
CLOUD RESOURCE MANAGEMENT
USING A HIERARCHICAL

DECENTRALIZED FRAMEWORK

A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IN THE FACULTY OF SCIENCE AND ENGINEERING

2022

Abdul Rahman Hummaida

Department of Computer Science

Contents

Abstract 7

Declaration 9

Copyright 10

Acknowledgements 11

1 Introduction 12
1.1 Scalability challenges in resource management 16
1.2 Motivation & Research Aims . 18
1.3 Methodology . 19

1.3.1 Literature Review . 19
1.3.2 Development of the model 20
1.3.3 Validation and Evaluation 20

1.4 Contributions . 21
1.5 Thesis Structure . 22

2 Problem Background 25
2.1 Introduction . 25
2.2 Virtualization . 25
2.3 Adaptation . 29
2.4 Summary . 31

3 Related Work 32
3.1 Cloud Resource Management . 32
3.2 Management Frameworks - MFs . 32

3.2.1 Architecture . 33
3.2.2 Invocation . 39

2

3.2.3 Discussion - MFs . 41

3.3 Management Algorithms - MAs . 43

3.3.1 Objectives . 45

3.3.2 Considered Resource . 47

3.3.3 Allocation Techniques . 48

3.3.4 Discussion - MAs . 55

3.3.5 Evaluation of MAs and MFs 58

4 Collection of Published Papers 59
4.1 Adaptation in Cloud Resource Configuration: A Survey 60

4.2 SHDF - A Scalable Hierarchical Distributed Framework for Data Cen-
tre Management . 76

4.3 A Hierarchical Decentralized Architecture to enable Adaptive Scalable
Virtual Machine Migration . 88

4.4 Scalable Virtual Machine Migration using Reinforcement Learning . . 113

4.5 Dynamic Threshold Setting for VM Migration 145

5 Conclusion 162
5.1 Critical Analysis of Related Work 162

5.1.1 Contribution 1: Adaptation in Cloud Resource Configuration:
A Survey . 162

5.1.2 Contribution 2: SHDF - Scalable Hierarchical Distributed Frame-
work for Data Centre Management 163

5.1.3 Contribution 3: A Hierarchical Decentralized Architecture to
enable Adaptive Scalable Virtual Machine Migration 165

5.1.4 Contribution 4: Scalable Virtual Machine Migration using Re-
inforcement Learning . 166

5.1.5 Contribution 5: Utilization Efficient VM Migration using Re-
inforcement Learning . 168

5.2 Conclusion . 169

5.3 Choosing a Simulation Toolkit . 172

5.4 Future Directions . 172

5.4.1 Adaptive parameter selection 173

5.4.2 Initial VM Placement using RL 173

5.4.3 VM consolidation using RL 174

5.4.4 Containerisation . 174

3

5.4.5 Additional RL state . 174
5.4.6 Real Cloud experiments . 174

Bibliography 176

Word Count: 76182

4

List of Tables

3.1 Summary of MF Architectures . 39
3.2 Comparison of MF architectures . 42
3.3 MA Taxonomy . 56

5

List of Figures

1.1 Global Cloud usage forecast [69] 12
1.2 Cloud resources . 13
1.3 Public Cloud service models and Customer/Provider responsibilities . 14
1.4 Cloud Resource Management process 16
1.5 Research methodology . 19
1.6 Relationship between the research objectives, included papers and con-

tributions. 24

2.1 Hardware and OS Virtualization . 26
2.2 VM migration . 27

3.1 MF Taxonomy . 33
3.2 Example of Centralized MF architecture 34
3.3 Example of Hierarchical MF architecture 36
3.4 Example decentralized MF architecture 38
3.5 MA Taxonomy . 44
3.6 Consolidation process . 46
3.7 RL continuous process . 53

6

Abstract

CLOUD RESOURCE MANAGEMENT USING A
HIERARCHICAL DECENTRALIZED FRAMEWORK

Abdul Rahman Hummaida
A thesis submitted to The University of Manchester

for the degree of Doctor of Philosophy, 2022

Cloud providers (CPs) build and operate large scale data centres that contain nu-
merous computing resources that are typically virtualized and require a level of or-
chestration of the shared resources. With an increased demand for cloud computing
resources at a lower cost by end-users, CPs need to increase the efficiency of their in-
frastructure usage. To achieve this, CPs aim to increase resource utilisation and lower
operational costs, typically the energy to administer, run and cool computing resources.
A promising approach to increase the efficiency of infrastructure usage is to adapt the
assignment of resources to workloads. This can be used, for example, to apply a policy
that conserves energy by combining workloads and enabling CPs customers to meet
their performance objectives. The mapping of workloads to data centre resources can
be viewed as being carried out by two abstract components, Management Algorithm
(MA) and Management Framework (MF). The MA is responsible for deciding how
workloads are assigned to infrastructure resources. At the same time, the MF enables
the MA to execute by providing standard functionality, such as the scope of the in-
frastructure being managed and aggregation of metrics that will allow the MA to make
decisions. Several architectural solutions have been presented for MFs. However, these
tend to be centralized and may suffer in their ability to run the MA at scale and sup-
port data centres with thousands of physical nodes. Decentralized approaches solve
the scalability problem but have a limited view of resources across the data centre,

7

which reduces the opportunity to remap resources across a larger scope of the infras-
tructure. Several techniques are used for MAs, with heuristics being a common choice.
However, heuristics’ performance depends on multiple factors, including the statistical
patterns of workload demands, and if the underlying scenario changes, heuristics may
start to perform poorly.

This thesis is grounded on the hypothesis that solving the scalability challenge in
mapping workloads to resources starts by addressing scalability in the MF. We propose
a novel scalable hybrid MF and demonstrate this to improve the ability to meet per-
formance objectives and provide a global view of the infrastructure through empirical
evaluation. To address the challenge with heuristic MAs, we propose a reinforcement
learning-based MA that can learn a policy to dynamically balance achieving Service
Level Agreements, achieve high CPU utilization, and remove the need to use defined
CPU utilization thresholds. We combine the proposed MF with the proposed MA and
demonstrate this outperforms heuristic approaches in reducing service level agreement
violations and provides high CPU utilisation through empirical evaluation.

8

Declaration

No portion of the work referred to in this thesis has been
submitted in support of an application for another degree or
qualification of this or any other university or other institute
of learning.

9

Copyright

i. The author of this thesis (including any appendices and/or schedules to this the-
sis) owns certain copyright or related rights in it (the “Copyright”) and s/he has
given The University of Manchester certain rights to use such Copyright, includ-
ing for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic
copy, may be made only in accordance with the Copyright, Designs and Patents
Act 1988 (as amended) and regulations issued under it or, where appropriate,
in accordance with licensing agreements which the University has from time to
time. This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other in-
tellectual property (the “Intellectual Property”) and any reproductions of copy-
right works in the thesis, for example graphs and tables (“Reproductions”), which
may be described in this thesis, may not be owned by the author and may be
owned by third parties. Such Intellectual Property and Reproductions cannot
and must not be made available for use without the prior written permission of
the owner(s) of the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and
commercialisation of this thesis, the Copyright and any Intellectual Property
and/or Reproductions described in it may take place is available in the Univer-
sity IP Policy (see http://documents.manchester.ac.uk/DocuInfo.aspx?
DocID=24420), in any relevant Thesis restriction declarations deposited in the
University Library, The University Library’s regulations (see http://www.library.
manchester.ac.uk/about/regulations/) and in The University’s policy on
presentation of Theses

10

Acknowledgements

I am fortunate and grateful to have people that helped and supported me in a multitude
of ways, and I have found them invaluable during this PhD. I would like to express my
gratitude to them.

My supervisors, Professor Norman Paton and Professor Rizos Sakellariou, believed
in me and supported me in pursuing this on a part-time basis. They gave ample guid-
ance, continuous support, empathy, and insightful advice on my research.

My parents encouraged me to pursue this before I knew I wanted to. My family,
partner and friends, gave me the push to continue when times got hard.

Thank you for the love, care, and endless support.

11

Chapter 1

Introduction

Cloud computing is an established paradigm for providing on-demand services to vari-
ous end-users, including computing and storage infrastructure. Compared to traditional
customer-managed infrastructures, customers access infrastructure resources and con-
trol software from a Cloud provider (CP). The research firm International Data Cor-
poration (IDC) [69] forecasts cloud spending to grow at a five-year compound annual
growth rate of 9.6%, with public clouds accounting for the majority of the growth,
shown in Figure 1.1.

Figure 1.1: Global Cloud usage forecast [69]

12

13

Cloud Providers (CPs) provide access to resources on-demand and enable provi-
sioning through APIs or web portals. Figure 1.2 shows a representation of cloud re-
sources and customer access. Resources are typically pooled and shared between cus-
tomers, with a layer of orchestration that separates individual customer usage. Physical
resources are abstracted through virtualization technology into computing, memory,
storage and networking with a logical separation of these resources and typically pre-
sented as a Virtual Machine (VM). CPs provide managed services such as orchestration
mechanisms and logging of customer workloads to simplify usage of the infrastructure.
Access control mechanisms provide the ability to determine how users and web traffic
access the infrastructure. By pooling access to resources, CPs can consolidate multiple
underutilised resources into fewer physical resources and save on energy consumption
and operational costs. Customer workloads are stochastic, and CPs need to re-optimize
the infrastructure regularly to provide high levels of availability and reliability.

Figure 1.2: Cloud resources

Standard cloud deployment models are: private, public and hybrid. A private cloud

is typically built for and used by a single organisation, usually due to security con-
straints. Public clouds offer infrastructure resources and managed services on varying
payment models over the internet to the general public. Current examples of pub-
lic cloud providers include Amazon AWS, Google, Microsoft, IBM, and Rackspace.
Customers benefit from public clouds by utilising increasing resources through a sub-
scription or usage model without capital or maintenance expenditure. Public clouds

14

have multi-tenancy, where multiple customers coexist, and services owned by numer-
ous providers are co-located in a single data centre [160]. Physical resources are shared
and dynamically assigned to multiple customers. A hybrid cloud is a mixed usage of
private and public clouds and enables a customer to expand out to a public cloud to run
workloads that are deemed less sensitive to the organisation.

Figure 1.3: Public Cloud service models and Customer/Provider responsibilities

Standard service models in public clouds are: Infrastructure as a Service (IaaS),
Platform as a Service (PaaS), serverless and Software as a Service (SaaS) and are
shown in Figure 1.3. This shows decreasing levels of customer responsibility from
IaaS towards SaaS. During the emergence of cloud computing, IaaS was the initial ser-
vice model, with compute, networking and storage exposed as a capability. Customers
combine these with their defined Operating System (OS), code and service to form
their infrastructure. In this model, customers rent the underlying physical infrastruc-
ture, which the CPs provide. End users can log onto a web portal on the IaaS to install
OSs on VMs, deploy software components such as libraries and databases for a given
application. While IaaS provides customers with flexibility, it requires a high level
of technical knowledge to optimise and manage the virtual infrastructure presented by
the CP [96]. Compared to traditional on-premise infrastructures, IaaS removes all of
the management and maintenance of physical infrastructure and provides the ability
to add additional resources in minutes compared to days or weeks. Examples of CPs
providing IaaS include AWS EC2, Google Compute Engine and Microsoft Azure.

Platform as a service (PaaS) is a service model where CPs provide hardware, soft-
ware stacks and runtime environments for application development. Customers have

15

control over the development environment, including configuration. The CP hosts
the hardware and software on its infrastructure and gives customers an extra level of
abstraction compared to IaaS, removing maintenance of application stack, runtime en-
vironments, operating systems and databases. Example PaaS providers include AWS
Elastic Beanstalk, Force.com and Google App Engine.

In the serverless service model, customers create specific parts of their intended
application through designated code functions, and the CP handles scaling and ex-
changing of data between different functions. Therefore serverless computing is a ser-
vice model that allows customers to run event-driven and granularly billed applications
without addressing the operational logic of constructing applications [143]. There is
an overlap between serverless computing and PaaS, and both aim to create abstrac-
tions to build software applications. Serverless computing provides a higher level of
abstraction as software developers focus on the business logic of applications with no
visibility on the orchestration and deployment mechanism onto cloud resources or the
management of the physical servers and network.

In SaaS, the customer uses general applications that are typically accessible through
multiple devices that are connected to an internet connection. SaaS is the highest level
of abstraction for customers. They focus on configurations specific to their usage,
such as end-user privileges, branding, available features and customisation of business
logic workflows, with all infrastructure management being handled by the CP and or a
software vendor.

CPs manage the cloud infrastructure, including physical nodes, storage and net-
work connectivity, and typically present these as virtualized resources, with a VM as
a common resource on a pay-per-use basis. CPs manage the VM creation process and
assign VMs to physical nodes, and a single node may host multiple end-user VMs. The
method of configuring VMs and mapping them to nodes has been widely researched
[50, 100, 83, 116, 131, 130, 133, 27, 32], and can be viewed as initial VM placement,
state detection and migration [24]. VMs contain CPU, memory, network, storage and
workloads with variable demands that are created through an initial VM placement

process. CPs regularly re-evaluate existing mappings due to VMs not meeting their
SLAs, or to remap resource assignments to improve resource utilisation and reduce
usage costs by performing VM migration. Another objective for CPs is to satisfy their
customers by achieving service level agreements (SLAs), which specify the quality
and scope of the service provided to customers. With the increased popularity of cloud

1.1. SCALABILITY CHALLENGES IN RESOURCE MANAGEMENT 16

systems, the energy consumption and environmental impact have given rise to more re-
search into efficient resource management that can provide workloads with the required
computational capacity and reduce energy waste [26]. However, the management of
infrastructure resources and applying CPs objectives is a complex process. We classify
this management process into two dimensions, Management Algorithm (MA) and Man-

agement Framework (MF), shown in Figure 1.4. The MA is responsible for deciding
how incoming workloads are assigned to infrastructure resources by regularly assess-
ing the satisfaction of such assignments in achieving a given SLA. The time complexity
of the MA influences the frequency of this assessment; the lower the complexity, the
more frequently the algorithm can be executed. The MF enables the MA to execute by
providing standard functionality, such as hierarchy level management, the scope of the
infrastructure under control or aggregation of utilisation metrics. The combined func-
tionality of the MA and MF results in workloads executing on infrastructure nodes and
dynamic reassignment of workloads to resources.

Figure 1.4: Cloud Resource Management process

1.1 Scalability challenges in resource management

Cloud resource configuration can be applied dynamically to remap resource assign-
ments. Examining management frameworks (MFs) used in resource management
shows these can be centralized, hierarchical or decentralized [90], and have different
scalability properties. To assess MFs, we use the definition of scalability as the ability

1.1. SCALABILITY CHALLENGES IN RESOURCE MANAGEMENT 17

of the system to sustain increasing workloads by making use of additional resources
[91]. Centralized MFs use an engine with a global view of the entire managed infras-
tructure and map resources across the whole infrastructure. Hierarchical MFs typically
divide the infrastructure into multiple sections, with a decision engine in each section,
which creates a centralized MF for each section. Decentralized MFs distribute the
management of the infrastructure without a centralized controller. Both hierarchical
and decentralized architectures are a form of distributed management architectures.
Centralized, hierarchical and decentralized MFs have their merits. Centralized has a
global view, hierarchical has increased scalability compared to centralized, and de-
centralized has no central controller and has been shown to scale well and manage a
large number of nodes. The resource mapping process is expressed in the Management
Algorithm (MA) in the context of the MF, and as the size of the managed resource in-
creases, the mapping process becomes more complex. Centralized MFs are common
in the literature [163, 159, 24, 34, 85]. These rely on a single source of truth that
performs all the phases required for resource mapping, including monitoring, calcu-
lating the schedule, and executing the resource mapping. During the decision making
and application of resource mapping, centralized MFs may not be able to maintain
QoS properties and react quickly to violations [117]. A centralized MF may compro-
mise the mapping quality to lower the execution time for decision making to support
scalability. Additionally, the continuous resource utilization collection can be expen-
sive to process and further impacts scalability [126]. Hierarchical architectures are
centralized MFs, that divide the infrastructure into multiple sections, with a decision
engine in each section. While this improves scalability compared to centralized MFs,
as the size of the managed infrastructure increases, the approach suffers similar chal-
lenges. Decentralized MFs enable resource management decisions to be taken through
the collaboration of multiple decision making entities, and can scale to manage a large
number of nodes [90, 151, 126]. VM consolidation is the process of placing as many
VMs in fewer nodes using VM migration. While decentralized approaches have been
able to reach VM consolidation performance of 75% CPU utilisation [126, 90], they
can be limited by the smaller view of the infrastructure, which reduces the number of
nodes that can be taken into consideration during VM consolidation.

Key to this thesis is a proposal for a hybrid MF, which is a scalable hierarchi-
cal decentralized MF that overcomes the weaknesses of centralized, hierarchical and
decentralized approaches, and achieves improved QoS metrics. Through empirical
evaluation, we show the merits of this hybrid approach, which has the scalability of

1.2. MOTIVATION & RESEARCH AIMS 18

decentralized approaches combined with the benefits of a larger infrastructure view in
hierarchical approaches.

1.2 Motivation & Research Aims

Analysis of existing cloud resource management systems shows that while extensive
research on MAs has been conducted, these are primarily centralized MFs, thus having
the expected scalability limitations. This thesis focuses on issues related to the provi-
sioning and mapping of cloud resources to workloads, from the CP perspective, to im-
prove the scalability of the mapping process in the MF. Success can then be measured
through improved QoS metrics and reduced SLA violations. The thesis is grounded on
the hypothesis that cloud management systems can be designed to apply global con-

trol and achieve high scalability through a hybrid management architecture combined

with a self-adapting MA. Based on the research hypothesis, the broad objectives of the
research are as follows:

(Obj1): Characterise and compare the composition and attributes of cloud management
systems through a literature review.

(Obj2): Design a new hybrid MF that retains the advantages of decentralized hierarchal
MFs and reduce their combined disadvantages. In particular, retain the high
scalability of decentralized MFs and the global view of hierarchal MFs.

(Obj3): Design a framework to evaluate the capabilities of the new MF by integrating
multiple heuristic MAs into the hybrid MF.

(Obj4): Design a self-adapting MA that utilises the hybrid MF escalation features and
achieves low SLA violations.

(Obj5): Design the self-adapting MA to remove the need for operators to set CPU thresh-
old and achieve improved CPU utilization, compared to existing heuristics.

This thesis focuses on CPs objectives in a PaaS context, and presents the results
of work undertaken towards providing scalable and efficient approaches for the MF
and MA. We focus on large scale cloud environments, with thousands of VMs that
run CPU intensive applications such as web servers. The resources assigned to the
VM and the number of incoming requests determine the response time experienced by
end users. The aim is to enable VMs to meet their response time and achieve a cost

1.3. METHODOLOGY 19

efficient utilization of the cloud infrastructure. We model applications as a single VM,
however, the proposed approaches can be extended to manage applications made up of
multiple VMs and other application types, such as a batch process.

1.3 Methodology

This section describes the research methodology used in this project and consists of a
literature review, model development and validation and evaluation. This is shown in
Figure 1.5.

Figure 1.5: Research methodology

1.3.1 Literature Review

The first objective (Obj1) of this research project is to review and analyse the related
work to identify the properties of cloud resource management systems. This enabled
the identification of further research opportunities, with many proposals in the litera-
ture focusing on MAs. This highlighted a gap in how scalability is achieved in these
systems, with decentralized MFs being able to achieve scale but without the larger
scope view in centralized and hierarchical MFs.

The literature review method was carried out throughout the PhD project, and each
of the published papers presented in this thesis has a literature review focusing on the
specific research objective.

1.3. METHODOLOGY 20

1.3.2 Development of the model

This stage starts with objective two (Obj2) and investigates the development of a novel
hybrid MF that retains the advantages of decentralized and hierarchical MFs. Subse-
quently, Obj3, Obj4, Obj5 are addressed in the following sequence:

• Investigate the properties of hierarchical and decentralized MFs.

• Investigate a decentralized state dissemination approach that includes decentral-
ized and hierarchical nodes.

• Investigate a decentralized cooperation protocol that drives communication be-
tween the decentralized and hierarchical nodes.

• Investigate failure recovery and leader election for the hybrid MF.

• Investigate a suitable simulation environment to validate and evaluate research
objectives.

• Investigate the possibility of separating MF and MA and integrating existing
MAs from the literature.

• Investigate the possibility of a decentralized Reinforcement Learning MA and
incorporating it in the Hybrid MF.

• Investigate the possibility of the MA learning a policy to invoke VM migration,
instead of a threshold-based approach.

1.3.3 Validation and Evaluation

The Validation stage takes Obj2, Obj3, Obj4, Obj5, and implements them in DCSim
[138], which is an extensible simulation framework for cloud data centres. We carry an
empirical evaluation with controlled experiments for each validated objective and com-
pare the results with existing MFs and MAs on the dimensions of SLA achievement,
energy consumption, and ability to scale with increasing nodes in the infrastructure.

1.4. CONTRIBUTIONS 21

1.4 Contributions

The primary contributions of this thesis are illustrated in Figure 1.6 and show the re-
lationship between the research objectives, included papers and contributions. In sum-
mary, the contributions are:

1. Adaptation in Cloud Resource Configuration: A Survey. A survey of re-
source reconfiguration in a cloud context including a definition for cloud adapta-
tion and classification that we use to survey the literature. The survey highlights
approaches and techniques used to adapt cloud resource configuration, and prop-
erties of MAs and MFs. The survey identifies three open research challenges:
characterising the workload type, accurate online profiling of workloads, and
building highly scalable adaptation mechanisms. The survey fulfils Obj1.

2. SHDF - A Scalable Hierarchical Distributed Framework for Data Centre
Management. A scalable architecture for data centre infrastructure manage-
ment, which can manage a large cloud data centre spanning thousands of nodes.
This architecture retains the benefits of both hierarchical and decentralized MFs.
To the best of our knowledge, this MF is the first hybrid hierarchical decentral-
ized framework that enables nodes to operate in a decentralized manner, com-
bining this with a hierarchical escalation of migration and consolidation of VMs
across large sections of the infrastructure. This enables MAs to achieve higher
scalability through decentralization and the opportunity to improve consolida-
tion performance through a broad infrastructure view of hierarchical systems.
Additionally, the decentralized approach in the hybrid MF enables MAs to have
a lower time complexity in mapping VMs to nodes and exploring more opti-
mal options. The design and empirical evaluation of the hybrid MF fulfil Obj2.
The proposed MF has low management complexity. Each node is autonomous
and performs its own decision making, and uses an efficient gossip protocol
to exchange states with other nearby nodes. The proposed hybrid architecture
includes a virtual layout of nodes (overlays), that does not affect the physical
layout of the infrastructure. The construction of overlays is envisaged as a sim-
ple process through an administrator portal that would accompany the proposed
hybrid MF, where the size of overlays would be specified. This can be used in
the initial instantiation of the infrastructure or as an adjustment of an existing
setup.

1.5. THESIS STRUCTURE 22

3. A Hierarchical Decentralized Architecture to enable Adaptive Scalable Vir-
tual Machine Migration. To evaluate the proposed MF, we build on the work
in [99] and implement similar MAs within our simulation environment. We ad-
ditionally compare the performance of the MAs in hybrid, hierarchical, decen-
tralized and centralized MFs. All MAs retain their SLA performance properties
when running in the hybrid MF, and some exhibit higher SLA performance due
to a reduced search space and autonomous properties in the hybrid MF. This
demonstrates the feasibility of separating the MF and MA, the flexibility of the
hybrid MF, and the ability to integrate it with other MAs to investigate cloud
resource management. This evaluation fulfils Obj3.

4. Scalable Virtual Machine Migration using Reinforcement Learning. To ad-
dress the issue with heuristic-based MAs, which cannot adapt the policy used
for resource mapping, we propose a reinforcement learning MA, which can in-
tegrate well into our hybrid MF and achieve fast convergence and lower SLA
violations. A reward function helps the MA learn a VM to node CPU utilisation
mapping, which reduces SLA violations. This adapting MA fulfils Obj4.

5. Dynamic Threshold Setting for VM Migration. Heuristic MAs typically use
threshold-based overload detection to decide when a node is stressed and when to
migrate a VM. The challenge with this approach is it requires domain expertise
to set the threshold. We propose an MA capable of learning when to migrate
a VM without an operator set CPU threshold. Additionally, a reward function
penalises migrations that overachieve SLA targets, resulting in the MA achieving
SLA targets with reduced energy consumption and high CPU utilization. This
MA fulfils Obj5.

1.5 Thesis Structure

This thesis is presented according to the guiding principles of the University of Manch-
ester journal format [4]. It contains papers published or submitted for publishing. Their
content does not appear in the table of contents, list of tables, or list of figures. The
core contribution is a collection of five published and in submission papers, which have
been produced during this PhD project. The remainder of this thesis is organised as
follows.

1.5. THESIS STRUCTURE 23

Chapter 1 introduces the problem domain, the motivating research problem in the
scalability of MF and MA performance, the research hypothesis, the objectives behind
the research and contributions in this thesis.

Chapter 2 provides a background on the technologies used for resource management
systems. It highlights the complexities of managing cloud systems and the competing
objectives for infrastructure providers.

Chapter 3 provides related work in cloud resource management and the dimensions
in MFs and MAs. For MFs, it explores the three common architectures: centralized,
hierarchical and decentralized. For MAs, it explores allocation techniques, objectives
and resources considered during cloud adaptation. The chapter addresses Obj1 leading
to contribution 1.

Chapter 4 presents a collection of published papers and some that are still under
review. These are summarised as follows:

Paper 1: Addresses Obj1 leading to contribution 1, [65] Hummaida, A. R, Paton, N.W,
Sakellariou, R. Adaptation in cloud resource configuration: a survey. Journal of
Cloud Computing 5, 1 (2016), 1–16.

Paper 2: Addresses Obj2 leading to contribution 2, [66] Hummaida, A. R, Paton, N.W,
Sakellariou, R. SHDF - a scalable hierarchical distributed framework for data
centre management. In 2017 16th International Symposium on Parallel and Dis-
tributed Computing (ISPDC) (July 2017), pp. 102–111.

Paper 3: Addresses Obj3 leading to contribution 3, [64] Hummaida, A. R, Paton, N.W,
Sakellariou, R. A Hierarchical Decentralized Architecture to enable Adaptive
Scalable Virtual Machine Migration. In submission to Concurrency and Com-
putation: Practice and Experience (CCPE).

Paper 4: Addresses Obj4 leading to contribution 4, [67] Hummaida, A. R, Paton, N.W,
Sakellariou, R. Scalable Virtual Machine Migration using Reinforcement Learn-
ing, in the Journal of Grid Computing.

Paper 5: Addresses Obj5 leading to contribution 5, [7] Hummaida, A. R, Paton, N.W,
Sakellariou, R. Dynamic Threshold Setting for VM Migration, in ESOCC 2022.

1.5. THESIS STRUCTURE 24

In all papers, Abdul R Hummaida contributed the proposal of the main idea, re-
search development, research planning, literature review, writing, evaluation and anal-
ysis of the results. Norman W Paton and Rizos Sakellariou supervised the work, con-
tributed to the ideas and proofread all papers. In accordance with the journal format,
published papers are presented as they appear in print.

Chapter 5 provides a critical analysis of related work to the papers included in Chap-
ter 4. Each of the papers has a related work section, and this chapter extends this and
provides a detailed comparison. The chapter concludes the thesis and suggests direc-
tions for future work.

Figure 1.6 illustrates the relationship between the included papers, research objec-
tives and contributions.

Figure 1.6: Relationship between the research objectives, included papers and contri-
butions.

Chapter 2

Problem Background

2.1 Introduction

This chapter introduces concepts that are building blocks for this research, including
the key technologies that enable the operation of cloud environments. We focus on
the areas related to our research topics, particularly virtualization technologies and
how Cloud Providers (CPs) adapt resource configuration to achieve their commercial
objectives.

2.2 Virtualization

Virtualization is an abstraction of physical resources into virtual or logical resources,
enabling multiple pieces of software to share a single physical machine. It creates a
virtual, rather than an actual, version of a resource. A key example of virtualization
is hardware virtualization, where the physical capabilities are presented as multiple
logical resources such as a virtual CPU, virtual RAM, virtual network. This enables
the creation of a Virtual Machine (VM) where these virtual resources appear as physi-
cal resources to all the software running inside the VM. Virtualization allows a single
physical node to emulate the behaviour of multiple nodes, with the possibility to host
different operating systems on the same node. Thus, a VM is a software implemen-
tation of a physical node that can run the software the same way as the physical node
would. VMs running on top of a host operating system (OS) execute in an isolated
virtual address space and run at a lower privilege than the hosting OS. The hosting OS
also exposes virtual disks, virtual CPUs, and virtual network cards.

25

2.2. VIRTUALIZATION 26

Virtualization is a fundamental building block that enables cloud computing by fa-
cilitating sharing of physical resources. Virtualization enables consolidation, where
multiple OSs that may have been running on underutilized physical nodes can be vir-
tualized and moved to fewer physical nodes, reducing CP’s capital expenditure and
operating costs.

To customers, virtualization offers multiple benefits, including functional isola-
tion, where users can have privileged access within their VM without access to other
VMs or the physical node. Virtualization also enables customers to provide environ-
ments to deploy and test software faster than physical nodes that need to be acquired,
provisioned and connected. While virtualization allows workload consolidation and
increases resource utilisation, each VM still runs a full copy of an OS inside the VM.
Containerization, on the other hand, addresses this challenge through OS-level virtu-
alization [97]. A container holds the resources needed to run a particular application.
It provides a layer of abstraction, with each container behaving like an independent
operating system. Each container has its own space of process IDs, its memory, virtual
CPUs and a private file system [52]. There is little difference between running in a
container or a VM to a customer application. Examples of container services in the
public cloud include Amazon Fargate and Google Kubernetes Engine.

(a) (b) (c)

Figure 2.1: Hardware and OS Virtualization

To enable virtualization and control it, the hypervisor [21] is the software that fa-
cilitates the creation of abstraction and separation between VMs. Hypervisors act as
the equivalent OS and are responsible for scheduling resources and hosting guest OSs
[77]. A key component in hypervisors is the Virtual Machine Monitor (VMM), which

2.2. VIRTUALIZATION 27

captures privileged instructions from guest OSs running on the hypervisor, e.g., net-
work access, and emulate their behaviour by using the physical hardware [72]. The
VMM handles exceptions generated by the physical hardware and passes these back
to the requesting VM. The VMM also manages CPU virtualization by running most
instructions natively and controls specific privileged instructions. This means the per-
formance is almost as good as native code running directly on the hardware [68]. Bare
metal, or type 1 hypervisors, run on the physical node and create an abstraction that
virtualizes the node devices, as shown in Figure 2.1a. Type 2 hypervisors run on top
of an OS, with the OS acting as a host for the hypervisor, as shown in Figure 2.1b.
The type 2 hypervisor layer runs as a privileged layer within the hosting OS, and itself
can then host other OSs as individual VMs. VMs can run in one of two modes: fully
virtualized or paravirtualization. In full virtualization, the VM is provided with a fully
compatible interface onto the hardware by the VMM, and the VM requires no mod-
ifications or particular setup. Paravirtualization is a technique where the guest OS is
explicitly modified to run on a hypervisor. A set of drivers on the OS call an interface
on the hypervisor to optimise performance compared to complete virtualization [72].

Figure 2.2: VM migration

A key feature of hypervisors is the ability to migrate VMs, called live migration,
which is the process of moving an entire VM from one node to another without inter-
rupting the software running within the VM, as shown in Figure 2.2. Migration enables
CPs to move VMs that are not meeting SLAs or conserve energy by consolidating VMs
to fewer nodes. There are typically two techniques [76] for VM migration, pre-copy

2.2. VIRTUALIZATION 28

and post-copy migration. In pre-copy migration, memory pages of the VM are copied
from the source to the target node while the VM continues to run. Any memory page
changes in the source node are tracked and continuously synced with the destination
node. The process continues until either a small number of memory pages or fixed
rounds of copying are reached. At that point, the VM is suspended in the source and
resumed in the target node. The minimal set of VM states needed to run the VM is
copied from the source to the target node in post-copy migration. As the VM runs on
the target node, required pages are copied from the source node. The migration time
is high in the pre-copy approach, as the pages are kept in sync, and the post-copy ap-
proach has a risk of performance degradation to the VM after the VM is resumed as
pages are fetched on-demand [135].

The Xen hypervisor [3] is an open-source Type 1 Hypervisor developed by the Xen
community. As a bare-metal hypervisor, Xen has its own VM scheduler, which is used
to multiplex the execution of the virtual CPUs of the VMs on the physical CPUs on the
node [8]. Xen is currently available for the IA-32, x86-64 and ARM binary instruction
sets, and can run Linux, Windows, Solaris and BSDs as guest operating systems, and
supports Pre-copy and Post-Copy Migration. Xen is under the GNU General Public
License (GPL2).

KVM [1] is an open-source hypervisor implemented as a module of the Linux
kernel. KVM is a hosted or type 2 hypervisor and runs on a host OS kernel, using the
kernel’s functionalities. KVM presents guest OSs as regular applications on the hosting
OS, and thus they are scheduled by the host OS [8]. KVM’s approach reduces the
complexity of the hypervisor implementation, as the Linux kernel handles scheduling
and memory management.

VMware ESXi [2] is an enterprise bare-metal hypervisor and can accommodate
VMs of up to 128 virtual CPUs and 6 TB of RAM. ESXi provides a virtualization layer
that abstracts the physical node’s CPU, memory, storage, and networking resources
and presents these to VMs. ESXi includes an OS kernel that receives resource access
requests from VMs and sends them to the physical resources.

Containers, shown in Figure 2.1c, are implemented in the Linux kernel through
isolation for one or more Linux processes [150]. Containers are smaller in size and
contain less software compared to VMs, and thus they typically are much faster to
provision and consume fewer node resources to run. Examples of container engines
include Open VZ, Solaris Zones, FreeBSD Jails, LXC, CoreOS (Rocket), and Docker
[19]. Similar to VMs, containers can also be migrated due to node maintenance, load

2.3. ADAPTATION 29

balancing, and node consolidation [110]. Virtuozzo transfers a container’s filesystem
and virtual memory to a target node and freezes all processes [110]. It then creates a
dump of memory state to disk and copies it to the target node; deltas since the dump
are also transferred to the target node.

Both hypervisor-based and container-based virtualization have preferred use cases,
and neither of the virtualization solutions is best for all applications [145]. Cloud
users are likely to use a combination of the two. Similarly, different hypervisors have
different energy efficiencies that are dependent on the customer workload [77], and
no single hypervisor outperforms the other hypervisors in terms of performance and
energy consumption.

2.3 Adaptation

To meet workload demands, CPs can apply adaptation [60] to reconfigure resources
autonomically. However, there are still some challenges including [11]: granularity
of resource adjustments, the startup time of newly provisioned resources and choosing
policies for applying elasticity. While a CP’s objectives include satisfying customer re-
quests, this may not always be technically feasible or commercially viable. CPs have
finite resources and may need to apply prioritisation on requests. Additionally, a CP
may decide it is more cost-effective to pay the penalty for an SLA violation instead
of scheduling a request. The general view on Elasticity [60] abstracts several complex
activities such as combining the decision to adopt and the application of adaptation.
We refine this view by separating the decision making process from the reconfiguring
cloud environment. We define elasticity as the on-demand ability to scale vertically or
horizontally segmented resources in discrete units. To achieve a specific business goal,
CPs go through a decision making process that changes the infrastructure, a process we
name Cloud Systems Adaptation. We define this as a change to provider revenue, data
centre energy consumption, capacity or end-user experience where decision making re-
sulted in a reconfiguration of compute, network or storage resources. Reconfiguration
is the process of increasing or reducing resource allocation to a workload through elas-
ticity. Core to cloud systems adaptation is a decision making process that decides the
resources to reconfigure. When decision making is complete, elasticity is used to scale
the infrastructure resources. For customers to run workloads on cloud environments,
these need to be accepted by the CP and mapped onto resources that satisfy both the
customer and CP goals. A vital aspect of this process is VM Placement, which consists

2.3. ADAPTATION 30

of two parts: initial VM placement, which refers to the first allocation of VMs to nodes
in the data centre, and VM migration or relocation, which involves the revision of an
earlier placement decision. VM placement performs the mapping to meet SLA, energy
or profit goal and has been studied extensively [50, 100, 83, 116, 131, 130, 133, 27, 32];
we cover this in more detail in Chapter 3.

In Paper 1 [65], we have shown there are multiple dimensions to cloud adaptations.
Adapting the cloud resource: CPU, memory, disk bandwidth and storage for VMs,
powering on a node or adjusting Dynamic Voltage and Frequency Scaling (DVFS)
for a node, adding or removing nodes for cluster adaptations. Adaptation objectives

are the drivers to engaging adaptation and include reducing SLA violations, reducing
power consumption and maximising CP profit. Some of the work in the literature at-
tempts to reduce the cost to the customer [73, 31, 89, 85]. Adaptation techniques used
on cloud resources include heuristic [167, 59], control theory [12, 161] and machine
learning [28, 89]. Adaptation engagement is the approach that starts the adaptation
process and is typically reactive [167, 136] or proactive [163, 159, 111, 20], with some
approaches being a hybrid of both [70, 73]. The Decision Engine Architecture gov-
erns the method for decision making method, with centralized architectures using a
single viewpoint and managing the entire infrastructure. To improve the scalability of
centralized architectures, researchers investigated hierarchical and decentralized ap-
proaches. Hierarchical architectures aim to enhance scalability and typically divide
the infrastructure into multiple clusters [13, 142]. Decentralized approaches distribute
the decision making process and have no central control point. These have been shown
to achieve good scalability [126, 151, 95]. However, decentralized approaches can
suffer in their ability to consolidate VMs due to the lack of a global view [95]. The
approaches and scalability of the decision making process are covered in more detail
in Chapter 3.

Paper 1 [65] shows that VM level adaptation is typically applied to improve/re-
duce workload performance due to an increased/decreased demand by adjusting CPU,
memory, disk bandwidth and storage. For example, a web server running on a VM
may need more CPU share due to an increased number of requests. Node level adap-
tation could be applied to add capacity by powering on a node. Energy consumption
could be reduced by using DVFS before the node is powered off when not needed. Mi-
gration can also reduce energy consumption by consolidating VMs into fewer nodes
and switching some nodes off. Cluster level adaptation is applied to facilitate node
adaptation and adhere to any reliability policies used by CPs by adding and removing

2.4. SUMMARY 31

nodes. The included Paper 1 [65] presents an extended analysis of adaptation in cloud
computing.

2.4 Summary

This chapter introduced some concepts that are building blocks for this research. While
virtualization enabled wider adoption of cloud computing, it requires manageability
and regular adaptation to balance the needs of CPs and their customers. As the adop-
tion of virtualization increases, there is a greater need for methods to enable efficient
management of large scale cloud environments. Through Obj2 and Obj3 we investigate
a method for large scale cloud management. Through Obj4 and Ob5 we investigate
methods to apply efficient adaptation.

We focus on VM adaptation as this remains a popular virtualization unit and will
enable us to compare our proposed approaches to existing work in the literature. It is
feasible to extend the proposed methods to manage containers. As there are likely to
be more containers than VMs and the proposed approaches in Obj2 and Obj3 aim to
solve scalability challenges, we hypothesise the evaluated benefits will also apply when
managing containers. The proposed approaches in Obj4 and Ob5 can be extended to
capture container metrics, create dynamic threshold levels for container migrations,
and manage container migration targets.

Chapter 3

Related Work

3.1 Cloud Resource Management

This chapter reviews the fundamental semantics of cloud resource management, in
particular features of Management Frameworks (MFs) and Management Algorithms
(MAs). For MFs, we explore the three common architectures: centralized, hierarchical
and decentralized and their key features. We highlight some of the scalability chal-
lenges with existing MF approaches and propose an alternative hybrid MF, which can
retain the properties of both hierarchical and decentralized architectures and overcome
their disadvantages in a public cloud context. The proposed MF models applications
as a single VM, and can be extended to manage applications made up of multiple VMs
by incorporating a MA that is aware of the constituent VMs that make up an applica-
tion. We integrate several MAs from the literature with the hybrid MF and carry out an
extensive evaluation. To utilise the capabilities of the proposed hybrid MF, we review
existing MAs in the literature and develop a new MA that can enable high scalability
and cope with the dynamic nature of cloud environments. In the review of MAs, we ex-
plore objectives, considered infrastructure resources and allocation techniques. Unique
to this review is a focus on the public cloud provider perspective and an introduction
of a novel classification of cloud resource management into MAs and MFs.

3.2 Management Frameworks - MFs

An MF in cloud resource management provides core capabilities and enables the MA
to execute. We extend the identified taxonomy in [124]. Figure 3.1 shows the dimen-
sions in MFs and the relationship of the MA to the MF. Key to the operation of MFs is

32

3.2. MANAGEMENT FRAMEWORKS - MFS 33

the scope of the infrastructure that is made available to the MA, with MF architectures

typically designed to operate in centralized, hierarchical and decentralized manners.
The architecture of the MF can influence the scalability achieved as the number of the
managed resources increases. Additionally, each architecture has different properties
for metric collection and for providing reliability. MFs operate to facilitate key MA
functionality, such as placing new workloads on the infrastructure, reacting to existing
workloads being stressed or consolidating by optimizing current resources to work-
load mapping. These operations can be invoked on a reactive basis due to workloads
or resources, on a proactive basis where a prediction is made and executed to achieve
a particular goal or a hybrid of both approaches.

Figure 3.1: MF Taxonomy

3.2.1 Architecture

The MF’s architecture governs the MA’s scope of operation and the infrastructure size
the MA attempts to evaluate and adapt during a decision making cycle. A larger scope
potentially provides a more extensive search space and thus offers a more optimal
optimisation. However, it potentially introduces a challenge with time complexity. In

3.2. MANAGEMENT FRAMEWORKS - MFS 34

this section, we examine several MF architectures and the scope they provide to MAs
during adaptation.

In centralized MFs, a global controller has a view of all the resources being man-
aged, including physical nodes, VMs or containers and consumption of resources such
as memory, CPU, storage and network on each physical node, as shown in Figure 3.2.
The MA runs within the global central controller. Thus, the whole data centre infras-
tructure may be used as input into a single adaptation cycle.

Figure 3.2: Example of Centralized MF architecture

Resource metric collection occurs periodically [61], from every node in the entire
infrastructure and, typically through the hypervisor interface, with each managed node
sending its metrics to the global controller through the network. The collected metrics
include CPU, memory, network and storage usage of each VM. These can be input
into the adaptation process, and in a centralized architecture, the entire infrastructure
is used in adaptation.

Centralized MFs have a single global controller and are the most prevalent in lit-
erature proposals [166]. Centralized architectures do not have reliability intrinsic to
their design. They require techniques that address issues with a single point of failure
[101] to achieve high availability and reliability. Applying redundancy is an essen-
tial factor to removing single points of failure, and strategies can be active or passive
[45]. There is a master global controller in a passive redundancy, and other similarly
capable controllers are on standby. When the master controller failure is detected, a
standby controller takes the role of the Master controller and can resume failed node
tasks. There are no standby controllers in an active strategy, and all controllers are
active and process requests in parallel. If one of the controllers fails, other controllers

3.2. MANAGEMENT FRAMEWORKS - MFS 35

can continue incoming requests to manage the infrastructure.

Centralized approaches have been widely utilized in the literature [61, 129, 144,
43, 62]. Entropy [61] is implemented in Xen [39] and has a dedicated node for a
global controller. Each managed node has a metric collection capability using Xen’s
Domain-0. Entropy defines an upper bound for MA execution to manage scalability,
and by default, this is set to 1 minute. CloudScale [129] does not assume prior knowl-
edge about the applications running inside the VMs being managed and can apply
autoscaling and DVFS adjustment actions. CloudScale is implemented on top of Xen
and collects CPU consumption, memory allocation, network traffic, and disk I/O met-
rics with measurements taken every 1 second. CloudScale only triggers a migration if
the violation is predicted to last continuously for K seconds to reduce the number of
migrations. K is a configurable value that can be defined and is by default 30 seconds.
While Cloudscale was tested on real infrastructure, its ability to scale to manage a
large infrastructure was not examined. Google’s Borg [144] supports high availability
and fault-recovery using a centralized architecture and can manage many thousands of
nodes in each cluster, with each cluster receiving 10000 tasks per minute. While Borg
can scale to manage a large infrastructure, it has been highly tuned for Google’s work-
load and environment and is suited to long-running services and batch jobs [43]; it is
not a generic public cloud MF. Mesos [62] uses a two-level scheduling mechanism,
with a centralized master managing slave daemons running on cluster nodes. User
frameworks that run tasks execute on the slave nodes. The master process makes re-
source offers to user frameworks, with the scheduler running each workload deciding
to accept or reject the master’s offer. Mesos was evaluated to manage 50,000 nodes.
However, user frameworks need to be modified to be Mesos aware and thus Mesos is
not a generic public cloud MF.

As centralized MFs consider the entire infrastructure during the adaptation and
metric collection, they are always subject to scalability, reactivity, and fault-tolerance
issues [117]. To address the scalability challenges in centralized MFs, researchers in-
vestigated other architectures, including hierarchical MFs. As shown in Figure 3.3,
hierarchical MFs typically divide the infrastructure into multiple sections, with a deci-
sion engine in each section, which has the effect of creating a distributed centralized
MF for each section. In such a section, typically on the cluster level, each node is
connected to a cluster manager from which it receives adaptation commands. Within
each divided section, metric collection operates in a similar way to centralized MFs.

Hierarchical approaches have been studied in cloud resource management, and the

3.2. MANAGEMENT FRAMEWORKS - MFS 36

Figure 3.3: Example of Hierarchical MF architecture

approaches typically use a multi-level hierarchical approach running at different time
intervals [10, 79, 165, 13, 106, 42, 118]. In Addis et al. [10] the lowest level controller
runs every hour and performs VM placement, power management and workload pro-
filing. In [79], the lowest level controllers manage a small number of machines and
the applications hosted on them. At the next higher level, a controller manages nodes
owned by multiple lower-level controllers. The authors in [165] used three levels,
where the highest level controller managed multiple clusters operating at seconds (L1),
minutes (L2) and days (L3) intervals. However, the authors did not explore the scalabil-
ity of their approach. The authors in [13] chose to slice the hierarchy on the operations
of the controllers. A Level 1 controller handles VM placement and load balancing and
runs every 30 minutes. A Level 2 controller controls the resources of a node and runs
every few minutes. The authors in [106] focus on VM placement in their approach
using 2 level hierarchical controllers. Some of the proposals considered collaboration
among the controllers. In [56], the authors use a hierarchical approach with VM migra-
tion escalation and perform the initial assignment of VMs to clusters and periodically,
lower controllers decide what to optimise and pass the decision to parent controllers.
In [107], the authors outline how a collection of hierarchical autonomic managers can
collaborate using messages. Hierarchical proposals typically utilise a controller run-
ning in a centralized manner within the scope of a cluster of nodes. Snooze [49] uses
a hierarchical architecture to support load balancing and fault tolerance. Each node
has a local controller responsible for monitoring the node capacity, including resizing
and migrating VMs. A group manager manages a local controller, which acts as an

3.2. MANAGEMENT FRAMEWORKS - MFS 37

intermediate layer to propagate metric information and segregate the infrastructure.
A group leader manages group managers and has a centralized view of the metrics
used to direct VM placement requests. The experiments considered the network load
scalability of Snooze but did not evaluate its ability to scale and manage SLAs.

Resource metric collection typically occurs periodically in a similar way to central-
ized MFs. However, the metrics being sent to a global controller are sent to a controller
managing a smaller subset of nodes at the rack or cluster level [79]. As the number
of nodes within the cluster increases, the decision making algorithm faces a similar
challenge to traditional centralized approaches. The execution time can result in an
inability to react to SLA violations.

Hierarchical approaches improve the reliability properties compared to centralized
approaches, as they divide the managed infrastructure and increase the number of man-
aging controllers. However, hierarchical approaches suffer similar challenges to cen-
tralized, at the single cluster level, and require explicit redundancy strategies. For
example, in [10] each cluster maintains primary and backup controllers.

While there have been attempts to examine the scalability of hierarchical approaches
[10, 56], these tend to be small or do not examine an increasing size of the managed
infrastructure.

Cloud resource management solutions need to maintain VM placement that meets
SLA agreements and optimise the usage of CP resources. The scalability of the MF has
a significant impact on the ability of cloud resource management solutions to respond
to SLA violations [90]. Decentralized architectures distribute the management of the
infrastructure without a centralized controller [118], and both hierarchical and decen-
tralized architectures are a form of distributed management architectures. A typical
layout for a decentralized MF is shown in Figure 3.4.

Some of the decentralized approaches use an overlay network as a mechanism for
nodes to communicate. An overlay is a logical network that runs independently of a
physical network and does not change the underlying network. Examples of overlay
networks include Peer-to-peer (P2P), virtual private networks (VPNs), and voice over
IP (VoIP) [141].

DVMS [117] has a decentralized MF, where an agent runs on each node to manage
the VMs running on the node and collaborate with other neighbouring agents. Agents
communication is done through a fault-tolerant overlay network that relies on a dis-
tributed hash table. The communication overlay defines the node to neighbour relation

3.2. MANAGEMENT FRAMEWORKS - MFS 38

Figure 3.4: Example decentralized MF architecture

and can be structured or unstructured. Each node can submit new workloads and han-
dle cooperation events to manage the infrastructure generated by other nodes. Each
node monitors its resource usage and can create a partial view of the resource usage on
neighbouring nodes, on-demand. The partial view improves scalability and enhances
fault tolerance as nodes can communicate with new neighbours in the event of failure
of some nodes. Metric collection is performed by a resource monitor, which updates
monitoring information every two seconds. If a violation is detected, an event is gen-
erated to resolve the stress by collecting neighbouring metric details. The authors in
[152] proposed a decentralized approach that uses a gossip protocol to enable node
communication. The protocol has a distributed algorithm, where each node regularly
selects a subset of other nodes to interact with using small-sized messages. The proto-
col uses a push-pull paradigm, where two nodes exchange state information and update
their local states during each exchange. The approach appears to be simple, scalable
and more robust. The protocol runs on each node and utilises metrics on available data
centre resources and the current resource demand. Each node has a partial view of
all the nodes at any point in time. Simulator evaluations show the approach can scale
to many thousands of nodes. However, the approach operates with a partial view of
the infrastructure, and a node only cooperates with another randomly selected node. It
may take several interactions with multiple nodes before a node can find a target node
within the overlay to migrate a VM during a stressful situation. The authors in [114]
proposed a decentralized approach to manage an extensive cloud infrastructure, where

3.2. MANAGEMENT FRAMEWORKS - MFS 39

Table 3.1: Summary of MF Architectures
Centralized Hierarchical Decentralized

Operation scope Global Partial Partial
Scalable by design No Partial Yes
Built-in reliability No No Yes

Metric collection
All nodes to
master controller

Cluster nodes to
cluster controller

One node to
cooperating nodes

nodes are organised in an overlay network. Nodes can operate autonomously and can
scale up and down in response to changes to workloads. Underloaded nodes cooperate
to move their workload to other nodes and switch off, while overloaded nodes can mi-
grate VMs to reduce energy consumption and reduce SLA violations. The protocols
for managing the overlay network have a time complexity of O(log2 N), where N is the
number of nodes being managed.

Table 3.1 summarises properties of the centralized, hierarchical and decentralized
architectures and shows that decentralized approaches typically have inherent scalabil-
ity but can be limited by their partial view of the infrastructure.

3.2.2 Invocation

The cloud adaptation process can be expensive to carry out decision making and to ex-
ecute state adaptation [158], thus there is a need to balance the benefit and the running
cost of adaptation. This raises the challenge of deciding when the adaptation process
should be invoked to achieve this balance. This section explores the current approaches
and challenges in invoking adaptation and summarises our contribution of a dynamic
method to invoke adaptation.

The methods used in the literature fall onto reactive, proactive or hybrid engage-
ment. Reactive approaches invoke adaptation when a monitored metric, e.g. CPU
utilisation, reaches a specific threshold or when an event is received, such as a new
VM placement or termination request. Proactive approaches predict what demands
will be placed on the infrastructure and invoke adaptation ahead of the expected re-
source contention point. Hybrid approaches utilise proactive methods and combine
these with reactive methods to engage adaptation for long and short term time scales.

Examples of approaches that predict invocation include [79, 13, 129]. In Mistral
[79], a workload predictor estimates the stability interval following the current time.
For an application, Mistral predicts the period when the workload remains within a

3.2. MANAGEMENT FRAMEWORKS - MFS 40

band. At each monitoring period, Mistral checks if the application is within its band,
and re-estimates the next stability interval for applications outside of their predicated
band using an autoregressive moving-average technique. The controller chooses which
(if any) of the available adaptation actions to take to improve the overall utility of the
managed system. In [13], a predictor forecasts system workload based on previous
monitoring data. A resource allocator then uses these to calculate the capacity required
by VMs. The prediction of future utilization is based on a moving average of utilisation
in the previous n intervals. In CloudScale [129], resource usage time series are used
as input into a resource demand prediction model, which predicts short term demands.
The model uses a fast fourier transform to identify any repeating patterns, and if found,
it is used to estimate future resource demands. If not found, the model uses a discrete-
time Markov chain to predict resource demand.

Examples of approaches that adapt reactively include [117, 49, 10]. The authors in
[117] use a reactive approach, with adaptation being invoked when an event is received.
Events can include new VM placement or stress requests generated by self-monitoring
nodes. The authors argue this is better than a predictive approach that requires accurate
knowledge of workload profiles. Nodes self-monitor using CPU and memory thresh-
olds set by CPs and by default collect metrics every two seconds. In Snooze [49], a
reactive approach is used to execute policies, such as scheduling, optimising and plan-
ning. For example, an administrator can configure optimization to be run during a
specific hour in the day. In Addis, [10] the lowest level controller runs every hour and
performs VM placement, power management and workload profiling.

Overload detection determines if the managed node is under stress and may not
fulfil its SLA obligations and is typically applied to node CPU utilization. Once an
overload state is detected, an adaptation process may be invoked to relieve a stressed
node through VM selection and migration from the stressed node to a chosen target
node. Conversely, underload detection determines if the managed node is underutilized
and may invoke a consolidation process to migrate VMs from nodes with low CPU
utilisation to nodes with higher CPU utilisation and looks to power off underutilized
nodes to reduce energy consumption [128].

Reactive approaches are typically implemented using threshold techniques [41]
by triggering adaptation when a node’s utilization reaches a given level. Beloglazov
et al [25] proposed a collection of adaptive policies for setting the upper thresholds:
Interquartile Range, Median Absolute Deviation, Local Regression, and Robust Lo-
cal Regression. The thresholds are calculated through statistical analysis of historical

3.2. MANAGEMENT FRAMEWORKS - MFS 41

node utilisation metrics. Other approaches include adaptive heuristic algorithms [155].
The authors in [102] proposed an overload and underloaded node detection. A node is
deemed overloaded if the actual and the predicted total CPU usage of 7-time intervals
ahead exceed the defined overload threshold. Different to [25], the authors addition-
ally incorporated a probabilistic approach to counter the uncertainty of the long-term
predictions as well as the cost of applying the VM migration. Other proposals include
a regression-based algorithm to create an upper threshold for detecting overload [155].
The approach automatically adjusts the upper CPU utilization threshold based on the
historical CPU utilization of the nodes.

A key element to the threshold-based approach is the assumption there is a high
chance that an overload occurs when a node’s utilization exceeds the set threshold.
Thus, the threshold level creates an association between a node metric, eg CPU uti-
lization, and SLA violation. However, the metric threshold where SLA violations can
occur varies based on the application and the node configuration. Creating a single
threshold for all application and node configurations is incredibly difficult. While the
current approaches can reduce overload, they can limit the utilization gains that can be
achieved as they leave unused slack for each node. Additionally, threshold approaches
can trigger unnecessary migrations as exceeding the set threshold does not necessar-
ily equate to an SLA violation [41]. Given these challenges, we identify invocation
of adaptation as an area of further research, and we propose a method to dynamically
learn a CPU utilization threshold based on a derived reward, in Section 4.5. In this
approach, each node performs exploratory VM migrations at different CPU utilisation
levels and determines a reward for each level, converging on a threshold that balances
SLA violations and maximises CPU utilization.

3.2.3 Discussion - MFs

Table 3.2 shows MFs from the literature and how they invoke the adaptation process,
their architecture and the type of resource management operation they perform. Our
review shows these MFs are mainly reactive and all perform VM placement, with some
performing adaptation to stress and consolidation of VMs onto fewer nodes.

Centralized, hierarchical and decentralized architectures have their merits. Central-
ized architectures have a global view, hierarchical architectures have increased scala-
bility compared to centralized ones, and decentralized architectures have no central
controller. They can scale to manage a large number of nodes. Centralized archi-
tectures are common in the literature and have a more straightforward design and

3.2. MANAGEMENT FRAMEWORKS - MFS 42

implementation than hierarchical and decentralized MFs, due to their command con-
trol mechanism. Hierarchical architectures share some of the simplicity of the cen-
tralized approach but with the added complexity of needing to propagate metrics to
higher-level controllers. While decentralized architectures can achieve large scale, they
have higher complexity in their design due to the close cooperation between nodes to
achieve resource management objectives [40]. Additionally, in the current decentral-
ized approaches, each node cooperates with other nodes in its overlay with no ability
to migrate a VM outside the overlay. In a stress situation, this could result in a node
remaining in a stressed state for an extended period until a suitable migration is found
inside the overlay. Our hypothesis is the strengths of these architectures can be com-
bined, and their weaknesses overcome. We investigate a hybrid MF that overcomes the
shortcomings in hierarchical and decentralized approaches and reduces SLA violation
metrics. We present this approach in contribution 2, Paper 2 [66], in Chapter 4, where
we show the proposed hybrid MF can scale to manage an extensive infrastructure and
reduce SLA violations.

Table 3.2: Comparison of MF architectures

MF Architecture Invocation Operation

Placement Stress Consolidation
Addis [10] Hierarchical Predictive x x
Jung [79] Hierarchical Predictive x x x

Almeida [13] Hierarchical Predictive x
Hindman [62] Hierarchical Reactive x
Quesnel [117] Decentralized Reactive x x x

Pantazoglou [114] Decentralized Reactive x x x
Wuhib [152] Decentralized Reactive x x

Hermenier [61] Centralized Reactive x x
Shen [129] Centralized Predictive x x

Verma [144] Centralized Reactive x

To assess the extendibility of the proposed hybrid MF, we implement multiple MAs
from the literature, evaluate the quality of service metrics of the hybrid MF, and com-
pare these to centralized, hierarchical, and decentralized architectures. In the hybrid
MF, nodes are autonomous, decide when to accept migration requests and are typically
less stressed than nodes in the other evaluated architectures. This results in lower VM
migration instability and enables more opportunities for VM consolidations. We have

3.3. MANAGEMENT ALGORITHMS - MAS 43

shown these factors lead to lower SLA violations and less migration traffic. Addition-
ally, the escalation approach in the hybrid MF attempts to service resource requests
at the lowest local level possible to reduce the overhead of servicing the request. We
demonstrate the hybrid MF reduces SLA violations compared to centralized, hierarchi-
cal and decentralized architectures, particularly in high-stress workloads. We present
this in contribution 3, Paper 3 [64], in Chapter 4.

The review of MFs in the literature highlighted some of the challenges in invok-

ing adaptation, particularly with the current threshold-based approaches. There is an
opportunity to investigate a dynamic approach to setting a metric threshold, such as
CPU utilisation, which considers the impact of the set threshold level. For example,
one option is to perform online learning of a threshold that gives a node utility for a
given CPU utilisation. This would enable the threshold to factor in the dynamic nature
of cloud environments and their heterogeneous workloads. As part of contribution 5,
we investigate and develop a method that enables a node to dynamically learn a CPU
utilization threshold based on a derived reward. In this approach, each node performs
experimental VM migrations periodically at varying CPU utilisation levels and cal-
culates a reward for each of the used threshold levels, converging on a threshold that
balances SLA violations and maximises CPU utilization. We present this approach in
contribution 5, Paper 5 [7], in Chapter 4.

3.3 Management Algorithms - MAs

The MA is the decision making component that assigns workloads to infrastructure
resources by regularly assessing the satisfaction of such assignments in achieving a
given objective, which typically includes SLAs. The frequency and running time of
the MA have a significant impact on its ability to map workloads to infrastructure
resources efficiently. The lower the complexity, the more frequently the algorithm can
be executed.

Given the dynamic properties of cloud environments and the regular change in
the structure of workloads, our hypothesis is a dynamic MA that can regularly learn
will be well suited to balancing the goals of meeting SLAs and conserving energy
consumption. Our goal is to investigate a MA that can be combined with the proposed
hybrid MF, discussed in the last section of this chapter. The hybrid MF has been shown
to scale and manage a large infrastructure [66] by combining a decentralized approach
with the ability to escalate through a hierarchical architecture. This section reviews

3.3. MANAGEMENT ALGORITHMS - MAS 44

MA proposals in the literature and identifies an MA to use with the hybrid MF.

The proposed novel MA classification, shown in Figure 3.5, has three key aspects;
Objectives define the goal of the adaptation process and typically includes minimising
SLA violations, by using the MFs invocation capability to detect overloaded node state
and carry out stress resolution. Objectives also include reducing energy consumption
by using the MFs invocation capability to detect underload and migrate to consoli-
date VMs. Other energy minimising approaches include Dynamic Voltage Frequency
Scaling to reduce the speed and power consumption of processors in nodes. The al-

location techniques are a set of analytical and modelling techniques used to achieve
the adaptation objective and include heuristics, metaheuristics, control theory and ma-
chine learning. The considered resources are infrastructure components used either to
monitor the state or are reconfigured as part of the adaptation process.

Figure 3.5: MA Taxonomy

3.3. MANAGEMENT ALGORITHMS - MAS 45

3.3.1 Objectives

The objective of a VM Placement is to map customer workloads onto Cloud Providers
(CPs) resources in a way that achieves a particular objective, such as reducing en-
ergy consumption or load balance while ensuring SLAs are met [90]. VM place-
ment consists of two parts: initial VM placement, which refers to the first alloca-
tion of VMs to nodes in the data centre, and VM migration or relocation, which in-
volves the revision of an earlier placement decision. VM placement performs the map-
ping in order to meet SLA, energy or profit goals and has been studied extensively
[50, 100, 83, 116, 131, 130, 133, 27, 32].

SLA

A Service Level Agreement (SLA) defines the quality of service (QoS) requirements
as a contractual expectation between the customer and CP. Achieving SLAs is part
of a CPs operating model and is a crucial objective for adaptation. Components of
SLAs include service guarantees, which are the metrics the CP aims to meet, and
have: availability and workload response time [23]. Service granularity calculates
an aggregate of the contracted resources. For example, aggregate uptime of specific
resources is contracted at a certain percentage. As these are typically aggregates, it
implies that some periods may be lower than the specified level [23]. An SLA violation
is when the CP does not meet the defined SLA. Many CPs leave the responsibility for
reporting SLA violations to the customer [23]. Given the complexity of proving SLA
violations for cloud customers, some of the literature aims to help customers monitor
SLAs and detect violations by implementing advanced SLA management strategies
and considering the semantic meaning of SLA concepts [88]. Many of the approaches
aim to focus on minimising SLA violations, with many reducing the number of VM
migrations.

As the CPs business model depends on meeting SLAs, many of the approaches
shown in Table 3.3 aim to meet customer SLAs. We identify this as a critical property
to achieve in the MA to pair with the hybrid MF.

Energy consumption

In cloud environments, optimizing the infrastructure’s energy consumption is a sig-
nificant challenge for CPs from both environmental and economic perspectives [37].

3.3. MANAGEMENT ALGORITHMS - MAS 46

Inefficiency in VM placement strategy could significantly impact the quality of ser-
vice, and the amount of energy consumed in a cloud data centre [18]. Thus improving
energy consumption in data centres involves improving the entire stack of compo-
nents and operations, including energy usage of physical nodes, storage and network
equipment, dynamic voltage and frequency scaling (DVFS), and consolidation of VMs
onto fewer nodes and switching unused nodes off [17]. The average CPU utilisation
of nodes within data centres is between 15%–20% [63] with the idle state being the
typical case. The consolidation process migrates VMs from nodes with low CPU utili-
sation to nodes with higher CPU utilisation and looks to power off underutilized nodes
to minimise energy consumption [128].

Figure 3.6: Consolidation process

VM consolidation to optimise energy consumption has been extensively investi-
gated. Consolidation aims to reduce the number of active nodes within the infrastruc-
ture by revising the VM to node mapping and optimising for a reduced number of
running nodes, shown in Figure 3.6. However, consolidating a large number of VMs
on a highly utilized node can lead to SLA violations. Thus, the consolidation process
needs to balance conserving energy with SLA violations. Equally, to achieve its goal,
the consolidation process needs to avoid placing a VM on an underutilized node [81].
The authors in [58] propose an approach to increase the efficiency of node utilization
on active nodes across the data centre. The authors in [123] propose a consolidation ap-
proach that aims to reduce energy consumption and complete more tasks inside VMs.
The approach uses workload utilization across the data centre to set lower thresholds.

3.3. MANAGEMENT ALGORITHMS - MAS 47

Dynamic voltage frequency scaling (DVFS) is a commonly used power manage-
ment technique that targets energy dissipation [37] by dynamically scaling the fre-
quency and voltage of the microprocessor at runtime. The authors in [103] proposed
a heuristic for selecting a VM for each task to optimize the energy utilization by ap-
plying the DVFS technique. The approach sets VMs to satisfy the task SLA even with
reduced processor performance, achieved through DVFS. The authors in [16] classify
consolidation into multiple sub-problems and propose a DVFS-aware consolidation.
The authors in [103] proposed a heuristic for the selection of a VM for each task to
optimize energy utilization by applying the DVFS technique. The approach selects
VMs that can satisfy the task SLA even with reduced processor performance, achieved
through DVFS. The authors in [16] classify consolidation into multiple sub-problems
and propose a DVFS-aware consolidation.

Table 3.3 shows that conserving energy consumption is widely researched. How-
ever, there are still challenges with identifying the benefit versus migration cost during
consolidation. We identify this as additional research that could be improved with a
dynamic MA that can learn a policy from the current environmental conditions and de-
cide on the benefits of applying consolidation and DVFS. This is an area of research,
which is outside the scope of this thesis.

3.3.2 Considered Resource

An adaption process can reconfigure cloud resources to achieve a particular objective.
Examples of considered resources are summarised as follows:

• CPU & Memory: they are core computing resources, and proposals consider
metrics that scale these horizontally by adding new VMs, typically via pre-
defined VM classes. Alternatively, fine-grain adjustments have been achieved
through the Hypervisor API interface [39]. Approaches in the literature consider
both physical and virtual CPU resources, and in this survey, we consolidate both
approaches under CPU. Dynamic voltage and frequency scaling (DVFS) can also
be applied to the CPU to conserve energy.

• Disk: Storage disk adaptation can be applied for scaling the size or to determine
the location where the disk resides to enable VMs virtual disks to be spread out
across the physical disks of a node [6].

• Network: several approaches aim to use network bandwidth as a metric for VM

3.3. MANAGEMENT ALGORITHMS - MAS 48

allocation. Some focus on optimising network utilization to reduce costs for a
CP customer [6].

3.3.3 Allocation Techniques

In this section, we review different techniques that have been used to implement MAs
in the literature. Our hypothesis is MAs that can learn online are suited to the dynamic
workloads exhibited in public clouds, and these MAs can be paired with the proposed
hybrid MF and further utilise its properties.

Several allocation techniques have been applied to cloud infrastructure in the liter-
ature, including heuristics, metaheuristics, control theory and machine learning. These
are presented next.

Heuristic & Meta-heuristic

Heuristic approaches are widely used in the literature and include: Random PM Se-

lection [81] where a target node is chosen randomly during VM migration. In First

Fit, a list of possible targets in the search space is ordered, and each migrating VM
is assessed to fit on a node in sequence until a matching node is found. First Fit De-

creasing is similar to First Fit, with the addition of VMs being sorted in decreasing
order of resource usage. Thus, the search starts with a VM with the highest resource
demand. Next Fit is similar to First Fit, except the search starts from the last stop point
during the MAs operation. In Best Fit, the node with the minimum residual resource
is selected as a target node. The residual resource is the delta of node capacity and
the aggregated resource demand of all hosted VMs on the node, including the new VM
being migrated. Best Fit Decreasing is similar to Best Fit, except VMs are sorted in the
decreasing order of their resource demand. Thus the search starts with the VM with
the highest resource demand.

Other heuristic approaches include [58], where the authors propose a method to
increase the efficiency of node utilization and balance utilization of CPU and memory
usage on active nodes across the data centre. The approach uses a multi-dimensional
resource usage model for target node selection to guide the VM placement process. A
resource usage factor is assigned to each node and used in node selection. Their ex-
periments show minimisation of low utilized resources and more balanced utilization
of CPU and memory usage on active nodes. The authors in [123] propose an ap-
proach that aims to reduce energy consumption and complete more tasks inside VMs.

3.3. MANAGEMENT ALGORITHMS - MAS 49

They suggest a performance-to-power ratio to set the upper thresholds used in overload
detection. For consolidation, the approach uses all workload utilization to set lower
thresholds. The authors in [153] proposed a multi-constraint optimization model by
considering migration cost and remaining VM migration runtime and using a heuristic
policy. The applied constraints were that the total CPU/memory requirements allo-
cated to the VMs should not exceed the node’s resource capacity. A VM should be
assigned to a single physical node; a node’s maximum duration in SLA violation and
the remaining runtime for a VM was also considered.

While heuristics are common in the literature, they are typically problem-based
strategies that guide the search in improving the current solutions to the problem. How-
ever, heuristics usually do not find a global optimum and may provide locally optimal
outcomes [166, 109].

Metaheuristic strategies are another technique used for cloud resource manage-
ment and include Genetic Algorithm, Particle Swarm Optimization and Ant Colony
Optimization. In contrast to heuristics, metaheuristics can provide a global optimal
point, although these techniques typically have a higher time complexity compared to
heuristics [166]. The authors in [44] present a review of multi-objective VM place-
ment mechanisms using nature-inspired metaheuristic MAs. They classified the multi-
objective literature into population-based, Single solution-based and Hybrid. The au-
thors in [125] proposed a framework for controlling energy consumption and achieving
customer’s satisfaction. The approach uses multiple phases with a single-objective op-
timization performed using a genetic algorithm to optimise energy consumption and
task completion. Multi-objective optimization is then carried out using a genetic al-
gorithm to optimise both energy consumption and task completion. Additionally, the
approach uses an artificial neural network to predict the available resources based on
their features and the characteristics of the VMs. The authors in [14] propose a hybrid
multi-objective MA based on the swarm and sine-cosine algorithm, which optimises
the meantime before a node shutdown, energy consumption, and SLA violations. The
time complexity of the MA depended on several factors, including the dimension of the
tested problem, the number of solutions, the number of objectives and the maximum
number of iterations. The authors in [9] propose a hybrid MA based on a genetic algo-
rithm and multidimensional resource-aware best fit allocation strategy. Their MA aims
to improve the energy consumption rate by minimizing the number of active nodes and
the usage rate of node resources. The approach takes n virtual machines and m phys-
ical nodes, and the MA suggests different permutations for mapping VMs to nodes to

3.3. MANAGEMENT ALGORITHMS - MAS 50

minimise energy consumption. The authors in [57] propose a hybrid multi-objective
optimization, using a genetic algorithm and mixed-integer Linear Programming ap-
proach. Their results show the complexity of the decision making is further increased
by the modelling of Dynamic Voltage and Frequency Scaling (DVFS).

Many of the approaches tackling multi-objective optimizations use a metaheuristic,
however, the authors in [139] propose HUNTER, a resource management technique
that formulates the goal of optimizing energy efficiency in data centres considering the
combination of energy, thermal and cooling.

Control Theory

The implementation of cloud adaptation using control theory techniques typically uses
a feedback loop, where a controller maintains the output of the controlled system to-
wards a given target. The controller periodically monitors the inputs and results, for
example, the throughput of a system [140]. The authors in [113] used a two-layered
controller using classical control theory and focused on multi-tiered applications run-
ning on the same node. An adaptive integral controller runs on a VM and maintains
the target CPU utilisation for a VM by adjusting the CPU allocation. A higher-level
controller is responsible for allocating the CPU share based on the requested CPU al-
locations by each VMs utilisation. The approach in [146] predicts the performance of
applications running on VMs and proactively adjusts VM resources to meet SLAs. An
application controller is responsible for calculating the required CPU to achieve SLAs,
and a node controller manages the assigned CPU share for each VM. A key challenge
with control theory approaches is the complexity of choosing the model gain parame-
ters, potentially leading to system instability [108].

Machine Learning

The MA techniques covered so far have shown promise in optimizing resource usage.
However, cloud environments are highly complex and are typically multi-tenanted with
non-linear workloads; as a result, they experience high variability. Machine Learning
(ML) techniques can offer an opportunity to adjust resource management in a dynamic
way, which is reflective of the context of cloud environments [82]. ML techniques
include Supervised Learning where every data sample is labelled and used as input.
The learning process works by associating features of the input and human feedback.
In Unsupervised Learning samples are used as input, but unlike supervised learning,
there are no labels, and the learning process aims to learn the data distribution within

3.3. MANAGEMENT ALGORITHMS - MAS 51

the sample. For example, VM usage patterns can be used to cluster VMs into distinct
groups through unsupervised learning. In Reinforcement Learning there is no labelled
input. Instead, an agent learns dynamically from its environment and balances the
exploration of new knowledge versus the exploitation of known knowledge.

Some ML approaches focus on auto-scaling resources, autonomously provisioning
and de-provisioning resources. The authors in [108] presented an auto-scaling method
for adaptive provisioning of elastic cloud services, based on ML time-series forecast-
ing and queuing theory, aimed at optimizing response time. The approach uses Support
Vector Machines (SVM) to predict the average node load for the following hour and
then a queuing model to adjust the resources assigned to a node. Their experiments
show SVM has better prediction than moving average and linear regression. Similarly,
another prediction approach was presented in [154] with Long Short Term Memory
(LSTM) time-series prediction and provisioning through queuing theory. Their results
show LSTM performed better prediction accuracy than SVM and autoregressive in-
tegrated moving average. A neural network technique was presented in [149], which
proposes an adaptive selection that can choose a VM consolidation approach based on
the current environment and the cloud provider’s priority on energy and SLA violation.
The approach firstly generates a raw dataset by simulating the methods for several time
steps. Each row will contain the initial environment parameters and normalized eval-
uation results of all policies. The results (energy and SLA violations) for each row
are then normalized. A performance score is calculated using the evaluation priority
and normalized evaluation result from the raw dataset; this score is then used to train
the neural network. Another framework for resource reservation is presented in [132],
based on load prediction and several ML approaches, including neural networks and
linear regression. The approach takes an initial reservation plan and monitoring data as
inputs and optimises the plan based on observations, with the CPU being the primary
monitored resource. The evaluation shows a neural network yielded better predictions.

While ML models approaches are effective, one limitation of these approaches is
that they are typically trained offline and require retraining to use new data [128].
Cloud environments are dynamic and exhibit regular changes in the structure of work-
loads and access patterns. Aptly, RL can operate online, learn dynamically from in-
teracting with a changing environment, and use new information to enhance decision
making. RL approaches do not require prior knowledge of the optimization model and
are not coded explicit instructions relating to which action to take next; instead, they
learn actions through feedback from the environment. These features make RL well

3.3. MANAGEMENT ALGORITHMS - MAS 52

suited to cloud resource management [108]. RL is a machine learning technique that
enables an agent to learn within an interactive environment through trial and error and
uses signals from the environment in a feedback loop. In Figure 3.7, the agent monitors
the current state of the environment (Step 1) and chooses an action from the available
options on the environment (Step 2). The environment will then generate a reward for
the action taken by the agent and transition to a new state (Step 3). The goal-oriented
agent aims to learn the set of actions, a policy, that will lead it to a specific goal or max-
imise an objective function. RL problems are typically formulated with well-defined
transition probabilities and modelled as a Markov Decision Process (MDP) [134].

RL approaches are categorised as model-based or model-free methods, depending
on whether full model knowledge can be specified. Model-based approaches need
knowledge of the environment model, while model-free strategies learn a policy based
on observations and rewards [134].

There are two common control categories of RL. Value-based or off-policy meth-

ods: RL algorithms proceed to learn the value function for every state/state-action pair
to arrive at the optimal policy. Q-learning is a standard algorithm in this category.
Policy-based or on-line methods directly learn the parameters for the policy, instead of
learning an explicit policy function, by fine-tuning a vector of parameters to select the
best action to take for policy. SARSA, State–action–reward–state–action, is a typical
example in this category [134].

Deep reinforcement learning combines RL with a deep neural network-based ap-
proximation of expected values. An offline phase prepares the network with prior
system knowledge, for example, from execution. These are then used during online
RL execution to select the best actions based on the state of the environment [94].

Q-learning [147] is a common control strategy in cloud resource management due
to its simple implementation. Q-learning is an RL algorithm belonging to a collec-
tion of algorithms known as Temporal Difference (TD) methods. Q-learning estimates
the optimal action-value function, independent of the followed policy, and does not
require a complete environment model. The action-value function or Q-function is up-
dated using Equation 3.1 and approximates the value of selecting a specific action at a
particular state.

Q(st ,at)← Q(st ,at)+α[rt + γMaxQ((st+1,at+1)−Q(st , at))] (3.1)

In this equation, α∈[0,1] is the learning rate, or step size, and determines how the agent
learns from recent updates. A high value for α means the most recent information is

3.3. MANAGEMENT ALGORITHMS - MAS 53

Figure 3.7: RL continuous process

utilized, while a low value implies slower learning. To dampen the reward’s effect on
the agent’s choice of action, the discount factor γ ∈ [0,1] is used. When γ is set to 1,
the agent will emphasise greater weight to rewards in the future. When it is closer to
0, the agent will only consider the most recent rewards. MaxQ(st+1,at+1) returns the
maximum estimate for the future state-action pair. Once the Q-Value is calculated, it
is then stored in the agent’s Q-Table.

Auto-scaling of the assigned VMs is the focus of some of the approaches in the
literature by using RL to add more resources for customer workloads. The authors in
[78] propose a general-purpose model-free learning algorithm based on Q-learning that
adapts to unknown system specifics, such as application traffic, to generate scaling up
or down actions. We propose a Q-learning based MA and focus on migrating stressed
VMs as opposed to auto-scaling, in Section 4.4.

To speed up the convergence of RL, the authors in [22] develop an approach that
parallelises Q-learning to speed up the convergence of agents to achieve auto-scaling of
VMs. We propose a similar method of parallel learning and further enhance it with co-
operative learning between agents running at different layers of the hybrid hierarchical
decentralized MF [67].

Reinforcement learning techniques can suffer from the curse of dimensionality.
The state and action space can grow exponentially, introducing challenges in the time
needed for the RL agent to explore a given environment. To address this, some ap-
proaches utilise function approximation, such as Deep Q-Learning (DQN) [105], which

3.3. MANAGEMENT ALGORITHMS - MAS 54

combines deep learning and Q-learning to combat the challenges of Q-learning in en-
vironments with a large or continuous state-action space. The authors in [80] propose a
DQN based model to respond to anomalies in CPU and memory bottlenecks and apply
granular actions to autoscale resources. The approach in [30] also proposes a Deep
Q-learning based approach to adjust the size of a cluster by taking the state of the clus-
ter as input and training an RL agent to resize a cluster based on administrator-defined
policies and rewards. The agent can use Deep Q-learning, Double Deep Q-learning or
Full Deep Q-learning, and the approach was compared to other RL and decision-tree
based approaches and shows it gains rewards up to 1.6 times better. Alternatively, to
using a DQN, the approach in [120] used a coarse-grained Q-table to achieve higher
resolution in the Q-table with less cost. The approach proposed granular actions to
adjust CPU and memory resources and applied them in Q-learning’s distributed learn-
ing mechanism. The work in [35] used a heuristic method to reduce the state space
to a smaller set by dividing the original state space into multiple exclusive subsets,
where a range of states can fit into the same subset, thus reducing the state space to
aid RL convergence speed. Other non-statistical approaches for function approxima-
tion have been proposed [74, 15, 29]. Instead of function approximation, we use an
aggregation approach in our proposed MA to address the curse of dimensionality. This
reduces states and actions into smaller groups, with multiple states being mapped into
a smaller number of states and actions.

Public cloud platforms are capable of optimizing the performance of VMs by ad-
justing the resources allocated to VMs [156]. However, cloud environments are dy-
namic and undergo regular change, which raises an opportunity for dynamic decision
making to optimise resource mapping and cope with the uncertainty of cloud envi-
ronments. RL is increasingly being used in cloud resource management to address
challenges of constantly changing environments

Scaling of the assigned VMs is the focus of many of the approaches in the litera-
ture by changing the number of VMs assigned to an application. The authors in [78]
proposed general-purpose model-free learning algorithms, based on Q-learning, that
adapt to unknown system specifics such as application traffic to generate scaling up or
down actions.

Migration of stressed VMs that are failing quality of service metric is the focus of
some of the work in the literature. The authors in [122] propose an approach that uses
a DQN technique and a neural network, long-term and short-term Memory, for func-
tion approximation. The architecture of the approach is split into offline and online

3.3. MANAGEMENT ALGORITHMS - MAS 55

components. The offline part trains the learning agent by sampling log data generated
by the online agent. The online agent has a similar method to the offline, except it does
not update the agent parameters, and online decision information is used for the next
offline training. The authors in [112] propose a Q-learning controller that responds to
volatile and complex arrival patterns through a set of simple states and actions. The
controller is implemented within a decentralized architecture, with each node respon-
sible for maintaining its SLA performance. The approach can scale up and scale down
by shutting down excess nodes to save on energy consumption. To combat the state
space challenge in Q-learning, the approach uses a reduced state space. To determine
the state of an application, a linear regression method of response time is used. The
authors in [157] uniquely investigate VM migration during data centre upgrades and
use a DQN to decide the destination nodes machine for each VM migration to min-
imise the total migration time. The approach does not require prior knowledge of the
data centre topology.

This thesis develops an RL-based controller to solve the VM migration problem
and combines Q-Learning with an aggregated state action space to address the state/ac-
tion complexity in Q-learning. To speed up RL convergence, we utilise parallel learn-
ing agents that learn from a shared collective experience of all agents. We develop a
reward function that focuses on learning a policy to reduce SLA violations and balance
energy consumption [67].

3.3.4 Discussion - MAs

A key element of cloud resource management is the overall scalability of the approach.
While much of the focus in the literature is on MAs, this thesis is grounded on the
hypothesis that solving the scalability challenge starts with addressing scalability in
the MF. To address this, we propose a novel scalable hybrid MF and aim to pair it
with a MA that can utilise the features of the hybrid MF. In this subsection, we draw
some conclusions from reviewing MAs in the literature and relate these to the research
objectives in this thesis.

VM migration is a valuable feature that enables adaptation and helps CPs achieve
SLAs and performance and reduce energy consumption. However, VM migration can
cost both the source and target nodes of the migration, about 10% CPU overhead [158].
While some of the approaches in the literature aim to minimize the migration cost
[153, 123, 58], this should be balanced with the derived benefits of performing the
VM migration. An additional drawback of the current VM migrations approaches is

3.3. MANAGEMENT ALGORITHMS - MAS 56

Table 3.3: MA Taxonomy
Key: MIP: Mixed integer programming, ACO: Ant Colony, SS: Single Solution, GA:

Genetic Algorithm, WOA: Whale Optimization Algorithm, SSA: Salp swarm
algorithm, SCA: Sine-cosine algorithms, SVM: Support Vector Machines, QT:

Queueing theory, Q: Q-learning, DQN: Deep Q Learning, SARSA:
State–action–reward–state–action, ML: Machine learning, CT: Control theory.

MA Objective Considered Resource Techniques

CPU Mem Storage Network
Yadav[155] SLA & Energy x Heuristic
Minarolli[102] SLA & Energy x Heuristic
Mishra [103] Energy x Heuristic
Arianyan[16] SLA & Energy x Heuristic
Gholipour[55] SLA & Energy x Heuristic
Mishra [104] SLA & Energy x Heuristic
Xu [153] SLA & Energy x x Heuristic
Azizi [18] Energy x x x Heuristic
Jangiti [75] Energy x x x Heuristic
Thiam [137] Energy x x Heuristic
Saadi [123] Energy x x x Heuristic
Gupta [58] Energy x x Heuristic
Zheng [164] SLA x x x MIP
Lin [93] SLA x x x x ACO
Guérout [57] SLA & Energy x x x x SS
Ramamoorthy [119] SLA x x GA
Sofia [125] SLA & Energy x GA
Abohamama [9] Energy x GA
Abdel-Basset [6] Bandwidth x WOA
Alresheedi [14] SLA & Energy x x x SSA & SCA
Vozmediano[108] SLA x SVM & QT
Peng [115] SLA & Energy x DQN
Barrett [22] SLA x x x Q
Ghobaei-Arani [54] SLA x x x x Q
Moghaddam [80] SLA x x DQN
Rao [120] SLA x x x Q
Bitsakos [30] SLA x x x DQN
Bibal [29] SLA x x SARSA
Jamshidi [74] SLA & Energy x x Q
Bu [35] SLA x x Q
Arabnejad [15] SLA x Q & SARSA
Ren [122] SLA & Energy x x x DQN
Ren [157] SLA x x x DQN
Nouri [112] SLA x x x Q
Witanto [149] SLA & Energy x Multiple
Sniezynski [132] SLA & Energy x ML
Padala [113] SLA x CT
Wang [146] SLA x CT

3.3. MANAGEMENT ALGORITHMS - MAS 57

that they use the CPU as the primary metric [16] and most adapt at the VM level
by performing addition, removal, migration or consolidation of VMs. Approaches
typically do not factor in other resources such as memory and network bandwidth.
Thus, additional research into multi-objective resource allocation could be helpful.

Table 3.1 summarises some of the current MAs and classifies them based on the
objectives of the approach, the considered resource and the technique used to adapt
the cloud resource infrastructure. A key aspect of MAs is the technique used to per-
form the decision making process, and while heuristics are common in the literature,
they have challenges with reacting to changes in cloud workloads. Other techniques
included metaheuristics, control theory and machine learning. Generally, many of the
approaches in the literature use a heuristic-based MA to determine resource provision-
ing and adaptation decisions. However, cloud workloads are typically heterogeneous
with different QoS requirements. Heuristic MAs require pre-defined knowledge of
how allocation should be done, and this can limit their use in cloud resource manage-
ment [127]. Additionally, heuristic MAs do not guarantee optimal solutions for ample
search space and dense networks [37]. While ML models have shown to be effective in
their application in cloud resource management, a limitation of these approaches is that
they require offline training and thus require retaining to take advantage of new data.
In contrast, RL can operate online model-free, a valuable property in heterogeneous
environments that exhibit large variability, such as cloud environments. Therefore,
RL approaches can be a promising technique for MAs and would benefit from further
research.

We hypothesise that the proposed hybrid MF can be paired with a MA to utilise
its features and lower SLA violations further. We investigate and develop a MA that
can learn dynamically how to perform the VM migration and balance achieving SLAs
and energy consumption. Additionally, the proposed MA can learn when nodes can
escalate a VM migration request outside their neighbouring overlay to speed the res-
olution of situations when a node is stressed and reduce SLA violations. We present
this approach in contribution 4, Paper 4 [67], in Chapter 4.

This chapter includes a survey that extends our earlier survey in Paper 1 and pro-
vides an updated review of MAs in the literature. In particular, it focuses on recent
advances in the usage of ML techniques, which are effective in managing cloud envi-
ronments. ML approaches have gained prominence in cloud resource management, as
they typically do not require predefined knowledge of how the allocation of resources

3.3. MANAGEMENT ALGORITHMS - MAS 58

should be done, which enables ML to adapt to the dynamic nature of cloud environ-
ments.

3.3.5 Evaluation of MAs and MFs

While various approaches are being used to research MAs and MFs, evaluating these
approaches on actual cloud infrastructure can be time-consuming, and cost-prohibitive
[46]. Running experiments on public cloud systems requires computing, storage and
network resources and security features, and it may be hard to achieve repeatability.

Simulation offers a viable solution to these problems. The performance and the
characteristics of MAs and MFs can be evaluated in detail before taking on the over-
head of running experiments in public cloud systems. Several simulation tools are in
the literature [36, 138, 84, 92]. These vary in their features, from the programming
language used, ability to support different networking models, support for SLA cal-
culations, support for incorporating an energy consumption model, availability of a
graphical user interface and accuracy of metric collection. The choice of the simulator
to use is likely to be familiarity with the programming language and specific features
related to the intended experiments.

Chapter 4

Collection of Published Papers

This chapter presents the core contributions of the thesis in the form of five published
and in submission papers. The published papers appear in conference proceedings and
journals with a high impact factor. The papers are summarised as follows:

• Paper 1, provides contribution 1: Adaptation in Cloud Resource Config-
uration: A Survey. A survey of resource reconfiguration in a cloud context,
including a definition for cloud adaptation and classification that we use to sur-
vey the literature.

• Paper 2, provides contribution 2: SHDF - A Scalable Hierarchical Dis-
tributed Framework for Data Centre Management. A highly scalable cloud
management framework, which can manage a large cloud data centre spanning
thousands of nodes.

• Paper 3, provides contribution 3: A Hierarchical Decentralized Architec-
ture to enable Adaptive Scalable Virtual Machine Migration. An empirical
evaluation of the hybrid MF compared to hierarchical, decentralized and central-
ized MFs.

• Paper 4, provides contribution 4: Scalable Virtual Machine Migration us-
ing Reinforcement Learning. To address the issue with heuristic-based ap-
proaches, we propose an RL method, which can integrate well into our hybrid
M and achieve fast convergence and lower SLA violations.

• Paper 5, provides contribution 5: Dynamic Threshold Setting for VM Mi-
gration We propose an approach capable of learning the CPU utilization to use
for VM migration. We use RL to dynamically set the CPU threshold level.

59

4.1 Adaptation in Cloud Resource Configuration: A
Survey

Abdul R Hummaida, Norman W Paton and Rizos Sakellariou

Publishing state: Published. Journal of Cloud Computing, 2016, SpringerOpen,
Pages 1-16, DOI: https://doi.org/10.1186/s13677-016-0057-9

Summary: This paper presents a literature review of cloud adaptation to highlight
features and approaches to identify open challenges and facilitate future developments.
We present a definition of cloud systems adaptation, a classification of the critical fea-
tures and a survey of adapting cloud resources. Based on our analysis, we identify three
open research challenges: characterising the workload type, accurate online profiling
of workloads, and building highly scalable adaptation mechanisms. In light of this, the
remainder of the research in the thesis addresses the development of mechanisms for
adapting VM placement at scale.

Chapter 3 includes an updated survey on management algorithms and management
frameworks, particularly on recent advances in the usage of ML techniques in cloud
resource management. We discuss the updated survey and the findings in more detail
in Chapter 3.

Key contributions: Contribution 1 (see Section 1.4).

60

Hummaida et al.

REVIEW

Adaptation in Cloud Resource Configuration: A
Survey
Abdul R Hummaida*, Norman W Paton
and Rizos Sakellariou

Abstract

With increased demand for computing resources at
a lower cost by end-users, cloud infrastructure
providers need to find ways to protect their
revenue. To achieve this, infrastructure providers
aim to increase revenue and lower operational
costs. A promising approach to addressing these
challenges is to modify the assignment of resources
to workloads. This can be used, for example, to
consolidate existing workloads; the new capability
can be used to serve new requests or alternatively
unused resources may be turned off to reduce
power consumption. The goal of this paper is to
highlight features, approaches and findings in the
literature, in order to identify open challenges and
facilitate future developments. We present a
definition of cloud systems adaptation, a
classification of the key features and a survey of
adapting compute and storage configuration.
Based on our analysis, we identify three open
research challenges: characterising the workload
type, accurate online profiling of workloads, and
building highly scalable adaptation mechanisms.

Keywords: Autonomic cloud; cloud adaptation;
resource management; elasticity

1 Introduction
Cloud computing is an established paradigm for pro-
viding on demand computing services to a wide range
of users, including enterprises, software developers and
researchers. Infrastructure Providers (IPs) manage the
base infrastructure, including servers, storage and net-
work connectivity, and typically present this infras-
tructure as Virtual Machines (VMs). Other providers

*Correspondence: abdul.hummaida@postgrad.manchester.ac.uk

University of Manchester, School of Computer Science, M13 9PL, UK

Manchester, UK

Full list of author information is available at the end of the article

rent these resources and become value-added resellers
(VARs) as Platform as a Service (PaaS) or Software
as a Service (SaaS).

VARs utilise clouds to lower operating costs by only
paying for computing resources they use. The ability
to expand to additional resources means they do not
have to build capacity upfront. In return for these ben-
efits, VARs typically pay a higher per hour cost for
resources used, compared to managing infrastructure
directly. IPs, on the other hand, have the challenge of
providing these benefits to VARs. IPs build the capac-
ity to cope with increasing demands for computing re-
sources, which requires significant investment in infras-
tructure, skilled personnel and incurs power costs. Fur-
thermore, with increased competition and commodi-
tisation of cloud services, IPs are under pressure to
reduce their prices. Amazon reduced its prices on 41
different occasions in the last few years [1]. The adop-
tion of cloud computing does, however, open up a new
market for IPs, where they can run a wide variety of
computing requests that previously were housed in pri-
vate infrastructure.

IPs generate revenue by meeting Service Level
Agreements (SLAs). To achieve this, one approach is
to periodically Adapt the infrastructure configuration.
Adaptation typically entails a decision to increase or
reduce cloud resource allocation to a workload. For
example, the CPU share allocated to a VM running
a web server can be reconfigured to a lower share, if
SLAs can remain unaffected. The gained capacity can
be used to accept new workloads or to reduce power
consumption, resulting in an increase in IP profit.

This paper surveys resource reconfiguration, cover-
ing 40+ publications that focus on adaptation of com-
puting resources in a cloud context. The chosen pub-
lications appeared in cloud focused journals and con-
ferences. Our contributions are a definition for cloud
adaptation and a classification that we use to survey
the literature. To focus the scope of this work, we chose
to cover adaptation of compute and storage resources.
However, we recognise the potential impact adaptation
of network resource can play. For example, multiple
under-utilised network routers can be powered down

61

Hummaida et al. Page 2 of 15

by reconfiguring the network infrastructure, thus low-
ering power consumption.

Several surveys pull together results of different fea-
tures of cloud resource management. In [2] the authors
surveyed elastic approaches in cloud computing, pro-
viding a high level overview of the approaches. Our
survey is different as it investigates adaptation and,
as we demonstrate later, adaptation is a superset of
elasticity. In [3], the authors comprehensively discuss
approaches to efficient data centres, choosing to fo-
cus on power consumption. Our work covers power
as an adaptation objective and also covers SLA and
revenue. In [4], the authors surveyed autoscaling, and
classified the literature based on the adaptation tech-
niques used. Their work focused on the Infrastruc-
ture as a Service (IaaS) client’s perspective, while
we focus on the IaaS provider, thus their work ex-
cluded VM migration and server consolidation. In [5],
the authors provide an overview of the mechanisms
and techniques employed to manage elasticity from
the perspective of a SaaS provider, while we focus
on the IaaS provider. In [6], the authors investigate
cloud resource management and in [7], the authors
present common aspects used in cloud computing en-
vironments, such as metrics, tools and strategies. In
[8], the authors surveyed the VM allocation problem
and models and algorithmic approaches. In [9], the
authors present analysis of autonomic resource man-
agement in general, and specifically Quality of Service
aware autonomic resource management. In [10], the
authors surveyed SLA-based cloud research including
the techniques used for adaptive resource allocation.
In [11], the authors surveyed cloud computing elastic-
ity using a classic systematic review covering metrics
and tools. In [12], the authors summarised different
method and theory used in cloud resource allocation
and monitoring. In [13], the authors depict a broad lit-
erature analysis of resource management in the cloud.
While there is some overlap from these surveys with
our work, they chose a different classification scheme
to our work, which focuses on adaptation of resource
configuration, enabling us to analyse the factors that
influence the adaptation process. Additionally we in-
vestigate factors affecting scalability of the various pro-
posals in the literature. To the best of our knowledge
there is no other work that uses our chosen dimensions.

As PaaS can be built on top of IaaS, there can be
similarities between how resources are adapted in both
environments. However, as IaaS is typically presented
at the VM abstraction level, IPs have less visibility
into the nature of workloads and their configurations.
This presents additional challenges for Autonomic [14]

approaches to adapting resources on IaaS. Section 2
introduces cloud infrastructure and lays the founda-
tion for a discussion on how this can be adapted in
Section 3; we also define the dimensions used in the
survey. Section 4 surveys the literature based on the
adapted cloud resource, identifying the techniques and
approaches used. Section 5 presents open challenges in
adapting resource configuration and Section 6 presents
our conclusions.

2 Cloud Systems setup
Cloud computing is defined as “a model for enabling
convenient, on-demand network access to a shared pool
of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can
be rapidly provisioned and released with minimal man-
agement effort or service provider interaction”[15]. In
this section we introduce the constituents of cloud sys-
tems.

Compute Resource: The core processing capabilities
that are used to execute software instructions. We de-
fine this as comprising of a CPU, typically in multicore
configuration, CPU cache and primary storage mem-
ory. Data centres typically house many thousands of
servers containing these compute resources.

Storage Resource: Non-volatile secondary storage
memory houses the data used by compute resources.
As this resource is typically cheaper than primary
memory, many operating systems are able to use it
as an extension of main memory, to temporarily swap
out unused memory state. Many data centres will have
servers with access to internal storage as well as to a
Storage Area Network that consolidate and abstracts
the complexity of accessing storage throughout the
data centre.

Network Resource: includes the network cards that
connect into servers as well as infrastructure compo-
nents that include repeaters, load balancers, switches
and firewalls. Networks can use different topologies
and protocols, which influence the level of security, re-
silience and Quality of Service.

Virtual Resource: is an abstraction added onto com-
pute, storage and network resources. It enables slic-
ing of these resources into smaller chunks that can
be scaled vertically or horizontally. Typically virtual-
isation is used in a data centre to slice data centre
compute resource into Virtual machines, and poten-
tially to present several logical processors by mapping
these onto a single physical processor. Network cards

62

Hummaida et al. Page 3 of 15

and storage are also virtualised and presented as indi-
vidual devices to VMs.

Service Management Resource (SMR): is a knowl-
edge library where IPs store management objectives,
policies, pricing and orchestration information.

Management Tools: are used by IPs to provision,
monitor, reconfigure, back up and restore the infras-
tructure.

IPs typically build the infrastructure and offer access
to virtual resources, with a VM being the main compo-
nent. VMs reside on physical nodes of heterogeneous
capabilities where the performance characteristics of
compute, storage and network vary. Demand for re-
courses varies over time as users consume and release
these resources. As more resources are used, power
consumption in the data centre increases and IPs may
choose to optimise the allocation of VMs to physical
nodes. In the next section, we will cover IPs objectives
and approaches used to optimise this allocation.

3 Cloud Systems Adaptation
In this section we introduce the IPs objectives and
approaches to adapting the cloud infrastructure.

To meet workload demands, IPs can use Elasticity
[16] to reconfigure resources in an autonomic manner.
The limitation of this view is that it assumes the IP’s
objective is to satisfy precisely all workload demands.
While this may be true, it may not always be the case,
as the IP has finite resources and may apply differen-
tiation on requests. Additionally, the IP may decide it
is more cost effective to pay a penalty for an SLA vi-
olation instead of scheduling the request. The current
view on Elasticity abstracts several complex activities.
We refine this view by separating the decision making
process from how the cloud environment is reconfig-
ured, by defining elasticity as the on demand ability,
to scale vertically or horizontally segmented resources
in discrete units. To achieve a specific business goal,
IPs go through a decision making process that changes
the infrastructure, a process we name Cloud Systems
Adaptation. We define this as a change to provider
revenue, data centre power consumption, capacity or
end-user experience where decision making resulted in
a reconfiguration of compute, network or storage re-
sources. Reconfiguration is the process of increasing
or reducing resource allocation to a workload, through
elasticity.

Core to cloud systems adaptation is a decision mak-
ing process that decides the resources to reconfigure
and how. Figure 1 shows the inputs into the decision

making process, including:

1 The desired management objective in each adap-
tation cycle from the SMR.

2 The adaptation techniques and infrastructure
metrics.

When decision making is complete, Elasticity is used
to scale the infrastructure resources.

We define the dimensions of cloud systems adapta-
tion as: 1) Adapted cloud resource, which categorises
what resources are modified and how; 2) Adaptation
objective is a desired business outcome; 3) Adapta-
tion techniques are a set of analytical and modelling
techniques used to achieve the adaptation objective; 4)
Adaptation engagement categorises when the adapta-
tion process is invoked; 5) Decision engine architecture
categorises the different architectures used by the deci-
sion making engines within the literature; 6) Managed
infrastructure type categorises whether node capabil-
ities and properties are used in the decision making.
These dimensions are presented in Table 1 and dis-
cussed in the following subsections.

3.1 Adapted Resource
We extend the definition of possible resource adapta-
tion from [17] in Table 1, which describes our clas-
sification of the literature and the dimensions used.
VM level adaptation are typically applied to im-
prove/reduce workload performance due to an in-
creased/reduced demand by adjusting CPU, memory,
disk bandwidth and/or storage. For example, a web
server running on a VM may need a bigger share of
CPU due to an increased number of requests.

Node level adaptation could be applied to add ca-
pacity by powering on a node. Power consumption
could be reduced by using Dynamic Voltage and Fre-
quency Scaling (DVFS) [18], before the node is pow-
ered off when not needed. Node configuration can also
be adapted when a VM’s requirements extend beyond
the capacity of its hosting node, so that it needs to
be migrated to another node that has the required ca-
pacity. Migration can also be used to reduce power
consumption, by consolidating VMs into fewer nodes
and enabling some nodes to be switched off.

Cluster level adaptation is applied to facilitate node
adaptation and to adhere to any reliability policies
used by IPs by adding and/or removing nodes.

3.2 Adaptation objective
All of the proposals surveyed drive adaptation to min-
imise SLA violations and some trade this off with a
secondary objective. Examples include reducing power

63

Hummaida et al. Page 4 of 15

consumption, maximising IP revenue and combined
where multiple objectives are sought. A small num-
ber of proposals focus on reducing the customer cost
of using the infrastructure.

3.3 Adaptation technique
Several adaptation techniques have been applied to
cloud infrastructure in the literature, including Heuris-
tic, Control theory or Machine learning [19].

Heuristic based adaptation techniques use problem
specific knowledge to provide a quick solution and
trade preciseness of the outcome with lower time com-
plexity, which makes them good candidates for dy-
namic resource allocation on the cloud. Control the-
ory can provide QoS guarantees by using a feedback
controller, that dynamically adjusts the behaviour of
the system based on the measured outputs. Machine
Learning techniques are grouped into two categories,
supervised and unsupervised learning.

3.4 Adaptation Engagement
Cloud systems adaptation needs to be invoked in order
to evaluate the infrastructure and determine whether
resource reconfiguration is required. The approaches
used in the literature fall onto Reactive, Proactive and
Hybrid engagement.

Reactive approaches invoke adaptation when a mon-
itored metric, e.g. CPU utilisation, reaches a specific
threshold.

Proactive approaches predict what demands will be
placed on the infrastructure and invoke adaptation
ahead of the predicted resource contention point.

Hybrid approaches utilise proactive approaches and
combine these with reactive approaches, as way to en-
gage adaptation for long and short term time scales.

3.5 Decision Engine Architecture
The architecture of the decision engine governs where
the engine is placed and how it operates. Centralised
architectures use an engine with a global view of the
managed infrastructure and can adapt resource across
the entire infrastructure.

Hierarchical architectures typically divide the in-
frastructure into multiple clusters, placing an engine
(Level 1) in each cluster. A global, Level 2, engine co-
ordinates each of the Level 1 engines.

Distributed architectures typically use a Peer-to-Peer
protocol [20] that enables nodes to communicate di-
rectly without a centralised controller.

3.6 Managed Infrastructure
Cloud systems are typically diverse and made of a het-
erogeneous set of compute and storage resources [21].
Some of the proposals incorporate the type of the man-
aged infrastructure in the decision making process,

while other proposals assume a homogeneous infras-
tructure, where every node has the same capability
and power consumption.

4 Adaptation in Cloud Resource
Configuration

In this section we survey the literature that adapt
cloud resource configuration, focusing on compute and
storage resources. We chose to focus on the reconfig-
ured resource and classify the reviewed literature on
this dimension, in order to analyse patterns that are
specific to a cloud resource. The reconfigured resources
are:
1 CPU and Memory
2 VM Migration
3 Node Power Usage
4 Storage

In general, proposals apply cloud systems adaptation
to minimise SLA violations and some trade this off
with a secondary objective, by recognising that meet-
ing SLAs is not the only business objective for IPs.
To achieve this, proposals use different techniques and
engage the adaptation at different points. Addition-
ally, the execution complexity of the proposals impact
their ability to scale their approach on data centres
with thousands of nodes. Therefore, the secondary ob-
jectives, adaptation techniques, adaptation engagement
and decision engine architecture distinguish the vari-
ous proposals in their adaptation of cloud resource con-
figuration. The remainder of this section will be struc-
tured principally according to the adapted resource,
and then within each resource following the remaining
dimensions in Table 1. Table 2 provides a summary
comparison of the literature, in an IaaS context.

4.1 VM Adaptation - CPU and Memory
As core computing resources, CPU and memory adap-
tation have been widely researched. Many of the pro-
posals scale the infrastructure horizontally by adding
new VMs, typically via predefined VM classes [22, 23,
24, 25, 26, 27, 28, 29, 30, 31, 32]. While this is sim-
pler to apply, compared to fine grain CPU and mem-
ory configuration, it may lead to wastage by over-
allocating resources to workloads as well consume more
power. In [33] the authors further argued that fine
grain CPU and memory configuration reduces the
provisioning overhead and mitigates SLA violations.
Other proposals, particularly those focusing on max-
imising revenue, apply fine grain management of VM
resources with CPU and memory configurations mod-
ified in discrete values using the Xen [34] hypervisor
API. In [35, 36, 37], the authors utilise Xen’s credit-
based CPU scheduler to set the CPU share for work-
loads and in [38, 37], the authors additionally utilise

64

Hummaida et al. Page 5 of 15

Xen’s ability to define the amount of memory assigned
to each VM. The life cycle management of workloads
can be categorised into two overlapping phases. Admis-
sion control [62], which is the decision to accept a new
workload if it contributes to the current management
objectives and resource adaptation [10], which recon-
figures the infrastructure after a state change. Several
proposals treat admission control as distinct phase and
assume availability of free resources. While this simpli-
fies the approach, it may unnecessarily power on a new
node. Alternatively admission control should be used
as an opportunity to apply cloud system adaptation
and redistribute existing workloads.

4.1.1 Secondary Objectives
Some of the proposals focus on reducing power con-
sumption in the data centre [39, 40, 41, 42, 43]. While
this has a direct impact on an IPs profits, some of the
proposals aim to maximise revenue by increasing ca-
pacity to service workloads [19, 36, 44, 45]. In contrast,
the authors in [23] aim to reduce the cost of using cloud
infrastructure to customers on Amazon EC2 [46], by
automatically allocating resources based on the cur-
rent demand. The authors in [24, 47] aim to reduce
the complexity in resource provisioning of the Apache
Hadoop framework [48], by enabling automated allo-
cation of resources and configuration parameters, and
minimise the incurred infrastructure cost. Both ap-
proaches attempt to predict the workload behaviour
to optimise run time performance, however they dif-
fer in their methodology. The authors in [24] used of-
fline training, while the authors in [47] used historical
data from past jobs. The latter approach may initially
produce lower optimal allocations as it builds job per-
formance history. However, over time this could en-
able the approach to build better clusters of workload
signatures that enable it to make more optimal allo-
cations. Therefore there is a tradeoff between initial
performance and time taken to build workload knowl-
edge. While offline approaches can be used to improve
the online decision making process by constructing a
model of the system behaviour, this has an upfront
overhead and is not practical to apply for every appli-
cation deployed on IaaS.

To reduce power consumption of a node before turn-
ing it off, proposals [3, 40] use power management
features in modern nodes (DVFS) to scale down both
the frequency of the CPU and the voltage used. An
alternative approach to DVFS was used in [42], where
the authors incorporate the power cost and priority of
a VM in the decision of where to add the VM, thus
reducing the number of active nodes. Figure 2 shows
the components that may get adapted on compute re-
sources.

4.1.2 Adaptation Technique
A common adaptation technique is Control theory
[23, 25, 26, 35, 41, 49, 44, 50], which aims to guarantee
system stability by adapting resource configurations at
defined intervals. Some of the control theory propos-
als react to monitored metrics such as CPU utilisation
thresholds and workload throughput [50], but most of
the proposals surveyed use a proactive mechanism to
forecast the future workloads, typically using time se-
ries. In contrast, [51] proposed a control theory based
approach that utilised Fuzzy Logic to predict short
term CPU utilisation. The authors in [52] also used
a reactive Fuzzy controller, which can handle conflict-
ing rules. The authors approach attempts to simplify
the complexity of setting thresholds by using imprecise
thresholds such as high and low for specifying elastic-
ity rules. However this requires human experts to set
multiple values for the approximate thresholds.

Following a heuristic approach, the authors in [53]
assign application tiers to nodes, preserving CPU util-
isation in each node below a 60% threshold. A lo-
cal search optimises the initial allocation, guided by
availability guarantees. This architecture results in the
heuristic being invoked at three different time-scales,
evaluating different adaptation decisions on each time
period. In [45], the authors propose a lightweight
heuristic based on workload response time, which is de-
fined by the customer. Their approach attempts to sat-
isfy workload response time by incrementally adding
CPU and memory resources to the workload. The au-
thors approach requires a deployment portal, but does
uniquely account for customer specified constraints,
such as budget, when making adaptation decisions. In
later work, the authors [54] use an open queueing net-
work, a queueing theory technique, to reduce utilisa-
tion cost to customers. Their approach identifies and
scales a bottlenecked tier in a multi-tier cloud applica-
tion. The authors in [32] simplify the cloud application
to a typical request queueing model and combine this
with binary search.

The heuristic based approach in [55] allows control
and adaptation of multiple resources simultaneously,
by building groups of resources and performance met-
rics, which can be adapted based on customer defined
events. While the approach uses multiple objective op-
timisation, the authors did not show empirical evi-
dence of their approach or its ability to scale.

Machine Learning based proposals fall into two cat-
egories, supervised learning [24, 56] and unsupervised
learning [38]. Given the variability of workloads de-
ployed on cloud infrastructure, Reinforcement Learn-
ing (RL) seems promising as it does not rely on pre-
constructed models of the controlled infrastructure,
by discovering system behaviour online without prior

65

Hummaida et al. Page 6 of 15

training. The main disadvantage of RL is the online
training time, which can be exponential to the size of
the explored space, potentially resulting in poor deci-
sions during the learning phase. To tackle this chal-
lenge, [38] proposed combining RL with a Simplex
method to reduce the search space to a smaller valu-
able set, and then used online CPU and memory util-
isation to guide decision making.

Utility based approaches are used to define a mea-
sure of usefulness towards a management objective,
typically utilising a customer metric like response time
as objective to the utility function. Proposals typi-
cally build utility frameworks by constructing a per-
formance model of multi-tier applications embedded
in an optimisation problem [19, 22, 25, 36, 42], where
a utility function expresses satisfaction of each work-
load towards assigned resources. Utility has also been
combined with control theory in [41, 44] to apply a fine
grain configuration of CPU and memory, by estimating
the benefits of potential adaptations and incorporating
a notion of risk. In contrast, the authors in [49] argue
that defining multiple levels of QoS, Q-states, beyond
the traditional minimum level, is easier for customers
to define than utility functions. The challenge with
utility based approaches is humans could find it diffi-
cult to define the utility functions needed in a complex
system.

4.1.3 Adaptation Engagement
Proposals adapt CPU and memory configuration ei-
ther by reacting to a breached metric or by forecasting
a metric change. Reactive approaches typically set and
monitor a utilisation threshold to CPU and memory
[38]. However, setting the optimal threshold is not sim-
ple and typically requires workload knowledge. Some
proposals used experimentation [39, 57] to set thresh-
old values. In [45], the authors proposed an alternative
approach, where the customer defines the SLA and the
IPs set the resource utilisation thresholds. The propos-
als in [19, 50] react to workload response time, instead
of CPU/Memory thresholds, and trigger adaptation to
preserve response times to the requested levels. In ad-
dition to the challenge of setting the threshold level,
reactive approaches risk oscillating system state by re-
acting too frequently to varying node utilisation. In
[55], the authors tackle this by using four thresholds
and two duration periods to track for how long the
threshold has been reached.

Proactive mechanisms are typically time series based,
where a sequence of events at defined intervals are
analysed to find patterns that can be used to fore-
cast future values. Time series estimators include Auto
Regressive Moving Average (ARMA) [58], Smoothing
Spline [59], Kalman Filter [60] and Fast Fourier Trans-
form [61]. Proposals that forecast workload arrival rate

have an additional challenge to map this to a utilisa-
tion forecast. Several proposals tackle this by using an
offline phase [24, 37, 44, 49] to build performance mod-
els of workloads, which are then used to make adap-
tation decisions based on online CPU and memory
measurements. A disadvantage of the offline approach
is it may have a significant overhead and may not cope
with dynamic behaviour of some workloads.

A few proposals combine both proactive and reac-
tive approaches in a hybrid approach to engage the
adaptation process. In [29], the authors propose a
proactive controller that provisions based on peak load
seen in the last hour, with a reactive controller for
sudden bursts, but it had no ability to scale down
CPU/memory resources. In [26, 62], the authors ex-
tend this approach and use a reactive controller for
scaling up and a proactive controller for scaling down,
by removing whole VMs. The authors claim this hy-
brid approach is able to cope with sudden bursts as
well as being able to conserve energy by proactively
switching nodes off. The authors did not experiment
with gradual scaling of CPU frequency and voltage
using techniques such as DVFS, which typically re-
duces power consumption. The authors in [52] combine
both proactive time series analysis and a reactive fuzzy
controller. The authors approach attempts to simplify
the complexity of setting thresholds by using imprecise
thresholds such as high and low for engaging adapta-
tion. However this requires human experts to set mul-
tiple values for the approximate thresholds.

4.1.4 Decision Engine Architecture
The scalability of a proposal is primarily affected by
the execution complexity of the adaptation decision
making process. Most proposals are centralised, and
memory and CPU adaptation are scheduled across the
entire infrastructure. While this gives opportunities for
global optimisation, it presents a significant challenge
when managing thousands of resources. In [38], the
authors used a centralised reinforcement learning en-
gine and the time taken to stabilise performance in-
creased with the size of the managed cluster. The cen-
tral controller in [41] took significant time to execute
the scheduling of 15 nodes, which had 109 control op-
tions, just to adapt CPU resource - memory configu-
ration was not covered. The centralised engine in [19]
was only able to manage 400 nodes with 1000 VMs,
when adapting CPU and VM configurations. In later
work [53], the authors changed their centralised ap-
proach to a hierarchical architecture, resulting in the
ability to support 7,200 servers with up to 60,000 VMs.
In [35], the authors propose an alternative layered ap-
proach where each node has a decision engine, with
no global controller. While this enabled each node to

66

Hummaida et al. Page 7 of 15

perform its own allocation, it lost out on the opportu-
nity to redistribute workloads across the data centre
infrastructure.

To improve on scalability of the centralised ap-
proaches, researchers investigated decentralised ap-
proaches such as hierarchical and distributed frame-
works. In [44], the authors proposed hierarchical con-
trollers and divided the infrastructure into multiple
clusters, where each cluster is managed by a local con-
troller. The hierarchical controllers run at different
intervals, with a local cluster controller running more
frequently than a global controller. In [36], the authors
chose to slice the hierarchy along the operations of the
controllers. A Level 1 controller handles VM place-
ment and load balancing, and runs every 30 minutes.
A Level 2 controller handles the resources of a node,
and runs every few minutes. The challenges with hi-
erarchical approaches include choosing the run time
interval of the global controller and the lack of an es-
calation path between the local and global controllers.
Therefore in a sudden burst scenario, a workload may
exhibit SLA violations before the global level controller
is engaged. An additional challenge is limiting the size
of each cluster so it does not become too large for
the controller to manage, thus encountering the same
challenge as centralised approaches.

Distributed approaches typically focus on VM con-
solidation and will be covered as part of our analysis
of VM migration, in the next subsection.

4.2 Node Adaptation - VM Migration
Nodes maybe adapted when a VM’s requirements ex-
tends beyond the capacity of its hosting node, and
it needs to be moved to another node that has the
required capacity. Proposals opting to simplify their
approach assume the entire infrastructure is homo-
geneous and has the same computing capability and
power consumption, which may lead to suboptimal
VM migration decisions. Proposals that do take the
infrastructure capability into account, usually focus on
power consumption of nodes. Some proposals assume
the ability to capture the relationships between coop-
erating VMs, and many proposals abstract how work-
load KPIs, like response time, can be captured. Such
proposals are better suited to PaaS, where a deeper
integration between the workload and infrastructure
is available, and workload metrics and configurations
can be made available to the decision-making engine.

4.2.1 Secondary Objectives

Proposals apply VM migration primarily to minimise
SLA violations, and some proposals aim to reduce

power consumption as a secondary objective, by con-
solidating workloads and switching nodes off, as evi-
denced by the summary in Table 2.

VM migration adds an overhead and can impact the
SLA of the migrated VM and other VMs on the co-
operating nodes, yet this is considered acceptable [63]
given the opportunities migration can present. In [39],
the authors argue that CPU power consumption is
the largest contributor to a node’s power consump-
tion, thus VM migration can be used to lower power
consumption.

4.2.2 Adaptation Technique
Beloglazov et al [39] used a heuristic based adapta-
tion technique and explored three policies, minimisa-
tion of migrations (MM), highest potential growth and
Random choice, and concluded the MM policy can
achieve significant energy savings, compared to non-
energy aware policies. The authors argue there is a
minor SLA violation trade off, to achieve these energy
savings. The MM policy selects VMs with the highest
CPU utilisation to migrate to another node. A disad-
vantage of this approach is it migrates VMs that are
already at risk of SLA violation, due to the CPU util-
isation, and further increases the risk by adding the
cost of live migration. In [43, 64], the authors use a
heuristic implemented as a peer-to-peer protocol, en-
abling nodes to communicate directly without a cen-
tralised controller. Two cooperating nodes determine
whether to migrate a VM based on the defined ob-
jectives. While [43] did not take into account the cost
or duration of the conflict before applying the migra-
tion, [64] incorporated migration cost into the decision
making. In contrast to other proposals, the authors in
[44] incorporate the power consumption of the decision
engine. Other proposals include VMware’s Distributed
Resource Scheduler (DRS) [65], which uses greedy hill-
climbing to reduce cluster imbalance. DRS incorpo-
rates migration cost and benefit, based on workload
demands observed in the last hour. Similarly, a greedy
heuristic that incorporates migration cost was pro-
posed in [27]. The authors in [31] aimed to reduce the
number of nodes used migration as well as reduce VM
migration times at the same time, by using a multi-
objective Genetic Algorithm based on hybrid group
encoding.

In contrast to heuristic based proposals, the authors
in [22, 66] uniquely formulated VM migration as a
Constrained Satisfaction Problem, taking into account
the migration overhead. Tchana et al [66] combine VM
migration with Software migration, by collocating sev-
eral software applications on the same VM to reduce
the number of VMs used. The authors claim significant
reduction in power consumption can be achieved by

67

Hummaida et al. Page 8 of 15

using this approach. However, a limitation of this ap-
proach is it requires explicit knowledge of the software
being migrated, compared to VM migration, which
typically abstracts the software within a VM.

Similar to [44], the authors in [22] used utility as
measure the satisfaction of each managed workload
and a global decision module prioritises decisions that
maximise a global utility.

A less common adaptation technique for VM migra-
tion is time series analysis, proposed in [40], to predict
contention for resources through a Fast Fourier Trans-
form algorithm. The authors engaged the migration
before it is needed, and minimise cost by only migrat-
ing when the resource contention is predicted to last
beyond a defined period of time. In a multi-adaptation
technique, Zhu et al [67] experimented with integrating
a fuzzy logic controller with a trace-based controller,
arguing the integration resulted in better resource al-
location compared to the non-integrated approach.

Proposals typically do not cover cloud system adap-
tation during admission control phase, assuming avail-
ability, however the authors in [68] migrate VMs dur-
ing the admission control phase, by using a heuristic
solution based on hill climbing search techniques.

4.2.3 Adaptation Engagement
To engage VM migration, the authors in [39] used
a two-threshold reactive approach. The low threshold
aims to lower power consumption and triggers VMs to
be migrated off a node, which is then set to sleep mode.
The high threshold aims to meet SLA and triggers mi-
gration of a VM with the highest utilisation to another
node. The double threshold approach takes a snapshot
in time of the current CPU utilisation and thus can
suffer from false positives caused by workload utilisa-
tion peaks and troughs. In later work, Beloglazov et al
[69] proposed an adaptive auto-adjustment of the up-
per threshold, based on statistical analysis of histori-
cal data collected during the lifetime of VMs, tackling
statistical outliers in their earlier approach. Similarly,
the authors in [70] proposed a dynamic threshold ap-
proach that finds and adjusts thresholds at runtime.
Zuo et al [71] also use an adaptive threshold. The au-
thors monitor 3 metrics: number of resource requests,
resource service capacity and resource service strength,
and propose a dynamic weighted evaluation, dividing
the resource load into three states including Overload,
Normal and Idle.

Proactive approaches [40, 44] start the VM migration
before the conflict occurs, to avoid sustained service
degradation from the cost of the migration. In [44],
the authors proposed performing a cost and benefit
analysis before applying migration, and only invoked

a migration if the benefit outweighed the cost of the
migration.

4.2.4 Decision Engine Architecture
Most proposals are centralised and VM migration is
scheduled across the entire managed infrastructure.
While this gives opportunities for global optimisation,
it presents a significant challenge when managing thou-
sands of resources. Despite its name, VMware’s Dis-
tributed Resource Scheduler [65] uses a centralised
load balancing approach to engaging VM migration, so
it suffers the same scalability challenges of centralised
approaches proposed in academia. Zheng et al [31] aim
to reduce the number of nodes used in migration as
well as reduce VM migration times, by using a multi-
objective Genetic Algorithm based on hybrid group
encoding. The approach used a centralised controller
and limited simulation to only 200 nodes. Addition-
ally, the authors did not explore the time complexity
of their Genetic algorithm.

To improve the scalability of a centralised approach,
researchers investigated hierarchical and distributed
frameworks.

Hierarchical approaches tackle the scalability chal-
lenge by reducing the frequency of engaging the global
controller. The hierarchical approach in [22] used a lo-
cal decision module for each application and a global
decision module. Application satisfaction is regularly
measured using a utility function and communicated
to the global module, which prioritises requests to sat-
isfy a global utility. An alternative approach was pro-
posed in [67], where an additional Level 3 (L3) con-
troller was used to manage multiple clusters operating
at seconds (L1), minutes (L2) and days (L3) intervals.
However the authors did not explore the scalability of
their approach.

For a distributed and decentralised approach to man-
aging the data centre, the authors in [43, 64] proposed
a peer-to-peer protocol that enables nodes to commu-
nicate directly without a centralised controller. A peri-
odic node discovery service enables nodes to find new
neighbouring nodes to communicate with. On each
round of the protocol, two cooperating nodes deter-
mine to migrate a VM based on defined objectives.
The distributed approaches in [43, 64] are used to re-
distribute the load across the cluster as well consoli-
date VMs. Using simulation, the authors claim their
approaches can manage more than 100,000 nodes. A
challenge with distributed approaches is the lack of
a global view of the infrastructure, which impact the
ability to reach a globally optimal solution. Addition-
ally, gossip approaches consume considerable band-
width to implement propagation of node state across
the entire data centre infrastructure .

68

Hummaida et al. Page 9 of 15

4.3 Node Adaptation - Power
Proposals adapt a node’s power configuration to re-
duce operational costs for IPs. Proposals may use a
policy in the VM placement phase to use the most
energy-efficient nodes first, apply power management
features on a node and eventually migrate VMs and
switch the node to a sleep state. To reduce the power
consumption of a node before turning it off, some
proposals use Dynamic Voltage and Frequency Scal-
ing (DVFS), which is a framework to change the fre-
quency and/or operating voltage of nodes based on
system performance requirements. To utilises DVFS, it
needs to be supported by both the node and OS. Mod-
ern processors typically support multiple levels of fre-
quency/voltage, which can be selected through the OS.
Proposals typically select a frequency/voltage level
that reduces the node capability and minimises impact
to workloads, applying a trade-off between workload
performance and power consumption.

An alternative approach to DVFS was used in [42],
where the authors incorporate the power cost and pri-
ority of a VM in the decision of where to add the VM,
thus reducing the number of active nodes. While DVFS
has been widely deployed and proven to reduce power
consumption, the authors in [72] argue that DVFS can
have an impact on mult-tier application performance.
They propose a solution to minimise the impact, by
increasing the DVFS adjustment frequency and pre-
dicting the workload burst cycle.

4.3.1 Adaptation Techniques
Proposals differ in their approach to reducing node
power consumption, with some researchers opting to
migrate VMs and set the node to a sleep state [39,
44, 56, 67], compared to incrementally reduce power
consumption by using DVFS.

Beloglazov et al [39] propose a heuristic to consol-
idate workloads and switch nodes into a sleep state,
arguing that an idle node can consume 70% of the
power consumed by a node running at the full CPU
speed. Their approach was able to switch a node to
sleep mode within 20 seconds. However, the authors
did not discuss how nodes can be be woken up from
sleep mode if more nodes are required to service re-
quests. Other proposals that do not utilise DVFS in-
clude the gossip based protocol in [43], which places
new VM requests on the highest loaded node capa-
ble of hosting it. VMs are redistributed by moving a
VM from a lower loaded to a higher loaded node if it
can be hosted. In [64], the authors take into account
power consumption in the decision making. The au-
thors in [31] aim to reduce the number of nodes used
in migration as well as reduce VM migration times at

the same time, by using a multi-objective Genetic Al-
gorithm based on hybrid group encoding.

In contrast, [19, 40, 73] utilise DFVS to gradually
reduce power consumption and switch nodes to a sleep
state. The authors in [40] use time series, while [19, 73]
use a heuristic to adjust DVFS.

4.3.2 Adaptation Engagement
To adapt power configuration, reactive approaches
[69, 56] use a low threshold for CPU utilisation to
switch nodes to sleep state. In contrast, proactive ap-
proaches predict workload utilisation and switch nodes
to sleep state at the predicted time intervals. In [41],
the authors used a Kalman filter to predict the num-
ber of requests. VM capability and power consumption
were captured offline, by measuring the average re-
sponse times achieved when different CPU shares were
assigned to the VM. The authors modelled risk in the
decision making to cater for the cost of switching nodes
on and off, arguing this reduces SLA violations consid-
erably compared to a non risk aware controller. Core to
this argument is SLA violations, or opportunity cost,
in having to power on a node. However, with com-
moditisation of Solid state storage (SSD), which offers
significant boot performance compared to Hard disk
drives, many servers use SSD to boot the operating
system. The authors previous conclusions may need to
be revisited to re-evaluate whether more nodes using
SSD can be left in switched off mode and switched on
nearer to the time they are needed. Similarly, [40, 53]
proactively adjust the node frequency and eventually
switch the node to sleep state.

4.3.3 Decision Engine Architecture
To consolidate VMs, proposals migrate VMs between
nodes by searching for suitable nodes that can take ad-
ditional VMs without violating another management
objective. As the scalability of migrating VMs was cov-
ered in the Node Adaptation subsection, here we fo-
cus on the approaches to managing power reduction at
large scale.

In the gossip based protocol in [43], the authors ex-
perimentally assessed the power consumption of the
proposal, by measuring the number of active servers.
However they do not incorporate an explicit notion of
power cost in their policy. In [64], when two nodes com-
municate they attempt to consolidate all VMs onto one
peer and the released peer is set into the power saving
mode. If the VMs cannot be entirely consolidated onto
one node, the protocol attempts to redistribute the
load across the two nodes, taking into account power
consumption and migration cost.

Proposals utilising DVFS to lower power consump-
tion typically use a centralised decision engine [40, 73,
19], although Addis et al proposed a hierarchical ar-
chitecture in later work [53].

69

Hummaida et al. Page 10 of 15

4.4 Storage Adaptation
Cloud storage adaptation can be applied to both I/O
access and the storage itself, although this area is less
covered compared to other cloud resources.

4.4.1 Adaptation Technique
Control theory is used by researchers to adapt differ-
ent levels of the storage stack. Padala et al [35] used an
application controller to determine disk I/O resources
needed at the node level. While the approach can ap-
ply service differentiation, it over-allocates disk I/O
bandwidth when these are available, which potentially
increases power consumption. In [74], the authors used
control theory to adapt the central storage tier, focus-
ing on the Hadoop Distributed File System, from a
customer perspective. Offline profiling data was used
to build the transfer function into the constructed sys-
tem model, combining this with online CPU metrics
from the storage node.

Another technique used to adapt I/O access is su-
pervised machine learning, proposed in [24], focusing
on automated provisioning of Hadoop jobs.

4.4.2 Adaptation Engagement
To engage storage adaptation, the approach in [74] re-
acts to the CPU utilisation of the storage node. The
first controller adds and removes storage nodes and a
second controller rebalances data across the new set of
storage nodes. To ascertain some of the thresholds, the
authors used offline experimentation with Cloudstone
benchmark. In contrast, the proactive approach in [24]
used a two phase approach, where phase one is offline
and builds a prediction model using past job infor-
mation and a k-medoid clustering and support vector
machine. Phase two is online and uses a staging area to
obtain a resource utilisation signature for newly sub-
mitted jobs. These signatures are then matched to the
offline constructed data for the decision making pro-
cess. The authors assume availability of job history
information, and the staging area imposes additional
costs that have to be met by either the IPs or end
users. In contrast, the authors in [35] used a second
order ARMA model, taking into account two previous
control intervals to predict workload performance, by
using response time as the performance metric.

4.4.3 Decision Engine Architecture
The scalability of centralised approaches is typically
problematic [43], however proposals in [35, 24] do not
migrate VMs to resolve contention, therefore do not
require a global view of the infrastructure. This places
less emphasis on the scalability of their approaches.

The centralised proposal in [74] needs to rebalance
data when nodes join and leave a storage cluster. Dur-
ing the rebalancing phase, no additional adaptation

can be carried out. The impact of this limitation will
increase as the number of nodes in the cluster increase,
thus limiting the applicability of the approach.

5 Open Research Challenges
While there has been considerable research in adapta-
tion of resource configuration, there are several open
challenges. Based on our analysis, the following are
open challenges in cloud systems adaptation, in an
IaaS context:

1 Many of the proposals in the literature focus on
managing web/multi tired applications, as can be
seen on Table 2, and use application metrics as in-
put into the decision making process. Other pro-
posals attempt to manage generic workload types
and typically utilise threshold based approaches
to trigger adaptation. A potentially better ap-
proach is to characterise the workload type and
engage adaptation that takes into account the
workload type. Several projects attempt to anal-
yse and characterise cloud workloads. Analysis of
public Google traces [21, 75, 76, 77] has shown
variance in the resources utilised and the dura-
tion of cloud tasks, making popular simplifications
such as being able to slot workloads on resources
unsuitable [21]. Additionally, users typically over-
estimate resources reservations, leading to signif-
icant wastage [76]. Some existing approaches aim
to predict future workloads using classical pre-
diction models such as ARMA [28], a linear re-
gression model [78] and a hybrid model tuned to
bursty web traffic [32, 79]. Other characterisation
approaches aim to predict workload resource util-
isation, by identifying a feature of the workload.
The authors in [80] match applications with ap-
propriate VM types by defining application pro-
files, which are manually extracted from workflow
logs. The authors in [77] classify tasks based on
resource utilisation and the authors in [81, 82]
extract utilisation usage signatures. The authors
in [31] use a load predictor that clusters historical
resource utilisation, and select the cluster set with
the highest similarity as a training sample into a
Neural Network. However, these approaches sim-
plify the impact of colocating VMs, which can
lead to significant performance overhead [83, 84].
The authors in [85] tackle colocation interference
and perform four parallel classifications on each
application to evaluate the impact of vertical and
horizontal scale, server configuration, and the im-
pact of colocating applications. However this ap-
proach needs specific knowledge of the application
in order to profile and classify.

70

Hummaida et al. Page 11 of 15

Based on the current state of art, there is no
generic non application aware online classification
of workload types, which are typically deployed on
IaaS. A generic mechanism to predict whether the
workload is a user desktop, web server, file server
or batch job, can enable the decision engine to
adapt resource configuration in an optimal way
for the workload type. This can potentially allow
the workload to complete quicker or conserve re-
source otherwise not utilised by the workload, and
enable colocation of VMs in a way that does not
introduce interference.

2 Offline profiling and staging area approaches are
typically used to experimentally derive workload
resource requirements. However this has an up-
front overhead and is not practical to apply for
every application that will be deployed on a IaaS.
Several proposals have attempted online profiling
and/or monitoring of workloads, however these
typically require explicit knowledge of the appli-
cation [85], or an output from the VM such as
latency or response time [82, 86, 87], which is
typically not available to IPs. More research is
need into application agnostic mechanisms that
can extract workload resource requirements, and
impact of adaptation, dynamically at run time.

3 Scalability of computing systems is an understood
challenge in traditional enterprise infrastructure.
However cloud environments magnify this chal-
lenge due to the larger size and heterogeneity of
infrastructure used in cloud data centres. Table 2
shows a summary of the proposals in the litera-
ture, including the number of nodes each proposal
attempted to manage. This shows many of the
proposals do not explore the scalability of their
approach and typically implement a centralised
decision engine. Some of the proposals explore
scalability of managing several thousand nodes,
which is still significantly below many modern
data centres, which can house more than 100,000
nodes [88]. Proposals that explored scalability ca-
pable of managing modern data centres tend to
implement a distributed decision engine. How-
ever these approaches trade off ability to man-
age a large infrastructure with a reduction in
optimal resource allocation. Additionally, these
approaches consume considerable bandwidth for
the nodes to communicate directly across the en-
tire infrastructure. More research is required to
demonstrate robust and practical application of
distributed approaches, which can achieve simi-
lar level of optimal allocation as centralised ap-
proaches.

6 Conclusion
This paper presented a definition of cloud systems
adaptation and a classification of the key features. We
analysed the literature and highlighted approaches and
techniques used to enable adaptation of cloud resource
configuration.

Workload management on IaaS entails controlling
the admission of new workloads and periodically
adapting resource configuration to achieve a manage-
ment objective. Proposals in the literature aim to min-
imise SLA violations and some trade this off with a sec-
ondary objective, such as reducing power consumption
or maximising IP revenue. To achieve these objectives,
several adaptation techniques have been used. The ar-
chitecture of the decision engine has a significant im-
pact on the scalability of a proposal, with centralised
approaches not being able to scale on large data cen-
tres. While there has been considerable research, we
have highlighted several open challenges that are wor-
thy of further investigation.

Competing interests
The authors declare that they have no competing interests.

Author’s contributions
AH carried out the survey of the literature, drafted the manuscript and

identified open research challenges. NP and RS provided insight and

guidance in developing the structure and dimensions for the literature

classification, critically reviewed the paper and suggested additional papers

to investigate. All authors read and approve the final manuscript.

Author’s Information
Abdul Hummaida is a PhD candidate in the School of Computer Science,

University of Manchester, UK. He completed his bachelor’s degree on

Software Engineering from the School of Computer Science, University of

Manchester, UK. He is currently working on scalability of cloud

management systems. His research interests include cloud computing,

autonomic computing and workload management. He is also a Director of

Software Engineering at Appsense.

Norman Paton is a Professor of Computer Science at the University of

Manchester, where he co-leads the Information Management Group. He

works principally on databases and distributed information management.

Current research interests include pay-as-you-go data integration, sensor

query processing and infrastructures for adaptive systems development. He

also works on genome data management, in particular exploring the use of

data integration techniques for making better use of experimental and

derived data in systems biology. He has been an investigator on over 40

research grants from the UK research councils, the EU and industry, and

has published around 200 refereed articles.

Rizos Sakellariou is with the School of Computer Science at the University

of Manchester, UK, where he carries out research in the broad area of

parallel and distributed systems while at the same time he enjoys teaching

and never stops to be amazed by university politics. He has published over

100 research papers in the area.

References
1. Jassy, A.: Amazon Web Services Summit.

https://aws.amazon.com/summits/san-francisco/ Accessed May 2016

2. Galante, G., Bona, L.C.E.d.: A survey on cloud computing elasticity.

In: Proceedings of the 2012 IEEE/ACM Fifth International Conference

on Utility and Cloud Computing. UCC ’12, pp. 263–270. IEEE

Computer Society, Washington, DC, USA (2012)

3. Beloglazov, A., Buyya, R., Lee, Y.C., Zomaya, A.: A taxonomy and

survey of energy-efficient data centers and cloud computing systems.

Advances in Computers 82, 47–111 (2011)

71

Hummaida et al. Page 12 of 15

4. Botran, T.L., Miguel-Alonso, J., Lozano, J.A.: Auto-scaling techniques

for elastic applications in cloud environments. Journal of Grid

Computing 12(4), 559–592 (2014)

5. Najjar, A., Serpaggi, X., Gravier, C., Boissier, O.: Survey of Elasticity

Management Solutions in Cloud Computing. Computer

Communications and Networks, pp. 235–263. Springer, 236 Gray’s Inn

Road, Floor 6, London WC1X 8HB, UK (2014)

6. Jennings, B., Stadler, R.: Resource management in clouds: Survey and

research challenges. Journal of Network and Systems Management

23(3), 567–619 (2015)

7. Coutinho, E.F., Carvalho Sousa, F.R., Rego, P.A.L., Gomes, D.G.,

Souza, J.N.: Elasticity in cloud computing: a survey. annals of

telecommunications - annales des télécommunications 70(7), 289–309

(2014). doi:10.1007/s12243-014-0450-7

8. Mann, Z.A.: Allocation of virtual machines in cloud data

centers—a survey of problem models and optimization

algorithms. ACM Comput. Surv. 48(1), 11–11134 (2015).

doi:10.1145/2797211

9. Singh, S., Chana, I.: Qos-aware autonomic resource management in

cloud computing: A systematic review. ACM Comput. Surv. 48(3),

42–14246 (2015). doi:10.1145/2843889

10. Faniyi, F., Bahsoon, R.: A systematic review of service level

management in the cloud. ACM Comput. Surv. 48(3), 43–14327

(2015). doi:10.1145/2843890

11. Naskos, A., Gounaris, A., Sioutas, S.: Cloud Elasticity: A Survey. In:

Karydis, I., Sioutas, S., Triantafillou, P., Tsoumakos, D. (eds.)

Algorithmic Aspects of Cloud Computing: First International

Workshop, ALGOCLOUD 2015, Patras, Greece, September 14-15,

2015. Revised Selected Papers, pp. 151–167. Springer, Cham (2016)

12. Mohamaddiah, M.H., Abdullah, A., Subramaniam, S., Hussin, M.: A

survey on resource allocation and monitoring in cloud computing.

International Journal of Machine Learning and Computing 4(1), 31–38

(2014)

13. Singh, S., Chana, I.: A survey on resource scheduling in cloud

computing: Issues and challenges. Journal of Grid Computing 14(2),

1–48 (2016)

14. Murch, R.: Autonomic Computing. IBM Press, 1 New Orchard Rd,

Armonk, NY 10504, US (2004)

15. NIST: Sp 800-145: Definition of cloud computing. Technical report,

NIST, 100 Bureau Drive, Gaithersburg, USA (Sep 2011). NIST.

http://csrc.nist.gov/publications/PubsSPs.html Accessed May 2016

16. Herbst, N.R., Kounev, S., Reussner, R.: Elasticity in cloud computing:

What it is, and what it is not. In: 10th International Conference on

Autonomic Computing, pp. 23–27 (2013)

17. Maurer, M., Brandic, I., Sakellariou, R.: Adaptive resource

configuration for cloud infrastructure management. Future Generation

Computer Systems 29(2), 472–487 (2013)

18. Magklis, G., Semeraro, G., Albonesi, D.H., Dropsho, S.G., Dwarkadas,

S., Scott, M.L.: Dynamic frequency and voltage scaling for a

multiple-clock-domain microprocessor. IEEE Micro 23, 62–68 (2003)

19. Addis, B., Ardagna, D., Panicucci, B., Zhang, L.: Autonomic

management of cloud service centers with availability guarantees. In:

2010 IEEE 3rd International Conference on Cloud Computing, pp.

220–227. IEEE, Washington, DC, USA (2010)

20. Sedaghat, M., Hernández-Rodriguez, F., Elmroth, E.: Autonomic

resource allocation for cloud data centers: A peer to peer approach. In:

IEEE International Conference on Cloud and Autonomic Computing,

pp. 131–140. IEEE, Washington, DC, USA (2014)

21. Reiss, C., Tumanov, A., Ganger, G.R., Katz, R.H., Kozuch, M.A.:

Heterogeneity and dynamicity of clouds at scale: Google trace analysis.

In: Proceedings of the Third ACM Symposium on Cloud Computing.

SoCC ’12, pp. 7–1713. ACM, New York, NY, USA (2012).

doi:10.1145/2391229.2391236.

http://doi.acm.org/10.1145/2391229.2391236

22. Van, H.N., Tran, F.D., Menaud, J.-M.: Sla-aware virtual resource

management for cloud infrastructures. In: IEEE International

Conference on Computer and Information Technology, vol. 02, pp.

357–362. IEEE, Washington, DC, USA (2009)

23. Bod́ık, P., Griffith, R., Sutton, C., Fox, A., Jordan, M., Patterson, D.:

Statistical machine learning makes automatic control practical for

internet datacenters. In: Proceedings of the 2009 Conference on Hot

Topics in Cloud Computing. HotCloud’09. USENIX Association,

Berkeley, CA, USA (2009)

24. Lama, P., Zhou, X.: Aroma: Automated resource allocation and

configuration of mapreduce environment in the cloud. In: Proceedings

of the 9th International Conference on Autonomic Computing. ICAC

’12, pp. 63–72. ACM, New York, NY, USA (2012)

25. Malkowski, S.J., Hedwig, M., Li, J., Pu, C., Neumann, D.: Automated

control for elastic n-tier workloads based on empirical modeling. In:

Proceedings of the 8th ACM International Conference on Autonomic

Computing. ICAC ’11, pp. 131–140. ACM, New York, NY, USA (2011)

26. Ali-Eldin, A., Tordsson, J., Elmroth, E.: An adaptive hybrid elasticity

controller for cloud infrastructures. In: 2012 IEEE Network Operations

and Management Symposium, pp. 204–212. IEEE, Washington, DC,

USA (2012)

27. Zhani, M.F., Cheriton, D.R., Zhang, Q., Simon, G., Boutaba, R.: Vdc

planner: Dynamic migration-aware virtual data center embedding for

clouds. In: IEEE International Symposium on Integrated Network

Management, pp. 18–25. IEEE, Washington, DC, USA (2013)

28. Roy, N., Dubey, A., Gokhale, A.: Efficient Autoscaling in the Cloud

Using Predictive Models for Workload Forecasting. In: IEEE

International Conference on Cloud Computing, pp. 500–507 (2011)

29. Urgaonkar, B., Shenoy, P., Chandra, A., Goyal, P., Wood, T.: Agile

dynamic provisioning of multi-tier internet applications. ACM

Transactions on Autonomous and Adaptive Systems 3(1) (2008)

30. Celaya, J., Sakellariou, R.: An adaptive policy to minimize energy and

sla violations of parallel jobs on the cloud. In: IEEE/ACM 7th

International Conference on Utility and Cloud Computing, pp.

507–508. IEEE, Washington, DC, USA (2014)

31. Zheng, S., Zhu, G., Zhang, J., Feng, W.: Towards an adaptive

human-centric computing resource management framework based on

resource prediction and multi-objective genetic algorithm. Multimedia

Tools and Applications, 1–18 (2015)

32. Zhang, Q., Chen, H., Shen, Y., Ma, S., Lu, H.: Optimization of virtual

resource management for cloud applications to cope with traffic burst.

Future Generation Computer Systems 58, 42–55 (2016).

doi:10.1016/j.future.2015.12.011

33. Dawoud, W., Takouna, I., Meinel, C.: Elastic virtual machine for

fine-grained cloud resource provisioning. Global Trends in Computing

and Communication Systems 269, 11–25 (2011)

34. Citrix: Xen. http://www.xenserver.org Accessed May 2016

35. Padala, P., Hou, K.-Y., Shin, K.G., Zhu, X., Uysal, M., Wang, Z.,

Singhal, S., Merchant, A.: Automated control of multiple virtualized

resources. In: Proceedings of the 4th ACM European Conference on

Computer Systems. EuroSys ’09, pp. 13–26. ACM, New York, NY,

USA (2009)

36. Almeida, J., Almeida, V., Ardagna, D., Cunha, Í., Francalanci, C.,

Trubian, M.: Joint admission control and resource allocation in

virtualized servers. Journal of Parallel and Distributed Computing 70,

344–362 (2010)

37. Fargo, F., Tunc, C., Al-Nashif, Y., Akoglu, A., Hariri, S.: Autonomic

workload and resource management of cloud computing services. In:

IEEE International Conference on Cloud and Autonomic Computing,

pp. 101–110. IEEE, Washington, DC, USA (2014)

38. Bu, X., Rao, J., Xu, C.-Z.: Model-free learning approach for

coordinated configuration of virtual machines and appliances. In: 19th

Annual International Symposium on Modelling, Analysis, and

Simulation of Computer and Telecommunication Systems, pp. 12–21.

IEEE, Washington, DC, USA (2011)

39. Beloglazov, A., Abawajyb, J., Buyya, R.: Energy-aware resource

allocation heuristics for efficient management of data centers for cloud

computing. Future Generation Computer Systems 28, 755–768 (2012)

40. Shen, Z., Subbiah, S., Gu, X., Wilkes, J.: Cloudscale: Elastic resource

scaling for multi-tenant cloud systems. In: Proceedings of the 2Nd

ACM Symposium on Cloud Computing. SOCC ’11, pp. 5–1514. ACM,

New York, NY, USA (2011)

41. Kusic, D., Kephart, J.O., Hanson, J.E., Kandasamy, N., Jiang, G.:

Power and performance management of virtualized computing

environments via lookahead control. In: Autonomic Computing ICAC,

pp. 3–23. IEEE, Washington, DC, USA (2008)

42. Cardosa, M., Korupolu, M.R., Singh, A.: Shares and utilities based

72

Hummaida et al. Page 13 of 15

power consolidation in virtualized server environments. In: 11th

IFIP/IEEE International Conference on Symposium on Integrated

Network Management, pp. 327–334 (2009)

43. Wuhib, F., Stadler, R., Spreitzer, M.: Dynamic resource allocation with

management objectives: implementation for an openstack cloud. IEEE

Transactions on Network and Service Management 9(2), 213–225

(2012)

44. Jung, G., Hiltunen, M.A., Joshi, K.R., Schlichting, R.D., Pu, C.:

Mistral: Dynamically managing power, performance, and adaptation

cost in cloud infrastructures. In: International Conference on

Distributed Computing Systems, pp. 62–73. IEEE, Washington, DC,

USA (2010)

45. Han, R., Guo, L., Ghanem, M.M., Guo, Y.: Lightweight resource

scaling for cloud applications. In: International Symposium on Cluster,

Cloud and Grid Computing, pp. 644–651. IEEE, Washington, DC, USA

(2012)

46. Amazon: AWS. http://aws.amazon.com/ec2/ Accessed May 2016

47. Koehler, M.: An adaptive framework for utility-based optimization of

scientific applications in the cloud. Journal of Cloud Computing:

Advances, Systems and Applications 3, 4 (2014)

48. Apache: Hadoop. http://hadoop.apache.org Accessed May 2016

49. Nathuji, R., Kansal, A., Ghaffarkhah, A.: Q-clouds: Managing

performance interference effects for qos-aware clouds. In: Proceedings

of the 5th European Conference on Computer Systems. EuroSys ’10,

pp. 237–250. ACM, New York, NY, USA (2010)

50. Zhu, X., Wang, Z., Singhal, S.: Utility-Driven Workload Management

Using Nested Control Design. In: American Control Conference. IEEE,

Washington, DC, USA (2006)

51. Xu, J., Zhao, M., Fortes, J., Carpenter, R., Yousif, M.: Autonomic

resource management in virtualized data centers using fuzzy

logic-based approaches. Cluster Computing 11, 213–227 (2008)

52. Jamshidi, P., Ahmad, A., Pahl, C.: Autonomic resource provisioning for

cloud-based software. In: Proceedings of the 9th International

Symposium on Software Engineering for Adaptive and Self-Managing

Systems. SEAMS 2014, pp. 95–104. ACM, New York, NY, USA

(2014)

53. Addis, B., Ardagna, D., Panicucci, B., Squillante, M.S., Zhang, L.: A

hierarchical approach for the resource management of very large cloud

platforms. IEEE Transactions on Dependable and Secure Computing

10, 253–272 (2013)

54. Han, R., Ghanem, M.M., Guo, L., Guo, Y., Osmond, M.: Enabling

cost-aware and adaptive elasticity of multi-tier cloud applications.

Future Generation Computer Systems 32, 82–98 (2014)

55. Hasan, M.Z., Magana, E., Clemm, A., Tucker, L., Gudreddi, S.L.D.:

Integrated and autonomic cloud resource scaling. In: Network

Operations and Management Symposium, pp. 1327–1334. IEEE,

Washington, DC, USA (2012)

56. Berral, J.L., Goiri, I.n., Nou, R., Julià, F., Guitart, J., Gavaldà, R.,

Torres, J.: Towards energy-aware scheduling in data centers using

machine learning. In: Proceedings of the 1st International Conference

on Energy-Efficient Computing and Networking. e-Energy ’10, pp.

215–224. ACM, New York, NY, USA (2010)

57. Gmach, D., Rolia, J., Cherkasova, L., Kemper, A.: Resource pool

management: Reactive versus proactive or lets be friends. Computer

Networks: The International Journal of Computer and

Telecommunications Networking 53, 2905–2922 (2009)

58. Box, G.E.P., Jenkins, G.M., Reinsel, G.C.: Time Series Analysis:

Forecasting and Control, 4th edn. John Wiley & Sons Inc, 111 River

Street Hoboken, NJ 07030-5774 (2008)

59. Boor, C.D.: A Practical Guide to Splines, 1st edn. Springer, 233 Spring

Street, New York, NY 10013-1578, USA (2001)

60. Kalman, R.E.: A new approach to linear filtering and prediction

problems. Journal Fluids Eng. 82, 35–45 (1960)

61. Loan, C.V.: Computational Frameworks for the Fast Fourier

Transform. Society for Industrial and Applied Mathematics, 3600

Market Street, 6th Floor, Philadelphia, PA (1987)

62. Iqbal, W., Dailey, M.N., Carrera, D., Janecek, P.: Adaptive resource

provisioning for read intensive multi-tier applications in the cloud.

Future Generation Computer Systems 26, 871–879 (2011)

63. Voorsluys, W., Broberg, J., Venugopal, S., Buyya, R.: Cost of virtual

machine live migration in clouds: A performance evaluation. In:

Proceedings of the 1st International Conference on Cloud Computing.

CloudCom ’09, pp. 254–265. Springer, Berlin, Heidelberg (2009)

64. Sedaghat, M., Hernández-Rodriguez, F., Elmroth, E., Girdzijauskas, S.:

Divide the task, multiply the outcome: Cooperative vm consolidation.

In: IEEE International Conference on Cloud Computing Technology

and Science, pp. 300–305. IEEE, Washington, DC, USA (2014)

65. Gulati, A., Shanmuganathan, G., Holler, A., Ahmad, I.: Cloud-scale

resource management: Challenges and techniques. In: Proceedings of

the 3rd USENIX Conference on Hot Topics in Cloud Computing.

HotCloud’11, pp. 3–3. USENIX Association, Berkeley, CA, USA (2011)

66. Tchana, A., Palma, N.D., Safieddine, I., Hagimont, D., Diot, B.,

Vuillerme, N.: Euro-par 2015: Parallel processing: 21st international

conference on parallel and distributed computing, vienna, austria,

august 24-28, 2015, proceedings, 305–316 (2015)

67. Zhu, X., Young, D., Watson, B.J., Wang, Z., Rolia, J., Singhal, S.,

McKee, B., Hyser, C., Gmach, D., Gardner, R., Christian, T.,

Cherkasova, L.: 1000 Islands: Integrated Capacity and Workload

Management for the Next Generation Data Center. In: International

Conference on Autonomic Computing, pp. 172–181. IEEE,

Washington, DC, USA (2008)

68. Casalicchio, E., Menascé, D.A., Aldhalaan, A.: Autonomic resource

provisioning in cloud systems with availability goals. In: Proceedings of

the 2013 ACM Cloud and Autonomic Computing Conference. CAC

’13, pp. 1–1110. ACM, New York, NY, USA (2013)

69. Beloglazov, A., Buyya, R.: Optimal online deterministic algorithms and

adaptive heuristics for energy and performance efficient dynamic

consolidation of virtual machines in cloud data centers. Concurrency

and Computation: Practice and Experience 24, 1397–1420 (2012)

70. Choi, H.W., Kwak, H., Sohn, A., Chung, K.: Autonomous learning for

efficient resource utilization of dynamic vm migration. In: Proceedings

of the 22Nd Annual International Conference on Supercomputing. ICS

’08, pp. 185–194. ACM, New York, NY, USA (2008)

71. Zuo, L., Shu, L., Dong, S., Zhu, C., Zhou, Z.: Dynamically weighted

load evaluation method based on self-adaptive threshold in cloud

computing. Mobile Networks and Applications, 1–15 (2016).

doi:10.1007/s11036-016-0679-7

72. Wang, Q., Kanemasa, Y., Li, J., Lai, C.A., Matsubara, M., Pu, C.:

Impact of dvfs on n-tier application performance. In: Proceedings of

the First ACM SIGOPS Conference on Timely Results in Operating

Systems. TRIOS ’13, pp. 5–1516. ACM, New York, NY, USA (2013)

73. Tolia, N., Wang, Z., Marwah, M., Bash, C., Ranganathan, P., Zhu, X.:

Delivering energy proportionality with non energy-proportional

systems: Optimizing the ensemble. In: Proceedings of the 2008

Conference on Power Aware Computing and Systems. HotPower’08,

pp. 2–2. USENIX Association, Berkeley, CA, USA (2008)

74. Lim, H.C., Babu, S., Chase, J.S.: Automated control for elastic

storage. In: Proceedings of the 7th International Conference on

Autonomic Computing. ICAC ’10, pp. 1–10. ACM, New York, NY,

USA (2010)

75. Di, S., Kondo, D., Cappello, F.: Characterizing cloud applications on a

google data center. In: Parallel Processing (ICPP), 2013 42nd

International Conference On, pp. 468–473. IEEE, Washington, DC,

USA (2013)

76. Moreno, I.S., Garraghan, P., Townend, P., Xu, J.: An approach for

characterizing workloads in google cloud to derive realistic resource

utilization models. In: Service Oriented System Engineering (SOSE),

2013 IEEE 7th International Symposium On, pp. 49–60. IEEE,

Washington, DC, USA (2013)

77. Zhang, Q., Zhani, M.F., Boutaba, R., Hellerstein, J.L.: Dynamic

heterogeneity-aware resource provisioning in the cloud. IEEE

Transactions on Cloud Computing 2(1), 14–28 (2014).

doi:10.1109/TCC.2014.2306427

78. Yang, J., Liu, C., Shang, Y., Cheng, B., Mao, Z., Liu, C., Niu, L.,

Chen, J.: A cost-aware auto-scaling approach using the workload

prediction in service clouds. Information Systems Frontiers 16(1), 7–18

(2013). doi:10.1007/s10796-013-9459-0

79. Liu, C., Shang, Y., Duan, L., Chen, S., Liu, C., Chen, J.: Optimizing

Workload Category for Adaptive Workload Prediction in Service

Clouds. In: Barros, A., Grigori, D., Narendra, C.N., Dam, K.H. (eds.)

Service-Oriented Computing: 13th International Conference, ICSOC

73

Hummaida et al. Page 14 of 15

2015, Goa, India, November 16-19, 2015, Proceedings, pp. 87–104.

Springer, Berlin, Heidelberg (2015)

80. Chard, R., Chard, K., Bubendorfer, K., Lacinski, L., Madduri, R.,

Foster, I.: Cost-aware elastic cloud provisioning for scientific workloads.

In: Cloud Computing (CLOUD), 2015 IEEE 8th International

Conference On, pp. 971–974. IEEE, Washington, DC, USA (2015)

81. Gong, Z., Gu, X., Wilkes, J.: Press: Predictive elastic resource scaling

for cloud systems. In: Network and Service Management (CNSM),

2010 International Conference On, pp. 9–16. IEEE, Washington, DC,

USA (2010)

82. Zhang, L., Zhang, Y., Jamshidi, P., Xu, L., Pahl, C.: Service workload

patterns for qos-driven cloud resource management. Journal of Cloud

Computing 4(1), 1–21 (2015). doi:10.1186/s13677-015-0048-2

83. Xu, F., Liu, F., Jin, H., Vasilakos, A.V.: Managing performance

overhead of virtual machines in cloud computing: A survey, state of

the art, and future directions. Proceedings of the IEEE 102(1), 11–31

(2014). doi:10.1109/JPROC.2013.2287711

84. Feller, E., Ramakrishnan, L., Morin, C.: Performance and energy

efficiency of big data applications in cloud environments: A hadoop

case study. Journal of Parallel and Distributed Computing 79–80,

80–89 (2015). doi:10.1016/j.jpdc.2015.01.001. Special Issue on

Scalable Systems for Big Data Management and Analytics

85. Delimitrou, C., Kozyrakis, C.: Quasar: Resource-efficient and

qos-aware cluster management. In: Proceedings of the 19th

International Conference on Architectural Support for Programming

Languages and Operating Systems. ASPLOS ’14, pp. 127–144. ACM,

New York, NY, USA (2014). doi:10.1145/2541940.2541941.

http://doi.acm.org/10.1145/2541940.2541941

86. Tsoumakos, D., Konstantinou, I., Boumpouka, C., Sioutas, S., Koziris,

N.: Automated, elastic resource provisioning for nosql clusters using

tiramola. In: Cluster, Cloud and Grid Computing (CCGrid), 2013 13th

IEEE/ACM International Symposium On, pp. 34–41. IEEE,

Washington, DC, USA (2013)

87. Naskos, A., Stachtiari, E., Gounaris, A., Katsaros, P., Tsoumakos, D.,

Konstantinou, I., Sioutas, S.: Dependable horizontal scaling based on

probabilistic model checking. In: Cluster, Cloud and Grid Computing

(CCGrid), 2015 15th IEEE/ACM International Symposium On, pp.

31–40. IEEE, Washington, DC, USA (2015)

88. Miller, R.: Data Center Knowledge.

http://www.datacenterknowledge.com/archives/2009/05/14/whos-

got-the-most-web-servers/ Accessed May 2016

|

Co
m

pu
te

 R
es

ou
rc

e

CPU

Memory

Virtualization

OS

Network card St
or

ag
e

Re
so

ur
ce

Decision
Making

Adaptation
Techniques

SMR

Resource
To reconfigure

Metrics

Cloud Systems Adaptation

Management
Tools

SMR

M
id

dl
ew

ar
e

Fi
re

w
al

ls,

sw
itc

he
s,

 L
Bs

Elasticity

Figure 1 Cloud Systems Adaptation sequence

Node CPU
Frequency

He
te

ro
ge

ne
ou

s n
od

es

VM CPU share

Node CPU Voltage

Node CPU
Frequency

VM Memory

Figure 2 Compute Resource components

Table 1 Dimensions for Cloud Systems Adaptations

Dimension Definition

Adapted
Resource

VM ⊂ {Adjust CPU, Memory, Storage,
Disk Bandwidth}
Node ⊂ {Power on/off, Adjust DVFS,
Migrate VM}
Cluster ⊂ {Add/remove nodes}

Adaptation
Objective

SLA, Power, Revenue, Customer Cost

Adaptation
Technique

Heuristics, Control theory, Queing theory
Machine learning

Adaptation
Engagement

Reactive, Proactive, Reactive/Proactive

Decision Engine
Architecture

Central, Hierarchical, Distributed

Managed
Infrastructure

Heterogeneous, Homogeneous

74

Hummaida et al. Page 15 of 15

Table 2 Summary of literature that adapt cloud resources, ordered by the Decision Engine Architecture.

Legend: CT= Control Theory; RL= Reinforcement learning; CSP= Constrained satisfaction problem; ML= Supervised machine learning; P2P= Peer-to-Peer

QT= Queueing Theory; GA= Genetic Algorithm; TS= Time series; R= Reactive; P= Proactive; Hom=Homogenous; Het= Heterogeneous

Project Objective Resource Tech
Adapt

trigger
Arch Infra Workload Setup [#nodes]

P SLA Rev
Cust

cost

Whole

VM/node
CPU Mem Migrate

Disk

I/O
DVFS

Node

off
ST

Zheng[31] x x x x GA P Central Hom Generic Simulation[200]

Zhang [32] x x QT P Central Hom Multi tier Simulation

Zuo[71] x x x x x Heuristic R Central Het Generic Simulation

Tchana [66] x x x x CSP R Central Het Generic Private + AWS

Beloglazov[39, 69] x x x x x Heuristic R Central Het Generic Simulation [100] [800]

Wesam[33] x x x Heuristic R Central Het Multi tier Xen test bed

Gmach[57] x x x CT R Central Hom Generic Simulation

Fargo[37] x x x x x x Heuristic P Central Hom Web App Xen test bed

Won Choi[70] x x Heuristic R Central Hom Generic Linux test bed

Iqbal[62] x x x Heuristic R + P Central Hom Generic Eucalyptus

Roy[28] x x x CT P Central Hom Multi tier NA

Xiangping Bu[38] x x x RL R Central Hom Multi tier Xen test bed

Padala[35] x x x CT P Layered Hom Multi tier Xen test bed

Xu[51] x x CT P Central Hom Web App ESX test bed

Jamshidi[52] x x x CT R + P Central Hom Web App Azure

Bodik[23] x x x CT P Central Hom Multi tier Simulation

Lama[24] x x
SML +

Heuristic
P Central Het Hadoop ESX test bed

Koehler[47] x x x Utility P Central Hom Hadoop KVM test bed

Kusic[41] x x x x x
CT+

Utility+TS
P Central Het Multi tier ESX test bed

Zhu[50] x x x CT + Utility R Central Hom Web App HP-UX

Hasan[55] x x Heuristic R Central Hom Generic Test bed

Cardosa[42] x x
Utility +

Heuristic
R Central Hom Generic ESX test bed

Shen[40] x x x x x x TS P Central Het Web App Xen test bed

Nathuji[49] x x CT P Central Het Generic Hyper-V test bed

Malkowski[25] x x
CT +

Heuristic
P Central Hom Multi tier Xen test bed

Lim[74] x x CT R Central Hom Hadoop Xen test bed

Ali-Eldin[26] x x CT R + P Central Hom Generic Simulation

Zhani[27] x x x x Heuristic R Central Hom Generic Simulation [400]

Han[45] x x x x x Heuristic R Central Hom Generic IC Cloud

Han[54] x x x QT R Central Hom Generic Simulation

Gulati[65] x x x x x
Greedy

Heuristic
R Central Het Generic ESX test bed

Berral[56] x x x x SML P Central Hom Generic Simulation [400]

Addis[19] x x x x x x
Utility

+ Heuristic
R Central Het Multi tier IBM test bed

Urgaonkar [29] x x QT R + P Central Hom Multi tier Xen test bed

Tolia [73] x x x x Heuristic R Central Hom Generic Xen test bed

Casalicchio [68] x x x Heuristic N/A Central Hom Generic Workstation

Celaya [30] x x x x Heuristic P Central Hom Parellel Simulation

Addis[53] x x x x x x x
Utility

+ Heuristic
P Hierarch Het Multi tier IBM test bed [7200]

Zhu[67] x x x x
CT + Heuristic

+ TS
P Hierarch Hom Web App ESX/Simulation

Jung[44] x x x x x
Heuristic

+ Utility+TS
P

Central +

Hierarch
Het Multi tier Xen test bed

Almeida[36] x x x x Utility P Hierarch Hom Multi tier Simulation

Nguyen Van[22] x x x x
Utility

+ CSP
R Hierarch Het Generic Simulation

Sedaghat[64] x x
Heuristic+

P2P
R Distrib Het Generic Simulation [100,000]

Wuhib[43] x x x x
Heuristic

+ P2P + TS
P Disrib Hom Generic Simulation [160,000]

75

4.2 SHDF - A Scalable Hierarchical Distributed Frame-
work for Data Centre Management

Abdul R Hummaida, Norman W Paton and Rizos Sakellariou

Publishing state: Published. In Proceedings of 16th International Symposium on
Parallel and Distributed Computing (ISPDC), 2017.
DOI: https://doi.org/10.1109/ISPDC.2017.15

Summary: A fundamental hypothesis in this PhD project is that the benefits of
hierarchical and decentralized architectures can be combined, and their weaknesses
mitigated. This paper presents a novel hybrid hierarchical decentralized management
framework that rapidly provides the information needed for scaling decision making,
to address the scalability challenges in centralized controllers, which have been shown
to have scalability challenges. The centralized controller in [87] would need to search
and evaluate a significant number of configurations, 109, to manage the small infras-
tructures used in the experiments. The proposed MF migrates VMs by starting with
neighbouring nodes, followed by nodes in the same cluster and then nodes in other
clusters. Therefore the escalation process seeks proximity during migration. This is
particularly useful in preserving the performance of multi VM applications and reduc-
ing the migration distance. The proposed MF provides the mechanisms for migration
and additional constraints can be provided by the chosen MA, used in conjunction
with the proposed MF. An example constraint could be to only migrate VMs within
the cluster in a multi VM application deployment. To achieve this, the MA can perform
a cost benefit analysis of migrating outside the cluster versus a delay in performing the
migration.

We evaluate the performance of the approach by simulation and demonstrate that it
is a viable solution for managing large data centres through rapid information dissem-
ination and the ability to make decisions using a global view. In our evaluation, the
SLAs apply equally to all VMs.

To examine the impact of migration instability, a VM being migrated several times
during its lifetime, we evaluated the stability of the proposed MF (Section 4.3). This
shows the hybrid MF performs fewer migrations of the same VM compared to other
architectures. This is achieved through autonomous decision making in each node.
While the Hybrid MF can reduce VM migration instability, it does not have explicit

76

instability detection and mitigation. This can be achieved by extending the decision
making in the MA to include cost benefit analysis and prediction of the future state of
migration targets.

The computational cost of an MF is typically comprised of the execution of metric
collection and execution of the decision making. The metric collection in the proposed
hybrid MF is done autonomously by each node in the infrastructure. It takes O(log
N) rounds to reach all nodes, where N is the number of selected cooperating nodes
in an overlay. Evaluation of the computational cost of decision making shows the
hybrid MF spends milliseconds in central components, compared to 100s seconds in
the hierarchical MF, resulting in an inherently scalable proposal.

Chapter 3 discussed the fault-tolerance of the different architectures, and how de-
centralized MFs have fault tolerance built into their design. Within the proposed ap-
proach, a Lead Node (LN) acts as an ordinary execution node as well as a management
node within the infrastructure. This dual role enables fewer dedicated management
nodes, which reduces the number of nodes in the proposed MF compared to approaches
in the literature.

Using the gossip protocol, nodes regularly exchange their view of the capacity of
all the nodes within their overlay. Each LN consolidates the known capacity within
its cluster and shares this with other LNs it cooperates with. These metrics are shared
in an aggregated form that describes the sizes of VMs that can be additionally provi-
sioned with a given cluster. The metric sharing mechanism assumes the availability of
a time synchronization mechanism, such as the Network Time Protocol, for the use of
timestamps. For the evaluation, the simulated infrastructure is configured into clusters,
with each cluster consisting of 1000 nodes and 20 overlays.

DCSim is used to evaluate the proposed MF and can account for node resource
contention. DCSim tracks the difference between the requirements of each VM and
the assigned CPU resources. VMs with lower allocation than their requirements expe-
rience a delay in their processing, which is representative of the difference in required
and assigned CPU resources.

Key contributions: Contribution 2 (see Section 1.4).

77

SHDF - A Scalable Hierarchical Distributed
Framework for Data Centre Management

Abdul Rahman Hummaida
School of Computer Science

University of Manchester, UK
abdul.hummaida@postgrad.manchester.ac.uk

Norman W Paton
School of Computer Science

University of Manchester, UK
norman.paton@manchester.ac.uk

Rizos Sakellariou
School of Computer Science

University of Manchester, UK
rizos@manchester.ac.uk

Abstract—A promising approach to increase the efficiency of
infrastructure usage is to adapt the assignment of resources to
workloads. This can be used, for example, to consolidate existing
workloads so that the new capability can be used to serve new
requests, or alternatively unused resources may be turned off to
reduce energy consumption. Many architectural solutions have
been presented for data centre management, however these tend
to be centralised and may suffer in their ability to scale and
support data centres with tens of thousands of nodes. Distributed
approaches solve the scalability problem, however these do not
have a global view of resources across the data centre. To
address this, we propose a novel hybrid distributed hierarchical
framework that is effective at providing the information needed
for decision making at scale. We evaluate the performance of our
approach by simulation, and demonstrate that a hybrid approach
is a viable solution for managing large data centres, through rapid
information dissemination and ability to make decisions using a
global view.

I. INTRODUCTION

Infrastructure Providers (IP) typically abstract data centre
resources and present them to customers through a virtu-
alisation layer, with a Virtual Machine (VM) as the most
common form. A key challenge for IPs is to construct resource
utilisation mechanisms that can scale to large data centres,
which can house more than 100,000 nodes [1]. VM resource
management for Infrastructure as a Service (IaaS) entails
controlling the admission of new VMs, onto physical nodes
and periodically adapting resource configuration to achieve
a management objective. Proposals in the literature aim to
minimise Service Level Agreement (SLA) violations, and
some trade this off with another objective, such as reducing
energy consumption or maximising IP revenue [2]. To achieve
these objectives, several approaches are used, which typically
rely on a central management controller for deciding how to
change the configuration of the infrastructure. However, the
architecture of the management controller has a significant
impact on the scalability of a proposal, with centralised
approaches not being able to scale to large data centres
[2], as CPU and memory adaptation are scheduled across
the entire infrastructure. While this gives opportunities for
global optimisation, it presents a significant challenge when
managing thousands of resources. The central controller in [3]
took significant time to execute the scheduling of 15 nodes,
which had 109 control options, just to adapt CPU resource;
memory configuration was not covered. The centralised engine

in [4] was only able to manage 400 nodes with 1000 VMs,
when adapting CPU and VM configurations.

In order to solve the scalability challenge of large data
centres, hierarchical and distributed approaches have emerged
as an alternative and received considerable attention recently
[5], [6], [7], [8], [9], [10].

Hierarchical architectures tackle the scalability challenges
of centralised approaches, by dividing the infrastructure into
several levels and lowering the number of nodes handled by
the management controller, thus reducing the time complex-
ity of solving a global optimisation problem. The challenge
with hierarchical architectures is dividing the infrastructure
into small enough groups to enable efficient local resource
allocation while remaining coordinated enough to come close
to a globally optimal solution. Distributed architectures are de-
centralised and typically do not use a central decision making
component. They enable individual nodes to cooperate directly
[7], [8], [9], [10], and thus allow the approach to scale to
very large data centres. One of the challenges with distributed
architectures is they typically consume a high amount of
bandwidth for the communication between the nodes across
the whole data centre. In addition, due to reduced visibility of
the whole infrastructure, distributed approaches tend to make
locally plausible but globally suboptimal decisions.

We propose a Scalable Hierarchical Distributed Framework
(SHDF), which overcomes the weaknesses of both approaches,
by achieving high scalability and ability to apply efficient
allocation. SHDF consists of hierarchical controllers operating
at different scopes. On the lowest level, every node in the
infrastructure contains a Node Controller (NC), which dynam-
ically adjusts resource configurations to satisfy VM demands
on each node. Each NC operates in a distributed architecture
and cooperates with a Lead Node (LN), which is a higher
level controller for all the NCs within a given cluster. Our
contributions are:

1) An architectural framework for data centre infrastruc-
ture, which can manage a large cloud data centre span-
ning thousands of nodes.

2) A new hybrid architecture, which has the scalability
characteristics of distributed systems and the ability to
construct a global view.

3) An empirical evaluation of the hybrid architecture, in
comparison with hierarchical and distributed approaches.

The rest of this paper is organised as follows. Section 2
describes background and related work. Section 3 describes the
architecture of our proposed scalable framework and Section
4 describes an implementation of the architecture. Section 5
presents an evaluation of our implementation and compares
it to two other approaches: distributed and hierarchical. In
Section 6 we discuss future work and draw conclusions.

II. BACKGROUND & RELATED WORK

1) Hierarchical Controllers: Hierarchical approaches have
been widely studied in cloud resource management. The
approaches typically use a multi level hierarchical approach
running at different time intervals. In Addis et al. [5] the lowest
level controller runs every hour and performs VM placement,
power management and workload profiling. The authors claim
this can scale to 7,200 nodes with up to 60,000 VMs. In
[11], the lowest level controllers manage a small number of
machines and the applications that are hosted on them. At
the next higher level, a controller manages machines owned
by multiple lower level controllers. The authors in [12] used
3 levels, where the highest level controller managed multiple
clusters operating at seconds (L1), minutes (L2) and days (L3)
intervals, however the authors did not explore the scalability of
their approach. The authors in [13] chose to slice the hierarchy
along the operations of the controllers. A Level 1 controller
handles VM placement and load balancing, and runs every 30
minutes. A Level 2 controller handles the resources of a node,
and runs every few minutes. The authors in [14] focus on
VM placement in their approach using a 2 level hierarchical
controllers.

Hierarchical proposals typically utilise a controller running
in a centralised manner within the scope of a cluster of
nodes. As the number of nodes within the cluster increases,
the decision making algorithm faces the same challenges as
traditional centralised approaches, with the execution time re-
sulting in an inability to react to SLA violations. Our proposed
framework tackles this by reducing the operations performed
by the centralised controllers and distributing management
functionality to lower execution nodes, therefore providing a
hybrid hierarchical distributed framework. In our approach,
each node controller autonomously manages the execution
node, including detection of stress states and violation of
SLAs. These node controllers can cooperate with other nodes
and higher level controllers to perform management of the
infrastructure and workloads.

In [15], the authors use a hierarchical approach with VM
migration escalation. The approach performs initial assign-
ment of VMs to clusters (containers) and periodically, lower
controllers decide what to optimise and pass the decision to
parent controllers. The authors consider the time complexity
of the decision making algorithm and place an upper bound of
optimisations to be performed by the hierarchical controllers.

In [16], the authors outline how a collection of hierarchical
autonomic managers can collaborate using messages. While
the authors acknowledged the importance of scalability, they
did not explore the scalability of their approach.

Our approach has similarities to [17], which proposed a
framework for managing a hierarchical cloud management
system. Due to the computational requirements of management
nodes, the authors propose every node is either used as
a management node, or an execution node, never playing
both roles. This contrasts with our approach, execution nodes
can also perform management roles, resulting in an fewer
nodes dedicated to the management of the infrastructure. Our
approach additionally enables the leaf nodes to operate in a
distributed manner. Proposals typically do not build cooper-
ation between controllers, resulting in controllers operating
independently. In contrast, the authors in [12], [18], [19]
proposed controller cooperation. In [12], [19], the lower level
controllers propagated workload satisfaction with assigned
resources to a higher controllers, which is then used in to
possibly further optimise resource assignment. The authors
in [18] proposed cooperating controllers, where lower level
controllers can escalate a management request to a higher
controller, rather than waiting for an action in the next man-
agement cycle. However the authors approach only escalated
from a mid level controller within the hierarchy and did not
escalate from the lowest level controllers, which our approach
does.

2) Distributed Controllers: In [20], [8], the authors use
a heuristic implemented as a peer-to-peer protocol, enabling
nodes to communicate directly without a centralised controller.
Two cooperating nodes determine whether to migrate a VM
based on the defined objectives. While [20] did not take into
account the cost or duration of the conflict before applying the
migration, [8] incorporated migration cost into the decision
making. A periodic node discovery service enables nodes to
find new neighbouring nodes to communicate with. On each
round of the protocol, two cooperating nodes determine to
migrate a VM based on defined objectives. The distributed
approaches are used to redistribute the load across the cluster
as well consolidate VMs. Using simulation, the authors claim
their approaches can manage more than 100,000 nodes. A
challenge with distributed approaches is the lack of a global
view of the infrastructure, which impacts the ability to reach
a globally optimal solution. In contrast, our approach has the
scalability characteristic of distributed systems yet has the
ability to have a global view of the infrastructure through
controllers at each level of the hierarchy.

The authors in [10], proposed a distributed probabilistic
algorithm, using an overlay network and a decentralised load
balancing technique. The authors considered scalability and
impact of node availability churn, although they did not dis-
cuss the impact on energy consumption. The authors proposal
is a distributed algorithm and can be integrated with our
proposed SHDF.

The authors in [21] proposed a distributed approach for
managing the workload of large, enterprise cloud data, focus-
ing on reducing energy consumption and SLA violations. The
authors used a hypercube structured overlay, with similar cost
to our approach, with N nodes reaching status propagation in
O(log N) rounds. The authors in [27], proposed a distributed

scheme where nodes broadcast resource requests to all nodes,
during a migration scenario. In contrast, our approach has
a bigger view of the infrastructure, through the additional
hierarchical controllers, and can consolidate nodes across a
whole cluster.

The authors in [9], proposed a distributed self-organising
approach, where nodes cooperate within the overlay. Migration
decisions are performed after an evaluation of the whole
overlay state. Similar to our approach, nodes collaborate
across the overlay, however the close physical proximity of
cooperating nodes in our approach means gossip traffic and
migration traffic is localised within the cluster. Similar to us,
the authors also concluded that a centralised view is able to
achieve better consolidation results, as it has a global view of
the infrastructure.

To the best of our knowledge, SHDF is the first hybrid
hierarchical distributed framework that enables leaf nodes
to operate in a distributed manner, and combines this with
hierarchical allocation and consolidation of VMs across large
sections of the infrastructure.

III. ARCHITECTURE

A. Framework components

The management of nodes in an IaaS environment can
be abstracted as 2 dimensions, Management Algorithm (MA)
and Management Framework (MF). The MA is responsible
for deciding how workloads are assigned to infrastructure re-
sources, while the MF enables the MA to execute by providing
common functionality, such as hierarchy level management
and aggregation of metrics between nodes. The combined
functionality results in workloads executing on infrastructure
nodes. In the following sections we briefly describe the MA
and detail our proposal, which is in the form of a MF.

B. Management Algorithm (MA)

In our previous work [2], we have shown management algo-
rithms (MAs) are widely covered in the literature, and drive the

C
o

n
tr

o
lle

r
1

-
Le

ve
l 1

Controller 1 – Level 2

C
o

n
tr

o
lle

r
N

 –
 L

ev
el

 N

Lead
Node

Node nNode 1

Cluster 1

Cluster n

Controller N – Level 2

C
o

n
tr

o
lle

r
N

-
Le

ve
l 1

Cluster 1

Data Centre Controller

Lead
Node

Node nNode 1

Lead
Node

Node nNode 1

Cluster n

Lead
Node

Node nNode 1

C
o

n
tr

o
lle

r
1

-
Le

ve
l 1 Lead

Node
Node 1

Cluster 1

Cluster n

Cluster 1

Lead
Node

Node nNode 1

Lead
Node

Node nNode 1

Cluster n

Lead
Node

Node nNode 1

C
o

n
tr

o
lle

r
N

-
Le

ve
l 1

Node n

Fig. 1: Hierarchical Escalation Architecture

decision making process in cloud systems adaptation. Several
analytical techniques are used, including Control Theory,
Heuristics and Machine learning. Cloud systems adaptation
needs to be invoked in order to evaluate the infrastructure
and determine whether resource reconfiguration is required.
The approaches used in the literature fall onto reactive and
proactive engagement. Reactive approaches invoke adaptation
at defined time intervals or when a monitored metric, e.g. CPU
utilisation, reaches a specific threshold. Proactive approaches
predict what demands will be placed on the infrastructure and
invoke adaptation ahead of the predicted resource contention
point. The MA assigns resources in the infrastructure and regu-
larly assesses the satisfaction of such assignments in achieving
a given Service Level Agreement (SLA). The frequency of
this assessment is influenced by the time complexity of the
algorithm; the lower the complexity, the more frequently the
algorithm can be executed. Our proposed architecture enables
the MA to run more frequently, and is described in the next
section.

C. Management Framework (MF)

The MF provides common utilities that enable the MA
to execute, including a mechanism to propagate node state,
and a decision engine architecture that may be centralised,
hierarchical or distributed. The MF is the focus of our work
in this paper.

The architecture of our proposed framework SHDF, as
shown in Figure 1, consists of hierarchical controllers op-
erating at different scopes. On the lowest level, every node
in the infrastructure contains a Node Controller (NC), which
dynamically adjusts resource configurations to satisfy VM
demands on each node. A collection of NCs form a cluster
of nodes. Each NC cooperates with a Lead Node (LN), which
is a higher level controller for all the NCs within a given
cluster. Unique to our proposal, the NCs within each cluster
are divided into logical groups, called overlays, where a NC
cooperates with other NCs within the same overlay. Each NC
exists in only one overlay and in one cluster. This architecture
enables nodes to cooperate in a hybrid hierarchical distributed
manner.

Unique to our approach, the LN operates as a normal
node within the infrastructure in addition to its management
responsibility towards the cluster. A collection of clusters
creates a level, n, which is managed by a controller at level
n+1. At the highest level, the Data Centre Controller (DC)
manages the controllers one level below it.

SHDF attempts to service resource requests at the lowest
local level possible, in order to reduce the overhead of
servicing the request [22] and to reduce the performance
impact of migrating VMs across cluster boundaries [6]. All the
controllers in SHDF manage multiple execution nodes, with
the exception of the Node Controller (NC), which manages a
single node.

The following subsections describe the components of
SHDF and the functionality it provides to the MA.

TABLE I: Exchanged data between overlay nodes

Field Description
NodeID The ID of the node, data belongs to

VMSize[NumberAvailable] number of predefined VM sizes
that can be hosted on this node

TimeStamp Time stamp for captured metrics

1) Overlay Management: Execution nodes operate in a
distributed way within the boundary of a cluster and are
organised in multiple overlays. An overlay is a fundamental
concept to reliable multicast, as it abstracts the details of the
underlying physical network by building a virtual network on
top of it, which can be seen as a graph that represents a
link between nodes. To construct overlays, typically two main
approaches exist [23]: structured and unstructured protocols.
Structured approaches tend to be efficient in terms of number
of links, but are sensitive to node failure, because the overlay
structure takes into account metrics such as latency or band-
width, and upon node failure the structure needs to be rebuilt.
In unstructured approaches, links are established randomly
among the nodes. To ensure overlay stability, multiple links
are established to ensure redundancy, however this can cause
nodes to receive multiple copies of a given message through
its different neighbours.

SHDF is closer to structured approaches [24], where the
overlay is constructed to span a subset of a cluster, and
by definition is layered on a physical structure of nodes,
which solves the proximity challenge in structured approaches,
without needing to associate latency metrics with each of the
overlay links. When a new node is added to the infrastructure,
it gets added to a cluster and assigned an overlay. SHDF
enables the MA to determine where a new node is added.
When a node is added to an overlay, it receives details of
neighbouring nodes from the same overlay, through the data
dissemination mechanism described below.

2) Data dissemination: In centralised and hierarchical ar-
chitectures, a central component receives state updates from

VM-1

Node
Controller

Node 1 Node N

VM-2

VM-N

VM-1

Node
Controller

VM-2

VM-N

VM-1

Node
Controller

VM-2

VM-N

Lead Node

Overlay 1

Cluster

VM-1

Node
Controller

Node 1 Node N

VM-2

VM-N

VM-1

Node
Controller

VM-2

VM-N

Overlay N

Gossip Comms

Fig. 2: Node Controller Overlays

all the nodes under its management, to enable the MA to adapt
the infrastructure. SHDF removes this dependency and enables
the nodes to exchange their state within an overlay. Each node
holds a local cache of the state of other nodes in the overlay,
and to populate this cache, nodes exchange state messages. A
node selects another node at random from the overlay and
exchanges its view of the overlay. We use a pull & push
gossip approach, where node x sends new state updates to
node y, and retrieves new states updates at node y. A new
node state takes O(log N) rounds to reach all nodes, where N
is the number of nodes in the overlay [25]. A gossip round
completes when every node has initiated an exchange exactly
once. The populated local cache allows the MA to perform
VM migration to other nodes within the overlay, and allows
the LN to perform VM consolidation across the cluster.

Similar to [7], a NC regularly exchanges state with other
NCs and holds a cache of free capacity of other cooperat-
ing controllers in the same overlay, shown in Table I. The
gossiping algorithm is shown in Algorithm 1. We enhance
this further and make nodes gossip, when there is a state
change such as inward migration or a node is being shutdown.
Each node will keep the latest metrics seen, and every time
an exchange of state occurs the timestamp is used to decide
if each exchanged entry is later than any existing entries. If
it is, the node’s internal state is updated, otherwise the data
exchanged is discarded. The MA running on each node can
use these metrics to enable nodes to cooperate in resource
allocation requests, which will be described later.

Algorithm 1 stateExchange@Node

1: procedure EXCHANGESTATE(localState)
2: overlay← getOverlayMembers - thisNode
3: randomMember← random(overlay)
4: remoteState← randomMember.gossip(localState)
5: for i in remoteState do
6: remote← remoteState[i].timeStamp
7: local← localState[i].timeStamp
8: if remote > local then
9: localState[i]← remoteState[i]

10: procedure GOSSIP(remoteState)
11: respond to caller← getLocalSate
12: receivedState ← remoteState
13: for i in receivedState do
14: recived← receivedState[i].timeStamp
15: local← localState[i].timeStamp
16: if received > local then
17: localState[i]← receivedState[i]

As in Figure 2, the Lead Node is an ordinary node, it will
also exchange its own state. The LN is a member of all the
overlays in the cluster and will receive state exchanges from
all the nodes within the cluster. To restrict the view of a node
and reduce redundancy of state management, when a node
gossips with the LN, it will only receive state updates from
its overlay and not from other overlays the LN knows about.

SHDF enables the LN to send aggregated metrics for all
the nodes within its cluster, to other cooperating controllers.
The LN participates in an overlay with other LNs, in a similar
way to the NCs, and it can exchange aggregated metric data.
The parent controller to the LN is always included in each
LN overlay, resulting in state exchanges between the LN in
an overlay and the managing controller, in a similar way to
the exchanges between a LN and a NC, as shown on Figure 3.
The aggregated data can used by controllers at higher levels
in the hierarchy, resulting in an aggregated view of the whole
infrastructure to be available at the DC controller level.

3) Controller functionality - VM migration: When a node
cannot satisfy demands of the VMs it hosts, it starts an
escalation process that aims to resolve the request at the lowest
possible level. The MA running on the stressed node and the
LN need to cooperate to resolve the escalated VM migration,
by using our provided framework mechanisms.

Table II shows the available methods to support migration
and escalation of a VM. SHDF uses different methods to
migrate within the overlay and escalate outside it, with a higher
priority for escalation. The NC can send a migration request to
other nodes within the same overlay, by using the accumulated
metrics from other nodes. In turn, the MA running on the LN
can query the cluster records from all the overlays, which has
state data from all nodes in the cluster, to find a suitable node
to house an escalated VM. When there is no free capacity in
a single node to match the VM request, but there are enough
free resources across the whole cluster, the LN can choose to
invoke a consolidation process, where multiple VMs could be
migrated between nodes to facilitate creation of enough space
to house an escalated VM.

If it is not possible to house the VM escalation within the
cluster, the MA running on the LN can use the aggregated
metrics, of free capacity, from other LNs and decide to
forward the escalation to another LN in the same overlay
as the originating LN. If no suitable node is found, the
MA can escalate the request to a higher level controller
(LN parent) with a broader view of the infrastructure. This
is repeated until a node is found or the escalation reaches
the DC Controller, which has a view of the entire data

Fig. 3: Lead Node Overlays

centre, and the MA on the DC can choose to direct the
request to other parts of the hierarchy, by utilising the
aggregated data received by the DC controller. As requests
progress through the escalation process, they are assigned
an increasing priority, which can be used by the MA in
the decision making process. For example the MA may
choose to prioritise finding a host for an escalated VM
compared to a new VM placement. If the aggregated metrics
at the DC show no availability to house the escalated VM,
then the request is rejected and the originating node is notified.

TABLE II: Controller functionality for Migration of VMs

Method Source Destination
Migrate VM Node a Node b
Escalate VM Node a LN
Place Escalated VM LN Node b
Escalate VM LN a LN b

Escalate VM LN a Level n
Controller

Escalate VM Level n
Controller

Level n +1
Controller

Escalate VM Level n
Controller DC

Place Escalate VM DC Level n -1
Controller

Place Escalate VM Level n
Controller

Level n -1
Controller

Place Escalate VM Level n
Controller LN

4) Controller functionality - Consolidation: At periodic
time intervals and changes in utilisation, each of the manage-
ment controllers, and LNs, can invoke a consolidation process
where the MA can examine the state of the infrastructure and
for every node under its management, decide to :

• Migrate some VMs from a node
• Migrate all VMs off a node and switch the node off
• No change

The advantage of SHDF is it allows the nodes to primarily
operate in a distributed manner for time sensitive operations
such as VM migrations. For non time sensitive operations like
VM placement and consolidation, SHDF enables the running
of time complex algorithms across parts of the infrastructure
or even the whole infrastructure. Compared to distributed
approaches, this will enable the MA to have a much more
comprehensive view of the infrastructure during these opera-
tions.

5) Bootstrapping & Hierarchy Management: We defer
development of the some of the functionality of SHDF,
including ability to bootstrap, dynamically adapt the hierarchy,
high availability of the LN and clock synchronisation to
further work in the future.

IV. IMPLEMENTATION OF SHDF

In order to evaluate SHDF, we combined it with a Man-
agement Algorithm (MA) to utilise the capabilities of our
proposed architecture. The following is a description of the
MA components. To focus our evaluation on the capabilities
of the MF and not the features of the MA, we choose a simple
MA from other work in the literature [18], which has been
cited by other researchers, and uses a threshold based approach
to engage adaptation of the infrastructure.

SHDF design enables several levels of hierarchy, with con-
trolling managers at each level. To simplify initial experiments,
we choose the smallest number of levels, and instantiated
SHDF with 3 levels of management with NCs at Level 1,
LNs at Level 2 and a Data Centre controller at Level 3. We
intend to implement and evaluate more levels in the future.

A. VM Migration

As in Algorithm 2, we use the utilisation metrics available to
the NC and send a migration request to candidates in the same
overlay, marking them as tried, and wait for a response. The
NC sorts candidate targets in the following order: Partially
utilised (<upper threshold), under utilised (<low threshold)
and empty (0 VMs), and tries them in this order, to achieve
higher node utilisation and reduce selection of powered off
nodes.

Algorithm 2 Create VM Migration@Node

1: x← chooseVMConsumingMostResource()
2: sort(PartialUtilisation, lowUtilisation, empty)
3: for k in nodeNeighborList do
4: if k canHost x AND notTried k then
5: send migrationReuest to k
6: mark k tried
7: return
8: EscalateToLeadNode()

Once a candidate is marked as tried, we do not use it again
until we see an updated state from it through the gossiping
mechanism.

When the LN receives the escalated request, as in Algorithm
3, it will be able to forward the request to all eligible nodes
within the cluster. As this is an escalated request and it came
from within an overlay within the cluster, the sending overlay
is excluded from the list of eligible target nodes.

Algorithm 3 Process VM Migration@LN

1: req← migrationRequest
2: nodes← clusterNodes - sendingOverlayNodes
3: sort(nodes, PartialUtilisation, lowUtilisation, empty)
4: for k in nodes do
5: if k canHost req AND notTried k then
6: send req to k
7: mark k tried
8: return
9: EsclateToDC

When a node gets an escalated migration request, via the
LN, it processes it in a similar way to requests from within
the overlay. If it can be accommodated then an accept request
is sent to the original sender, otherwise a reject request is sent
to the LN. The LN will keep forwarding the migration request
to nodes within its cluster until it has tried all nodes, and if
it fails to place the migration, it will escalate the request to
the DC controller, one level above it. The DC Controller will
search for a cluster that can host the VM based on aggregated
metrics from all the LNs.

A DC Controller selects the first target cluster that can host
the escalation, and forwards the request to the LN responsible
for that cluster. When the identified LN receives the escalated
migration request it processes it in a similar way to escalation
from within its own cluster, in that it identifies candidate nodes
and forwards them the request. If the receiving LN cannot
host the migration within its cluster it replies with a rejection
to the DC, which in turn will attempt other clusters until it
exhausts all clusters. At this point we have exhausted the entire
infrastructure and failed to find a suitable node to house the
VM migration. The DC will then send a final reject message
to the original migrating node.

B. VM Placement & Conslidation

We implement the VM placement and consolidation
approach in [18], and utilise the SHDF architecture to
disseminate metrics to the LN and DC.

V. EXPERIMENT SETUP AND EVALUATION

We use simulation to facilitate rapid development of ex-
periments of large data centres. We selected DCSim [26]
because of its extensibility and existing implementations for
hierarchical and distributed approaches, allowing us to create
baseline comparisons for our proposed MF. To focus our
evaluation on the features of the architecture and not the
features of the MA, we implemented the MA from [18] with
SHDF. We also utilised the existing proposals from [18] for the
hierarchical and [27] for the distributed baseline comparisons.
Source code for both approaches is readily available and
has been cited by other researchers. The baseline MAs are
similar, and are based on a greedy heuristic, that reacts to
utilisation thresholds. While the MA used in the comparison
does not include several features, such as workload prediction
and migration cost, using the same MA allows us to assess
the capability of the MFs.

We instantiate both SHDF and the hierarchical approach
[18] with 3 levels of controllers, running on the root of the
data centre, the cluster manager and leaf nodes.

A. Simulator Setup

DCSim allows a VM to use more CPU than reserved, up to
an amount that does not impact other VMs. Like [18], we use
a CPU utilisation thresholds of 90% for high, indicating stress
level, and we use 60% for low, indicating low utilisation.

In DCSim, an application is modelled as an interactive
multi-tiered web application. Each application has a specified
client think time, and a workload component. The workload
defines the current number of clients connected to the appli-
cation, which can change at discrete points in the simulation
based on a trace file. The resource requirements are defined
as its resource size, which is the expected amount of: CPU,
memory, bandwidth and storage. DCSim treats bandwidth and
storage as fixed requirements, however, CPU requirements can
be varied across the simulation based on the VM demands.
The DCSim energy model defines how much energy the
node consumes at different CPU utilisation levels, and is
calculated using results from the SPECPower benchmark. The
benchmark provides energy consumption levels of real servers
in 10% CPU utilisation intervals, and DCSim uses these values
and calculates intermediary values using linear interpolation
[26]. We assume that CPU energy consumption is the most
contributing factor to a node’s energy consumption [28] and
we use the default DCSim energy model in our experiments.
DCSim applies a cost to VM migration including the time
taken for migration, as a function of memory consumed by a
VM, and factors the bandwidth required for the VM migration
on the hosting node. Additionally, the boot time of a switched
off node has an elapsed time cost. The time taken to switch
on a node and migration is reflected on the time period the
VM is in a stressed state, and therefore the SLA achieved by
a VM.

For the gossip protocol, the exchange frequency and fan
out values influence propagation speed and reliability. The
fan out value determines the number of times a new state
is exchanged by a node. For example, when a node receives
an update and the fan out value is 2, the node will exchange
this newly received state in the next 2 cycles of the gossip
protocol. We trade bandwidth consumption with propagation
speed, and chose a gossip frequency of 2 minutes and fan out
value of 2. Due to limited space, we omitted our analysis of
these parameters.

1) Workload & SLA: We run the experiments at a load that
requires on average 80% of the CPU resources of the data
centre. Each simulated application contains a workload trace
based on the number of incoming requests to web servers from
publicly available traces. Due to limited space, we limit our
investigation to the google_corest_job_type included
with DCSim and create VMs that demand 4 cores, 4.5GHz
core capacity and 2GB RAM. DCSim is able to track SLA
violations based on the response time of VMs, and we set this
to trigger any time the response time is above 1 second.

2) Data centre: Our experiments use nodes modelled as
ProLiant DL160G5 [29], with 2 quad-core 2.5GHz CPUs and
32GB of memory. The number of nodes used is specified in
each of the experiments, and is typically up to 50,000 nodes.
We assume that the data centre supports live VM migration, as
this technique is currently supported by most major hypervisor
technologies, such VMware [30] or Xen [31].

The various parameters used in our evaluation are outlined
in Table III.

TABLE III: Evaluation setup

Variable Value
Low threshold value
(triggers consolidation) 60% CPU utilisation [18], [27]

High threshold value
(triggers migration) 90% CPU utilisation [18], [27]

Node Monitoring Period 2 minutes [18], [27]
Consolidation Frequency Every 1 hour
Size of Overlay 100 nodes
Gossip Frequency 2 minutes
Fan out value 2
Delay before node is switched
on, from Off State (impacts SLA) 3min [18], [27]

SLA Threshold 1 Second [18], [27]
Simulation Duration 3 Days

B. Evaluation: SHDF settings

The frequency at which the gossip protocol executes in-
fluences the speed of data dissemination. Figure 4 shows
the impact of running the gossip protocol at different time
intervals on 5 clusters of 1000 cooperating nodes, 5000 total.
The more frequently the protocol runs, the higher the traffic
consumption, as shown by figure 4a, which is the trade off
between delivering fresh metrics and traffic consumption. Any
MA combined with SHDF can configure the frequency of this
setting. Encouragingly the scalability of central components
remained consistent (milliseconds variation) as the protocol
executed more frequently, as shown in Figure 4b. This shows
SHDF has a low overhead as MF.

We have also run experiments with different parameters
for size of Overlay and fan out values. Larger overlay sizes
consume larger amount of MF traffic, and the scalability
remained constant. Increasing the fan out value also increased
the amount of consumed management traffic. We have omitted
these results due to limited space.

C. Evaluation: Scalability

Scalability bottlenecks are typically found in centralised
access to resources, with distributed systems improving scal-
ability by parallelising computation and resource access. To
evaluate the scalability of both the hierarchical approach and
SHDF, we measure the time cost of central components on
both approaches. Distributed approaches typically do not have
a central migration component and thus are not relevant in
this comparison. For the hierarchical approach, the central
migration components are: cluster metric aggregation, node
stress detection and VM escalation. For SHDF, the central
migration components are: cluster metric aggregation and VM
escalation. As SHDF is using the same MA as the hierarchical
approach, examining the time in central components will
allow us to compare the features of the MF. Figure 5a shows
SHDF spends milliseconds in central components, compared
to 100s of seconds by the hierarchical MF, resulting in an
inherently scalable architecture. The hierarchical approach
on the other hand, had a near linear increase in central
components, suggesting a high fixed cost as the number of
nodes increase, which is is due to the central processing of
metrics and actioning migration on behalf of every stressed

(a) SHDF Traffic consumption (b) Impact on scalability of central components

Fig. 4: SHDF State Exchange - 5000 nodes

(a) SHDF time cost (b) Hierarchical FM time cost

Fig. 5: SHDF versus Hierarchical Scalability

node. For the largest experiment of 50,000 nodes, SHDF was
configured with a NC in each node and 50 LNs, each managing
a cluster of 1000 nodes. Both NCs and LNs are execution
nodes and only the DC Controller is modelled on a dedicated
management node. In contrast to the framework in [17], where
nodes are either execution or management nodes.

The increase in time cost between 30,000 nodes and 40,000
in 5a is due to how the MA [18], used by SHDF, finds
available nodes during an escalation. This can be optimised
by periodically sorting and caching the available nodes at the
LN, which will reduce the search time.

The MA [18] implemented by both the hierarchical ap-
proach and SHDF uses a greedy heuristic to find a migration
target, and many alternatives in the literature are more com-
plex. The authors in [32] incorporated the cost of migration
and [11] incorporated power cost of decision engine in the
migration. Additionally, proactive approaches [33], [11] start
the VM migration before the conflict occurs, and in [11] the
authors proposed performing a cost and benefit analysis before
applying migration, and only invoked a migration if the benefit
outweighed the cost of the migration. All of these methods
to improve the quality of the decision making increase the
sophistication of the MA, and combining these techniques
with our proposed MF, should result in a highly scalable

architecture, and will allow the MA to be deployed in a
scalable framework, even when used to manage a large data
centre.

D. Evaluation: Management Framework Traffic

In all of the evaluated approaches, each MF propigates node
status to allow the allocation of resources. In the Distributed
approach, node status is sent when one of the nodes is stressed
and is looking for a migration target and when nodes are
cooperating to perform consolidation. This status propagation
occurs across the whole data centre, and as shown in Figure
6d, the distributed approach consumes the most management
traffic out of all three approaches. In the hierarchical approach,
leaf nodes send their status to one higher level controller and
do not share their status with other nodes, which results in
the least management traffic, at the cost of total reliance on
a central component for decision making. In SHDF, nodes
exchange their status within the same overlay, to enable rapid
cooperation and decision making between the nodes. A node
gossips its state at regular intervals and when a VM is migrated
into or off a node. Thus during high load scenarios, as in this
experiment, SHDF will consume more management traffic in
order to propagate status state within the overlay.

(a) SLA Achievement (b) Number of Migrations

(c) Energy Consumption (d) Management Framework Traffic

Fig. 6: Hierarchical versus SHDF versus Distributed

E. Evaluation: SLA & Energy Usage

Critical to the effectiveness of a MF is to enable the MA
to achieve SLAs and balance this with energy consumption of
switched on nodes. Using end to end metrics like SLA and
energy consumption, allows us to evaluate the influence of the
MF, when combined with the same MA.

Figure 6a shows the total number of created VMs, the ideal
case at 100% achievement, and the achieved SLA level for the
three approaches. Using a similar MA to the hierarchical and
distributed approach, SHDF meets more SLA targets than both
the hierarchical and distributed approaches, as nodes perform
their own stress detection and have a local view of the overlay,
which enables each node to make rapid decisions about
migrating VMs to an available target node. In the distributed
approach, each node also does its own stress detection, but
nodes do not have a local cache of the state of other nodes in
the data centre. When stress is detected, a node broadcasts a
request to migrate a VM away and waits for and then processes
responses, resulting in VMs waiting for longer before they
are migrated away from stressed nodes, with most VMs not
achieving a 99% SLA. Even at 95% SLA achievement level,
the distributed approach remains impacted by the lack of
rapid decision making, compared to SHDF and hierarchical
approaches, and many VMs do not achieve their SLA.

The number of migrations carried out by all of the ap-
proaches, Figure 6b, highly correlates to the VM SLA achieve-
ment, Figure 6a. Both the hierarchical approach and SHDF

migrated VMs several times in order to reduce SLA violations,
with approximately 6 migrations per placed VM. The reason
for this, is the MA used by both the hierarchical approach and
SHDF is a simple heuristic that does not predict workload
patterns and engages adaptation reactively, and can cause
system oscillation through large number of migrations. In
the distributed implementation, once a migration request is
broadcasted, the requesting node has to wait for and process
the responses. This results in an elapsed time, which reduces
the number of executed migrations and the achieved SLA. The
hierarchical approach consolidates VMs at the rack level. It
will search for under utilised nodes, move their VMs to other
nodes in the rack, and switch the under utilised nodes off.
SHDF performs a similar role across the cluster level, and as
a cluster typically contains several racks, SHDF has a higher
number of target nodes. We see the impact of this in Figure 6c,
where both approaches consume a similar amount of energy,
with SHDF being able to keep nodes switched off for longer.
The distributed approach is not able to achieve VM demands
quickly enough and thus incurred SLA violations, and in turn
it did not consume as much energy as the other approaches.

VI. FUTURE WORK AND CONCLUSION

We presented SHDF for managing cloud data centres, in
which the nodes of the data centre are physically organised
in the typical cluster formation and leaf nodes are then
able to cooperate within logical boundaries of an overlay.

Additionally, the framework allows this pattern to be repeated
at higher levels in the hierarchy. SHDF enables a MA to solve
the allocation of resources and to configure the attributes of
SHDF. Evaluation of SHDF shows its ability to retain the
properties of a chosen MA, while increasing scalability by
reducing time spent in centralised components. Further areas
of research include adding adaptability to the framework to
allow it to adjust and fine tune its parameters dynamically. For
example, in a high load scenario, it might be more optimal to
increase the propagation of the gossip exchange to allow nodes
to have a fresher view of nodes in the overlay. In contrast, in
low load scenarios, nodes can conserve bandwidth by lowering
the frequency of gossip exchanges.

Further steps are necessary to investigate the impact of
node failure on our gossip protocol, and its ability to continue
propagating state changes within the overlay.

REFERENCES

[1] R. Miller. Data center knowledge. [Online]. Avail-
able: http://www.datacenterknowledge.com/archives/2009/05/14/whos-
got-the-most-web-servers/

[2] A. R. Hummaida, N. W. Paton, and R. Sakellariou, “Adaptation in cloud
resource configuration: a survey,” Journal of Cloud Computing, vol. 5,
no. 1, pp. 1–16, 2016.

[3] D. Kusic, J. O. Kephart, J. E. Hanson, N. Kandasamy, and G. Jiang,
“Power and performance management of virtualized computing en-
vironments via lookahead control,” in Autonomic Computing ICAC.
Washington, DC, USA: IEEE, Jun 2008, pp. 3–23.

[4] B. Addis, D. Ardagna, B. Panicucci, and L. Zhang, “Autonomic man-
agement of cloud service centers with availability guarantees,” in 2010
IEEE 3rd International Conference on Cloud Computing. Washington,
DC, USA: IEEE, July 2010, pp. 220–227.

[5] B. Addis, D. Ardagna, B. Panicucci, M. S. Squillante, and L. Zhang, “A
hierarchical approach for the resource management of very large cloud
platforms,” IEEE Transactions on Dependable and Secure Computing,
vol. 10, pp. 253–272, 2013.

[6] A. Aldhalaan and D. A. Menascé, “Autonomic allocation of commu-
nicating virtual machines in hierarchical cloud data centers,” in Cloud
and Autonomic Computing (ICCAC), 2014 International Conference on,
Sept 2014, pp. 161–171.

[7] F. Wuhib, R. Yanggratoke, and R. Stadler, “Allocating compute and
network resources under management objectives in large-scale clouds,”
Journal of Network and Systems Management, vol. 23, no. 1, pp. 111–
136, 2015.

[8] M. Sedaghat, F. Hernández-Rodriguez, E. Elmroth, and S. Girdzijauskas,
“Divide the task, multiply the outcome: Cooperative vm consolidation,”
in IEEE International Conference on Cloud Computing Technology and
Science. Washington, DC, USA: IEEE, Aug 2014, pp. 300–305.

[9] D. Loreti and A. Ciampolini, “A decentralized approach for virtual
infrastructure management in cloud,” International Journal on Advances
in Intelligent Systems, vol. 7, no. 3/4, pp. 507–518, 2014.

[10] N. M. Calcavecchia, B. A. Caprarescu, E. Di Nitto, D. J. Dubois,
and D. Petcu, “Depas: a decentralized probabilistic algorithm for auto-
scaling,” Computing, vol. 94, no. 8, pp. 701–730, 2012.

[11] G. Jung, M. A. Hiltunen, K. R. Joshi, R. D. Schlichting, and C. Pu,
“Mistral: Dynamically managing power, performance, and adaptation
cost in cloud infrastructures,” in International Conference on Distributed
Computing Systems. Washington, DC, USA: IEEE, 2010, pp. 62–73.

[12] X. Zhu, D. Young, B. J. Watson, Z. Wang, J. Rolia, S. Singhal, B. Mc-
Kee, C. Hyser, D. Gmach, R. Gardner, T. Christian, and L. Cherkasova,
“1000 islands: Integrated capacity and workload management for the
next generation data center,” in International Conference on Autonomic
Computing. Washington, DC, USA: IEEE, Jun 2008, pp. 172–181.

[13] J. Almeida, V. Almeida, D. Ardagna, Í. Cunha, C. Francalanci, and
M. Trubian, “Joint admission control and resource allocation in virtual-
ized servers,” Journal of Parallel and Distributed Computing, vol. 70,
pp. 344–362, Apr 2010.

[14] H. Moens, J. Famaey, S. Latre, B. Dhoedt, and F. D. Turck, “Design
and evaluation of a hierarchical application placement algorithm in
large scale clouds,” in IFIP/IEEE International Symposium on Integrated
Network Management, 2011, pp. 137–144.

[15] H. Goudarzi and M. Pedram, “Hierarchical sla-driven resource manage-
ment for peak power-aware and energy-efficient operation of a cloud
datacenter,” IEEE Transactions on Cloud Computing, vol. 4, no. 2, pp.
222 – 236, June 2016.

[16] O. Mola and M. Bauer, “Towards cloud management by autonomic man-
ager collaboration,” International Journal of Communications, Network
and System Sciences, vol. 4, no. 12A, pp. 790–802, 2011.

[17] H. Moens and F. D. Turck, “A scalable approach for structuring large-
scale hierarchical cloud management systems,” in 9th International
Conference on Network and Service Management (CNSM), 2013, pp.
1–8.

[18] G. Keller, M. Tighe, H. Lutfiyya, and M. Bauer, “A hierarchical,
topology-aware approach to dynamic data centre management,” in
Network Operations and Management Symposium (NOMS), 2014, pp. 1
–7.

[19] H. N. Van, F. D. Tran, and J.-M. Menaud, “Sla-aware virtual resource
management for cloud infrastructures,” in IEEE International Confer-
ence on Computer and Information Technology, vol. 02. Washington,
DC, USA: IEEE, 2009, pp. 357–362.

[20] F. Wuhib, R. Stadler, and M. Spreitzer, “Dynamic resource allocation
with management objectives: implementation for an openstack cloud,”
IEEE Transactions on Network and Service Management, vol. 9, no. 2,
pp. 213–225, 2012.

[21] M. Pantazoglou, G. Tzortzakis, and A. Delis, “Decentralized and energy-
efficient workload management in enterprise clouds,” IEEE Transactions
on Cloud Computing, vol. 4, no. 2, pp. 196–209, April 2016.

[22] M. Maurer, I. Brandic, and R. Sakellariou, “Adaptive resource configura-
tion for cloud infrastructure management,” Future Generation Computer
Systems, vol. 29, no. 2, pp. 472–487, Feb 2013.

[23] M. Matos, A. Sousa, J. Pereira, R. Oliveira, E. Deliot, and P. Murray,
CLON: Overlay Networks and Gossip Protocols for Cloud Environ-
ments. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 549–
566.

[24] A. J. Ganesh, A.-M. Kermarrec, and L. Massoulié, “Hiscamp: Self-
organizing hierarchical membership protocol,” in Proceedings of the
10th Workshop on ACM SIGOPS European Workshop, ser. EW 10. New
York, NY, USA: ACM, 2002, pp. 133–139.

[25] K. Birman, “The promise, and limitations, of gossip protocols,” SIGOPS
Oper. Syst. Rev., vol. 41, no. 5, pp. 8–13, Oct. 2007.

[26] M. Tighe, G. Keller, M. Bauer, and H. Lutfiyya, “Dcsim: A data
centre simulation tool for evaluating dynamic virtualized resource
management,” in Network and service management (cnsm), 2012 8th
international conference and 2012 workshop on systems virtualiztion
management (svm), 2012, pp. 385–392.

[27] M. Tighe, G. Keller, M. Bauer, and Lutfiyya, “A distributed approach
to dynamic vm management,” in Proceedings of the 9th International
Conference on Network and Service Management, 2013, p. 166 to 170.

[28] A. Beloglazov, J. Abawajyb, and R. Buyya, “Energy-aware resource
allocation heuristics for efficient management of data centers for cloud
computing,” Future Generation Computer Systems, vol. 28, pp. 755–768,
May 2012.

[29] Hpe proliant. [Online]. Available: https://www.hpe.com/uk/en/product-
catalog/servers/proliant-servers.html

[30] Vmware. [Online]. Available: http://www.vmware.com/
[31] Citrix. Xen. [Online]. Available: http://www.xenserver.org
[32] M. Sedaghat, F. Hernández-Rodriguez, and E. Elmroth, “Autonomic

resource allocation for cloud data centers: A peer to peer approach,”
in IEEE International Conference on Cloud and Autonomic Computing.
Washington, DC, USA: IEEE, Sep 2014, pp. 131–140.

[33] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, “Cloudscale: Elastic resource
scaling for multi-tenant cloud systems,” in Proceedings of the 2Nd ACM
Symposium on Cloud Computing, ser. SOCC ’11. New York, NY, USA:
ACM, 2011, pp. 5:1–5:14.

4.3 A Hierarchical Decentralized Architecture to en-
able Adaptive Scalable Virtual Machine Migration

Abdul R Hummaida, Norman W Paton and Rizos Sakellariou

Publishing state: submitted to Concurrency and Computation: Practice and Ex-
perience (CCPE), 2021.

Summary: To evaluate further the proposed hybrid hierarchical decentralized man-
agement framework (MF), we assess and compare the performance of multiple man-
agement algorithms (MAs) from the literature. We also compare the MAs’ perfor-
mance with hierarchical, decentralized and centralized MFs. When running on the
hybrid MF, all MAs retain their SLA performance properties, and some MAs exhibit
higher SLA performance due to a reduced search space and autonomous properties
of the Hybrid MF. This demonstrates the feasibility to separate the MF and MA, the
flexibility of the hybrid MF, and the ability to integrate it with other MAs to investigate
cloud resource management.

Each experiment is run to simulate 24 hours of elapsed time and each simulated
application contains a workload trace from the public traces included in DCSim. The
simulation is designed to instantiate a certain number of VMs per hour, where each
VM will run one of the public traces in a round-robin approach. For example, when
1000 VMs are created per hour and 5 traces are used, 200 VMs will use each of the
traces per hour. Each trace sets the size of incoming traffic to a VM and typically
changes every 5 minutes. As the round-robin approach is used in the experiments for
each of the MA and MF evaluations, we assume this is a valid method to instantiate
the VMs.

The hybrid architecture includes a virtual layout of nodes, which does not affect
the physical layout of the infrastructure. The construction of virtual overlays is envis-
aged as a process through an administrator portal, where the size of overlays would
be specified. This can be used in the initial instantiation of the infrastructure or as an
adjustment of an existing setup. In the latter case, each node will be supplied with a
new list of nodes to cooperate with and the rest of the processes will remain the same.
In terms of choosing a size of the overlays, our experiments show that the benefits of
the hybrid MF can be achieved from overlays as small as 25 nodes, with our default
experiments using 50 nodes in an overlay. The ability to configure different sizing

88

enables the cloud operator to match the overlay configuration to mimic their physical
infrastructure. This is a simple configuration that does not have a significant impact on
the operation of the proposed approach.

To reduce the variables in the evaluation of the different approaches, we use a first-
fit heuristic to perform the initial VM placement in all of our experiments.

Key contributions: Contribution 3 (see Section 1.4).

89

Received: Added at production Revised: Added at production Accepted: Added at production
DOI: xxx/xxxx

ARTICLE TYPE

A Hierarchical Decentralized Architecture to enable Adaptive
Scalable Virtual Machine Migration
Abdul R Hummaida* | Norman W Paton | Rizos Sakellariou

1University of Manchester, Department of
Computer Science, Kilburn Building,
Oxford Rd, Manchester M13 9PL, UK
Correspondence
*Corresponding author: Abdul R Hummaida
Email:
abdul.hummaida@postgrad.manchester.ac.uk

Summary
Cloud infrastructure is an established mechanism for end users to access flexible
resources. Infrastructure providers seek to maximise accepted requests, meet Service
Level Agreements, and reduce operational costs by dynamically allocating Virtual
Machines to physical nodes. Many solutions have been presented to manage cloud
infrastructure, however, these tend to be centralized and suffer in their ability tomain-
tain Quality of Service (QOS) and support data centres with thousands of nodes.
Decentralized approaches, with no central management, can manage large data cen-
tres. However, these tend to reduce the ability to an optimal resource allocation
across the data centre. To address this, we propose a hybrid hierarchical decentral-
ized architecture that achieves lower SLA violations and lowers network traffic. We
used simulation to evaluate and demonstrate our proposal in practice with a variety
of existing VM placement policies.
KEYWORDS:
Datacentre Scalability, Datacentre QOS, VM Migration, Resource Management, Hierarchical architec-
ture, Decentralized architecture

1 INTRODUCTION

Cloud computing environments enable end users to access to computing resources through a simplified a service model, instead
of purchasing, configuring andmaintaining these resources. Infrastructure Providers (IPs) typically abstract data centre resources
and present them to customers through a virtualisation layer, with a Virtual Machine (VM) as a common form, with each VM
being isolated from other VMs. End users of cloud resources typically request these through web APIs, which map the user’s
requests to virtual resources that reside on physical resources in the datacenter1.
VM Placement involves efficient utilisation of available resources for applications to meet performance goals such as SLA.

To place VMs, a scheduling process needs information on the resource requirements of the VMs being allocated, such as CPU
and number of cores, amount of memory and network bandwidth. Once a resource is provisioned, IPs track the varying demands
on each resource, and this varies over time as end users consume and release these resources.
To meet workload demands, IPs may reconfigure the assignment of physical resources to VMs, by increasing or reducing

resource allocation to a workload, through Elasticity2. Resource reconfiguration is complex and may cause service interruption,
hardware wear and tear and system instability3. VMmigration is a common reconfiguration case and has been applied at scale4.
Proposals in the literature aim to minimise Service Level Agreement (SLA) violations, and some trade this off with another
objective, such as reducing energy consumption ormaximising IP revenue and typically focus on the CPU as the primary resource
to manage5. Idle nodes consume about 70% of their peak power6 and approach focusing on minimising energy consumption

2 ABDUL R HUMMAIDA ET AL

attempt to achieve high CPU utilisation. There are also technologies, such as containerisation, which support the fast deployment
of cloud applications. A container housing an application is allocated to a VM, and a VM is allocated to a node7,8? ,9,10. While
container resource management overlaps with our work, we focus on the management and allocation of VMs to nodes.
Centralized, hierarchical and decentralized architectures have their merits. Centralized architectures have a global view, hier-

archical have increased scalability compared to centralized, and decentralized architectures have no central controller and can
scale to manage a large number of nodes. We hypothesise that the strengths of these architectures can be combined, and their
weaknesses reduced. We propose a Scalable Hierarchical Decentralized Framework (SHDF), which overcomes the weaknesses
of hierarchical, decentralized and centralized approaches, by achieving improved QoS metrics. SHDF consists of hierarchical
controllers operating at different scopes. On the lowest level, every node in the infrastructure contains a Node Controller (NC),
which dynamically adjusts resource configurations to satisfy VM demands on each node. Each NC operates in a decentralized
architecture and cooperates with other NCs and a Lead Node (LN), which is a higher level controller for all the NCs within a
given cluster.
In this paper we extend a preliminary version of this paper11, by implementing and evaluating QOS metrics on multi-

ple policies from the literature. Our goal is to demonstrate improved QOS metrics compared to centralized, hierarchical and
decentralized architectures.
The scalability of a system is defined as the ability to meet a larger workload requirement by adding a proportional amount of

resources, and maintain its performance12. By achieving improved QOS performance metrics, our proposal should scale better
compared to the examined architectures; the extent to which this is the case is explored through empirical evaluation.
We used several of the metrics in the literature13,14 to evaluate our approach. The objective is chiefly to achieve:
1. Fewer SLA violations compared to centralized, hierarchical and decentralized architectures.
2. Lower network traffic utilisation to manage resources, compared to centralized architectures.
3. Improved scalability, as the number of nodes in the data centre increases, compared to centralized, hierarchical and

decentralized architectures.
The rest of this paper is organised as follows. Section 2 describes related work. Section 3 describes the architecture of our

proposed scalable framework. Section 4 presents multiple management algorithms and an evaluation of our implementation and
compares it to centralized, hierarchical and decentralized architectures. In Section 5 we conclude and discuss future work.

2 RELATEDWORK

Infrastructure providers typically build the infrastructure and offer access to virtual resources and managed services15,16. VMs
reside on physical nodes of heterogeneous capabilities where the performance characteristics of compute, storage and network
vary. Adaptation can be applied to reconfigure the data centre to optimise a business objective. Centralized architectures use
an engine with a global view of the entire managed infrastructure, and can adapt resources across the entire infrastructure.
Hierarchical architectures typically divide the infrastructure into multiple clusters, with a decision engine in each cluster17.
Decentralized architectures distribute the management of the infrastructure without a centralized controller. Both hierarchical
and decentralized architectures are a form of distributed management architectures.
As the aim of our work is to investigate the architecture of the decision making process, we categorise related work based

on the management architecture used. In particular, we focus on hierarchical and decentralized architectures as these make the
constituent parts of our proposal.

2.1 Hierarchical Controllers
Hierarchical approaches, a type of distributed decision making, have been widely studied in cloud resource management. The
approaches distribute the decision making process and typically use a multi level hierarchical approach running at different
time intervals. In17 the lowest level controller runs every hour and performs VM placement, power management and workload
profiling and was evaluated to 7,200 nodes. In18, the lowest level controllers manage a small number of machines and the
applications that are hosted on them. At the next higher level, a controller manages machines owned by multiple lower level
controllers. In19 3 levels are used, where the highest level controller managedmultiple clusters operating at seconds (L1), minutes

ABDUL R HUMMAIDA ET AL 3

(L2) and days (L3) intervals, however, the scalability of the approach was not explored. In20 the hierarchy is sliced along the
operations of the controllers. A Level 1 controller handles VM placement and load balancing and runs every 30 minutes. A
Level 2 controller handles the resources of a node and runs every few minutes. In21,22 VM placement is performed using 2 level
hierarchical controllers, and in22 a local controller guarantees stability and performance of an application. The global controller
models a set of operating points from the local level to address load balancing and achieve a given objective.
Hierarchical proposals typically utilise a controller running in a centralized manner within the scope of a cluster of nodes. As

the number of nodes within the cluster increases, the decision making algorithm faces the same challenges as traditional central-
ized approaches, with the execution time resulting in an inability to react to SLA violations. Our proposed framework tackles this
by reducing the operations performed by the centralized controllers and moving management functionality to lower execution
nodes, therefore providing a hybrid hierarchical decentralized framework. In our approach, each node controller autonomously
manages the execution node, including detection of stress states and violation of SLAs. These node controllers can cooperate
with other nodes and higher level controllers to perform management of the infrastructure and workloads.
In23 a hierarchical approach with VM migration escalation is used. The approach performs the initial assignment of VMs to

clusters (containers) and periodically, lower controllers decide what to optimise and pass the decision to parent controllers. The
approach considers the time complexity of the decision making algorithm and places an upper bound on optimisations to be
performed by the hierarchical controllers.
Our approach has similarities to24, which proposed a framework for managing a hierarchical cloud management system. Due

to the computational requirements of management nodes, the approach proposes every node is either used as a management node
or an execution node, never playing both roles. This contrasts with our approach, in which execution nodes can also perform
management roles, resulting in fewer nodes dedicated to themanagement of the infrastructure. Our approach additionally enables
the leaf nodes to operate in a decentralized manner. Proposals typically do not build cooperation between controllers, resulting
in controllers operating independently. In contrast,19,25,26,27 proposed controller cooperation. In19,26, the lower level controllers
propagated workload satisfaction with assigned resources to a higher controller, which is then used to possibly further optimise
resource assignment. In25, the cooperating controllers, where lower level controllers can escalate a request to a higher controller,
rather than waiting for action in the next management cycle. However, escalation only occurred from a mid level controller
within the hierarchy and did not escalate from the lowest level controllers, which our approach does. Scalability was typically
not evaluated in these approaches.
Mesos28 uses a two-level scheduling mechanism, with a master process managing slave daemons running on cluster nodes.

User frameworks that run tasks execute on the slave nodes. The master process makes resource offers to User frameworks, which
they can accept or reject. Mesos was evaluated to manage 50,000 nodes. However, user frameworks need to be modified to be
Mesos aware.

2.2 Decentralized Controllers
In29,30, a heuristic as a peer-to-peer protocol, enables nodes to communicate directly without a centralized controller. Two
cooperating nodes determine whether to migrate a VM based on the defined objectives. While29 did not take into account the
cost or duration of the conflict before applying the migration,30 incorporated migration cost into the decision making. A periodic
node discovery service enables nodes to find new neighbouring nodes to communicate with. On each round of the protocol, two
cooperating nodes determine to migrate a VM based on defined objectives. Using simulation, the approach claims to manage
more than 100,000 nodes. A challenge with decentralized approaches is the lack of a global view of the infrastructure, which
impacts the ability to reach a globally optimal solution. In contrast, our approach has the scalability characteristic of decentralized
systems and a global view of the infrastructure through controllers at each level of the hierarchy.
A distributed probabilistic algorithm was used in31 and utilised an overlay network and a decentralized load balancing tech-

nique. A decentralized approach is proposed in32 for managing the workload of large, enterprise cloud data, focusing on reducing
energy consumption and SLA violations. The approach uses a hypercube structured overlay, with similar cost to our approach,
with N nodes reaching status propagation in O(log N) rounds.
A decentralized approach is proposed in33, where nodes broadcast resource requests to all nodes during migration. In contrast,

our approach has a bigger view of the infrastructure, through the additional hierarchical controllers, and can consolidate nodes
across a whole cluster.
A decentralized self-organising approach is proposed in34, where nodes cooperate within the overlay. Migration decisions are

performed after an evaluation of the whole overlay state. Similar to our approach, nodes collaborate across the overlay, however,

4 ABDUL R HUMMAIDA ET AL

the close physical proximity of cooperating nodes in our approach means gossip traffic and migration traffic is localised within
the cluster. Similar to us, the authors also concluded that a centralized view is able to achieve better consolidation results, as it
has a global view of the infrastructure.
A decentralized reinforcement learning-based controller proposed in35,36. Each autonomous node is responsible for managing

the performance of its own hosted applications, and collaborates with other nodes. Each node has two monitoring components
for keeping track of the applications and the system resources respectively, and a learning-based controller. However, scalability
of managing a large infrastructure was not evaluated.
To the best of our knowledge, SHDF is the first hybrid hierarchical decentralized framework that enables leaf nodes to operate

in a decentralized manner, combines this with hierarchical escalation of migration and consolidation of VMs across large
sections of the infrastructure. This utilises the benefits of scale in decentralized systems and global view of hierarchical systems.

3 HYBRID ARCHITECTURE

The management of infrastructure resources and applying Infrastructure Providers (IPs) objectives is a complex challenge. We
classify the management process into 2 dimensions,Management Algorithm (MA) andManagement Framework (MF). The MA
is responsible for deciding how workloads are assigned to infrastructure resources, while the MF enables the MA to execute by
providing common functionality, such as hierarchy level management and aggregation of metrics between nodes. The combined
functionality results in workloads executing on infrastructure nodes. In the following sections we briefly describe the MA and
detail our proposal, which is in the form of a MF.

3.1 Management Algorithm (MA)
In our previous work5, we have shownmanagement algorithms (MAs) are widely covered in the literature, and drive the decision
making process in cloud systems adaptation. Several analytical techniques are used, including Control Theory, Heuristics and
Machine Learning. Cloud systems adaptation needs to be invoked in order to evaluate the infrastructure and determine whether
resource reconfiguration is required. The approaches used in the literature fall into reactive and proactive engagement. Reactive
approaches invoke adaptation at defined time intervals or when a monitored metric, e.g. CPU utilisation, reaches a specific
threshold. Proactive approaches predict what demands will be placed on the infrastructure and invoke adaptation ahead of the
predicted resource contention point. The MA assigns resources in the infrastructure and regularly assesses the satisfaction of
such assignments in achieving a given Service Level Agreement (SLA). The frequency of this assessment is influenced by the
time complexity of the algorithm; the lower the complexity, the more frequently the algorithm can be executed. Our proposed
architecture enables the MA to run more frequently, which opens the opportunity to apply adaptation of the infrastructure more
frequently, and could lead to a more optimal assignment of resources.

3.2 Management Framework (MF)
The Management Framework (MF) provides common utilities that enable the MA to execute, including a mechanism to prop-
agate node state, and a decision engine architecture that may be centralized, hierarchical or decentralized. The MF is the focus
of our work in this paper.
The architecture of our proposed framework SHDF, as shown in Figure 1, consists of hybrid hierarchical decentralized con-

trollers operating at different scopes. On the lowest level, every node in the infrastructure contains a Node Controller (NC),
which dynamically adjusts resource configurations to satisfy VM demands on each node. A collection of NCs form a cluster of
nodes. Each NC cooperates with a Lead Node (LN), which is a higher level controller for all the NCs within a given cluster.
Unique to our proposal, the NCs within each cluster are divided into logical groups, called overlays, where a NC cooperates
with other NCs within the same overlay. Each NC exists in only one overlay and in one cluster. The size and method for con-
structing an overlay is configurable. This hybrid hierarchical decentralized approach enables nodes to cooperate, and thus utilise
the benefit of decentralized architectures. Additionally, the hierarchical element of our proposal enables cluster wide view for
consolidation of VMs.
Unique to our approach, the LNoperates as a normal nodewithin the infrastructure in addition to itsmanagement responsibility

towards the cluster. At the highest level, the Data Centre Controller (DC) manages the controllers one level below it.

ABDUL R HUMMAIDA ET AL 5

FIGURE 1 SHDF Escalation Architecture

SHDF attempts to service resource requests at the lowest local level possible, in order to reduce the overhead of servicing the
request37 and to reduce the performance impact of migrating VMs across cluster boundaries38.
The following subsections describe the components of SHDF and the functionality it provides to the MA.

3.2.1 Overlay Management
Execution nodes operate in a decentralized way within the boundary of a cluster and are organised in multiple overlays. An
overlay is a fundamental concept to reliable multicast, as it abstracts the details of the underlying physical network by building
a virtual network on top of it, which can be seen as a graph that represents the links between nodes. To construct overlays,
typically two main approaches exist39: structured and unstructured protocols. Structured approaches tend to be efficient in terms
of number of links. However, they are sensitive to node failure, because the overlay structure takes into account metrics such as
latency or bandwidth, and upon node failure the structure needs to be rebuilt. In unstructured approaches, links are established
randomly among the nodes. To ensure overlay stability, multiple links are established. However, this can cause nodes to receive
multiple copies of a given message through its different neighbours.
SHDF is closer to structured approaches40, where the overlay is constructed to span a subset of a cluster, and by definition

is layered on a physical structure of nodes. This solves the proximity challenge in structured approaches, without needing to
associate latency metrics with each of the overlay links. When a new node is added to the infrastructure, it gets added to a cluster
and assigned an overlay. SHDF enables the MA to determine where a new node is added. When a node is added to an overlay,
it receives details of neighbouring nodes from the same overlay, through the data dissemination mechanism described below.

3.2.2 Data dissemination
In centralized and hierarchical architectures, a central component receives state updates from all the nodes under its management
to enable the MA to adapt the infrastructure. SHDF removes this dependency and enables the nodes to exchange their state
within an overlay. Each node holds a local cache of the state of other nodes in the overlay, and to populate this cache, nodes
exchange state messages. A node selects another node at random from the overlay and exchanges its view of the overlay. We
used a pull & push gossip approach, where node x sends new state updates to node y, and retrieves new states updates at node
y. A new node state takes O(log N) rounds to reach all nodes, where N is the number of nodes in the overlay41. A gossip round
completes when every node has initiated an exchange exactly once. The local cache within each node allows the MA to perform
VM migration to other nodes within the overlay, and allows the LN to perform VM consolidation across the cluster.
Similar to42, a NC regularly exchanges state with other NCs and holds a cache of free capacity of other cooperating controllers

in the same overlay, shown in Table 1. The gossiping algorithm is shown in Algorithm 1. We enhance this further and make
nodes gossip, when there is a state change such as inward migration or a node is being shut down. Each node will keep the latest
metrics seen, and every time an exchange of state occurs the timestamp is used to decide if each exchanged entry is later than

6 ABDUL R HUMMAIDA ET AL

FIGURE 2 A gossip cycle, within a cluster

TABLE 1 Exchanged data between overlay nodes
Field Description
NodeID The ID of the node, data belongs to
VMSize[NumberAvailable] number of predefined VM sizes

that can be hosted on this node
TimeStamp Time stamp for captured metrics

any existing entries. If it is, the node’s internal state is updated, otherwise the data exchanged is discarded. The MA running on
each node can use these metrics to enable nodes to cooperate in resource allocation requests, which will be described later.

FIGURE 3 Lead Node Overlays

As in Figure 2, the Lead Node is an ordinary node, and will exchange its own state. The LN is a member of all the overlays
in the cluster and will receive state exchanges from all the nodes within the cluster. To restrict the view of a node and reduce

ABDUL R HUMMAIDA ET AL 7

Algorithm 1 stateExchange@Node
1: procedure EXCHANGESTATE(localState)
2: overlay ← getOverlayMembers - thisNode
3: randomMember ← random(overlay)
4: remoteState ← randomMember.gossip(localState)
5: for i in remoteState do
6: remote ← remoteState[i].timeStamp
7: local ← localState[i].timeStamp
8: if remote > local then
9: localState[i] ← remoteState[i]
10: end if
11: end for
12: end procedure
13: procedure GOSSIP(remoteState)
14: respond to caller ← getLocalSate
15: receivedState ← remoteState
16: for i in receivedState do
17: recived ← receivedState[i].timeStamp
18: local ← localState[i].timeStamp
19: if received > local then
20: localState[i] ← receivedState[i]
21: end if
22: end for
23: end procedure

redundancy of state management, when a node gossips with the LN, it will only receive state updates from its overlay and not
from other overlays the LN knows about.
The LN sends aggregated metrics for all the nodes within its cluster, to other cooperating controllers. The LN participates in

an overlay with other LNs, in a similar way to NCs, and it can exchange aggregated metric data. The parent controller to the
LN is always included in each LN overlay, resulting in state exchanges between the LN in an overlay and the DC controller,
in a similar way to the exchanges between a LN and a NC, as shown in Figure 3, resulting in an aggregated view of the whole
infrastructure at the DC controller level. This exchanged state data is then used during adaptation actions, which we describe in
detail in the VM Migration section.
For the gossip protocol, the exchange frequency and fan out values influence propagation speed and reliability. The fan out

value determines the number of times a new state is exchanged by a node. For example, when a node receives an update and
the fan out value is 2, the node will exchange this newly received state in the next 2 cycles of the gossip protocol. Through
experimentation, we chose a fanout value of 2 as a tradeoff of bandwidth consumption with propagation speed.

3.2.3 Controller functionality - VM migration
When a node cannot satisfy demands of the VMs it hosts, it starts an escalation process that aims to resolve the request at the
lowest possible level. The MA running on the stressed node and the LN cooperate to resolve the escalated VM migration, by
using our provided framework mechanisms.
Table 2 shows the available methods to support migration and escalation of a VM. SHDF uses different methods to migrate

within the overlay and escalate outside it. As shown in Figure 4 and Algorithm 2, when a NC needs to perform a migration it
attempts to service this through an increasing escalation set of steps. The process starts within the NC’s overlay by sending a
request to other nodes within the same overlay (step 1), by using the accumulated metrics of other nodes. If a target node is
available and accepts the migration request, then the migration process completes for this cycle. If the selected target node does
not accept, other nodes within the overlay are attempted until no further options are available within the overlay. If a target is
not available within the overlay, the stressed NC escalates the vm migration request to the LN (step 2), and the MA running on

8 ABDUL R HUMMAIDA ET AL

the LN can query the cluster records from all the overlays, which has state data from all nodes in the cluster, to find a suitable
node to house an escalated VM. If the LN locates a target within the cluster, the migration request is forwarded (Step 3). If this
does not succeed, then other nodes within the cluster are attempted, in similar way to the overlay step. If the LN can not find a
suitable target for the migration within the cluster, it will use its knowledge of other available clusters, through participation in
the LNs overlays, to forward the migration request to another LN (Step 4). This target LN will repeat the process performed by
the forwarding LN, and attempt nodes within this cluster (step 5). If a suitable target is found the process competes. If the LN
in step 4 can not find a target, the request is rejected back to the forwarding LN, which will attempt other LNs in its overlay. If a
suitable target is found through another LN , the process completes. If this fails to find a suitable target, the request is escalated
to the DC Controllers (step 6). The DC has a view of the entire infrastructure and can forward the request to other LNs (step
7), which the original LN does not cooperate with. This recipient LN will repeat the process carried out by other LN in the
escalation chain (step 8), and if a target is found the process completes. If a target is not found, the recent LN will reject the
request back to the DC controller (step 9). The DC controller will attempt other LNs, which have not been already tired, until a
target is found or all LNs have been attempted. If a target is not found then the infrastructure is highly stressed and the request
is rejected back to the original escalating NC. In each of these escalation phases, the MA uses data from the data dissemination
to decide on the list of targets to forward a request to.
As requests progress through the escalation process, they are assigned an increasing priority, which can be used by the MA

in the decision making process. For example the MA may choose to prioritise finding a host for an escalated VM compared to
a new VM placement

FIGURE 4 VM migration & escalation process

3.2.4 Controller functionality - Consolidation
At configurable time intervals, 1 hour by default, each of the management controllers, and LNs, can invoke a consolidation
process where the MA can examine the state of the infrastructure and for every node under its management, decide to :
• Migrate some VMs from a node
• Migrate all VMs off a node and switch the node off
• No change
The advantage of SHDF is it allows the nodes to primarily operate in a decentralized manner for time sensitive operations

such as VM migrations, which could improve SLA violation metrics. For non time sensitive operations like VM placement and

ABDUL R HUMMAIDA ET AL 9

Algorithm 2 migrateVM@Node
1: procedureMIGRATEVM(localState)
2: isStressed ← isNodeStressed(localState)
3: if isStressed then
4: targets ← validOverlayTargets
5: vmToMigrate ← MA.orderVMs
6: targetNode ← MA.findT argetNode(targets, vm)
7: if targetNode == valid then
8: invalidateTarget
9: migrate(vm, targetNode)

10: else
11: esclateToLead(vm)
12: end if
13: end if
14: end procedure
15: procedure ESCLATETOLEAD(vm)
16: targetNodes ← validClusterMembers - sendingOverlay
17: targetNode ← MA.findT argetNode(targetNodes, vm)
18: if targetNode ≠ null then
19: invalidateTarget
20: migrate(vm, targetNode)
21: else
22: potentialClusters ← ClustersInOverlay - sendingCluster
23: targetCluster ← findT argetCluster(potentialClusters, vm)
24: if targetCluster ≠ null then
25: targetCluster.esclateToLead(vm)
26: else
27: esclateToDataCentreController (vm)
28: end if
29: end if
30: end procedure
31: procedure ESCLATETODATACENTRECONTROLLER(vm)
32: potentialClusters ← allClusters - sendingCluster
33: targetCluster ← getAvailableCluster(potentialClusters)
34: targetCluster.esclateToLead(vm)
35: end procedure

consolidation, SHDF enables the running of time complex algorithms across parts of the infrastructure or even the whole infras-
tructure. Compared to typical decentralized approaches29,30, this will enable the MA to have a larger view of the infrastructure
during these operations, leading to opportunities for more optimal VM migration.

4 EXPERIMENT SETUP AND EVALUATION

In our experiments, we evaluate the Quality of Service (QOS) metrics of our proposed hybrid architecture approach versus a
centralized, hierarchical and decentralized architectures, with varying workloads and VM configurations. There is an abundance
of MAs in the literature that have been implemented using a centralized architecture, and we discuss these in more detail in
subsequent sections.We use the sameMAs in our comparison of the different approaches, and in doing sowe focus the evaluation
on the architecture.

10 ABDUL R HUMMAIDA ET AL

TABLE 2 Controller functionality for Migration of VMs
Method Source Destination
Migrate VM Node Node
Escalate VM Node LN
Place Escalated VM LN Node
Escalate VM LN LN
Escalate VM LN DC

Controller
Place Escalate VM DC

controller LN

We used simulation to facilitate rapid development of experiments of large data centres. We selected DCSim43 because of
its extensibility and existing implementation of a centralized architecture, allowing us to create baseline comparison for our
proposed MF. We additionally implemented 8 MAs, detailed later in this section.
We instantiate SHDF with 3 levels of controllers, running on the root of the data centre (DC Controller), the cluster manager

(LN) and leaf nodes (NC).

4.1 Simulator Setup
DCSim allows a VM to use more CPU than reserved, up to an amount that does not impact other VMs. Like25, we uses a CPU
utilisation thresholds of 90% for high, indicating stress level, and we used 60% for low, indicating low utilisation.
In DCSim, an application is modelled as an interactive multi-tiered web application. Each application has a specified client

think time, a workload component and a request service time, which is the amount of time required to process each incoming
request. The workload defines the current number of clients connected to the application, which can change at discrete points in
the simulation based on a trace file. The resource requirements are defined as its resource size, which is the expected amount of
CPU, memory, bandwidth and storage. DCSim treats bandwidth and storage as fixed requirements, however, CPU requirements
can be varied across the simulation based on the VM demands. DCSim applies a cost to VM migration including the time taken
for migration, as a function of memory consumed by a VM, and factors in the bandwidth required for the VM migration on the
hosting node. Additionally, the boot time of a switched off node has an elapsed time cost. The time taken to switch on a node
for migration is reflected on the time period the VM is in a stressed state, and therefore the SLA achieved by a VM. Due to the
complexities of building accurate power models, we focus our investigation on scalability metrics.

4.2 Workload, SLA Violations & Energy model
We run the experiments at a load that requires more than 70% of the CPU resources of active nodes. Each experiment is run
to simulate 24 hours elapsed time and each simulated application contains a workload trace based on the number of incoming
requests to web servers from publicly available traces, we used the following traces included with DCSim Google 1, Google 3,
EPA and Clarknet. Figure 5 shows the normalized shape of the workload requests fro each of these traces. We create VMs with
different cores and RAM configurations, as shown in Table 3. DCSim is able to track total energy consumption within the data
centre, by mapping CPU utilisation of a node to a defined energy consumption amount, and tracking this accumulatively for all
nodes.

4.3 Compared MAs
To evaluate our proposed architecture, we build on the work in Mann44 and implemented similar MAs within DCSim.
Common dimensions that determine how these MAs operate are 1) Overload detection mechanism, which is how the MA

decides a node is at utilisation point that could impact a metric such as SLA; 2) VM Selection, which is the mechanism used to
select the VM to be migrated; 3) Node Selection, which is the approach used to select the target node for MV migration. Table

ABDUL R HUMMAIDA ET AL 11

FIGURE 5 Traces used

TABLE 3 Experiment configuration
Config Config options Base config
VM Core
(Mhz) 1000,1300,2500 Round Robin [1000,1300,2500]
Node Capacity
(Mhz) 3000 3000
Number of Cores 1,2 Round Robin [1,2]
VM Memory
(MBs) 1024,2048 Round Robin [1024,2048]

Workload
clarknet, EPA,
Google 1,
Google 3

Round Robin [clarknet,
EPA,
Google 1,
Google 3

Number of Nodes 1000, 2000,3000,
4000, 5000 1000

Node stress
check frequency 2 minutes 2 minutes
Application
service time 0.2 seconds 0.2 seconds

4, shows these dimensions for each of the compared. The following section briefly describes the management algorithms used
in our experiments.
P145 uses a set of rules for selecting the next node for a VMmigration. P246 used a best-fit-decreasing heuristic. P347 selects a

target node based on historic workload data, and attempts to achieve the smallest risk of demand dissatisfaction. Shi48 evaluated
multiple algorithms, and similar to44, we used the AbsoluteCapacity (P4) and PercentageUtil (P5). P649 created a Modified
Worst Fit Decreasing VM Placement. P750 uses a Modified Best Fit Decreasing approach to migrate a VM. P843 selects VMs
that reduce the node stress as candidates for migration, and order candidate target nodes based on partially utilised, under utilised
and empty nodes.

12 ABDUL R HUMMAIDA ET AL

TABLE 4 Dimensions of policies
MA
Identifier

Management
Algorithm

Dimension
Stress
Detection

VM
selection

Node
Selection

P1 Lago45

Local
Regression

Not specified
Highest energy efficiency
(plus further rules for
tie-breaking)

P2 Guazzone46 Highest CPU load Highest free CPU capacity
(plus further rules)

P3 Demand Risk47 VMs of the most loaded PM Lowest demand satisifaction

P4 Shi Absloute48
Highest CPU load on the
PM with lowest absolute
capacity

Highest absolute
capacity

P5 Shi Percentage48
Highest CPU load on the
PM with lowest
utilisation ratio

Highest utilisation ratio

P6 Chowdhury49 Highest CPU load Highest increase in
energy consumption

P7 Beloglazov50 Highest CPU load Smallest increase in
energy consumption

P8 Tighe43 VMs that bring
load to below stress

From partially utilised,
under utilised, empty nodes

4.4 Compared MFs
We evaluate our proposed hybrid hierarchical decentralized architecture against a centralized, hierarchical and a decentralized
architectures.
The centralized approach43 has a single central decision making component for VM migration. This controller receives state

information from all of the nodes periodically, and on regular intervals invokes an adaption process that checks for stressed
nodes and attempts to migrate VMs from stressed nodes to other available nodes within the datacentre.
The hierarchical25 approach distributes the decision making to multiple controllers. A central data centre controller, a cluster

controller and rack controller. The rack controller receives state information from all of the nodes it houses and on regular
intervals invokes an adaption process, which checks for stressed nodes and attempts to migrate VMs from stressed nodes. The
migration process has some similarity to our escalation process where the rack controller will first to find a target nodes within the
rack. If this fail, the rack controller will forward the migration request to the cluster controller. If this fails, the Cluster controller
will forward the migration request to the Data Centre controller, which can forward it to other clusters in the datacentre.
The approach in33 decentralizes the decision making to individual nodes, which cooperate with other nodes to perform VM

migration. Each node does not hold state information about other nodes in the infrastructure, and when a node becomes stressed,
it broadcasts a migration request to the whole infrastructure and waits for replies. At the end of the wait period, the nodes
processes the offers it received and chooses to accept one or power on a new node.

4.5 Modelling the impact of a centralized decision making
DCSim43 applies a migration cost once a VM is selected for migration, by adding additional time to complete the migration
based on the amount of memory used by the VM. However, DCSim does not account for the time it takes to execute the decision
making process, or the impact of such time. The length of the decision making process impacts stressed nodes by increasing
the amount of time the node stays in a stressed state. In a centralized architecture, all nodes are used as input into the decision
making process. Therefore, the execution of decision making could get progressively higher, as the number of managed nodes
increases.
To capture the cost of the decision making, we extend DCSim to measure the amount of time during decision making, and

add this time to the VM migration duration. As the decision making execution time varies based on the MA and the hardware
it is running on, we add a configurable scaling factor that can be applied to the measured execution time.

ABDUL R HUMMAIDA ET AL 13

4.6 Data centre
Our experiments use nodes modelled as ProLiant DL380 G5 Quad Core51, with 2 dual-core 3GHz CPUs and 16GB of memory.
The number of nodes used is specified in each of the experiments, with aminimum of 1,000 nodes.We assume that the data centre
supports live VM migration, as this technique is currently supported by most major hypervisor technologies, such VMware52
or Xen53.
To minimise the number of variables in our experiments, we chose to keep a homogeneous infrastructure. The various

parameters used in our evaluation are outlined in Table 3.

4.7 Evaluation
Our goal is to demonstrate improved QOS metrics compared to centralized, hierarchical and decentralized architectures, and we
evaluate these by examining the following metrics: SLA violations, Energy consumption and Total Migration Traffic.
Simulated applications are modelled as an interactive web servers, running inside a VM. SLA Violations are the instances

when the allocated CPU is less than then requested CPU. Total Migration traffic is the amount of additional data that passes
through the network due to VM migration.
We evaluate all architectures under varying scenarios to understand the impact on our chosen metrics. Initially, we evaluate

a mixed workload scenario to represent the varying workloads deployed on data centres. To understand the impact of specific
workloads, we evaluate these individually. We additionally examine scalability and how the approaches cope with dynamic
arrival rate of new workload.

4.7.1 No Adaptation
In this experiment, we used a combinedworkload of all traces in a Round-robin approach, where each created VMuses a different
workload trace. We used the centralized architecture with 1000 homogenous nodes and no adaptation is invoked. When a node
becomes stressed, it remains stressed for the reminder of the experiment, and Table 5 shows the results.

TABLE 5 No Adaptation metrics
Number of SLA
Violations

Energy Consmpution
(KWh)

27053 1745.51

4.7.2 Mixed workload Assessment
In this experiment, we used a combined workload of all traces in a Round-robin approach, where each created VM uses a
different workload trace, in a deterministic order. The mixed workload simulates different workloads that could be experienced
in a datacentre. Workload arrival rate is the frequency that new application placement requests arrive at the datacentre. For this
experiment we use an arrival rate of 90 new applications per hour, with each application running for 10 hours before shutting
down. The experiment simulates 24 hours of elapsed time.We use 1000 nodes and the base configuration in Table 3.We captured
metrics for SLA violation, energy consumption and the Total migration traffic.
The SLA violation results using the 8 MAs are shown on Figure 6, and to aid readability we display MAs (P1 to P4) on Figure
6a and MAs P5 to P8 on Figure 6b .
The hybrid architecture achieved lower SLA violation using all MAs, compared to other architectures, with to 29%, 26% and

321% against the decentralized, hierarchical and centralized approaches respectively for the P3MA. Examining the performance
of the MAs, P3 and P7 performed best overall across the different approaches. A contributing factor to the lower numbers of
SLA violations in the hybrid architecture, is each target node autonomously accepts incoming VM migration requests based
on the current state of the node. In contrast, the centralized and hierarchical architectures use the last seen state collected at an
earlier point in time. This could result in target nodes accepting VMs when in a stressed state. When this occurs, it will trigger an
additional subsequent migration, which increases the length of time the VM is not receiving the required CPU demand, leading

14 ABDUL R HUMMAIDA ET AL

(a) (b)

FIGURE 6 SLA violation instances when demand > allocation, a) P1 to P4 b) SLA Violations P5 to P8

(a) Energy consumption P1 to P4 (b) Energy consumption P5 to P8

FIGURE 7 Energy consumption a) P1 to P4 b) P5 to P8

to higher SLA violations. As the centralized architecture uses a single decision making point, it takes longer to make decisions,
and it is unsurprising it has the highest number of SLA violations compared to all the other approaches. The decentralized
approach relies on broadcast cooperation for VM migration, and thus has a slower decision making process compared to the
hybrid architecture, which keeps a state of cooperating nodes within an overlay.
Compared to theNo adaptation experiment, all architectures reduced SLA violations. Additionally, adaption conserved energy

even though it can switch on nodes to perform migration, as the consolidation process can switch nodes off and conserve
energy. Adaptation achieved an improvement in energy consumption of up to 128.8%, 16.7%, 28.1%, and 141.9% for the hybrid,
decentralized, hierarchical and centralized approaches.
The decentralized approach does not keep local state, and needs to wait on broadcast replies to make a migration and con-

solidation decision. Additionally the decentralized approach keeps nodes switched on, Figure 7, before they are consolidated
and switched off, and thus consumes more energy compared to all other approaches. An advantage of this additional energy
consumption is the migrations will not wait for nodes to boot up, compared to the other approaches. This aids the decentralized
approach in achieving its SLA violation performance. The Hybrid architecture had a strong performance with a mean differ-
ence of 47% and 16.1% lower energy consumption compared to the decentralized and hierarchical approaches respectively. The
Hybrid approach had a similar energy consumption profile to the centralized approach.
Examining the migration traffic, shown in Figure 8, the decentralized approach performs lower number of migrations as it

has to wait to receive offers for advertised migrations and thus consumes less migration traffic. In contrast, the hierarchical
approach performs more migrations to archive its SLA violation performance, and carries out more migrations than Hybrid and
decentralized approaches.

ABDUL R HUMMAIDA ET AL 15

(a) (b)

FIGURE 8Migration Traffic (GB) a) P1 to P4 b) P5 to P8

(a) (b)

(c) (d)

FIGURE 9Migration buckets for MA P3 a) Hybrid b) decentralized c) Hierarchical d) Centralized

The hybrid architecture by design uses an escalating level of migrations, starting within the overlay, then within cluster and
then to other clusters. The hybrid architecture averaged 97.8% ofmigrationswithin the same overlay and the hierarchical averaged
85.5%migrations within the same rack. Therefore, the hybrid approach reduces the migration distance, which reduces the impact
of VM migration54. In contrast, the centralized and decentralized approaches had no awareness of target node proximity and
could choose a target node further away from the source node.
To examine the impact of migration instability? 40,55, a VM being migrated several times during its lifetime, we choose a high

performing MA, P3. Figure 9 shows VM migration buckets, representing VMs being migrated exactly once, twice, etc, and the
migration count in each bucket.

16 ABDUL R HUMMAIDA ET AL

The P3 MA under the hybrid architecture had 23 occurrences of a VM being migrated exactly 4 times, compared to 272 times
in the centralized architecture and 133 in the hierarchical. The decentralized performed less migrations due to the dependency on
broadcasting mechanism. The majority of VMs are migrated once in all architectures, however the centralized and hierarchical
architectures experience higher VM migration instability, with more VMs being migrated twice or more (cumulative sum of
bucket 2 and above), and in the centralized and hierarchical architectures the worst affected VMwasmigrated 15 times, compared
to 7 times in the hybrid architecture.
Another factor influencing higher SLAs in the centralized architecture is the execution time of the decision making process.

When a node becomes stressed in the hybrid architecture, the node searches for a target migration node in a smaller search space,
starting within the overlay, compared to the global search space in the centralized architecture, and is able to compute a target
quicker. As the number of nodes increases, the difference in search space becomes more pronounced. The longer it takes to find
a target node, the longer a VM is in a stressed state and thus incurs SLA violations. The hybrid architecture will typically search
a fixed number of nodes in the overlay and achieve lower SLA violations.
In summary, the hybrid architecture was able to achieve improved metrics compared to the other approaches, with lower SLA

violations, comparable or lower energy consumption and lower total migration traffic.

4.7.3 Workload impact
To investigate the impact of workload further, we use the individual workloads from the previous experiment and evaluate them
individually. For this experiment we use an arrival rate of 90 new applications per hour, with each application running for 10
hours before shutting down. The experiment simulated 24 hours of elapsed time. We use the base configuration in Table 3.
The results for the Google 1 workload are shown in Figure 10, and show the effect on SLA violations and energy consumption.

We chose the best performing MAs from the previous experiment, P3 and P7. This workload has an average of 0.74 normalized
load and thus high stress. The hybrid approach outperformed other approaches by 118%, 28.5% and 428.7% for the decentralized,
hierarchical and centralized respectively (P3 MA). The hybrid approach performs even better on this workload, compared to the
mixed workload, indicating that more stressful workloads benefit form the speed of the decision making process in the hybrid
approach.

(a) (b)

FIGURE 10 Google 1 workload evaluation a) SLA violations b) Energy consumption

Examining the energy consumption, the hybrid approach consumes 6% and 1% more energy compared to the hierarchical and
centralized approaches for the P3 MA, shown in figure 10b. This is due to the faster decision making process in the hybrid and
is offset by the significantly better SLA violation performance, Figure 10a.
The results for the Google 3 workload are shown in Figure 11, and show the effect on SLA violations and energy consumption.

This workload has an average of .83 normalized load and is the highest workload stress we have evaluated. The hybrid approach
outperformed other approaches by 434%, 92.% and 796% for the decentralized, hierarchical and centralized respectively (P3
MA). The hybrid approach performs even higher on this workload, compared to the mixed workload, indicating that more
stressful workloads benefit form the speed of the decision making process in the hybrid approach.

ABDUL R HUMMAIDA ET AL 17

(a) (b)

FIGURE 11 Google 3 workload evaluation a) SLA violations b) Energy consumption

The Clarknet workload has an average of 0.31 normalized workload, and is lower average stress compared to the Google 1
and Google 3 workloads. The results for SLA violations and Energy consumption are shown in Figure 12. The hybrid approach
achieves lower SLA violations compared to the hierarchical and centralized approaches, but not against the decentralized
approach, which has nodes switched on by default to satisfy the workload demands. This results in the decentralized consuming
72%, 67% and 79% more energy compared to the hybrid, centralized and hierarchical approaches respectively, for the P7 MA.
However for the P3MA, the decentralized approach was able to achieve the lowest SLA violations and least energy consumption
for this workload.

(a) (b)

FIGURE 12 Carknet workload: (a) SLA violations b) Energy consumption

The EPA workload has an average of 0.24 normalized workload, and is lower average stress compared to the Google 1 and
Google 3 workloads. The results for SLA violations and Energy consumption are shown in Figure 13. Similar to the Clarknet
workload, the hybrid approach achieves lower SLA violations compared to the hierarchical and centralized approaches, but not
against the decentralized approach, which has nodes switched on by default to satisfy the workload demands. In contrast the
decentralized P3 MA has consumed 209%, 219% and 331% more energy compared to the hybrid, centralized and hierarchical
approaches respectively. A similar effect occurred on the decentralized P7 MA, which achieved the lowest SLA violations
out of all the approaches, but used 163%, 200% and 189% more energy compared to the hybrid, hierarchical and centralized
respectively.
Examining the results of the individual workloads, we conclude that on stressful workloads (Google 1/Google 3) hierarchical

based approaches (hybrid/hierarchical) are able to provide rapid decision making, which leads to improved SLA violation per-
formance compared to the decentralized and centralized approaches. In contrast, on low stress workloads (EPA/Clarknet) the

18 ABDUL R HUMMAIDA ET AL

(a) (b)

FIGURE 13 EPA workload: (a) SLA violations b) Energy consumption

decentralized approach with more nodes switched on is able to achieve lower SLA violation, trading this with significant energy
consumption. The hybrid approach is able to achieve a balanced SLA violation performance and energy consumption tradeoff.

4.7.4 Dynamic arrival

(a) (b)

FIGURE 14 Arrival rate patterns

Up to this point we evaluated the approaches using a steady arrival rate for new workload. To understand the impact of rapid
and sharp arrival rate, we examine two scenarios, Figure 14. In the first scenario (a), there is a small and steady flow of new VM
creation requests, followed by a single sharp increase in number of VM creation requests that persists for several hours, followed
by a return to the previous small steady number of VM creation requests. The second scenario (b), is similar to the first scenario
but with 2 sharp increases in the arrival rate of new VM creations. Each application runs for 10 hours before shutting down. We
use the P3 MA and google 3 trace. The experiment simulates 24 hours of elapsed time, and we use the base configuration in
Table 3.
The high arrival rate of VMs on the infrastructure, as each VM runs the Google 3 workload, increases the VMs that begin

to experience a stress state where they do not deliver the requested CPU demand, and thus enter SLA violation. The results are
shown in Figure 15, and show the distributed approaches (decentralized, hybrid and hierarchical) outperform the centralized
approach. The hybrid approach has a rapid decision making process and was able to achieve the lowest SLA violations compared
to all approaches. The hierarchical approach and decentralized approach had comparable performance. The disadvantage of
the broadcasting mechanism was countered by nodes being switched on in the decentralized. On the two spike scenario, the
decentralized lagged in the first spike, but was able to switch additional nodes to outperform the hierarchical approach on the
second spike. It achieved this at the cost of energy consumption, utilising 42%, 55% and 72% more energy compared to the
hybrid, hierarchical and centralized respectively.

ABDUL R HUMMAIDA ET AL 19

(a) (b)

FIGURE 15 High spike in arrival rate: a) 1 spike b) 2 spikes

4.7.5 Scalability
To evaluate how the approaches scale, we use the most stressful workload, Google 3, and maintain the stress ratio for each node,
by increasing the load and the number of nodes in the datacentre. Similar to other experiments, we simulate 24 hours, and we
use the P3 MA; the results are shown in Table 6.

TABLE 6 SLA violations with increasing number of nodes
Number
of Nodes

Hybrid Decentralized Hierarchical Centralized
SLA Energy SLA Energy SLA Energy SLA Energy

1000 1054 1376.1 5638 1362.1 2129 1322.2 9447 1379.0
2000 2085 2724.7 6871 4100.8 4707 2643.8 16975 2521.8
3000 2948 4099.0 10179 5410.1 7605 3956.6 25741 3917.6
4000 4144 5427.3 12384 8302.1 10636 5313.7 37261 5570.6
5000 6089 6624.4 12829 10989.5 14163 6656.2 51666 6958.8

The hybrid approach maintains its SLA performance as more nodes and VMs are added to the data centre, with lower SLA
violations than all other approaches. The hierarchical approach initially outperforms the decentralized in SLA violations, but
the latter catches up at 5000 nodes. The decentralized trades its SLA violation performance for energy consumption, using
65.1% more energy compared to the hierarchical approach (5000 nodes). As expected, the distributed approaches outperform
the centralized approach.

5 CONCLUSIONS

In this paper, we have presented a scalable architecture for managing cloud resources, that combines the benefits of both the
hierarchical and decentralized approaches in a hybrid manner. Our escalation approach attempts to service resource requests at
the lowest local level possible, in order to reduce the overhead of servicing the request. We evaluated and demonstrated that
our proposed architecture achieves significantly improved QOS metrics compared to centralized, hierarchical and decentralized
architectures, particularly in high stress workloads
In the hybrid architecture, nodes are autonomous and decide when to accept migration requests, and are typically less stressed

compared to nodes in the evaluated architectures. This results in lower VMmigration instability, and enables more opportunities
for VM consolidations. We have shown these factors lead to lower SLA violations and less migration traffic, when combined

20 ABDUL R HUMMAIDA ET AL

with a variety of MAs from the literature, and the hybrid architecture retains the benefits of the hierarchical and decentralized
approaches.
In the future, we plan to continue investigating resource allocation decision making, by implementing and incorporating a

MA that can take further advantage of the specific feature features of the hybrid architecture.

References

1. Hameed A, Khoshkbarforoushha A, Ranjan R, et al. A survey and taxonomy on energy efficient resource allocation
techniques for cloud computing systems. Computing 2016; 98(7): 751–774. doi: 10.1007/s00607-014-0407-8

2. Herbst NR, Kounev S, Reussner R. Elasticity in Cloud Computing: What It Is, and What It Is Not. In: 10th International
Conference on Autonomic Computing. ; 2013: 23-27.

3. Jiao L, Tulino AM, Llorca J, Jin Y, Sala A. SmoothedOnline Resource Allocation inMulti-Tier Distributed CloudNetworks.
IEEE/ACM Transactions on Networking 2017; 25(4): 2556-2570. doi: 10.1109/TNET.2017.2707142

4. Ruprecht A, Jones D, Shiraev D, et al. VM Live Migration At Scale. SIGPLAN Not. 2018; 53(3): 45–56. doi:
10.1145/3296975.3186415

5. Hummaida AR, Paton NW, Sakellariou R. Adaptation in cloud resource configuration: a survey. Journal of Cloud
Computing 2016; 5(1): 1–16.

6. ChowdhuryMR,MahmudMR, RahmanRM. Implementation and performance analysis of various VMplacement strategies
in CloudSim. Journal of Cloud Computing 2015; 4(1): 20. doi: 10.1186/s13677-015-0045-5

7. Zhang F, Tang X, Li X, Khan SU, Li Z. Quantifying cloud elasticity with container-based autoscaling. Future Generation
Computer Systems 2019; 98: 672 - 681. doi: https://doi.org/10.1016/j.future.2018.09.009

8. Tan B, Ma H, Mei Y. Novel Genetic Algorithm with Dual Chromosome Representation for Resource Allocation in
Container-Based Clouds. In: IEEE 12th International Conference on Cloud Computing (CLOUD). ; 2019: 452-456

9. HuY, Zhou H, Laat dC, Zhao Z. Concurrent container scheduling on heterogeneous clusters with multi-resource constraints.
Future Generation Computer Systems 2020; 102: 562 - 573. doi: https://doi.org/10.1016/j.future.2019.08.025

10. Zhang Y. Virtualization and Cloud Computingch. 2: 13-36; John Wiley & Sons, Ltd . 2018
11. Hummaida AR, Paton NW, Sakellariou R. SHDF - A Scalable Hierarchical Distributed Framework for Data Centre

Management. In: 16th International Symposium on Parallel and Distributed Computing (ISPDC). ; 2017: 102-111
12. Islam S, Lee K, Fekete A, Liu A. How aConsumer CanMeasure Elasticity for Cloud Platforms. In: ICPE ’12. Proceedings of

the 3rd ACM/SPEC International Conference on Performance Engineering. Association for Computing Machinery; 2012;
New York, NY, USA: 85–96

13. Lehrig S, Eikerling H, Becker S. Scalability, Elasticity, and Efficiency in Cloud Computing: A Systematic Literature Review
of Definitions and Metrics. In: QoSA ’15. Proceedings of the 11th International ACM SIGSOFT Conference on Quality of
Software Architectures. Association for Computing Machinery; 2015; New York, NY, USA: 83–92

14. Ghahramani MH, Zhou M, Hon CT. Toward cloud computing QoS architecture: analysis of cloud systems and cloud
services. IEEE/CAA Journal of Automatica Sinica 2017; 4(1): 6-18.

15. Joshi N, Shah S. AComprehensive Survey of Services Provided by Prevalent Cloud Computing Environments. In: Satapathy
SC, Bhateja V, Das S., eds. Smart Intelligent Computing and ApplicationsSpringer Singapore; 2019; Singapore: 413–424.

16. Megahed A, NazeemA, Yin P, Tata S, Nezhad HRM, Nakamura T. Optimizing cloud solutioning design. Future Generation
Computer Systems 2019; 91: 86 - 95. doi: doi.org/10.1016/j.future.2018.08.005

ABDUL R HUMMAIDA ET AL 21

17. Addis B, Ardagna D, Panicucci B, Squillante MS, Zhang L. A Hierarchical Approach for the Resource Management of
Very Large Cloud Platforms. IEEE Transactions on Dependable and Secure Computing 2013; 10: 253-272.

18. Jung G, Hiltunen MA, Joshi KR, Schlichting RD, Pu C. Mistral: Dynamically Managing Power, Performance, and
Adaptation Cost in Cloud Infrastructures. In: International Conference on Distributed Computing Systems. IEEE; 2010;
Washington, DC, USA: 62-73.

19. Zhu X, Young D, Watson BJ, et al. 1000 Islands: Integrated Capacity and Workload Management for the Next Generation
Data Center. In: International Conference on Autonomic Computing. IEEE; 2008; Washington, DC, USA: 172-181.

20. Almeida J, Almeida V, Ardagna D, Cunha Í, Francalanci C, Trubian M. Joint admission control and resource allocation in
virtualized servers. Journal of Parallel and Distributed Computing 2010; 70: 344-362.

21. Moens H, Famaey J, Latre S, Dhoedt B, Turck FD. Design and Evaluation of a Hierarchical Application Placement
Algorithm in Large Scale Clouds. In: IFIP/IEEE International Symposium on Integrated Network Management. ; 2011:
137-144.

22. Leontiou N, Dechouniotis D, Denazis S, Papavassiliou S. A hierarchical control framework of load balancing and
resource allocation of cloud computing services. Computers and Electrical Engineering 2018; 67: 235 - 251. doi:
https://doi.org/10.1016/j.compeleceng.2018.03.035

23. Goudarzi H, Pedram M. Hierarchical SLA-Driven Resource Management for Peak Power-Aware and Energy-Efficient
Operation of a Cloud Datacenter. IEEE Transactions on Cloud Computing 2016; 4(2): 222 - 236.

24. Moens H, Turck FD. A Scalable Approach for Structuring Large-Scale Hierarchical Cloud Management Systems. In: 9th
International Conference on Network and Service Management (CNSM). ; 2013: 1-8.

25. Keller G, Tighe M, Lutfiyya H, Bauer M. A hierarchical, topology-aware approach to dynamic data centre management. In:
Network Operations and Management Symposium (NOMS). ; 2014: 1 -7.

26. Van HN, Tran FD, Menaud JM. SLA-aware virtual resource management for cloud infrastructures. In: . 02. IEEE
International Conference on Computer and Information Technology. IEEE; 2009; Washington, DC, USA: 357-362.

27. Mola O, Bauer M. Towards Cloud Management by Autonomic Manager Collaboration. International Journal of Commu-
nications, Network and System Sciences 2011; 4(12A): 790-802.

28. Hindman B, Konwinski A, Zaharia M, et al. Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center.
In: NSDI’11. Proceedings of the 8th USENIX Conference on Networked Systems Design and Implementation. USENIX
Association; 2011; USA: 295–308.

29. Wuhib F, Stadler R, Spreitzer M. Dynamic resource allocation with management objectives: implementation for an
OpenStack cloud. IEEE Transactions on Network and Service Management 2012; 9(2): 213-225.

30. SedaghatM, Hernández-Rodriguez F, Elmroth E, Girdzijauskas S. Divide the Task,Multiply the Outcome: Cooperative VM
Consolidation. In: IEEE International Conference on Cloud Computing Technology and Science. IEEE; 2014; Washington,
DC, USA: 300-305.

31. Calcavecchia NM, Caprarescu BA, Di Nitto E, Dubois DJ, Petcu D. DEPAS: a decentralized probabilistic algorithm for
auto-scaling. Computing 2012; 94(8): 701–730.

32. Pantazoglou M, Tzortzakis G, Delis A. Decentralized and Energy-Efficient Workload Management in Enterprise Clouds.
IEEE Transactions on Cloud Computing 2016; 4(2): 196-209.

33. Tighe M, Keller G, Bauer M, Lutfiyya . A distributed approach to dynamic VM management. In: Proceedings of the 9th
International Conference on Network and Service Management. ; 2013: 166 to 170.

34. Loreti D, Ciampolini A. A Decentralized Approach for Virtual Infrastructure Management in Cloud. International Journal
on Advances in Intelligent Systems 2014; 7(3/4): 507-518.

22 ABDUL R HUMMAIDA ET AL

35. Nouri SMR, Li H, Venugopal S, Guo W, He M, Tian W. Autonomic decentralized elasticity based on a reinforce-
ment learning controller for cloud applications. Future Generation Computer Systems 2019; 94: 765 - 780. doi:
doi.org/10.1016/j.future.2018.11.049

36. Barrett E, Howley E, Duggan J. Applying reinforcement learning towards automating resource allocation and applica-
tion scalability in the cloud. Concurrency and Computation: Practice and Experience 2013; 25(12): 1656-1674. doi:
doi.org/10.1002/cpe.2864

37. Maurer M, Brandic I, Sakellariou R. Adaptive resource configuration for Cloud infrastructure management. Future
Generation Computer Systems 2013; 29(2): 472-487.

38. Aldhalaan A,Menascé DA. Autonomic Allocation of Communicating VirtualMachines in Hierarchical CloudData Centers.
In: Cloud and Autonomic Computing (ICCAC), 2014 International Conference on. ; 2014: 161-171.

39. Matos M, Sousa A, Pereira J, Oliveira R, Deliot E, Murray P. CLON: Overlay Networks and Gossip Protocols for Cloud
Environments: 549–566; Berlin, Heidelberg: Springer Berlin Heidelberg . 2009.

40. Ganesh AJ, Kermarrec AM, Massoulié L. HiScamp: Self-organizing Hierarchical Membership Protocol. In: EW 10.
Proceedings of the 10th Workshop on ACM SIGOPS European Workshop. ACM; 2002; New York, NY, USA: 133–139.

41. Birman K. The Promise, and Limitations, of Gossip Protocols. SIGOPS Oper. Syst. Rev. 2007; 41(5): 8–13. doi:
10.1145/1317379.1317382

42. Wuhib F, Yanggratoke R, Stadler R. Allocating Compute and Network Resources Under Management Objectives in Large-
Scale Clouds. Journal of Network and Systems Management 2015; 23(1): 111–136.

43. TigheM, Keller G, Bauer M, Lutfiyya H. DCSim: A Data centre simulation tool for evaluating dynamic virtualized resource
management. In: Network and service management (CNSM), 2012 8th international conference and 2012 workshop on
systems virtualization management (SVM). ; 2012: 385–392.

44. Mann ZÁ, Szabó M. Which is the best algorithm for virtual machine placement optimization?. Concurrency and
Computation: Practice and Experience 2017; 29(10): e4083–n/a. e4083 cpe.4083doi: 10.1002/cpe.4083

45. Lago DGd, Madeira ERM, Bittencourt LF. Power-Aware Virtual Machine Scheduling on Clouds Using Active Cooling
Control and DVFS. In: MGC ’11. Proceedings of the 9th International Workshop on Middleware for Grids, Clouds and
e-Science. Association for Computing Machinery; 2011; New York, NY, USA

46. Guazzone M, Anglano C, Canonico M. Exploiting VM migration for the automated power and performance management
of green cloud computing systems. In: 1st International Workshop on Energy Ecient Data Centers. ; 2012: 81–92.

47. Calcavecchia NM, Biran O, Hadad E, Moatti Y. VM Placement Strategies for Cloud Scenarios. In: IEEE Fifth International
Conference on Cloud Computing. ; 2012: 852-859

48. Lei Shi , Furlong J, Runxin Wang . Empirical evaluation of vector bin packing algorithms for energy efficient data centers.
In: 2013 IEEE Symposium on Computers and Communications (ISCC). ; 2013: 000009-000015

49. Chowdhury MR, Mahmud MR, Rahman RM. Study and performance analysis of various VM placement strategies. In:
IEEE/ACIS 16th International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Dis-
tributed Computing (SNPD). ; 2015: 1-6

50. Beloglazov A, Buyya R. Optimal Online Deterministic Algorithms and Adaptive Heuristics for Energy and Performance
Efficient Dynamic Consolidation of Virtual Machines in Cloud Data Centers. Concurrency and Computation: Practice and
Experience 2012; 24: 1397-1420.

51. HPE ProLiant. 2016.
52. VMware. http://www.vmware.com; 2016.
53. Citrix . Xen. http://www.xenserver.org; 2016.

ABDUL R HUMMAIDA ET AL 23

54. Zhang W, Han S, He H, Chen H. Network-aware virtual machine migration in an overcommitted cloud. Future Generation
Computer Systems 2017; 76: 428 - 442. doi: https://doi.org/10.1016/j.future.2016.03.009

55. Tso FP, Hamilton G, Oikonomou K, Pezaros DP. Implementing Scalable, Network-Aware Virtual Machine Migration for
Cloud Data Centers. In: IEEE Sixth International Conference on Cloud Computing. ; 2013: 557-564

4.4 Scalable Virtual Machine Migration using Reinforce-
ment Learning

Abdul R Hummaida, Norman W Paton and Rizos Sakellariou

Publishing state: Published. Journal of Grid Computing, 2021.
DOI: https://doi.org/10.1007/s10723-022-09603-4

Summary: Given the dynamic properties of cloud environments and the regular
change in the structure of workloads and access patterns, we hypothesise that a dy-
namic MA that can regularly learn how to choose a target node to migrate a stressed
VM, will be well suited to balancing the goals of meeting SLAs and conserving energy
consumption. Our goal is to propose a MA that can be combined with the proposed
hybrid MF, which has been shown to scale and manage a large infrastructure. In this
paper, we investigate and propose a reinforcement learning MA, which can integrate
well into our hybrid MF and achieve fast convergence and lower SLA violations com-
pared to heuristics.

We model applications as a single VM that runs a CPU intensive activity such as
web a server in a PaaS context, where we can capture response time. When migration
is applied it is always to the single VM that houses the application. However, the
proposed MA can be extended to manage applications made up of multiple VMs by
collectively instantiating the VMs that make up an application. In the simulation, VM
response time is recorded periodically, by calculating the length of time it takes for
requests to complete. Factors that influence the request completion time include the
required VM resources, the assigned resources and the load generated by the used trace
file.

The RL decision making is engaged periodically, and by default every 2 minutes,
each node will autonomously assess its state and use the RL method to decide on an
action. As part of this process, if a VM is not meeting its response time target, RL will
migrate the VM away from a node. There are multiple VM selection approaches in the
literature and in this section we choose a simple approach that selects the most stressed
VM to migrate. In Section 4.5 we explore another VM selection approach that aims to
optimize the migration point.

The hybrid MF includes a set of escalation steps, where the migration process
considers the overlay, cluster and wider infrastructure respectively. In this paper, we

113

extended the original hybrid architecture, in which the escalation was only performed
when no target nodes were available in the overlay. In this paper, individual nodes
can escalate at any point using a reinforcement learning (RL) action. This enables the
RL agent to explore escalation before the overlay becomes full, and reduce utilization
pressure in the overlay by leaving capacity and thus reducing SLA violations.

Our chosen RL method introduces a small computational and memory overhead
to decision making. The computational processing includes maintaining the Q-table
for each of the states, and the lookup and update of the table. To reduce the memory
overhead we have used a state reduction approach that results in the Q-table becoming
a matrix of 2 states and 13 actions, 2× 13, resulting in a minimal memory overhead.
The RL method takes into account the cost of the additional energy consumption in the
target node. However as the RL method has a fixed processing cost, we abstract this
from the cost calculation.

To examine the impact of migration instability, a VM being migrated several times
during its lifetime, we evaluated the stability of the proposed MF (Section 4.3). This
shows the hybrid MF performs fewer migrations of the same VM compared to other
architectures, which is achieved through autonomous decision making in each node.
While the Hybrid MF can reduce VM migration instability, it does not have explicit
instability detection and mitigation. This can be achieved by extending the decision
making to include cost benefit analysis and prediction of the future state of a potential
migration target.

Each experiment is run to simulate 24 hours of elapsed time and each simulated
application contains a workload trace from the public traces included in DCSim. The
simulation is designed to instantiate a certain number of VMs per hour, where each
VM will run one of the public traces in a round-robin approach. For example, when
1000 VMs are created per hour and 5 traces are used, 200 VMs will use 1 of the traces.
Each trace sets the size of incoming traffic to a VM and typically changes every 5 min-
utes. As the round-robin approach is used in the experiments for each MA and MF
evaluation, we assume this is a valid method to instantiate the VMs. Each VM runs for
10 hours before shutting down.

Key contributions: Contribution 4 (see Section 1.4).

114

Grid Computing manuscript No.
(will be inserted by the editor)

Scalable Virtual Machine Migration using Reinforcement
Learning

*Abdul Rahman Hummaida · Norman W Paton ·
Rizos Sakellariou

Received: date / Accepted: date

Abstract Solutions based on Reinforcement Learning (RL) have been presented to man-
age cloud infrastructure, however, these tend to be centralized and suffer in their ability to
maintain Quality of Service (QoS) for data centres with thousands of nodes. To address this,
we propose a reinforcement learning management policy, which is able to run decentral-
ized, and achieve fast convergence towards efficient resource allocation, resulting in lower
SLA violations compared to centralized architectures. To address some of the common chal-
lenges in applying RL to cloud resource management, such as slow learning and state/action
management, we use parallel learning and reduction of the state/action space. We have also
demonstrate unique, multi-level reinforcement learning cooperation, that further reduces
SLA violations. We use simulation to evaluate and demonstrate our proposal in practice,
and compare the results obtained with an established heuristic, demonstrating significant
improvement to SLA violations and higher scalability.

Keywords Reinforcement learning · Data centre Scalability · Virtual Machine migration ·
Hierarchical architecture · Distributed architecture

1 Introduction

Cloud computing is an established paradigm to give end users access to computing resources
through a simplified as-a-service model. Cloud Providers (CPs) build data centres and ab-
stract resources through a virtualisation layer, with a Virtual Machine (VM) as a common
form. End users request these services through APIs, that map requests to virtual resources
that reside on physical resources in the data centre.

VM placement, both to schedule initial virtual machines and to adapt the placement,
to meet assorted goals, has been a subject of extensive investigation [17,37,33,45,50]. To
perform VM placement, specific resource utilisation or compatibility requirements are typi-
cally required, such that a VM is mapped onto a physical node within the data centre. From

*Abdul Rahman Hummaida E-mail: abdul.hummaida@postgrad.manchester.ac.uk · Norman W Paton E-
mail: norman.paton@manchester.ac.uk · Rizos Sakellariou E-mail: rizos@manchester.ac.uk
University of Manchester, Department of Computer Science, Kilburn Building, Oxford Rd, Manchester M13
9PL, UK

2 *Abdul Rahman Hummaida et al.

within the pool of physical nodes that satisfy VM constraints, the mapping process becomes
an optimisation problem that aims to increase resource utilisation, energy consumption or
profit. Post initial VM placement, it is common for the cloud environment to undergo a load
change, where the initial VM constraints are no longer met. CPs use adaptation methods to
continuously monitor and perform VM placement [23].

VM placement is accepted as an NP-Hard problem and heuristic solutions have been
used to solve it [61]. However, data centres are becoming increasingly large, which means
the problem of making globally appropriate placement decisions is increasingly challenging.
Many of the solutions to manage cloud infrastructure are centralized and suffer in their abil-
ity to support data centres with thousands of nodes. Furthermore, heuristic approaches have
been shown to have scalability challenges [26,53], in their ability to execute the decision-
making process with increasing size of data centre infrastructure. Different approaches have
been proposed to address this problem of scale [62,48,11,56,44]. These tend to be decen-
tralized heuristics, with no central controller, and have been shown to manage large number
of nodes. A key challenge with heuristics is that their performance depends on multiple fac-
tors including the statistical patterns of resource demands, and if the underlying scenario
changes, heuristics may start to perform poorly [21].

In this paper, we build on a hybrid architecture that has been shown to have benefits of
rapid decision making [24], fewer SLA violations, lower network traffic utilisation and im-
proved scalability as the number of nodes in the data centre increases, compared to central-
ized, hierarchical and other decentralized architectures. The hybrid architecture has hierar-
chical decentralized controllers operating at different scopes. On the lowest level, controllers
dynamically adjust resource configurations and cooperate with other nodes and higher level
controllers in performing VM placement. However, although the hybrid architecture sup-
ports localised decision-making in a global context, this still raises the question as to the
policies, which map VMs to data centre resources, that should be applied at different levels
in the hierarchy. The most suitable policy may depend on subtle features of the infrastruc-
ture and the workload, hence there may be benefits from learning the policy. Reinforcement
Learning (RL) is an approach that develops or refines a policy in the light of experience [54].
In RL, an agent performs learning by interacting with an environment, and learning through
trial and error. The agent takes actions and observes the outcome of these actions. RL has
been applied successfully in a variety of resource management settings [15,55,51]. Here we
develop an RL approach for the hybrid architecture [24] and apply it to cloud resource man-
agement. Multiple RL agents operate in a decentralized way and share the learning from
migration’s actions. Additionally, the agents uniquely cooperate at multiple management
hierarchy levels to achieve rapid decision making and learn an optimal online policy. Our
approach is shown to reduce SLA violations and achieve high scalability.

The contributions of this paper are as follows:

1. A realisation of a RL strategy in a specific hybrid architecture, with lower SLA viola-
tions and high scalability compared to a Heuristic based approach.

2. The utilisation of the hybrid architecture, to achieve unique, parallelised multi-level RL
agent cooperation.

3. An empirical evaluation of the RL strategy in comparison with a heuristic strategy that
has been shown to be effective in practice [7]. This shows the proposed RL approach
improves SLA violation performance, compared to the heuristic approach, and further
improvements are achieved when RL is combined with the hybrid architecture from our
earlier work [24].

Scalable Virtual Machine Migration using Reinforcement Learning 3

The rest of this paper is organised as follows. We first describe some of the challenges
in designing an efficient resource management controller. Section 3 describes related work
in cloud resource management, and Section 4 describes a background into RL. Section 5
summarises the hybrid architecture from our earlier work, and Section 6 describes our pro-
posed RL approach. Section 7 presents an evaluation of our implementation and compares
it to a heuristic hybrid, RL centralized and a heuristic centralized approaches. In Section 8
we draw conclusions and discuss future work.

2 Problem Statement

Cloud Providers (CPs) provide access to resources that are typically pooled and shared with
multiple customers, with a layer of orchestration that separates individual customer usage.
Physical resources are abstracted through virtualisation technology into compute, memory,
storage and networking with logical separation of these resources, and typically presented as
a Virtual Machine (VM). CPs customer workloads experience variability and VMs are cre-
ated and deployed onto physical nodes to run customer workloads. CPs need to re-optimize
the infrastructure regularly to provide high levels of availability and reliability.

Fig. 1 Managing SLAs

An illustrative use case is VMs running web applications, such as e-commerce systems,
which are typically N-tier and with web servers that process business logic. The resources
assigned to the VM and the amount of incoming requests determine the response time ex-
perienced by end users. The web server will typically experience a variable arrival rate of
requests. Using Figure 1 as an example, Web Server 1 can experience an increase in re-
quests, which will increase the resources used by Server 1 and increase the load on the
physical node, and in turn could start to impact the response time for Web Server 2 and Web
Server 3. Continuing with this state could have an adverse affect on all of the web servers.
CPs aim to react to such conditions in order to preserve the customer’s SLAs. A CP’s goal is
to enable such VMs to operate at a rate that meets customer agreed SLAs, and balance this
with the CP’s operating costs. We research and solve the following problems:

– Detect when a VM is stressed.
– Identify which VMs to migrate.

4 *Abdul Rahman Hummaida et al.

– Apply a decision making approach to optimize the migration of a VM, and choose a
target node to host the VM in such a way that brings response time within SLA levels.

– Develop an architecture for the control system that monitors and optimises the migration
of VMs.

In particular, we aim to solve these problems in ways that scale to work on data centres
with thousands of nodes. Our goal is to design a scheme that minimises the SLA violations,
by detecting stressed VMs and actioning a migration plan to choose new target nodes to
house the VMs. One option is to move stressed VMs to a newly switched on node or a
lightly loaded node, however this could have a negative impact on the amount of energy
consumption in the data centre and thus impact CP’s operating costs. Therefore, the optimi-
sation scheme needs to balance meeting SLAs with energy consumption.

Data centre workloads vary, with new workloads being provisioned and other workloads
being deprovisioned, so an efficient controller needs to cope with these varying demands.
Additionally, web servers typically exhibit varying traffic loads that can cause nodes to be-
come stressed and lead to SLA violations. When this occurs, the controller needs to engage
a migration plan to reduce SLA violations.

In a large data centre managing thousands of VMs and nodes, a control scheme needs to
be scalable and continue to be responsive. Decentralized architectures that have autonomous
monitoring, management and feedback are well suited to large scale environments [58]. In
this paper, we have developed a control approach where each node operates autonomously
and contains a learning agent that shares learnt knowledge with other agents.

3 Related Work

This section outlines related work on VM placement and on the use of machine learning,
and in particular reinforcement learning (RL) for resource management.

VM Placement is mapping of customer workloads to infrastructure resources, in a way
that achieves a particular objective, such as reducing energy consumption or load balanc-
ing, while ensuring SLAs are met [34]. VM placement consists of two parts: initial VM
placement, which refers to the first allocation of VMs to nodes in the data centre, and VM
migration or relocation, which involves the revision of an earlier placement decision. VM
placement performs the mapping in order to meet an SLA, energy or profit goal and has
been studied extensively. Meeting an SLA objective can be seen as detection of an over-
loaded node, selection of VM(s) on the overloaded node, identification of a target node, and
engaging the hypervisor to migrate the VM to the identified target node in order to avoid
performance degradation. When a node is deemed overloaded and the adaptation process
chooses to migrate a VM from a stressed node, VM(s) need to be chosen for migration. VM
selection approaches include: Minimum Migration Time chooses a VM that takes the short-
est time to complete the migration, Random Selection chooses a VM based on a uniformly
distributed discrete random variable and Maximum Correlation selects a VM of the highest
correlation of CPU utilization with other VMs to migrate [7]. In this paper, we use a similar
approach to Maximum Correlation to select a VM for migration, by sorting the VMs and
choosing the VM with highest correlation.

Heuristic approaches are widely used in the literature for VM migration. The authors
in [22] proposed an approach to increase efficiency of node utilization and balance utiliza-
tion of CPU and memory usage on active nodes across the data centre. The approach used
a multi-dimensional resource usage model for target node selection and used it to guide

Scalable Virtual Machine Migration using Reinforcement Learning 5

the VM placement process. A resource usage factor is assigned to each node and used in
node selection. Their experiments show minimisation of low utilized resources and more
balanced utilization of CPU and memory usage on active nodes. Uniquely, the authors in
[20] considered joint VM and container migration. The approach divides the cloud resource
management problem into sub-problems including over-load/under-load detection, identify-
ing if a VM or a container should be migrated, VM/container selection and migration of the
VM/container. Local Regression was used to detect overloaded nodes and VM selection was
done using Minimum Migration Time [7]. Target nodes for migrations were selected using
SLA-aware allocation. The authors in [63] proposed a multi-constraint optimization model
by considering migration cost and remaining runtime of VM migration, and used a heuristic
policy. The applied constraints were the total CPU/memory requirements of VMs allocated
should not exceed the node’s resource capacity and a VM should be assigned to a single
physical node; maximum duration that a node can be in SLA violation and the remaining
runtime for a VM were also considered. However, heuristics typically do not find a globally
optimal answer but may provide locally optimal outcomes [67,42].

Cloud environments are highly complex, and are typically multi-tenanted with non lin-
ear workloads; as a result they experience high variability. Machine Learning (ML) tech-
niques can offer an opportunity to adjust resource management in a dynamic way, which
is reflective of the context of cloud environments [32]. ML techniques can be categorised
as Supervised Learning where every data sample is labeled and used as input. The learning
process works by associating features of the input and human feedback. In Unsupervised
Learning samples are used as input, but unlike supervised learning, there are no labels and
the learning process aims to learn the data distribution within the sample. For example VM
usage patterns can be used to cluster VMs into distinct groups through unsupervised learn-
ing. In Reinforcement Learning there is no labeled input, instead an agent learns dynami-
cally from its environment and balances exploration of new knowledge versus exploitation
of known knowledge.

Some ML approaches focus on auto-scaling resources, autonomously provisioning and
deprovisioning resources. The authors in [41] presented an auto-scaling method for adap-
tive provisioning of elastic cloud services, based on ML time-series forecasting and queuing
theory, aimed at optimizing response time. The approach uses Support Vector Machines
(SVM) to predict the average node load for the following hour, and then use this with a
queuing model to adjust the resources assigned to a node. Their experiments show SVM has
better prediction than moving average and linear regression. Similarly, another prediction
approach was presented in [64] with Long Short Term Memory (LSTM) time-series predic-
tion, and provisioning through queue theory. Their results show LSTM performed better in
terms of prediction accuracy than the SVM and Autoregressive Integrated Moving Average.
A Neural Network technique was presented in [60], which proposes an adaptive selection
that can choose a VM consolidation approach based on the current environment and the
cloud provider’s priority on energy and SLA violation. The approach firstly generates a raw
dataset by simulating the methods for several time steps. Each row will contain the initial
environment parameters and normalized evaluation result of all policies. The results (energy
and SLA violations) for each row then are normalized. A performance score is calculated
using the evaluation priority and normalized evaluation result from the raw dataset; this
score is then used to train the neural network. Another framework for resource reservation
is presented in [52], based on load prediction and several ML approaches including Neural
Networks, Linear Regression, RepTree and M5P. The approach takes an initial reservation
plan and monitoring data as inputs and optimises the plan based on monitoring data from
observations, with CPU being the main monitored resource. The evaluation showed RepTree

6 *Abdul Rahman Hummaida et al.

was able to learn faster than the Neural Network; however, the Neural Network ultimately
yielded better predictions.

While ML models approaches have shown to be effective, one limitation of these ap-
proaches is that they are typically trained offline and require retraining to make use of new
data [49]. Cloud environments are dynamic and exhibit regular changes in the structure of
workloads and access patterns. Aptly, RL can operate online and learn dynamically from
interacting with a changing environment and make use of new information to enhance the
decision making process. Additionally, RL approaches do not require prior knowledge of the
optimization model and are not coded explicit instructions relating to which action to take
next; instead, they learn actions through feedback from the environment. These features
make RL well-suited to cloud resource management resource management [41].

Auto-scaling of the assigned VMs is the focus of some of the approaches in the lit-
erature, by using RL to add more resources for customer workloads. The authors in [28]
propose a general purpose model-free learning algorithm, based on Q-learning, that adapts
to unknown system specifics, such as application traffic, to generate scaling up or down
actions. Our proposal also uses Q-learning, however we focus on migrating stressed VMs
as opposed to auto-scaling. To speed up the convergence of RL, the authors in [6] devel-
oped an approach that parallelises Q-learning to speed up convergence of agents in order to
achieve auto-scaling of VMs. We propose a similar approach of parallel learning and further
enhance it with cooperative learning between agents running at different layers of a hierar-
chical cloud infrastructure. The problem of autonomous scaling of cloud resources can be
mapped to MAPE-K architecture (Monitor, Analyse, Plan, and Execute) [19]. The approach
enhanced the performance of the planning phase and a planning module uses linear regres-
sion to predict future demands, with Q-learning performing dynamic resource allocation.
Their experiments show the approach increases the resource utilization and decreases the
total cost while reducing SLA violations. Our proposal has many similarities with moni-
toring, planning and execution modules, although, unique to our approach, is cooperative
learning between RL agents running at different layers of a hierarchical infrastructure.

Reinforcement learning techniques can suffer from the curse of dimensionality, where
the state and/or action space grows exponentially, which introduces challenges in the time
needed for the RL agent to explore a given environment and introduce space complexity
in memory consumption by the agent. To address this, some approaches utilise function
approximation, such as Deep Q-Learning (DQN) [40], which is an approach of combining
deep learning and Q-learning to combat the challenges of Q-learning in environments with
a large or continuous state action space. The authors in [30] propose a DQN based model
to respond to anomalies in CPU and memory bottlenecks and apply granular actions to au-
toscale resources. The approach in [9] also proposes a Deep Q-learning based approach to
adjust the size of a cluster, by taking the state of the cluster as input and training an RL agent
to resize a cluster based on administrator defined policies and rewards. The agent can use
Deep Q-learning, Double Deep Q-learning or Full Deep Q-learning, and the approach was
compared to other RL and decision-tree based approaches and shows it gains rewards up to
1.6 times better. Alternatively to using a DQN, the approach in [46] used a coarse-grained
Q-table and can achieve higher resolution in the Q-table with less cost. The approach pro-
posed granular actions to adjust CPU and memory resources, and applied it in a distributed
learning mechanism using Q-learning. The work in [10] used a heuristic method to reduce
the state space to a smaller set, by dividing the original state space into multiple exclusive
subsets, where a range of states can fit into the same subset, thus reducing the state space
to aid RL convergence speed. Other non-statistical approaches for function approximation
have been proposed [25,5,8]. To address the curse of dimensionality, instead of function

Scalable Virtual Machine Migration using Reinforcement Learning 7

approximation we used an aggregation approach in our proposal. This reduces states and ac-
tions into smaller groups, with multiple states being mapped into a smaller number of states
and actions.

Table 1 Adaptation proposals. Key: Q: Q-learning, DQN: Deep Q-Learning, ML: Machine Learning, SVM:
Support Vector Machines, QT: Queueing Theory, SARSA: State–Action–Reward–State–Action

MA Objective Considered Resource Techniques

CPU Memory Storage Network
Yadav[65] SLA & Energy x Heuristic
Gholipour[20] SLA & Energy x Heuristic
Xu [63] SLA & Energy x x Heuristic
Gupta [22] Energy x x Heuristic
Vozmediano[41] SLA x SVM & QT
Barrett [6] SLA x x x Q
Ghobaei-Arani [19] SLA x x x x Q
Moghaddam [30] SLA x x DQN
Rao [46] SLA x x x Q
Bitsakos [9] SLA x x x DQN
Bibal [8] SLA x x SARSA
Jamshidi [25] SLA & Energy x x Q
Bu [10] SLA x x Q
Arabnejad [5] SLA x Q & SARSA
Ren [47] SLA & Energy x x DQN
Ren [66] SLA x x x DQN
Nouri [43] SLA x x Q
Witanto [60] SLA & Energy x Multiple
Sniezynski [52] SLA & Energy x Multiple ML

Migration of stressed VMs, which are failing a quality of service metric, to another target
node, is the focus of some of the work in the literature and has a similar aim to our proposal.
The authors in [47] propose a Deep RL based framework that performs VM migrations and
uses a proximal policy optimization (PPO) algorithm and a neural network based on LSTM
for function approximation. The architecture of the approach is split onto an offline and an
online part. The offline part trains an agent by sampling log data, which is generated by
the online agent. The online agent has a similar method to the offline, except it does not
update the agent parameters. Online decision information is used for the next offline train-
ing. Our approach also caters for reducing SLA violations, however we choose a different
state action reduction approach to manage the challenges with Q-learning. Additionally, the
approach was only evaluated with a small number of VMs, while our experiments were
evaluated with thousands of VMs and nodes. The authors in [43] propose a Q-learning con-
troller to manage complex workload arrival patterns and use a decentralized architecture,
with each node responsible for maintaining its own SLA performance. The approach is able
to add nodes and scale down by shutting down excess nodes to save on energy consumption.
To combat the state space challenge in Q-learning, the approach uses a reduced state space.
Similarly, our proposal uses a decentralized architecture, applies knowledge sharing among
the RL agents, uses aggregation to reduce the state action space, and uses linear regression
to monitor QoS metrics like response time. However, the uniqueness of our approach is
cooperative learning between RL agents running at different layers of a hierarchical cloud
infrastructure. The authors in [66] investigate VM migration during data centre upgrade
and use a DQN to decide a target node for each VM migration with the objective of min-

8 *Abdul Rahman Hummaida et al.

imising the total migration time. We use a state action aggregation approach to address the
dimensionality challenge, while the authors use function approximation. Table 1 presents a
summary of the approaches used in VM cloud resource management, including heuristics
and ML techniques.

While there have been attempts at examining the scalability of approaches based on
RL [10,46], these tend to be at a small scale that is not representative of the size of the
infrastructure in public clouds. We propose a highly scalable RL approach and examine its
ability to manage a large infrastructure, with many thousands of nodes.

4 RL Background

Reinforcement Learning (RL) is a machine learning technique that enables an agent to learn
within an interactive environment, through trial and error, and uses signals from the environ-
ment in a feedback loop. In Figure 2, the agent monitors the current state of the environment
(Step 1), and chooses an action from the available options on the environment (Step 2). The
environment will then generate a reward for the action taken by the agent, and transition
to a new state (Step 3). The goal oriented agent aims to learn the set of actions, a policy,
that will lead it to a specific goal, or to maximise an objective function. RL problems are
typically formulated with well defined transition probabilities and modelled as a Markov
decision process (MDP)[54].

While RL has shown much promise, there are significant challenges applying to practical
real world problems [16], including limited offline training logs, learning on the real system
where exploration has to be limited and delays in the system actuators to gather action
reward.

RL approaches are categorised as model based or model free methods, depending on
whether full knowledge of the model can be specified. Model based approaches need knowl-
edge of the environment model, while model free methods learn a policy based on observa-
tions and rewards [54].

There are two common control categories of RL. Value-based or off-policy methods: RL
algorithms proceed to learn the value function for every state/state-action pair to arrive at the
optimal policy. Q-learning is a common algorithm in this category. Policy-based or on-line
methods directly learn the parameters for the policy, instead of learning an explicit policy
function, by fine tuning a vector of parameters in order to select the best action to take for
policy. SARSA is a common example in this category.

Deep reinforcement learning combines RL with Deep Neural Network based approxi-
mation of expected values. An offline phase prepares the network with prior system knowl-
edge, for example from execution. These are then used during online RL execution to select
best actions based on the state of the environment [35].

Q-learning [59] is a common control strategy in cloud resource management, due to its
simple implementation. Q-learning is model free RL algorithm, belonging to a collection of
algorithms known as Temporal Difference (TD) methods. Q-learning estimates the optimal
action value function, independent of the policy being followed, and does not require a
full model of the environment. The action-value function or Q-function is updated using
Equation 1, and approximates the value of selecting a certain action at a certain state.

Q(st ,at)← Q(st ,at)+α[rt + γMaxQ((st+1,at+1)−Q(st , at))] (1)

In this equation, α ∈[0,1] is the learning rate, or step size, and determines how the agent
learns from recent updates. A high value for α means the most recent information obtained

Scalable Virtual Machine Migration using Reinforcement Learning 9

Fig. 2 RL continuous process

is utilised while a low value implies slower learning. To dampen the reward’s effect on the
agent’s choice of action, the discount factor γ ∈ [0,1] is used. When γ is set to 1, the agent
will emphasise greater weight to rewards in the future. When it is closer to 0, the agent will
only consider the most recent rewards. MaxQ(st+1,at+1) returns the maximum estimate for
the future state-action pair. Once the Q-Value is calculated it is then stored in the agent’s
Q-Table.

One of the challenges in action selection is exploration vs exploitation, which is the
challenge of choosing to further explore the environment for possibly better rewards or
choosing to exploit the known reward paths. To speed up the process of learning an effective
policy, the agent needs to exploit rewarding actions, but it needs to also find these online.
A common approach is ε-greedy [54], which selects the action with the highest estimated
reward most of the time. With a small probability of ε , we choose to explore, and not exploit
by randomly selecting an available action, independent of the action-value estimates we
have previously learned. Other action selection methods include soft-max and optimistic
initialisation of values [54].

Some of the challenges with RL include poor initial performance, large training time,
and large state space. To improve the poor initial performance, human experts can set initial
values for a given state/action [38], and convergence time can be reduced by using parallel
learning agents [8], where each agent learns from its experience of visited states, and learns
the value of unvisited states from other agents, and a Q-table can be shared among all the
agents. A high number of states and or actions would lead to complex Q-tables with millions
of cells and consume large amount of memory. Exploring all the states to generate a Q-table
can also be time consuming [27]. To solve the challenges with large state and action space,
techniques such as tile coding and function approximation can be used [29,36,12]. Other
approaches to reducing the problem of dimensionality include aggregation, where multiple
states or actions are aggregated to a smaller number of abstracted categories [19,8,10].

In this paper we develop an RL based controller to solve the VM migration problem
and combine Q-Learning with an aggregated state action space to address the curse of di-
mensionality in Q-learning. To speed up RL convergence, we utilise parallel learning agents
that learn from a shared collective experience of all agents. We develop a reward function
that focuses on learning a policy to reduce SLA violations, and balance this with energy
consumption.

10 *Abdul Rahman Hummaida et al.

5 Hybrid Architecture

Cloud Providers (CPs) build and operate large scale data centres that contain numerous
computing resources, that are typically virtualised and require a level of orchestration of the
shared resources, which is a challenging issue [3]. We classify the management process into
two dimensions, Management Algorithm (MA) and Management Framework (MF). The MA
is responsible for deciding how workloads are assigned to infrastructure resources, while the
MF enables the MA to execute by providing common functionality, such as hierarchy level
management and aggregation of metrics between nodes. The combined functionality results
in workloads executing on infrastructure nodes. In our previous work we detail a hybrid MF
[24], which we summarise here. A new RL based MA is the focus of this paper.

Fig. 3 VM migration & escalation process

The Management Framework (MF) provides common utilities that enable the MA to
execute, including a mechanism to propagate node state, and a decision engine architecture
that may be centralized, hierarchical or decentralized. The architecture of our previous work
[24] consists of hybrid hierarchical decentralized controllers operating at different scopes.
On the lowest level, every node in the infrastructure contains a Node Controller (NC), which
dynamically adjusts resource configurations to satisfy VM demands on each node. A col-
lection of NCs form a cluster of nodes. Each NC cooperates with a Lead Node (LN), which
is a higher level controller for all the NCs within a given cluster. Unique to our proposal,
the NCs within each cluster are divided into logical groups, called overlays, where a NC
cooperates with other NCs within the same overlay. Each NC exists in only one overlay and
in one cluster. Once again unique to our approach, the LN operates as a normal node within
the infrastructure in addition to its management responsibility towards the cluster. At the
highest level, the Data Centre Controller (DC) manages the controllers one level below it.

Our scalable hybrid architecture, SHDF, attempts to service resource requests at the
lowest local level possible, in order to reduce the overhead of servicing the request [39] and
to reduce the performance impact of migrating VMs across cluster boundaries [4].

Scalable Virtual Machine Migration using Reinforcement Learning 11

5.1 Controller Functionality - VM migration

When a node cannot satisfy the demands of the VMs it hosts, it starts an escalation process
that aims to resolve the request at the lowest possible level. The MA running on the stressed
node and the LN cooperate to resolve the escalated VM migration, by using our provided
framework mechanisms.

The process starts within the NC’s overlay by sending a request to other nodes within
the same overlay (Step 1), shown in Figure 3, by using the accumulated metrics of other
nodes. If a target node is available and accepts the migration request, then the migration
process completes for this cycle. If the selected target node does not accept, other nodes
within the overlay are attempted until no further options are available within the overlay.
If a target is not available within the overlay, the stressed NC escalates the VM migration
request to the LN (Step 2), and the MA running on the LN can query the cluster records
from all the overlays, which have state data from all nodes in the cluster, to find a suitable
node to house an escalated VM. If the LN locates a target within the cluster, the migration
request is forwarded (Step 3). If the LN cannot find a suitable target for the migration within
the cluster, it will use its knowledge of other available clusters, through participation in the
LNs overlays, to forward the migration request to another LN (Step 4). This target LN will
repeat the process performed by the forwarding LN, and attempt nodes within this cluster
(Step 5). If a suitable target is found the process competes. If the LN in Step 5 cannot find a
target, the request is rejected back to the forwarding LN, which will attempt other LNs in its
overlay. If a suitable target is found through another LN, the process completes. If this fails
to find a suitable target, the request is escalated to the DC Controllers (Step 6). The DC has a
view of the entire infrastructure and can forward the request to other LNs (Step 7), which the
original LN does not cooperate with. This recipient LN will repeat the process carried out by
other LNs in the escalation chain (Step 8), and if a target is found the process completes. If
a target is not found, the recent LN will reject the request back to the DC controller (Step 9).
The DC controller will attempt other LNs, which have not been already tired, until a target
is found or all LNs have been attempted.

If a target is not found then the infrastructure is highly stressed and the request is rejected
back to the original escalating NC. In each of these escalation phases, the MA uses data from
the data dissemination to decide on the list of targets to forward a request to. As requests
progress through the escalation process, they are assigned an increasing priority, which can
be used by the MA in the decision making process. For example, the MA may choose to
prioritise finding a host for an escalated VM compared to a new VM placement.

5.2 Controller Functionality - Consolidation

At periodic time intervals and changes in utilisation, each of the management controllers
and LNs can invoke a consolidation process where the MA can examine the state of the
infrastructure and for every node under its management, decide to migrate some VMs from
a node, migrate all VMs off a node and switch the node off or no change.

The advantage of SHDF is it allows the nodes to primarily operate in a distributed man-
ner for time sensitive operations such as VM migrations, which could improve SLA viola-
tion metrics. In this paper, we focus on VM migration to achieve QoS metrics, and while RL
consolidation is out of scope, we use a simple heuristic to perform regular consolidation.

12 *Abdul Rahman Hummaida et al.

6 Proposed Reinforcement Learning Management Algorithm

In our previous work [24], we have shown management algorithms (MAs) are widely cov-
ered in the literature, and drive the decision making process in cloud systems adaptation.
The MA assigns resources in the infrastructure and regularly assesses the satisfaction of
such assignments in achieving a given Service Level Agreement (SLA). The frequency of
this assessment is influenced by the time complexity of the algorithm; the lower the com-
plexity, the more frequently the algorithm can be executed. The approaches in the literature
tend to be threshold-based [23], however, shared cloud environments have a significant un-
certainty, and it is beneficial for the MA to be able to update the parameters of the decision
making process to cope with a changing environment. With the promising results of ap-
plying RL in cloud resource management [19,8,10], we propose a RL based approach for
VM migration, which builds on the MF from our earlier work, specifically to satisfy QoS
metrics such as SLA. We build on SHDF by adding multiple modules that implement RL
based agents at different levels of the SHDF hierarchy. On both the NC and LN, we add
monitoring, classification and learning modules that provide the RL capability. The NC and
LN perform their roles and escalation process on the hybrid architecture, as shown in Figure
3. The new modules and their operation are shown in Figure 4 and discussed below:

‘

Fig. 4 Proposed RL decision making steps

– A Monitoring Module tracks VM response times and is used as input by other modules to
manage the node. The module additionally tracks the outcome of reinforcement learning
actions.

– A Classification module assesses the state of a node and the VMs running on it, by using
input from the Monitoring node. The module decides if a VM is stressed.

– A Learning Module uses the other modules as input to carry out decision making. When
a VM is classed as stressed, the module determines the available actions and runs the
Q-learning algorithm to decide the action to take. The module additionally executes

Scalable Virtual Machine Migration using Reinforcement Learning 13

the action and invokes the monitoring module to determine the outcome of the action,
calculates the reward for each taken action and updates the Q-table.

Algorithm 1 shows the operations in the RL agent. Each agent initialises value estimates
to 0, and in each decision making cycle, the agent classifies the current state of the node,
which identifies stressed VMs. Based on the current state of the node, the learning module
determines all possible options by calling getPossibleActions. This uses the current overlay
state in state.targetCPUgroup[i] to determine the available target groups of CPU utilisation
from 0 to 90%. From the available options, the learning module will choose an action using
an ε-greedy policy with respect to Q. This policy ensures that not all the agent’s actions
are greedy with respect to Q, and the agent will sometimes choose a random action, which
enables a tradeoff between exploration and exploitation. Based on the chosen action, the
learning module will then execute the action.

To speed up learning and speed of convergence in the Q-learning, we employ parallel
learning [6]. Each agent learns from its experience of visited states, and learns the value
of unvisited states from cooperating nodes in the SHDF architecture. A Q-table is shared
among all the agents for each level in the SHDF hierarchy, and thus there is a shared Q-table
for all NCs and a separate shared Q-table for all LNs. In addition to speeding up the learning
and convergence, this approach enables a unique cooperation between NCs and LNs. When
a NC escalates a migration to the LN in a given state, the reward from this action is tracked
as part of the learning process.

Algorithm 1 RL@NC
1: procedure REGULARCHECK
2: state← classifyState(VM.getMonitoringData)
3: actions← state.getPossibleActions
4: stateAction← LearningModule.chooseAction(actions)
5: switch stateAction do
6: case powerNode
7: result← powerNewNode(vmToMigrate)
8: case migrate
9: result← findOverlayNode(vmToMigrate, targetCPUWindow)

10: case escalateToLead
11: escalateToLead
12: case noAction
13: nop
14: procedure GETPOSSIBLEACTIONS(state)
15: possibleActions← null
16: for targetCPUgroup[i] do
17: if state.targetCPUgroup[i] > 0 then
18: possibleActions.add← targetCPUgroup[i]
19: if offNodes > 0 then
20: possibleActions.add← powerOnNode
21: possibleActions.add← escalateToLead
22:
23: procedure CHOOSEACTION(possibleActions)
24: if random < 1 −ε then
25: action← actionWithMaxQAtState(state, possibleActions)
26: else
27: action← randomAction(possibleActions)
28:

14 *Abdul Rahman Hummaida et al.

6.1 RL State

The representation of the state is key to the RL decision making process. To overcome the
state space dimensionality challenge with RL, we use a reduction approach and aggregate
VMs to two states: Normal and Stressed. Response time has been used as a measure for
application performance [18]. To account for variation in response time during the lifetime
of an application, we use an approach similar to [43]. We apply linear regression on collected
response time during each monitoring epoch, which by default is every two minutes. The
classification module will deem a VM stressed when the 95th percentile of response time,
during a monitoring period, is above a defined SLA threshold that by default is 500ms.
We categorise the state of VMs as Normal when the 95th percentile of the response time
is below the defined SLA level. The classification of state occurs during the regular node
check, shown in line 2 of Algorithm 1.

6.2 RL Actions

Each node contains an RL agent, which carries out decision making. The RL agent carries
out actions to achieve QoS metrics and balance this with energy consumption. To perform
migration when a VM is stressed, the agent needs to identify a new target node to host the
VM. The hybrid architecture provides an expanding set of options to migrate a VM, starting
within the overlay where the VM resides and then onto the cluster and the rest of the data
centre, a cooperation facilitated through the LN.

RL actions are contextual to the current state, and the agent ensures actions are valid
by filtering non applicable actions, as shown in the getPossibleActions method in line 3
of Algorithm 1. For example, when the VM is in Normal state, no migration actions are
available to the RL agent.

The goal for the RL agents is to find the actions that reduce SLA violations (maximise
reward) when an agent enters a given state, shown in method chooseAction in line 4 of
Algorithm 1. During the decision making process, the agent chooses between powering on
a new node to house the migrating VM (line 6), migrating the VM to another target node
within the same overlay (line 8), escalating to the Lead Node (line 10) and taking no action
(line 12). In the migrate within overlay case, the RL agent needs to choose a target node to
send a stressed VM to. However, a large data centre will have many thousands of nodes, and
tracking an action reward for each individual target node will lead to a large set of actions
and a large Q-table. To solve this, we simplify the RL action space and use a reduction
mechanism that groups target nodes based on their CPU utilisation. By default we use 10
groups, 10% each using Equation 2, which creates target groups from 0 to 9. For example,
action group1 means migrate the stressed VM to a node with an average CPU utilisation of
10% to 19%. Selecting action group6 means migrate to a node with CPU utilisation of 60%
to 69%. Once an action is selected, we use a greedy policy to select the first available node
that fits the action group. For example, an action of group6, will result in the first available
node that meets the requirements of the VM and has an average utilisation between 60%
and 69% to become selected as the target node. Based on CPU utilisation, we identify the
target groups available and add these as options for the RL agent to choose from (lines 16 to
18). We additionally account for the number of available switched off nodes and add these
as an option to the RL agent to switch on (lines 19 to 20). In most cases the agent chooses
an action, from the available options, that maximises future reward (line 25). With a small

Scalable Virtual Machine Migration using Reinforcement Learning 15

probability of ε , the agent will choose to explore and not exploit, by randomly selecting an
available action (line 27).

targetGroup =
avgCpuUtilization(node)

actionGroups
(2)

The NC can select actions to migrate a stressed VM within the overlay, as well escalate
to a LN. We modify the original hybrid architecture, where escalation to the LN was only
available when no target nodes were available in the overlay, to being able to escalate at any
point using a RL action (line 12). The RL based migration and escalation process is shown
in Figure 5. A LN deals with escalation of VM migrations from a NC, and performs RL
actions within the scope of a whole cluster. Table 2 shows the RL actions carried out by a
NC and Table 3 shows the LN actions. Similar to the original hybrid architecture, the process
starts within the NC’s overlay, where a NC uses the RL modules to make a migration. The
difference in this new version, is the NC can choose to migrate within the overlay (Step 1)
or make an escalation to the LN (Step 2), based on the RL agent and the actions from Table
2. If an escalation to the LN is chosen, the RL agent running on the LN will classify the
cluster state and choose an action from Table 3, which can be within the cluster (Step 3) or a
migration outside the cluster (Step 4). Once the action is executed, both the LN and NC RL
agents receive a reward post action completion. The NC receives a reward for the escalation
action (Step 5) and the LN for the choice of action within the cluster or outside it (Step 6).

Consolidation using RL is outside the scope of this work, and we use a simple heuristic
to perform regular consolidation at the cluster level. The heuristic, based on [31], classifies
all the nodes at the cluster level as partially utilised, under utilised or empty. All under
utilised nodes become candidates for migrating VMs away from to other partly utilised
nodes. When the last VM is migrated away from a node and it becomes empty, the node is
switched off.

Table 2 NC RL Actions

Action Description

Migrate [0,1,2,3,4,5,6,7,8,9] inside overlay
Migrate to target node with utilisation [1 to 9%,
10 to 19%, 20 to 29%, 30 to 39%, 40 to 49%,
50 to 59%, 60 to 69%, 70 to 79%, 80 to 89%, 90 to 99%]

Migrate Outside Overlay Escalate migration to LN
Power Node inside overlay Power on node & migrate
Do nothing Do nothing

Table 3 LN RL Actions

Action Description

Migrate [0,1,2,3,4,5,6,7,8,9] inside cluster
Migrate to target node with utilisation [1 to 9%,
10 to 19%, 20 to 29%, 30 to 39%, 40 to 49%,
50 to 59%, 60 to 69%, 70 to 79%, 80 to 89%, 90 to 99%]

Migrate Outside cluster Escalate migration to data centre controller
Power Node inside cluster Power on node & migrate

16 *Abdul Rahman Hummaida et al.

Algorithm 2 Update Q-table
1: procedure UPDATEQ(action)
2: s’← classifyState(VM.getMonitoringData)
3: responseTime←monitoringModule.getRT(vm)
4: reward← calculateReward(responseTime)
5: Q(s,a)← Q(s,a)+α[reward + γQ max(s′,a)−Q(s,a)]

Fig. 5 RL migration & escalation process

6.3 Reward

The goal for RL is to maximise rewards through incrementally mapping states to actions.
The monitoring and classification modules regularly monitor a node and capture the state,
which enables a subsequent action from the learning module. After an action is executed,
there is a waiting period, which is action dependent. Boot up actions take a defined amount
of time, typically set to 30 seconds, while migrations take a length of time that is depen-
dent on the amount of memory used by the VM. After the action wait time, the monitoring
module will calculate a reward for the action using Equation 3, and is shown in Algorithm
2. The update starts by classifying the current state of a VM (line 2), and calculating the
archived reward based on Equation 3 in line 4. The Q-learning update is then applied based
on Equation 1 in line 5. As our goal is to reduce SLA violations, and balance this with en-
ergy consumption, the reward function should reflect VM performance (yield) and resource
utilisation (cost), and punish actions that degrade VM performance or significantly increase
cost. Our reward function is shown in Equation 3, where yield is the gain in a QoS metric,
and cost is the increase in energy consumption, represented by the delta in CPU utilisation.
As nodes consume up to 70% of their full utilisation in idle state [13], the Power on node

Scalable Virtual Machine Migration using Reinforcement Learning 17

action incurs a penalty of 0.7. Other actions do not carry a penalty.

Reward = yield− cost− penalty, (3)

where yield ∈ [−1,1] decaying to −1 for the worst QoS and 1 when QoS is met. Cost is
the change in CPU utilisation where cost ∈ [0,1]. We use Response Time as our key QoS
metric. Response Time (rt) represents the time it takes to execute a request to an application
running inside a hosted VM, and reflects the CPU resources that are assigned to the VM.
The monitoring module captures response time in the 95th percentile. When a VM is moved
to a new target node, it will likely experience a change in rt; migration may also impact
other VMs running on the target node. To capture this, our yield of rt is calculated based on
Equation 4, where m is the number of all VMs running on the target node.

yield = ∑m
j=1 y(rt j) . (4)

For each VM, when rt is a value below the TargetRT and therefore satisfying SLA, the
reward is 1. When rt is above the TargetRT for the VM, the function will punish actions
that cause SLA violations, as shown in Equation 5.

y(rt) =
{

TargetRT − rt ,rt > TargetRT,
1 rt < TargetRT

(5)

Energy Consumption is the second component used by the reward function, and captures
the energy utilisation cost of the action, based on the CPU utilisation of the target node
before and after the action. This value helps the learnt policy to move towards actions that
balance meeting SLAs with energy consumption, and is shown in Equation 6.

cost = postActionUtilisation− preActionUtilisation (6)

Each NC and LN carries out an action, receives a reward for the action, and updates the
shared global NC and LN Q-tables respectively, as shown in Algorithm 2.

7 Experiment Setup and Evaluation

In this section, we evaluate different approaches and compare our RL based Management
Algorithm (MA) with multiple systems from literature, on both the MA and Management
Framework (MF) dimensions. We choose to compare to a heuristic [7] MA that uses a Mod-
ified Best Fit Decreasing approach to migrate a VM, which has been shown to be effective
in practice. For MF, we choose the hybrid architecture from our earlier work [24] and a
centralized MF, due to the popularity of centralized MFs in the literature, and we combine
MFs and MAs with varying workloads and VM configurations. Thus, our evaluation set is:

– RL MA combined with Hybrid MF
– Heuristic MA combined with Hybrid MF
– RL MA combined with Centralized MF
– Heuristic MA combined Centralized MF

This combination enables us to evaluate the performance of the proposed RL MA, by
comparing to a Heuristic MA, and investigate benefits that can be realised from combining
the RL MA with the Hybrid MF.

18 *Abdul Rahman Hummaida et al.

We used simulation to facilitate rapid development of experiments of large data cen-
tres. We selected DCSim [57] because of its extensibility and existing implementation of
a centralized architecture, allowing us to create baseline comparators for our proposed RL
approach. We instantiate SHDF with three levels of controllers, running on the root of the
data centre (DC Controller), the cluster manager (LN) and executing nodes (NC).

7.1 Simulator Setup

DCSim allows a VM to use more CPU than reserved, up to an amount that does not impact
other VMs. Like [31], for the heuristic based approaches we use a CPU utilisation thresholds
of 90% for high, indicating stress level, and we use 60% for low, indicating low utilisation.

In DCSim, an application is modelled as an interactive multi-tiered web application.
Each application has a specified client think time, a workload component and a request
service time, which is the amount of time required to process each incoming request. The
workload defines the current number of clients connected to the application, which can
change at discrete points in the simulation based on a trace file. The resource requirements
are defined as its resource size, which is the expected amount of CPU, memory, bandwidth
and storage. DCSim treats bandwidth and storage as fixed requirements, however, CPU
requirements can be varied across the simulation based on the VM demands. DCSim applies
a cost to VM migration including the time taken for migration, as a function of memory
consumed by a VM, and factors in the bandwidth required for the VM migration on the
hosting node. Additionally, the boot time of a switched off node has an elapsed time cost.
The time taken to switch on a node for migration is reflected in the time period the VM is
in a stressed state, and therefore the SLA achieved by a VM. Due to the complexities of
building accurate power models, we focus our investigation on scalability metrics.

7.2 Workload and SLA Violations

We run the experiments at a load that requires more than 70% of the CPU resources of
active nodes. Each simulated application contains a workload trace based on the number
of incoming requests to web servers from publicly available traces; we used the following
traces included with DCSim: Google 1, Google 3, EPA (Environment Protection Agency)
and Clarknet. Each workload has an average normalized load of: 0.74, 0.31, 0.24 for Google
1, Google 3, Clarknet and EPA respectively. Figure 6 shows the normalized shape of the
workload requests for each of these traces. DCSim divides traces into equal length seg-
ments, and total the number of requests in each interval. The values of each interval are
then normalized to [0, 1], with 0 being zero requests, and 1 being the maximum number
of requests received in an interval. These are then scaled to match the VM being used; for
example if a VM uses one core at 2GHz, the normalized trace is scaled by 2000. We create
VMs with different cores and RAM configurations, as shown in Table 4. Each experiment
is run to simulate 24 hours, and when there is not enough trace data for a an experiment
duration, we loop to the beginning of the trace.

7.3 Modelling the Impact of Decision Making

DCSim [57] applies a migration cost once a VM is selected for migration, by adding ad-
ditional time to complete the migration based on the amount of memory used by the VM.

Scalable Virtual Machine Migration using Reinforcement Learning 19

Fig. 6 Original normalized traces used [57]

Table 4 Experiment configuration

Config Config options Base config
VM Core (Mhz) 1000,1300,2500 round robin [1000,1300,2500]
Node Capacity (Mhz) 3000 3000
Number of Cores 1,2 round robin [1,2]
VM Memory (MBs) 1024,2048 round robin [1024,2048]

Workload
clarknet, EPA,
Google 1,
Google 3

round robin [clarknet,
EPA,
Google 1,
Google 3]

Number of Nodes 1000, 2000,3000,
4000, 5000 1000

Node stress check frequency 2 minutes 2 minutes
VM service time 0.2 seconds 0.2 seconds
RL parameters α=0.1, γ=0.7, ε=0.1 α=0.1, γ=0.7, ε=0.1
Target Response Time 0.5 0.5

However, DCSim does not account for the time it takes to execute the decision making pro-
cess, or the impact of such time. The length of the decision making process impacts stressed
nodes by increasing the amount of time the node stays in a stressed state. In a centralized
architecture, all nodes are used as input into the decision making process. Therefore, the ex-
ecution of decision making could get progressively higher, as the number of managed nodes
increases.

To capture the cost of the decision making, we extend DCSim to measure the amount
of time during decision making, and add this time to the VM migration duration. As the

20 *Abdul Rahman Hummaida et al.

decision making execution time varies based on the MA and the hardware it is running on,
we add a configurable scaling factor that can be applied to the measured execution time.

7.4 Data Centre

Our experiments use nodes modelled as ProLiant DL380 G5 Quad Core [1], with 2 dual-
core 3GHz CPUs and 16GB of memory. The number of nodes used is specified in each
of the experiments, with a minimum of 1,000 nodes. We assume that the data centre sup-
ports live VM migration, as this technique is currently supported by most major hypervisor
technologies, such VMware [2] or Xen [14].

To minimise the number of variables in our experiments, we chose to keep a homoge-
neous infrastructure, with the same specification for all of the nodes. The various parameters
used in our evaluation are outlined in Table 4.

7.5 Experiments

Our goal is to demonstrate improved QoS metrics for the RL MA, and we evaluate this by
examining SLA violations. We evaluate our proposal under varying workloads and draw a
comparison between our proposal and several related techniques.

Simulated applications are modelled as interactive web servers, running inside a VM,
and an SLA Violation occurs when response time associated with the VM exceeds the tar-
get response time. We evaluate all architectures under varying scenarios to understand the
impact on SLA violations. Initially, we evaluate a mixed workload scenario to represent the
varying workloads deployed on data centres. To understand the impact of specific work-
loads, we then evaluate these individually. We additionally examine scalability and how the
approaches cope with a varying arrival rate for new workloads.

7.5.1 No Adaptation

In this experiment, we use a combined workload of all traces in a round robin approach,
where each created VM uses a workload trace from all of the available traces. We use the
centralized architecture with 1000 homogeneous nodes and no adaptation is invoked. When
a node becomes stressed, it remains stressed for the reminder of the experiment, and exhib-
ited 117045 instances of SLA violations.

7.5.2 Mixed Workload Assessment

In this experiment, we use a combined workload of all traces in a round robin approach,
where each created VM uses a different workload trace, in a deterministic order. The mixed
workload simulates different workloads that could be experienced in a data centre. Workload
arrival rate is the frequency that new VM placement requests arrive at the data centre. For
this experiment we use an arrival rate of 180 new VMs per hour, with each VM running for
10 hours before shutting down. The experiment simulates 24 hours of elapsed time. We use
1000 nodes and the base configuration in Table 4. The SLA violation results are shown on
Figure 7 .

The hybrid architecture achieved lower SLA violation compared to centralized, and the
RL hybrid outperformed by 69.9%, 320.0% and 468.3% against the heuristic hybrid, RL

Scalable Virtual Machine Migration using Reinforcement Learning 21

Fig. 7 Mixed workload results: Number of SLA Violations response time > 0.5s

centralized and heuristic centralized, respectively. This is due to the RL approach of dis-
covering target allocations that achieve the desired VM response time, and thus reduce
SLA violations. The reward function drives behaviour of RL to choose target nodes that
are switched on and have lower existing CPU utilisation. While the centralized architecture
benefited from using RL, the hybrid architecture benefited more due to its autonomous ap-
proach to decision making, which provides rapid decision making, combined with a target
node selection that maintains VM response time, thus reducing SLA violations.

Compared to the No adaptation experiment, all approaches unsurprisingly reduced SLA
violations.

7.6 Workload Impact

To investigate the impact of workload further, we use the individual workloads from the
previous experiment and evaluate them individually. For this experiment we use an arrival
rate of 180 new VMs per hour, with each VM running for 10 hours before shutting down. The
experiment simulated 24 hours of elapsed time. We use the base configuration in Table 4.

The results for the Google 1 workload are shown in Figure 8, and show the effect on SLA
violations. This workload has an average of 0.74 normalized load and thus high stress. The
RL hybrid approach outperformed other approaches by 119.4%, 248.4% and 299.7% against
the heuristic hybrid, RL centralized and heuristic centralized respectively. The RL hybrid ap-
proach continues to perform well on this stressful workload, and shows further improvement
in this workload against the heuristic hybrid; 119% versus 69% in the mixed workload, indi-
cating the hybrid architecture benefits from the RL learnt policy, which favours target nodes
that achieve target response time, while the heuristic approach does not take feedback signal
on target node selection.

The results for the Google 3 workload are shown in Figure 9, and show the effect on
SLA violations. This workload has an average of .83 normalized load and is the highest
workload stress we have evaluated. The hybrid approach outperformed other approaches
by 192.0%, 300.6% and 555.0% against the heuristic hybrid, RL centralized and heuristic
centralized respectively. The RL hybrid approach performs even better on this workload,

22 *Abdul Rahman Hummaida et al.

Fig. 8 Google 1 workload results - Number of SLA Violations response time > 0.5s

Fig. 9 Google 3 workload results - Number of SLA Violations response time > 0.5s

compared to the Google 1 workload, indicating that more stressful workloads benefit form
the learned RL policy, which favours target node selection that meets target response time.

The results for the Clarknet workload are shown in Figure 10, and show the effect on
SLA violations. This workload has an average of .31 normalized load and is a lower stress
compared to the Google workloads. The hybrid approach outperformed other approaches
by 85.7%, 109.9% and 156.6% against the heuristic hybrid, RL centralized and heuristic
centralized, respectively. These are lower improvements, indicating higher stress workload
benefit more from the RL hybrid approach.

The results for the EPA workload are shown in Figure 11, and show the effect on SLA
violations. This workload has an average of .24 normalized load and is the least stress work-
load we have evaluated. The hybrid approach outperformed other approaches by 54.9%,
212.1% and 269.2% against the heuristic hybrid, RL centralized and heuristic centralized,
respectively. These are lower improvements, indicating higher stress workloads benefit more
from the RL hybrid approach.

Scalable Virtual Machine Migration using Reinforcement Learning 23

Fig. 10 Clarknet workload results - Number of SLA Violations response time > 0.5s

Fig. 11 EPA workload results - Number of SLA Violations response time > 0.5s

7.7 Dynamic Workload

To evaluate how the different approaches cope with multiple high arrival rates, this ex-
periment involves several sharp increases in arrival rate, by 400 VMs per hour each time.
High arrival rate for VMs causes more VMs to be placed in the infrastructure, and in turn
more VMs that can exhibit SLA violations. We examine the scenario in Figure 12a. There
is a small and steady flow of new VM creation requests, followed by two sharp increases
in number of VM creation requests that persist for several hours, followed by a return to
the previous small steady number of VM creation requests. Each VM runs for 1 hour be-
fore shutting down, and we use the Google 3 trace. The experiment simulates 24 hours of
elapsed time, and we use the base configuration in Table 4. The high arrival rate of VMs on
the infrastructure, as each VM runs the Google 3 workload, increases the VMs that begin
to experience a stress state where they do not deliver the requested CPU demand, and thus
enter SLA violation. We hypothesised that this could be challenging for RL approaches, as
they could learn suitable responses for arrival rates that are not sustained.

The results are shown in Figure 12b, and show number of incurred SLA violations.
The hybrid based approaches outperform the centralized approach, due to the rapid decision
making process. The RL hybrid outperforms the heuristic hybrid by receiving a reward for
powering on new nodes as the load increases, shown in Figure 13. During each of the spikes

24 *Abdul Rahman Hummaida et al.

(a) (b)

Fig. 12 High dynamic workload: a)Arrival rate patterns, b) SLA violations for dynamic arrival rate

Fig. 13 Active Nodes in RL Hybrid versus Heuristic Hybrid

at hours 5 and 14, the RL switched on more nodes versus steady new nodes in the heuristic
hybrid. While the RL centralized has an improved target node allocation, compared to the
heuristic centralized, it continued to suffer from the time taken for the decision making
inherent in the centralized architecture.

7.8 Scalability

To evaluate how the approaches scale, we use the most stressful workload, Google 3, and
maintain the stress ratio for each node, by increasing the load and the number of nodes in the
data centre. Similar to other experiments, we simulate 24 hours and the results are shown in
Table 5.

As the load ratio increases with more nodes, it is expected the number of SLA violations
increases. The RL hybrid approach maintains its SLA performance as more nodes and VMs

Scalable Virtual Machine Migration using Reinforcement Learning 25

Table 5 Scalability of the different approaches - SLA Violations

Number of Nodes RL Hybrid Heuristic Hybrid RL Centralized Heuristic Centralized
1000 2518 7353 10257 13788
2000 5485 18817 22357 29262
3000 8537 29784 34161 44044
4000 11051 43633 46882 59026
5000 17771 56678 58730 75208

are added to the data centre, with lower SLA violations than all other approaches, on average
239.5%, 294.0% and 410.9% compared to the heuristic hybrid, RL centralized and heuristic
centralized respectively.

7.9 Learning Performance

Convergence behaviour of an RL agent is a useful indicator to show whether the agent is
learning an optimal policy. A preferable convergence shape is one where cumulative reward
can gradually increase through time and converge to a high value [66]. While the RL hybrid
and RL centralized use the same RL approach to monitor, classify and action node state, they
have different decision making architectures. The RL hybrid performs parallel decentralized
learning and the centralized has a single learning agent. The hybrid architecture has more
rapid decision making and is able to execute more actions in a given time window, and is able
to converge on a policy faster than the centralized approach. Figure 14 shows the cumulative
value of RL actions for both approaches, from the Google 3 workload experiment. Initially
there is low stress on the infrastructure, and the RL approach is making No-operation actions
and both RL hybrid and RL centralized are receiving similar rewards. As the stress on the
infrastructure increases, the RL hybrid is able to observe rewards from actions quicker than
the RL centralized approach, and thus accumulate higher value during the experiment.

Fig. 14 RL convergence: Hybrid versus Centralized

The unique cooperation between the RL agents running on NCs and LNs, enables es-
calation by the NC within one overlay to other overlays in the cluster. In this paper, we
extended the original hybrid architecture, where escalation to the LN was only performed
when no target nodes where available in the overlay, to NCs being able to escalate at any

26 *Abdul Rahman Hummaida et al.

point using an RL action. This enables the RL agent to explore escalation to LN prior to the
overlay becoming full. Figure 15 shows the reduction in SLA violations in the RL escala-
tion approach. By performing opportunistic escalation, the NC is reducing pressure on the
overlay by leaving capacity in the overlay and thus reducing SLA violations.

Fig. 15 SLA violations: Hybrid Heuristic versus Hybrid RL with escalation

8 Conclusion

RL has shown great promise in a range of control applications. Using RL in managing
cloud infrastructures offers adaptability and advantages over heuristic based approaches,
which historically have been threshold based and require significant domain and applica-
tion knowledge to define threshold values. In this paper, we presented a RL management
algorithm that reduces the state and action space and uses a unique multi level RL agent
cooperation, between a NC and LN in hierarchical management, to further improve SLA
violations performance. This RL management algorithm integrates well into a hybrid man-
agement framework, from our earlier work. We evaluated the performance of our approach
using workload traces and simulation, and compared the results obtained with an established
heuristic, demonstrating significant improvement to SLA violations and high scalability. Fu-
ture areas of improvement include expanding the RL state space, and enabling the RL MA
to learn to migrate VMs just before they become stressed. Our RL approach can also be ex-
tended to include a RL approach for initial VM placement and consolidation. Additionally,
it would be valuable to validate the simulation results with experimentation on actual cloud
infrastructure.

9 Data Availability

The data traces used as input for this paper are part of the DCSim [57] simulator, and are
available from Github: https://github.com/digs-uwo/dcsim/tree/master/traces. Most of the
data generated by this research is contained in the results section of this paper, and the full
datasets generated are available from the corresponding author on request.

Scalable Virtual Machine Migration using Reinforcement Learning 27

10 Conflict of Interest

The authors declare that they have no conflict of interest.

References

1. Hpe proliant (2016). URL https://www.hpe.com
2. Vmware. http://www.vmware.com (2016). URL http://www.vmware.com/
3. Ahmad, R.W., Gani, A., Hamid, S.H.A., Shiraz, M., Yousafzai, A., Xia, F.: A survey on virtual machine

migration and server consolidation frameworks for cloud data centers. Journal of Network and Computer
Applications 52, 11–25 (2015). DOI doi.org/10.1016/j.jnca.2015.02.002

4. Aldhalaan, A., Menascé, D.A.: Autonomic allocation of communicating virtual machines in hierarchical
cloud data centers. In: Cloud and Autonomic Computing (ICCAC), 2014 International Conference on,
pp. 161–171. Cloud and Autonomic Computing (ICCAC), 2014 International Conference on (2014)

5. Arabnejad, H., Pahl, C., Jamshidi, P., Estrada, G.: A comparison of reinforcement learning techniques
for fuzzy cloud auto-scaling. In: 2017 17th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGRID), pp. 64–73 (2017). DOI 10.1109/CCGRID.2017.15

6. Barrett, E., Howley, E., Duggan, J.: Applying reinforcement learning towards automating resource allo-
cation and application scalability in the cloud. Concurrency and Computation: Practice and Experience
25(12), 1656–1674 (2013). DOI doi.org/10.1002/cpe.2864

7. Beloglazov, A., Buyya, R.: Optimal online deterministic algorithms and adaptive heuristics for energy
and performance efficient dynamic consolidation of virtual machines in cloud data centers. Concurrency
and Computation: Practice and Experience 24, 1397–1420 (2012)

8. Bibal Benifa, J.V., Dejey, D.: Rlpas: Reinforcement learning-based proactive auto-scaler for resource
provisioning in cloud environment. Mobile Networks and Applications 24(4), 1348–1363 (2019). DOI
10.1007/s11036-018-0996-0

9. Bitsakos, C., Konstantinou, I., Koziris, N.: Derp: A deep reinforcement learning cloud system for elastic
resource provisioning. In: 2018 IEEE International Conference on Cloud Computing Technology and
Science (CloudCom), pp. 21–29 (2018). DOI 10.1109/CloudCom2018.2018.00020

10. Bu, X., Rao, J., Xu, C.Z.: Coordinated self-configuration of virtual machines and appliances using a
model-free learning approach. IEEE Transactions on Parallel and Distributed Systems 24(4), 681–690
(2013). DOI 10.1109/TPDS.2012.174

11. Calcavecchia, N.M., Caprarescu, B.A., Di Nitto, E., Dubois, D.J., Petcu, D.: Depas: a decentralized
probabilistic algorithm for auto-scaling. Computing 94(8), 701–730 (2012)

12. Chen, Z., Hu, J., Min, G.: Learning-based resource allocation in cloud data center using advantage actor-
critic. In: ICC 2019 - 2019 IEEE International Conference on Communications (ICC), pp. 1–6 (2019).
DOI 10.1109/ICC.2019.8761309

13. Chowdhury, M.R., Mahmud, M.R., Rahman, R.M.: Implementation and performance analysis of various
vm placement strategies in cloudsim. Journal of Cloud Computing 4(1), 20 (2015). DOI 10.1186/s13677-
015-0045-5

14. Citrix: Xen. http://www.xenserver.org (2016). URL http://www.xenserver.org
15. Duggan, M., Flesk, K., Duggan, J., Howley, E., Barrett, E.: A reinforcement learning approach for dy-

namic selection of virtual machines in cloud data centres (2016). DOI 10.1109/INTECH.2016.7845053
16. Dulac-Arnold, G., Levine, N., Mankowitz, D.J., Li, J., Paduraru, C., Gowal, S., Hester, T.: Challenges

of real-world reinforcement learning: definitions, benchmarks and analysis. Machine Learning (2021).
DOI 10.1007/s10994-021-05961-4

17. Gahlawat, M., Sharma, P.: Survey of virtual machine placement in federated clouds. In:
2014 IEEE International Advance Computing Conference (IACC), pp. 735–738 (2014). DOI
10.1109/IAdCC.2014.6779415

18. Ghanbari, H., Simmons, B., Litoiu, M., Barna, C., Iszlai, G.: Optimal autoscaling in a iaas cloud. In:
Proceedings of the 9th International Conference on Autonomic Computing, ICAC ’12, pp. 173–178.
Association for Computing Machinery, New York, NY, USA (2012). DOI 10.1145/2371536.2371567

19. Ghobaei-Arani, M., Jabbehdari, S., Pourmina, M.A.: An autonomic resource provisioning approach for
service-based cloud applications: A hybrid approach. Future Generation Computer Systems 78, 191 –
210 (2018). DOI doi.org/10.1016/j.future.2017.02.022

20. Gholipour, N., Arianyan, E., Buyya, R.: A novel energy-aware resource management technique using
joint vm and container consolidation approach for green computing in cloud data centers. Simulation
Modelling Practice and Theory 104, 102127 (2020). DOI doi.org/10.1016/j.simpat.2020.102127

28 *Abdul Rahman Hummaida et al.

21. Guo, W., Tian, W., Ye, Y., Xu, L., Wu, K.: Cloud resource scheduling with deep reinforcement
learning and imitation learning. IEEE Internet of Things Journal 8(5), 3576–3586 (2021). DOI
10.1109/JIOT.2020.3025015

22. Gupta, M.K., Amgoth, T.: Resource-aware virtual machine placement algorithm for iaas cloud. The
Journal of Supercomputing 74(1), 122–140 (2018). DOI 10.1007/s11227-017-2112-9

23. Hummaida, A.R., Paton, N.W., Sakellariou, R.: Adaptation in cloud resource configuration: a survey.
Journal of Cloud Computing 5(1), 1–16 (2016)

24. Hummaida, A.R., Paton, N.W., Sakellariou, R.: Shdf - a scalable hierarchical distributed framework for
data centre management. In: 2017 16th International Symposium on Parallel and Distributed Computing
(ISPDC), pp. 102–111. 16th International Symposium on Parallel and Distributed Computing (ISPDC)
(2017). DOI 10.1109/ISPDC.2017.15

25. Jamshidi, P., Sharifloo, A.M., Pahl, C., Metzger, A., Estrada, G.: Self-learning cloud controllers: Fuzzy
q-learning for knowledge evolution. In: 2015 International Conference on Cloud and Autonomic Com-
puting, pp. 208–211 (2015). DOI 10.1109/ICCAC.2015.35

26. Jangiti, S., Sriram. V.S., S.: Scalable and direct vector bin-packing heuristic based on residual resource
ratios for virtual machine placement in cloud data centers. Computers & Electrical Engineering 68,
44–61 (2018). DOI doi.org/10.1016/j.compeleceng.2018.03.029

27. Jauro, F., Chiroma, H., Gital, A.Y., Almutairi, M., Abdulhamid, S.M., Abawajy, J.H.: Deep learning
architectures in emerging cloud computing architectures: Recent development, challenges and next re-
search trend. Applied Soft Computing 96, 106582 (2020). DOI doi.org/10.1016/j.asoc.2020.106582

28. Jin, Y., Bouzid, M., Kostadinov, D., Aghasaryan, A.: Resource management of cloud-enabled systems
using model-free reinforcement learning. Annals of Telecommunications 74(9), 625–636 (2019). DOI
10.1007/s12243-019-00720-y

29. John, I., Sreekantan, A., Bhatnagar, S.: Efficient adaptive resource provisioning for cloud applications
using reinforcement learning. In: 2019 IEEE 4th International Workshops on Foundations and Applica-
tions of Self* Systems (FAS*W), pp. 271–272 (2019). DOI 10.1109/FAS-W.2019.00077

30. Kardani-Moghaddam, S., Buyya, R., Ramamohanarao, K.: Adrl: A hybrid anomaly-aware deep rein-
forcement learning-based resource scaling in clouds. IEEE Transactions on Parallel and Distributed
Systems 32(3), 514–526 (2021). DOI 10.1109/TPDS.2020.3025914

31. Keller, G., Tighe, M., Lutfiyya, H., Bauer, M.: A hierarchical, topology-aware approach to dynamic data
centre management. In: Network Operations and Management Symposium (NOMS), pp. 1 –7. Network
Operations and Management Symposium (NOMS) (2014)

32. Khan, T., Tian, W., Buyya, R.: Machine learning (ml)-centric resource management in cloud computing:
A review and future directions (2021)

33. Kim, S., Choi, Y.r.: Constraint-aware vm placement in heterogeneous computing clusters. Cluster Com-
puting 23(1), 71–85 (2020). DOI 10.1007/s10586-019-02966-6

34. Lebre, A., Pastor, J., Simonet, A., Südholt, M.: Putting the next 500 vm placement algorithms to the
acid test: The infrastructure provider viewpoint. IEEE Transactions on Parallel and Distributed Systems
30(1), 204–217 (2019). DOI 10.1109/TPDS.2018.2855158

35. Liu, N., Li, Z., Xu, J., Xu, Z., Lin, S., Qiu, Q., Tang, J., Wang, Y.: A hierarchical framework of cloud
resource allocation and power management using deep reinforcement learning. In: 2017 IEEE 37th
International Conference on Distributed Computing Systems (ICDCS), pp. 372–382 (2017). DOI
10.1109/ICDCS.2017.123

36. Lolos, K., Konstantinou, I., Kantere, V., Koziris, N.: Elastic management of cloud applications using
adaptive reinforcement learning. In: 2017 IEEE International Conference on Big Data (Big Data), pp.
203–212 (2017). DOI 10.1109/BigData.2017.8257928

37. Masdari, M., Zangakani, M.: Green cloud computing using proactive virtual machine placement: Chal-
lenges and issues. Journal of Grid Computing 18(4), 727–759 (2020). DOI 10.1007/s10723-019-09489-9

38. Matignon, L., Laurent, G.J., Fort-piat, N.L.: Improving reinforcement learning speed for robot control.
In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3172–3177 (2006).
DOI 10.1109/IROS.2006.282341

39. Maurer, M., Brandic, I., Sakellariou, R.: Adaptive resource configuration for cloud infrastructure man-
agement. Future Generation Computer Systems 29(2), 472–487 (2013)

40. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller,
M., Fidjeland, A.K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Ku-
maran, D., Wierstra, D., Legg, S., Hassabis, D.: Human-level control through deep reinforcement learn-
ing. Nature 518(7540), 529–533 (2015). DOI 10.1038/nature14236

41. Moreno-Vozmediano, R., Montero, R.S., Huedo, E., Llorente, I.M.: Efficient resource provisioning for
elastic cloud services based on machine learning techniques. Journal of Cloud Computing 8(1), 5 (2019).
DOI 10.1186/s13677-019-0128-9

Scalable Virtual Machine Migration using Reinforcement Learning 29

42. Muller-Merbach, H.: Heuristics and their design: a survey. European Journal of Operational Research
8(1), 1–23 (1981). URL https://ideas.repec.org/a/eee/ejores/v8y1981i1p1-23.html

43. Nouri, S.M.R., Li, H., Venugopal, S., Guo, W., He, M., Tian, W.: Autonomic decentralized elasticity
based on a reinforcement learning controller for cloud applications. Future Generation Computer Sys-
tems 94, 765 – 780 (2019). DOI doi.org/10.1016/j.future.2018.11.049

44. Pantazoglou, M., Tzortzakis, G., Delis, A.: Decentralized and energy-efficient workload management in
enterprise clouds. IEEE Transactions on Cloud Computing 4(2), 196–209 (2016)

45. Pietri, I., Sakellariou, R.: Mapping virtual machines onto physical machines in cloud computing: A
survey. ACM Comput. Surv. 49(3) (2016). DOI 10.1145/2983575

46. Rao, J., Bu, X., Xu, C.Z., Wang, K.: A distributed self-learning approach for elastic provisioning
of virtualized cloud resources. In: 2011 IEEE 19th Annual International Symposium on Modelling,
Analysis, and Simulation of Computer and Telecommunication Systems, pp. 45–54 (2011). DOI
10.1109/MASCOTS.2011.47

47. Ren, H., Wang, Y., Xu, C., Chen, X.: Smig-rl: An evolutionary migration framework for cloud ser-
vices based on deep reinforcement learning. ACM Trans. Internet Technol. 20(4) (2020). DOI
10.1145/3414840

48. Sedaghat, M., Hernández-Rodriguez, F., Elmroth, E., Girdzijauskas, S.: Divide the task, multiply the
outcome: Cooperative vm consolidation. In: IEEE International Conference on Cloud Computing Tech-
nology and Science, pp. 300–305. IEEE International Conference on Cloud Computing Technology and
Science, IEEE, Washington, DC, USA (2014)

49. Shaw, R., Howley, E., Barrett, E.: Applying reinforcement learning towards automating energy efficient
virtual machine consolidation in cloud data centers. Information Systems p. 101722 (2021). DOI
doi.org/10.1016/j.is.2021.101722

50. Silva Filho, M.C., Monteiro, C.C., Inácio, P.R., Freire, M.M.: Approaches for optimizing virtual machine
placement and migration in cloud environments: A survey. Journal of Parallel and Distributed Computing
111, 222–250 (2018). DOI doi.org/10.1016/j.jpdc.2017.08.010

51. Sina, M., Dehghan, M., Rahmani, A.M.: Car-plive: Cloud-assisted reinforcement learning based p2p live
video streaming: a hybrid approach. Multimedia Tools and Applications 78(23), 34095–34127 (2019).
DOI 10.1007/s11042-019-08102-1

52. Sniezynski, B., Nawrocki, P., Wilk, M., Jarzab, M., Zielinski, K.: Vm reservation plan adaptation us-
ing machine learning in cloud computing. Journal of Grid Computing 17(4), 797–812 (2019). DOI
10.1007/s10723-019-09487-x

53. Song, B., Hassan, M., Huh, E.n.: A novel heuristic-based task selection and allocation framework in
dynamic collaborative cloud service platform. In: 2010 IEEE Second International Conference on Cloud
Computing Technology and Science, pp. 360–367 (2010). DOI 10.1109/CloudCom.2010.53

54. Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction, vol. 1. Cambridge:MIT press (1998)
55. Thanh Binh, H.T., Phi Le, N., Minh, N.B., Thu Hai, T., Minh, N.Q., Bao Son, D.: A reinforcement learn-

ing algorithm for resource provisioning in mobile edge computing network. In: 2020 International Joint
Conference on Neural Networks (IJCNN), pp. 1–7 (2020). DOI 10.1109/IJCNN48605.2020.9206947

56. Tighe, M., Keller, G., Bauer, M., Lutfiyya: A distributed approach to dynamic vm management. In:
Proceedings of the 9th International Conference on Network and Service Management, p. 166 to 170.
Proceedings of the 9th International Conference on Network and Service Management (2013)

57. Tighe, M., Keller, G., Bauer, M., Lutfiyya, H.: Dcsim: A data centre simulation tool for evaluating dy-
namic virtualized resource management. In: Network and service management (cnsm), 2012 8th in-
ternational conference and 2012 workshop on systems virtualiztion management (svm), pp. 385–392.
Network and service management (cnsm), 2012 8th international conference and 2012 workshop on
systems virtualiztion management (svm) (2012)

58. Walsh, W., Tesauro, G., Kephart, J., Das, R.: Utility functions in autonomic systems. In: In-
ternational Conference on Autonomic Computing, 2004. Proceedings., pp. 70–77 (2004). DOI
10.1109/ICAC.2004.1301349

59. Watkins, C.J.C.H.: Learning from delayed rewards. In: Ph.D. Thesis, (1989)
60. Witanto, J.N., Lim, H., Atiquzzaman, M.: Adaptive selection of dynamic vm consolidation algorithm

using neural network for cloud resource management. Future Generation Computer Systems 87, 35–42
(2018). DOI doi.org/10.1016/j.future.2018.04.075

61. Wu, Y., Tang, M., Fraser, W.: A simulated annealing algorithm for energy efficient virtual machine
placement. In: 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp.
1245–1250 (2012). DOI 10.1109/ICSMC.2012.6377903

62. Wuhib, F., Stadler, R., Spreitzer, M.: Dynamic resource allocation with management objectives: im-
plementation for an openstack cloud. IEEE Transactions on Network and Service Management 9(2),
213–225 (2012)

30 *Abdul Rahman Hummaida et al.

63. Xu, H., Liu, Y., Wei, W., Xue, Y.: Migration cost and energy-aware virtual machine consolidation under
cloud environments considering remaining runtime. International Journal of Parallel Programming 47(3),
481–501 (2019). DOI 10.1007/s10766-018-00622-x

64. Yadav, M.P., Rohit, Yadav, D.K.: Resource provisioning through machine learning in cloud services.
Arabian Journal for Science and Engineering (2021). DOI 10.1007/s13369-021-05864-5

65. Yadav, R., Zhang, W., Li, K., Liu, C., Shafiq, M., Karn, N.K.: An adaptive heuristic for managing energy
consumption and overloaded hosts in a cloud data center. Wireless Networks 26(3), 1905–1919 (2020).
DOI 10.1007/s11276-018-1874-1

66. Ying, C., Li, B., Ke, X., Guo, L.: Raven: Scheduling virtual machine migration during datacenter up-
grades with reinforcement learning. Mobile Networks and Applications (2020). DOI 10.1007/s11036-
020-01632-1

67. Zolfaghari, R., Sahafi, A., Rahmani, A.M., Rezaei, R.: Application of virtual machine consolidation in
cloud computing systems. Sustainable Computing: Informatics and Systems 30, 100524 (2021). DOI
doi.org/10.1016/j.suscom.2021.100524

4.5 Dynamic Threshold Setting for VM Migration

Abdul R Hummaida, Norman W Paton and Rizos Sakellariou

Publishing state: Published in ESOCC 2022.

Summary: Invocation of VM migration is widely studied in the literature and
typically uses dynamic CPU utilization threshold. One disadvantage of proposed ap-
proaches is they use node metrics (e.g., CPU and memory), and do not factor in VM
performance metrics. This may lead to either early or delayed migration of VMs. We
present a dynamic approach that factors the performance of a VM in setting the node’s
CPU threshold to use for migration.

We hypothesise that a fine-grained tracking of CPU utilization between 90% and
100% will enable our RL approach to detect a more optimal migration threshold, com-
pared to a single group for the 90%+ CPU utilization, thus delaying the migration
point. We apply the fine- grained approach on 90% and above to avoid an increase in
the RL state space, which could impact convergence speed.

The Q-learning algorithm has some variables that may influence its performance,
the learning rate α and the discount factor γ. The learning rate determines how the
agent learns from recent updates. Values closer to zero make the agent exploit prior
knowledge, and values closer to 1 make the agent consider the most recent information.
The discount factor is used to dampen the reward’s effect on the agent’s choice of
action and values closer to one will make the agent favour a long term reward.

In our experiments, we have observed some sensitivity to the chosen values for
α and γ. Values closer to 1 for α result in higher errors in estimates and an increase
in SLA violations. This is accompanied by some reduction in energy consumption.
Given these results, we have chosen to use a value of 0.5 for α, ensuring errors in the
estimate are backed up. Values closer to 1 for γ result in the agent favouring long term
reward and delaying the migration point, resulting in more VMs being packed onto a
node and lower energy consumption. This is also accompanied by an increase in SLA
violations. Given the results of our experiments, we have chosen to use a value of 0.7
for γ that balances SLA violations and energy consumption.

Key contributions: Contribution 5 (see Section 1.4).

145

Dynamic Threshold Setting for VM Migration

Abdul Rahman Hummaida[0000−0002−3007−2289], Norman W
Paton[0000−0003−2008−6617], and Rizos Sakellariou[0000−0002−6104−6649]

University of Manchester, Department of Computer Science, Kilburn Building,
Oxford Rd, Manchester M13 9PL, UK

abdul.hummaida@postgrad.manchester.ac.uk,

{norman.paton,rizos}@manchester.ac.uk

Abstract. Cloud data centres require efficient management of resources
and robust methods that consider SLA violations, node utilisation and
simplify the adaptation decision making process. Thus resource man-
agement should be ideally solved in an online manner. To address this,
approaches have been presented in the literature to set thresholds that
trigger VM migration. One challenge with these approaches is they typ-
ically use node metrics (e.g., CPU and memory) as an indicator of VM
performance and do not factor in VM performance metrics when setting
the CPU migration threshold. A hypothesis is that migrating VMs with-
out factoring in VM performance metrics, e.g., response time can lead
to either early or delayed migration of VMs. We present an approach to
discover the CPU utilization level for VM migration dynamically. This
approach monitors VM response time and discovers the CPU threshold
where response time would increase beyond a defined SLA level and uses
this threshold for VM migration. We use reinforcement learning (RL) to
learn when it is rewarding to migrate a VM. The RL reward function
drives a policy towards high CPU utilisation and attaches a penalty to
overachieving SLAs. We use simulation to evaluate the approach and
compare it to 4 heuristics: Static, Interquartile Range, Median Absolute
Deviation, Local Regression. The results show a significant reduction in
SLA violations and an increase in CPU utilization of active nodes.

Keywords: Dynamic CPU threshold · Reinforcement Learning · VM
Migration threshold.

1 Introduction

Platform as a service (PaaS) is a service model where Cloud Providers (CPs)
provide hardware, software stacks and runtime environments for application de-
velopment. Customers have control over the development environment, includ-
ing configuration. CPs host the hardware and software on its infrastructure and
remove the need for customers to maintain the application stack, runtime envi-
ronments, operating systems and databases. To provide high levels of availability
and reliability, CPs need to adapt the infrastructure regularly, which is typically
comprised of VMs.

2 A.Hummaida et al.

However, the VM migration process can be expensive, and thus there is a need
to balance the benefit with the cost of the migration. This raises the challenge
of deciding when VM migration should be invoked to achieve this balance. The
constituent parts of VM migration include: (i) node overload detection, (ii) VM
selection for migration from the overloaded node, and (iii) VM placement on a
different target node. This is shown in Figure 1. From our earlier work [19], we
have assumed that a Management Algorithm (MA) is responsible for deciding
how incoming workloads are assigned to infrastructure resources by regularly
assessing the satisfaction of such assignments in achieving a given SLA. The time
complexity of the MA influences the frequency of this assessment; the lower the
complexity, the more frequently the algorithm can be executed. The Management
Framework (MF) enables the MA to execute by providing standard functionality,
such as hierarchy level management, the scope of the infrastructure under control
or aggregation of utilisation metrics. The combined functionality of the MA
and MF results in workloads executing on infrastructure nodes and dynamic
reassignment of workloads to resources. In this paper, we focus on node overload
detection.

Fig. 1. Cloud Resource Management process

The overload detection methods used in the literature fall onto reactive,
proactive and hybrid engagement [20]. Reactive approaches [30, 14, 2] invoke
adaptation when a monitored metric, e.g. CPU utilisation, reaches a specific
threshold or when an event is received, such as new VM placement or termi-
nation request. Proactive approaches [24, 5, 33] predict what demands will be

Dynamic Threshold Setting for VM Migration 3

placed on the infrastructure and invoke adaptation ahead of the expected re-
source contention point. Hybrid approaches [22, 4] utilise proactive methods and
combine these with reactive methods to engage adaptation for long and short
term time scales.

The challenge we focus on is in reactive approaches, and these typically use
ad hoc manually determined policies, such as threshold-based that are popular
due to their simplicity. A key element to the threshold-based approach is the
assumption there is a high chance that an overload occurs when a node’s uti-
lization exceeds the set threshold [1, 25, 3, 15, 39, 29]. Thus, the threshold level
creates an association between a node metric, e.g. CPU utilization, and SLA
violation. However, the threshold where SLA violations can occur varies based
on the application and the node configuration. Creating a single threshold for
all applications and node configurations is incredibly difficult [13]. While the
current approaches can reduce overload, they can limit the utilization gains that
can be achieved as they leave unused slack for each node. Additionally, thresh-
old approaches can trigger unnecessary migrations as exceeding the set threshold
does not necessarily equate to an SLA violation [12]. In addition to heuristics,
other techniques have been used for node overload detection; [36] propose a
multiobjective optimization that considers the CPU and memory utilization of
VMs and nodes. The authors in [37] propose a bio-inspired method based on
node susceptibility for host overload detection, and the authors in [29] propose
a classical control theory approach.

Application performance is a measure of how well a service performs, and the
metrics for measuring this include response time [18, 16]. Several CPs have mon-
itoring services, including AzureWatch from Microsoft and CloudWatch from
Amazon, that enable monitoring of VM performance hosted on their computing
and storage cloud services [16]. We focus on cases where the response time of
web-based applications forms part of the SLA between the customer and the CP.
The response time can be measured and reported on using the CPs monitoring
services.

We hypothesise that including VM performance in the migration decision
making will lower the number of SLA violations. In this paper, we incorporate
VM response time in a dynamic threshold detection approach and use RL to
detect a rewarding threshold level to use by receiving feedback from the VM
migration process. The main contributions of this paper are the following:

1. A coordinated migration method that automates the setting of CPU thresh-
old, achieving lower SLA violations and increasing node utilization.

2. A model-free reinforcement learning algorithm for online VM migration that
incorporates VM response time in decision making and removes human
knowledge to set CPU threshold.

3. Evaluation of the proposed approach using simulation, appropriate work-
loads and a performance comparison against other approaches in the litera-
ture.

The rest of this paper is organised as follows. Section 2 describes related
work. Section 3 describes the proposed reinforcement learning algorithm. Section

4 A.Hummaida et al.

4 presents an evaluation of our implementation and compares it to four other
heuristic dynamic threshold approaches. In Section 5, we conclude and discuss
future work.

2 Related Work

Reactive approaches are typically implemented using threshold techniques [12]
by triggering adaptation when a node’s utilization reaches a given level. Bel-
oglazov and Buyya [9] proposed a collection of adaptive policies for setting the
upper thresholds: Interquartile Range, Median Absolute Deviation, Local Re-
gression, and Robust Local Regression. The thresholds can be calculated through
statistical analysis of historical node utilisation metrics. Other approaches in-
clude adaptive heuristic algorithms [39]. The authors in [26] proposed an over-
load and underloaded node detection. A node is deemed overloaded if the actual
and the predicted total CPU usage of 7-time intervals ahead exceed the defined
overload threshold. The authors in [25] propose multiple exponential weighted
moving average algorithms to detect overloaded nodes. The authors also incor-
porated a probabilistic approach to counter the uncertainty of the long-term
predictions and the cost of applying the VM migration. Other proposals include
a regression-based algorithm to create an upper threshold for detecting overload
[39]. The approach automatically adjusts the upper CPU utilization threshold
based on the historical CPU utilization of the nodes. The authors in [15] use
three upper CPU utilization thresholds that are set dynamically based on the
conditions of CPU utilization. Other approaches attempted to create a com-
posite metric for overload detection, that combines additional metrics to CPU
utilization, such as memory and network BW utilization [1].

However, these approaches did not incorporate VM performance, such as
response time in setting the node CPU threshold.

Cloud environments are dynamic and exhibit regular changes in the structure
of workloads and access patterns. Aptly, Reinforcement learning (RL) can op-
erate online, learn dynamically from interacting with a changing environment,
and use new information to enhance decision making. RL approaches do not
require prior knowledge of the optimization model and are not coded explicit
instructions relating to which action to take next; instead, they learn actions
through feedback from the environment. These features make RL well suited to
cloud resource management [27]. RL is utilized in multiple approaches related
to cloud resource management [6, 10, 28, 31], and here we focus on some of the
approaches in the literature that use RL to reduce the complexity of setting
adaptation thresholds.

The authors in [23] aim to remove the need for human knowledge to define
adaptation rules by using using a fuzzy rule-based RL algorithm that learns and
modifies fuzzy rules at runtime. The author’s approach combines Q-learning, an
RL algorithm, with fuzzy control where the fuzzy control facilitates human rea-
soning and the Q-learning allows dynamic rules adjustment. The authors in [7]
also aim to adapt the configuration of an application dynamically. They propose

Dynamic Threshold Setting for VM Migration 5

to use RL to manage threshold-based rules, where one controller modifies an
application configuration, and another monitors the adaptation reward. In con-
trast to the approach in [23], the author’s approach requires human knowledge
to initialise the rules.

The authors in [32] propose to manage VM resource configurations by mon-
itoring performance feedback from each VM. The authors aim to optimize the
VM performance by learning the VM resource allocation that enhances metrics
such as VM response time and throughput by using RL. The reconfiguration
process happens periodically on a predefined time interval. A controller fetches
the VMs current state and computes valid actions. The RL state is defined as
a composite of VM memory size, scheduler credit and the number of virtual
CPUs assigned to each VM. The RL method chooses an action and monitors
the reward. Actions adjust resources such as the CPU and memory assigned
to a VM. The work in [11] proposes CoTuner, for coordinated configuration of
VM resources and parameters of their applications. Each VM has an agent that
monitors the VM and adapts its configuration to the environment. Reconfigura-
tion actions take place periodically at predefined time intervals. The RL method
receives performance feedback and updates the VM and application configura-
tion. For VM configuration, CoTuner can adjust both CPU and memory VM
assignments. For applications, CoTuner can change parameter settings.

Similar to our proposed approach, the discussed methods use RL to dynami-
cally change a threshold configuration to optimise performance and reduce SLA
violations. In contrast, our approach uses a reduced RL state instead of tracking
each VM CPU and memory configuration. We track the node CPU utilization
as our primary RL state, resulting in a smaller RL state space and faster con-
vergence compared to approaches with a more dense RL state.

This paper develops an RL-based controller to solve the challenge of de-
termining a node CPU utilization threshold for VM migration and combine
Q-Learning with an aggregated state action space to address the curse of dimen-
sionality in Q-learning. We focus on node overload detection and aim to find
the CPU utilization at which VM response time will start to degrade beyond a
defined SLA target.

3 Proposed Reinforcement Learning Management
Algorithm

In our previous work [19], we presented a novel hybrid hierarchical decentralized
management framework that rapidly provides the information needed for scale
decision making. In this hybrid architecture, higher-level controllers assist lower
decentralised controllers. The lowest level controller manages a single node and
enables it to be completely autonomous and cooperate with other autonomous
nodes to facilitate VM migration. Nodes can receive escalation requests from
higher-level controllers to accommodate a migration, and each node can choose
to accept or reject these requests.

6 A.Hummaida et al.

In this paper, we add an agent that implements our RL approach to each
node in the infrastructure and combines this with our previously proposed hybrid
hierarchical architecture. This creates RL agents that are both autonomous and
cooperate in managing the data centre infrastructure.

(a)

Fig. 2. Granular CPU utilization state

3.1 State

Our goal is to address the challenge of setting a CPU threshold to invoke VM
migration. We aim to regularly discover the node CPU utilization that returns
the highest reward for performing a VM migration. To achieve this, we need to
track nodes CPU state and associate a reward for migrating at each CPU state.
However, the granularity of capturing the CPU state is crucial in avoiding the
high dimensionality challenge in RL.

We use a state reduction approach and aggregate node state to groups, with
each group based on their CPU utilisation, as shown in Figure 2. By default, we
start by creating ten groups, 10% each, using Equation 1, which creates groups
from 0 to 9. For example, State1 means the node state has an average CPU
utilisation of 10% to 19%. State6 means the node has an average utilisation
between 60% and 69%.

stateGroup =
avgCpuUtilization(node)

stateGroups
(1)

We hypothesise that a fine-grained tracking of CPU utilization between 90% and
100% will enable our RL approach to detect a more optimal migration threshold,
compared to a single group for the 90%+ CPU utilization. We apply the fine-
grained approach on 90% and above to avoid an increase in the RL state space,
which could impact convergence speed.

Periodically, each node additionally classifies the state for all running VMs
as Normal or Stressed, and we use response time as a measure for application
performance [17]. To account for variation in response time during the lifetime
of an application, we use an approach similar to [28] and apply linear regression

Dynamic Threshold Setting for VM Migration 7

on collected response time during each monitoring period. A VM is classed as
stressed when the 95th percentile of response time during a monitoring period is
above a defined SLA threshold that by default is 500ms. We categorise the state
of VMs as Normal when the 95th percentile of the response time is below the de-
fined SLA level. The classification of state occurs during the regular node check.
When a VM is stressed, the RL agent always engages the migration mechanism
and chooses an action, using the method described in the next section. When
VMs are in a normal state, the agent will choose an action using an ε-greedy
policy [34] to decide if migration should be performed on this node state. This
means with a small probability of ε, the agent will choose to explore and not
exploit by randomly selecting an available action. This leads the agent to learn
the node CPU utilization with the highest reward for migration, which the agent
exploits in future cycles.

3.2 Actions

Each node contains an RL agent in our architecture that carries out decision
making. The RL agent performs actions to achieve QoS metrics and increase
infrastructure utilization. As part of the decision making process, an RL agent
needs to identify a new target node for the VM being migrated. The RL agent
aims to find the actions that maximise reward and chooses a target node based
on a CPU utilization group 0 to 9, based on [21]. When the RL agent chooses
an action target2, it means migrating the VM to a node with CPU utilisation
of 20% to 29%. Once an action is selected, we use a greedy policy to select
the first available node that fits the action group. Typically, the agent chooses
an action that maximises future reward from the available actions. The agent
receives a reward after each action, which is described in the following section.
This reward is used to update the node’s state-action value pair using Equation
2 [38], where α is the learning rate and determines how the agent learns from
recent updates. γ is the discount factor used to dampen the reward’s effect on
the agent’s choice of action. MaxQ(st+1, at+1

) returns the maximum estimate
for the future state-action pair.

Q(st, at)← Q(st, at) + α[rt + γMaxQ((st+1, at+1
)−Q(st, at))] (2)

3.3 Reward

The goal for RL is to maximise rewards through incrementally mapping states
to actions. We track the achieved response time when the agent takes action
at varying levels of CPU utilization and calculate a reward post-action using
Algorithm 1. When currentRT is a value below or equal to the TargetRT and
thus satisfying SLA (line 2), we assign varying reward levels. When the action is
a no-action (line 3), we give the maximum reward of 1 as no migration cost was
incurred and SLA is met. This helps the agent learn that no-action is reward-
ing for the given node state and dynamically learn the threshold to perform a
migration.

8 A.Hummaida et al.

When the VM was not meeting its SLA target, as in stressed (line 5), and
is now meeting SLA, we want to assign a utility that reflects this as a positive
action. Additionally, we want the agent to increase the utilization of target nodes
by choosing a target that can host additional VMs and meet SLA. For example,
when the TargetRT is 0.5 and the currentRT is 0.4, the reward will be 0.8.
When currentRT is 0.3, the reward is 0.6, meaning a higher reward where VMs
response time is closest to the target SLA. This has the effect of the RL agent
choosing higher utilization target groups.

To learn a dynamic threshold, the RL agent will perform exploratory actions,
including no-action and VM migration, using an ε-greedy policy to Q. When the
agent migrates a VM that is not stressed (line 8), we want to assign a reward
that represents closeness to targetRT, with the agent receiving a higher reward
when the previousRT of the VM is closest to TargetRT. As we use previousRT in
the reward, this iteratively helps the agent learn the node state that maximises
reward and thus a threshold for migration. For example, if the agent migrates a
non-stressed VM and the previousRT is 0.4, TargetRT is 0.5, then reward is 0.9.
This would be a rewarding action for the given node’s state. However, a reward
of 1 would have been given in a no-action. This would iteratively help the agent
discover a dynamic threshold by choosing the more rewarding action.

When currentRT is above the TargetRT for the VM, thus causing SLA vio-
lation, we penalise the action (line 10) by using a clamp function to a maximum
of −1. This helps the agent learn the actions that can cause SLA violations, such
as migrating to a highly loaded target node or performing a no-action when the
source is highly loaded. By receiving a negative reward, the agent learns the
node state, thus threshold, that cause SLA violation.

Algorithm 1 helps the agent to learn actions that maximise the reward for a
given node state, rewarding actions that meet SLAs, increasing CPU utilization
and penalising actions that violate SLAs.

Algorithm 1 VM Reward

1: procedure VMreward(VM)
2: if currentRT ≤ TargetRT then
3: if VM.action == NoAction then
4: reward← 1
5: if VM.wasStressed() then
6: reward← currentRT

TargetRT

7: else
8: reward← previousRT

TargetRT

9: else
10: reward← clamp(TargetRT − currentRT, -1)

Dynamic Threshold Setting for VM Migration 9

4 Experimental Setup and Evaluation

We use simulation to facilitate the rapid development of experiments of large
data centres. We have selected DCSim [35] because of its extensibility. We utilise
the hybrid hierarchical decentralized architecture from our earlier work [19], and
combine it with a new dynamic threshold detection using RL.

4.1 Experiments

This section evaluates our proposed dynamic threshold discovery approach and
its ability to improve SLA violations and node CPU utilization. We consider our
proposal under varying workloads and compare our proposal to several overload
detection approaches that are effective in the literature. These are Static, In-
terquartile Range, Median Absolute Deviation, Local Regression. Each of the
dynamic threshold approaches [9] is combined with a VM and target selection
policy. We additionally compare the proposed approach to our earlier work [21]
(RL1). Table 1 shows how we combine these in our experiments.

For workloads, we use public traces included in DCSim: Google 1 and Google
3. Additionally, we use a mixed workload, which comprises traces from Google
1, Google 3, Clarknet and EPA, which are included traces in DCSim. For the
RL parameters in Equation 2, we use α = 0.5, and γ = 0.7 [8].

Table 1. Approaches used in experiments

Comparison
Approach

Overload
Detection

VM Selection
Target

Selection

Static Static [9]
Highest

CPU
Heuristic [9]

IQR IQR [9]
MAD MAD [9]
LR LR [9]

RL 1
VM Response

Time [21]
Stressed VM RL 1

RL 2

VM Response
Time &

Dynamic Threshold
(Proposed)

Stressed VM &
Highest CPU

RL 2

4.2 SLA Violations

SLA is the agreement between a CP and a customer and typically specifies a
minimum quality of service threshold. In our case, this is VM response time,
which we regularly collect for all VMs, and we use it to evaluate if VMs are
meeting their SLA targets.

10 A.Hummaida et al.

(a) (b)

(c)

Fig. 3. Number of SLA violations : a) Google 1, b) Google 3 , c) Mixed workload

This experiment runs the Google 1, Google 3 and Mixed workloads [35] to
evaluate how the stress detection approaches perform on SLA violations. We use
an arrival rate of 90 new applications per hour for this experiment, with each
application running for 10 hours before shutting down. The experiment simulates
24 hours of elapsed time, and we use 500 nodes in this experiment.

The results for Google 1, Google 3 and a mixed workload are shown in Figure
3a, 3b and 3c respectively and show RL significantly reducing the number of
SLA violations for all workloads. On the Google 1 workload, RL2 achieved fewer
migrations against all approaches as it incorporates the VM response time and
thus directly focuses on controlling the VM performance and migrates VMs
when it is close to entering a stressed state. On the Google 3 workload, RL2
achieved fewer migrations than all approaches except RL1, by 12%. On the
Mixed workload, RL2 achieved fewer migrations than all approaches except RL1,
where it has a comparable number of migrations. The additional migrations in
RL2 are due to the exploratory discovery of the migration threshold. They occur
at a low probability (ε) and tend to be distributed throughout the lifecycle of a
VM, and therefore have no impact on SLA violations.

Dynamic Threshold Setting for VM Migration 11

(a) (b)

(c)

Fig. 4. Energy consumption (KWh) : a) Google 1, b) Google 3 , c) Mixed workload

4.3 Energy Consumption

The workloads and VM arrival rates, described in the previous section, create a
load that requires more than 70% of the CPU resources of active nodes. DCSim
can track total energy consumption within the simulated data centre by mapping
CPU utilisation of a node to a defined energy consumption amount and tracking
this accumulatively for all nodes. The energy consumption results for Google 1,
Google 3 and Mixed workload are shown in Figure 4a, 4b and 4c respectively
and show the proposed approach consistently consumed less energy compared
to the dynamic threshold heuristics. On the Google 1 workload, our approach
(RL2) used 20% less energy than RL1. However, RL2 used 7.9% more energy on
the Google 3 workload. This difference is likely due to the number of performed
migrations, where RL2 consumes more energy when it performs more migrations,
which is the case on the Google 3 workload. This hypothesis is further supported
by the result for the mixed workload, where RL1 and RL2 have comparable
energy consumption and number of migrations. RL 2 performs some migrations
to discover a dynamic threshold, and while these do converge, the discovery
process will cause some migration and powering on some nodes, leading to energy
consumption. The agent behaviour typically offsets this to increase the utilization
of nodes and delay VM close to SLA violations, as exhibited in Google 1, where
RL 2 used 27% fewer active nodes than RL1.

12 A.Hummaida et al.

4.4 Learning Threshold Assessment

(a) (b)

(c) (d)

Fig. 5. Q-value for different actions at various CPU utilization levels: a) no-action 91%
& 92%, b) no-action 93% & 94%, c) no action 97% to 99%, d) migrations at 90%+

Our approach aims to discover a dynamic threshold for migrations, which
delays the migration close to the point where SLA violations would start to occur.
Our RL agent aims to perform no-action on VMs up to the point they would
enter a stressed state and accumulate reward as described in Section 3.3. Figure
5 shows the accumulated learning of agents during the Google 3 workload for
different states and actions. The RL agent accumulates Q-value through being in
a state and executing a particular action, thus a Q-value for every state-action
pair at any given time. States visited less frequently will accumulate rewards
slower than more frequent states. Figure 5a shows the agent reward for a no-
action at CPU utilization 91% and 92%. These are typically higher than the
reward the agent receives for migrating at the same CPU utilization, shown in
Figure 5d, and this leads the agent to perform more no-action. As the CPU
utilization increases, we examine some variability on the received reward, shown
in Figure 5b. This becomes more pronounced on higher CPU utilization levels of
97% and 98% suggesting this is the threshold during this experiment, shown in

Dynamic Threshold Setting for VM Migration 13

Figure 5c. At 99% CPU utilization, the agent receives a negative or low reward
for a no-action and a higher reward for performing a migration, and will choose
the migration at this CPU utilization.

Due to limited space on the paper, we have omitted the results for utilization
0 to 80%. These levels occur more frequently and converge rapidly within a few
hours of the learning. This leads our RL agent to execute more no-action and
results in fewer VM migrations than the dynamic heuristics.

5 Conclusion and Future Works

This paper proposes a dynamic approach to setting the CPU threshold level
used to migrate VMs, using RL. Our approach can learn the migration point
dynamically based on the current environment and adjust the migration point
when there are changes in the managed environment. Through experimentation,
we have shown that the approach can reduce SLA violations and can typically
find a more optimal migration point and increase node utilization, compared
to four other heuristics from the literature: Static, Interquartile Range, Median
Absolute Deviation and Local Regression.

Our approach does not require a model of the environment or managed VMs,
making it likely to perform well in executing a range of VMs. However, it is
currently limited by using a single dynamic threshold for the entire node, irre-
spective of the specific behaviour of the individual VMs running on the node. A
more robust approach could extend our mechanism and track VMs CPU to re-
late the properties of the individual VMs to the node’s CPU. This could further
optimise our proposed method by discovering lower CPU utilization points that
reduce SLA violations and higher CPU utilization points that further increase
node utilization. We aim to investigate this in future work.

References

1. A. El-Moursy, A., Abdelsamea, A., Kamran, R., Saad, M.: Multi-dimensional
regression host utilization algorithm (mdrhu) for host overload detec-
tion in cloud computing. Journal of Cloud Computing 8(1), 8 (2019).
https://doi.org/10.1186/s13677-019-0130-2, https://doi.org/10.1186/s13677-019-
0130-2

2. Addis, B., Ardagna, D., Panicucci, B., Squillante, M.S., Zhang, L.: A hierarchi-
cal approach for the resource management of very large cloud platforms. IEEE
Transactions on Dependable and Secure Computing 10, 253–272 (2013)

3. Alarifi, A., Dubey, K., Amoon, M., Altameem, T., El-Samie, F.E.A., Al-
tameem, A., Sharma, S.C., Nasr, A.A.: Energy-efficient hybrid frame-
work for green cloud computing. IEEE Access 8, 115356–115369 (2020).
https://doi.org/10.1109/ACCESS.2020.3002184

4. Ali-Eldin, A., Tordsson, J., Elmroth, E.: An adaptive hybrid elasticity controller
for cloud infrastructures. In: 2012 IEEE Network Operations and Management
Symposium. pp. 204–212. IEEE, Washington, DC, USA (April 2012)

14 A.Hummaida et al.

5. Almeida, J., Almeida, V., Ardagna, D., Cunha, Í., Francalanci, C., Trubian, M.:
Joint admission control and resource allocation in virtualized servers. Journal of
Parallel and Distributed Computing 70, 344–362 (Apr 2010)

6. Arabnejad, H., Pahl, C., Jamshidi, P., Estrada, G.: A comparison of reinforce-
ment learning techniques for fuzzy cloud auto-scaling. In: 2017 17th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGRID). pp.
64–73 (2017). https://doi.org/10.1109/CCGRID.2017.15

7. Bahati, R.M., Bauer, M.A.: Towards adaptive policy-based management. In: 2010
IEEE Network Operations and Management Symposium - NOMS 2010. pp. 511–
518 (2010). https://doi.org/10.1109/NOMS.2010.5488472

8. Barrett, E., Howley, E., Duggan, J.: Applying reinforcement learning towards
automating resource allocation and application scalability in the cloud. Con-
currency and Computation: Practice and Experience 25(12), 1656–1674 (2013).
https://doi.org/doi.org/10.1002/cpe.2864

9. Beloglazov, A., Buyya, R.: Optimal online deterministic algorithms and adaptive
heuristics for energy and performance efficient dynamic consolidation of virtual
machines in cloud data centers. Concurrency and Computation: Practice and Ex-
perience 24, 1397–1420 (Sep 2012)

10. Bibal Benifa, J.V., Dejey, D.: Rlpas: Reinforcement learning-based proactive auto-
scaler for resource provisioning in cloud environment. Mobile Networks and Appli-
cations 24(4), 1348–1363 (2019). https://doi.org/10.1007/s11036-018-0996-0

11. Bu, X., Rao, J., Xu, C.Z.: Coordinated self-configuration of virtual
machines and appliances using a model-free learning approach. IEEE
Transactions on Parallel and Distributed Systems 24(4), 681–690 (2013).
https://doi.org/10.1109/TPDS.2012.174

12. Dabbagh, M., Hamdaoui, B., Guizani, M., Rayes, A.: An energy-
efficient VM prediction and migration framework for overcommitted
clouds. IEEE Transactions on Cloud Computing 6(4), 955–966 (2018).
https://doi.org/10.1109/TCC.2016.2564403

13. Dutreilh, X., Kirgizov, S., Melekhova, O., Malenfant, J., Rivierre, N., Truck, I.:
Using Reinforcement Learning for Autonomic Resource Allocation in Clouds: to-
wards a fully automated workflow. In: 7th International Conference on Auto-
nomic and Autonomous Systems (ICAS’2011). pp. 67–74. Venice, Italy (May 2011),
https://hal-univ-paris8.archives-ouvertes.fr/hal-01122123

14. Feller, E., Rilling, L., Morin, C.: Snooze: A scalable and autonomic virtual machine
management framework for private clouds. In: IEEE/ACM International Sympo-
sium on Cluster, Cloud and Grid Computing (CCGrid). pp. 482 – 489 (2012)

15. Garg, V., Jindal, B.: Energy efficient virtual machine migration approach
with SLA conservation in cloud computing. Journal of Central South
University 28(3), 760–770 (2021). https://doi.org/10.1007/s11771-021-4643-8,
https://doi.org/10.1007/s11771-021-4643-8

16. Ghahramani, M.H., Zhou, M., Hon, C.T.: Toward cloud computing qos architec-
ture: analysis of cloud systems and cloud services. IEEE/CAA Journal of Auto-
matica Sinica 4(1), 6–18 (2017)

17. Ghanbari, H., Simmons, B., Litoiu, M., Barna, C., Iszlai, G.: Optimal autoscaling
in a iaas cloud. In: Proceedings of the 9th International Conference on Autonomic
Computing. pp. 173–178. ICAC ’12, Association for Computing Machinery, New
York, NY, USA (2012). https://doi.org/10.1145/2371536.2371567

18. Hu, Y., Wong, J., Iszlai, G., Litoiu, M.: Resource provisioning for
cloud computing. In: Proceedings of the 2009 Conference of the Cen-

Dynamic Threshold Setting for VM Migration 15

ter for Advanced Studies on Collaborative Research. pp. 101–111. CAS-
CON ’09, IBM Corp., USA (2009). https://doi.org/10.1145/1723028.1723041,
https://doi.org/10.1145/1723028.1723041

19. Hummaida, A.R., Paton, N.W., Sakellariou, R.: Shdf - a scalable hierarchical dis-
tributed framework for data centre management. In: 2017 16th International Sym-
posium on Parallel and Distributed Computing (ISPDC). pp. 102–111. 16th Inter-
national Symposium on Parallel and Distributed Computing (ISPDC) (July 2017).
https://doi.org/10.1109/ISPDC.2017.15

20. Hummaida, A.R., Paton, N.W., Sakellariou, R.: Adaptation in cloud resource con-
figuration: a survey. Journal of Cloud Computing 5(1), 1–16 (2016)

21. Hummaida, A.R., Paton, N.W., Sakellariou, R.: Scalable virtual machine migration
using reinforcement learning. to be published in Journal of Grid Computing (2021)

22. Iqbal, W., Dailey, M.N., Carrera, D., Janecek, P.: Adaptive resource provisioning
for read intensive multi-tier applications in the cloud. Future Generation Computer
Systems 26, 871–879 (June 2011)

23. Jamshidi, P., Pahl, C., Mendonça, N.C.: Managing uncertainty in auto-
nomic cloud elasticity controllers. IEEE Cloud Computing 3(3), 50–60 (2016).
https://doi.org/10.1109/MCC.2016.66

24. Jung, G., Hiltunen, M.A., Joshi, K.R., Schlichting, R.D., Pu, C.: Mistral: Dynam-
ically managing power, performance, and adaptation cost in cloud infrastructures.
In: International Conference on Distributed Computing Systems. pp. 62–73. Inter-
national Conference on Distributed Computing Systems, IEEE, Washington, DC,
USA (2010)

25. Kulshrestha, S., Patel, S.: An efficient host overload detection al-
gorithm for cloud data center based on exponential weighted
moving average. International Journal of Communication Systems
34(4), e4708 (2021). https://doi.org/https://doi.org/10.1002/dac.4708,
https://onlinelibrary.wiley.com/doi/abs/10.1002/dac.4708, e4708 dac.4708

26. Minarolli, D., Mazrekaj, A., Freisleben, B.: Tackling uncertainty in long-term pre-
dictions for host overload and underload detection in cloud computing. Journal
of Cloud Computing 6(1), 4 (2017). https://doi.org/10.1186/s13677-017-0074-3,
https://doi.org/10.1186/s13677-017-0074-3

27. Moreno-Vozmediano, R., Montero, R.S., Huedo, E., Llorente, I.M.: Efficient re-
source provisioning for elastic cloud services based on machine learning techniques.
Journal of Cloud Computing 8(1), 5 (2019). https://doi.org/10.1186/s13677-019-
0128-9

28. Nouri, S.M.R., Li, H., Venugopal, S., Guo, W., He, M., Tian, W.: Auto-
nomic decentralized elasticity based on a reinforcement learning controller for
cloud applications. Future Generation Computer Systems 94, 765 – 780 (2019).
https://doi.org/doi.org/10.1016/j.future.2018.11.049

29. Padala, P., Shin, K.G., Zhu, X., Uysal, M., Wang, Z., Singhal, S., Merchant, A.,
Salem, K.: Adaptive control of virtualized resources in utility computing environ-
ments. In: Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference
on Computer Systems 2007. pp. 289–302. EuroSys ’07, Association for Computing
Machinery, New York, NY, USA (2007). https://doi.org/10.1145/1272996.1273026,
https://doi.org/10.1145/1272996.1273026

30. Quesnel, F., Lèbre, A., Südholt, M.: Cooperative and reactive
scheduling in large-scale virtualized platforms with dvms. Con-
currency and Computation: Practice and Experience 25(12),
1643–1655 (2013). https://doi.org/https://doi.org/10.1002/cpe.2848,
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.2848

16 A.Hummaida et al.

31. Rao, J., Bu, X., Xu, C.Z., Wang, K.: A distributed self-learning ap-
proach for elastic provisioning of virtualized cloud resources. In: 2011 IEEE
19th Annual International Symposium on Modelling, Analysis, and Sim-
ulation of Computer and Telecommunication Systems. pp. 45–54 (2011).
https://doi.org/10.1109/MASCOTS.2011.47

32. Rao, J., Bu, X., Xu, C.Z., Wang, L., Yin, G.: Vconf: A reinforce-
ment learning approach to virtual machines auto-configuration. In: Pro-
ceedings of the 6th International Conference on Autonomic Comput-
ing. pp. 137–146. ICAC ’09, Association for Computing Machinery,
New York, NY, USA (2009). https://doi.org/10.1145/1555228.1555263,
https://doi.org/10.1145/1555228.1555263

33. Shen, Z., Subbiah, S., Gu, X., Wilkes, J.: Cloudscale: Elastic resource scaling for
multi-tenant cloud systems. In: Proceedings of the 2Nd ACM Symposium on Cloud
Computing. pp. 5:1–5:14. SOCC ’11, ACM, New York, NY, USA (2011)

34. Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction, vol. 1. Cam-
bridge:MIT press (1998)

35. Tighe, M., Keller, G., Bauer, M., Lutfiyya, H.: Dcsim: A data centre simulation tool
for evaluating dynamic virtualized resource management. pp. 385–392. Network
and service management (CNSM), 2012 8th international conference and 2012
workshop on systems virtualization management (SVM) (2012)

36. Tseng, F.H., Wang, X., Chou, L.D., Chao, H.C., Leung, V.C.M.: Dynamic
resource prediction and allocation for cloud data center using the multiob-
jective genetic algorithm. IEEE Systems Journal 12(2), 1688–1699 (2018).
https://doi.org/10.1109/JSYST.2017.2722476

37. Wang, J.V., Ganganath, N., Cheng, C.T., Tse, C.K.: Bio-inspired heuristics for
VM consolidation in cloud data centers. IEEE Systems Journal 14(1), 152–163
(2020). https://doi.org/10.1109/JSYST.2019.2900671

38. Watkins, C.J.C.H.: Learning from Delayed Rewards. Ph.D. thesis (1989)
39. Yadav, R., Zhang, W., Li, K., Liu, C., Shafiq, M., Karn, N.K.: An adaptive heuristic

for managing energy consumption and overloaded hosts in a cloud data center.
Wireless Networks 26(3), 1905–1919 (2020). https://doi.org/10.1007/s11276-018-
1874-1

Chapter 5

Conclusion

This chapter provides a critical analysis of the related work, concludes the thesis and
discusses future directions. Section 5.1 provides a critical analysis of the related work
in the papers contained in Chapter 4. Each of those papers has a related work section,
and this section acts as an addition to place the results as a whole within their wider
context. We cover each contributed paper and critically analyse papers from the closely
related literature. Section 5.2 summarises the thesis and relates the outcomes to the
research objectives, described in Section 1.2. The chapter concludes by discussing
future research directions in Section 5.4.

5.1 Critical Analysis of Related Work

5.1.1 Contribution 1: Adaptation in Cloud Resource Configura-
tion: A Survey

This paper surveys resource reconfiguration, covering 40+ publications that focus on
the adaptation of computing resources in a cloud context. The chosen publications
appeared in cloud focused journals and conferences. The survey contributions are a
definition for cloud adaptation and a classification that we use to survey the literature.

Multiple surveys pull together different features of cloud resource management
[51, 33, 47, 148]. Some of the surveys focus on the cloud provider (CP) perspective,
and others on the cloud customer perspective.

In [51] the authors survey elastic approaches from a cloud customer perspective,
providing a high-level overview of the methods, and identified several cloud customer
open challenges, including lack of standardised APIs and startup time of requested

162

resources. Our survey is different and focuses on the cloud provider perspective, em-
phasising adaptation. Another survey focusing on the cloud customer perspective is
the work in [33], where the authors survey autoscaling and classify the literature based
on the adaptation techniques used. Our survey focuses on the CPs persecutive and
thus included VM migration and server consolidation; in contrast to the authors, only
migration was covered. Additionally, our survey covers a more extensive taxonomy of
cloud resource management, including the adapted resource, adaptation objective, and
decision making engine architecture used for adaptation.

Examining surveys that focus on the CP perspective. In [98], the authors survey
the VM allocation problem, models and algorithmic approaches. The survey covered
the literature that examines single and multiple data centres and argued that methods
are primarily disjoint, with a limited number addressing a combination of the two. In
contrast, our survey covered a more extensive taxonomy of adapted cloud resources
and covers the architecture of the decision making engine used for adaptation. Addi-
tionally, we highlight the scalability challenges in non-decentralized approaches. In
[26], the authors comprehensively discuss strategies to efficient data centres, choosing
to focus on energy consumption. Our survey covers energy consumption as an adap-
tation objective, SLA and revenue objectives. The survey [47] is closely related to
our work and similarly examined the techniques used for resource allocation, includ-
ing heuristics, control theory, queuing theory and machine learning, concluding that
heuristics are the most prevalent in the literature. The authors also concluded that CPU
and memory are the most monitored resources. In comparison, our survey has more
coverage of architectures used in decision making, their properties and the impact of
the architecture on cloud management scalability.

All the related surveys chose a different classification scheme to our work. In
contrast, our work focuses on adapting resource configuration and analysing factors
that influence adaptation. Additionally, we investigate factors affecting the scalability
of the various proposals in the literature. While there is some overlap, no other survey
uses our chosen dimensions.

5.1.2 Contribution 2: SHDF - Scalable Hierarchical Distributed
Framework for Data Centre Management

This paper proposes a hybrid decentralized hierarchical Management Framework (MF)
to manage public cloud resources, achieve high scalability and meet SLAs. In the

163

following section, we examine the properties of our proposal against decentralized and
hierarchical MFs from the literature.

The proposal in [152] adopted a decentralized design where a node is autonomous
and is responsible for resource allocation. Each node dynamically adapts existing
placements in response to a change in workload needs, and the approach can man-
age an extensive infrastructure with thousands of nodes. Similarly, the proposal in
[114] presents a decentralized approach that aims to be scalable and energy-efficient
in its management of VMs provisioned in enterprise clouds. A core concept in the
approach is that computation resources are organised into an overlay network called a
hypercube. The hypercube automatically scales up and down as resources are changed
in response to workload changes. Each node in the approach operates autonomously
and manages its workload. Overutilized nodes attempt to migrate their VMs to their
neighbours in the hypercube to avoid SLA violations. Underutilized nodes aim to shift
their workload to their neighbours and switch off. Similarly, in our approach, each
node has a component to decide the workloads that run on the node and an overlay
manager that maintains information relating to the overlay, enabling a node to partici-
pate and interact with a designated set of neighbours. Members of the overlay regularly
interact by selecting a random neighbour to exchange metric information. In contrast,
our approach operates in a hybrid decentralised hierarchical manner, with higher-level
controllers assisting the lower decentralised controllers. This enables our approach
to perform consolidation at the cluster level, whereas other decentralized approaches
perform load balancing between two nodes. Additionally, our approach can utilise
the collected metrics to reach out to a more significant portion of an overlay during a
stressed VM state, as opposed to the author’s approach, a node only operates with a
randomly selected node, which can result in VMs being in a stressed state for some
time, leading to more SLA violations. Additionally, in our approach, a stressed node
can escalate outside the overlay if there is no suitable node to migrate a VM to.

Traditional hierarchical MFs [10, 79, 13] utilise a controller running in a central-
ized manner within the scope of a cluster or rack. In Mistral [79], multi-level hier-
archical controllers manage different subsets of nodes. The lowest level controllers
manage a smaller number of nodes at the rack level, and at the next cluster level, a
controller manages nodes owned by multiple lower-level controllers. At the rack level,
the approach operates in a centralized manner, with nodes sending metric information
to and receiving migration instructions from the rack controller. Our proposed hy-
brid approach similarly has a cluster level controller that connects to lower-level nodes

164

and enables a large scope for consolidation. In contrast, our lowest level controller
manages a single node and allows it to be completely autonomous and cooperate with
other autonomous nodes to facilitate VM migration. Nodes can receive migration re-
quests from neighbouring nodes or higher-level controllers, and each node can choose
to accept or reject these requests. This results in the cluster controllers performing
less computation than the traditional hierarchical approach, resulting in higher system
scalability.

A hierarchical architecture is used in [10]. At the highest level of the hierarchy,
a central manager focuses on a timescale of 1 day and divides the infrastructures into
clusters to reduce the need for fine-grain adjustments by lower-level controllers. At a
lower hierarchy level, application managers centrally operate each cluster and act on
a 1-hour scale, focusing on VM placement and capacity allocation to VMs running
on the same node. Additionally, application managers perform cheaper operations
such as capacity allocation and frequency scaling more frequently, every 5-15 minutes.
The hierarchical architecture reduces the monitoring data required in the approach,
with application managers providing an aggregate of metrics. Experiments show that
application managers can perform their periodic operations and solve for 1200 nodes in
less than 1 minute. The approach has several similarities to our proposal, with multiple
controllers running at different timescales and dividing the data centre infractions into
multiple clusters. In contrast, our lowest level controllers are autonomous and manage
a single node and thus can operate at low timescales, 2 minutes by default, and has
been tested with 50,000 nodes. Additionally, our autonomous node controllers can
escalate a stressed VM outside of its original cluster on-demand, thus speeding up the
time to resolve a stressed state versus the approach in [10].

5.1.3 Contribution 3: A Hierarchical Decentralized Architecture
to enable Adaptive Scalable Virtual Machine Migration

Scalability of a system is defined as the ability to meet additional workload require-
ments by adding a proportional amount of resources and maintaining its performance
[71]. In this paper, we extend a preliminary version of our work [66], by implementing
and evaluating QoS metrics on multiple policies from the literature. Our goal is to
demonstrate improved QoS metrics compared to centralized, hierarchical and decen-
tralized architectures for a variety of MAs. By achieving improved QoS performance
metrics, our proposal should scale better than the examined architectures; the extent to

165

which this is the case is explored through empirical evaluation.

The authors in [99] propose a test environment to evaluate the effectiveness of
different VM placement algorithms running within a centralized Management Frame-
work (MF) by extending the existing simulation environment of cloudSim [36]. The
authors undertake an empirical comparison of 7 management algorithms (MAs) and
propose a methodology to evaluate the MAs. Experiments concluded that a cluster
of MAs performed well on some examined metrics. We follow a similar approach
of extending an existing simulation environment, integrating 8 MAs from the litera-
ture, and evaluating their properties. In contrast, our approach additionally includes a
comparison with multiple MFs: hierarchical, decentralized and hybrid. Thus we have
a more comprehensive evaluation, and our approach also evaluated the scalability of
these MFs.

5.1.4 Contribution 4: Scalable Virtual Machine Migration using
Reinforcement Learning

This paper proposes a reinforcement learning (RL) MA that can run decentralized and
achieve fast convergence towards efficient resource allocation, resulting in lower SLA
violations than centralized architectures. The aim is to investigate and address some
common challenges in applying RL, such as slow learning and state/action manage-
ment. We also demonstrate a unique, multi-level reinforcement learning cooperation
that further reduces SLA violations. We use simulation to evaluate and present our
proposal in practice and compare the results obtained with an established heuristic,
demonstrating significant improvement to SLA violations and higher scalability.

The authors in [22] use a Q-learning approach where agents operate in a decen-
tralized manner, communicate directly with all other agents and autonomously make
resource management decisions. To address the convergence challenge in RL, the ap-
proach parallelises agents’ learning. Each agent learns the value of states it visits and
shares this with neighbouring agents to learn about unvisited states. Each agent main-
tains a local Q table representing its learning and a Q-value representing the global
learning. This is calculated by aggregating the weighted sum of Q-value estimates
of all the neighbouring agents. Each agent makes decisions based on the weighted
aggregation of the local and global estimates, which are typically greedy towards the
current learnt Q-value. Sometimes, the agent will choose to act randomly to balance

166

exploration and exploitation. Similarly, our proposed RL based MA has agents run-
ning in a decentralized manner, with agents communicating directly with other agents
and autonomously making resource management decisions. Additionally, we have
a similar approach to parallel learning, where each agent shares its experience with
neighbouring agents. In contrast, our approach has more efficient agent communi-
cation where agents cooperate with other agents in their overlay, typically placed in
physical proximity, resulting in a message exchange with a smaller group of nodes
and a shorter distance for messages to travel within the data centre. Additionally, our
proposed approach enables decentralized nodes to escalate migration requests to other
nodes outside their overlay and learn when to escalate.

Reinforcement learning techniques can suffer from challenges where the state and
action space grow exponentially. This increases the time needed for the RL agent to
explore a given environment and the space complexity in memory consumption. The
approach in [35] used a heuristic method to reduce the state space to a smaller set
by dividing the original state space into multiple exclusive subsets, where a range of
states can fit into the same subgroup, thus reducing the state space to aid RL conver-
gence speed. Our proposed RL MA uses a similar approach and aggregates VM’s to
two states: Normal and Stressed by using Response time as a measure for application
performance [53]. To account for variation in response time during the lifetime of an
application, we apply linear regression on collected response time during each moni-
toring epoch, which by default is every two minutes. A VM is stressed when the 95th
percentile of response time during a monitoring period is above a defined SLA thresh-
old, which by default is 500ms. We categorise the state of VMs as Normal when the
95th percentile of the response time is below the defined SLA level.

Our paper is similar to [112], which proposes a Q-learning controller and decen-
tralized approach where each node is responsible for maintaining its SLA performance.
The approach can add nodes and scale down by shutting down excess nodes to save
energy consumption. To combat the state space challenge in Q-learning, the approach
uses a reduced state space consisting of two types: system and applications state. Sys-
tem state reflects the level of utilization of resources of a node, and applications state
represents the performance of each application running on the node. System and ap-
plications states are classified into a few categories: normal, warning, and critical. For
the RL actions, the authors use a policy to reduce the number of actions for each state,
with actions categorised into two groups of scale-down and scale-up. When the sys-
tem is not meeting its defined goal, scale-up actions are taken; scale-down actions are

167

taken when the system is in normal condition. The RL agents share their state/action
through a knowledge base to speed up learning. When an agent encounters a new state,
it checks the knowledge base for known actions. Similarly, our proposed RL MA runs
in a decentralized architecture, uses state and action reduction to address challenges
with Q-learning, and our agents share knowledge to speed up learning. In contrast,
our approach selects a granular action to a set of target nodes, enabling RL to learn
a more precise set of actions for a given state. When migrating a VM, our RL agent
can identify a group of target nodes based on their CPU utilisation. By default, we use
10 groups, 10%, which creates target groups from 0 to 9. For example, action group1
means to migrate the stressed VM to a node with an average CPU utilisation of 10%
to 19%. Once an action is selected, we use a greedy policy to select the first available
node that fits the action group. Additionally, our approach utilises the features of the
hybrid MF from our earlier work and can learn when to escalate a migration outside of
the overlay, thus speeding up the resolution of a stressed VM state.

While there have been attempts at examining the scalability of approaches based
on RL [35, 120], these tend to be at a small scale that is not representative of the size
of the infrastructure in public clouds. We propose a highly scalable RL approach and
examine its ability to manage an extensive infrastructure with thousands of nodes.

5.1.5 Contribution 5: Utilization Efficient VM Migration using
Reinforcement Learning

This paper presents an approach to dynamically set the CPU utilization level for VM
migration. It monitors VM response time and discovers a CPU threshold where re-
sponse time would increase beyond a target SLA level. This threshold is then used
for VM migration. The approach uses RL to learn when it is rewarding to migrate a
VM. The reward function aims to increase CPU utilisation and attaches a penalty to
overachieving SLAs. We evaluate the approach against four dynamic heuristics from
the literature, and the results show a significant reduction in SLA violations and an
increase in CPU utilization of active nodes.

Reactive approaches are typically implemented using threshold techniques [41] by
triggering adaptation when a node’s utilization reaches a given level. Several heuristics
have been proposed in the literature, including [25, 155, 102, 86, 5].

The heuristic in [25] calculates an upper threshold through statistical analysis of
historical CPU utilisation. Some of the approaches incorporate multiple node metrics

168

by creating a composite metric for overload detection, that combines CPU utilization,
memory and network BW utilization [5]. However, these approaches do not incorpo-
rate VM performance such as response time in setting the node CPU threshold.

Approaches that did consider VM performance include [121]. They propose to
manage the resources assigned to a VM and monitor performance feedback from each
VM. The approach optimises VM performance by learning the resource allocation
that enhances response time and throughput. The reconfiguration process happens
periodically on a predefined time interval. A controller fetches the current state of VMs
and computes valid adaptation actions that can adjust CPU and memory assigned to a
VM. The approach has similarities to our proposal. It uses RL to discover a rewarding
configuration that improves VM performance. In contrast, the approach focuses on
parameters for vertically scaling VMs and does not cater for VM migration.

The approach in [35] proposes CoTuner, for coordinated configuration of VM re-
sources and parameters of their applications. Each VM has an agent that monitors
the VM and adapts its configuration to the environment. Reconfiguration actions take
place periodically at predefined time intervals. The RL method receives performance
feedback and updates the VM and application configuration. CoTuner can adjust both
CPU and memory VM assignments. For applications, CoTuner can change parame-
ter settings. The approach has similarities to our proposed approach. It uses RL to
discover a configuration that improves VM performance. In contrast, the approach fo-
cuses on parameters for application configuration and does not cater for VM migration.

5.2 Conclusion

Adaptation of cloud resource configuration is applied to remap resource assignments,
and the majority of MFs used in literature are centralized with some that are hierar-
chical or decentralized [90]. Centralized MFs use an engine with a global control of
the entire infrastructure that performs all the phases required for the resource mapping,
including monitoring, calculating the schedule, and applying the resource mapping.
Hierarchical MFs typically divide the infrastructure into multiple sections with a deci-
sion engine in each section. While this improves scalability compared to centralized
MFs, as the size of the managed infrastructure increases, the approach suffers similar
challenges. Decentralized MFs distribute the management of the infrastructure with-
out a centralized controller. However, they can be limited by the partial view of the

169

managed infrastructure. Research Obj1 is to characterise the attributes of cloud man-
agement systems, and contribution 1 has shown all of these architectures have their
merits. Centralized has a global view and a simple design but requires explicit mea-
sures to attain reliability. Hierarchical architectures have increased scalability com-
pared to centralized and also require measures to achieve reliability. Decentralized
architectures have no central controller and have been shown to scale to manage a
large number of nodes and typically have reliability built in the design.

This thesis is grounded on the hypothesis that solving the scalability challenge in
mapping workloads to resources starts with tackling scalability in the MF. In address-
ing Obj2, we propose a scalable hierarchical decentralized framework that combines
the advantages of both approaches and mitigates their limitations, leading to contribu-

tion 2. The approach consists of hierarchical controllers operating at different scopes.
On the lowest level, every node in the infrastructure is autonomous, manages its re-
source allocation and cooperates with other peer nodes. When a VM is in an SLA
violation state, a node cooperates with local nodes and can escalate through the hier-
archy to find a target for the stressed VM. For consolidation objectives, a cluster-level
controller can view all nodes in a cluster and include more nodes in the optimization.
The proposed MF retains the advantages of decentralized architectures and mitigates
their disadvantages by enabling a cluster level view during consolidation. Weaknesses
of the hierarchical architecture are mitigated through the decentralized approach that
allows nodes to cooperate with other nodes during VM migration, only resorting to the
cluster level controller in an escalation case. We have validated this approach using
simulation and scaled our experiments to 50,000 nodes.

To further evaluate the proposed hybrid MF, addressing Obj3 develops an envi-
ronment to assess and compare the performance of multiple management algorithms
(MAs) from the literature within a simulation toolkit. We additionally compare the
performance of the MAs with hierarchical, decentralized and centralized MFs, leading
to contribution 3. All MAs retained their SLA performance properties when running
on the hybrid MF. Some exhibited higher SLA performance due to a reduced search
space and autonomous properties of the Hybrid MF. The improvements included fewer
SLA violations, lower network traffic utilisation, and improved scalability to manage
resources as the number of nodes in the data centre increased compared to centralized,
hierarchical, and decentralized architectures. Additionally, this evaluation demon-
strated the feasibility of separating the MF and MA, and the ability to integrate the
hybrid MF with other MAs to investigate cloud resource management.

170

The MA is the decision making component that assigns workloads to infrastructure
resources by regularly assessing the satisfaction of such assignments in achieving a
given objective, which typically includes SLAs. A key aspect of MAs is the technique
used to perform the decision making process. While heuristics are common in the
literature, cloud workloads are heterogeneous, with different resource requirements.
Heuristics typically require predefined knowledge of the problem they solve, reducing
their applicability. While machine learning models have shown to be effective in their
application in cloud resource management, a limitation of these approaches is that they
require offline training and thus require retraining to take advantage of new data. In
contrast, RL can operate online even when a complete environmental model is unavail-
able, a valuable property in cloud environments. In addressing Obj4, we hypothesise
that the proposed hybrid MF can be paired with a MA to utilise its features and lower
SLA violations further. We investigate and develop an RL-based MA that reduces the
state and action space and uses a unique multi-level RL agent cooperation between
different levels of the hybrid hierarchy. Our approach integrates well into the hybrid
MF, leading to contribution 4. We evaluate its performance using simulation and com-
pare the results with an established heuristic, demonstrating significant improvement
to SLA violations and high scalability.

Our research has shown that many of the approaches in the literature use a reactive,
threshold-based approach to detect node overload. A key element to the threshold-
based approach is the assumption there is a high chance that an overload occurs when
a node’s utilization exceeds the set threshold. Thus, the threshold level creates an asso-
ciation between a node metric, e.g. CPU utilization, and SLA violation. However, the
CPU utilization where SLA violations occur is based on the application and the node
configuration. Creating a single threshold for all applications and node configurations
is incredibly difficult. While the current approaches can reduce overload, they can limit
the utilization gains that can be achieved as they leave unused slack for each node. Ad-
ditionally, threshold approaches can trigger unnecessary migrations as exceeding the
set threshold does not necessarily equate to an SLA violation [41]. Given these chal-
lenges, addressing Obj5 proposes a dynamic approach to set CPU threshold for VM
migration. We perform online learning and incorporate VM performance in setting a
CPU utilization threshold to use for migration. This enables the threshold to factor in
the dynamic nature of cloud environments and their heterogeneous workloads, leading
to contribution 5. To discover a dynamic threshold, each node periodically performs
experimental VM migrations at varying CPU utilisation levels. RL calculates a reward

171

for each used threshold level and converges on a migration threshold. We show the
approach can reduce SLA violations and can find a more optimal migration point and
increase node utilization, compared to four other heuristics from the literature.

5.3 Choosing a Simulation Toolkit

Experimenting with MAs and MFs at the data centre scale is impractical and can be
very costly. Thus, there is a need for simulation tools to allow rapid development
and evaluation of data centre management approaches. There are several simulation
tools available [162, 46]. We have chosen to use DCSim, an extensible simulation
framework for simulating a data centre hosting an Infrastructure as a Service cloud.
DCSim allows a VM to use more CPU than reserved, up to an amount that does not
impact other VMs. This means CPU can be overcommitted until it affects other VMs.
In DCSim, an application is modelled as an interactive multi-tiered web application.
Each application has: (i) think time, which is the period it takes for a simulated user to
act between requests, (ii) a workload component and (iii) a request service time, which
is the amount of time required to process each incoming request. The workload defines
the current number of clients connected to the application, which can change at discrete
points in the simulation based on a trace file. The resource requirements are defined
as its resource size, which is the expected amount of CPU, memory, bandwidth and
storage. DCSim treats bandwidth and storage as fixed requirements. However, CPU
requirements can be varied across the simulation based on the VM demands. DCSim
applies a cost to VM migration, including the time taken for migration, as a function
of memory consumed by a VM, and factors in the bandwidth required for the VM
migration on the hosting node. Additionally, the DCSim simulation environment has a
more accurate representation of metric propagation, compared to cloudSim [36], which
assumes the utilization metrics of all nodes can be read directly instead of being sent
as messages, as in DCSim.

5.4 Future Directions

The remaining section of this chapter introduces some potential research directions
that can extend the work conducted in this thesis.

172

5.4.1 Adaptive parameter selection

The hybrid MF and RL MA use multiple parameters, and there is an opportunity for
these to be dynamically adjusted based on the current cloud conditions to optimise
performance further.

• Periodic node state checks. Each autonomous node in the hybrid MF needs
to check its state and VMs running on it regularly. By default, this is every
2-minutes. However, there is an opportunity to set this value by learning it dy-
namically. This could enable node checks to be performed more frequently when
undergoing volatility and less regularly during more stable periods.

• Periodic node state exchanges. Each autonomous node in the hybrid MF ex-
changes its state with a randomly selected node within the same overlay, which
helps propagate node metrics. By default, this is every 1-minute. However, there
is an opportunity to set this value by learning it dynamically. This could enable
node checks to be performed more frequently when an overlay is undergoing
higher VM placement or VM migration levels, less regularly during more stable
periods.

5.4.2 Initial VM Placement using RL

The objective of a VM Placement is to map customer workloads onto Cloud Providers
resources in a way that achieves a particular objective, such as reducing energy con-
sumption or ensuring SLAs are met. VM placement consists of two parts: initial VM
placement, which refers to the first allocation of each VM to a node in the data centre,
and VM migration or relocation, which involves the revision of an earlier placement
decision.

We have focused on VM migration in this thesis, and both the hybrid MF and RL
MAs that we have developed can be extended to cater for the initial VM placement,
where RL can be used to decide on target nodes for initial placement. The reward
outcomes from the initial placement can help the RL agent make migration decisions,
which could further speed up the convergence time of the RL approach.

173

5.4.3 VM consolidation using RL

Conserving energy consumption is widely researched in the literature. However, there
are still challenges with identifying the benefit versus migration cost during consolida-
tion. We recognise this as additional research that could be improved with an RL MA
that can learn a policy from the current environmental conditions and decide on the
benefits of applying consolidation. While some of the literature already investigated
using RL in consolidation [48, 38, 128], there is an opportunity for a new MA to learn
how to select a VM for consolidation and target node(s) to consolidate VMs onto.

5.4.4 Containerisation

Our research on this thesis project has shown that cloud resource management primar-
ily focuses on VMs. However, is there is a growing number of proposals investigat-
ing resource management of containers [55, 93]. It is feasible to extend the methods
proposed in this thesis and apply them to containers. As there are likely to be more
containers than VMs, we hypothesise the hybrid MF will provide even more value in
managing what would be a more significant number of cloud resources. The proposed
RL approach can be extended to capture container metrics, create dynamic threshold
levels for container migrations, and manage efficient container migration targets.

5.4.5 Additional RL state

The representation of the state is key to the RL decision making process. To overcome
the state space dimensionality challenge with RL, we use a reduction approach and
aggregate VMs to two states: Normal and Stressed. However, there is an opportunity
to expand the captured state to learn different patterns about the workload, such as time
of day, which may affect workload behaviour. Additional states that could be captured
include overlay and cluster metrics, enabling an RL MA to directly escalate to another
part of the infrastructure for a given infrastructure state.

5.4.6 Real Cloud experiments

Most of the literature, including this thesis, uses simulation toolkits due to the imprac-
ticality of performing extensive large scale experiments on actual cloud infrastructure.
However, running experiments on real infrastructure may add valuable insight to mea-
sure the effectiveness of many of the ideas in this thesis.

174

Additionally, actual infrastructure experiments will enable observation of events
and interactions that may not have been modelled in the simulation environment and
thus further enhance the understanding of cloud resource management.

175

Bibliography

[1] Linux kvm, Accessed 2021-08-02.

[2] Vmware esxi, Accessed 2021-10-02.

[3] Xen hypervisor, Accessed 2021-10-21.

[4] University of Manchester Journal Format, December Accessed 2021-11-01.

[5] A. EL-MOURSY, A., ABDELSAMEA, A., KAMRAN, R., AND SAAD, M.
Multi-dimensional regression host utilization algorithm (mdrhu) for host over-
load detection in cloud computing. Journal of Cloud Computing 8, 1 (2019),
8.

[6] ABDEL-BASSET, M., ABDLE-FATAH, L., AND SANGAIAH, A. K. An im-
proved lévy based whale optimization algorithm for bandwidth-efficient virtual
machine placement in cloud computing environment. Cluster Computing 22, 4
(2019), 8319–8334.

[7] ABDUL RAHMAN HUMMAIDA, NORMAN W PATON, R. S. Dynamic thresh-
old setting for vm migration. In submission to ESOCC 2022.

[8] ABENI, L., AND FAGGIOLI, D. Using Xen and KVM as real-time hypervisors.
Journal of Systems Architecture 106 (2020), 101709.

[9] ABOHAMAMA, A., AND HAMOUDA, E. A hybrid energy–aware virtual ma-
chine placement algorithm for cloud environments. Expert Systems with Appli-

cations 150 (2020), 113306.

[10] ADDIS, B., ARDAGNA, D., PANICUCCI, B., SQUILLANTE, M. S., AND

ZHANG, L. A hierarchical approach for the resource management of very large
cloud platforms. IEEE Transactions on Dependable and Secure Computing 10

(2013), 253–272.

176

[11] AL-DHURAIBI, Y., PARAISO, F., DJARALLAH, N., AND MERLE, P. Elasticity
in cloud computing: State of the art and research challenges. IEEE Transactions

on Services Computing 11, 2 (2018), 430–447.

[12] ALI-ELDIN, A., TORDSSON, J., AND ELMROTH, E. An adaptive hybrid elas-
ticity controller for cloud infrastructures. In 2012 IEEE Network Operations and

Management Symposium (Washington, DC, USA, April 2012), IEEE, pp. 204–
212.

[13] ALMEIDA, J., ALMEIDA, V., ARDAGNA, D., CUNHA, Í., FRANCALANCI, C.,
AND TRUBIAN, M. Joint admission control and resource allocation in virtual-
ized servers. Journal of Parallel and Distributed Computing 70 (Apr 2010),
344–362.

[14] ALRESHEEDI, S. S., LU, S., ABD ELAZIZ, M., AND EWEES, A. A. Improved
multiobjective salp swarm optimization for virtual machine placement in cloud
computing. Human-centric Computing and Information Sciences 9, 1 (2019),
15.

[15] ARABNEJAD, H., PAHL, C., JAMSHIDI, P., AND ESTRADA, G. A comparison
of reinforcement learning techniques for fuzzy cloud auto-scaling. In 2017 17th

IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

(CCGRID) (2017), pp. 64–73.

[16] ARIANYAN, E., TAHERI, H., AND KHOSHDEL, V. Novel fuzzy multi objective
dvfs-aware consolidation heuristics for energy and SLA efficient resource man-
agement in cloud data centers. Journal of Network and Computer Applications

78 (2017), 43–61.

[17] ASKARIZADE HAGHIGHI, M., MAEEN, M., AND HAGHPARAST, M. An
energy-efficient dynamic resource management approach based on clustering
and meta-heuristic algorithms in cloud computing IaaS platforms. Wireless Per-

sonal Communications 104, 4 (2019), 1367–1391.

[18] AZIZI, S., SHOJAFAR, M., ABAWAJY, J., AND BUYYA, R. Grvmp: A greedy
randomized algorithm for virtual machine placement in cloud data centers.
IEEE Systems Journal 15, 2 (2021), 2571–2582.

177

[19] BACHIEGA, N. G., SOUZA, P. S. L., BRUSCHI, S. M., AND DE SOUZA, S.
D. R. S. Container-based performance evaluation: A survey and challenges.
In 2018 IEEE International Conference on Cloud Engineering (IC2E) (2018),
pp. 398–403.

[20] BALA, A., AND CHANA, I. Prediction-based proactive load balancing approach
through vm migration. Engineering with Computers 32, 4 (Oct. 2016), 581–592.

[21] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S., HARRIS, T., HO,
A., NEUGEBAUER, R., PRATT, I., AND WARFIELD, A. Xen and the art of
virtualization. In Proceedings of the Nineteenth ACM Symposium on Operating

Systems Principles (New York, NY, USA, 2003), SOSP ’03, Association for
Computing Machinery, pp. 164–177.

[22] BARRETT, E., HOWLEY, E., AND DUGGAN, J. Applying reinforcement learn-
ing towards automating resource allocation and application scalability in the
cloud. Concurrency and Computation: Practice and Experience 25, 12 (2013),
1656–1674.

[23] BASET, S. A. Cloud SLAs: Present and future. Special Interest Group on

Operating Systems 46, 2 (July 2012), 57–66.

[24] BELOGLAZOV, A., ABAWAJYB, J., AND BUYYA, R. Energy-aware resource
allocation heuristics for efficient management of data centers for cloud comput-
ing. Future Generation Computer Systems 28 (May 2012), 755–768.

[25] BELOGLAZOV, A., AND BUYYA, R. Optimal online deterministic algorithms
and adaptive heuristics for energy and performance efficient dynamic consolida-
tion of virtual machines in cloud data centers. Concurrency and Computation:

Practice and Experience 24 (Sep 2012), 1397–1420.

[26] BELOGLAZOV, A., BUYYA, R., LEE, Y. C., AND ZOMAYA, A. A taxonomy
and survey of energy-efficient data centers and cloud computing systems. Ad-

vances in Computers 82 (2011), 47–111.

[27] BERRAL, J. L., GAVALDA, R., AND TORRES, J. Adaptive scheduling on
power-aware managed data-centers using machine learning. In Proceedings of

the 2011 IEEE/ACM 12th International Conference on Grid Computing (USA,
2011), GRID ’11, IEEE Computer Society, pp. 66–73.

178

[28] BERRAL, J. L., GOIRI, I. N., NOU, R., JULIÀ, F., GUITART, J., GAVALDÀ,
R., AND TORRES, J. Towards energy-aware scheduling in data centers us-
ing machine learning. In Proceedings of the 1st International Conference on

Energy-Efficient Computing and Networking (New York, NY, USA, 2010), e-
Energy ’10, ACM, pp. 215–224.

[29] BIBAL BENIFA, J. V., AND DEJEY, D. Rlpas: Reinforcement learning-based
proactive auto-scaler for resource provisioning in cloud environment. Mobile

Networks and Applications 24, 4 (2019), 1348–1363.

[30] BITSAKOS, C., KONSTANTINOU, I., AND KOZIRIS, N. Derp: A deep re-
inforcement learning cloud system for elastic resource provisioning. In 2018

IEEE International Conference on Cloud Computing Technology and Science

(CloudCom) (2018), pp. 21–29.

[31] BODÍK, P., GRIFFITH, R., SUTTON, C., FOX, A., JORDAN, M., AND PAT-
TERSON, D. Statistical machine learning makes automatic control practical for
internet datacenters. In Proceedings of the 2009 Conference on Hot Topics in

Cloud Computing (Berkeley, CA, USA, 2009), HotCloud’09, USENIX Associ-
ation.

[32] BORGETTO, D., DA COSTA, G., PIERSON, J.-M., AND SAYAH, A. Energy-
aware resource allocation. In 2009 10th IEEE/ACM International Conference

on Grid Computing (2009), pp. 183–188.

[33] BOTRAN, T. L., MIGUEL-ALONSO, J., AND LOZANO, J. A. Auto-scaling
techniques for elastic applications in cloud environments. Journal of Grid Com-

puting 12, 4 (Dec 2014), 559–592.

[34] BU, X., RAO, J., AND XU, C.-Z. Model-free learning approach for coordi-
nated configuration of virtual machines and appliances. In 19th Annual Inter-

national Symposium on Modelling, Analysis, and Simulation of Computer and

Telecommunication Systems (Washington, DC, USA, 2011), IEEE, pp. 12–21.

[35] BU, X., RAO, J., AND XU, C.-Z. Coordinated self-configuration of virtual ma-
chines and appliances using a model-free learning approach. IEEE Transactions

on Parallel and Distributed Systems 24, 4 (2013), 681–690.

179

[36] CALHEIROS, R. N., RANJAN, R., BELOGLAZOV, A., DE ROSE, C. A. F.,
AND BUYYA, R. Cloudsim: A toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning algorithms.
Software Practice & Experience 41, 1 (Jan. 2011), 23–50.

[37] CHAURASIA, N., KUMAR, M., CHAUDHRY, R., AND VERMA, O. P. Compre-
hensive survey on energy-aware server consolidation techniques in cloud com-
puting. The Journal of Supercomputing 77, 10 (2021), 11682–11737.

[38] CHOU, Q., FAN, W., AND ZHANG, J. A reinforcement learning model for vir-
tual machines consolidation in cloud data center. In 2021 6th International Con-

ference on Automation, Control and Robotics Engineering (CACRE) (2021),
pp. 16–21.

[39] CITRIX. Xen. http://www.xenserver.org, 2016.

[40] COSTACHE, S., DIB, D., PARLAVANTZAS, N., AND MORIN, C. Resource
management in cloud platform as a service systems: Analysis and opportunities.
Journal of Systems and Software 132 (2017), 98–118.

[41] DABBAGH, M., HAMDAOUI, B., GUIZANI, M., AND RAYES, A. An energy-
efficient VM prediction and migration framework for overcommitted clouds.
IEEE Transactions on Cloud Computing 6, 4 (2018), 955–966.

[42] DEL MESTRE MARTINS, A. L., DA SILVA, A. H. L., RAHMANI, A. M.,
DUTT, N., AND MORAES, F. G. Hierarchical adaptive multi-objective resource
management for many-core systems. Journal of Systems Architecture 97 (2019),
416–427.

[43] DONG, D., STACK, P., XIONG, H., AND P. MORRISON, J. Managing and
unifying heterogeneous resources in cloud environments. In Proceedings of

the 7th International Conference on Cloud Computing and Services Science

(Setubal, PRT, 2017), CLOSER 2017, SCITEPRESS - Science and Technology
Publications, Lda, pp. 143–150.

[44] DONYAGARD VAHED, N., GHOBAEI-ARANI, M., AND SOURI, A. Multi-
objective virtual machine placement mechanisms using nature-inspired meta-
heuristic algorithms in cloud environments: A comprehensive review. Interna-

tional Journal of Communication Systems 32, 14 (2019), e4068. e4068 IJCS-
19-0062.R1.

180

[45] ENDO, P. T., RODRIGUES, M., GONÇALVES, G. E., KELNER, J., SADOK,
D. H., AND CURESCU, C. High availability in clouds: systematic review and
research challenges. Journal of Cloud Computing 5, 1 (2016), 16.

[46] FAKHFAKH, F., KACEM, H. H., AND KACEM, A. H. Simulation tools for
cloud computing: A survey and comparative study. In 2017 IEEE/ACIS 16th

International Conference on Computer and Information Science (ICIS) (2017),
pp. 221–226.

[47] FANIYI, F., AND BAHSOON, R. A systematic review of service level manage-
ment in the cloud. ACM Computing Surveys 48, 3 (Dec. 2015), 43:1–43:27.

[48] FARAHNAKIAN, F., LILJEBERG, P., AND PLOSILA, J. Energy-efficient virtual
machines consolidation in cloud data centers using reinforcement learning. In
2014 22nd Euromicro International Conference on Parallel, Distributed, and

Network-Based Processing (Feb 2014), pp. 500–507.

[49] FELLER, E., RILLING, L., AND MORIN, C. Snooze: A scalable and autonomic
virtual machine management framework for private clouds. In IEEE/ACM Inter-

national Symposium on Cluster, Cloud and Grid Computing (CCGrid) (2012),
pp. 482 – 489.

[50] GAHLAWAT, M., AND SHARMA, P. Survey of virtual machine placement in
federated clouds. In 2014 IEEE International Advance Computing Conference

(IACC) (2014), pp. 735–738.

[51] GALANTE, G., AND BONA, L. C. E. D. A survey on cloud computing elastic-
ity. In Proceedings of the 2012 IEEE/ACM Fifth International Conference on

Utility and Cloud Computing (Washington, DC, USA, 2012), UCC ’12, IEEE
Computer Society, pp. 263–270.

[52] GARCÍA-VALLS, M., CUCINOTTA, T., AND LU, C. Challenges in real-time
virtualization and predictable cloud computing. Journal of Systems Architecture

60, 9 (2014), 726–740.

[53] GHANBARI, H., SIMMONS, B., LITOIU, M., BARNA, C., AND ISZLAI, G.
Optimal autoscaling in a iaas cloud. In Proceedings of the 9th International

Conference on Autonomic Computing (New York, NY, USA, 2012), ICAC ’12,
Association for Computing Machinery, pp. 173–178.

181

[54] GHOBAEI-ARANI, M., JABBEHDARI, S., AND POURMINA, M. A. An auto-
nomic resource provisioning approach for service-based cloud applications: A
hybrid approach. Future Generation Computer Systems 78 (2018), 191 – 210.

[55] GHOLIPOUR, N., ARIANYAN, E., AND BUYYA, R. A novel energy-aware
resource management technique using joint vm and container consolidation ap-
proach for green computing in cloud data centers. Simulation Modelling Prac-

tice and Theory 104 (2020), 102127.

[56] GOUDARZI, H., AND PEDRAM, M. Hierarchical sla-driven resource manage-
ment for peak power-aware and energy-efficient operation of a cloud datacenter.
IEEE Transactions on Cloud Computing 4, 2 (June 2016), 222 – 236.

[57] GUÉROUT, T., GAOUA, Y., ARTIGUES, C., DA COSTA, G., LOPEZ, P., AND

MONTEIL, T. Mixed integer linear programming for quality of service opti-
mization in clouds. Future Generation Computer Systems 71 (2017), 1–17.

[58] GUPTA, M. K., AND AMGOTH, T. Resource-aware virtual machine placement
algorithm for iaas cloud. The Journal of Supercomputing 74, 1 (2018), 122–140.

[59] HAMMER, H. L., YAZIDI, A., AND BEGNUM, K. An inhomogeneous hid-
den markov model for efficient virtual machine placement in cloud computing
environments. Journal of Forecasting 36, 4 (2017), 407–420.

[60] HERBST, N. R., KOUNEV, S., AND REUSSNER, R. Elasticity in cloud com-
puting: What it is, and what it is not. In 10th International Conference on Au-

tonomic Computing (2013), 10th International Conference on Autonomic Com-
puting, pp. 23–27.

[61] HERMENIER, F., LORCA, X., MENAUD, J.-M., MULLER, G., AND LAWALL,
J. L. Entropy: a Consolidation Manager for Clusters. In VEE 2009 - 5th In-

ternational Conference on Virtual Execution Environments (Washington, DC,
United States, Mar. 2009), ACM, pp. 41–50.

[62] HINDMAN, B., KONWINSKI, A., ZAHARIA, M., GHODSI, A., JOSEPH,
A. D., KATZ, R., SHENKER, S., AND STOICA, I. Mesos: A platform for fine-
grained resource sharing in the data center. In Proceedings of the 8th USENIX

Conference on Networked Systems Design and Implementation (USA, 2011),
NSDI’11, Proceedings of the 8th USENIX Conference on Networked Systems
Design and Implementation, USENIX Association, pp. 295–308.

182

[63] HSIEH, S.-Y., LIU, C.-S., BUYYA, R., AND ZOMAYA, A. Y. Utilization-
prediction-aware virtual machine consolidation approach for energy-efficient
cloud data centers. Journal of Parallel and Distributed Computing 139 (2020),
99–109.

[64] HUMMAIDA, A., PATON, N. W., AND SAKELLARIOU, R. Hierarchical de-
centralized architecture to enable adaptive scalable virtual machine migration.
Submitted to Concurrency and Computation: Practice and Experience (CCPE)

(2021).

[65] HUMMAIDA, A. R., PATON, N. W., AND SAKELLARIOU, R. Adaptation in
cloud resource configuration: a survey. Journal of Cloud Computing 5, 1 (2016),
1–16.

[66] HUMMAIDA, A. R., PATON, N. W., AND SAKELLARIOU, R. Shdf - a scalable
hierarchical distributed framework for data centre management. In 2017 16th

International Symposium on Parallel and Distributed Computing (ISPDC) (July
2017), 16th International Symposium on Parallel and Distributed Computing
(ISPDC), pp. 102–111.

[67] HUMMAIDA, A. R., PATON, N. W., AND SAKELLARIOU, R. Scalable virtual
machine migration using reinforcement learning. to be published in Journal of

Grid Computing (2021).

[68] HWANG, J., ZENG, S., WU, F. Y., AND WOOD, T. A component-based perfor-
mance comparison of four hypervisors. In 2013 IFIP/IEEE International Sym-

posium on Integrated Network Management (IM 2013) (2013), pp. 269–276.

[69] IDC. Cloud IT infrastructure spending continued to grow in Q1 2020 while
spending on non-cloud environments saw double-digit declines, according to
idc, June 2020.

[70] IQBAL, W., DAILEY, M. N., CARRERA, D., AND JANECEK, P. Adaptive
resource provisioning for read intensive multi-tier applications in the cloud. Fu-

ture Generation Computer Systems 26 (June 2011), 871–879.

[71] ISLAM, S., LEE, K., FEKETE, A., AND LIU, A. How a consumer can measure
elasticity for cloud platforms. In Proceedings of the 3rd ACM/SPEC Interna-

tional Conference on Performance Engineering (New York, NY, USA, 2012),

183

ICPE ’12, Proceedings of the 3rd ACM/SPEC International Conference on Per-
formance Engineering, Association for Computing Machinery, pp. 85–96.

[72] JAIN, S. M. J. S. M. Linux Containers and Virtualization A Kernel Perspective,
vol. 1. Apress, Berkeley, CA, 2020.

[73] JAMSHIDI, P., AHMAD, A., AND PAHL, C. Autonomic resource provisioning
for cloud-based software. In Proceedings of the 9th International Symposium

on Software Engineering for Adaptive and Self-Managing Systems (New York,
NY, USA, 2014), SEAMS 2014, ACM, pp. 95–104.

[74] JAMSHIDI, P., SHARIFLOO, A. M., PAHL, C., METZGER, A., AND ESTRADA,
G. Self-learning cloud controllers: Fuzzy q-learning for knowledge evolution.
In 2015 International Conference on Cloud and Autonomic Computing (2015),
pp. 208–211.

[75] JANGITI, S., AND VS, S. S. Emc2: Energy-efficient and multi-resource- fair-
ness virtual machine consolidation in cloud data centres. Sustainable Comput-

ing: Informatics and Systems 27 (2020), 100414.

[76] JEBA LEELIPUSHPAM, P. G., AND SHARMILA, J. Live VM migration tech-
niques in cloud environment — a survey. In 2013 IEEE Conference on Infor-

mation Communication Technologies (2013), pp. 408–413.

[77] JIANG, C., WANG, Y., OU, D., LI, Y., ZHANG, J., WAN, J., LUO, B., AND

SHI, W. Energy efficiency comparison of hypervisors. Sustainable Computing:

Informatics and Systems 22 (2019), 311–321.

[78] JIN, Y., BOUZID, M., KOSTADINOV, D., AND AGHASARYAN, A. Resource
management of cloud-enabled systems using model-free reinforcement learn-
ing. Annals of Telecommunications 74, 9 (2019), 625–636.

[79] JUNG, G., HILTUNEN, M. A., JOSHI, K. R., SCHLICHTING, R. D., AND PU,
C. Mistral: Dynamically managing power, performance, and adaptation cost
in cloud infrastructures. In International Conference on Distributed Computing

Systems (Washington, DC, USA, 2010), International Conference on Distributed
Computing Systems, IEEE, pp. 62–73.

[80] KARDANI-MOGHADDAM, S., BUYYA, R., AND RAMAMOHANARAO, K.
Adrl: A hybrid anomaly-aware deep reinforcement learning-based resource

184

scaling in clouds. IEEE Transactions on Parallel and Distributed Systems 32, 3
(March 2021), 514–526.

[81] KHAN, M. A., PAPLINSKI, A., KHAN, A. M., MURSHED, M., AND BUYYA,
R. Dynamic Virtual Machine Consolidation Algorithms for Energy-Efficient

Cloud Resource Management: A Review. Springer International Publishing,
Cham, 2018, pp. 135–165.

[82] KHAN, T., TIAN, W., AND BUYYA, R. Machine learning (ml)-centric resource
management in cloud computing: A review and future directions, 2021.

[83] KIM, S., AND CHOI, Y.-R. Constraint-aware VM placement in heterogeneous
computing clusters. Cluster Computing 23, 1 (2020), 71–85.

[84] KLIAZOVICH, D., BOUVRY, P., AND KHAN, S. U. Greencloud: a packet-
level simulator of energy-aware cloud computing data centers. The Journal of

Supercomputing 62, 3 (2012), 1263–1283.

[85] KOEHLER, M. An adaptive framework for utility-based optimization of scien-
tific applications in the cloud. Journal of Cloud Computing: Advances, Systems

and Applications 3 (2014), 4.

[86] KULSHRESTHA, S., AND PATEL, S. An efficient host overload detection al-
gorithm for cloud data center based on exponential weighted moving average.
International Journal of Communication Systems 34, 4 (2021), e4708. e4708
dac.4708.

[87] KUSIC, D., KEPHART, J. O., HANSON, J. E., KANDASAMY, N., AND JIANG,
G. Power and performance management of virtualized computing environments
via lookahead control. In Autonomic Computing ICAC (Washington, DC, USA,
Jun 2008), IEEE, pp. 3–23.

[88] LABIDI, T., MTIBAA, A., GAALOUL, W., TATA, S., AND GARGOURI, F.
Cloud SLA modeling and monitoring. In 2017 IEEE International Conference

on Services Computing (SCC) (2017), pp. 338–345.

[89] LAMA, P., AND ZHOU, X. Aroma: Automated resource allocation and config-
uration of mapreduce environment in the cloud. In Proceedings of the 9th In-

ternational Conference on Autonomic Computing (New York, NY, USA, 2012),
ICAC ’12, ACM, pp. 63–72.

185

[90] LEBRE, A., PASTOR, J., SIMONET, A., AND SÜDHOLT, M. Putting the next
500 vm placement algorithms to the acid test: The infrastructure provider view-
point. IEEE Transactions on Parallel and Distributed Systems 30, 1 (Jan 2019),
204–217.

[91] LEHRIG, S., EIKERLING, H., AND BECKER, S. Scalability, elasticity, and
efficiency in cloud computing: A systematic literature review of definitions and
metrics. In Proceedings of the 11th International ACM SIGSOFT Conference

on Quality of Software Architectures (New York, NY, USA, 2015), QoSA ’15,
Proceedings of the 11th International ACM SIGSOFT Conference on Quality
of Software Architectures, Association for Computing Machinery, pp. 83–92.

[92] LIM, S.-H., SHARMA, B., NAM, G., KIM, E. K., AND DAS, C. R. Mdc-
sim: A multi-tier data center simulation, platform. In 2009 IEEE International

Conference on Cluster Computing and Workshops (2009), pp. 1–9.

[93] LIN, M., XI, J., BAI, W., AND WU, J. Ant colony algorithm for multi-
objective optimization of container-based microservice scheduling in cloud.
IEEE Access 7 (2019), 83088–83100.

[94] LIU, N., LI, Z., XU, J., XU, Z., LIN, S., QIU, Q., TANG, J., AND WANG, Y.
A hierarchical framework of cloud resource allocation and power management
using deep reinforcement learning. In 2017 IEEE 37th International Conference

on Distributed Computing Systems (ICDCS) (2017), pp. 372–382.

[95] LORETI, D., AND CIAMPOLINI, A. A decentralized approach for virtual infras-
tructure management in cloud. International Journal on Advances in Intelligent

Systems 7, 3/4 (2014), 507–518.

[96] LYNN, T., ROSATI, P., AND FOX, G. Measuring the Business Value of Cloud

Computing: Emerging Paradigms and Future Directions for Research. Springer
International Publishing, Cham, 2020, pp. 107–122.

[97] LYNN, T., ROSATI, P., LEJEUNE, A., AND EMEAKAROHA, V. A prelim-
inary review of enterprise serverless cloud computing (function-as-a-service)
platforms. In 2017 IEEE International Conference on Cloud Computing Tech-

nology and Science (CloudCom) (2017), pp. 162–169.

186

[98] MANN, Z. A. Allocation of virtual machines in cloud data centers—a
survey of problem models and optimization algorithms. ACM Computing Sur-

veys 48, 1 (Aug. 2015), 11:1–11:34.

[99] MANN, Z. Á., AND SZABÓ, M. Which is the best algorithm for virtual ma-
chine placement optimization? Concurrency and Computation: Practice and

Experience 29, 10 (2017), e4083–n/a. e4083 cpe.4083.

[100] MASDARI, M., AND ZANGAKANI, M. Green cloud computing using proactive
virtual machine placement: Challenges and issues. Journal of Grid Computing

18, 4 (2020), 727–759.

[101] MESBAHI, M. R., RAHMANI, A. M., AND HOSSEINZADEH, M. Reliability
and high availability in cloud computing environments: a reference roadmap.
Human-centric Computing and Information Sciences 8, 1 (2018), 20.

[102] MINAROLLI, D., MAZREKAJ, A., AND FREISLEBEN, B. Tackling uncertainty
in long-term predictions for host overload and underload detection in cloud com-
puting. Journal of Cloud Computing 6, 1 (2017), 4.

[103] MISHRA, S. K., MISHRA, S., BHARTI, S. K., SAHOO, B., PUTHAL, D.,
AND KUMAR, M. Vm selection using dvfs technique to minimize energy con-
sumption in cloud system. In 2018 International Conference on Information

Technology (ICIT) (2018), pp. 284–289.

[104] MISHRA, S. K., PUTHAL, D., SAHOO, B., JAYARAMAN, P. P., JUN, S.,
ZOMAYA, A. Y., AND RANJAN, R. Energy-efficient VM-placement in cloud
data center. Sustainable Computing: Informatics and Systems 20 (2018), 48–55.

[105] MNIH, V., KAVUKCUOGLU, K., SILVER, D., RUSU, A. A., VENESS, J.,
BELLEMARE, M. G., GRAVES, A., RIEDMILLER, M., FIDJELAND, A. K.,
OSTROVSKI, G., PETERSEN, S., BEATTIE, C., SADIK, A., ANTONOGLOU,
I., KING, H., KUMARAN, D., WIERSTRA, D., LEGG, S., AND HASSABIS,
D. Human-level control through deep reinforcement learning. Nature 518,
7540 (2015), 529–533.

[106] MOENS, H., FAMAEY, J., LATRE, S., DHOEDT, B., AND TURCK, F. D. De-
sign and evaluation of a hierarchical application placement algorithm in large
scale clouds. In IFIP/IEEE International Symposium on Integrated Network

187

Management (2011), IFIP/IEEE International Symposium on Integrated Net-
work Management, pp. 137–144.

[107] MOLA, O., AND BAUER, M. Towards cloud management by autonomic man-
ager collaboration. International Journal of Communications, Network and Sys-

tem Sciences 4, 12A (2011), 790–802.

[108] MORENO-VOZMEDIANO, R., MONTERO, R. S., HUEDO, E., AND

LLORENTE, I. M. Efficient resource provisioning for elastic cloud services
based on machine learning techniques. Journal of Cloud Computing 8, 1 (2019),
5.

[109] MULLER-MERBACH, H. Heuristics and their design: a survey. European Jour-

nal of Operational Research 8, 1 (September 1981), 1–23.

[110] NADGOWDA, S., SUNEJA, S., BILA, N., AND ISCI, C. Voyager: Complete
container state migration. In 2017 IEEE 37th International Conference on Dis-

tributed Computing Systems (ICDCS) (2017), pp. 2137–2142.

[111] NATHUJI, R., KANSAL, A., AND GHAFFARKHAH, A. Q-clouds: Managing
performance interference effects for qos-aware clouds. In Proceedings of the

5th European Conference on Computer Systems (New York, NY, USA, 2010),
EuroSys ’10, ACM, pp. 237–250.

[112] NOURI, S. M. R., LI, H., VENUGOPAL, S., GUO, W., HE, M., AND TIAN, W.
Autonomic decentralized elasticity based on a reinforcement learning controller
for cloud applications. Future Generation Computer Systems 94 (2019), 765 –
780.

[113] PADALA, P., SHIN, K. G., ZHU, X., UYSAL, M., WANG, Z., SINGHAL, S.,
MERCHANT, A., AND SALEM, K. Adaptive control of virtualized resources in
utility computing environments. In Proceedings of the 2nd ACM SIGOPS/Eu-

roSys European Conference on Computer Systems 2007 (New York, NY, USA,
2007), EuroSys ’07, Association for Computing Machinery, pp. 289–302.

[114] PANTAZOGLOU, M., TZORTZAKIS, G., AND DELIS, A. Decentralized and
energy-efficient workload management in enterprise clouds. IEEE Transactions

on Cloud Computing 4, 2 (April 2016), 196–209.

188

[115] PENG, Z., LIN, J., CUI, D., LI, Q., AND HE, J. A multi-objective trade-off
framework for cloud resource scheduling based on the deep q-network algo-
rithm. Cluster Computing 23, 4 (2020), 2753–2767.

[116] PIETRI, I., AND SAKELLARIOU, R. Mapping virtual machines onto physical
machines in cloud computing: A survey. ACM Computing Surveys 49, 3 (Oct.
2016).

[117] QUESNEL, F., LÈBRE, A., AND SÜDHOLT, M. Cooperative and reactive
scheduling in large-scale virtualized platforms with dvms. Concurrency and

Computation: Practice and Experience 25, 12 (2013), 1643–1655.

[118] RAHMANIAN, A. A., HORRI, A., AND DASTGHAIBYFARD, G. Toward a hier-
archical and architecture-based virtual machine allocation in cloud data centers.
International Journal of Communication Systems 31, 4 (2018), e3490. e3490
IJCS-17-0412.R1.

[119] RAMAMOORTHY, S., RAVIKUMAR, G., SARAVANA BALAJI, B., BALAKR-
ISHNAN, S., AND VENKATACHALAM, K. Mcamo: multi constraint aware
multi-objective resource scheduling optimization technique for cloud infrastruc-
ture services. Journal of Ambient Intelligence and Humanized Computing 12, 6
(2021), 5909–5916.

[120] RAO, J., BU, X., XU, C.-Z., AND WANG, K. A distributed self-learning
approach for elastic provisioning of virtualized cloud resources. In 2011 IEEE

19th Annual International Symposium on Modelling, Analysis, and Simulation

of Computer and Telecommunication Systems (2011), pp. 45–54.

[121] RAO, J., BU, X., XU, C.-Z., WANG, L., AND YIN, G. Vconf: A reinforce-
ment learning approach to virtual machines auto-configuration. In Proceedings

of the 6th International Conference on Autonomic Computing (New York, NY,
USA, 2009), ICAC ’09, Association for Computing Machinery, pp. 137–146.

[122] REN, H., WANG, Y., XU, C., AND CHEN, X. Smig-rl: An evolutionary migra-
tion framework for cloud services based on deep reinforcement learning. ACM

Transactions on Internet Technology 20, 4 (Oct. 2020).

[123] SAADI, Y., AND EL KAFHALI, S. Energy-efficient strategy for virtual machine
consolidation in cloud environment. Soft Computing 24, 19 (2020), 14845–
14859.

189

[124] SAIF, M. A. N., NIRANJAN, S. K., AND AL-ARIKI, H. D. E. Efficient auto-
nomic and elastic resource management techniques in cloud environment: tax-
onomy and analysis. Wireless Networks 27, 4 (2021), 2829–2866.

[125] SATHYA SOFIA, A., AND GANESHKUMAR, P. Multi-objective task scheduling
to minimize energy consumption and makespan of cloud computing using nsga-
ii. Journal of Network and Systems Management 26, 2 (2018), 463–485.

[126] SEDAGHAT, M., HERNÁNDEZ-RODRIGUEZ, F., ELMROTH, E., AND GIRDZ-
IJAUSKAS, S. Divide the task, multiply the outcome: Cooperative vm consoli-
dation. In IEEE International Conference on Cloud Computing Technology and

Science (Washington, DC, USA, Aug 2014), IEEE International Conference on
Cloud Computing Technology and Science, IEEE, pp. 300–305.

[127] SHAHIDINEJAD, A., GHOBAEI-ARANI, M., AND MASDARI, M. Resource
provisioning using workload clustering in cloud computing environment: a hy-
brid approach. Cluster Computing 24, 1 (2021), 319–342.

[128] SHAW, R., HOWLEY, E., AND BARRETT, E. Applying reinforcement learning
towards automating energy efficient virtual machine consolidation in cloud data
centers. Information Systems (2021), 101722.

[129] SHEN, Z., SUBBIAH, S., GU, X., AND WILKES, J. Cloudscale: Elastic re-
source scaling for multi-tenant cloud systems. In Proceedings of the 2Nd ACM

Symposium on Cloud Computing (New York, NY, USA, 2011), SOCC ’11,
ACM, pp. 5:1–5:14.

[130] SHI, W., AND HONG, B. Towards profitable virtual machine placement in the
data center. In 2011 Fourth IEEE International Conference on Utility and Cloud

Computing (2011), pp. 138–145.

[131] SILVA FILHO, M. C., MONTEIRO, C. C., INÁCIO, P. R., AND FREIRE, M. M.
Approaches for optimizing virtual machine placement and migration in cloud
environments: A survey. Journal of Parallel and Distributed Computing 111

(2018), 222–250.

[132] SNIEZYNSKI, B., NAWROCKI, P., WILK, M., JARZAB, M., AND ZIELINSKI,
K. Vm reservation plan adaptation using machine learning in cloud computing.
Journal of Grid Computing 17, 4 (2019), 797–812.

190

[133] STILLWELL, M., SCHANZENBACH, D., VIVIEN, F., AND CASANOVA, H. Re-
source allocation using virtual clusters. In 2009 9th IEEE/ACM International

Symposium on Cluster Computing and the Grid (2009), pp. 260–267.

[134] SUTTON, R. S., AND BARTO, A. G. Reinforcement learning: An introduction,
vol. 1. Cambridge:MIT press, 1998.

[135] SVÄRD, P., HUDZIA, B., WALSH, S., TORDSSON, J., AND ELMROTH, E.
Principles and performance characteristics of algorithms for live vm migration.
SIGOPS Oper. Syst. Rev. 49, 1 (Jan. 2015), 142–155.

[136] TCHANA, A., PALMA, N. D., SAFIEDDINE, I., HAGIMONT, D., DIOT, B.,
AND VUILLERME, N. Software consolidation as an efficient energy and cost
saving solution for a saas/paas cloud model. In Euro-Par 2015: Parallel Pro-

cessing: 21st International Conference on Parallel and Distributed Computing,

Vienna, Austria, August 24-28, 2015, Proceedings (Berlin, Heidelberg, 2015),
L. J. Träff, S. Hunold, and F. Versaci, Eds., Springer Berlin Heidelberg, pp. 305–
316.

[137] THIAM, C., AND THIAM, F. Energy efficient cloud data center using dy-
namic virtual machine consolidation algorithm. In Business Information Sys-

tems (Cham, 2019), W. Abramowicz and R. Corchuelo, Eds., Springer Interna-
tional Publishing, pp. 514–525.

[138] TIGHE, M., KELLER, G., BAUER, M., AND LUTFIYYA, H. Dcsim: A data
centre simulation tool for evaluating dynamic virtualized resource management.
Network and service management (CNSM), 2012 8th international conference
and 2012 workshop on systems virtualization management (SVM), pp. 385–
392.

[139] TULI, S., GILL, S. S., XU, M., GARRAGHAN, P., BAHSOON, R., DUST-
DAR, S., SAKELLARIOU, R., RANA, O., BUYYA, R., CASALE, G., AND JEN-
NINGS, N. R. HUNTER: AI based holistic resource management for sustain-
able cloud computing. CoRR abs/2110.05529 (2021).

[140] ULLAH, A., LI, J., SHEN, Y., AND HUSSAIN, A. A control theoretical view
of cloud elasticity: taxonomy, survey and challenges. Cluster Computing 21, 4
(2018), 1735–1764.

191

[141] VAEZI, M., AND ZHANG, Y. Virtualization and Cloud Computing. Springer
International Publishing, Cham, 2017, pp. 11–31.

[142] VAN, H. N., TRAN, F. D., AND MENAUD, J.-M. SLA-aware virtual re-
source management for cloud infrastructures. In IEEE International Confer-

ence on Computer and Information Technology (Washington, DC, USA, 2009),
vol. 02, IEEE International Conference on Computer and Information Technol-
ogy, IEEE, pp. 357–362.

[143] VAN EYK, E., IOSUP, A., SEIF, S., AND THÖMMES, M. The spec cloud
group’s research vision on faas and serverless architectures. In Proceedings of

the 2nd International Workshop on Serverless Computing (New York, NY, USA,
2017), WoSC ’17, Association for Computing Machinery, pp. 1–4.

[144] VERMA, A., PEDROSA, L., KORUPOLU, M., OPPENHEIMER, D., TUNE, E.,
AND WILKES, J. Large-scale cluster management at google with borg. In Pro-

ceedings of the Tenth European Conference on Computer Systems (New York,
NY, USA, 2015), EuroSys ’15, Association for Computing Machinery.

[145] WANG, B., SONG, Y., CUI, X., AND CAO, J. Performance comparison
between hypervisor- and container-based virtualizations for cloud users. In
2017 4th International Conference on Systems and Informatics (ICSAI) (2017),
pp. 684–689.

[146] WANG, Z., CHEN, Y., GMACH, D., SINGHAL, S., WATSON, B. J., RIVERA,
W., ZHU, X., AND HYSER, C. D. Appraise: application-level performance
management in virtualized server environments. IEEE Transactions on Network

and Service Management 6, 4 (2009), 240–254.

[147] WATKINS, C. J. C. H. Learning from Delayed Rewards. PhD thesis, 1989.

[148] WEERASIRI, D., BARUKH, M. C., BENATALLAH, B., SHENG, Q. Z., AND

RANJAN, R. A taxonomy and survey of cloud resource orchestration tech-
niques. ACM Comput. Surv. 50, 2 (may 2017).

[149] WITANTO, J. N., LIM, H., AND ATIQUZZAMAN, M. Adaptive selection of
dynamic vm consolidation algorithm using neural network for cloud resource
management. Future Generation Computer Systems 87 (2018), 35–42.

192

[150] WU, Y., LEI, L., WANG, Y., SUN, K., AND MENG, J. Evaluation on the se-
curity of commercial cloud container services. In Information Security (Cham,
2020), W. Susilo, R. H. Deng, F. Guo, Y. Li, and R. Intan, Eds., Springer Inter-
national Publishing, pp. 160–177.

[151] WUHIB, F., STADLER, R., AND SPREITZER, M. Dynamic resource allocation
with management objectives: implementation for an openstack cloud. IEEE

Transactions on Network and Service Management 9, 2 (2012), 213–225.

[152] WUHIB, F., STADLER, R., AND SPREITZER, M. A gossip protocol for dy-
namic resource management in large cloud environments. IEEE Transactions

on Network and Service Management 9, 2 (2012), 213–225.

[153] XU, H., LIU, Y., WEI, W., AND XUE, Y. Migration cost and energy-aware
virtual machine consolidation under cloud environments considering remaining
runtime. International Journal of Parallel Programming 47, 3 (2019), 481–501.

[154] YADAV, M. P., ROHIT, AND YADAV, D. K. Resource provisioning through ma-
chine learning in cloud services. Arabian Journal for Science and Engineering

(2021).

[155] YADAV, R., ZHANG, W., LI, K., LIU, C., SHAFIQ, M., AND KARN, N. K.
An adaptive heuristic for managing energy consumption and overloaded hosts
in a cloud data center. Wireless Networks 26, 3 (2020), 1905–1919.

[156] YAN, Y., ZHANG, B., AND GUO, J. An adaptive decision making approach
based on reinforcement learning for self-managed cloud applications. In 2016

IEEE International Conference on Web Services (ICWS) (2016), pp. 720–723.

[157] YING, C., LI, B., KE, X., AND GUO, L. Raven: Scheduling virtual machine
migration during datacenter upgrades with reinforcement learning. Mobile Net-

works and Applications (2020).

[158] ZAHEDI FARD, S. Y., AHMADI, M. R., AND ADABI, S. A dynamic vm con-
solidation technique for qos and energy consumption in cloud environment. The

Journal of Supercomputing 73, 10 (2017), 4347–4368.

[159] ZHANG, Q., CHEN, H., SHEN, Y., MA, S., AND LU, H. Optimization of
virtual resource management for cloud applications to cope with traffic burst.
Future Generation Computer Systems 58 (2016), 42 – 55.

193

[160] ZHANG, Q., CHENG, L., AND BOUTABA, R. Cloud computing: state-of-the-
art and research challenges. Journal of Internet Services and Applications 1, 1
(2010), 7–18.

[161] ZHANI, M., CHERITON, D. R., ZHANG, Q., SIMON, G., AND BOUTABA,
R. Vdc planner: Dynamic migration-aware virtual data center embedding for
clouds. In IEEE International Symposium on Integrated Network Management

(Washington, DC, USA, 2013), IEEE, pp. 18–25.

[162] ZHAO, W., PENG, Y., XIE, F., AND DAI, Z. Modeling and simulation of cloud
computing: A review. In 2012 IEEE Asia Pacific Cloud Computing Congress

(APCloudCC) (2012), pp. 20–24.

[163] ZHENG, S., ZHU, G., ZHANG, J., AND FENG, W. Towards an adaptive human-
centric computing resource management framework based on resource predic-
tion and multi-objective genetic algorithm. Multimedia Tools and Applications

(2015), 1–18.

[164] ZHENG, X., AND XIA, Y. Exploring mixed integer programming reformula-
tions for virtual machine placement with disk anti-colocation constraints. Per-

formance Evaluation 135 (2019), 102035.

[165] ZHU, X., YOUNG, D., WATSON, B. J., WANG, Z., ROLIA, J., SINGHAL, S.,
MCKEE, B., HYSER, C., GMACH, D., GARDNER, R., CHRISTIAN, T., AND

CHERKASOVA, L. 1000 islands: Integrated capacity and workload management
for the next generation data center. In International Conference on Autonomic

Computing (Washington, DC, USA, Jun 2008), International Conference on Au-
tonomic Computing, IEEE, pp. 172–181.

[166] ZOLFAGHARI, R., SAHAFI, A., RAHMANI, A. M., AND REZAEI, R. Applica-
tion of virtual machine consolidation in cloud computing systems. Sustainable

Computing: Informatics and Systems 30 (2021), 100524.

[167] ZUO, L., SHU, L., DONG, S., ZHU, C., AND ZHOU, Z. Dynamically weighted
load evaluation method based on self-adaptive threshold in cloud computing.
Mobile Networks and Applications (2016), 1–15.

194

