenströmen (“Flows”). Bei dieser Art

von Netzwerk-Verwaltungsfunktion müssen Pakete von Ziel-Datenströmen dupliziert und

zur eingehenden Analyse an Paket-Monitore gesendet werden. Um einer Konkurrenzsitu-

ation um Ressourcen zwischen den originalen und den duplizierten Daten vorzubeugen,

können Netzbetreiber die Datenströme durch physisch (z. B. unterschiedliche Medien)

oder virtuell (z. B. getrennte Netzwerksegmente) getrennte Kanäle übertragen, die mit

unterschiedlichen Eigenschaften hinsichtlich ihres Ressourcenverbrauchs aufwarten. Zu-

dem wird die sog. “REMO”-Lösung vorgestellt, die den durch beide Arten von Daten
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entstehended Gesamtressourcenverbrauch reduziert, wofür die Standorte der Paketmon-

itore, der Auswahl der Geräten, die die Datenpakete duplizieren und verschiedene Pfad-

Planungsstrategien für die Datenströme in Betracht gezogen werden.

Die Architektur von SDNs, wie beispielsweise die kommende Generation von Netzw-

erken für das Rechenzentrum, entwickelt sich ständig weiter und umfasst auch heterogene

Geräte und Kommunikationsverbindungen, um von den Vorteilen der jeweiligen Tech-

nologien profitieren zu können. In dieser Arbeite untersuchen wir das Ressourceneffizien-

zproblem in hybriden serverzentrierten Rechenzentrumsnetzwerken, die sowohl mit tradi-

tionellen Kabelverbindungen als auch fortschrittlichen schnellen drahtlosen Verbindungen

ausgerüstet sind. Aufgrund der den heterogenen Geräten inhärenten Komplexität ist der

Konfigurationsraum von hybriden SDNs gigantisch. Zur Lösung dieses Problems stellen

wir in dieser Arbeit "ECAS" vor, mit dem der Energieverbrauch bei gleichbleibender Net-

zwerkleistung reduziert werden kann.

Die auf Optimierungsmodellen und heuristischen Algorithmen basierenden Ansätze

werden als traditionelle Möglichkeit betrachtet, die Betriebskosten und den Ressourcenver-

brauch in SDN zu verringern. Diese Anforderungen sind in der Regel schwer zu lösen

oder auf einen spezifischen Problembereich zugeschnitten. In dieser Arbeit wird unter-

sucht, inwiefern die Anwendung von Deep-Reinforcement-Learning (DRL) die Anpas-

sungsfähigkeit der Managementmodule für die Netzwerkressourcen- und Datenflusspla-

nung verbessert. Das Ziel des DRL-Agenten im SDN ist es, den Stromverbrauch des SDNs

zu reduzieren, ohne dabei die Netzwerkleistung massiv zu beeinträchtigen.

Sowohl in der bestehenden Literatur als auch dieser Arbeit konnte gezeigt werden, dass

die auf SDN basierenden Ansätze zur Ressourcenschonung und Datenflusssteuerung dazu

in der Lage sind, die zuvor beschriebenen Ressourceneffizienzprobleme zu lösen. Auf-

grund seiner zentralisierten Architektur und den Mechanismen zur Handhabung neuer

Datenflüsse kann der Netzwerk-Controller im Falle von Cyber-Angriffen, insbesondere

in Control-Plane-Saturation-Angriffen (CPS), der Flaschenhals sein. Mit dem Ziel, die

Nachteile der bestehenden Controller-basierten Verteidigungslösungen, wie beispielsweise

der hohe Ressourcenverbrauch in Bezug auf die Netzwerkbandbreite innerhalb der Steueru-

ngsebene. Zu überwinden, stellen wir in dieser Arbeit "INFAS" vor, um die software-

definierte Netzwerke vor CPS-Angriffen zu schützen. INFAS kann in Abhängigkeit von

den für den Verteidigungsalgorithmus konfigurierten Parametern effektiv die Erzeugung

bösartiger Kontrollpakete reduzieren.

Zusammenfassend tragen die Inhalte dieser Arbeit dazu bei, den verschiedenen einzi-

gartigen Herausforderungen beim Aufbau von ressourcen- und kosteneffizienten SDNs

zu begegnen. Erreicht wird dies durch die Konzeption und Implementierung von neuar-

tigen und intelligenten Modellen und Algorithmen zur Netzwerkkonfiguration und zur

Steuerung von Datenströmen im Netzwerk mittels eines geschützten zentralen Netzwerk-

controllers.
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CHAPTER 1

I N T R O D U C T I O N

The rapid development of Information and Communication Technologies (ICT) have fun-

damentally changed human’s daily life and driven the modern society into the era of

big data. The triumph of mobile devices, owned in 2017 by more than 5 billion peo-

ple [1], allows uploading videos and photos to social media for "the needs to belong and

self-presentation" [163]. The 26.6 billion connected devices and sensors [105] belonging to

Internet of Things (IoT) continuously monitor our environment and provide data to support

applications like smart home [238] and healthcare [176]. These services and applications

generate enormous amount of data to collect, transmit and process. The Cisco Visual

Networking Index forecasts that the volumn of traffic data generated by mobile devices,

including smartphones and IoT devices, is going to reach 40 Exabytes (109 Gigabytes) by the

year 2021 [42], and the annual global IP traffic will grow to 4.8 Zettabytes (1012 Gigabytes)

by the year 2022 [41]. The transmission of such high data volumes places heavy burdens

on the networking infrastructure in almost every phase of the data handling [26], which

urges networks in the future to be agile, high-performance and secure.

Networks provide the facility resources to forward and process data for network users,

while maintaining the functioning of devices causes the operational costs for network

owners. The network facility resources commonly refer to the communication bandwidth

to forward data packets [30] and computation capacity to perform operations on data

packets [171]. The purpose of network facility resource management is to maximize the

resource utilization so as to increase the system’s efficiency during processing of packets.

The network performance, that is captured by the Quality of Service (QoS) parameters,

degrades if network facility resource such as bandwidth is not efficiently allocated. At

the same time, the functioning network facilities lead to large amount of operational costs.

Besides the personnel expenditure to maintain the network infrastructure, the energy cost

can contribute to over 15% of the overall Operating Expenditure (Opex) of the backbone

networks [181]. The four major US telecom companies – AT&T, Verizon, Sprint and T-

Mobile – consumes over 3 million MWh of electric power [81], which leads to the high

Opex for the network owners. In this thesis, we refer the problem of efficiently utilizing

the network facility resources and reducing the operational cost as the resource efficiency

problem in a network.

The concept of resource efficiency exists in different functional planes of a network. A

network usually has three functional planes [182]: (i) the data plane that operates on data
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packets for forwarding and filtering; (ii) the control plane that decides the states, such as

forwarding decisions, in the data plane; (iii) the monitoring plane that continuously moni-

tor and analyze network traffic and devices. In order to build an efficient and sustainable

network, performing optimization on the utilization of corresponding resources in each of

these three planes is necessary.

Software Defined Networking (SDN) allows to dynamically change the configurations

of network devices, e.g., switches or routers, based on centrally collected operational in-

formation in a network. It provides the great flexility to perform Traffic Engineering (TE)

and control the behaviours of data flows in the network. Several approaches tackle the re-

source efficiency problem in a network by intelligently scheduling, for example, the routing

paths for data flows, as well as determining the configurations and states of the involved

hardware and software components [32, 98, 204, 208, 246, 251].

This thesis contributes novel models and algorithms to improve the ability of SDN net-

works to adapt to changing network conditions and performance requirements. The ulti-

mate goal of such adaptation is to achieve the resource efficiency in the above mentioned

functional planes of a network. The developed techniques are meant to run in a centralized

SDN controller. Since this controller becomes a single point of failure due to the abusive

usage of the control plane resource, we also contribute an approach to protect the control

plane resource against certain security threats.

1 .1 m o t i va t i o n a n d c h a l l e n g e s

Improving the resource efficiency has been a widely discussed topic in the networking

community. As an important aspect of network management, approaches based on TE

provide the possibility to intelligently manage the operation status of network devices and

utilize available network facility resources, without compromising the service quality of

networks. The basic principle of conserving network resources and reducing its cost via

TE is twofold: (i) utilize available network resources in an efficient way; (ii) serve desired

communication demands with minimum cost. The existing literature presents a plethora

of models and algorithms to improve network resource utilization and reduce cost like

energy [98, 148, 246] or bandwidth [32, 204, 208] in SDN networks. These approaches prove

that TE-based methods have the potential to achieve the resource efficiency in the data,

control and monitoring planes in SDN. These TE-based methods take the advantage of the

centralized architecture of SDN and its capability to perform network and traffic planning

according to the communication demands of applications that transmit data.

As the newly developed technologies and emerging applications continuously integrate

with the architecture of SDN, the diversity of hardware used in the network and applications

generating data flows, makes it a complex task to achieve secure and efficient utilization

of resource in the functional planes of SDN. Newly arising scenarios require previously

2
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developed the models and algorithms to be adapted to work under different assumptions.

The work presented in this thesis inherits the idea of designing models and algorithms

based on traffic engineering, to enhance the adaptivity of resource-efficient SDN when

facing challenges described below.

Challenge 1: Dynamic network conditions and optimization requirements

The optimality of a configuration for a communication network cannot be always guaran-

teed at runtime. This is due to the increasing dynamics within the network. The common

sources of such dynamics include but are not limited to: (i) changing conditions in the

network (e.g., data transmission workloads); (ii) diverse co-existing requirements in the

application scenarios (e.g., energy efficiency as well as congestion avoidance). Data com-

munication demands and traffic patterns within networks are volatile in both the space

and time domains [20], making it necessary for a network controller to be aware of current

network conditions. Additionally, focusing solely on improving the resource efficiency

could bring negative impacts on the quality of services, due to the scarce resources that

are available for data flows. Normally, diverse requirements, such as end-to-end delays

and transmission reliability, co-exist with the target of network resource efficiency. As a

result, a network controller must be able to obtain or predict network conditions and to

dynamically adjust its configurations to maintain the resource efficiency while meeting the

desired service qualities of network services.

Challenge 2: Joint optimization across network layers

The concept of designing programmable network devices does not impact only the way

of packet processing as commonly known in the standard of SDN protocols [150]. It also

influences the functioning of all protocols, from the network physical layer to the applica-

tion layer. The term SDN can generally refer to an integrated solution that handles different

layers of a network and consists of several software defined technologies such as Software

Defined Radio (SDR) [218], Software Defined Antenna (SDA) [122] and Software Defined

Network Functionality Virtualization (SD-NFV) [135]. These key enabling technologies for

software-defined, highly configurable networks can integrate with each other easily because

they all rely on a centralized software control mechanism [233]. Performing optimization

in such software-defined environment with heterogeneous technologies requires consid-

ering the dependencies of the different network layers. For instance, in distributed big

data processing frameworks, planning the locations of each individual task and bandwidth

allocated along routing paths for data transferring among those tasks has the potential to

speed up data movement [177]. In addition, for the purpose of resource and cost reduction,

a network management system cannot only rely on traffic engineering to make the routing

decisions, because the network performance degrades severely without proper coordina-

tions of the actions taken in multiple layers [197]. For example, the routing paths planned

for traffic flows should not include the devices in sleep mode, otherwise packets may expe-
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rience large end-to-end delays [115]. As a result, the developed approaches should follow

the methodology of joint optimization across network layers, so that the configurations of a

layer do not conflict with that of another layer.

Challenge 3: Large configuration and solution space

In this thesis, the goal of the TE-based joint optimization approaches is to find a combi-

nation of network configurations, possibly including hardware operation states, routing

paths of data flows and placement of top-layer applications, so as to reduce the resource

consumption in SDN. However, the search space of possible solutions can be very large

because of: (i) the growing size of target SDN networks (horizontal), (ii) the increasing

number of reconfiguration opportunities in the heterogeneous SDN environment (vertical).

A data center could consist of up to 60, 000 hosts that are connected by a large-scale net-

work [175]. The network controller must thus deal with high volumes of transmission

demands of data flows generated by these many hosts. Additionally, as mentioned in

the description of Challenge 2, the heterogeneous SDN environment is built upon various

software defined technologies, and performing joint optimization requires to coordinate

configurations across network layers. To reduce the computation delay, the algorithms need

to, at runtime, quickly find the network configuration that leads to the resource efficiency

from a large solution space.

Challenge 4: Vulnerable centralized controller

An essential property of SDN is logical centralization of network management function-

alities. Typically, network configuration algorithms and models reside in one of the many

controller applications sharing the computation and network resource of the control chan-

nel. Although the scalability and resilience of the SDN control plane are improved by using

multiple synchronized controller instances [113], the logically centralized controller still

faces threats from illegitimate or abusive usage of the SDN paradigm [5]. The attacks, which

targets on exhausting limited yet valuable control plane resources, e.g., computation and

bandwidth, disrupt the obtaining of network state data and calculation of management

strategies.

To address these challenges in achieving the resource efficiency in the functional planes

of SDN, a network and flow management framework, that is capable of monitoring network

states and controlling the network behaviours, is envisioned in this thesis. In particular,

this framework monitors the operation status of a network and analyzes traffic flow packets

to extract information to support traffic engineering and other configurations. To perform

resource-efficient scheduling, it accepts real-time flow requests or predicted flow patterns.

This envisioned framework allows different optimization tasks for the resource utilization

of the functional planes of SDN. We focus on the design of the resource-efficient scheduling

models and algorithms residing in this framework. Corresponding to the challenges pre-
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sented above, we identify four common requirements on such a network flow management

framework and its resource-efficient scheduling models and algorithms:

• Self-adaptive. The dynamic network conditions, such as data flow workloads, require

the scheduling algorithms to be able to compute resource-efficient configurations

adaptively. The computation relies on either explicitly received communication de-

mands in future time slots or implicitly inferred traffic patterns. When communica-

tion demands or traffic patterns evolve in real-time, the framework should be able to

respond to their changes by automatically adjusting the parameters of its model or

algorithm.

• Responsive. It takes time for the framework to obtain network states, calculate net-

work management strategies according to collected information, and finally send

control messages to configure networks. Although our framework does not intend

to speed up the propagation of monitoring and control messages, it indeed requires

efficient algorithms to improve the responsiveness of the controller to reduce the

delays experienced by flow packets.

• Flexible. The diverse requirements in application scenarios demand the framework to

be flexible so as to solve various resource optimization tasks. Meanwhile, the traffic

engineering and management algorithms rely on diverse mathematical models. Thus,

the framework should allow easy integration of different models and algorithms to

compare their performance.

• Secure. Potential malicious users can take advantage of the centralized architecture of

SDN and abuse the computation and bandwidth resources of the control channel. In

order to improve the resilience and security of the controller that performs resource-

efficient scheduling in SDN, the framework should contain a security mechanism

against malicious users at runtime.

1 .2 r e s e a r c h g oa l s a n d c o n t r i b u t i o n s

The main goal of this thesis is to contribute novel algorithms, that run in a protected

controller, to perform cross-layer optimization on the resource consumption in several

functional planes, including data, control and monitoring planes, of SDN. Figure 1.1 pro-

vides an overview and depicts the main components of the thesis contributions1. In this

thesis, we start with designing a resource-efficient packet flow monitoring system for the

1 The research presented in this thesis is funded by the Deutsche Forschungsgemeinschaft (DFG) projects "Multi-

Mechanisms Adaptation for the Future Internet (MAKI) [144]" and "Highly Adaptive Energy-Efficient Com-

puting (HAEC)" [86].
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Figure 1.1: Overview and components of thesis contributions

purposes of collecting flow statistics and deep packet inspection. The controller not only

receives monitoring results, but also performs traffic engineering and configuration of this

monitoring system so as to reduce the overall bandwidth consumption. The collected flow

statistics, together with explicitly communicated QoS demands of applications, serve as

input data to further optimize the energy consumption of SDN networks. In particular, to

improve the adaptivity of the centralized scheduling controller, we design algorithms for

heterogeneous SDN integrated with different communication technologies and investigate

self-adaptive algorithms based on Deep Reinforcement Learning (DRL). Additionally, we

use the in-network approach to construct a secure control plane to protect the central-

ized controller, without incurring waste of control channel resources. We describe these

contributions in more details below.

1 .2 .1 Resource-efficient Network Monitoring

The first contribution of this thesis is a network flow monitoring solution that performs

packet inspection on the predefined set of data flows. This solution is named REMO,

which stands for Resource Efficient distributed MOnitoring. In the current deployment

of SDN networks, the forwarding devices, such as switches or virtual network functions,

can be configured to duplicate and forward the packets of selected data flows to a packet

monitor. The original data flows and duplicated data flows are separately transmitted in the

data plane and monitoring plane to increase the transmission reliability of the monitoring

system. This solution, however, incurs high transmission costs in the network. In REMO,

the SDN controller performs a joint optimization of the placement of network monitors,

routing paths of original data flows and selection of locations to duplicate data flows.

Comparing with similar approaches, REMO does not only consider the resource reduction

in the monitoring plane, but takes the negative impacts (increased resource consumption)

in the data plane into consideration. This contribution has appeared in the following

publication:

• T. Li, H. Salah, M. He, T. Strufe and S. Santini: “REMO: Resource Efficient

Distributed Network Monitoring”, in Proceeding of the IEEE Network Operations

and Management Symposium (NOMS), April, 2018.
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1 .2 .2 Reduce resource consumption for heterogeneous SDN

The second contribution of this thesis is a centralized flow routing path planning and

network topology management solution to reduce the power consumption of SDN net-

works. This solution is named ECAS, which stands for Energy-aware Coflow and Antenna

Scheduling. This solution is designed for software-defined Data Center Networking (DCN)

equipped with heterogeneous communication mediums, namely wired links and high-

frequency wireless links. ECAS achieves energy efficiency by: (i) aggregating traffic flows

so as to limit the number of activated nodes and links; (ii) taking the advantage of "short-

cuts" formed by directional wireless links so as to involve even fewer active nodes and

links. We show the NP-Hardness of the problem and develop a heuristic algorithm to

compute a network configuration within milliseconds. This contribution was presented in

the following publications:

• T. Li and S. Santini: “Energy-aware Coflow and Antenna Scheduling for Hybrid

Server-centric Data Center Networks”, in Proceeding of the IEEE International Con-

ference on Communication (ICC), May 2017. (Transmission, Access and Optical Sys-

tems (TAOS) Best Paper Award and Green Communications & Computing (TCGCC)

Best Paper Award)

• T. Li and S. Santini: “Energy-aware Coflow and Antenna Scheduling for Hybrid

Server-centric Data Center Networks”, in IEEE Transaction on Green Communication

and Networks, 3.2 (2019), pp. 356–365.

1 .2 .3 Resource optimization using self-adaptive algorithms

Existing solutions that optimize the resource efficiency, such as the power consumption,

mainly rely on the formulation of an optimization problem and the design of heuristic

algorithms. The formulated model and algorithm usually remain static and requires re-

formulation for new network topologies or evolving traffic workloads. In addition, due to

the hard constraints in the problem formulation, not every possible input value can lead

to a valid solution. To improve the adaptivity of the controller that optimizes the power

efficiency of SDN, we investigated the possibility to use the approach based on deep rein-

forcement learning. The actions produced by the algorithm are network configurations that

lead to reduction of power consumption in a SDN-based data center network. We show

that, despite the very cumbersome training processes, DRL based scheduling approaches

are able to optimize the power consumption of a regular data center network based on SDN

to some extent. Parts of this contribution have been presented in:
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• T. Li, T. Strufe, and S. Santini. “MADeep-TE: A multi-agent reinforcement learning

approach for network traffic engineering,” Prepared to submit to the IEEE Interna-

tional Conference on Communication Technology (ICCT), 2020.

1 .2 .4 In-network protection scheme for SDN control plane

The last contribution of this thesis is an in-network protection scheme for the SDN control

plane. A well-known approach to disrupt the SDN control plane is to initiate Denial of

Service (DoS) attacks by deliberately generating large amount of control messages. Most

existing countermeasure approaches require a module residing on the controller side. In

these approaches, illegitimate control messages still need to be be firstly transmitted from

switches to the controller, which incurs consumption of valuable control plane bandwidth.

We propose INFAS, an in-network protection scheme, that is executed directly next to

switches, to filter out packets that possibly belong to malicious network users. INFAS does

not seek to completely block all packets of a flow that generates many control messages.

Instead, in order to also handle workload peaks, it allows to configure different dropping

rates for passing packets, depending on the realtime monitoring results. Parts of this

contribution have been already published in:

• T. Li, H. Salah, D. Xin, T. Strufe, F. H. P. Fitzek, and S. Santini, “INFAS: In-network

flow management scheme for SDN control plane protection,” in Proceedings of the

IEEE/IFIP Integrated Network Management Symposium (IM), April 2019.

1 .3 t h e s i s o r g a n i z a t i o n

The remainder of this thesis is structured as follows: Chapter 2 introduces the concept of

software-defined networking and SDN-assisted traffic engineering, and it also introduces

three major challenges in conserving or protecting resources in different functional planes

of SDN. We also summarize the related work that focuses on these three major challenges of

protecting and efficiently utilizing resource in SDN. Chapter 3 presents REMO, a resource

efficient monitoring framework that intends to reduce the overall bandwidth consumption

for both data and monitoring planes. Chapter 4 and Chapter 5 address the power resource

reduction in the data plane but focus on different aspects: (i) Chapter 4 presents ECAS, a

joint energy-efficient scheduling framework to plan both the physical topology and flow

paths in a hybrid SDN network; (2) Chapter 5 focuses on using a type of self-adaptive

algorithms, deep reinforcement learning, to optimize the power consumption for a SDN data

center networks of the fat-tree topology. In Chapter 6, we develop a protection mechanism

to mitigate abusive usage of the control plane resource in SDN. Finally, we summarize the

achieved results, discuss limitations and possible future directions in Chapter 7.
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CHAPTER 2

B A C K G R O U N D A N D R E L AT E D W O R K

In this chapter, we provide the readers with background and related work for the contri-

butions of this thesis. We start by introducing the SDN technology and discuss how it can

be extended to perform cross-layer optimization in a softwarized network in Section 2.1.

Section 2.2 further provides an overview of traffic engineering and the basic architecture

of a SDN-assisted traffic engineering framework. The contributions presented in this thesis

tackle the resource conservation issues of three functional planes in a SDN network, namely

the monitoring plane, data plane and control plane. As a result, Section 2.3 provides the

overview of the corresponding solutions based on SDN-assisted traffic engineering.

2 .1 s o f t wa r e d e f i n e d n e t w o r k i n g

Communication networks are defined as a collection of autonomous computing devices that

are interconnected so as to exchange information [210]. The autonomy of communication

devices implies that they operate with distributed network control and transport protocols.

The protocols running on devices make transmission decisions based on information that

is locally collected or exchanged with neighboring devices. The widely used Internet

routing protocol, Open Shortest Path First (OSPF), is an example of such a distributed

network protocol [161]. In OSPF, each router maintains a database that contains link state

information exchanged among adjacent devices. From the perspective of devices’ functional

planes, autonomous networking devices have tightly-coupled control and data planes that

are vertically integrated [6]. The design of distributed network protocols improves the

availability and robustness of networks [58].

However, as growing communication scenarios (e.g., large-sized data centers) inspire

the development of new network protocols, the paradigm of designing protocols relying

on vertically integrated functionality planes exhibits the major shortcoming: complexity.

Benson et al. [19] point out that the management complexity of a network consisting of au-

tonomous devices comes from: (i) the efforts to configure large volumes of devices; (2) the

"inherent complexity" of implementing control policies and customizing them for network

devices with distinct roles. Especially when facing continually changing network states, it

is cumbersome for network operators to manually adjust configurations of devices [119].

9
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In addition to the complexity brought by using fully distributed networking devices,

the currently adopted network architecture also suffers from the problem of rigidity. The

tightly coupled data and control planes make it difficult to change the network architecture.

And a rigid network architecture does not allow extensibility of a new network functionality

such as a flexible routing system [77].

Additionally, static and rigid bundling of the hardware and software of networking

devices only allows a network to be controlled by "the proprietary protocols of a specific ven-

dor" [200]. Modern communication networks face a dynamic environment in which traffic

workloads, application demands and architecture evolve. A network should have adaptivity

and flexibility to adjust its configurations according to these dynamics so as to maintain its

functional and non-functional performance. In the DFG project "Multi-Mechanisms Adap-

tation for the Future Internet (MAKI)", the network adaptivity is achieved by dynamically

selecting network protocols during runtime [144].

The ongoing network softwarization, which relies on software to control networking be-

haviors and to implement networking functions, contributes to the adaptivity and flexibility

of communication networks [97].

2 .1 .1 Software defined networking architecture

SDN is a novel control paradigm that brings more agility and flexibility into network man-

agement. In the early stage of SDN research, SDN is usually considered as a synonym of

the OpenFlow protocol for wired networks [150], that defines interfaces to instruct the

behaviors of switches or routers.

Adaptively steering flows is part of the early research efforts that explore the benefits

brought by SDN. Hedera [67] and Mahout [50] are two traffic load-balancing approaches.

Both Hedera and Mahout have a monitoring component detecting and estimating the

volumes of so-called elephant flows, i.e., flows that contain large volumes of data packets.

The difference is that, Hedera obtains flow statistics from edge switches while Mahout

collects such information by locally monitoring socket buffers of end hosts. The SDN

controllers of both frameworks react to the existence of elephant flows and intelligently

assign non-conflicting paths for them.

RFC 7426 [87] gives a more general definition of SDN: "a new approach for network pro-

grammability, that is, the capacity to initialize, control, change, and manage network behavior

dynamically via open interfaces". Feamster et al. [69] trace the origin of SDN back to the

concept of active networking proposed in the early- to mid-1990s. This approach advocates

a set of programming interfaces that expose the resources (e.g., processing and storage) of

network nodes and support the installation of customized packet processing functionality

onto them. Compared with the early efforts of enhancing network programmability, such

as active networking, SDN distinguishes itself by decoupling control and data planes. More
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Figure 2.1: Layers of a typical software defined network, inspired by [27].

specifically, in SDN, network control logics run in an external entity that interacts with

underlying data plane devices to program behavior of a network [69, 87, 126]. As a result,

the term, SDN, can generally refer to a network architecture with this property. Figure 2.1

shows the layers of a typical software-defined network, and the functionality of each layer

is described as following:

• Infrastructure layer. This layer consists of devices that are interconnected with either

wireless or wired channels and performs elementary operations on received data

frames or packets [126]. The devices in the infrastructure layer do not run complex

distributed network protocols. Instead, their control policies are implemented in an

external entity in a logically centralized manner.

• Control layer. A SDN controller resides in this layer and programs devices in the infras-

tructure layer. Due to the logically centralized architecture, a SDN controller provides

services (e.g., topology discovery and simple traffic workload counting) to collect and

maintain global information of network states. These network-wide information can

be obtained by management applications such as network monitoring. The control

layer is also responsible of converting the abstract policies generated by management

applications to the elementary operation set understood by SDN devices in the lower

layer.
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Figure 2.2: Structure of a flow rule defined in the OpenFlow protocol.

• Management application layer. This layer comprises of a set of network management

applications such as a load balancer and a gateway. The models and algorithms that

perform traffic engineering on data flows are also implemented as the part of this

layer.

We use the packet forwarding process defined in the OpenFlow protocol to illustate the

interactions among these functional layers of SDN. Each switch in the infrastructure layer

has a flow table to store its configuration in the form of flow rules. Figure 2.2 shows the

presentations of a flow rule defined in the OpenFlow protocol. Each of these rules consists

of a flow matching field and actions to match and process a received packet. When a flow

packet arrives at a switch, the switch looks for a matching flow rule in its flow table. If

found, the switch simply performs the corresponding actions (e.g., forward, modify, or

drop). Otherwise, the switch sends a control packet to the controller in the control layer

to consult for the actions to perform on the incoming flow packets. The routing module,

for instance, in the management application layer obtains relevant information, such as the

source/destination of flow packets, from the controller and compute a flow path for these

packets. In turn, the controller replies with another control packet containing a flow rule.

The switch stores the received rule in its flow table and handles the flow packet accordingly.

Particularly in OpenFlow, the switch consults the controller through a packet_in message

which summarizes the header of the unmatched flow packet. The controller responds

either with an ofp_flow_mod message to add or modify flow rules, or with a packet_out

message to instruct the switch to forward the packet to a specific port.

SDN has become a crucial technology to revolutionize network management. It pro-

vides network owners with great flexibility by defining standard interfaces for configuring

operational status of networking devices and allowing implementation of network manage-

ment policies in a logically centralized controller. SDN has shown its capability to improve

network performance, including link congestion reduction and power conservation, in a

controllable environment such as data centers [92, 109]. In recent years, SDN has also grad-

ually gained popularity in Wide Area Network (WAN) [83, 184] and Mobile Core Network

(MCN) [147, 165].

The main purpose of this thesis is to develop mechanisms and algorithms to effectively

reduce resource consumption in multiple layers of a computer network. Because of the

flexibility of programming network behaviors and the central view over network states, we

select SDN as the fundamental technology to develop the novel algorithms for this purpose.
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2 .1 .2 Cross-layer network control

Network softwarization is often referred as the integration of Software Defined Network-

ing (SDN) and Network Functionality Virtualization (NFV) [52, 117]. Among the network

softwarization technologies, SDN mainly serves the purpose of enhancing the network flex-

ibility in flow configuration in the network layer [97]. NFV refers to the concept of using

application-based networking functions instead of dedicated hardware [96]. In most of

the time, flow configuration in SDN refers to "creation, removal or adaptation of the course of

flows" [97]. The functionality of flow configuration actually belongs to a broader concept,

Traffic Engineering. We will introduce the concept of TE in Section 2.2.

In recent research efforts, the concept of SDN evolves from two aspects: (i) extending the

current SDN protocol to convey additional control information so as to change the operation

status of software or hardware components; (ii) integrating SDN with other centralized

management frameworks of software and hardware components, since SDN is one of the

fundamental technologies supporting network softwarization. In this case, as we briefly

discussed in Section 1.1, flow configuration, together with parameter configuration and

operation status of software and hardware, should be jointly considered to further optimize

network performance. The solutions developed in this thesis to reduce the consumption

of network resources, not only steer traffic in an adaptive manner but also determine

component states, such as the locations of network monitors or the physical topology. In

this section, we provide an overview and examples on using SDN to perform cross-layer

optimization.

2 .1 .2 .1 Network control using SDN and software component management

One of the features of SDN is allowing a network controller to interact with running soft-

ware entities that use the network to transmit data. Information is shared via their channels

in both directions. This feature makes it possible to design and build application-aware net-

works [34, 99], network-aware applications [51, 177] and joint optimization approaches [7,

110, 156, 249]. In the era of cloud and big data, applications refer to big data process-

ing applications (e.g., Hadoop [9], Spark [10]), multi-tenant cloud resource management

(e.g., OpenStack [170]), or virtualized network functions [135]. These applications share

the following similarities: (i) they consist of distributed software components requiring

exchange of data; (ii) they have a centralized management point (e.g., the master node of

Hadoop); (iii) they have demands for network resources and QoS requirements to transmit

data; and (iv) their resource demands and requirements can be explicitly declared by appli-

cation users. Applications with these properties have a single management point that can

interface with a SDN controller to exchange status information and control messages [48,

222].
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The concept of application-aware networks represents the integrated approaches in

which a network controller accepts information of resource demands from applications and

carefully configures networks to achieve network optimization goals. In the scheme named

Application-aware Resource Allocation [99], the bandwidth requirements (together with other

resource requirements such as CPU) of Virtual Machines (VMs) are firstly predicted using a

neural network. A SDN controller uses the predicted bandwidth requirements to provision

network resources. The concept of network-aware applications stands for the integrated ap-

proach in which an application manager obtains information of network states from a SDN

controller and schedules execution of its distributed software components. BASS [177] can

obtain real-time link bandwidth information from the SDN controller, and assign Hadoop

tasks requiring data movement to the nodes having rich bandwidth. In addition, the joint

optimization approaches coordinate configurations in both network and application layers

so as to maximize the network efficiency and application performance. Alkaff et al. [7]

consider cross-layer scheduling for big data processing frameworks in cloud computing to

improve system throughput and reliability.

2 .1 .2 .2 Network control using SDN and hardware component management

If we simply refer SDN as the technology to manipulate packet flows in the network layer,

then SDN devices are mostly switches or routers that forward packets [118]. The default

transmission media, at least in most of the SDN-related literature, is based on the Ethernet

technology. While a network may consist of various communication technologies, SDN

should integrate and "embrace all possible transmission media, including wired, wireless and opti-

cal environment" [232]. For example, ÆtherFlow is an SDN framework for IEEE 802.11 (Wi-Fi)

networks and a controller can configure a set of properties of an Access Point (AP) [236].

As we briefly mentioned in Section 1.1, Software Defined Radio (SDR) allows using software

to control wireless transmission strategies in the physical layer. CrossFlow [197] is a frame-

work that combines SDR and SDN to enable physical layer adaptation, QoS provisioning,

adaptive routing and joint optimization across physical and networking layers. Here, we

provide two examples related to our contributions: (1) topology adaptation and (2) power

adaptation in a network.

The first example of SDN-based network and hardware management is topology adap-

tation. The above described network control using SDN and hardware component manage-

ment enables hybrid network architectures in different scenarios, e.g., cloud data centers

where network flexibility is needed. Traditionally, data center networks use an architecture

based on the fat-tree topology, as shown in Figure 2.3. The connections among Top-of-

Rack (ToR), aggregation and core switches are usually wired Ethernet connections. The

tree-based DCN has the oversubscription problem, in which the aggregated bandwidth

demands of servers may exceed the provided capacity of links in the network. To cope

with this problem, several authors considered introducing wireless links into the design
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Figure 2.3: SDN network that has the typical fat-tree topology that only consists of Ethernet connec-
tions.

of DCN [88, 90]. Figure 2.4a depicts one of possible arrangement of coexisting wired and

wireless links [88, 91, 228, 254]. In this DCN architecture, each ToR is equipped with a

directional wireless transceiver that allows establishment of direct communication links

among them by bypassing aggregation and core switches. The DFG project "Highly Adap-

tive Energy-Efficient Computing (HAEC)" envisions a micro data center architecture that

involves diverse transmission media [70, 86], as shown in Figure 2.4b. In this architecture, a

micro data center consists of multiple stacked layers. Each layer contains several computing

nodes that are interconnected by wired/optical links. To enable flexible communication

among stacked layers, each computing node also has a directional wireless transceiver that

allows them to establish direct communication links.

For such DCN containing directional wireless links, the basic management tasks include:

(i) monitoring and collecting traffic demands in networks; (ii) selecting a runtime topol-

ogy by steering wireless transmitters and receivers to establish communication links; (iii)

configuring forwarding paths for data flows [88, 89, 91, 228, 254]. More complex manage-

ment tasks include channel allocation in the wireless spectrum [54]. In several proposed

frameworks that focus on global management, a SDN architecture is assumed to support

cross-layer data plane reconfiguration and enable efficient packet transmission in DCN.

The second example of using extension of SDN to configure networks shardware com-

ponents is to adapt power consumption of devices, e.g., switches and routers, to conserve

energy. It is due to the fact that modern networking devices allow using transmitted com-

mand packets to switch on/off the whole device or their components such as a specific line

card even a port [55]. More granular control on networking devices’ power states relies on

the dynamic voltage and frequency scaling (DVFS) technique that adjusts the power and

processing speed of devices’ processor and peripheral circuit [55]. This technique enables

systems that perform traffic flow path scheduling and link data rate configuration to avoid

unnecessary power consumption spent on providing unused bandwidth as we discuss in

Section 2.3.2. The cross-layer design, that jointly considers the hardware status and traffic
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(a) Hybrid DCN architecture based on the traditional fat-tree topology.

channel coder/decoder

network buffers

network processor

CPU | memory | NoC

(b) Stacked computing cluster architecture envisioned in the DFG project "Highly Adap-

tive Energy-Efficient Computing (HAEC)" [86]. This figure is taken from its project

proposal.

Figure 2.4: Two innovative DCN architectures that introduces directional wireless links.
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engineering for data flows, is a basic idea to conserve power consumption in SDN for many

frameworks, including the ones developed in Chapter 4 and Chapter 5.

2 .2 t r a f f i c e n g i n e e r i n g b a s e d o n s d n

The term, Traffic Engineering, is typically used to indicate approaches that measure, ana-

lyze and regulate network traffic flows so as to improve the performance of data networks.

Through the history of traffic engineering, many different supporting technologies, includ-

ing SDN, have been developed to achieve this goal.

2 .2 .1 Basic concepts of traffic engineering

Traffic engineering achieves optimization of computer networks by addressing performance

requirements of traffics and economically utilizing network resources. Lee and Mukher-

jee [132] describe the goal of TE as "to put the data traffic where the network bandwidth is

available in an efficient and effective way". According to RFC 3272 [11], the components of the

traffic engineering process model include:

• Measurement. Measurement and monitoring provide operational states and environ-

ment changes of a network as the data basis to adapt network device and software

configurations [214] to the traffic engineering control system. A network measure-

ment and monitoring subsystem also provides feedback to evaluate the effectiveness

of the carried out traffic engineering policies.

• Modeling, Analysis and Simulation. Performing modeling and analysis of network struc-

tures and behavior allows the abstract description of a network. These abstract models

usually simplify the complexity of a network in reality. Despite of this drawback,

researchers can still rely on these modeling and analysis results and use network

simulators to test the performance of developed traffic engineering policies.

• Optimization. Optimizing network performance is a continuous process of identifying

network issues, designing and implementation of corresponding solutions. Depend-

ing on the timescale of operations and granularity of actions, real-time optimization

and non-real-time planning can be further distinguished.

The frameworks and approaches developed in this thesis follow the above design rules

of traffic engineering. The presented resource-efficient monitoring framework and SDN

control plane defense system perform measurement and monitoring on network traffic

flows to provide data for characterizing workload statistics and identifying malicious

packets. To optimize the bandwidth and power consumption, we formulate these problems

using abstract models so that they can be solved by different mathematical tools and
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algorithms. In order to evaluate the performance of our developed optimization solutions,

we developed simulation frameworks based on the models of the network structures and

protocols in this thesis.

2 .2 .2 Brief history of traffic engineering

Traffic engineering has been an important research topic during the development of com-

puter networks. Among all the essential aspects of traffic engineering, the functionality of

routing, or flow path planning, plays an important role to enhance the network performance

and improve their efficiency of resource utilization. The technologies that support the im-

plementation of traffic engineering have continuously evolved during the past decades.

The original purpose of traffic engineering in computer networks has been to alleviate

network congestions since the late 1980s when Asynchronous Transfer Mode (ATM) net-

works became standard deployment in the telecommunications. In the 1990s, IP-based

traffic engineering solutions gradually gained popularity over ATM-based solutions due to

its independence of the physical transmission medium [120]. Traffic engineering methods,

including routing protocols, are developed to ensure QoS requirements of traffics. In the

late 1990s, Multiprotocol Label Switching (MPLS) became a frequently used technique in

backbone networks to encapsulate IP packets to provide additional QoS guarantees. Hence,

before the discussion of SDN-based traffic engineering (Section 2.2.3), we first provide brief

introduction of traffic engineering performed in these predecessors of the SDN technology.

2 .2 .2 .1 ATM-based TE

ATM is a high-speed multiplexing and switching technique to support Broadband Integrated

Services Digital Network (B-ISDN) [129, 179]. The main feature of ATM is that it is a

connection-oriented networking architecture. In ATM-based networks, a Virtual Channel

Connection (VCC) needs to be firstly established by two communication ends before actual

transmission of fixed-sized data packets called cells [75]. ATM allows users to specify their

desired QoS parameters, for example, Peak Cell Rate (PCR), Cell Loss Ratio (CLR), Cell

Delay Variation (CDV), during the setup of a VCC [108]. ATM switches implement TE

methods, such like admission control, bandwidth enforcement and traffic classification, to

ensure the requested QoS demands can be satisfied [103].

2 .2 .2 .2 IP-based TE

Shifting from the connection-oriented network architecture of ATM to the best-effort net-

work architecture of modern networks reduces the cost to construct and manage computer

networks [125, 230]. This transition boosts the development of Internet following the Open

Systems Interconnection (OSI) model that are now widespread. IP-based traffic engineering
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is a distributed approach and relies on Interior Gateway Protocol (IGP). The most widely

used IGP protocols are Open Shortest Path First [160] and Intermediate System-Intermediate

System (IS-IS) [199] that allow assignment of weight values to network links depending

on the cost or workload of their connected links. Networking devices, like switches or

routers, exchange link states with their neighbors so that the (constraint) shortest data flow

paths can be computed and stored in the forwarding table. As a result, data paths can

dynamically change and traffic engineering can achieve the goal of congestion avoidance

and link failure recovery [80, 217].

2 .2 .2 .3 MPLS-based traffic engineering

MPLS improves the packet forwarding efficiency over IP networks by matching routing

entries based on packets’ labels instead of the prefix of their IP addresses [22, 231]. MPLS

supports flexible explicit routing that may divert from the shortest path to satisfy the

resource requirements of a group of IP packets so called Forwarding Equivalence Class

(FEC). The establishment of virtual tunnels, named Label-Switched Paths (LSPs), between

the source and destination relies on the control plane signaling protocols to schedule

routing paths and distribute labels.

The control plane protocols used in MPLS can be either distributed or centralized. Label

Distribution Protocol (LDP) and Resource Reservation Protocol (RSVP) are common dis-

tributed MPLS control protocols, in which routers exchange signaling messages, e.g., label

binding information [40]. Although LDP has the feature of easy configuration, RSVP is able

to provide the traffic engineering functionality by signaling the devices along a routing

path to reserve a certain amount of bandwidth resources for a FEC. The extended version

of MPLS, the Generalized MPLS (GMPLS) architecture, defines a set of protocols and intends

to provide a unified protocol for not only packet-based switching devices but also those

in Wavelength Switched Optical Networks (WSONs) [145]. The idea of using a centralized

controller, a dedicated Path Computation Element (PCE), to perform traffic engineering

tasks (mainly routing), started to emerge [68, 106, 131]. In PCE/Generalized Multiprotocol

Label Switching (GMPLS) for WSONs, the PCE monitor the network states and accepts path

computation requests so as to dynamically compute lightpaths for packets [139].

2 .2 .3 Traffic engineering assisted by SDN

SDN enables flexible implementation of network management policies by providing pro-

grammable devices and unified interfaces to control them. Compared with the above

mentioned network technologies, the essential characteristic of SDN – i.e., the separation

of the control plane from the data plane and aggregation of management functions into a

central entity – benefits traffic engineering from the following aspects:
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Figure 2.5: Components of a traffic engineering system assisted by SDN.

• The centralized architecture in SDN allows the acquisition and storage of global net-

work states. For example, the network topology information can be obtained via the

centralized version of Link Layer Discovery Protocol (LLDP) [13]. The SDN controller

can use the OpenFlow protocol to query switches’ flow table so as to learn the data

rates of a specific flow or link workload statistics. In SDR, the controller can perform

collection on the information about the gains of the wireless channels and the interfer-

ence among the communication links [202]. Despite of the disadvantage of scalability

– however can be alleviated by deploying the logically centralized control plane – SDN

makes it possible to carry out traffic engineering globally – i.e., network-wide – and

thereby to optimize network performance.

• SDN provides flexibility to control traffic and network behaviors. In the traffic engi-

neering implementation using OpenFlow, packet flows can be identified according

to the matching rules specified by network management applications. Thus, the

granularity of data flows in performing TE can be adjusted dynamically. The con-

cept of SDN also enables cross-layer management of networks, in which information

from different layers serve as the basis for control decisions. For instance, the in-

tegration between SDR and SDN enables trade-off analyses for spectrum and flow

coordination [35].
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Following the guidelines introduced in Section 2.2.2, this thesis builds upon a SDN-

assisted TE framework for network optimization, and it contains the elements shown in

Figure 2.5.

In the general architecture of a SDN-based traffic engineering framework, a SDN controller

is the bridging component that receives and relays network states and traffic engineering

decisions [92]. Relying on interfaces obeying SDN standards, a controller communicates

with underlying network devices to collect their operation states and send instructions

to adjust their configurations. Meanwhile, a controller can also cooperate with other

components, like a traffic monitor or an application coordinator to obtain more detailed

information. To support the decision making process, the TE engine collects and aggregates

these information and shares with a SDN controller.

A TE engine is the essential part that implements algorithms and strategies to carry out

traffic engineering (e.g., schedule routing paths) as well as to compute configurations for

network devices. The TE engine triggers the network reconfiguration based on events that

reflect the changes of the network environment or states. Depending on the goals of traffic

engineering, the triggering events are diverse. For instance, the TE engine performs flow

scheduling to avoid network congestions upon the detection of large flows [67]. To conserve

the power consumption of, the TE engine determines the on/off states of links and flow

paths when it receives a Traffic Matrix (TM) [98].

While the SDN technology provides the limited functionality of network monitoring,

a dedicated network monitor measuring and analyzing network performance and traffic

workloads, is able to collect more detailed information. A network monitor can be a

native controller application that only relies on interfaces defined in SDN standards [39]. It

also can build upon existing monitoring solutions such as sFlow [190] and function as an

independent element that communicates with the controller [205]. The important network

performance parameters to assess the effectiveness of traffic engineering include the packet

latency, flow throughput and link/port utilization [219]. Another important functionality of

a network monitor is to continuously measure and analyze network traffic [198]. Depending

on the timeliness of reported traffic information, a network monitor provides:

• Real-time flow statistics. This information reflects the current properties of traffic

flows and a TE engine can reactively adjust network configurations.

• Predicted flow patterns. A network monitor not only collects flow statistics but

also adopts analysis methods to understand the evolution of traffic workloads. The

predicted traffic information enables a TE engine to proactively reconfigure a network.

A network resource provisioner is a conceptual component that informs a controller about

network service requirements, such as demanded bandwidth, of communication entities.

It is the job of a TE engine to accommodate the proposed resource demands, and at the

same time to fulfill any objective of network optimization. In many cases, a network
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resource provisioner is a module or plugin of a cloud, big data or network management

framework, rather than a standalone component. For instance, in multi-tenant cloud

environment, a cloud controller accepts virtual machine requests from users. Besides the

demands for the computation resources, these requests also contain QoS requirements

on the connections among VMs [3, 16, 31]. In a SDN network management framework,

such as Merlin [201], a network negotiator allows applications to declare their resource

requirements in advance. As for cooperative big data analytical applications, a Transfer

Controller (TC) is envisioned in the application layer to monitor and control the data

transfers on the participating nodes [37, 38]. Consequently, in this case, a TC serves as a

provisioner that has the knowledge of network resource demands.

2 .3 c h a l l e n g e s o n r e s o u r c e e f f i c i e n c y i n s d n

Improving the utilization efficiency of different types of resources in a network is crucial

to achieve the purpose of network performance enhancement and Opex reduction. As

described previously, the techniques of network softwarization enable dynamic operations

of data forwarding, device management and network monitoring. Correspondingly, in

a SDN-based network, there exist a data plane, a control plane and a monitoring plane.

Each of these functional planes has its unique challenge in reducing or protecting their

corresponding resources. This section introduces these challenges and their background

information to assist understanding the rest chapters of this thesis. Additionally, by using

toy examples, we show how SDN-assisted traffic engineering can be used to achieve network

resource efficiency in different scenarios.

2 .3 .1 Improving efficiency of bandwidth utilization in network monitoring plane

Bandwidth is a crucially important resource in SDN, which is consumed by two types of

flows: (i) application data flows exchanged among network users, and (ii) management

data flows exchanged between network controllers and networking devices. Conserving

the bandwidth consumed by application data flows can be done either by reducing the

volume of generated data or reducing the distance between communication pairs. Joe et

al. [110] propose to jointly consider the placement of Virtual Machine (VM) and routing to

improve resource utilization defined as the combination of the network and host machine

utilization. The formulated problem is solved by using the Markov approximation method.

In this thesis, we focus on improving efficiency of bandwidth consumption for network

management, especially for network monitoring. As a result, in this subsection, we first in-

troduce network monitoring for SDN and briefly discuss corresponding resource reduction

opportunities. Next, we show how traffic engineering and cross-layer SDN configuration

can help to reduce bandwidth consumption in a network monitoring system.
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2 .3 .1 .1 Network monitoring and resource consumption

Network monitoring has been an important topic in both academia and network indus-

try for long time. Researchers and network device manufacturers have developed many

efficient monitoring frameworks, such as SNMP, NetFlow and sFlow, to gain insights of

network states. As the needs for customized dynamic network measurement increase in

today’s complex network architectures, monitoring frameworks rely on the functionalities

provided by SDN and on so-called software-defined measurement [245]. Software-defined mea-

surement architectures allow dynamic control over a network monitoring system, including:

(i) flexible deployment of multiple monitoring tasks, (ii) coordination of monitoring loca-

tions, (iii) configuration of measurement timescales, and (iv) specification of monitoring

targets [25, 158]. Performing measurement and monitoring consumes resources, such as

processing resources, memory and bandwidth [157]. It is an important topic to design mon-

itoring mechanisms with less resource consumption or achieve tradeoffs between resource

consumption and measurement accuracy.

The procedure of network monitoring consists of collection, preprocessing, transmission,

analysis and presentation [214]. Normally, analyzing and presenting monitoring data take

place on a central machine or computing cluster that has no resource constraint. On the

other hand, a control plane or monitoring plane consisting of networking devices is more

sensitive to additional resource consumption. Thus, analysis and optimization of resource

consumption usually takes place at the stages of collection, preprocessing and transmission.

For instance, sketch-based approaches are proposed to efficiently collect network traffic

information. Instead of obtaining statistics associated with each individual flow, sketch-

based approaches, such as OpenSketch [245] and SCREAM [159], use hashing functions to

compute and aggregate flow statistics, which leads to less memory consumption on pro-

grammable switches. Transmission of locally collected monitoring data causes bandwidth

consumption. As SDN-based monitoring systems have a central architecture, a controller

needs to communicate with local monitoring agents (e.g., switch software or hardware

that inspects incoming packets to reconfigure monitoring strategies and obtain monitoring

results). From the perspective of traffic engineering, scheduling the locations to capture

primitive monitoring data as well as the routing paths to transport both monitored and

monitoring data, is able to conserve the network resource, in particular valuable network

bandwidth, during transmission of monitoring data.

2 .3 .1 .2 Conserving bandwidth for monitoring based on SDN and traffic engineering

A simple operation, network flow counting, is fundamental to complex monitoring tasks

such as detecting Heavy Hitters (HHs) carrying large volumes of data packets [237] and

deriving Traffic Matrix (TM) representing data volumes between every original/destination

pairs [94]. The OpenFlow protocol provides interfaces for a controller to send queries on

traffic statistics and receive responses via two types of messages: (i) per-flow messages
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(a) Before using TE to optimize the cost of transmitting

monitoring messages.

(b) After using TE to optimize the cost of transmitting

monitoring messages.

Figure 2.6: An example of reducing transmission cost in the monitoring plane using SDN-assisted TE,
inspired by [204]. In this example, the network has four hosts and six switches. Three flows exist in
the network: f1:H1−H2, f2:H1−H3, f3:H1−H4. The monitoring controller is attached to s3.

(e.g., ofp_flow_stats_request and ofp_flow_stats), which contain a header and counter infor-

mation of a single flow; (ii) aggregation messages (e.g., ofp_aggregate_stats_request and

ofp_aggregate_stats_reply), which contain a header and counter information of flows passing

through a same switch. Several existing approaches rely on TE to reduce the overhead of

transmitting these messages [32, 204, 208]. The idea behind these approaches is to plan

routing paths of the flows under monitoring, so that they can colocate at a switch. In this

case, the controller uses aggregation messages as much as possible, since per-flow mes-

sages have a higher header overheads for the same amount of flows. We use an example

to illustrate this basic idea. Figure 2.6 shows the set-up of a network, and a monitoring

controller is attached to switch s2 and uses the in-band control method. In Figure 2.6a,

the three flows (f1, f2 and f3) all follow the shortest paths in the network. However, this

naive approach causes the monitoring controller to use per-flow messages to acquire flow

counters for the flows. On the contrary, in Figure 2.6b, two flows are rerouted so that

f2 passes s2 and the controller can use aggregation messages instead of per-flow ones to

obtain flow counters. Meanwhile, f3 is pushed away from its shortest path to reduce the

distance between its query switch and the controller (s3 → s1 → s2 vs. s4 → s2).

Monitoring systems relying on the interfaces defined in the OpenFlow protocols provide

basic network measurement functionalities. More sophisticated monitoring applications,

such as Deep Packet Inspection (DPI), allow comprehensive analyses on traffic flows. As the

concept of NFV emerges, virtualized network monitoring agents (e.g., virtualized DPI) can

be deployed flexibly in SDN networks and placed in the close proximity of switches [101].

Traffic flows are redirected or mirrored to the in-network monitoring agents for statistic
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collection and inspection. The aspect of reducing the cost of a NFV-based monitoring

systems has attracted research attention [23, 47, 127]. Similar to the example presented in

this subsection, the common approach is to jointly consider the resource consumption of

deployed virtualized network monitors and the cost of rerouting data flows to them. In

these approaches, the routing decisions of TE are part of the solution space.

2 .3 .2 Improving efficiency of power consumption in the network forwarding plane

As mentioned in Section 1, delivering data packets with less power consumption helps

to reduce the operation cost of network owners and footprints of carbon emissions of ICT

systems. To achieve the goal of reducing power consumption for networking, the following

approaches have been presented in the literature [55, 216]: (i) re-engineering hardware used

in networking devices to make them more energy-efficient [28]; (ii) offloading processing

of background traffic and deactivate the end device [183]; (iii) adapting the link rate to

local flow workloads [82]; (iv) scheduling unnecessary components to enter the sleeping

mode [98]. Among these methods, sleep-scheduling approaches heavily rely on traffic

engineering. There are two different approaches to perform sleep scheduling, namely

connection-oriented and traffic-oriented approaches. We briefly introduce both of these ap-

proaches but focus on traffic-oriented approaches in the next subsection since it is more

relevant to this thesis.

Connection-oriented approaches focus on selecting a set of active network components

to ensure the connectivity among the hosts that have communication demands. Traffic

engineering is used to reroute traffic flows through those selected network components.

Matsuura et al. [148] proposed to use a Steiner Tree Based (STB) method to connect edge

nodes with a minimum subgraph of the original network topology. The network compo-

nents that do not belong to the constructed subgraph are put into sleeping mode so as to

reduce the power consumption of a network. In the proposed three-phase construction

algorithm, a Steiner tree is firstly created to connect all the edge nodes. Afterwards, the

algorithm uses the computed subgraph to calculate the available paths among the edge

nodes. In the final phase, the algorithm substitutes a calculated path that is excessively

long with the shortest path that is added to the Steiner tree.

Traffic-oriented approaches take information about traffic flows into the design of sleep-

scheduling mechanisms. Benefiting from the global view and TE capability of SDN, a

network management system uses traffic engineering to plan the routes or transmission

orders of traffic flows without violating their QoS requirements (e.g., avoid congestion) to

pass through limited number of network components or to reduce the overall transmission

time accordingly. Depending on whether a network component hosts traffic workloads,

the scheduler configures operation states of network components.
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(a) Before using TE to optimize the link utilization and

power consumption.

(b) After using TE to optimize the link utilization and

power consumption.

Figure 2.7: An example of reducing power consumption in the data plane using SDN-assisted traffic
engineering, inspired by [246]. In this example, the network has three hosts and four switches. Two
flows exist in the network: f1:H1−H2, f2:H1−H3.

2 .3 .2 .1 Reducing power consumption based on SDN and traffic engineering

Traffic-oriented approaches fall into two subcategories: flow consolidation and flow scheduling.

Flow scheduling is based on exclusive routing that allocates all bandwidth of a link to only

one flow, instead of the fair sharing policy used in flow consolidation. This method is

able to further improve link utilization and speed up the transmission of a set of flows

on "non-bottleneck links" [133]. In addition to achieving the power efficiency of SDN, flow

scheduling uses flow deadline and completion time as secondary objectives, thus they are

time domain approaches [234].

Flow consolidation [134] is a well-investigated traffic engineering method to improve the

utilization of network components by aggregating data flows to a limited number of links.

Colocated flows fairly share link bandwidth by enforcing rate limiting on each forwarding

device. Figure 2.7 shows an example of flow consolidation. In Figure 2.7a, the flows, f1

and f2, follow the two paths in the network. Although each flow only consumes 30% of

the link capacity, all network components are kept in the active mode to serve the traffic

demands. On the contrary, in Figure 2.7a, these two flows are consolidated onto one path

and the network links of the other path can be put into sleeping mode.

In the early stage of the development of SDN, ElasticTree [98] is proposed to improve the

power efficiency in SDN-based DCN. This system consists of three logical modules, namely

optimizer, routing and power control. ElasticTree takes traffic matrices, network topology

and a power model for each switch as the inputs. It also employs three different types

of algorithms (formal model based on the multi-commodity flow problem, greedy bin-

packing and topology-aware heuristic) to compute the "optimal network subset". GreenTE

provides the detailed formulation on the selection of routing so as to "maximize the power

saving from turning off line-cards as well as satisfying performance constraints including link

utilization and packet delay" [246]. The contribution of GreenTE also includes a practical

heuristic algorithm that only uses limited searching space of solutions. Wang et al. [225]

model the power-efficient TE with similar formulation, and propose to use an AI model,
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Blocking Island Paradigm, to quickly find the power-saving configurations for SDN-based

DCN. Several work also considers performing energy-efficient TE under other types of

constraints. In addition to the widely used heuristic algorithms and formal model based

on the optimization theory, Zhang et al. [251] propose to use game theory to model the

balance between the power efficiency and link workload balancing. Lin et al. [138] consider

the negative impacts of energy-aware traffic engineering: activating only a subset of net-

work components reduces path diversities in a network. Thus, they propose models and

algorithms that integrates terminal reliability and route reliability.

Chapter 4 in this thesis addresses a resource efficiency problem for a SDN network

that contains heterogeneous communication media as introduced in Section 2.1.2.2. More

specifically, this thesis investigates how to reduce power consumption for a SDN-based

data center network that consists of both wired and directional wireless communication

links. Reducing power consumption for such hybrid SDN networks remains unexplored

due to the fact that the integration of OpenFlow-based SDN and hardware component

management starts only very recently and are not yet widely deployed. However, the basic

idea to reduce power consumption in Ethernet-based networks by powering off unused

components is still valid when considering newly emerged constraints in this type of SDN.

2 .3 .3 Mitigating abusive usage of resources in the network control plane

This thesis relies on the principle of SDN to design models and algorithms that improve the

resource efficiency of computer networks. The previous subsections discussed the benefits

brought by using SDN to manage a network. Although SDN utilizes the overview of a

network to make global decisions, its centralized architecture naturally has the disadvan-

tage that a network controller may become the bottleneck to respond to large volumes of

control messages. Significant research efforts have been devoted to the improvement of

the SDN control plane regarding its scalability and availability. As it is surveyed in [17],

SDN controller frameworks implementing distributed control planes, either in the flat or

hierarchical architecture, are capable of reducing the workload of a single controller and

achieving control plane resilience. However, in a network resource management system

that relies on SDN to perform scheduling, the existence of malicious network entities can

disrupt its operation by abusing the control plane resource that is required to comply with

the management tasks.

2 .3 .3 .1 Denial-of-Service attacks on the control plane

The security of the SDN control plane may be affected mainly by the following threats: (i)

Denial-of-Service attacks, (ii) unauthorized access to the control plane, and (iii) malicious

controller applications sending invalid control messages [5, 189]. Among these potential

security concerns for the SDN controller, DoS attacks are identified as "the most threatening
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benign	flow	

packet	

malicious	flow	

packet

time

triggered	control	

message

Figure 2.8: An example to show the principle of DoS attacks on the SDN control plane. In each
benign flow, only the first packet triggers a control message. In each malicious flow, every packet
can trigger a control message due to its large inter-arrival time of packets.

security challenges" [5]. The purpose of DoS attacks is to deplete control plane resource so

that the communication requests from legitimate network users and other management

tasks cannot be fulfilled in time. Thus, DoS attacks that target on the SDN control plane can

be also called Control Plane Saturation attacks. Due to the widely deployed OpenFlow-based

SDN, DoS attacks exploring the vulnerability of the OpenFlow protocol receive significant

attention. The resources of the control plane that are most exposed to such attacks include:

storage space of the flow table in OpenFlow switches, CPU of the hosting server running a

SDN controller and control plane bandwidth used to transmit control messages [112].

The mechanism of DoS attacks to the SDN control plane is based on the process of handling

communication requests from hosts as described in Section 2.1.1. The basic principle to

saturate the control plane is to generate a large number of flow packets that will not match

any flow rule in the flow tables of the receiving switches. Figure 2.8 illustrates this DoS

attack principle. In OpenFlow, each installed flow rule has a timeout field specifying the

maximum amount of hard time or idle time before the rule is removed. As a consequence,

each unmatched flow packet results in two control packets: (i) packet_in message sent

from the switch to the controller and (ii) ofp_flow_mod or packet_out messages sent in

the opposite direction. Floods of these control packets, in turn, result in consuming the

computational resources of the controller [224] as well as the control plane bandwidth.

Subsequently, the legitimate flow packets will be either dropped or delayed [194].

The effectiveness of abusive usage of control plane resources mainly depends on the in-

formation collected by the adversary, about the network and the applied flow rules, during

the so-called network fingerprinting [194]. For instance, if the adversary learns that the

packet matching criteria depend on the destination IP address, an effective attack strategy
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would be to rapidly generate a large number of flow packets with different destination IPs.

Additionally, the adversary can amplify the attack if it also knows the expiry times of flow

rules. It can use these information to generate the flow packets so that they always arrive

shortly after the corresponding flow rule’s timeout.

Traffic engineering, including flow packet reshaping and flow path planning, is one class

of methods to counter abusive resource usage in the SDN network control plane. There are

several frameworks that implement a protection module on the controller side to prevent

Control Plane Saturation (CPS) attacks. Rajat et al. [112] discuss two types of DoS attacks in

SDN. One type of DoS attacks targets the flow tables while the other one targets the control

plane bandwidth. Their evaluation shows that saturating the flow tables and the control

plane result in dropping legitimate flow packets. As a mitigation approach, they suggest

to limit the rate of flow packets using the SDN meter table.

FloodDefender [191] is a network control framework for protecting the resources in the

data and control planes. The approach used by FloodDefender to mitigate abusive usage

of control plane resource is to offload traffic from a switch to its neighboring switches.

FloodDefender also implements a packet filtering module in the controller to identify

malicious flows based on the arrival rates of packet_in messages.

SDN-Guard [61] is a controller application that manages the flow packets according to

the information it receives from an intrusion detection system. This information includes

the threat probability of each flow. SDN-Guard reroutes potentially malicious flow packets

through the least utilized links. In addition, as a proactive action, it assigns the flow rules

a large hard timeout. Similar to SDN-Guard, FlowRanger [227] uses a trust management

system to prioritize the incoming packet_in messages, and stores them in a queue. The

higher the priority of the message the faster it will delivered to other controller modules,

like a routing module.

SECO [224] is another controller-based solution. It uses a threshold based on statistics

of the switch ports and controller’s CPU utilization. In the controller, SECO drops all

unmatched packets arriving from a switch port if the connected hosts are compromised. It

also ignores all control packets arriving from switches out of control.

Due to the delays existing in the control plane, transmitting and analyzing all incoming

control messages on the controller side could lead to delayed detection. To cope with

this problem, in Chapter 6, we develop a mitigation method, which operates alongside

packet forwarding devices, to reduce the additional resource consumption of generating

and transmitting a large volumes of control messages as early as possible.

2 .3 .4 Summary

In this chapter, we provided necessary background knowledge to understand the scenarios

and assumptions in the following presented contributions. In particular, Section 2.1 intro-
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duced the concept of software defined networking, and its extensions to realize cross-layer

control in the network. Such a cross-layer approach is a fundamental in this thesis to not

only perform traffic engineering by manipulating flow paths but also to control behavior of

elements in other layers, such as the location to deploy a piece of software or the operation

status of hardware. Section 2.2 discussed the history and concept of SDN-assisted traffic

engineering. Lastly, we discussed three challenges in reducing resource consumption in

the data plane, monitoring plane and control plane of SDN, and existing approaches to

tackle them.
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CHAPTER 3

R E S O U R C E - E F F I C I E N T N E T W O R K M O N I T O R I N G

A monitoring system plays an important role in network management because of its capa-

bility of performing analyses of traffic data, as explained in Section 2.2.3. In this chapter,

we consider a monitoring system that provides the in-depth knowledge of packets: per-

packet based flow monitoring. In this method, all or part of data packets belonging to a

flow are examined locally by an additional module of a networking device or remotely

on a dedicated machine. The information extracted from examined packets can be used

to achieve simple tasks (e.g., flow counting) and complex tasks (e.g., diagnosing network

performance issues [93]). In addition, security services, such as hostile traffic identifica-

tion [121, 143], intrusion detection systems and application-level fingerprinting demand

thorough examination of network packets [154, 243].

The SDN-based packet monitoring systems proposed in [196] and [162] allow switches or

routers to duplicate original data flows on a per-packet basis, according to the dynamically

configured matching fields of data flows. The mirrored data flows are sent to flow monitors

for analyses by predefined algorithms. The separation between the original data flows

and the mirrored data flows (i.e., between the network’s data plane and monitoring plane)

is a common practice in network monitoring [12, 33]. It brings benefits to the overall

performance and reliability of the monitoring system. For example, the congestion in the

data plane will not affect the transmission of mirrored data flows in the monitoring plane,

and vice versa [64].

The aforementioned separation can be achieved either physically or virtually. Original

and mirrored data flows in the physical separation approach traverse through isolated

network channels built upon different underlying communication technologies. For exam-

ple, in hybrid data center networks consisting of both 60 GHz wireless links and wired

optical fiber links [88, 91], the wireless links and the wired links can be dedicated to the

mirrored data flows and to the original data flows, respectively. Due to the different energy

consumption profiles of these two communication technologies, the resources required to

transmit the original data flows and those required to transmit the mirrored data flows are

different [74, 215]. At the same time, the virtual separation approach relies on the state-of-

the-art network slicing technology [85, 193]. This technology allows to allocate exclusive

slices of network resources to the original data flows and mirrored data flows. Depending

on the QoS requirements of the allocated network slices, techniques like Dynamic Voltage

and Frequency Scaling can be used to change the execution rates of the Network Processor
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Unit (NPU) allocated to the network slice [14]. In this case, it also costs different amounts

of resources to transmit original and mirrored data flows in the distinct communication

planes. The common practice to quantify such differences is to multiply the bandwidth

consumption with a weighted value.

Several existing approaches have addressed the problem of reducing the network re-

source consumption of the monitoring plane by stretching the path length of original data

flows [32, 204, 208]. One of the negative consequences of the the existing work is that

the network resource consumption of original data flows increases correspondingly, which

also contributes to the transmission cost in a network. To address this problem, we present

REMO, a Resource Efficient distributed MOnitoring system in this chapter. REMO is a

general framework that optimizes the global resource consumption caused by the trans-

mission of original and mirrored data flows in isolated communication planes. REMO

achieves this goal by employing a two-step scheduling approach: Firstly, REMO places the

flow monitors at central places in the network, so that the mirrored data flows do not need

to traverse long paths from the switch to the flow monitor. Secondly, in order to further

reduce resource consumption, REMO leverages the data path programmability provided

by SDN. It carefully selects the paths (either one of the shortest paths or a stretched one)

for the original data flows to redirect them even closer to the flow monitors.

We use an Integer Linear Programming (ILP) model to optimize the flow monitor place-

ment, and a Mixed Integer Linear Programming (MILP) model to optimize paths to embed

original flows and the selection of switches to duplicate flows. More precisely, planning

placement of the flow monitors determines the location to run an instance of the flow

monitor. The result of flow embedding chooses the paths that original data flows should

traverse. As for the result of mirroring switch selection, it determines which switches

should duplicate flows. Furthermore, to overcome the complexity of directly solving the

formulated MILP problem, we propose a heuristic algorithm to efficiently solve the problem.

We evaluate the performance of REMO – i.e. its ability to reduce the costs of transmitting

original and mirrored data flows – through extensive numerical simulations. Furthermore,

we compare REMO with several baseline strategies. Overall, the results show that REMO

is effective in reducing the overall communication cost. Compared with baseline strategies,

REMO is able to save over 50% of the network resource consumption, when transmission in

the monitoring plane is more expensive. Our results also show that increasing the number

of flow monitors can reduce overall resource consumption of at least 10% compared with

the case where only one flow monitor exists.

The remainder of this chapter is organized as follows: Section 3.1 describes the setups

of the envisioned packet-based monitoring system, as well as a motivation example to

illustrate the basic idea of optimizing its global network resource consumption. Section 3.2

introduces the formal model to solve this problem and Section 3.3 presents a heuristic

algorithm that has near-optimal performance. The proposed model and algorithm are
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evaluated in Section 3.4. We provide more background and related work in Section 3.5 and

conclude this contribution in Section 3.6.

3 .1 s y s t e m s e t u p s a n d a m o t i va t i n g e x a m p l e

Compared with traditional sampling techniques, such as sFlow [190], that performs per-

port/per-interface sampling, the SDN-based approach is able to perform sampling on a

per-flow basis to achieve better flexibility and granularity of the packet sampling strategies.

Integrating the flow packet sampling capacity into SDN can be currently implemented in

two approaches. The first approach is directly modify the implementation code of the SDN

switches, for example, Open vSwitch. Philip et al. [229] propose to extend the OpenFlow

protocol with the sampling support so as to unveil individual flows behind a wildcard flow

entry. In [243], the coordination algorithm selects a few SDN switches to perform sampling

on all passing flows to detect malicious packets. However, sampling all passing flows on

the SDN switches can generate redundant sampled packets, because multiple SDN switches

on the path of one flow can be chosen as the sampling switches. FleXam [196] is a more

flexible per-flow sampling extension enabling network security applications such as the

port scan attack detection. This extension allows to control the sampling rate, the field of

packets to be sampled and where the sampled packets should be propagated.

In order to perform per-packet based traffic analysis, in this chapter, we consider a

distributed flow monitoring system relying on switches that can duplicate packets of

selected data flows. There are several flow monitors deployed in the network and attached

to the switches. Each switch is associated with one of the flow monitors. That is, a switch

transmits all of its mirrored flow packets over the shortest path in the isolated monitoring

plane to the same flow monitor. Besides, we assume that a (logically) centralized network

monitoring coordinator continuously collects link cost information for both the monitoring

and data planes. It computes the placement of flow monitors, and places the flow monitor

instances on the desired locations in the network. The coordinator also obtains the global

knowledge about the flows under monitoring, before or during the transmission of flows.

The first case happens when a coflow exists. Coflow is a collection of parallel flows among

hosts, occurring during the intermediate stages of big data applications [38]. The flow

information can be known in advance by the network coordinator, through its channel with

a data migration scheduler [174]. The second case happens when the network coordinator is

notified that the flow bandwidth requirements change. Then the coordinator is responsible

for calculating the paths for original data flows, as well as selecting the switches to duplicate

them.

Our goal is to reduce the overall consumption of network resources used for transmitting

both original and mirrored data flows. As mentioned in the introduction, we assume that

transmission of mirrored data flows (in the monitoring plane) and transmission of original
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Variable Definition

V set of switches in the network topology

E set of links in the network topology

Du,m the distance (measured in hops) of the shortest path from

switch u to switch m

Rm,Rd the cost to transmit data flows over one hop in the monitor-

ing plane and in the data plane, respectively

i :< si,di,bi > flow info containing ingress switch si, egress switch di and

the bandwidth consumption bi

cm binary, whether to connect a controller to switch m

au,m binary, whether switch u is associated with a flow monitor

connected to switch m

wu,v
i binary, whether to embed a flow i into the link u, v

tui binary, whether a flow is mirrored on the switch u

pu,v
i continuous, voltage value on the link u, v for the flow i

qu
i binary, whether the flow i passes the switch u

B the bandwidth capacity of a link

Li the shortest path length computed for the flow i

Table 3.1: Variables used in the optimization model and heuristic algorithm of REMO.

3 .2 f o r m a l m o d e l d e s c r i p t i o n

In this subsection, we introduce our formulation that reduces the overall network resource

consumption. The model consists of two consecutive steps: (i) Flow Monitor Placement and

Switch Binding (FMPSB) and (ii) Flow Embedding and Mirroring Switch Selection (FEMSS). FMPSB

depends on the topology of the underlying network, and it takes place when the network

topology evolves or the number of flow monitors changes. FEMSS takes as input the result

of the flow monitor placement step and information about a batch of flows, including their

ingress/egress switches and current bandwidth consumption.

It is also possible to jointly compute FMPSB and FEMSS and perform flow monitor place-

ment and flow scheduling after the flow information is obtained [186]. However, we argue

that it is preferable to compute flow monitor placement without prior knowledge about

the data flows, to avoid frequent migration of the flow monitors.
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The network topology that we consider can be represented as a graph G = (V ,E), where

V is the set of switches being capable of mirroring flow packets, and E is the set of links

connecting them. We use k to denote the number of flow monitors that need to be placed,

and m ∈ V to represent a potential switch to attach a flow monitor. Table 4.1 lists the

variables used in the model.

We detail the models to solve FMPSB and FEMSS in Section 3.2.1 and Section 3.2.2, respec-

tively.

3 .2 .1 Flow monitor placement and switch binding

The main goal of the FMPSB step is to achieve the lowest average distance between switches

and monitors in the monitoring plane, without the knowledge of the flow pattern. In

the following object function, au,m is a binary variable that indicates whether a switch u

is associated with a flow monitor connected to switch m. Du,m represents the distance

between of the shortest path from switch u to switch m, which is measured in the number

of hops.

min
1

|V |

∑︂

u∈V ,m∈V

au,m ·Du,m (3.1)

Monitor placement constraints:

∑︂

m∈V

cm = k (3.2)

∑︂

u∈V

au,m ⩽ |V | · cm, for m ∈ V (3.3)

∑︂

m∈V

au,m = 1, for u ∈ V (3.4)

Constraint (3.2) indicates that the total number of flow monitors that needs to be placed

is equal to k. Constraint (3.3) states that switches use a switch m as the destination for

mirrored flows only if that switch is attached with a flow monitor (cm = 1). For simplicity

of configuration in the monitoring plane, we use Constraint (3.4) to show that a switch has

only one binded flow monitor and the mirrored data flows from the same switch are sent

to that particular binded flow monitor.
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(a) (b) (c)

Figure 3.2: Steps to generate a simple path containing no loops: (a) Flow path with disjoint paths;
(b) Non-simple path with cycles after using the method proposed in [32]; (c) Simple path after
removing the attached cycles.

3 .2 .2 Flow embedding and mirroring switch selection

The goal of the FEMSS step is to optimize the paths to embed original data flows as well

as the selection of mirroring switches. The objective is to minimize the total resource

consumption of transmitting mirrored data flows in the monitoring plane – represented

by the first part of Equation (3.5) – and that of transmitting original data flows in the data

plane – represented by the second part of Equation (3.5). In the following objective function,

Rm and Rd represent the corresponding cost per data rate to transmit data flows over one

hop in the monitoring plane and in the data plane. tui is a decision variable indicating

whether a flow i is mirrored on the switch u. The location of a flow monitor, which is

indicated by cm, is a known variable computed in the FMPSB step. It is important to note

that the mirrored data flows in the monitoring plane follow the shortest path from the

switch to the flow monitor. In addition, we use wu,v
i to present the selection of the path for

the original data flow.

min Rm
∑︂

u

∑︂

m

∑︂

i

tui · cm ·Du,m · bi + Rd
∑︂

(u,v)

∑︂

i

wu,v
i · bi (3.5)
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Flow conservation constraints:

∑︂

v∈neighbor(u)

wu,v
i −

∑︂

v∈neighbor(u)

wv,u
i =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1,u = si

−1,u = di

0,otherwise

(3.6)

Constraint (3.6) forces the standard flow conservation rule in which a flow must leave a

non-ingress/egress switch, if that flow passes through it.

Simple path constraints:

pu,v
i ⩽ wu,v

i , for all i (3.7)

αqu
i ⩽

{︄

1+
∑︁

(u,v)(p
u,v
i − pv,u

i ) u = di
∑︁

(u,v)(p
u,v
i − pv,u

i ) otherwise
(3.8)

qu
i ⩾ (wu,v

i +wv,u
i )/2 (3.9)

The flow conservation constraint is not sufficient to remove disjoint paths. Figure 3.2a

shows such a disjoint path. Therefore, we use the voltage value based method proposed

in [32] to remove the disjoint paths. In that method, each link traversed by a flow has a

continuous voltage value pu,v
i indicated by Constraint (3.7). qu

i indicates whether a flow i

passes the switch u. In Constraint (3.8), α is a small value (less than 1/|E|), and the voltage

value of the outgoing link must be larger than that of the incoming link. The idea behind

this constraint is that a flow must always follow the direction in which the voltage value

on the link increases. Constraint (3.9) guarantees that qu
i is 1 only if a flow i passes a link

that has the end point u.

The generated non-simple path containing the cycles, as shown in Figure 3.2b, is a valid

solution in [32]. However, the flow traffic still has to traverse attached cyclic links, which

leads to additional bandwidth consumption in the data plane. Thus, we use Constraint

(3.10) to further remove attached cyclic links and generate only simple paths as shown in

Figure 3.2c.

∑︂

(u,v)∈E

wu,v
i ⩽ 1, for u ̸= di (3.10)

Mirroring switch constraints:

tui ⩽ qu
i , for all i (3.11)
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∑︂

u

tui = 1, for all i (3.12)

Constraint (3.11) and Constraint (3.12) imply that only one switch belonging to the path

of the original data flow can duplicate its packets.

Data plane bandwidth and path length constraints:

To avoid congestion in the data plane, Constraint (3.13) indicates that the aggregated

bandwidth consumption on a data plane link should not exceed its capacity. Recall that we

can stretch the paths of original data flows to decrease the overall resource consumption,

when it costs more to transmit mirrored data flows in the monitoring plane than in the data

plane. However, stretching the paths of original data flows means that the original data

flow paths can be longer than their shortest paths. Thus, instead of aggressively pushing

original data flows closer to the flow monitors, we take their path length into consideration

and enforce an upper limit on it using Constraint (3.14). In this constraint, β is the path

length stretch ratio, which is defined, for a flow i, as the ratio of the maximum allowed

path length to the shortest path length Li.

∑︂

(u,v)∈E

biw
u,v
i ⩽ B (3.13)

∑︂

(u,v)∈E

wu,v
i ⩽ βLi, for all (u, v) (3.14)

3 .3 n e a r - o p t i m a l h e u r i s t i c a l g o r i t h m

The MILP formulation for flow embedding and mirroring switch selection, which we pre-

sented in Section 3.2, is NP-Hard. Thus, solving it using an optimizer requires a consider-

able amount of time on a regular desktop machine, ranging from several seconds to hours

depending on the problem size. To cope with this problem, we develop a heuristic algo-

rithm that provides a near-optimal performance for the formulated MILP and drastically

reduces computation time.

We find experimentally that solving the current formulated ILP for the FMPSB subproblem

only costs a dosen of milliseconds, even for a large-sized network. More importantly, the

FMPSB step takes place only when the network topology changes. On the contrary, directly

solving the MILP formulation for the FEMSS subproblem is a more complex task, which is

unsuitable for large-sized networks with many flows. Thus, we design a heuristic algorithm,
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Algorithm 1 Heuristic FEMSS: Main Procedure

Input: a batch of monitored flows F containing fi :< si, ri, vi >, the flow monitor

placement results

Output: the paths for original data flows and the switches to mirror them

Main procedure:

1: A = φ

2: for fi in F do

3: R = φ

4: Lmax
fi

= βLshortest
fi

5: for each mj in M do

6: Using [240], find all the shortest paths {p1
fi

,p2
fi

, ...} with length nj, from

ingress(fi) to switch(mj)

7: for index in nj,nj − 1, .., 0 do

8: for each path p in {p1
fi

,p2
fi

, ...} do

9: switch = p[index]

10: if switch is not bound with mj then

11: continue

12: end if

13: (s, r) = SearchPath(fi, switch,p,Lmax
f )

14: if (s, r) == None then

15: continue

16: else

17: R = R∪ (fi, s, r)

18: end if

19: end for

20: index=index-1

21: end for

22: end for

23: From R, pick up (fi, s′, r′) leading to the minimum network resource consumption

24: A = A∪ (fi, s′, r′)

25: end for

26: return A
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inspired by the deflection technique proposed in [166], to embed original data flows and

select the switches to mirror their packets for the FEMSS subproblem.

Our heuristic algorithm utilizes the shortest paths among the network switches. The

main idea is to iterate through the switches on the shortest paths from the flow ingress

switch to the flow monitors, and use the shortest path from the iterated switches to the flow

egress switch as the remaining path for a original data flow. Then, the procedure chooses

the switch and its associated path that causes the minimum communication resource

consumption, as its mirroring switch and the original data flow path correspondingly.

Algorithm 2 SearchPath(fi, switch,p,Lmax
f )

if no link on path p is congested then

find all the shortest paths {q1
fi

,q2
fi

, ...} from switch to egress(fi)

for each path q in {q1
fi

,q2
fi

, ...} do

if no link on path q is congested and r = p∪ q is a simple path as in Figure 3.2c

and |r| ⩽ Lmax
f then

return (switch, r)

end if

end for

end if

return None

As shown in Algorithm 4, the procedure firstly identifies the shortest paths from the

ingress switch of a flow to all the switches attached with a flow monitor (line: 6). Then, the

procedure inspects each switch on the identified shortest paths to check whether it can be

used to duplicate the flow packets. The inspection starts from the closest switches to the

flow monitors (lines: 7 – 22). If one switch is not associated with the current flow monitor,

the algorithm moves to the next one (lines: 10 – 12).

The SearchPath function, as shown in Algorithm 3, checks the status of the current

path from the ingress switch to the potential mirroring switch, and rejects it if the path is

congested. Afterwards, the algorithm starts searching the shortest path from the potential

mirroring switch to the flow egress switch. A path gets accepted if it can form a complete

data flow path without loops, and at the same time does not exceed the maximum path

length constraint.

At the end of the main procedure in Algorithm 4, the mirroring switch and the path of

original data flow leading to the minimum network resource consumption are selected as

the final scheduling result for the flow.
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3 .4 e va l ua t i o n

In this section, we report the evaluation of the above described models and heuristic

algorithm for computing a resource efficient monitoring strategy. The evaluation is based

on extensive numerical simulations. In Section 3.4.1, we describe the evaluation setup. In

Section 3.4.2, we introduce the system performance metrics and parameters. Lastly, we

present and discuss the results in Section 3.4.3.

3 .4 .1 Setup

We experiment with a synthetic network generated by FNSS [185], a widely used simulator

in the networking community. The network contains 70 switches, and similar to the

configuration in [23], its topology follows the Barabási-Albert model [18]. In addition, we

randomly generate 500 original data flows being abstracted as ingress/egress switch pairs

and data rates. The data rates follow the standard log-normal distribution to approximate

the measured network traffic [8], with a mean value of 10 Mbps and a variance of 0.8 Mbps.

We execute the simulations on a machine equipped with a Intel (R) Core (TM) i5-6500 CPU

with four cores and 32GB RAM. We use Gurobi [84] as the optimization solver and repeat

each experiment ten times.

3 .4 .2 Evaluation metrics and focused parameters

We use two system performance metrics: (i) the consumed network resources, and (ii) the

path length of original data flows. The first metric allows us to evaluate the benefits gained

by our solution in terms of reduction in the total resource consumption, which is caused

by transmission of both original and mirrored data flows. The second metric indicates the

penalty brought by our solution, in terms of the change of the path length experienced by

original data flows.

In addition, we investigate the impact of the following three parameters on the system

performance metrics.

• Number of flow monitors: It indicates how many flow monitors the monitoring system

can utilize. The assumption is that more flow monitors can further reduce the total

amount of resources consumed by the transmission of data flows. In the current

design of REMO, the number of flow monitors is a given parameter to the system. Its

value depends on the planned resource budget allocated to perform packet analysis.

• Path length stretch ratio: It is defined as the ratio of the maximum allowed path length

to the shortest path length. This parameter is unique in our system since REMO

incorporates the negative impact on the transmission in the data plane, such as
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longer routing paths, into the model. The assumption is that the larger this value the

lower the relative resource consumption for transmitting the mirrored and original

data flows.

• Link cost ratio: It is defined as the ratio of the cost of transmission in the monitoring

plane to the cost of transmission in the data plane. This parameter intends to capture

the relation between the possibly various communication cost, which is caused by

using different transmission medium or network slices, in the data plane and mon-

itoring plane. The assumption is that our solutions stretches the original data flow

paths to reduce the resource consumption when this value is greater than 1.

3 .4 .3 Results

We report and discuss experiment results in this section.

3 .4 .3 .1 Impact of the path length stretch ratio and link cost ratio

In order to constraint the impact of the number of flow monitors, we fix the number of

flow monitors to 2, and vary the path length stretch value by selecting it from the discrete

value set {1, 1.5, 2, 3}. The link cost ratio between the monitoring plane and the data plane

is chosen from the discrete value set {1, 2, 5}. It is worthy of noting that these values are

synthetic to describe the relations of requirements and properties of a network, such as the

actual communication cost in the data plane and monitoring plane.

Figure 3.3 depicts the impact of the path length stretch ratio and the link cost ratio

on the resource consumption. In each subfigure, the network resource consumption is

normalized by the obtained optimal result when the path length stretch ratio is 1. As

shown in Figure 3.3b and Figure 3.3c, when the bandwidth cost per hop of the monitoring

plane is greater than that of the data plane, increasing the path length stretch ratio helps

reducing the overall network resource consumption caused by transmission of the original

and mirrored data flows. More specifically, in the scenario where the link cost ratio is

larger, our model and algorithm tend to further push the original data flows closer to the

flow monitors to save more resources. For example, allowing the path length of the original

data flows to be 0.5 longer than the shortest path, can reduce 30% of the network resource

consumption when the link cost ratio is 5, compared with 10% resource reduction when

the link cost ratio is 2. In addition, we can also see that our heuristic algorithm achieves

near-optimal performance, except incurring more resource consumption when the path

stretch ratio is 1. It is because that, in this case, the proposed heuristic algorithm may not

select the optimal location to mirror data flows.

Figure 3.4 depicts the impact of the path stretch ratio and the link cost ratio on the

computed path length of original data flows. As shown in Figure 3.4b and Figure 3.4c,
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(c) Link cost ratio = 5

Figure 3.3: Impact of the path length stretch ratio and the link cost ratio on the resource consumption
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(c) Link cost ratio = 5

Figure 3.4: Impact of the path length stretch ratio and the link cost ratio on the path length of
original data flows

increasing the path stretch ratio allows to divert the original data flows away from their

shortest paths. We can also see that our model and algorithm push the original data flows

more towards the flow monitors when the link cost ratio increases. For example, increasing

the path length stretch ratio from 2 to 3 cannot further reduce resource consumption

through path stretching when the link cost ratio is 1 or 2. Our heuristic algorithm generates

slightly longer paths for original data flows. This is due to the iteration order of searching

a mirroring switch from the location being close to the flow monitors.
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(c) Link cost ratio = 5

Figure 3.5: Impact of the number of flow monitors and the link cost ratio on the resource consump-
tion
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Figure 3.6: Impact of the number of flow monitors and the link cost ratio on the path length of
original data flows

3 .4 .3 .2 Impact of the number of flow monitors and the link cost ratio

We vary the number of flow monitors from 1 to 8, and fix the path stretch ratio to 1.5 to

allow 50% longer flow paths compared with the shortest ones. We also select the link cost

ratio from the discrete value set {1, 2, 5}.

Figure 3.5 depicts the impact of the number of flow monitors and the link cost ratio

on the resource consumption. In each subfigure, we normalize the network resource

consumption with the obtained optimal result when there is only one flow monitor. We

can see that, regardless of the link cost ratio, increasing the number of flow monitors can

always reduce the overall network resource consumption. However, this may bring the

issues like increasing the resource consumption on the servers hosting more flow monitors.

In this work, the number of flow monitors is a given value for system configuration. It is
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also possible to integrate the cost of deploying flow monitors into the model, which can

be an extension of this work. We observe that the cost of transmission in the monitoring

plane is higher, stretching the paths of original data flows helps to reduce a large portion

of the overall network resource consumption. We can see that increasing the flow monitor

number from 1 to 2 or 3 brings the greatest drop in the resource consumption. After that,

adding more flow monitors results in only marginal improvement. Again, we can also see

that our heuristic algorithm achieves near optimal results. It only performs slightly worse

than the optimal results when only a few flow monitors exist.

Figure 3.6 shows the impact of the number of flow monitors and the link cost ratio on

the computed path length of original data flows. In general, we can see that using more

flow monitors reduces the paths of original data flows. The reason is that it provides a

higher chance that a flow passes through the vicinity of the flow monitors. Compared with

the optimal results, our heuristic algorithm computes slightly longer paths of original data

flows when the link cost ratio is 1, but achieves almost the same results in the two other

scenarios.

3 .4 .3 .3 Baseline strategies comparison

We compare the following strategies: (1) Optimal FMPSB + Optimal FEMSS (O+O), (2) Opti-

mal FMPSB + Heuristic FEMSS (O+H), (3) Random FMPSB + Optimal FEMSS (R+O), (4) Optimal

FMPSB + Random mirroring switch (O+R), (5) Random FMPSB + Random mirroring switch

(R+R). In the random flow monitor placement, we randomly choose the locations of flow

monitors and bind the switches to them. In the random mirroring switch selection, original

data flows follow the shortest paths, but we randomly select the mirroring switches. We

configure the link cost ratio to 5 and assume two flow monitors in the network. We chose

the path stretch ratio from the set {1, 1.5, 2, 3}. We show the results of the reduction in

the resource consumption achieved with each strategy. The results are normalized by the

incurred resource consumption when the system uses the fully random strategy (R+R).

Figure 3.7 depicts the impact of different strategies on the overall resource consumption.

The results of the strategies R+R and O+R remain the same for the different path stretch

ratios, since the strategy of randomly selecting the mirroring switches does not incorporate

this parameter. The strategy R+R leads to the highest network resource consumption, while

our consecutive strategies O+O and O+H, achieve the lowest values, even when only the

shortest paths are allowed. Only optimizing the placement of the flow monitors or the flow

embedding and mirroring switch selection lead to in-between performance. The results

also show that increasing the path length stretch ratio can significantly reduce the overall

network resource consumption, even when the flow monitor placement is random.
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Figure 3.7: Performance comparison of difference strategies.

3 .5 r e l a t e d w o r k

In addition to the approaches that optimize the network resource consumption of a mon-

itoring system for SDN in Section 2.3.1, there are several other frameworks that achieve

this goal. DISTTM [94] and [209] reduce the number of flow statistic queries and replies

by avoiding duplicated measurements on multiple switches for the same flow. OpenNet-

Mon [219] polls the edge switches at an adaptive rate to obtain the QoS parameters of

flows. Payless [39] also employs an adaptive flow statistics collection mechanism to achieve

the balance between the monitoring accuracy and network overhead. As mentioned in

the introduction of this chapter, the additional network resources consumed by stretch-

ing the paths of original data flows are ignored in these work, which is the focus of this

contribution.

3 .6 c o n c l u s i o n

Mirroring data flows in the network and transmitting the mirrored flows to flow monitors

enable in-depth flow packets analysis. However, transmission of original and mirrored

data flows consumes network resources. Our main goal is to reduce the overall cost

of transmitting both flow types in distinct communication planes. In this chapter, we

present REMO, a network monitoring solution that optimizes the global network resource
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consumption, in the scenario where the original and mirrored data flows are transmitted

in separate planes.

We use an ILP model to optimize the flow monitor placement and switch binding so that

they reside at central locations in the network. We also use a MILP model to optimize the

paths to embed original data flows and the selection of their mirroring switches. In order to

overcome the computational complexity of the proposed MILP model, we also design a near-

optimal heuristic algorithm for the flow embedding and mirroring switch selection sub-

problem. REMO is able to dramatically reduce the global resource consumption, compared

with several baseline strategies. Stretching the original data flow paths is particularly useful

when it costs more resources to transmit data in the monitoring plane.

It is an interesting direction to integrate the processing and memory limitations of the

flow monitors and switches into the model. In addition, exporting flow records, like in

IPFIX [43], further reduces the resource consumption but loses the detailed information

of the payload data. Depending on the requirement on the granularity of obtained flow

information, designing an adaptive network monitoring system is worthy of investigation.

The per-packet monitoring system envisioned in this chapter is very similar to the sampling-

based approaches, but it mirrors all packets of a flow under monitoring, which is, of course,

a simplified assumption. However, the proposed model and algorithm can also apply to

sampling-based systems with slight modifications to reduce the overall network resource

consumption. For example, if we know the sampling rate, a coefficient (between 0 and 1)

can be multiplied to the first expression of Equation 3.5.
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CHAPTER 4

R E D U C E R E S O U R C E C O N S U M P T I O N F O R H E T E R O G E N E O U S S D N

4 .1 i n t r o d u c t i o n

In Section 2.1.2, we discussed the example scenario in which SDN and hardware component

management are jointly used to perform network control, especially for DCNs with flexible

topology configuration. SDN has been successully applied to manage networks of com-

puting clusters. Data centers provide computation and storage resources. As we already

show in Section 2.1.2, a typical DCN has a layered fat-tree topology with edge switches

and core switches that are interconnected via wired high-speed interconnections, such as

Infiniband and 10/100BASE-T Ethernet. This topology is however known to lead to per-

formance bottlenecks when large volumes of data need to be transferred (oversubscribed

networking) [66].

Two trends recently emerged to improve the performance of DCN. The first, as Figure 2.4a

depicts, consists in introducing – typically alongside wired interconnects – wireless con-

nections between switches or servers [88, 90, 114]. This results in hybrid (wired/wireless)

DCN, which can be reconfigured flexibly at runtime to, e.g., obtain higher throughput. Re-

searchers have already experimented with different technologies, including visible light or

60GHz Radio Frequency (RF) links with beam-steering antennas [90]. A second emerging

trend is that of embedding switching functionalities in each server [36, 222]. This server-

centric architecture makes it no longer necessary to have dedicated switches to forward

packets between servers.

The combination of these two innovations leads to what we refer to as Hybrid, Server-

Centric Data Center Networking (HSC-DCN). HSC-DCN have the potential to enable highly-

adaptive and (thus) energy-efficient computing [70]. The DFG Collaborative Research

Center "Highly Adaptive Energy-Efficient Computing (Highly Adaptive Energy-Efficient

Computing (HAEC))" investigated an innovative network architecture supporting the emerg-

ing category of Micro-Modular Data Centers (MMDCs) enabled by various communication

technologies. In the era of edge/fog computing, the computation on the data from IoT

devices or autonomous driving is performed at the edge of the network [192]. MMDCs play

a critical role in the edge/fog computing [2, 151, 188]. They are deployed at the network

edges and usually consist of a just tens or hundreds of servers – only [21]. The presence

of wireless links and the flexibility offered by a server-centric architecture imply that the
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HSC-DCN can be effectively reconfigured at runtime. This increases the modularity of the

data center and leads to lower energy consumption without affecting performance [70].

Although the mentioned related work [88, 91, 228, 254] provide solutions to optimize the

transmission performance by alleviating the congestion problem and improving control

plane resilience, the resource efficiency problem remains unexplored for such SDN with

heterogeneous communication media.

In this chapter, we address the problem of reconfiguring HSC-DCN so that it can route

traffic flows between servers in an energy-efficient manner. In conventional data centers,

servers and switches – or even individual communication links – can be activated or

de-activated on-demand to reduce energy consumption [98]. Thereby, it is necessary to

determine how to serve applications’ communication demands with as few servers and

switches in the active mode as possible. In HSC-DCN, applying this approach requires

overcoming an additional challenge. While the mapping between transmitters and receivers

is fixed in wired interconnects, wireless transmitters can in general point to a set of different

receivers. For instance, when RF links with beam-steering antennas are used, the beams

can be steered to point to an arbitrary receiver within a set of feasible ones.

We define the power efficieciency problem existing in HSC-DCN as the Energy-aware Coflow

and Antenna Scheduling (ECAS) problem. In this chapter, we present its optimal solution

– to which we refer to as ECAS-Opt – guarantees that the bandwidth demands of the

applications generating coflows are met and at the same time as fewer as possible links (and

associated hardware components) are activated. The extra flexibility provided by beam-

steering antennas allows to create direct flyways between servers so as to reduce the number

of activated wired links. We provide proof on the NP-Hardness of the proposed ECAS

problem and show that solving this problem is computationally intensive. To overcome

such computational complexity, we provide a heuristic version of our algorithm – called

ECAS-Online. To show the effectiveness of our model and algorithm, we compared with the

widely used Directional Routing (DR) algorithm [180] and to a recently proposed Energy-

Efficient Greedy Flow assignment Algorithm (EEGFA) [242].

The remainder of this chapter is organized as follows. In Section 4.2, we introduce the

necessary background to understand this contribution, including the network topology,

power and traffic model, as well as power reduction opportunities in the considered hybrid,

micro data center networks. The proposed ECAS problem is solved by using both the

optimization and heuristic algorithm in Section 4.3. Evaluation results are presented in

Section 4.4.

4 .2 s y s t e m s e t u p s

This section provides the description of the architecture of HSC-DCN and the opportunity

of performing resource reduction in this type of SDN. It also gives clear definition of the
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traffic model and the power model that are used in the formal formulation and heuristic

algorithm.

4 .2 .1 Network topology

There are many possibilities for the architecture of HSC-DCN. In this chapter, we consider a

3D torus network topology with boards of servers stacked upon each other motivated by

the HAEC project [70, 149] and as depicted in Figure 4.1. The address of each server in this

topology is given by the three coordinates (ax,ay,az).

0,1,0

1,0,1

wireless link

wired link

Figure 4.1: An exemplary 3x3x3 HSC-DCN topology.

In the exemplary HSC-DCN as shown in Figure 4.1, servers within a board are equipped

with a quad-port network interface card and communicate directly through high-speed

wired interconnects to their immediate neighbors in the x and y directions. We further

assume that servers on adjacent boards can communicate through directional RF links [70,

90, 149]. In this case, each server is equipped with a wireless transceiver featuring a pair

of beam-steering antennas for transmitting and receiving. Due to the high operational

frequency of the 60GHz RF technology, the path loss of a link is high and penetration

capability is limited. Thus, to avoid unstable links caused by obstacles, e.g., other servers

or boards, we assume that wireless links can only be established between servers on

adjacent boards.

51



4 r e d u c e r e s o u r c e c o n s u m p t i o n f o r h e t e r o g e n e o u s s d n

4 .2 .2 Energy model

Hardware components used in networking devices in nowadays have the power scaling

capacity and low power idle mode. Several scheduling-based network power-efficiency

solutions like GreenTE [246] or ElasticTree [98], are built upon the assumption that network

hardware elements, such as network cards and its ports, can operate in the active and sleep

mode. Similarly, in this chapter, we also assume a server that forwards packets is capable

of gradually turning off its Packet Processing Unit (PPU), quad-port network interface

card and wireless transceivers. Similar to the interface-based energy model defined in [241],

we consider the energy consumed by a server to be the sum of three components: (1) a

fixed amount of power, Ps; (2) the power consumption of wired links, Po; (3) the power

consumption of wireless links, Pw.

In our model, we follow a practice proposed by other authors in the research area of

green data center networks [138, 225, 246]. We approximate the static power consumption

of a packet processing unit and its other periphery elements with a fixed, known value, Ps.

The static power consumption occurs once a server activates its PPU. Shutting down the PPU

of a server results in no static energy consumption. According to the measurement results

and the power model proposed in [116], the dynamic power consumption of processing a

set of flows is linearly proportional to their aggregated flow data rates. Since our model

and algorithm take the data rates of a batch of flows as inputs, the total dynamic power

consumption always equals to the product of the power consumption per data rate unit

and the aggregated rates of all data flows within a batch. As a result, we do not explicitly

include the dynamic power consumption incurred by the packet processing workload of

the PPUs.

In addition, Po is proportional to the number of powered-on wired links. It is used

to maintain a single port and peripheral circuit for a wired link. The maximum energy

consumption spent on wired links is Po ∗n for each server, where n stands for the number

of connected and activated wired links. In the HSC-DCN shown in Figure 4.1, each server

can activate at most four pairs of outgoing and incoming wired links, and n equals to 4.

The value of Pw depends on the on/off status of the wireless transceiver of a server. The

power consumption of wireless transceivers can be decomposed into the energy required

by the RF front end, analog-to-digital converters, and other components [74]. Pw incurs

only if a server establishes a wireless connection and the direction of its associated an-

tenna is appropriately scheduled. Using this energy model, we compute the total energy

consumption of a server as:

P = Ps ∗m+ Po ∗n+ Pw ∗ i (4.1)

In the formula, n and i are the number of activated wired and wireless links while m

encodes the on/off (1/0) status of the server’s PPU.
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(a) The communication request is routed only through

nodes that reside at the same layer.
(b) The communication request is routed through a

node that resides at the neighboring layer.

Figure 4.2: An example of using link skipping to reduce the number of activated network compo-
nents and links. It is assumed that there is a communication request from the source (0, 0, 0) to the
destination (3, 2, 0).

4 .2 .3 Power reduction opportunities in HSC-DCN

In this contribution, we focus on and explore the opportunity to reduce the energy con-

sumed during the transmission of data flows in HSC-DCN. Constructing energy-efficient

HSC-DCN demands the support of underlying hardware. One effective approach to reduce

the energy consumption is to dynamically configure the states (active vs. sleep) of network

components, including packet processing engines and peripheral hardware associated with

physical network links, during data transmission. The key question is which set of network

components should be configured to be in the active state.

In order to reduce the number of activated network components, two energy reduction

opportunities exist in HSC-DCN. The first energy reduction opportunity is traffic consol-

idation. It is a common network traffic engineering approach to use a small number of

active network components to serve traffic demands, so as to put the rest of network com-

ponents into the sleeping mode [225, 246]. This approach is introduced and explained

in Section 2.2.3. In our work, we also take the advantage of this basic energy reduction

opportunity, and aggregate and route traffic flows through selected active networking

components.

The second energy reduction opportunity is link skipping, and it is unique in HSC-DCN.

The architecture of the 60GHz wireless system has been constantly improved over the past

years [123]. The state-of-the-art wireless technology, such as 1 bit sampling [76], makes

it possible to achieve ultra-low energy consumption for wireless data transmission. Thus,

we assume that the wireless links in HSC-DCN have the similar energy efficiency as the

wired links. To fulfill a communication request across the network, instead of activating a
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chain of the network components belonging to multiple wired links, using direct wireless

links as short-cuts can reduce the number of involved wired network components, leading

to less energy consumption. Figure 4.2 provides an example of taking advantages of link

skipping to reduce the number of activated network components and links. In this example,

there exists a communication request from the source (0, 0, 0) to the destination (3, 2, 0).

Figure 4.2a shows one possible path to route this request by going through only the nodes

at the same layer. In this case, 4 nodes and 3 links need to be activated. Figure 4.2b

illustrates another path to route this request by using link skipping. One node in another

layer is used to relay traffic data from the source to the destination. In this case, 3 nodes

and 2 links need to be activated.

4 .2 .4 Flow model

The commonly used assumption in energy-efficient networking is that the network con-

troller knows the desired bandwidth demands to transmit data within a period of time [98,

134, 138, 246]. One type of data flows existing in computing clusters is named as coflows,

which are “collections of parallel flows” [36, 38]. Coflows typically occur during intermediate

processing stages of specific operations – like parallel joins – when large volumes of data

move among servers [36, 38, 174, 252]. Coflows are dominant in data centers that serve big

data applications [36, 38, 56]. The coflow information can be obtained through the chan-

nel between the network resource provisioner (this concept is introduced in Section 2.2.3)

and a big data application manager. The SDN controller accepts information about coflow

demands from either a data migration scheduler [174] or a network negotiator [201] as

explained in Section 2.2.3. The computed solution to the ECAS problem is distributed to

each server node to power on wired links, steer its antenna to establish wireless links and

update its forwarding rule table for flows. Once resources for managing coflows are allo-

cated, other traffic flows can also be scheduled using the same routes assigned to coflows

or other remaining resources.

4 .3 o p t i m i z a t i o n m o d e l a n d a l g o r i t h m f o r t h e e c a s p r o b l e m

In this section, we present and describe the optimization model and the heuristic algorithm

for solving the ECAS problem.

4 .3 .1 Formal formulation for the ECAS problem

The HSC-DCN we consider in this chapter can be represented as a graph G = (V ,E), where

V represents a set of servers and E is a set of candidate links that can be powered on. E

is split in two subsets, Eo and Ew. Eo contains all wired links while Ew is the set of all
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Variable Definition

i :< si, ri,di > A tuple of a flow request containing source si, destination

ri and a bandwidth demand di and it belongs to a coflow

Ps Static power consumption of the packet processing unit in

a server

Po Power consumption of an active wired link

Pw Power consumption of an active wireless link

Ew A set of wireless links

V A set of servers

Eo A set of wired links

e A link in the set of wired or wireless links

fie fie = 1 if the flow i is assigned to the link e

Ce Capacity of wired or wireless links

wv wv = 1 if the packet processing unit of a server is activated

te te = 1 if a link e is activated

Table 4.1: Variables used in the optimization model and heuristic algorithm of ECAS.

possible wireless links. To differentiate between transmitting and receiving nodes of a link,

we represent the extremes of a link as begin(e) and end(e). We can then formulate the

ECAS problem as the following ILP:

minimize Ps
∑︂

v∈V

wv + Po
∑︂

e∈Eo

te + Pw
∑︂

e∈Ew

te (4.2a)

subject to
∑︂

e:e∈out(si)

fie =
∑︂

e:e∈in(si)

fie + 1 (4.2b)

∑︂

e:e∈in(ri)

fie =
∑︂

e:e∈out(ri)

fie + 1 (4.2c)

∑︂

e:e∈out(v)

fie =
∑︂

e:e∈in(v)

fie = 1, v /∈ {si, ri} (4.2d)

∑︂

i

fiedi ⩽ Cete, e ∈ Ew ∪ Eo (4.2e)

te ⩽ wbegin(e), te ⩽ wend(e), e ∈ Eo (4.2f)
∑︂

e:e∈out(v)

te ⩽ wv,
∑︂

e:e∈in(v)

te ⩽ wv, e ∈ Ew (4.2g)

fie, te,wv ∈ {0, 1} (4.2h)
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Table 4.1 summarizes the definition of all variables used in the problem formulation.

Thereby, Equation (4.2a) is the objective function and represents the goal to minimize

overall energy consumption of HSC-DCN. The input to this ILP formulation is a batch

of flow requests belonging to a single coflow. A flow request i is expressed as a tuple

containing source address si, destination address ri and bandwidth demand di. The total

number of flow requests within a coflow is referred to as the width of the coflow [252]. The

solution of the ECAS problem is a set of paths, each indicated by fie for the corresponding

flow request i.

The solution also generates a schedule to power up the PPU of a server and links, indi-

cated by wv and te. Constraint (4.2b, 4.2c) and Constraint (4.2d) are constraints that make

only one path to be selected for each flow. The calculated paths must be pruned to get the

simple path that does not contain loops. Constraint (4.2e) guarantees that the aggregated

bandwidth demand on a single link does not exceed its capacity. Constraint (4.2f) and

Constraint (4.2g) ensure that the PPU of a server will not be completely powered off if one

of its associated links is in the on status.

We assume that both transmitting and receiving antennas belonging to a wireless link

operate in a directional way. Han et al. [91] point out that a mmWave link can be configured

to run at relatively low speed in comparison of their actual channel capacity, the resulting

connection is so reliable that it can be treated as if it were a wired one. In order to

obtain highly reliable mmWave links, both transmitter and receiver need to perform beam-

locking to achieve high antenna gain on both ends of a wireless link [79]. Thus, the

schedule for antennas’ directions should guarantee one-to-one mapping for transmitting

and receiving antennas, as also done in [114]. Accordingly, Constraint (4.2g) guarantees

that the transmitting and receiving antennas participate in at most one wireless link each.

4 .3 .2 NP Hardness of the ECAS problem

To prove that the ECAS problem is NP-Hard, we show that the results of the ECAS problem

can be obtained by repeatedly solving a basic NP-Hard problem with different inputs. In

the ECAS formulation, the physical topology of the network is unknown beforehand

because of the need to schedule the directions of antennas and fulfill Constraint 5.1g. To

overcome this topology uncertainty, we can precompute a valid wireless link set, E′

w,

containing no conflicting wireless links, and use E′

w as a part of physical topology input for

the following refined ECAS-Sub problem. We denote E+
w to represent all possible wireless

link sets, thus E′

w belongs to E+
w.
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Algorithm 3 ECAS-Sub algorithm

1: for E′

w in E+
w do

2: Solve the ECAS-Sub problem using the wireless link set E′

w as a part of physical

topology input

3: end for

4: Choose the ECAS solution, that leads to the minimal power consumption, from results

computed in the above iterations

minimize Ps
∑︂

v∈V

wv + Po
∑︂

e∈Eo

te + Pw
∑︂

e∈E′
w

te (4.3a)

subject to
∑︂

e:e∈out(si)

fie =
∑︂

e:e∈in(si)

fie + 1 (4.3b)

∑︂

e:e∈in(ri)

fie =
∑︂

e:e∈out(ri)

fie + 1 (4.3c)

∑︂

e:e∈out(v)

fie =
∑︂

e:e∈in(v)

fie = 1, v /∈ {si, ri} (4.3d)

∑︂

i

fiedi ⩽ Cete, e ∈ E′

w ∪ Eo (4.3e)

te ⩽ wbegin(e), te ⩽ wend(e), e ∈ Eo ∪ E′

w (4.3f)

fie, te,wv ∈ {0, 1} (4.3g)

The adaptation from the ECAS problem to the ECAS-Sub problem is that we remove

Constraint (4.2g), which leads to using precomputed non-conflicting wireless links in the

model, instead of using the set containing all possible wireless links. Obtaining the final

optimal results requires to repeatedly solve this ECAS-Sub problem by iterating through

each precomputed E′

w, as shown in Algorithm 3. The ECAS-Sub problem in Algorithm 3 is

actually a Minimum Edges Routing (MER) problem, which has been proved to be NP-Hard

[78]. Since solving the ECAS problem is equivalent to solving a serial of NP-Hard MER

problems, we can conclude that the ECAS problem is also NP-Hard.

4 .3 .3 Heuristic algorithm for the ECAS problem

Due to its NP-Hardness, solving the formulated ECAS problem by directly using an opti-

mizer requires a considerable amount of time. Traffic flows would thus experience huge

delays (ranging from minutes to hours) if they had to wait for a solution to be computed.

To cope with this problem, we develop a heuristic algorithm, named ECAS-Online, that
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provides an approximate solution of the formulated ILP and drastically reduces computa-

tion time. The algorithm is still developed to deal with batches of flow requests since we

perform scheduling for the coflows and currently we do not consider the sequentially ar-

rived flow requests. We use the term, online algorithm, to indicate the fact that its execution

time is very short compared with our optimal solution, thus it is suitable to deploy for an

online network management system.

The principle of searching an energy-efficient scheduling solution with ECAS-Online is

to use already powered-on packet processing units of servers and links to serve coflow

demands as much as possible without dramatically decreasing network performance. The

authors of [242] proposed a greedy flow assignment algorithm to achieve power-efficiency

for DCNs with the fat-tree topology equipped with only wired links. This algorithm greed-

ily assigns flows to communication links to obtain locally minimal energy consumption.

However, our experiments show that this greedy algorithm generates excessive long paths

for flows, which causes additional processing delays along the path due to packet switch-

ing performed on more intermediate servers. In order to achieve the balance between the

energy consumption and network performance, particularly the length of paths experi-

enced by flows, we construct a heuristic algorithm, named ECAS-Online, based on the A∗

algorithm [95, 173].

The A∗ algorithm is a path planning algorithm for mobile robotics [49], which falls into

the category of best-first greedy algorithms. This algorithm combines heuristic searching

and shortest path searching, and each candidate step is evaluated with the function:

f(v) = h(v) + g(v) (4.4)

h(v) is the distance, e.g., Manhatten or Euclidean distance, of the currently evaluated step

to the final destination. g(v) stands for the length of the path from the originated point

to the currently evaluated step through the chosen step sequence [63]. The step with

the lowest value of f(v) is selected as the next step to move. The distances used in this

algorithm can be modified to represent other metrics. Since we consider both potentially

increased energy consumption incurred by choosing a node and its distance to the flow

destination, the A∗ algorithm is selected to concatenate both metrics.

ECAS-Online activates communication links and finds paths for single flows one after

another, when it processes communication requests of a coflow. ECAS-Online uses a score

value to determine if selecting a neighbouring server and corresponding candidate link

would improve the overall power consumption efficiency as well as bring flows closer to

their destination. More specifically, we define a weighted score function:

g(f,n) = k ∗ eE(n)/Emax + (1− k)ed(n)/df (4.5)

In this function, g(f,n) stands for the score of the server n during the scheduling for

the flow f. E(n) is the overall power consumption if the server n is selected as the next
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Algorithm 4 ECAS-Online algorithm

Input: a batch of communication requests F containing fi :< si, ri,di >, a set of all

wired and possible wireless links Mall.

Output: a set Mpower_on containing powered on links, a link assignment plan Ri for a

flow fi.

Initialize:

1: F(0), F(1)...F(n) = φ //Groups of fi based on their distance along Z axis between si
and di

2: Mpower_on = φ

Main procedure:

3: for fi in F do

4: di
z = ∥ari

z − asi
z ∥ //Compute distance along Z axis between si and di

5: Insert fi into F(n) if di
z equals to n

6: end for

7: for fi in F(n), F(n− 1)...F(0) do

8: E(si) = cost(si), d(si) = df

9: Compute g[fi, si] based on E(si) and d(si)

10: for all v in V − {si} do

11: g[fi, v] = MAX_VALUE

12: end for

13: S = φ, Q = V

14: while Q is not empty do

15: u = minScore(Q)

16: S = S∪ {u}, Q = Q− {u}

17: if u equals to ri then

18: break

19: end if

20: Mpower_on = Mpower_on ∪ {e(pre,u)}

21: capacity[e(pre,u)] = capacity[e(pre,u)] − di

22: if e(pre,u) is a wireless link then

23: Mall = Mall − {eRF(pre, )}− {eRF(,u)}

24: end if

25: prev = u

26: for e(u, v) in Mall do

27: if e(u, v) exists in Mpower_on then

28: E(v) = E[u]

29: else if v is powered on then

30: E(v) = E[u] + cost(u, v)

31: else

32: E(v) = E[u] + cost(u, v) + cost(v)

33: end if
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34: Compute g[fi, v] based on E(v) and d(v)

35: if capacity[e(u, v)] < di then

36: g[fi, v] = MAX_VALUE

37: end if

38: end for

39: end while

40: Ri = S

41: end for

42: return Epower_on, all Ri

forwarding hop, depending on the status of both the PPU of this server and its associated

link. Emax is the power consumption when all PPUs and links of servers are powered on.

d(n) is the euclidean distance between the candidate server n and flow destination. df

is the euclidean distance between the flow source and destination. We use parameter k

belonging to the range (0, 1] to tune the balance between the importance of the network

energy consumption and flow path length.

Wireless links between boards tend to be used as energy-efficient shortcuts for flows

originating and terminating on the hosts of the same board. In this case, there may not

exist enough bandwidth to be allocated for flows that need to traverse across boards along

the z direction. Thus, our algorithm gives priority to flows that originate and terminate

on servers of different boards and constructs powered-on paths for them first. In order to

do so, the communication requests of single flows are classified and sorted based on the

distance along the z direction between their source and destination (lines 3-6).

Lines 7-42 activate and select wired and wireless links to forward each flow based on

the computed score of each server. Lines 26-33 describe the rules to compute the estimated

overall power consumption of neighbouring vertices. If a link with a neighbouring vertex

has been powered on, we consider that using this link does not incur additional power

consumption, otherwise we need to activate this powered-off link and add additional

cost(u, v) (lines 27-30). Depending on the on/off status of the PPU of the server at the end

of a link, additional basic power consumption, cost(v) is included (line 32). The scores

of neighbouring vertices are computed based on its estimated power consumption and its

distance from the flow destination (line 34). Additionally, ECAS-Online also keeps track

of remaining bandwidth of each link (line 22) and only selects a link that can meet the

bandwidth requirement of a flow (lines 35-36).

In order to guarantee one-to-one mapping for transmitting and receiving antennas, ECAS-

Online maintains a set Mall containing all possible links as candidates, even those wireless

links sharing end points. If one wireless link is chosen to be powered on and the directions

of its corresponding antennas are configured, we remove other possible wireless links

involving either ends of this selected wireless link from Mall (line 22-24).
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The complexity of ECAS-Online is O(|V ||L||F|), where |V | is the total number of servers in

HSC-DCN, |L| is the number of all possibly connected links with a server and |F| is the total

number of concurrently transmitted flows.

4 .4 e va l ua t i o n

In this section, we report the evaluation of the proposed model and algorithm for the ECAS

problem using simulations. We first describe the simulation setup and then report our

results.

4 .4 .1 Implementation and settings

The proposed network topology, model and algorithm for the ECAS problem are imple-

mented in OMNeT++ [168] and we use Gurobi [84] as the optimizer for ILP. As a proof

of concept and due to the fact that a MMDCN consists of hundred of servers, we choose

two topologies, 4x4x3 and 6x6x3, of HSC-DCN as shown in Figure 4.1 for the simulations.

These two topologies allow us to observe the performance of our model and algorithm

on different-sized HSC-DCN. They also allow to complete the simulations within reason-

able time, especially when to compute the baseline optimal scheduling results. The large

amount of time to compute the optimal solution is because that, in the novel architecture

we consider, there are much more additional possible flyway links formed by 60GHz links

and thus a larger number of candidate paths that can be taken by a data flow. By perform-

ing these evaluations, we show that the designed heuristic algorithm is suitable to deal

with such complexity existing in a highly adaptive and resource-efficient HSC-DCN.

The implemented HSC-DCN simulation framework allows configuration of the arbitrary

size along three dimensions for HSC-DCN. The token bucket based algorithm [178] is imple-

mented for flow bandwidth reservation. Similar to the assumptions used in [88] and [91],

we assume that both wired and directional wireless links can achieve the transmission rate

of 10 Gbps and the bit error rate as 0. A dynamic transmission rate based on the channel

quality, such as signal-to-interference-plus-noise ratio (SINR) can be further integrated into

the model. The simulation adopts the many-to-many communication pattern for a single

coflow [252]. We also use random flows, similar to [91], in which the size of each flow

is fixed as 50 MB but the source and destination of each flow are randomly selected. In

order to estimate the bandwidth requirement for flows, a soft deadline to complete the

transmission of coflows is used and configured as 1 second. The width of a coflow, which

is the number of concurrent transmitted flows, varies from 10 to 50 for both topologies.

In order to avoid biased results caused by randomly generated flow pattern, we repeat

simulations on each scheduling algorithm for 3 rounds by configuring different seeds for

the random number generator.
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Table 4.2: Computation time of scheduling algorithms for different coflow width in the 4x4x3

topology

Width of Coflows

10 20 30 40 50

DR 0.07ms 0.11ms 0.14ms 0.21ms 0.24ms

EEGFA 5.47ms 9.35ms 13.1ms 15.0ms 19.3ms

ECAS-

Online
1.86ms 2.73ms 3.34ms 4.15ms 4.43ms

ECAS-

Opt
7.44s 2.79min 11.1min 0.43h 1.62h

In the evaluation, we compare the simulation results of our ECAS-Opt and ECAS-Online

with one widely used 3D torus network routing algorithm, DR, and EEGFA proposed in [242].

We experiment with different values of the parameter k in the score function and we

configure it as 0.9 to maximize the performance of the ECAS-Online algorithm. In order

to perform DR algorithm, wireless links are vertically formed between direct neighbours

locating on different layers in a static way. Flows are firstly forwarded along the z direction

to reach the same boards of their destination server, then flows are forwarded along the

x and y direction until they arrive at their destinations. The EEGFA algorithm greedily

looks for the most energy-efficient paths in local scopes for flows. In the rest part of this

section, we report evaluation results on the computation time of the algorithms, energy

consumption, the path length generated by the algorithms and coflow completion time.

4 .4 .2 Computation time

Table 4.2 shows the average computation time of the scheduling algorithms when we

change coflow width in the scenario. We show the result for the 4x4x3 topology. The

computation time of scheduling algorithms increases as more concurrent flows need to be

transmitted. As expected, ECAS-Opt requires huge amount of time to obtain the optimal

results. It takes seconds to hours to obtain the optimal results for the 4x4x3 topology, even

days for the 6x6x3 topology. DR is able to generate scheduling results within 1ms due to

its simplicity. ECAS-Online is slower than DR but faster than EEGFA for different coflow

width. This fact suggests that ECAS-Online is suitable to be implemented in the real system

without incurring large delays, because that the arriving batches of communication requests

can be processed in a timely manner. The constraint on scheduling delays depends on the

application transmitting data. For example, if the application has a low tolerance on the

scheduling delay, the controller should even choose the DR algorithm without considering

power efficiency.
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(a) Normalized power consumption of 4x4x3 HSC-DCN.
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(b) Normalized power consumption of 6x6x3 HSC-DCN.

Figure 4.3: Normalized energy consumption produced by scheduling algorithms in 4x4x3 and 6x6x3

topologies.

4 .4 .3 Power consumption

Power consumption of HSC-DCN is computed by summing up basic power consumed by

all powered-on PPUs of servers and power used to maintain active wired and wireless

links. For the convenience of comparison, the power consumption produced by scheduling

algorithms is normalized by the total power consumed by the network of a fully powered-

on HSC-DCN. Figure 4.3 depicts the average value and standard deviation of normalized

power consumption during three rounds of simulations, for both topologies. In general,

this figure shows that the network consumes more power as the width of a coflow increases,

since more processing units of servers and links need to become active to serve increasing

number of concurrent flows. ECAS-Opt achieves the lowest network power consumption

while DR generates scheduling results that lead to higher energy consumption compared

with other algorithms. ECAS-Online is able to generate scheduling plans leading to less

network power consumption than DR but performs slightly worse than EEGFA since it tries to

achieve balance between power consumption and path length for flows. In addition, we can

observe that the normalized power consumption results generated by different algorithms

converge quickly in the 4x4x3 HSC-DCN. The reason is that, in the 4x4x3 HSC-DCN, the

percentage of activated PPUs and links increases faster when more flows enter the network.

On the contrary, to fulfill the communication requests of the same width of coflows, there

is still a large portion of inactivated PPUs and links in the 6x6x3 HSC-DCN.
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(a) Hop count statistics for the round #1, 2 and 3 in 4x4x3 HSC-DCN.
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(b) Hop count statistics for the round #1, 2 and 3 in 6x6x3 HSC-DCN.

Figure 4.4: Hop count statistics for the flows in 4x4x3 and 6x6x3 topologies

4 .4 .4 Path length

The length of used paths to forward flows affects coflow completion time. Flows forwarded

along longer paths experience larger completion time for transmission due to additional

processing time on intermediate servers. Figure 4.4 shows the impact of the scheduling

algorithms on the path length experienced by coflows in each round. The difference of

hop counts in each round is caused by diversely generated traffic patterns. Figure 4.4

shows that ECAS-Online is able to select relatively short paths for flows in each round,

compared with other algorithms. The reason is that ECAS-Online integrates the distance

between the next hop server and destination server into the score function, thus it is able

to establish short-cut paths using wireless links. DR and EEGFA generate relatively longer

paths for coflows. ECAS-Opt attempts to minimize the energy consumption by reusing

already powered-on links as much as possible even if those links bring flows away from

their destination. Besides that, in general, the average path length experienced by the flows
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(a) Coflow completion time for the round #1, 2 and 3 in 4x4x3 HSC-DCN.
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(b) Coflow completion time for the round #1, 2 and 3 in 6x6x3 HSC-DCN.

Figure 4.5: Coflow completion time in 4x4x3 and 6x6x3 topologies.

in the 6x6x3 HSC-DCN is greater than that in the 4x4x3 HSC-DCN, which is due to the its

relatively larger network size.

4 .4 .5 Coflow completion time

Coflow Completion Time (CCT) is defined as the average value of transferring time of all

flows within a coflow [252]. We use this metric to show the overhead and impact brought

by our current system design and implementation on the network performance. Figure 4.5

shows that CCTs of all coflows are larger than the soft completion deadline, 1s. It is caused

by the overhead (e.g., headers, signaling) of the network protocol, especially Transmission

Control Protocol (TCP), in the implementation, as well as accumulated processing delays

on each forwarding server. In this figure, ECAS-Online is able to achieve the lowest CCTs,

which confirms the results that it generates relatively shorter paths for coflows and did not

bring congestions on each link. However, we can also observe some abnormal spikes of
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CCT, such as the result of EEGFA when the width of the coflow is 50 in the second round. We

investigate this phenomenon and find that it is due to the congestion of the packet buffer

in the PPU. When the packet buffer congestion happens, some flow packets get dropped,

leading to the degradation of the TCP bandwidth.

4 .5 r e l a t e d w o r k

In this section, we provide background and related work on the architecture of HSC-DCN,

approaches and challenges to save energy in HSC-DCN.

4 .5 .1 Hybrid server-centric data center networks

A server-centric data center network architecture allows dense deployment of servers, thus

it is suitable for designing a compact yet powerful computing cluster. The topology of 3D

torus is a widely used High Performance Computing (HPC) interconnection. It is introduced

by CamCube [45] and NovaCube [226] to build a general-purpose data center. Compared

with conventional tree-based DCN, a server-centric DCN is more resilient to link and server

failures thanks to the existence of redundant paths among servers and absence of critical

network devices such as core switches. In addition, studies show that a server-centric DCN

can support on-path aggregation to reduce network traffic for data analysis applications

like MapReduce [46, 222].

The millimetre wave (mmWave) wireless communication technology provides large band-

width over short ranges. It operates in unlicensed spectrum bands, making it feasible to

integrate into existing DCN on the market [90]. The mmWave RF technology uses narrow

beams, thus it can significantly reduce interference among antennas even in the close prox-

imities of servers. Additionally, narrow beams can be steered mechanically by rotating

parts of antenna circuits or electrically by using scanned array [44] to create on-demand

links among networking devices in DCN [114]. Integrating beam-steering mmWave wireless

links into the architecture design helps to further improve the flexibility and modularity

of a server-centric data center to make it possible to build a data center using ’boxes’ [70,

149] or ’containers’ [239]. These flexible wireless links provide additional network resource

and serve as ’shortcuts’ to alleviate the hotspot problem, depending on traffic load in

DCN [88]. Firefly [89] is a solution that manages the wireless connections in DCN to satisfy

communication demands in the network. It relies on SDN controller to first obtain demand

information, then jointly perform topology selection by determining transceiver-receiver

pairs and traffic engineering to route the volumes of traffic. Rush [91] is a centralized SDN

solution that jointly routes flows and schedules wireless directional antenna to achieve

low congestion levels in hybrid DCN. Again, RUSH performs cross-layer network control

by planning flow paths, scheduling the orientations of the radio and assigning proper
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working time for them. Compared with Firefly and RUSH that use heterogeneous trans-

mission medium to transfer application data, the authors of [228, 254] propose to use the

wireless part of hybrid DCN as the control plane to transmit control flows of SDN. They both

developed centralized algorithms to instruct directional wireless links to form a connected

graph and compute routing paths for control flows.

4 .5 .2 Energy saving for HSC-DCN

Several authors proposed the approach to reduce energy consumption of DCN by turning

off or putting temporarily unused network devices and communication links into the

sleeping mode [98, 134, 138, 246]. In [138], the authors integrate reliability constraints

into the model of energy optimization and solve it by gradually shutting down unused

links after the reliability of selected paths is achieved. The length of paths assigned to

flows is not considered and the solution generated for HSC-DCN could lead to larger end-

to-end delay and slower transferring of coflows. Wang et al. [225] propose algorithms

relying on the structural properties of the fat-tree topology, thus it is not suitable for

server-centric DCN. The work in [246] is most similar to our consideration and it tries to

achieve the balance between the energy consumption and path length. In oder to reduce

the computational complexity of the model, the authors restrict the searching space of

flow paths as the k shortest ones. Solving the optimization problem with the reduced size,

however, still costs considerable time in the scale from several seconds to minutes. These

existing energy-aware optimization algorithms also face unique challenges in HSC-DCN.

First of all, there are more candidate links and paths available in HSC-DCN due to the

large amount of possible directions to steer beams. This fact makes the searching space of

formulated problem larger compared with conventional DCN built with physically fixed

wired links. In addition, candidate RF links counter the occupation problem, in which one

directional antenna cannot involve in multiple established RF links at the same time due

to the necessity of beam locking, as pointed out by [79, 88, 114] and [91]. Our model and

algorithm share similarities with existing approaches but take these unique challenges into

consideration.

4 .6 c o n c l u s i o n

We investigate the problem of energy-aware coflow and antenna scheduling in a hybrid

(wired/wireless) server-centric data center network. We formulate this problem as an in-

teger linear program based on a composite energy model. The goal is to minimize energy

consumption by powering on as few packet processing units of servers and links as possi-

ble. We consider bandwidth constraints on links and the occupation problem when using

directional antennas. We further propose an heuristic algorithm to reduce the computa-
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tional complexity of our optimal solution. Our simulation results show that, with respect

to representative competitors, our approach achieves lower energy consumption and gen-

erates shorter paths – and thus lower completion time – for coflows. It is a promising

direction to consider heavier traffic loads as well as handling the co-existence of multiple

coflows.

68



CHAPTER 5

R E S O U R C E O P T I M I Z AT I O N U S I N G S E L F - A D A P T I V E A L G O R I T H M S

5 .1 i n t r o d u c t i o n

As we already discussed and presented in Section 2.3.2.1 and Section 4, combining flex-

ible traffic engineering and dynamic adaptation of operation status of devices is able to

reduce power consumption of a network. The commonly used approaches to reduce net-

work power consumption are designing energy-efficient routing mechanisms and adapting

the operation modes of network devices, including packet processing units, line cards,

transmitters of links and their peripheral circuits, to the sleep mode or low-power mode.

Network management frameworks, such as GreenTE [246], ElasticTree [98], EEGFA [242]

and FGH [71], relies on the optimization models or heuristic algorithms to compute power-

efficient solutions. However, directly solving the optimization model for each batch of

communication demands costs seconds even hours as we show in Chapter 4. Some heuristic

algorithms take advantages of the properties of a network topology, thus they are not

applicable for networks with a different topology [138]. In addition, due to the strict

constraints defined in the optimization model and heuristic algorithm, not every possible

combination of traffic demands can be solved, which leads to the failure of computation.

Machine learning, particularly deep learning, has achieved great popularity and suc-

cess in many fields such as computer vision [221], natural language processing [244] and

robotics [206]. Recently, one of the branches of deep learning, Deep Reinforcement Learning

(DRL), attracts attentions of the network research community. Unlike traffic engineering

frameworks leveraging supervised learning [146, 255], DRL-based network optimization ap-

proaches do not need a dataset containing historical operation data, e.g., routing decisions

taken by deterministic algorithms. Ideally, without much prior knowledge of a network

and its environment, these self-adaptive intelligent frameworks are able to gradually learn

a network management policy that handles network dynamics, such as constantly varying

network workload, by the method of trial-and-error. In this context, the work presented in

this chapter attempts to answer the question: is the state-of-the-art deep reinforcement learning

technique suitable for improving networking power efficiency that is achieved by the commonly used

approach of flow consolidation?

Existing DRL-based traffic engineering and network management frameworks, such as

DeepConf [187] and those presented in [203, 235], focus on reducing packet delays. These
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approaches for optimizing the performance of networks via traffic engineering are built

upon Deep Deterministic Policy Gradients (DDPG) [137] and Asynchronous Advantage

Actor-Critic (A3C) [155], which are designed for a single agent. More specifically, the

controller uses one learning agent to take multiple actions at the same time for the whole

network (assigning link weights) [203, 235]. Afterwards, the routing paths are searched

based on the calculated link weights.

In this chapter, we propose that, from the perspective of each flow, data flows need to co-

operate or compete by selecting their corresponding paths to achieve traffic engineering goals,

which can be referred as a Multi-Agent System (MAS). Each data flow can be modelled as

an agent that selects its path from a set of precomputed shortest paths, which leads to a

reduced search space for solutions. As a result, we firstly investigate the above described

problem and present a DRL-based power optimization framework named DeepGreen. In

the current design, DeepGreen performs joint scheduling of routing paths and operation

status of network devices so as to reduce the power resource consumption in a data center

network. Since we model the network and a group of data flows as a MAS, we select a DRL

algorithm named Branching Dueling Q-Networks (BDQ) [211] as the fundation of the core

modeling algorithm, due to its capability to control multiple agents interacting with each

other.

Our evaluation results show that, achieving power efficiency in a standard DCN archi-

tecture via flow consolidation while maintaining low end-to-end delays is a difficult task

for the deep reinforcement learning approaches considered in this chapter. We find that

they are outperformed by the classical optimal and heuristic algorithms. The multi-agent

modeling approach in DeepGreen is able, to some extent, to provide solutions that lead to

power reduction and maintain low end-to-end delays. However, it cannot always generate

the most power-efficient solutions when facing very dynamic traffic volumes and hence its

average performance is not as competitive as that of the classical algorithms.

The remainder of the chapter is structured as follows: Section 5.2 describes the network

setups and basic idea to conserve power consumption via flow consolidation. Section 5.3

provides the formal model and Section 5.4 provides the description of DRL-based formu-

lation. We provide evaluation results and detailed discussion in Section 5.5. Finally, we

summarize related work in Section 5.6 and conclude this chapter in Section 5.7.

5 .2 s c e n a r i o a n d a s s u m p t i o n s

In this section, we describe the network setups and the basic idea to reduce power con-

sumption in a fat-tree based software-defined data center network.
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5 .2 .1 Network setups

In constrast to the hybrid network architecture investigated in Chapter 4, this chapter

considers a SDN-based data center network of the classical fat-tree topology, as shown

in Figure 5.1. We already briefly inroduced the fat-tree topology in Section 2.1.2.2. In

this network architecture, a network consists of three layers of switches, namely edge

switches, aggregation switches and core switches. Edge switches usually directly connect

with servers, and hence are called Top-of-Rack switches that reside at the leaf location of

the network. Aggregation switches are responsible of aggregating traffic flows from the

edge switches within the same pod. Core switches are located at the most upper layer

of the network architecture and exchange data among pods. The configuration of the

number of each types of switches is not random but follow a set of rules. A K−ary fat-tree

indicates that K pods exist in the network, and each pod consists of K/2 edge switches

and K/2 aggregation switches. The total number of core switches is (K/2)2. The switches

are connected by Ethernet or Infiniband. The advantage of the fat-tree DCN is that it

can provide uniform network capacity with low-cost devices due to using of relatively

low-speed switches at the edge and aggregation levels. Meanwhile, it also provides great

scalability to increase the size of the network, as well as free selection of multiple paths for

data packets [66].

5 .2 .2 Basic idea to reduce power consumption

One opportunity, which is identified by many research articles, to reduce power consump-

tion of a richly connected DCN is energy-aware routing. In this approach, a network

management system built upon SDN to perform cross-layer coordination of power states of

networking devices and routing paths of data flows. This basic idea of conserving power

consumption in DCN is motivated by two observed facts. The first observation is that

power consumption of network devices remain relatively static despite that their traffic

workloads vary over time [98]. The second observation is that many modern networking

devices support dynamic power management at the silicon level, such as clock scaling and

voltage scaling, and device power management can be be integrated into standard SDN

protocols [253].

These two facts indicate that it is possible to reduce the overall power consumption by

putting some components in networking devices into the sleeping mode when there is low

even no traffic workload. Similar to existing research articles [98, 134], the basic idea behind

this chapter to reduce power consumption for a SDN-based DCN is aggregating data flows

to go through a set of selected network components in the wake-up mode so as to make the

rest devices of a network work in the sleeping mode, as illustrated in Chapter 2.3.2.1. This

approach contradicts another important network optimization goal, congestion mitigation,
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Figure 5.1: SDN network that has the typical fat-tree topology that only consists of Ethernet connec-
tions

which is usually achieved by balancing data transmission workloads among network links

and nodes. As a result, reducing power consumption of DCN should not cause a significant

increase in network congestion.

5 .3 f o r m a l m o d e l

This section provides a description of power and traffic models that are used throughout

this chapter. It also provides a formal model that optimally solves the power efficiency

problem in software-defined data center networks. The models introduced in this chapter

are similar to those presented in Chapter 4 but do not include the constraints caused by

introducing wireless links into the network architecture.

5 .3 .1 Power model and traffic model

A generic yet widely used power model for a network switch in DCN categorizes the power

consumption into the static and dynamic parts [241]. Depending on which components

of a switch are configured in the sleeping mode, the static part refers to the power con-

sumption of the line-card and periphery fabric, and the dynamic part refers to the power

consumption of device ports and interfaces that directly connect with another networking

device. In order to reduce power consumption of a switch, both ports at the end of a link

are deactivated when there is no inbound and outbound traffic on this link. Furthermore,

when all associated ports of a device enter the sleeping mode, the same device’s line-card

and periphery fabric can be also configured in the sleeping mode to further reduce the

power consumption. We use Ps to represent the static part and Pd to represent the dy-

namic part of power consumption. As a result, the total amount of power consumption of

a switch is calculated as: P = n ∗ Ps +m ∗ Pd, where n is a binary value indicating if the

line-card and its periphery fabric are activated or not, and m is the number of ports that

are activated.
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A SDN controller obtains the information about traffic in the network either by perform-

ing real-time monitoring on current workloads or explicitly accepting bandwidth demands

from a network resource provisioner, as discussed in section 2.2.3. In this work, a controller

of DCN receives a traffic matrix consisting of bandwidth demands among ToR switches.

These demand requests arrive in the batch mode. A demand request, i :< si, ri,di > indi-

cates the volume of requested bandwidth, the source ToR switch and destination ToR switch.

Delimitrou et al. [57] analyzed the network workload traces in Microsoft’s data centers and

use the hierarchical spatial Markov chain model to describe the traffic properties among

racks and servers. In this work, the controller performs traffic engineering and schedules

the routing paths at the granularity of data flows among ToR switches. Hence, we model

the bandwidth demand between each pair of ToR with a Markov chain for the synthetic

generation of data packets.

5 .3 .2 Problem formulation

In this chapter, the goal to perform traffic engineering and network configuration is to

reduce the overall network power consumption when facing dynamic communication

demands among servers of DCN. However, one of the consequences of aggregating traffic

flows into a selected set of devices is that their routing paths may be pushed away from

their shortest path. In order to reduce the end-to-end delays caused by the stretched

routing paths, the model proposed in Chapter 3 introduces the constraints on the length of

permitted paths. Another option to address this problem is to only choose from the set of

existing shortest paths to transmit data flows. The controller needs to firstly precompute

available shortest paths for all pairs of ToR switches that communicate with each other.

Then, the controller uses an algorithm to calculate the combination of shortest paths from

the precomputed candidates that leads to the energy efficiency. It is worthy of mentioning

that this approach has the drawbacks of generating sub-optimal results and computation

overhead of calculating shortest paths for all communication pairs. However, network

configurations based on precomputed shortest paths can avoid stretched flow paths with

excessive long length. More importantly, instead of assigning flows to large number of links,

precomputing available flow paths effectively reduces the searching space and computation

time. We derive the basic formulation from the model proposed in GreenTE [246] as the

baseline to compare with DRL-based solutions.

A directed graph G = (V ,E) can be used to represent the topology of a data center

network, where V stands for the set of SDN switches and E represents the set of links

among them. The k-shortest paths of each communication pair are firstly calculated and

denoted by Li. The rest of symbols used in the model are listed in Table 5.1. We formulate

the problem as ILP as following.
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Variable Definition

i :< si, ri,di > A tuple of a flow request containing source si, destination ri and

a bandwidth demand di

M A set of flow requests arriving in batches

Ps Static power consumption of the line card, peripheral circuit in a

SDN switch

Po Dynamic power consumption of ports to maintain an activated

link

βv βv = 1 if the line card and peripheral circuit are activated

βe βe = 1 if the ports associated with a link are activated

V A set of SDN switches

E A set of links among SDN switches

Li A set of precomputed shortest paths for a flow request i

til til = 1 if a flow request i is assigned onto the path l

αe
l αe

l = 1 if an edge e belongs to a path l

C Capacity of a link between two SDN switches

Table 5.1: Variables used in the optimization model of DeepGreen.

minimize Ps
∑︂

v∈V

βv + Po
∑︂

e∈E

βe/2 (5.1a)

subject to
∑︂

l:l∈Li

til = 1 , ∀i ∈ M (5.1b)

til ⩽ βv , ∀i ∈ M, l ∈ Li, v ∈ Nodes(l) (5.1c)

til ⩽ βe , ∀i ∈ M, l ∈ Li, e ∈ Edges(l) (5.1d)

βe = βe′ (5.1e)
∑︂

i

∑︂

l∈Li

diα
e
l t

i
l ⩽ Ce , ∀e ∈ E, ∀i ∈ M, (5.1f)

αe
l =

{︄

1, if e ∈ l

0, if e /∈ l
, ∀e ∈ E (5.1g)

In this formulation, Constraint (5.1a) is the objective function that sums and minimizes

the static and dynamic power of all networking devices in DCN. Constraint (5.1b) indi-

cates that it is allowed to select only one shortest path from all available candidates for a

communication request to avoid packet reordering. Constraint (5.1c) and Constraint (5.1d)

formalize the condition that the line card, peripheral circuit and ports need to be activated

if a switch or a link belongs to a selected shortest path. Constraint (5.1e) indicates that a link
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Figure 5.2: Concept of reinforcement learning.

transits to sleeping mode when there is no traffic in both up- and down-links. Constraint

(5.1f) indicates that the total volume of aggregated workload on a link should not exceed

its capacity.

5 .4 m o d e l a n d a l g o r i t h m b a s e d o n m u l t i - a g e n t d e e p r e i n f o r c e -

m e n t l e a r n i n g

In this section, we detail the process of modeling the problem using the deep reinforcement

learning approach.

5 .4 .1 Reinforcement learning

Reinforcement Learning (RL) is a branch of machine learning, in which an agent interacts

with its surrounding environment via a sequence of steps consisting of an observation,

an action and a reward [73]. Figure 5.2 depicts the interactions between an agent and

environment. In this figure, an agent operates in an environment characterized by a set of

states st ∈ S. The agent is capable of choosing an action from a set at ∈ A. The selection

of an action is not performed randomly. Instead, the agent follows a policy that is denoted

by π(s,a) to choose an action. This policy describes the probability of choosing an action

at = a when facing state st = s. The agent takes the selected action and receives a reward

rt and receives its new state st+1.

Supervised learning requires a number of samples associated with labels to extract

patterns. Instead, RL adopts the approach of trial-and-error to gradually learn actions

that can lead to maximum delayed rewards in a dynamic and uncertain environment. This

learning process can be described as a Markov Decision Process (MDP). Due to the Markov

property (memoryless states), actions selected through a policy only depend on the current

states but not the historical ones. The approaches to compute the optimal policy, π′s,a,

are either model based or model free, depending if a model of the environment is needed or

not during training. Agostinelli et al. [4] categorize the algorithms to compute the optimal
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policy into two types: (i) searching first in the space of a value function representing the

benefit for an agent to reach a given state, then deduce the optimal policy; (ii) representing

policies in a explicit way by using a policy function and updating it over time. The former

category of algorithms includes Linear Programming (LP), Dynamic Programming (DP),

Monte-Carlo methods (MC) and Temporal Difference methods (TD). The latter ones include

the algorithms based on evolution and Policy Gradient (PG) methods.

5 .4 .2 Deep reinforcement learning

Deep learning is fundamentally a representation-learning method that uses multiple levels

of simple yet non-linear modules to gradually extract high-level features [130]. It has been

successfully applied in resolving various types of engineering problems, ranging from com-

puter vision [24, 140] to network traffic classification [65, 141]. In these applications, deep

learning is used as supervised or semi-supervised learning and solved with the stochastic

gradient descent algorithm. Neural networks, as the core concept in deep learning, con-

sists of layers of simple, connected neurons being activated by inputs from raw data or

other neurons and generating a sequence of real-value outputs. This computation tool is a

universal approximator that can "approximate any measurable function to any desired degree of

accuracy" [100].

Reinforcement learning involves two important functions, namely the value function and

the policy function, as briefly introduced above. The idea behind deep reinforcement learn-

ing is essentially introducing deep neural networks to represent these two functions. By

doing this, it is possible for reinforcement learning algorithms to handle high-dimensional

environment and actions. The improvement on one of the classical value-based RL algo-

rithms, Q-learning, can demonstrate this adavantage. In Q-learning, a Q-value is used to

represent the goodness of an action under one specific state. The classical Q-learning algo-

rithm uses a table to store and update Q values. However, it is difficult for a Q-value table

to represent high-dimensional and continuous states, such as images. Deep Q-learning,

and its subsequent extensions, for instance, Double Q-learning [220] use deep neural net-

works to substitute the Q-value table to assess the maximum reward after carrying out a

sequence of actions when observing a complex state.

In contrast to the value-based DRL algorithms, policy-based algorithms directly generate

actions and update their policy network. Policy gradient is a typical policy-based algorithm

that is effective in high-dimention or continuous action spaces. In the policy gradient

approach, the parameters of a policy network are updated by following the policy gradient

theorem [207].

More advanced DRL algorithms, such as Deep Deterministic Policy Gradients (DDPG) [137]

and Asynchronous Advantage Actor-Critic (A3C) [155] use an actor-critic architecture to

combine the advantages of both value-based and policy-based approaches. The actor, which
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Figure 5.3: Illustration of the branching dueling Q-network algorithm.

is policy-based, controls how an agent behaves given the current state of environment. The

critic, which is value-based, plays a role of evaluating the situation and the actions selected

by the actor. In principle, the goal of updating the parameters of a critic is to make it

more accurate in judging the situation and selected actions. The parameters of an actor

are updated in the direction indicated by a critic. The expectation on such combination

of the value-based and policy-based approaches is that using two models leads to the

improvement of the learning efficiency.

5 .4 .3 DRL-based formulation: algorithm

In Section 5.4.2, we mention that the commonly used deep reinforcement learning algo-

rithms for optimizing the performance of networks and cloud infrastructures include Deep

Q-learning (DQN) [187], DDPG [203] and A3C [235], which are designed for a single agent.

More specifically, the controller uses one learning agent to take multiple actions at the same

time for the whole network (e.g., assigning link weights). However, from the perspective

of each flow, they need to cooperate to use power-efficient paths and to achieve low latency

of packets. Meanwhile, if we firstly compute all possible combinations of flow paths and
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take actions on selecting one combination, the total number of combinations is a very large

number.

In this contribution, we propose to model the traffic engineering problem using DRL

techniques developed for a multi-agent system. Particularly, due to the simplicity and

good performance, we choose the Branching Dueling Q-Network algorithm as the base of

problem formulation [211]. BDQ is a multi-agent extension of the Deep Duel Q-Network

(DDQN) algorithm that is designed to compute sub-actions for one action dimension. Fig-

ure 5.3 illustrates the architecture of the BDQ algorithm. The shared representation takes the

observed state Si as the input and produces a corresponding state value that identifies the

common part of actions when facing the situation. The advantage values of each dimension

of actions is further computed and finally combined with the previously computed state

value to calculate the final Q-values for sub-actions in each action dimension. The action

associated with the largest Q-value in each action dimension is selected as the output.

5 .4 .4 DRL-based formulation: modeling

Section 5.4.1 introduces the vital elements in a model based on deep reinforcement learning,

namely states, actions, and rewards. To use the deep reinforcement learning framework

to model the scheduling problem of power-efficient DCN, it is necessary to design the

corresponding state representation, action space and reward function.

State representation: The states that the agent observes are bandwidth demands repre-

sented by a serial of traffic matrix. We use S = {M1,M2, ...,Mk}, where Mi is also used

in the optimization model described in Section 5.3.2, to denote the sequence of arriving

batches of flow requests.

Action space: Several experience-driven traffic engineering solutions design the action

space in the way that the controller take actions on the link weights. The computed link

weights are then utilized to search paths by using shortest path searching algorithms like

Dijkstra [59]. In this work, similar to the optimization model, we firstly precompute k

candidate shortest paths for each possible communication pair. Afterwards, the controller

takes actions on selecting from the precomputed candidate paths and calculates the set

of switches and links that need to be activated to construct selected paths. We use A =

{A1,A2, ...,Ai} = {{l11, l12, ..., l1k}, {l
2
1, l22, ..., l2k}, ..., {li1, li2, ..., lik}} to represent the action space

consisting of k candidate shortest paths for every flow request i. Hence, the action taken

each time is a = {l1, l2, ..., lj|li ∈ Ai} and li represents one selected shortest path for the

flow request i. Comparing with the approaches based on link weights, using precomputed

k shortest paths reduces the complexity of the action space and constrains the end-to-end

delays caused by stretching flow paths.

The challenge of modelling each flow as one learning agent is that the a large number of

concurrently existing agents makes it difficult to collaboratively learn to select appropriate
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Algorithm 5 Calculate power consumption of DCN when the controller takes an action

Input: calculated action a = {l1, l2, ..., lj}, static power Pv, dynamic power Po.

Output: power consumption of activated devices P(a).

Initialize:

1: P(a) = 0

Main procedure:

2: for l ∈ {l1, l2, ..., lj} do

3: for v ∈ V do

4: if v belongs to l and v is not marked as active then

5: P(a) = P(a) + Pv
6: Mark v as active

7: end if

8: end for

9: for e ∈ E do

10: if e belongs to l and e is not marked as active v is not marked as active then

11: P(a) = P(a) + Po
12: Mark e and e′ as active

13: end if

14: end for

15: end for

flow paths. Developing DRL algorithms to handle scenarios with many learning agents still

remains as a challenge [111]. In order to reduce the number of agents used in the model,

the flow requests between m and n in both directions, < s, r,d > |(s = m, r = n) and

< s, r,d > |(s = n, r = m), share the decisions made by the same agent. It means that their

paths involve the same switches and links but are in the reverse directions.

Reward function: The reward considered in this work is the total amount of conserved

power consumption when fulfilling incoming communication requests. As a result, the first

part of the reward r is Pr = Ptotal − P(a). Ptotal stands for the total power consumption

if all devices and links in the network are activated. P(a) is the power consumption that

is necessary for keeping devices and links that belong to any selected path in the action

a. Algorithm 5 provides the details of computing power consumption P(a) of DCN when

a controller takes an action. Additionally, as the Constraint (5.1f) of the formal model

suggests, the allocated workload on one communication link should not exceed its capacity,

otherwise, network congestion happens on this link. To avoid an excessive workload to

be assigned to the same link, the designed reward function also includes the experienced

delays of packets as the indicator of congestions. Hence, the second part of the reward r is

d, which is the maximum delay experienced by packets of a flow. To this end, the reward r
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is represented as r = Pr −α ∗ d, where α is the ratio expressing the relative importance of

two objectives: reducing power consumption and avoiding link congestion.

5 .5 e va l ua t i o n

We perform evaluation on the performance of DeepGreen, a DRL-based power optimization

method for the software-defined data center networks.

5 .5 .1 Evaluation setups

In order to evaluate our DRL modelling approach, we developed a simulation framework

that comprises of a network simulation component implemented with OMNeT++ [168] and

a learning component built with a machine learning framework, TensorFlow [213]. These

two components interact and share information, such as states (traffic workloads), actions

(selection of a shortest path) and rewards (combination of reduced power consumption

and pack delays), via the message bus and files.

The time complexity of the training process in the DRL-based power optimization method

origins from two aspects: large number of training iterations and relatively slow network

simulation. More specifically, the OMNeT++ simulation sequentially processes all transmis-

sion events but packet transmission parallelly takes place in reality. As a proof of concept,

in order to perform evaluation within reasonable time, the size k of the fat-tree network

is set to 4. With this configuration, the total number of switches in the network is 20 and

the total number of links among the switches is 32. Each link has two operation modes,

namely the active and sleep mode. A link that is configured in the active mode reaches

its designed transmission capacity but causes its associated ports, line card and peripheral

circuit to consume more power compared with the sleep mode.

The expected workload among edge switches is represented by a traffic matrix Mi.

Similar to [91], we use a Stride-i traffic model to determine elephant flow entries Mi,

where an edge switch with id x transmits k data flows to another edge switch with id

(x+ i) mod n, and n is the total number of edge switches in the network. Additionally,

each elephant flow entry in the matrix Mi follows a Markov process that has three states,

namely the low date rate, medium date rate and high data rate. The transition probability

among these states is defined by the following matrix:

Next State

C
u

rr
en

t
S

ta
te





Low Medium High

Low .5 .2 .3

Medium .3 .4 .3

High .3 .1 .6
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Type Parameter Configuration

Network

simulator

Topology K-ary fat tree, K=4

Capacity of links between core and

aggregation switches
500 Mbit/s

Capacity of links between aggrega-

tion and edge switches
100 Mbit/s

Traffic pattern of a single flow Poisson distribution

Low, medium, high data rate of a

single elephant flow

20 Mbit/s, 35 Mbit/s,

50 Mbit/s

Power consumption of an active

line card
3 units

Power consumption of an active

link
1 unit

Learning

algorithm: BDQ

Number of agents 28

Number and units of the shared

representation layer
4 x 64

Number and units of the advantage

function layer
3 x 64

Number and units of the action

layer
3 x 64

Exploration factor 0.1-0.5

Replay buffer

Experience priority

buffer with size of

15000

Learning rate 1e-04

Importance factor of delays 300

Table 5.2: Important configurations of the network simulation and reinforcement learning algorithm.
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This transition matrix is synthetic but designed so as that the data rate of elephant

flow tends to remain unchanged by setting higher self transition probability. The actual

transition matrix can be derived from fine granular management data of public clouds

owned by corporations such as Microsoft, which is however not publicly available so

far [57]. Table 5.2 summarizes the setups and corresponding parameters used in the

evaluation.

In this evaluation, we selected two classical approaches to compare with our DeepGreen

algorithm. Two classical algorithms are the optimal algorithm and a heuristic algorithm

proposed in [242]. The model of the optimal algorithm has been described in Section 5.3.2,

and we implement this algorithm by using the Gurobi solver [84]. In the evaluation and

training process of DeepGreen, at each step, all algorithms accept the same input data of

traffic patterns until the system reward and training process become stable.

5 .5 .2 Evaluation results and discussion

We focus on two performance metrics, namely the average normalized power consumption

reduction and the average experienced packet delay. The former one is calculated by divid-

ing the number of power consumption reduction measured in units with the total number

of power consumption if all devices and links are activated. The latter one represents the

maximum value of the average delays experienced by packets of all flows in the network.

It represents the congestion level in the network since the current implementation of the

simulation model does not include propagation delays and processing delays on links and

switches.

5 .5 .2 .1 Summary of results

Figure 5.4 shows the evolution of the system performance metrics during the training

process of DeepGreen and the corresponding results of the optimal and heuristic algorithms.

Figure 5.5 shows the performance of different algorithms within the last 100 steps when

the training becomes stable.

Particularly, Figure 5.4a depicts the average normalized power consumption reduction

during the training process. This figure shows that the training process of DeepGreen

starts from the states where the flow paths are dispersed. It is the opposite of the state

where the flows are consolidated and the power conservation is maximized. As the training

continues, the percent of reduced power consumption increases until there is almost no

further improvement. Compared with the average 26% power consumption reduction

achieved by the optimal and heuristic algorithms, DeepGreen achieves around 25% of their

performance in this major network optimization goal, as shown in Figure 5.5a.

Figure 5.4b shows the average experienced delays of flow packets across the training

epochs of DeepGreen. In this figure and Figure 5.5b, DeepGreen maintains relatively
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(a) Average normalized power consumption reduction when training DeepGreen.
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(b) Average delays experienced by flow packets during training DeepGreen.

Figure 5.4: Performance comparison with the optimal and heuristic algorithms when training Deep-
Green.
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(b) Average delays experienced by flow packets within

the last 100 steps when the training becomes stable.

Figure 5.5: Performance comparison with the optimal and heuristic algorithms after the training
becomes stable.

low delays (with an average below 0.0005 second) compared with the heuristic algorithm,

although the delays are volatile. It is because that the during the training process, there is

a chance that a path is selected randomly for exploration. We can also see from Figure 5.4b,

that the optimal solution leads to the minimum delays due to the strict constraints on the

maximum allowed aggregated data rates on each link. It is also worthy of noticing that the

energy-efficient heuristic algorithm causes link congestions, which are indicated by those

spikes, from time to time. It is due to its greedy searching strategy for the paths that lead

to the maximum level of flow aggregation.

5 .5 .2 .2 Discussion of evaluation results

Classical algorithms are able to solve the problem of reducing the power consumption of

SDN-based computer networks through flow consolidation. Deep reinforcement learning

has achieved great success in many tasks. But it is a challenging task to directly apply the

DRL approach to perform power conservation under the setups and assumptions presented

in this chapter, which is confirmed by the simulation results. This is due to: (i) the open

challenges when deep reinforcement learning is applied to solve a complex task [111]; (ii)

the unique properties of the setups and assumptions of the problem addressed by this

chapter. We discuss possible factors that play vital roles in determining the performance of

the DRL-based formulation for the power conservation problem investigated in this chapter.
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• Sparse rewards. The current power model of forwarding devices requires that a de-

vice or a link can be put into the sleep mode when they do not host any flow, which

is a relatively strict precondition. As a result, when a learning agent explores other

alternative paths to place a flow, redirecting one flow from a specific device or link

is not sufficient to trigger the operation of power conservation and to improve the

reward signal, until the last one is removed. On the contrary, some other optimization

objectives, such as reducing end-to-end delays, are very sensitive to the change of

flow routing paths, which makes this reward signal dynamic. In fact, the additional

evaluation presented in Appendix A.1 shows that, our multi-agent DRL formulation

performs better in the task of reducing end-to-end delays (27% improvement) com-

pared with the task of conserving network power consumption (7% improvement).

Dealing with sparse rewards is still a challenge for current deep reinforcement learn-

ing algorithms [111].

• Large action dimension. The action dimension, that equals to the number of com-

munication pairs in the DeepGreen formulation or the number of connections in the

link-weight based formulation, is large compared with the typical setups used in the

deep reinforcement learning community. In the formulation based on the multi-agent

paradigm, each agent represents one action dimension and they try to achieve a high

reward in a collaborative way. Even with mechanisms that support communicating

information of other agents’ actions, such as the shared representation in BDQ and the

centralized critic in MADDPG [142], it is still difficult for a single agent to correctly

update its gradients when facing the highly dynamic environment.

• Coexisting traffic engineering objectives. In this work, the reward function is de-

signed as the weighted sum of two objectives: conserving power consumption and

avoiding link congestion. These two objectives contradict with each other since power

conservation requires flow consolidation and congestion avoidance requires flow dis-

semination. But these two objectives are not strictly in a inverse relation under the

current assumptions. For example, migrating a flow from one link to alleviate the

congestion does not necessarily increase the power consumption due to the defini-

tion of the assumed power model. Hence, it is also a challenge to correctly update

gradients of each agent without advanced techniques developed for multi-objective

DRL [164].

Based on the above discussion, it is possible to further improve the performance of the

DRL-based formulation for the presented power conservation problem from the following

aspects.

First of all, a model with finer granularity of power changes depending on the assigned

traffic workload provides dense reward signals. Instead of assuming only two operation

modes, active mode and sleep mode, for network devices, an adaptive power model that
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dynamically calculates power consumption depending on the aggregated workload on

each link and devices. More specifically, we can use a linear or non-linear function to

precisely describe the relation between the power-consumption and device workload, so

as to increase the density of reward signals.

Secondly, it is important to understand the stability of different DRL algorithms in multi-

agent and multi-objective scenarios. For example, the link-weight-based formulation used

in the algorithm comparison relies on the DDPG algorithm, which struggles in achieving

balance between the power reduction and congestion mitigation in our experiment. Com-

paring with the typical evaluation scenarios reported in literature where state-of-the-art

DRL algrithms are proposed, the scale of network optimization problems is larger in terms

of the number of agents or the number of actions. The capability of newly developed DRL al-

gorithms that handle complex multi-agent and multi-objective network traffic engineering

problem requires investigation by extensive evaluation.

5 .6 r e l a t e d w o r k

The recent breakthroughs, including hardware accelerators and algorithm advances, of

deep learning has boosted the development of many autonomous and intelligent systems.

As a result, deep learning based network management, such as intelligent network traffic

control systems, has recently received attentions and been developed to optimize the per-

formance of data networks and cloud infrastructures [65]. In [167], deep learning is used

to explore time-varying properties of network workloads and to perform network traffic

prediction for data centers. The authors of [146] show that local switches can use super-

vised learning based on Artificial Neural Networks (ANN) to learn the routing strategies

taken by previous data packets or generated by traditional routing protocols. The routing

decisions are computed through inferences instead of using the signaling mechanism that

commonly exists in routing protocols like OSPF. Similar work such as [255] also relies on

the empirical traffic routing data and an ANN-based sequence-to-sequence model to learn

appropriate data paths with certain constraints.

Deep reinforcement learning becomes attractive in optimizing network performance due

to its capability of being self-adaptive and being trained without a data set that is necessary

for supervised learning. The authors of the pioneer work [203, 235] adapt the classical

DRL algorithms such as DDPG and A3C to learn how to arrange paths for data flows to

achieve low latencies. The output actions in these work are the weight of network links.

DeepConf [187] is a DRL-based network topology management framework for hybrid data

center networks comprised of wired, wireless or free optical links. It accepts traffic matrix

as the current state and computes augmented network topologies that lead to maximum

link utilization and minimum flow completion time. In addition to the flow scheduling

problem, DRL-based approaches are also used in many aspects of modern network and
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cloud systems. For example, DRL-based approaches are able to control the cooling system

of data centers to reduce power consumption [136], calculate strategies of task offloading

and radio resource assignment in edge computing [53] or dynamically adjust allocated

resources to embed virtual networks in a cloud [152].

5 .7 c o n c l u s i o n

In this chapter, we investigate the question that if the multi-agent deep reinforcement

learning technique can improve networking power efficiency. To this end, we developed a

DRL-based optimization framework named DeepGreen, which includes a multi-agent DRL

formulation based on actions of selection from shortest paths for each data flow. Evaluation

results show that the classical algorithms still can achieve the best performance and our

developed DRL-based formulation can achieve power reduction to some extent while main-

taining relatively low delays. Compared with the link-weight-based DRL formulation, the

modeling approach in DeepGreen can achieve similar power efficiency but better control of

experienced packet delays. Furthermore, we discussed the possible directions to improve

the performance of our proposed DRL-based formulation for this particular problem.
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CHAPTER 6

M I T I G AT E A B U S I V E U S A G E O F S D N C O N T R O L P L A N E

R E S O U R C E

6 .1 i n t r o d u c t i o n

The resource conservation models and algorithms developed in the previous chapters run

in a centralized network controller. The responsiveness of the implemented network con-

figuration modules to react to incoming communication requests depends on the efficiency

of proposed algorithms, as well as on the availability of resources used to perform com-

putation and transmission of control messages. Section 2.3.3 introduces a very harmful,

yet easy to implement, Denial of Service attack that misuses the separation between the

control plane and data plane is the CPS attack. CPS is a general problem for the centralized

software-defined networking technology. In software-defined radio, saturation of the cogni-

tive control channel is implemented by sending a large amount of cognitive messages [15].

Since we perform network configurations mainly using traffic engineering supported by

centralized software-defined network management, this chapter focuses on CPS taking place

in OpenFlow-based SDN.

In OpenFlow-based SDN, switches and routers1 in SDN are devices that are responsible

only of forwarding traffic according to the decisions taken by a (logically) centralized

network controller. In DoS attacks targeting SDN, the adversary exploits the fact that SDN

switches send control packets to the controller whenever their flow tables miss rules match-

ing for incoming flow packets. In particular, the adversary generates a large number of

such packets rapidly. This will trigger the switches to flood both the controller and the

control channels with control packets with the malicious intention of tearing down the

control plane. The malicious control packets will consume the computational resources of

the controller as well as the bandwidth of the control plane. As a consequence, the com-

munication between the switches and the controller will be disrupted, and the legitimate

flow packets will not be (timely) handled.

As already summarized in Section 2.3.3, many proposed solutions are commonly imple-

mented as protection modules on the controller side [61, 191, 224, 227]. The protection

module receives incoming control packets, before other controller modules, and analyzes

them to identify potential adversaries (those generating flow packets that cause large

1 From now onward, the term switch will represent both types of devices.
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amounts of control packets). Once potential adversaries are identified, the protection mod-

ule carries out some mitigation actions (e.g., installing flow rules in the switches to block

traffic coming from the identified hosts [224]). While these solutions are effective in pro-

tecting the computational resources of the controller, they do not alleviate the bandwidth

saturation in the control plane. This is because all control packets still have to be sent from

the switches to the controller untill they are handled by the protection module.

In this chapter, we present a solution – In-Network Flow mAnagement Scheme (INFAS)

– to protect SDN networks against CPS. INFAS addresses the aforementioned drawbacks

of prior solutions by a self-contained in-network module to handle the malicious data flows

from a source, before they saturate the control plane. INFAS is designed as a network

function running on the commodity servers installed near network switches. Such in-

network resources are already available in the current, rapidly increasing, networks that

support Network Functionality Virtualization. Switches send flow packets that do not

match any rule in their flow tables firstly to INFAS for evaluation. INFAS, in turn, employs

a novel threshold-based algorithm to determine the probability of allowing the received

flow packets to return to the switches and trigger the corresponding control packets. To

reduce the delay caused by this additional processing step, we build INFAS using the Data

Plane Development Kit (DPDK) [104]. We evaluate the effectiveness of INFAS extensively

through a representative prototype and network emulations.

The remainder of the chapter is structured as follows: we motivate and describe the de-

sign of INFAS in Section 6.2. The evaluation results are presented in Section 6.3. Section 6.4

provides additional summary of related work, and we conclude this chapter in Section 6.5.

6 .2 o u r s o l u t i o n : i n f a s

In this section, we first motivate this design choice, then describe INFAS, our solution for

protecting SDN against the CPS DoS attacks.

6 .2 .1 Motivation for proactive in-network protection

Installing protection modules in the SDN controller has been shown to be a working ap-

proach to protect SDN against resource saturation. This is mainly because the controller, as

a central network management entity, has a global view of control and flow packets. With

such a view, the protection module can, for example, precisely evaluate the trustworthiness

of flow senders [227]. The controller workload can be alleviated, for example, by buffering

incoming control packets [227] or by offloading the workload to other resources [223].

Nevertheless, even with this improvement, the controller-based protection approach

cannot timely mitigate the bandwidth saturation of the control channel (resulting from
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Figure 6.1: The system architecture of INFAS.

excessive amounts of control packets – see Section 2.3.3.1). Furthermore, to enable adaptiv-

ity in the controller-based approach, the controller is required to frequently acquire flow

statistics from the switches and to update their flow tables accordingly. This translates into

additional large amounts of control packets, and subsequently into bandwidth saturation.

Event the approaches using in-network caches of control packets [223] suffer the delay

between the switch and controller. Last but not the least, the Open Flow Agent (OFA) in

the switch is only capable of generating limited number of packet_in messages, due to the

CPU constraint [247]. Thus, the overloaded switch OFA under DoS attack can also cause the

switch to delay or drop the packets from benign entities.

Motivated by the latest trend of deploying virtualised network functions in the network

to achieve network management tasks, we argue that it is a new approach to offload the CPS

protection to self-contained in-network modules running in a SDN network. By doing this,

both the switch and the control plane resources, including the computation and bandwidth

resources, are preserved. The responsiveness of a protection scheme to mitigate CPS is also

improved.

6 .2 .2 Architecture design

Figure 6.1 depicts a SDN network deployed with INFAS. For each switch, we deploy an

INFAS instance on a connected server. In this chapter, we do not consider cooperation, thus

there is no communication, among INFAS instances. Each INFAS instance consists of three
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components: (i) a flow management module, (ii) a query module, and (iii) a switch statistic

proxy. In the following, we describe each of these components, and how they interact with

each other.

The flow management module accepts the flow packets that do not hit any flow rule. It

includes an attack detection and a mitigation algorithm performing analysis over statistics

collected from both unmatched flow packets and the query module. It determines the

severity of control plane saturation caused by the packets from a flow source. Accordingly,

the flow management module tunes action parameters for each suspicious entity, e.g., a

host or a port, to drop a portion of the corresponding unmatched flow packets. Other

unmatched flow packets are considered legitimate, and they are sent back to the switch via

another port and will trigger packet_in messages.

The query module is responsible for collecting information that cannot be directly derived

by the flow management module. This information includes basic flow statistics, such as

flow packet counters. The query module requests them, at regular time intervals, from the

switch statistic proxy. Once the information is collected, the query module sends them to

the flow management module. The flow management module is separated from the query

module, i.e. they work asynchronously, because the former is tasked to perform in-network

packet processing at a high speed, while the latter involves slow I/O operations, such as

socket communication.

The switch statistic proxy is a small piece of code that runs in the switch to bridge the

switch with the two other INFAS components. As described above, the switch statistic

proxy receives inquiries from the query module asking for flow statistics. To answer these

inquiries, the switch statistic proxy executes basic switch control commands, aggregates

the returned results, and lastly sends the aggregated results back to the query module.

6 .2 .3 Flow rule design

To support the detection and mitigation algorithm, INFAS defines three categories of flow

rules: (i) concrete flow rule, (ii) redirection flow rule, and (iii) monitoring flow rule. We

illustrate the roles of these categories through an example. In the example, there is a

switch s1 with four ports: port 0 is an egress port used to send flow packets to the flow

management module, port 1 is an ingress port used to receive data from the same module,

port 2 is connecting s1 with a host h1 with the IP address 10.0.0.1, and port 3 which a

output port for flow packets. Table 6.1 shows four exemplary flow rules following INFAS

design.

The concrete flow rules perform exact matching for packet flows, to achieve the actual goal

of some network control logic (e.g. routing). The controller is responsible for installing

these rules in the switches’ flow tables. In the example, rule 1 is a concrete flow rule

that specifies the output port 3 for the flow packets having the source IP address 10.0.0.1
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Flow

rule

Category Table

ID

Src IP Dst IP Priority In_port Action

Rule

1

Concrete 0 10.0.0.1 10.0.0.2 2 2 (h1 –

s1)

Output:3

& GOTO

Table 1

Rule

2

Redirection 0 * * 1 2 (h1 –

s1)

Output: 0

Rule

3

Monitoring 1 10.0.0.1 * 1 2 (h1 –

s1)

None

Rule

4

Implicit * * * 1 * Controller

Table 6.1: Exemplary INFAS flow rules.

and the destination IP address 10.0.0.2. From now onward, we will use the terms matched

packets and unmatched packets to respectively refer to the flow packets that match and those

that do not match concrete flow rules.

The purpose of the redirection flow rules is to avoid sending packet_in messages from

the switch to the controller in the case of unmatched packets. In the current INFAS design,

unmatched packets are simply forwarded to the INFAS flow management module. Rule 2

is an exemplary redirection flow rule that specifies the output port 0 for the unmatched

packets that arrive through port 2. Note that it is possible to select a portion of unmatched

packets using more specific matching fields, depending on the concrete flow rules. Redi-

rection flow rules always have lower priority than concrete flow rules, which assures that

flow packets first obey the network control logic.

The monitoring flow rules are intended to help to obtain basic statistics, like the number of

matched packets received from a host or through a port. These rules are usually installed

in the flow table (e.g. flow table 1) following the one containing concrete flow rules and

redirection flow rules (e.g. flow table 0). In the example, rule 3 is a monitoring flow

rule that counts the total number of matched packets coming from h1, since all packets

matching rule 1 are forced to go through the flow rule table 1.

In the example, rule 4 is the default flow rule. A flow packet that is permitted by INFAS

to return to the switch will not match any flow rule belonging to the above three categories.

Because of the default flow rule, the returned packet will ultimately incur a table-miss

event.
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6 .2 .4 Flow management algorithm

Many DoS mitigation algorithms in SDN tend to clearly distinguish between malicious flows

and legitimate flows. They subsequently block the sources of potentially malicious flows.

A widely used approach is to use the amount of triggered control packets as a detection

parameter. However, we argue that this approach can be inaccurate. This is because a large

number of control packets can be attributed to legitimate flow packets originating from a

source during a workload peak. Instead, we propose a threshold-based flow management

algorithm that does not block a network entity completely.

As shown in Figure 6.2, the algorithm identifies four different control plane’s satura-

tion severity levels. Accordingly, the algorithm applies distinct mitigation strategies on

incoming unmatched packets.

Start
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Figure 6.2: INFAS flow management algorithm.

The algorithm executes in a periodic manner, for instance, every one second. It uses two

input thresholds: (i) the packet_in budget C and (ii) the threshold of unmatched packets

proportion αr. The first threshold defines, within a time slot, the maximum number of

flow packets permitted to trigger packet_in messages. It highly depends on the capacity

of the controller and the expected number of networking entities sending packet flows. A

simple method to determine the budget value is to divide the controller capacity among

the network entities. The second threshold specifies the maximum allowed percentage of
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unmatched flow packets received from a host or port. To measure the unmatched packet

proportion, the algorithm uses the unmatched and matched packet statistics, ∆u and ∆m,

respectively collected from the flow management module and the query module. The

unmatched packet proportion for a network entity is: r = ∆u/(∆u +∆m).

The algorithm uses the above-described input values to calculate the acceptance probability

p, that is defined as the probability to return an unmatched packet to the switch. In princi-

ple, the more severe the saturation caused by a network entity, the smaller the acceptance

probability p for the corresponding flow packets.

In the following, we describe the four severity levels, and the corresponding categoriza-

tion conditions and p values:

• Normal case (∆u < C, r < αr): Here, the amount of unmatched packets is less than

the packet_in budget, and majority of flow packets received from a network entity

can hit the concrete flow rules. The algorithm allows all unmatched packets to return

to the switch and trigger table-miss events. The acceptance probability p in this case

is set to 1.

• Suspicious case (∆u < C, r > αr): We consider this case as suspicious because these

packets do not bring much workload to the control plane, although a relatively large

portion of flow packets received from the network entity trigger table-miss events. In

this case, the algorithm introduces a small penalty, according to which only a small

portion of the unmatched packets are dropped: p = 1− tanh(r ∗ 2), in which tanh

is a hyperbolic tangent function.

• Overload case (∆u > C, r < αr): Under these conditions, the control plane is consid-

ered overloaded, because the number of unmatched packets exceeds the packet_in

budget. Meanwhile, majority of the flow packets can match the concrete flow rules.

This can be interpreted as a workload peak. In this case, the algorithm simply regu-

lates the rate of unmatched packets to be the same as the budget value: p = C/∆u.

• Attack case (∆u > C, r > αr): This is the most severe case. More precisely, the amount

of unmatched packets exceeds the packet_in budget, and the network entity sends

a large amount of flow packets that will trigger packet_in messages. This case is

very likely caused by an attack. To mitigate the aggressive impact of the attack on

the control plane, the algorithm dramatically decreases the acceptance probability:

p = C/∆u ∗ (1− tanh(r ∗ 10)).

6 .3 i m p l e m e n t a t i o n a n d e va l ua t i o n

In this section, we detail our implementation and evaluation. We first describe INFAS

prototype implementation and the evaluation setup, then discuss the evaluation results.
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6 .3 .1 Implementation highlights

Redirecting flow packets to be firstly examed by our INFAS entity is an on-the-path solution,

in which additional processing takes place during packet forwarding. In order to reduce

the additional intermediate processing delay caused by the INFAS entity, we use the Intel’s

Data Plane Development Kit (DPDK) framework [104] to accelerate packet processing.

DPDK is a framework supporting the development of virtualized network functions that

run on off-the-shelf hosts equipped with CPUs. It takes the advantage of modern multi-

core CPUs to parallelize packets of processing so as to reduce the queuing delays. Network

functions developed with DPDK directly fetch incoming packets by polling the network card

and passing through the Linux network stack. This mechnism further reduces processing

delays experienced by packets. This implementation choice provides the required perfor-

mance guarantees for fast in-network packet processing [124]. It also enables to integrate

INFAS into a DPDK-based NFV platforms, such as openNetVM [102, 250].

The flow management module and the query module are both implemented as DPDK

applications. The query module exchanges information with the flow management module

through a high-speed ring buffer provided by DPDK. The query module also communicates

with the switch statistic proxy using standard TCP/IP sockets. Both the flow management

module and the query module run on a Netgate DPDK box [153], containing a Quad Core

Intel(R) Atom(TM) E3845 1.91 GHz CPU and 2GB RAM.

We use one Open vSwtich (OvS) instance [169] as the SDN switch in the experiment. As

for the switch statistic proxy, it is implemented as a Python script running on the same

host as the OvS. To query the flow statistics, the switch statistic proxy interacts with the

OvS using OvS-Python APIs [172].

6 .3 .2 Evaluation setup

6 .3 .2 .1 Testbed scenario

Our evaluations are based on a testbed emulating the functionality of a SDN-based server

workload balancer. As illustrated in Figure 6.3, the testbed consists of a Floodlight [72]

controller, an OvS s1 protected by an INFAS instance, and three hosts {h1, h2, h3} running

as Docker containers [60]. The host h1 has the IP address 192.168.0.1, which represents an

external entity. The hosts h2 and h3 are internal servers assigned with the IP addresses

10.0.0.2 and 10.0.0.3, respectively. To expose the service to the outside world, h2 and h3

also share an external IP address 192.168.0.20. The OvS and the three containers run on a

machine equipped with a four-core Intel(R) Core(TM) i5-6500 CPU and 32GB RAM.

In the experiments, h1 sends packet flows, from its socket ports, to different ports

belonging to 192.168.0.20. The role of s1 is to evenly distribute the flow packets from h1
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Figure 6.3: Setups of the testbed.

to the servers {h2, h3}, by mapping their IP addresses and ports. s1 performs a four-tuple

{Source IP, Source port, Destination IP, Destination port} matching. For example, when h1

sends packets to 192.168.0.20:1, according to the concrete flow rule in s1, the destination

IP address 192.168.0.20 is converted to an internal IP address (10.0.0.2 or 10.0.0.3), and the

port number 1 is mapped to a new port number (e.g. 10). After this conversion, the packets

are sent to the corresponding server. When an internal server replies with flow packets to

h1, the source IP address is converted back to 192.168.0.20.

The above-described mapping procedure is managed by the controller. In particular, the

controller decides which server and which port are mapped for a flow coming from h1,

upon receiving the packet_in messages. For each flow, the controller installs flow rules

specifying an output port, and rewrites the packet’s destination IP address and destination

port. Each concrete flow rule is configured with an idle timeout of 2 seconds, to reduce the

number of concrete flow rules.

6 .3 .2 .2 Launching the CPS attack

An aggressive CPS attack is emulated by a script running in h1. More precisely, the script

generates a large number of unmatched packets from h1 to 192.168.0.20 using 2000 different

destination ports. As we already described in Section 4.5, if the packet inter-arrival time

of a flow exceeds the idle timeout (2s in this experiment), a large number of packet_in

messages are generated. Particularly, we define two types of flows, namely normal flows

and abnormal flows. The packet intervals of normal flows and abnormal flows follows the

exponential and gaussian distribution correspondingly. It is a common practice in network

simulations to assume a Poisson process to generate data packets [29]. The parameter
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Figure 6.4: INFAS performance when packet_in message budget C varies.

lamda of a exponential distribution is configured as 0.4. The intervals of abnormal flows

follow a Gaussian distribution with the mean value of 2.5 and standard deviation of 0.5.

By varying the ratio between the number of the abnormal and normal flows, we could

emulate different severity of CPS attacks. In the experiments, we call this parameter as the

abnormal flow percentage.

6 .3 .2 .3 Evaluation metrics and focused parameters

We use two system performance metrics: (i) the measured unmatched packet acceptance

ratio Raccep and (ii) the switch throughput. The first metric enables to evaluate the mitiga-

tion effectiveness of INFAS against the CPS attack. Raccep = nc/ni, where nc is the number

of unmatched packets that finally trigger generation of packet_in messages measured at

the controller, and ni is the number of unmatched packets forwarded to INFAS. As for

the switch throughput, it is obtained by measuring the experienced bandwidth between

two hosts connected with the protected switch. We use this metric to show that INFAS is

able to reduce the workload of the protected switch. In order to evaluate the impact of the

system parameters, we experiment with varying packet_in budget C values and varying

unmatched packet proportion thresholds αr.
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6 .3 .3 Results

We conduct two sets of experiments to measure the unmatched packet acceptance ratio. In

the first set, we fix the unmatched packet proportion threshold αr ∈ {0.08, 0.2}, and vary

the packet_in budget C from 200 to 400. In the second group, we fix C ∈ {200, 400}, and

vary αr from 0.02 to 0.26. In both sets of experiments, we experiment with two different

CPS attack severity levels: (i) light CPS with 20% abnormal flows and (ii) severe CPS with

80% abnormal flows.

6 .3 .3 .1 Impact of the packet_in message budget

Figure 6.4 depicts the impact of the packet_in budget C. In particular, Figure 6.4a shows

INFAS performance under different packet_in budgets, when αr is fixed to 0.08. We

can see that, in the light CPS case, Raccep remains small when only a small number of

packet_in messages (less than 250) are allowed to be generated within a time slot. After

that, it increases dramatically since the increased packet_in message budget is sufficient to

process incoming control messages. As for the severe CPS case, the acceptance ratio Raccep

always remains below 0.25 when the packet_in message budget is below 350. This means

that INFAS blocks the majority of unmatched packets from h1 and it is classified as an

attack case. Even when the packet_in message budget increases, almost half of unmatched

packets are blocked and it is classified as an overload case.

Figure 6.4b shows the system performance when αr is fixed to 0.2. We can see that, due

to the large control message budget and great tolerance on the proportion of unmatched

packets, the light attacks are ignored. In the case of severe attacks, it is similar to the results

shown by Figure 6.4a, but with slightly higher unmatched packet acceptance ratio because

that the unmatched packet proportion threshold αr is relatively large.

These results can be commented as follows: in the light CPS case, the proportion of

unmatched packets is relatively small and just a bit lower than the threshold αr. The flow

management algorithm treats it as an attack case when αr is very small. Otherwise it is

classified as a normal or suspicious case, thus INFAS enforces a light penalty. However, in

the severe CPS case, a large portion of packets from h1 cannot match concrete flow rules

due to their long inter-arrival time. The flow management algorithm classifies it as an

attack case or overload case, thus enforces a heavy penalty on the acceptance probability p.

6 .3 .3 .2 Impact of the unmatched packet proportion threshold

Figure 6.5 depicts the impact of the unmatched packet proportion threshold αr on INFAS

performance. Figure 6.5a shows the performance change under different values of αr,

when C is fixed to 200. In general, we can see that increasing αr allows INFAS to let more

unmatched packets to trigger table-miss events. In the light CPS case, Raccep is small (less

than 0.5) when αr is set to 0.02 and 0.08, and it starts to become constant once αr reaches a
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Figure 6.5: INFAS performance under varying unmatched packet proportion thresholds αr

certain value. The reason is that when αr is large enough, the light CPS case will be treated

as an normal case by the flow management algorithm.

Figure 6.5b shows that, in the configuration of large control message budgets, changing

threshold αr can cause sudden changes in the result. The change of αr has a similar effect

on the system performance in the severe CPS case, when C is set both to 200 and to 400.

More precisely, the resulting unmatched packet acceptance ratio remains low but stable for

some threshold values, but may increase suddenly when the threshold αr is beyond 0.2.

With the above presented results, we confirm that INFAS can effectively block malicious

flow packets that deliberately trigger table-miss events in SDN networks. By this, INFAS

significantly mitigates CPS, depending on the severity level of the attack. Meanwhile, it is

worthy of noticing that changing the value of packet_in message budget leads to smoother

transition of classified cases. But changing the value of the unmatched packet proportion

threshold αr leads to more dramatic changes of the system performance. In addition,

choosing proper values for C and αr in real systems requires to measure the controller

capacity and to estimate the traffic patterns. When this is achieved, INFAS parameters can

be tuned in an adaptive way. Such system extensions and improvements are among our

agenda for future work.
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Figure 6.6: Performance of the SDN switch

6 .3 .3 .3 Switch throughput

We measure the switch throughput by connecting an additional pair of Docker containers to

s1, and configuring several static concrete flow rules to allow their mutual communication.

In our evaluation, we consider the measured bandwidth between this pair of containers as

the throughput of the switch. The standard tool iperf3 [107] is used to test the bandwidth.

Figure 6.6 shows the measured switch throughput under three scenarios: (i) attack-free

system, (ii) a system under a severe CPS attack with INFAS enabled, and (iii) a system

under a severe CPS attack without INFAS. Note that, due to the fact that OvS operates in

the kernel mode, its throughput can reach about 47 Gbit/s on the used hardware. Other

results can be summarized as follows: under the severe CPS attack without protection, the

switch throughput drops to around 35 Gbit/s. When enabling INFAS, we achieve roughly

44 Gbit/s. Such an improvement (about 26%) confirms that INFAS effectively blocks a large

amounts of unmatched packets before they trigger the generation of packet_in messages.

More accurately, the workload of the switch CPU and the netlink channel connecting the

OvS kernel module and the OpenFlow daemon is dramatically reduced, which contributes

to the improved switch performance.

6 .4 r e l a t e d w o r k

The aforementioned controller-based solutions in Section 2.3.3.1 do not alleviate the band-

width consumption caused by the exchanged control packets. That is, the control requests

(i.e. packet_in messages) will be sent from the switches to the controller, and their re-
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sponses will be sent in the opposite direction, until the protection module deals with them.

The size of each packet_in message is around 160 bytes. In the case that the arrival rate

of the packet_in messages from one switch in the network is 104 per second, the overall

consumed bandwidth of the control plane is 1.6 kB/s. In order to compute the overall

bandwidth consumption along the control path, we can further multiply this value with

the distance (measured in hops) from a switch to the controller. Additionally, due to

the propagation delay between a switch and the controller, the solutions residing on the

controller side can only detect abnormality after receiving packet_in messages.

Some prior works also implement the in-network approach, to some extent. For instance,

the authors of [14], aiming to protect the so-called operational environment, propose to

duplicate that environment in a sandbox. The unmatched flow packets coming from the

operational environment are firstly sent to the switches in the sandbox network. The con-

troller and the switches in the sandbox follow the regular flow handling procedure. After

a certain timeout interval, the flow rules that remain in the flow tables of the sandbox

switches are considered safe. These rules are installed into the flow tables of the corre-

sponding switches in the operational environment. However, the control plane in the

sandbox network still faces the DoS attack, and the flows suffer processing delay due to the

time waited to confirm the flow rules.

Two other notable in-network solutions are FloodGuard [223] and AVANT-GUARD [195].

FloodGuard employs symbolic executions to pre-generate flow rules to increase the respon-

siveness of the controller. It further uses in-network packet queues to cache all unmatched

flow packets. FloodGuard translates the cached flow packets into control packets in a

round-robin way based on protocol types, and sends them to a migration agent running

inside the controller. As for AVANT-GUARD, it aims to prevent TCP-based DoSS attacks,

using additional modules introduced into the design of the switch architecture. Its princi-

ple idea is to allow only the flow packets arriving from a source that can complete a TCP

handshake to trigger packet_in messages.

The above discussed in-network solutions either still implement the mitigation logic in

the controller (like [14, 223]), or are hard to implement (like [195] which requires to change

the switch architecture). In contrast, INFAS implements the mitigation logic directly and

locally in the in-network module, to reduce the control plane traffic under DoS. In addition,

it is easy to implement, does not require to change the switch architecture, and can be

easily integrated into NFV platforms.

6 .5 c o n c l u s i o n

The Control Plane Saturation (CPS) is a DoS attack being capable to significantly disrupt

the operation of SDN, a rapidly growing networking model. The adversary, taking the

advantage of SDN design primitives, floods the data plane with flow packets not matching
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the stored flow rules. As a consequence, floods of control packets are exchanged between

the switch and controller.

We presented INFAS, a defense scheme for protecting SDN against CPS and counter

abusive usage of the control plane resource. INFAS is installed on the rapidly increasing

in-network commodity servers which are used in modern networks mainly to support NFV.

The switch forwards the flow packets that do not match any of its concrete flow rules to a

nearby INFAS module. INFAS evaluates these packets, and accordingly decides either to

return them to the corresponding switches or to drop them.

Through a representative prototype and extensive emulations, we showed that INFAS is

highly effective against CPS. In particular, it can decrease the amount of malicious control

packets by up to 80%. The results also show that INFAS can improve the switch throughput

by about 26%, when compared to the approaches of directly handling control packets on

the controller side.

The current design of INFAS can be improved in several ways. In particular, we will

investigate approaches to adjust INFAS parameters in an adaptive way, for different types

of SDN networks. Another idea for investigation is to support cooperation among multiple

INFAS modules to improve detection and mitigation of Distributed Denial of Service

(DDoS).
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CHAPTER 7

C O N C L U S I O N

Computer networks serve as the fundamental infrastructure that supports many facets of

modern digital societies. Network softwarization, which is enabled by software defined

networking and network functionality virtualization, provides a flexible method to imple-

ment and manage computer networks in the era of big data. In particular, SDN centralizes

the control logics of a network, and takes advantage of the global view of the network

operation status and usage. The different network planes, including data, monitoring and

control planes, have their own unique type of resources. These resources can be unwisely

even abusively used by end hosts and applications, which leads to degraded performance

and increases operation cost. The strategies to optimize the resource consumption of SDN

should adapt to the ever changing volatile environment.

The use of the SDN technology enables not only dynamic planning of network flow paths

but also joint optimization across network layers. In SDN, a controller continuously collects

monitoring information of network operation and network usage, and uses centralized al-

gorithms to compute policies that adaptively configure a network. The interaction between

a network controller and controllable entities, such as networking devices and management

software components, is achieved using control messages.

SDN provides flexible network management and traffic engineering for optimization

of the resource utilization of a network. Due to the complexity of nowday’s network

architecture, it is very challenging for a single framework to address all resource efficiency

issues in every layer or functional plane of a network. This thesis focuses on unique

resource types of important network functional planes. Mores specifically, it addresses the

bandwidth efficiency in the monitoring plane, the power efficiency in the data plane and

abusive usage of the control plane resource.

Despite the existence of several solutions addressing the above mentioned resource ef-

ficiency issues, there exist still several major. First of all, although adapting the routing

paths of data flows can fulfill a specific network resource optimization goal, it always has

negative impacts. For example, instead of the shortest paths, using alternative paths for

the purpose of traffic aggregation or path stretching increases the resource consumption

in the data forwarding plane and experienced delays. These negative impacts are usually

negalected by existing work. Secondly, as the architecture of SDN has been extended to

consist of heterogeneous communication technologies, e.g., wireless links along with wired

ones, the approaches proposed to conserve resources for the classical SDN cannot be directly
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applied due to newly emerging conditions and constraints. Thirdly, the demand for adap-

tive network management increases when facing highly dynamic network workload and

diverse network optmization goals. Classical approaches based on the optimization theory

have the drawback of large computation time, and the ones based on heuristic algorithms

requires in-depth understanding of the properties, e.g., topology, of a network. Lastly, due

to the centralized architecture of SDN, the controller that execute traffic scheduling and

network management algorithms becomes the target of the saturation attacks.

In this thesis, we develop frameworks, models and algorithms to address above described

challenges. Particularly, this thesis makes the following contributions:

• Conserve bandwidth resource in the monitoring plane (Chapter 3). We presented REMO,

a resource-efficient monitoring framework that conserves the bandwidth resource in

the monitoring plane, with consideration of the negative impact of the commonly

used path stretching approach.

• Conserve power resource in the data plane (Chapter 4). We introduced ECAS, a joint

energy-efficient scheduling framework for hybrid micro data center networks equipped

with both wired and directional wireless connections.

• Conserve resource with self-adaptive algorithms (Chapter 5). We investigated the possibility

of using the state-of-the-art deep reinforcement learning algorithms to improve the

power efficiency in SDN-based data center networks.

• Mitigate abusive usage of the resource in the control plane (Chapter 6). We designed INFAS,

an in-network flow management scheme to protect the SDN control plane against

denial-of-service attacks that intend to exhaust its valuable resources, such as band-

width and computation resource of a controller.

The rests of this chapter summarize the main contributions of this thesis, discuss their

limitations, and sketch possible and interesting directions for future work. Finally, we

conclude this thesis with remarks.

7 .1 c o n t r i b u t i o n s

In our first contribution, we addressed the bandwidth resource conservation in the mon-

itoring plane of a network. The commonly used traffic engineering based approaches to

reduce resource consumption incurred by a SDN monitoring system, is to alter the origi-

nal shortest paths of data flows. The purpose of using alternative flow paths is to create

opportunities to perform operations, such as extraction of aggregated monitoring data of

different flows, to reduce the resource consumption in the monitoring plane. However, the

selected alternative paths are mostly longer than the shortest ones, which actually leads
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to the wast of the transmission resources in the data plane and end-to-end delays. We

proposed the REMO framework to address this defect of the current traffic engineering

based resource conservation mechanism for the monitoring plane in SDN. REMO optimizes

the total bandwidth resource consumption in both monitoring and data planes. We built

an optimization model and a near-optimal heuristic algorithm based on the deflection

technique to determine places of packet monitors, locations of mirroring traffic flows and

their alternate paths. The simulation results show that our model and algorithm are able

to achieve smaller amount of the total bandwidth resource consumption compared with

randomized or mixed strategies. In order to describe the relative importance of the band-

width resource in the monitoring and data planes, we introduced a configurable parameter

named the link cost ratio. The experiment also proves that our algorithms are able to

effectively reduce the length of alternative paths of data flows when the bandwidth in the

monitoring and data plane has the equal or similar importance.

The second contribution of this thesis addresses the power resource conservation in the

data plane of a network. The widely considered setups of a network to reduce the power

consumption are either backbone networks or data center networks that have the tradi-

tional topology like fat-tree. We considered a hybrid and server-centric software-defined

computer cluster architecture. In this newly proposed architecture, servers take responsibil-

ity of computation and packet forwarding, and they are interconnected by both wired links

and directional wireless links. The power efficiency is achieved by putting unnecessary

nodes and links of a network into the sleeping mode. In order to compute power-efficient

configurations, we proposed the ECAS framework that contains the optimization model

and heuristic algorithms to jointly schedule: (i) the directions of transmitting/receiving an-

tennas used by wireless links, (ii) operation status (on/off status) of nodes and links in the

network, (iii) routing paths of incoming flows. The simulation results show that, compared

with the classical routing algorithms for the 3D torus architecture, our proposed model and

algorithm is able to achieve maximum 33% more power conservation. Comparing with

an energy-efficient routing algorithm that only considers power efficiency, our proposed

heuristic algorithm is able to achieve slightly worse performance in power reduction but

generates shorter transmission paths for flow packets.

In the third contribution of this thesis, we investigated the approach of using one type of

the self-adaptive algorithms, deep reinforcement learning, to reduce power consumption

for SDN-based data center networking. The power-efficiency problem in SDN is traditionally

formulated and solved by using the optimization model and heuristic algorithm. These

algorithms have strict constraints, thus not every possible set of input data can be solved,

which leads to the failure of computation. Deep reinforcement learning has wider accep-

tance of input data due to its capability of approximation. As a result, we designed a

DRL-based framework, named DeepGreen, to perform optimization on the power efficiency

of DCN with the standard fat-tree architecture. Instead of using link-weight-based formu-

lation, DeepGreen selects from the precomputed shortest flow paths and relies on a DRL
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algorithm designed for multiple agents. The goal is to preserve the shortest paths and

reduce accumulated processing delays along paths. The evaluation results show that the

current model in DeepGreen cannot compete with classical algorithms in reducing power

consumption, but it maintains relatively low packet delays. The performance of DeepGreen,

however, can further improve by following the detailed discussion of the evaluation results,

as well as the suggested research directions described in Section 7.2.

In the last contribution of this thesis, we focus on the abusive usage of the resources in the

SDN control plane. In particular, we considered the Denial-of-Service attacks that explore

the control mechanism defined in the widely used SDN protocol, OpenFlow. The large

amount of newly arrived flow packets, that have well-crafted inter-arrival time, trigger

the switches in a SDN network to generate corresponding control messages. Excessive

volumes of such control messages exhaust valuable SDN control plane resource, such as the

bandwidth of the control channel between a controller and switches, and the computation

resource of them. Since most of the control plane protection mechanisms are implemented

on the controller side, these malicious incoming packets still have to be firstly converted

into control messages and then analyzed by the protection module in the controller, which

leads to reaction time that at least equals to the round-trip time between the SDN controller

and switches. In this contribution, we proposed to implement a DoS mitigation mechanism

for the SDN control plane as one of the many network functions that operate at the close

proximity of each switch. To this end, we proposed a simple yet effective DoS mitigation

algorithm that analyzes the incoming data packets and determines a dropout rate for their

senders depending on the severity of their attacking behaviors. The evaluation shows that

our proposed mechanism is able to effectively reduce the excessive volumes of control

messages converted from attacking flow packets, which mitigates the abusive usage of the

control plane resource. Meanwhile, due to the fact that different percentages of attacking

flow packets are filtered out even before they trigger the generation of control messages,

the throughput of switches under protection is also improved.

7 .2 l i m i t a t i o n s a n d f u t u r e d i r e c t i o n s

In this section, we discuss of the work presented in this thesis and suggest possible direc-

tions for future research.

m o d e l a n d p r e d i c t n e t w o r k t r a f f i c p r o p e r t i e s Monitoring network

traffic and deriving models from collected historical data are able to characterize the prop-

erties of traffic flows. The derived models usually embed certain patterns of network traffic

in the dimensions of time and space. The network optimization models and algorithms

proposed in this thesis are reactive approaches, which require information of incoming

traffic demands. As discussed in Section 2.2.3, in an idea SDN-assisted traffic engineering
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approach, such information is provided by the network resource provisioner that explicitly

communicates with a cloud controller of a multi-tenant cloud environment or a data trans-

fer controller of a big data analytical application. But there are still many scenarios where

information of traffic demands cannot be directly obtained. Meanwhile, as the standard

of data privacy enhances for cloud or network operators, the information of the internal

states of an application may not be shared with the network controller. Proposing accurate

network traffic models by using not only traditional statistical approaches but also state-of-

the-art neural network based methods may help overcoming the unavailability of explicit

traffic information. Additionally, these models can also predict the evolution of network

traffic so as to enable proactive resource scheduling and network management.

h a n d l i n g t r a n s i e n t c h a n g e s i n t r a f f i c pa t t e r n s Even though net-

work traffic models are able to characterize and predict their behaviors, it is very chal-

lenging to achieve very high accuracy, especially for short-term traffic prediction. As the

micro-service architecture becomes popular in modern networks especially in the cloud

environment, the application types become diverse and their life cycles are dynamic. The

transient changes in traffic, such as microbursts in data center networks [248], requires

additional reactive mechanisms to fast adapt network configurations in addition to the

periodic and batch-based scheduling approaches proposed in this thesis. For example,

besides the scheduling algorithms operated at the level of data flows, a caching mechanism

to smooth the data rates of a flow that has been already placed on certain links is able to

further avoid congestions caused by such burst transmission of packets. Another possible

approach is that a switch or packet forwarding node that detects such transient changes

in traffic pattern should use an extension of SDN control messages to inform the network

controller.

l e a r n i n g t h r o u g h k n o w l e d g e t r a n s f e r A complex network optimiza-

tion task is difficult to solve by directly applying the methodology of reinforcement learn-

ing due to the enormously large exploration space, which is the most important factor that

prohibits the further improvement of system performance in Chapter 5. Instead of learn-

ing from the scratch, transferring knowledge of network control strategies made by other

existing management algorithms to the learning agent is an interesting direction for future

research. Transfer learning techniques have been used successfully in supervised learning

tasks and now attract many attentions in deep reinforcement learning. It has been shown

that transfer learning in reinforcement learning is able to improve the system performance

and shorten training time [128, 212]. Among possible transfer learning paradigms in rein-

forcement learning [62], combining supervised learning or semi-supervised learning with

RL is the most interesting one. In this method, the historical decisions made by classical

network management algorithms can be used for supervised or semi-supervised learning.

109



7 c o n c l u s i o n

The RL agent can improve its adaptivity and accuracy by training upon the pre-training

results.

p r i o r i t i z e c o n t r o l p l a n e r e s o u r c e a c c e s s In the next generation of

communication networks, achieving low latency is one of the key performance require-

ments. Although the countermeasure developed in this thesis is able to mitigate abusive

usage of the control plane resource, it cannot distinguish data flows that require priority

in the competition for the control plane resource. Without considering the priority in ac-

cessing control plane resource, the data flows with the low-latency requirement have to

suffer from queueing delays for generating and transmitting control messages as well as

for computation on the controller, even under an attacking-free scenario. As a result, it

is a future work to extend our proposed in-network flow packet management framework

so that it is able to provide the low-latency guarantee in the control plane for data flows

under both attacking and attacking-free scenarios.

7 .3 c o n c l u d i n g r e m a r k s

Software-defined networking enables flexible cross-layer network management. The re-

source existing in different functional planes of SDN should be intelligently and securely

utilized. This thesis contributes to the design of resource-efficient SDN by conserving and

protecting resources of its different functional planes.
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APPENDIX A

A P P E N D I X

a .1 u s i n g m u l t i - a g e n t d r l a s a g e n e r i c t e f r a m e w o r k

Multi-agent DRL formulation presented in Chapter 5 is expected to serve as a generic

optimization framework of traffic engineering. In addition to previous discussed network

optimization goal, reducing power consumption, another important traffic engineering

objective is to reduce end-to-end delays in the network. In Chapter 5, this objective is

configured as the secondary goal in the reward function. By extending the reward function,

the multi-agent DRL formulation can be used to optimize a network to achieve different

traffic engineering goals.

In this part, we provide a simple extension of the multi-agent DRL formulation to enable

the optimization of these two traffic engineering objectives: reducing end-to-end delays

and conserving power network power consumption. In the rest of this section, we refer

these two TE objectives as G1 and G2 correspondingly. The approaches of modelling

obvserved states and actions in the formulation has been presented in Section 5.4.4. In

order to achieve the TE objectives, G1 and G2, the reward function for each agent can be

modified as:

r =

{︄

−β ∗ d, TE objective is G1

Ptotal − P(a) −α ∗ d, TE objective is G2
(A.1)

If the TE objective is configured as reducing end-to-end delays (G1), we simply multiply

a factor β and the maximum delay d experienced by packets of each flow, and the negative

value of this multiplication result represents the reward for G1. If the TE objective is

configured as conserving power network power consumption (G2), the final reward is

represented as a weighted sum of the total amount of conserved power consumption and

the maximum delay experienced by packets of a flow, which is the same as described in

Section 5.4.4. Ptotal stands for the total power consumption if all devices and links in the

network are configured in the active mode. The action a represents the selected routing

path for a pair of end nodes in the network. P(a) is the power consumption for activating

devices and links that belong to any selected path in the action a. Thus, Ptotal − P(a)

represents the total amount of conserved power consumption. To avoid the happening of
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(a) The TE objective is configured as reducing end-to-end delays (G1). It shows the average maximum delays

experienced by packets of all flows during training.
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(b) he TE objective is configured as conserving power network power consumption (G2). It shows the

normalized power consumption reduction during training.

Figure A.1: Performance of using multi-agent DRL formulation as a generic TE framework for two
objectives.
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assigning too much traffic workload to the same link, we subtract α ∗ d from the the total

amount of conserved power consumption, where α is a weight value.

We use the simulation framework developed in Chapter 5 to evaluate the performance

of our multi-agent formulation in terms of achieving G1 and G2. The parameters used in

the network simulation and neural networks are same as described in Section 5.5.1. In this

evaluation, we configure the number of training epochs as 24 ∗ 104 to allow the maximum

stability of training. It takes around 14 days on a regular desktop PC to complete one round

of simulation. Two weight values, β and α, are configured as 100 and 300 respectively.

Figure A.1a shows the evaluation result when the TE objective is configured as G1. In

particular, it depicts the average maximum delays experienced by packets of all flows

during the training process. The average value of maximum experienced delays of all flows

shows the descending trend. More specifically, it decreases from an average value of 0.0058

second in the first 13 ∗ 104 epochs to an average value of 0.0042 second after the 18 ∗ 104

epochs. This is around 27% reduction of the end-to-end delays.

Figure A.1b shows the evaluation result when the TE objective is configured as G2. In

particular, it depicts the normalized power consumption reduction during the training

process. This figure shows that the training process starts from the states where the flow

paths are dispersed. It is the opposite of the state where the flows are consolidated and

the power conservation is maximized. As the training continues, the percent of reduced

power consumption increases until there is almost no further improvement. Our muti-agent

DRL formulation achieves around 7% of power reduction. The training process becomes

relatively stable after 10 ∗ 104 epochs.
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