54 research outputs found

    Reconfigurable microarchitectures at the programmable logic interface

    Get PDF

    A FPGA/DSP design for real-time fracture detection using low transient pulse

    Get PDF
    This work presents the hardware and software architecture for the detection of fractures and edges in materials. While the detection method is based on the novel concept of Low Transient Pulse (LTP), the overall system implementation is based on two digital microelectronics technologies widely used for signal processing: Digital Signal Processor (DSP) and Field Programmable Gate Array (FPGA). Under the proposed architecture, the DSP carries out the analysis of the received baseband signal at a lower rate and hence can be used for large number of signal channels. The FPGA\u27s master clock runs at a higher frequency (62.5MHz) for the generation of LTP signal and to demodulate the passband ultrasonic signals sampled at 1MHz which interrupts the DSP at every 1 [Is. This research elaborates on designing a Quadrature Amplitude Modulator - demodulator (QAM) on the FPGA for the received signal from the ultrasound and edge detection on the DSP processor to detect the presence of edges/fractures on a test Sawbone plate. In this work, the LTP technology is applied to determine the location of the Sawbone plate edges based on the reflected signals to the receivers. This signal is then passed through a QAM to get the maxima (peaks) at the received signal to study the parameters in the DSP. This work successfully demonstrates the feasibility of modular programming approach across the two platforms. The dual time scale platform readily accommodates higher temporal resolution needed for the generation of Low Transient Pulses and the processing of real time baseband signals on the DSP for various test conditions

    A timeshared, runtime reconfigurable hardware co-processing architecture

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Includes bibliographical references (leaves 73-74).The constant desire for increased performance in microprocessor systems has led to the need for specialized hardware cores to accelerate specific computational tasks. In this thesis, we explore the potential of using FPGA partial reconfiguration to create a platform for customized hardware cores that may be loaded on demand, at runtime, and replaced when not in use. We implement two new software tools, bitparse and bitrender, to demonstrate the bitstream relocation technique. Further, we present a functional microprocessor system coupled with a runtime reprogramable peripheral synthesized on a Xilinx Virtex-5 FPGA and discuss its performance implications.by Benjamin S. Gelb.M.Eng

    Obtaining performance and programmability using reconfigurable hardware for media processing

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2002.Includes bibliographical references (p. 127-132).An imperative requirement in the design of a reconfigurable computing system or in the development of a new application on such a system is performance gains. However, such developments suffer from long-and-difficult programming process, hard-to-predict performance gains, and limited scope of applications. To address these problems, we need to understand reconfigurable hardware's capabilities and limitations, its performance advantages and disadvantages, re-think reconfigurable system architectures, and develop new tools to explore its utility. We begin by examining performance contributors at the system level. We identify those from general-purpose and those from dedicated components. We propose an architecture by integrating reconfigurable hardware within the general-purpose framework. This is to avoid and minimize dedicated hardware and organization for programmability. We analyze reconfigurable logic architectures and their performance limitations. This analysis leads to a theory that reconfigurable logic can never be clocked faster than a fixed-logic design based on the same fabrication technology. Though highly unpredictable, we can obtain a quick upper bound estimate on the clock speed based on a few parameters. We also analyze microprocessor architectures and establish an analytical performance model. We use this model to estimate performance bounds using very little information on task properties. These bounds help us to detect potential memory-bound tasks. For a compute-bound task, we compare its performance upper bound with the upper bound on reconfigurable clock speed to further rule out unlikely speedup candidates.(cont.) These performance estimates require very few parameters, and can be quickly obtained without writing software or hardware codes. They can be integrated with design tools as front end tools to explore speedup opportunities without costly trials. We believe this will broaden the applicability of reconfigurable computing.by Ling-Pei Kung.Ph.D

    Reconfigurable Instruction Cell Architecture Reconfiguration and Interconnects

    Get PDF

    An Extensible, scalable microprocessor architecture

    Get PDF
    An extensible, scalable stack-based microprocessor architecture is developed and discussed. Several unique features of the architecture, including its non-memory oriented interface, and its use of a stack for holding and executing code, are detailed. A programmed model is used to verify the architecture, and a hardware implementation of a small-scale version of the architecture is constructed and tested. Notes for future implementations are provides. Possible applications based on the latest technological trends are discussed, and topics for further research into the architecture are listed

    Cycle-accurate multicore performance models on FPGAs

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 159-165).The goal of this project is to improve computer architecture by accelerating cycle-accurate performance modeling of multicore processors using FPGAs. Contributions include a distributed technique controlling simulation on a highly-parallel substrate, hardware design techniques to reduce development effort, and a specific framework for modeling shared-memory multicore processors paired with realistic On-Chip Networks.by Michael Pellauer.Ph.D

    Design and Evaluation of a Parameterizable NoC Router for FPGAs

    Get PDF
    The Network-on-Chip (NoC) approach for designing (System-on-Chip) SoCs is currently emerging as an advanced concept for overcoming the scalability and efficiency problems of traditional on-chip interconnection schemes. This thesis addresses the design and evaluation of a parameterizable NoC router for FPGAs. The importance of low area overhead for NoC components is crucial in FPGAs, which have fixed logic and routing resources. We achieve a low area router design through optimizations in switching fabric and dual purpose buffer/connection signals. We propose a component library to increase re-use and allow tailoring of parameters for application specific NoCs of various sizes. A set of experiments were conducted to explore the design space of the proposed NoC router using different values of key router parameters: channel width (flit size), arbitration scheme and IP-core-to-router mapping strategy. Area and latency results from the experiments are presented and analyzed

    Modeling of a hardware VLSI placement system: Accelerating the Simulated Annealing algorithm

    Get PDF
    An essential step in the automation of electronic design is the placement of the physical components on the target semiconductor die. The placement step presents the opportunity to reduce costs in terms of wire length and performance degradation; however it is compute intensive and is NP-complete in terms of obtaining an optimal solution. As designs have grown in complexity and gate count, obtaining an optimal solution is not feasible due to time to market constraints or sheer compute effort required. Heuristic algorithms allow for efficient but sub-optimal designs to be produced with a reduction in processing time. A widely used algorithm is Simulated Annealing (SA). The goal of this work was to develop a model that would enable an analysis into the feasibility of developing a hardware accelerated placement system which uses SA at its core. The SA heuristic was analyzed for possible improvements in efficiency with focus given to targeting the system for hardware. A solution implementing parallel computing with specialized hardware configurations inside a field programmable gate array (FPGA) was investigated as having the possibility to improve the efficiency of the SA-based algorithm. All supporting subsystems were also described for a hardware accelerated model. A large speedup was analytically shown from both accelerating the critical path of the SA algorithm as well as novel methods of improving SA\u27s efficiency. As data throughput requirements were not included in this work, the results presented may be optimistic for an overall system speedup. However, the results clearly show that future work is warranted in studying the concept of a hardware accelerated placement system

    Automatic mapping of graphical programming applications to microelectronic technologies

    Get PDF
    Adaptive computing systems (ACSs) and application-specific integrated circuits (ASICs) can serve as flexible hardware accelerators for applications in domains such as image processing and digital signal processing. However, the mapping of applications onto ACSs and ASICs using the traditional methods can take months for a hardware engineer to develop and debug. In this dissertation, a new approach for automatic mapping of software applications onto ACSs and ASICs has been developed, implemented and validated. This dissertation presents the design flow of the software environment called CHAMPION, which is being developed at the University of Tennessee. This environment permits high-level design entry using the Cantata graphical programming software fromKRI. Using Cantata as the design entry, CHAMPION hides from the user the low-level details of the hardware architecture and the finer issues of application mapping onto the hardware. Validation of the CHAMPION environment was performed using multiple applications of moderate complexity. In one case, theapplication mapping time which required six weeks to perform manually took only six minutes for CHAMPION, yet comparable results were produced. Furthermore, the CHAMPION environment was constructed such that retargeting to a new adaptive computing system could be accomplished in just a few hours as opposed to weeks using manual methods. Thus, CHAMPION permits both ACSs and ASICs to be utilized by a wider audience and application development accomplished in less time
    corecore