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ABSTRACT

An imperative requirement in the design of a reconfigurable computing system or in the
development of a new application on such a system is performance gains. However, such
developments suffer from long-and-difficult programming process, hard-to-predict
performance gains, and limited scope of applications.

To address these problems, we need to understand reconfigurable hardware’s capabilities
and limitations, its performance advantages and disadvantages, re-think reconfigurable
system architectures, and develop new tools to explore its utility.

We begin by examining performance contributors at the system level. We identify those
from general-purpose and those from dedicated components. We propose an architecture
by integrating reconfigurable hardware within the general-purpose framework. This is to
avoid and minimize dedicated hardware and organization for programmability.

We analyze reconfigurable logic architectures and their performance limitations. This
analysis leads to a theory that reconfigurable logic can never be clocked faster than a
fixed-logic design based on the same fabrication technology. Though highly
unpredictable, we can obtain a quick upper bound estimate on the clock speed based on a
few parameters.

We also analyze microprocessor architectures and establish an analytical performance
model. We use this model to estimate performance bounds using very little information
on task properties. These bounds help us to detect potential memory-bound tasks. For a
compute-bound task, we compare its performance upper bound with the upper bound on
reconfigurable clock speed to further rule out unlikely speedup candidates. These
performance estimates require very few parameters, and can be quickly obtained without
writing software or hardware codes. They can be integrated with design tools as front end
tools to explore speedup opportunities without costly trials. We believe this will broaden
the applicability of reconfigurable computing.

Thesis Supervisor: V. Michael Bove, Jr.

Title: Principal Research Scientist






Doctoral Dissertation Committee

V4

Thesis Advisor: '
V. Michael Bove, Jr. 4
MIT Media Laboratory

(
Thesis Reader:

e o

Thomas F. Knight, Jr. /

Senior Research Scientist
Electrical Engineering and Computer Science

g ———— -

s
-
Thesis Reader:

T e § j
Peter M. Athanas

Associate Professor
Department of Electrical and Computer Engineering
Virginia Polytechnic Institute and State University






Acknowledgement

I owe many thanks to a lot of people, without whom I could not have
survived these toughest years in my life. In particular,

My advisor, Mike Bove, for his great insights, perspectives and sense of
humor. I could not have asked for a more understanding and patient
advisor.

Tom Knight provided very helpful discussions on the subject of FPGA
routing delays and semiconductor technology.

Peter Athanas, whom I had less frequent contacts, but his work in this
area provided valuable background information. I look forward to
more future interaction.

My colleagues, Stefan Agamanolis, for his inspiration and a always
available helping hand. Bill Butera, for his great conversations and
cheerful personality. Shawn Becker, for his help on software and
understanding. John Wadlington, for his help and knowledge in
hardware. Thanks to Cheops people, Mark Lee, Jeff Wong, Ross Yu,
Brett Granger, Andrew Huang... Thanks you all, it’s been a pleasure to
know you.

Special thanks to my old officemates, Vadim Gerasimov, for his help on
many windows problems. Nuno Vasconcelos, for discussions on
image/video coding.

My friends here deserve a lot of appreciation. Thanks to Han Chen, the
Wongs, Jen-Ju Huang, Mike Chou, Ralph Lin, the “ROCSA” volley ball
family, and the many friends I came across over the years.

Thanks to Wan-Ping Lee and Chen-Ju Chen, who have given me very
happy memories.

I owe most thanks to my sister, Ling-Ling, and her family. My brother-
in-law, my lovely niece, Cheryl, and nephews, Brian and Kevin. Thank
my brother, Ling-Yao, who has been taking care of our ailing father.

Finally, thank my parents for allowing me to pursue my goal. I know
your sacrifices and constant worries. In particular, thank dad to gather
enough strength and hang on to see this day. Your unconditional love
is the source of my strength. Ilove you all.






TABLE OF CONTENT

T MOBVAEIOML. v eeeeeeeeieeiieceeeteeeeteeeeseeeetaeeeaeeesbasessaaessssessseasssaasssasasssasssseeassasessssesssesonssasssaneesaanesss 17
2 TIS TIESIS wveeuveeeeeeeeereeireesieeeteeseeeseeetseeseesseesseesseeassesssesbssssesssasssessesssssassssstensssenseasseerareessessnnsnne 23
2.1 ISSTIES eveernevieeeeeeeeiee e eeee it ee et e et eeeaeeesssesssaa e sa e e ssasesseeassaeanseaasreeeassaesssesssteensatesnsens 23
2.2 THESIS QUL . cevivietiireeticececte et eereens et s enenaeressseseseaessesseessassassaessessassmessenns 25

3 Evaluating PerfOrmance..........cocuuuiuiueisnemnsiniieiesies sttt e 27
3.1 TSSUIES ceveeieteetiieeett ettt cetreeeee et e e ear e e saseeessa e nse e s e e s s e e e st e e st aaereteansa e e st e e nrnransnrenntenn 27
32 Codes-Architecture-Organization-Compiler..........ccooveiereiniencceniensiicneinnn, 28
3.3 APPIOACH ..ot s 31

4 Media PTOCESSING ......cvovmeverrireiicieirie ettt sttt 38
4.1 CIRATACEETISEICS o vevvieeeeeereeeeeeeeeeeeeteeseeesresseeeeseeseessesssaseasssessaeassasssesbnassanasasasesnsaanses 38
4.2 Performance MELTICS ....ocvivivicreiieeeeeteeeeeereveeteesecseeseeeestesseessessassesseassesensasseenes 41
4.3 Implementation Perspective........c.ooeeiirineininininiiniciccce 42
431  INSEUCHON RATe.ciiiiieiieiiieeeie ettt et e et e e s ee e s e s be e s ee e e e e ea s s maenes 43
432 Reconfigurable LOZIC ..coooiiiiiiiiieiiiei e 46
433  Coding EffOrtS.....ovcurieieiiiiiiiicci s e 48

5 Reconfigurable ATChiteCtUIeS..........oveuiiiirieitininiieie e 50
5.1 Topology of Logic Cells and Routing Structures ............coecveverincemeriniiccnencene. 50
5.1.1 Symmetrical AITay .....coooveeninnicinncninecnnen, ettt ettt et 50
5.1.2  HIETATChICAL ...ooviieeieeeeeeeteeeeee ettt eette et e e te e re e e bsesesaeesbe s e baessbaessaneeeneeenees 52

5.2 Minimum Clock Period EStmation .........cceevevvierveniiinieeniniecenieneeeeneeeeeeeeneeens 54
52.1  Combinational Delay ........cccocoiriiiiiiiiiiieiinieieis e 56
522 RoUtING DElAY ..ovovieiiiiciii e 57
5.2.3 Clocking: Reconfigurable logic vs. Fixed LOZIC .....ccovnirinieriiiniiiniiiciienes 62

6 Performance Of MICTOPIOCESSOTS ......c.cvriuiiriruriiiiinseisistsieiei sttt 64
6.1 Performance ANALYSIS .....cooveiicueiiiciieiei e 64
6.1.1  INSEUCHON RAE...uiiieeeiieieeee ettt e e s e eea e e e s eee e s rr e e s e beaessnees 65
.12 FACEOIS oottt eeeet e e e ete e e sttt e e s tr e e e ssva e e e sneeesesnstaesssnnaeeeseneneesrnneeessnneeesasses 67
6.1.3  SPEEAUP -eocuirieiiictt s 67
B.1.4  SIMD ettt stt et testeeree e ere et e s s aaera et et e sa e st e s aens et e st et et esesatentestenneant 68

6.2 Datapath Performance ANalysis.........cocoeueiremieinimnimstinsiniinsinisiineisesccennes 70
6.2.1 Datapath Properties .........cccoeiiniiiicicccn 71
6.2.2 Data Processing Execution Model...........ocoeeiiiiiiniiiicns 73
6.2.3  Performance PrOPETHEs .......ccoovviemieireieiiecini st 75

7 Architecture of Reconfigurable SYStem .........cooouiuiriiininiiiiiscccc e 77
7.1 Technology BackAIOP .....cvcvviririiiiriiiisi e 77
7.2 System Architecture and Organization ............ccccevecuvcicininiinninniee, 78
T2.1  COTE PAITS . eeeeereeeereeeeeeeecteeteeer et ereesteeteesseseesessessassassesssessasssansaenssreeseeneessensesmeenns 78
722  Reconfigurable SUDSYSIEM ........coeiuiuiiiiiiiinieieine e, 82



7.3 Other ATCIIEECTUTES ...ooveeeeeeeet ettt sete st e e et eeeeteseseeeseeeesseesseneessnneann 90

8 Performance ANALYSiS........ccocuicriiriiiiiciciiii ettt 93
8.1 Performance EStmates. ... ..ottt e e seeeeeeeenes 93
8.2 APPLCAtION SCOPE.....ovrririieiritit e 104
8.3 FroNt ENA TOOL ...ttt ettt ssaa st et e aee e e e e 105

9 Recap, CONIIDULIONS c.ccuvvveiiieiiieiit s 110

AReconfigurable Computing SyStems.............cccovuiuiiiiiiiiiiiiiicineieeeeeee e 112
Al Custom Computing Machines............ccoucciviriiicninicnrcrnceeteeccenreeeeseeenees 112
A2 Multimedia Reconfigurable Computing ...........cccceuiuveniivncinmnienicnecnenes 112
A3 Myth of Performance Claims ............cccceeueuieunmenericecneeeneeeeeeeseseseeeees 113

A31 System Organization...........c.oocovreiiiiiiiiiiciiiciicceeee e 114
A32 Fabrication TechNOlOZY .......cccovviuiiiiiiiicciiicecie e 116
A4 DISCUSSIONS ..ttt ettt e et et s e eareeneee s enesesenesaneessnees 117

B FPGA DeSigN ISSUES ......cvviieiiiiieiitet ettt 121
B.1 DeSIGN ISSUES ....eeeiie et 121
B.2 TOOL ISSUES ..ottt en e et e e e ese e et s eseesseeeeesasensasessesssesneans 124

10



List of Figure

Figure 1-1: Envisioned applications of reconfigurable computing and roadmap. .......c.ccecvvueunenas 20
Figure 1-2: System and application development scenarios for embedded and general-purpose

TECONFIGUTADIE SYSLEINS. ..oovvvvvrrierrecieetenteten ettt 21
Figure 2-1: The organization of this thesis.........owcueveieieieiii 25
Figure 3-1: Performance is determined by the codes, the compiler, the architecture of the system

and its components, and the organization of the components. ..o, 28
Figure 3-2: A task is either compute, memory, or I/O bound. ........coceoceoiiiiiiiiiiiiiicin, 29

Figure 3-3: Determining performance bottleneck by emulating computer, memory, or 1/O
WOTKIOAAS. .cvcvemenimiirecicnie st st sb sttt s 30

Figure 3-4: Four codes-architecture-organization-compiler structures: (a) general-purpose
computer host (b) with add-on application-specific subsystem (c) with add-on

reconfigurable subsystem (d) future reconfigurable SyStem.........ccceumrrveieviriniincrniiniiiciinn, 31
Figure 3-5: Non-reconfigurable computer system design and application development paradigm.
............................................................................................................................................................. 32
Figure 3-6: Reconfigurable computer application development process........c.oovuvvunirereuviceirninnn. 34

Figure 3-7: Searching for new architectures (a) an ad-hoc organization based on existing
organization (b) an integrated Organization............ovceeeueeniiiniiiiiniin 35

Figure 4-1: Media processing covers a broad range of applications in digital signal processing,
communications, pattern/object reCOgNition, etC. .......vueverriieinninceiec 39

Figure 4-2: Typical multimedia processing tasks involves a data stream at the input and/or
OUEPUL 11ttt s 40

Figure 4-3: Four media processing application scenarios: (a) both input and output require
constant data rate (b) only input data must be consumed at a minimum rate (c) output must
be produced at a minimum rate (d) data processed from one form and stored back. ........... 41

Figure 4-4: A color transformation and alpha blending example (shown only the luminance)..... 43

Figure 4-5: Code segment of color space transform represented as a sequence of three-register

instructions on (a) MMX architecture (b) non-MMX architecture.........ccoeevreevnnennnnnneene 45
Figure 4-6: Code segments in Figure 4-4 translated into hardware macro functions....................... 47
Figure 4-7: Pipeline retiming (or minimum period retiming) technique can be used to achieve

high CloCK SPEEA. ..vrreiiieieciieii s 48
Figure 4-8: Instructions executed in sequence in the temporal domain vs. concurrent hardware

execution in Spatial dOMAIN. ... cuvrireieieieie s 49
Figure 5-1: Topology and organization of a symmetrical FPGA ..o 51
Figure 5-2: Xilinx’s XC4000 single- and double length lines, with programmable switch matrices

(PSMIS). eucveveeuereintierasise s ssc s s s s s bbbt 52
Figure 5-3: Altera Flex 10K architeCture. ..o 53
Figure 5-4: Altera FLEX 10K family’s LAB connections to row and column interconnect.............. 54
Figure 5-5: Assuming there exists a node with fanout of two in a real design. .......ooeuvevieriviennnnne. 56

11



Figure 5-6: Estimation of combinational delay. Example uses Xilinx XC4000 family FPGAs........ 57

Figure 5-7: Altera FLEX 10K family FPGA combinational path delay. ........c.ccccccoeuecuniunrcncrnrcncnnnnee 58
Figure 5-8: Estimation of a lower bound on routing delay (e.g. switch based routing structure).. 58
Figure 5-9: Estimate of minimum routing delay in Altera’s FastTrack routing architecture........... 59
Figure 5-10: Delays in Altera FLEX 10k family devices (speed rating -3) .......ccceeueeveeeneuremnerersnnenns 60
Figure 5-11: Percentage of Routing Delay in Minimum Clock Period increase with the Size of the

FPGA ottt e b anan 60
Figure 5-12: Routing Delay in FPGA Grow with Process Technology Upgrades..........c.cccceureuennee. 61

Figure 5-13: VLSI design hierarchy (a) register transfer level (b) gate level (c) circuit level (d)
PRYSICAL IAYOUL ..ottt s 63

Figure 5-14: Register packing density (a) every register in a microprocessor is active (b) not every
logic cell is used for every configuration, some are used for its combinational part only..... 63

Figure 6-1: An instruction can be separated into data processing stream and control and data

IMOVING SITOAIML. .vveiiiecteeceteteec ettt s ettt bbbt bt 67
Figure 6-2: (a) Segmented (subword) ALUs for saturated arithmetic, (b) Segmented (subword)

ALUs for arithmetic, logical, shifting, and any other operations ..........c.cccecveoscrerencrerrnnnne. 69
Figure 6-3: A single pipelined functional unit connected to a register file. ........ccocceoererervernrrnrnne. 71
Figure 6-4: Multiple functional units sharing the same register file. .........cccoccooenereereirrerrrrresrn. 72
Figure 6-5: Temporal expansion of N data processing inStructions. ..........c...cueveeererneererneesersreseinnenns 74
Figure 6-6: A block of N instructions execute on a pipeline functional unit..........oeceeevvveurcereereenee. 74

Figure 6-7: Temporal expansion of multiple FUDP. N instructions may be distributed among M
FUNCHONAL UNIES. oovoet e et 75

Figure 7-1: A reconfigurable subsystem attached to the I/O bus of a general-purpose system..... 80
Figure 7-2: A reconfigurable subsystem directly sitting on the processor bus. .......c.ccccccevevverrinnneee. 81

Figure 7-3: Bus interface and FIFO are an integral part of the reconfigurable subsystem, but
should be implemented with fixed logic (not reconfigurable)..........cccocovvirrirrnieeeresrererenens 82

Figure 7-4: A FIFO subsystem buffering data from system to reconfigurable substrate and vice
VBISA. wviriiuiitirteite ettt ettt e b b st h e st b et e et et b e s s e re s e e et setenes 84

Figure 7-5: Reconfigurable subsystem showing constituent fixed functions and a reconfigurable

LOGIC COT@ vttt sttt e st 86
Figure 7-6: Memory address for common registers is fixed, while application specific registers
addresses can change with applCatiONS. .....c..cerueueeiirinceiei et 87
Figure 7-7: A special register for reconfigurable logic (SRRL) in an microprocessor’s register file.
............................................................................................................................................................. 87
Figure 7-8: Reconfigurable system model showing the special register interface. ....c...c..ccco.ee....... 88
Figure 7-9: An integrate general-purpose reconfigurable architecture. The microprocessor core
and reconfigurable logic core run asynchronously. ..........coc.coeeneerevruneinieseesesseesees e, 89
Figure 7-10: A datapath model of a general-purpose reconfigurable core. ........ccooveurirerrrrrerernnnee. 90

Figure 7-11: The PRISC architecture. A programmable functional units is sitting on the register

12



DS, ettt et ve e e e st e e e e e n e s e bt e s s o a et se s beaesaa et eseeertnesenneesseraeeaans 91

Figure 7-12: Problems with PFU as a functional unit attached to a register file .......c.c.ccccocrvuruunee. 91
Figure 7-13: Garp architecture [11]. ... 92
Figure 8-1: Examples for bound estimates (a) color space transform (b) a 19-tap filter................... 97
Figure 8-2: Finding upper bound visualized as minimizing the highest bucket. .........c..cccccocuuucv 98
Figure 8-3: Finding lower bound visualized bucket filling. The heights of the buckets all increase

by the SamMe aMOUNL. ..ot 99
Figure 8-4: Speedup candidate decision diagram and properties that move the dividends......... 103
Figure 8-5: Front end for new reconfigurable system design ..........ccoovvvvivririicnncrciviiniiissincnnns 106

Figure 8-6: Front design flow for reconfigurable application development on existing systems. 107

Figure 8-7: Performance bound estimates as a front end tool integrated into hardware design

IO ettt e 108
Figure 9-1: A typical functional datapath block diagram of a reconfigurable subsystem on early
custom computing MACKINES. ..o 115
Figure 9-2: Performance comparison is more fairly judged using the same manufacturing
tECHNOLOZY . ouveveitiiittei e e 117
Figure 9-3: Drop-in replacement for performance cOmparison..........cceeuvrreirnerniieisisssessssienanes 118

13



List of Tables

Table 6-1: Nomenclature of “packed” data in SIMD context. Numbers represent the number of

DYtes N the data. ....c.ooevmeieceerieti s 69
Table 6-2: Reported speedups using MMX instructions for some multimedia applications. ......... 70
Table 6-3: Performance properties of three popular microprocessors.........cocueurearunirinesssesineninnsins 76
Table 8-1: Performance upper bound and lower bounds on color transform example using three

representative microprocessors (32-bit datapath)........cccoevrenoriiniininen 100
Table 9-1: System information on several reconfigurable subsystems. ........c.cocoeovriineivinriniicicnnnnee. 120

14



Terminology and Concepts

Embedded Reconfigurable System (ERS) : A system based on an embedded processor
core (DSP, micro-controller, or a RISC core) and reconfigurable hardware.

Field Programmable Gate Arrays (FPGA) : In this thesis, we use FPGA for SRAM-
based FPGA interchangeably, unless otherwise stated.

General-Purpose Reconfigurable Architecture (GPRA) : An uniprocessor or a
subsystem architecture consisting of a general-purpose processor core, reconfigurable
logic array, and configuration hardware. The processor core may contain from
minimum hardware for any computable tasks to full-fledged superscalar processor with
cache, memory interface and bus interface support.

General-Purpose Reconfigurable System (GPRS) : A computer containing GPRA,
memory, and I/Os.

Instruction Set Processor (ISP) : Any processor which executes a set of instructions,
together with memory, it can compute anything computable. This term includes
general-purpose processors, DSP, microcontrollers and any other variations of
instruction-based processors.

Reconfigurable Computing (RC) : Computation employing reconfigurable hardware as
a co-processor in an instruction set processor-based system.

Reconfigurable Computing System (RCS) : An ISP-based reconfigurable system. That
is the system consists of some kind of instruction processor core and reconfigurable logic
array. Both GPRS and ERS are subsets of RCS.

Reconfigurable Hardware (RH) : A piece of conceptual hardware consisting of RLAs
and internal configuration hardware as part of a chip, the whole chip, or an aggregate of
several chips.

Reconfigurable Logic Array (RLA) : A conceptual piece of hardware consisting of a
finite two-dimensional array of RLL and routing resources of varying granularities
without embedded memory, I/O, internal configuration, and any other peripheral
circuitry. We deliberately leave out the peculiarities of embedded memory, input and
output ports, and other special-purpose peripheral circuitry typically associated with
today’s typical commercial FPGAs. This conceptualization helps us separate out the
“non-general-purpose” elements and their properties in reconfigurable devices to focus
on “general-purpose” elements and their properties such as the logic and routing
structures. We later propose a general-purpose reconfigurable architecture on which
reconfigurable hardware is integrated with general-purpose cores on the same chip. In
that case, the boundary between input/output ports and reconfigurable logic is being
merged or pushed out to the system boundary. Thus, our conceptualization lays a
realistic groundwork for future general-purpose reconfigurable architectures. This
conceptualization does not undermine our evaluation of reconfigurable architectures.
Our models of reconfigurable systems can incorporate them later.

Reconfigurable Logic Array Core (RLC) : An alias for RLA.

Reconfigurable Logic Cell (RLL) : The smallest reconfigurable logic unit whose logic
function can be independently configured.

Reconfigurable Logic Device (RLD) : Reconfigurable logic arrays embodied in a
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physical chip with I/O pins and configuration support circuitry. A superset of RLD is a
typical commercial FPGA device, where embedded memory and peripheral circuitry
may exist. A typical example of reconfigurable logic device is a FPGA device. Two
most popular FPGA vendors, Xilinx and Altera, have a broad range of FPGA devices
with some forms of architectural specialization and features targeted for different
market segments.

Reconfigurable Processor (RP) : A fully configured reconfigurable logic device which
can perform some processing on data according to its resident configuration.

Reconfigurable Subsystem (RSS) : A system containing reconfigurable hardware and
external configuration hardware (for example, a microprocessor interface that are
necessary for microprocessor-controlled configuration, or a hardwired configuration
controller and configuration memory). The subsystem may contain memory, glue logic,
dedicated ICs, etc.

Semiconductor Processing Technology : The process of taking a wafer through various
physical, chemical, and mechanical processing steps to make integrated circuits. In this
thesis, we characterize a semiconductor process generation by its minimum feature size,
metalization process, and operating voltage.

Subword Parallelism : Packing of multiple independent data of subword sizes into one
big word so that operations on a word is equivalent to operations on all subwords
within the big word.

Subword: one part of an equally-partitioned memory word.
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1 Motivation

The Big Picture — Applications and Interfaces

Early computing devices were designed to meet the needs of scientists, engineers, and
later merchants!. The early applications conceived and implemented were numerical
routines to solve scientific or engineering problems, followed by transaction processing
for commercial use. Personal computers were conceived for personal use, yet its first
applications still evolved around problem solving for scientists and engineers. The most
popular application for personal use was word processing. However, early word
processing applications were not user-friendly as manifested by the notorious what-you-
see-is-not-what-you-get problem. Introduced later, graphical user interfaces made
application input and output interfaces look more graphical (though not necessarily
intuitive), though they still wrapped around the same suite of applications. The claim
that use of personal computers increased productivity was moot. Many studies found
the contrary. In short, the early applications for (personal) computers were conceived,
created, and used by scientists, engineers, programmers, and computer literates. As
such, these applications had very little use for the average person. Let alone poorly
designed user interfaces exacerbated the burden of learning to use them.

These two issues - mismatch between the application space and the mass population,
and disharmony between applications and users, were natural products of an
evolutionary process. The applications and interfaces were conceived and thus confined
by the minds of their inventors and the available technology at their disposal. Scientists
and engineers begot computing devices, contrived their applications, and molded their
problem solving process into applications and interfaces. Limited computing power at
the time dictated the kind of applications that could be accepted by users.

New Class of Applications - Multimedia

Over 40 years experience of using computers, a consensus has gradually taken form
among the computing society at large. A computer should do what a user wants, not
what it or its inventor wants2. And that user isn’t necessarily a computer expert but an
average person. Computers should help us gather, process, manage, and distribute
information the way a human being does and only better. It should present the
information to us the natural way - through our visual, aural, and other sensory forms.
It should also help us communicate and interact with other fellow human beings the
same way as if we were face-to-face. It should provide entertainment, education, and
training contents the way we want and anywhere we want. The application suite must
expand beyond scientific and engineering endeavors. They must deal with the kind of

1 Dating back to the earliest device - difference engine (1823) and analytic engine (1833) designed by Charles
Babbage to the first commercial computer IBM introduced in 1953.

2 We use “computer” here to denote a broader class of computing devices, PDA, cellular phones, intelligent
appliances, etc. That is, any system based on an instruction-set processor.
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information we come into contact everyday. We call that kind of information
“multimedia”.

Changing Application Requirements

What we want means we want computing devices to be whatever we want them to be.
It must be versatile, can do many things if not all things. The way we want means that
they must be have natural interfaces. They must be intuitive to use. Anywhere we want
suggests that they must be small and portable, and perhaps “they” are one single device.
Be many things, portable, natural human interfaces seem to be conflicting requirements.
However, we don’t need “them” to be all things at the same time. It will require a
sophisticated interface, contrary to our requirement, to manage the complexity. We just
need “it” to be different things at different times. We can time-multiplex different
functionalities, thus simplifying the interface to the user, onto the same pieces of
hardware real estate. It must be “reconfigurable”.

More Complex Applications

The idea of applying the interface metaphor of human-human or human-environment to
human-computer interface isn’'t new. Curiously enough, and perhaps counter-intuitive
because human beings can do this effortlessly, an application with “simple”3, intuitive,
natural human-friendly interface often requires high computing power. Hand-writing
recognition, speech recognition, object recognition and tracking are such examples, just
to name a few. At the dawn of personal computers, the computing power wasn’t
enough for any of these applications. Thanks to semiconductor industry’s relentless
drive to higher performance and lower cost, some multimedia applications using a
natural human interface began to emerge. More advanced applications requiring more
computing power always exist ahead of the technology curve. We are always looking
for more “performance”.

Many multimedia applications involve natural user interfaces via sensory devices. They
bring computing technology closer to an average no-so-computer-literate person’s daily
life for the purpose of information or entertainment. We believe this is where future
computing technology should make greater strides. Media processing technology
should allow us greater freedom in exploring better and more natural human-machine
interface. Multimedia applications, in particular perceptual signal processing, is the
foundation of intelligent, cognitive processing of sensual data using computer.

Application Scenarios

We envision reconfigurable computing has many potential applications in the
embedded as well as the general-purpose computing environment. A few scenarios
illustrate the potential applications from an end user’s point of view.

3 Simplicity means hiding most of the complexity and exposing only a few parameters to a user.
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Embedded

Imagine that one can add, change, or upgrade functionalities to his personal
communication and entertainment equipment, without throwing away his old
equipment, once new applications, new services, or new standards become available.

For example, one can upgrade his personal communication and entertainment
equipment, such as a new and stricter just-in-time encryption algorithm recently
deployed by the service provider, by simply downloading the new hardware
configuration files into his cellular phone.

Imagine a cellular phone can be turned into a global positioning satellite (GPS) system
when needed®. It works as a Bluetooth business card when you exchange information
with your business contacts. Attaching a camera lens, it becomes a digital camera. With
an ear bud, you can listen to MP3 music. When connected with a network cable, it lets
you transmit data to the wired network.

In cases when you need to tell your friend about some information you keep in your
notes, your cellular phone should be your organizer at the same time. Your PCES may
function as a phone plus an organizer at the same time, but not a phone and a MP3
player, nor a GPS and camera at the same time. Normal usage conditions® make some
combinations of functionalities very unlikely to be used at the same time.

An embedded reconfigurable system (RES) is ideal for our example. It can potentially
offer a lower cost, lower power consumptioné, smaller weight, and smaller size solution
over an all-ASIC solution.

General-Purpose

Imagine a user wants to create a high quality multimedia archive, containing life-long
audio, photo, and video footages of his family members. He must be able to modify,
annotate, search, play, and store this archive quickly. The archive must be indexed with
many ways with different parameters or annotations for different searching and
browsing conditions. The archive also must be compressed to save storage space. He
wants to browse the archive quickly, yet he wants to see the footages at normal speed
once he finds it.

Or a user wants to participate in an online class through video conferencing setups. He
must be able to take notes, ask questions, show his projects, and see other classmate’s
demonstration. He must be able to see at least two video windows at the same time.

4 We assume the analog front end for both standards are embedded in the system when manufactured.
5 For example, we would not want to talk to someone on the phone while listening to music. We cannot use
the LCD screen for the GPS and the camera at the same time. Whether limited by our sensual ability or

device constraints, some functions are mutually exclusive.

6 This is one very important constraint for mobile applications.
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Current general-purpose system is still too slow to process high-quality image or video.
For example, saving 3Kx2K 24-bit color image as a JPEG file takes around 25 seconds on
a Pentium Ill-based system’. This photo quality is close to the quality of today’s top of
the line digital cameras. Imagine a future with digital camcorder of this or even higher
quality.

Performance gains translate into increased productivity regardless whether an
application has real-time hard constraints or not. Reconfigurable hardware provides
potential performance gains toa genera]—purpose computer.

Figure 1-1 shows a vision of reconfigurable computing deployed in future systems.
Some small number of fixed standard applications (as standardized by international
standard bodies), in particular portable and wireless, may take advantage of
reconfigurable hardware for smaller footprint and cost considerations. The actual
physical embodiment of such a system will be largely determined by the application’s
input and output devices, and their physical form factors required for the user interface.

R i "

p e —
Embedded \ /
Reconfigurable System General-Purpose
(Unknown Physical Reconfigurable System

Fbodiment \ /

The boundary between general-purpose
and embedded applications could be
blurred in the future if reconfiugrable
hardware gives more performance to a
general-purpose system and
programmability to an embedded system.

Figure 1-1: Envisioned applications of reconfigurable computing and roadmap.

In the general-purpose case, the system could be built with reconfigurable hardware as a
high-end system, or as an alternative architecture where marginal hardware real estate
(e.g. extra cache or processing units prove to produce marginal performance benefits) is
traded for reconfigurable hardware. The cost consideration is irrelevant after-the-fact
the initial system is built and an unknown and unbounded number of future standard or
non-standard applications are yet to be developed. Typically, applications running on
general-purpose systems are piled up mostly after fabrication, especially after

7 The system has enough (384MB) memory so memory paging is not necessary.
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development methodology and tools become more mature.

These systems will have well thought out I/0 interfaces to connect to portable devices
or smart electronic appliances for data processing, storage, and other tasks. It is also
possible some convergence in architecture and organization, and good modular designs
will emerge that changes the notion of embedded and general-purpose computing.

Challenges to System Design and Application Development

Incorporating reconfigurable hardware into a computing platform presents new
challenges in system architecture and design, reconfigurable application development
tools, and performance validation. Figure 1-2 shows the different system and
application development paths for embedded and general-purpose reconfigurable
systems.

Applications

General-Purpose
Reonfigurable

Systems \

vEmbedded """ " " !
» Reconfigurable
: System (Physical

System Requirements +
Performance Estimate
Architecture and System v +
Organization S fbware Reconfigurable Computing
Implementation Implemlentanon and
Validation
Implementation and +

(Performance) Validation Performance Benefits

Figure 1-2: System and application development scenarios for embedded and general-purpose
reconfigurable systems.

For the embedded system, a initial set of a small number of standard applications and
features are targeted. The system is then built at the lowest cost possible. If the future
expandability is planned or envisioned, then provisions, typically with some headroom
in hardware real estate more than the required for the current set, must be considered
during system design phase. The “cost” of hardware should be factored against the
intended applications plus

The design challenge is to come up with a good architecture and system organization
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that meets all requirements of this initial set of applications and also provide headroom
for future application upgrades. System designers must select an appropriate
combination of processor (or processor core) and reconfigurable logic device (or a
reconfigurable logic core), and other system components under performance
requirements. Cost consideration is very important for embedded devices, which
typically target mass market. All components are subject to scrutiny for unnecessary
hardware real estate. Further integration to reduce cost is also possible.

For general-purpose applications, there are two major challenges. One is to invent new
“integrated” architectures, which pair general-purpose microprocessor cores with
complimenting reconfigurable logic array cores. Pairing could potentially marginalized
some microprocessors’ capabilities and features. Microprocessor cores’ real estate could
be saved for reconfigurable cores’ real estate, thus reducing the cost of adding
reconfigurability. Exploration of general-purpose reconfigurable architectures is still in
a very early stage.

The second, probably the biggest, challenge is to develop applications optimized for
performance given the already present reconfigurable resources. The objective is to
gain performance speedups as much as the built-in reconfigurable hardware allows and
to as many application as possible. This objective is the justification of reconfigurable
computing.

However, a new programming paradigm would be required for application exploration
and development. The programming paradigm on a (non-reconfigurable) general-
purpose computer is one such that performance is “measured” matter-of-factly after
codes have been written. The same paradigm does not apply for reconfigurable
programming as it often takes a much longer time and more significant expertise than
conventional software programming.

An analogy to this added difficulty is to compare programming for distributed
Computing on heterogeneous computing resources versus programming for a
uniprocessor system. Since the same task can be done on one single system and
programming is much more easier (because program paradigm is well-established and
tools are mature). It would only make sense to distribute tasks if the final performance
in its totality is better than the single resource. The programming language,
architecture, organization, and compiler for each computing resource can be different,
resulting in different execution speeds for each task. Programmers must take great care
to ensure correct program behavior and performance gains.

So far no proper programming model has been established for reconfigurable
computing. Traditional software programming and FPGA design flow are being used as
an makeshift programming paradigm. This disharmony is being patched up by human
expertise. A more efficient programming paradigm must be contemplated and new
tools for reconfigurable programming then can be created.
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2 This Thesis

Several early research projects reported three orders of magnitude performance gains by
using an ad hoc reconfigurable subsystem to augment a general-purpose system on
some kernel functions (see Appendix A). The potential of such a high performance gain
triggered a flurry of research activities over the years [1, 2]. Many believed that
reconfigurable hardware, offering ASIC-like performance for a wide range of
applications, would usher in a new computing revolution changing the old notion of
computing we know of today.

Despite more than a decade of research and experiments, reconfigurable computing
remains in research laboratories with no practical applicability to the large number of
applications currently running on general-purpose systems. Nor have we seen multiple
static or dynamic reconfigurations applied successfully in other areas of computing,
such as embedded systems. Reconfigurable hardware, such as SRAM-based FPGAS, is
still, for the most part, being used for its traditional role as a fast prototyping low-cost
ASIC substitute. So what has prevented reconfigurable computing to become part of the
mainstream, general-purpose or embedded computing environment?

2.1 Issues

The design process of a general-purpose processor based system and the development
of its applications are well understood and the infrastructure is well established. As a
result, it saves much engineering time and cost by taking advantage of that process and
infrastructure. In light of semiconductor processing technology’s relentless drive to
smaller and faster transistors, the loss in time results in the loss in technical superiority.
Such is the reason that many reconfigurable systems were rendered obsolete a few years
after their inception and reconfigurable computing remains in research laboratories and
its application remains exclusively in the domain of scientific and engineering problem
solving.

Modern architectural, such as VLIW and Multimedia extension, and micro-architectural,
such as speculative execution, superscalar, heavily pipelined functional units, out-of-
order execution, and dynamic register renaming, innovations in general-purpose
processors have made great performance improvement by exploiting some form of
application specialization and instruction level parallelism (ILP). These advances can
significantly reduce the performance benefits of reconfigurable hardware and make
some past performance claims moot. Given the economical disadvantages of
developing reconfigurable systems and applications, one must ensure at least the
potential performance gains exist before committing significant amount of time and
resources.

From an end-user’s point of view, reconfigurable computing has not demonstrated that

8 In this thesis, we use FPGA for SRAM-based FPGA interchangeably, unless otherwise stated.
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it can provide high enough performance gains to more than a few pedagogical
examples. Throwing cost-effectiveness into the equation, it is hardly convincing as a
viable solution against other computing technology.

From the technology point of view, more research is needed to explore application and
performance space to drive the cost down. Due to the ever-increasing complexity to
today’s VLSI building blocks, a multitude of technical issues remain. In fact,
reconfigurable computing is still in its infancy when it comes the infrastructure needed
to support its exploration and development. Specifically, we found:

1.

We don’t know how to evaluate performance gains properly. A wide range of
speedup claims are reported in the literature. A close examination raises
questions on how to interpret these numbers. These questions include: the
general-purpose reference platforms seemed to be randomly chosen; the
reconfigurable platforms were upholstered with custom memory and I/O
organizations that rendered them as application-specific solutions; the ISPs and
RLDs implementations were not based on the same semiconductor process
generation (ch 3 & 5).

We don’t know what constitute a “good” (if this can be asserted at all)
reconfigurable system architecture and organization. We don’t know what
constitute good component architectures and properties, in particular, those of
microprocessors and reconfigurable logic. This reconfigurable system must
allow us to explore added performance without losing programmability.
Without pinning down architectures and system organization, we cannot
evaluate performance benefits.

We don’t know what properties affect reconfigurable logic’s performance. Its
performance is hard to predict, and we must go through the whole design
process to find out. We ought to have a better way of “predicting”,
“approximating”, if not, “bounding” it without time-consuming design process.

We don’t know how to compare the performance of a fixed-logic microprocessor
to the performance of a reconfigurable logic. The post-implementation
measurement approach takes too long. We must have some idea about the
potential of speedup for a particular task candidate before actual
implementation.

We don’t have more than rules of thumb as to what task characteristics are likely
potential speedup candidates so that we can separate them out for reconfigurable
computing. In this case, good or bad candidates are measured relatively against
the competing ISP or RLA architectures that execute them. How do we measure
the “fitness” of computing architectures given certain task properties?

Finally, we don’t know how to efficiently and effectively program a given
application for reconfigurable computing. Current development methodology
for reconfigurable computing is an ad hoc marriage of traditional software
programming and hardware design. Speedups are hard to predict, takes too
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long, too much effort. We need better tools to explore reconfigurable application
space.

These issues are intertwined and their interactions are often not separable. Until these
issues are better understood, and perhaps solved, reconfigurable computing will see
very limited use in a few special areas.

This thesis touches upon these problems and propose a way of harnessing performance
benefits from reconfigurable hardware for media processing.

This thesis emphasizes analytical approaches and quantitative methods as much as
possible. It is the view of the author that such approaches provide useful insights more
conclusive than pure empirical results. As there are so much details to consider, it is
hard to draw conclusions without analysis.

In the second half of this chapter, we outline the organization and relationships
remaining materials in this thesis.

2.2 Thesis Outline

Motivation (1)
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Figure 2-1: The organization of this thesis.
This thesis is organized in the following way:

Chapter 1 sets up the big picture, providing the motivation for more performance while
maintaining programmability in new computing devices.

Chapter 2 discusses the issues this thesis tries to address. We begin by stressing that
performance gains is the most important goal for reconfigurable computing.
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Chapter 3 introduces what affect performance of a microprocessor-based system in its
totality — code, architecture, organization, and compiler. It reminds us the complex
interactions among these factors, and that we must set up the right frame of reference for
performance evaluation. The rest of the thesis evolves from this chapter as shown in
Figure 2-1.

Chapter 4 discusses the characteristics and performance requirements of media
applications. These requirements serve as the metrics for performance evaluation. We
use examples to show that some characteristics make microprocessors not ideal for
media processing, which, in turn, present opportunities for reconfigurable speedups.

Chapter 5 reviews popular reconfigurable architectures and their performance-related
properties. In particular, it reminds us of the trade-offs between reconfigurability,
resource utilization, and performance. These trade-offs make predicting reconfigurable
logic’s performance difficult and put it at a speed disadvantage to fixed-logic devices.
This chapter provides a theory to support this assertion. It then considers designs of any
practical purposes and suggests an generous upper bound on the maximum clock speed.

Chapter 6 discusses properties contributing to modern microprocessors performance
and different ways of performance evaluation. It explains the reasons for using an
analytical approach. It analyzes the datapath of microprocessors and suggests
performance evaluation techniques.

Chapter 7 proposes a integrated general-purpose reconfigurable architecture, which
integrates a microprocessor core and a reconfigurable logic core across traditional device
boundaries. It also discusses what constitutes the rest of the system and explains why
each architectural or organizational choice is made. This architecture serves as the
reference system on which we base our performance analysis. In the end, it reviews two
other architectures and makes discuss potential problem areas.

Chapter 8 puts together everything set up in previous chapters - the application, the
reference system architecture, reconfigurable architectures, and a microprocessor
datapath model. This chapter proposes a quick way to estimate microprocessor’s
performance by performance bounds. This approach requires few properties on the task
candidate. Given more information about the memory, it can also determine if the task
is memory-bound or compute-bound. It then suggests how this performance analysis
can be used as a front end tool for reconfigurable application development.

Chapter 9 summarizes all work and puts everything into perspective.

Appendix A briefly reviews previous research efforts on reconfigurable computing. It
provides much of the backdrop this thesis originated.

Similarly, Appendix B tells from the user’s point of view how despair the need for better

tools support. Without it, reconfigurable computing will never be a viable computing
option.
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3 Evaluating Performance

Evaluating performance of microprocessor-based systems, or programmable devices in
general, is not an obsolescent topic at all [3-5]. For general-purpose computers, it is still
evolving with new technology and new applications [6]. This is a more pointed issue
when we try to compare microprocessors with reconfigurable devices — both
programmable, but in very different ways.

This chapter starts with this issue — comparing fixed-logic microprocessors with
reconfigurable logic. It takes us back to the roots of performance of a computer - the
complex interactions among code, architecture, organization, and compiler. We point
out relevant issues under the reconfigurable computing context. This allows us to set up
the right frame of reference for performance evaluation and explains how we approach
it.

3.1 Issues

Due to the enormous amount of complexity, very few reconfigurable computer systems
and applications were actually implemented. For the ones that were built, the designers
had to settle for an makeshift system organization to keep the implementation effort at a
manageable level. The resulting systems typically loosely combined an existing general-
purpose system with an attached reconfigurable subsystem with its own dedicated
memory and I/O subsystems. Appendix A lists some of these systems, their
performance claims, and references to literature. Some the performance claims were on
the order of thousands times over general-purpose hosts. However, questions arose on
the meaningful performance comparisons between drastically different computing
models, devices, and cost economics [7, 8].

Realizing the full potential of performance benefits can only be exploited without the
constraints of existing computer architecture, later reconfigurable computing researches
took on new reconfigurable architectures for general-purpose computing. Again, due to
the enormous amount of efforts required in actual implementation, these efforts were
confined to emulation or simulation without actual implementation [9-11]. Their
reported performance gains are on the order of tens of percentage points to a few tens
folds [10, 11], about two orders of magnitude less than previously claimed.

This wide range of performance claims underscores the difficulty in assessments of
speedup benefits from reconfigurable computing. Such is the case even after actual
reconfigurable program implementation (a posteriori measurement). Let alone the real
challenge to reconfigurable program development is to be able to estimate speedups
before actual implementations (a priori estimate).

There has been very few studies on proper speedup evaluation of reconfigurable
applications. Lacking such knowledge often resulted in confusing and overrated
speedup claims. In turn, it could mislead the directions of research and development
efforts. To understand how to evaluate performance properly, we must know what
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contribute to it and their individual contribution.

3.2 Codes-Architecture-Organization-Compiler

Performance evaluation, comparison, or measurement for ISP based machines must
consider all factors that affect the final execution time of a task [12]. These include the
instructions for the task, the architecture of the ISP, and the system architecture and
organization. If the instructions are generated from a high-level description (e.g. a
programming language) by a compiler, then the compiler plays a major role. The
performance is affected by the codes-compiler-architecture-organization quadruplet
(Figure 3-1).

. Algorithm :
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and Organization Description
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Compiler/
; Isp Memory 1/0
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Number

Figure 3-1: Performance is determined by the codes, the compiler, the architecture of the
system and its components, and the organization of the components.

Computer architects try to balance compute, memory, and I/O capabilities and optimize
against a select number of tasks (benchmark programs, kernels, or synthetic programs).
The selection of optimizing targets is to represent typical workload. However, it is not
statistically rigorous. Certainly it cannot cover an unbounded number of all computable
tasks. No matter how computer architects try to balance compute, memory, and I/O
performance, it is almost certain that no application will be an exact match to the system.
Therefore, an application will either be processor bound, memory bound, or I/O bound.

Therefore, to improve performance for one particular application, we must determine
where the bottleneck is. Then, we can either modify, add to the existing system, or
design a new system to improve performance.

If a task is compute-bound, we can improve ISP architecture/microarchitecture on a per
task basis. However, ISP architecture improvements are only justifiable when they are
useful to a broad range of applications. That is, they must hit the “universally sampled”
workload’s statistical sweet spots. Otherwise, it is better off to create a separate device
for that task, i.e. an ASIC solution.
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If a task is memory-bound, it probably indicates the memory is too slow and/or
memory organization is not optimal to the task. The solutions are to improve memory
performance by using fast memory and/or to tailor memory organization for the task.
Using faster memory requires little change to the architecture and organization of the
rest of the system other than synchronously coupled devices must be fast enough to
keep up with it. Changing memory organization requires re-architecting and re-
organizing the rest of the system to match up. Unless this is beneficial to all applications

or to all applications in a statistical sense.
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Figure 3-2: A task is either compute, memory, or I/O bound.

Similarly, if the task is I/O bound, we can add an I/O subsystem (as an add-on card) or
design a new system with a higher I/O bus speed to solve the problem. General-
purpose computers’ evolutionary process had followed a performance improvement
cycle of CPU-memory-I/O. Figure 3-2 shows this performance evaluation concept.

Since 1/0O is more application specific, which reduce its applicability, we will not treat it
as the main application area for reconfigurable hardware in this thesis. It is understood
that, when coupled with I/O, reconfigurable hardware can further improve
performance.

To determine the bottleneck, the most direct and accurate way is to implement an
application, then measure it by profiling. Profiling may require writing additional codes
and may not yield obvious information on the bottleneck. It points the function or
region of codes where we insert profiling information, but it doesn’t tell us whether the
CPU, the memory, or the I/O is the bottleneck. Another way is to calculate maximum
instruction and/or data rate achievable from the actual ISP’s architecture, then check if
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the memory and 1/O capabilities can match it. In other words, we are trying to find a
minimum schedule for a task without considering memory and I/O speeds first.
Another way to look at it is an abstract system architecture and organization with
infinite memory and I/O bandwidth, an equivalent view when the program is compute-
bound. This concept is explained in Figure 3-3.
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Figure 3-3: Determining performance bottleneck by emulating computer, memory, or 1/0
workloads.

This scheduling can be very complicated and most likely intractable for complex
programs running on modern superscalar or VLIW architectures [13]. However, media
processing has characteristics that lend themselves opportunities for simplification and
approximation. This will be discussed in the next chapter.

One way to improve performance for some applications (or commonly used functions)
to an existing system is to add a subsystem that improves the compute power, memory
bandwidth, and/or 1/O bandwidth of the host system (Figure 3-2). An “add-on” card
can provide any combination of compute power, memory, and 1/O bandwidth to
particular tasks (Figure 3-4 (b)).

Often compute power is coupled with dedicated memory organization and
standardized 1/0O protocols to maximize performance. /O protocols are often coupled
with transmission line physics and connectors’ form factors. This makes sharing 1/0O
devices difficult. In other words, for different applications requiring different 1/0O
protocols, it is often necessary to create separate subsystems for each application,
making the subsystems application-specific. This is exactly what we try to avoid using
reconfigurable hardware.

Figure 3-4 shows the different ways of adding performance to a general-purpose
machine (Figure 3-4 (a)). An application-specific subsystem is necessary to meet hard
performance requirements or provide specific 1/O capability (Figure 3-4 (b)). A
reconfigurable computing system seeks to replace many application-specific devices and
still provides additional performance versus a non-reconfigurable counterpart (Figure
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3-4 (c)). Early reconfigurable subsystems aimed to improve all compute, memory, and
I/O performance of an existing system (Appendix A). However, the overall
performance benefits came not entirely from the adaptability of reconfigurable logic to
specific tasks. It also came from newer fabrication technology and some degree of
organizational customization.
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Figure 3-4: Four codes-architecture-organization-compiler structures: (a) general-purpose
computer host (b) with add-on application-specific subsystem (c) with add-on reconfigurable
subsystem (d) future reconfigurable system.

We should emphasize that organizational customization, though benefiting some
applications, will reduce its degree of freedom as a “reconfigurable” computing device.
This will push the reconfigurable subsystem more toward an application-specific device
(Appendix A). To make reconfigurable computing a viable technology, we must move
away from “very” application-specific to more “reconfigurable”. This leaves us an open
question: what is a “good” architecture and organization for a reconfigurable computer?
How is everything in the code-architectures-organization-compilers quadruple tied up
together (Figure 3-4 (d))?

3.3 Approach

To answer our question at the end of last section, we start by looking at how the code-
architecture-organization-compiler and performance are knitted together in a non-
reconfigurable computer. We offer a complete view from the performance evaluation
stage at the processor design phase, to its incorporation in the design of a new system,
finally to the performance benchmarking after the system is made. Figure 3-5 shows a
typical design flow from the design of a new ISP to the measurement of performance on
a system.
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Figure 3-5: Non-reconfigurable computer system design and application development

paradigm.

Each of these stages involves quite a significant amount of details. Nonetheless, several
points are noteworthy:

1.

The implementation takes a long time and incur high cost, thus some kind of
performance estimate upfront offers some assurance that the design has
competitive advantages. This is important not from the perspective of its
capability but its survivability in the market place.

The system model (of a reference platform) provides necessary details for
performance estimate. Processor designers optimize their design under the
assumption it will be used in such a system. Of course, the processor can be used
in any system and its full processing capability may not be fully utilized.

The performance estimate can arrive from three different approaches: simulation,
emulation, and analysis. The evaluation “programs” are usually synthetic
programs, or real kernel programs. Depending on the accuracy required, the
estimate can be reported in IPC, clock cycles, or actual time. The amount of
effort required also increases with the accuracy.

Once the processor is “designed-in” with the rest of system components, the
actual performance can be “measured” against known benchmarks. However,
for new application development, getting the most out of the system requires
hand optimization. Unless an application has hard constraints, program
development is usually best-effort, using a high-level programming language
and relying on an optimizing compiler.

Now let’s consider a future reconfigurable computer by first leaving the specifics about
the reconfigurable logic and how it is integrated in the system or with the processor
open. Instead, we start by arguing the following points:
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1. The design of the processor part and the reconfigurable logic part should have
minimal impact on each other for the following reasons:

a.

All existing applications can still run on the system without having to
configure the reconfigurable logic. This forms a baseline for any
application.

Preserve current processor evolution to continue through architectural
and fabrication improvement. Allow reconfigurable architectures to
evolve around the processor architectures as complimentary entities.

2. Like the development of non-reconfigurable computer, the processor design part
can use some system information and synthetic kernels for performance
evaluation and optimization. However, the reconfigurable logic part should not
be optimized toward these programs for the following reasons:

a.

The processor is already optimizing toward them, there will be less room
for performance improvement. Isn’t it reconfigurable logic’s strength — to
do what processors do poorly.

Optimization of programmable architectures is a double-edged sword. If
we optimize them for certain tasks, we lose on the others. Unless we
have convincing usage statistics, we don’t know for sure if we gain
anything. Furthermore, usage is hardly static, it changes with time and
technology.

Reconfigurable logic’s advantages varies significantly with its physical
attributes, hard system details, as well as the actual tasks. It can be
incorporated under different system architectures, organizations, and
components. For example, it can be integrated with an ISP core on the
same chip. The chip can be used in any new system design. It is
impossible and meaningless to optimize for all of them.

3. New application development is opportunistic, not all applications will benefit.
Performance speedups is “system specific”. That is, unless everything is equal,
the processor, the reconfigurable logic, and other system details, the speedups
(or sometimes even slowdown) are likely different.

Our arguments stress that the real problem for the viability of reconfigurable computing
lies in the application development stage. Figure 3-6 shows two application
development paths. Boldface lines represent shared paths. Thin solid lines (together
with the boldface lines) represent a path for pre-implementation estimate. Dotted lines
(together with the boldface lines) represent a post-implementation measurement.

Since both paths can be cyclic, i.e. iterative, it is desirable to take the shorter path to
minimize the time for each trial. The question boils down to whether we can get an
estimate faster than we can implement and measure it.
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Figure 3-6: Reconfigurable computer application development process.

We know that processor architects have been exploiting instruction-level parallelism.
This trend will continue and it will push the speedup opportunities to medium to large
complex operations [14-16]. Implementing a medium to large complex reconfigurable
function can take days to months of time depending also on the margin of performance
gains. These observations suggest that we should look for ways to make speedup
estimate quickly, thus avoiding potentially time-consuming implementation trials.

Therefore, we need to look at the factors affecting performance and determine whether
and how we can simplify a complex system to make the application development easier.

Code

Programming on a reconfigurable computer (Figure 3-4 (d)) is still an area of researches.
Most systems used a combination of a general-purpose programming language and a
hardware description language [17]. [18] had to develop a logic description language
when logic synthesis for FPGA was not available.

General-purpose programming languages (especially imperative and sequential) cannot
describe the concurrent events of hardware. A restrictive subset of a general-purpose
programming can be used for hardware description, but it requires programs to
conform to coding guidelines, and possibly using pragmas or compiler directives. Even
later when HDL-based logic synthesis tools became available, they required designers to
follow coding guidelines to generate acceptable results.

Whether there is a language suitable to describe software and hardware functionality
and structures at any level of details is an open question. An evolutionary
programming paradigm followed by most CCMs is shown in Figure 3-4 (c). We leave
this question open, instead we move to a higher-level representation — data flow graph
(DFG). This representation, with additional directives, can be translated into actual
codes automatically or manually. We come to this choice for the following reasons.

1. Media processing exhibit dataflow pattern due to the nature of applications, in
particular, in the region of interest — heavy data processing loops (chapter 4).

2. Starting from this representation allows us concentrate on the processing task
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itself, not the actual coding. We do not have to rely on programmers’ masterdom
of the language(s) and/or compilers’ ability to fully exploit the capability of the
hardware.

3. It allows to examine the “fitness” (e.g. parallelism) of microprocessors for media
processing at this functional level (chapter 4 & 6). Once we code it with an
imperative language, we may lose sight of the parallelism in the original task.

Two requirements for the DGA representation is that it should be acyclic and that the
inputs and outputs be specified with their sizes. Further optimization is possible if the
actual dynamic ranges of each input or output is specified. This will allow us to use the
minimum data representation required for intermediate data.

Organization

Computer organization is part of the equation in determining the performance of the
system. Given the same components (except the glue logic that pieces them together),
one can design systems with different performance numbers for the same programs.

The “proper” organization of a reconfigurable computer (Figure 3-4 (c) or (d)) is still an
open research question. Figure 3-7 (a) shows an makeshift organization, which is an
evolutionary step from non-reconfigurable computer. ~ However, performance
bottleneck and technology feasibility push us to think beyond traditional organizational
boundaries (chapter 0). This push breaks organizational boundaries and allows us to re-
think architectures at the component level (Figure 3-7 (b)).

Non-reconfigurable Reconfigurable Reoconfigurable
Computer subsystem Computer ?
Instruction | Cache &
i Memo!
ser | Memory | | Resomguratle | Menon | _ | e | s
Processor 1/0 & y 1/0
@)
Instruction Reconfigurable Instruction Set
Set Processor | + Logic Arra = Reconfigurable
Core 8 y Processor ???

(b)

Figure 3-7: Searching for new architectures (a) an ad-hoc organization based on existing
organization (b) an integrated organization

With the backdrop of more system integration and architecture innovation in the future,
we recognize the following points:

1. Itis technically feasible to integrate microprocessor core and reconfigurable logic
onto one device and it is just one of many possibilities of future integration. The
integration can extend beyond processor and reconfigurable logic to include
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memory and I/O on the same chip.

The reconfigurable logic should not have dedicated memory and it should not be
tied up with specific I/O standards (Appendix A). Architects should avert
organizing reconfigurable logic for any particular task.

The system memory should be organized in a way that both ISP and
reconfigurable logic have the fastest access to the memory. Any organization
should not sacrifice ISP’s access speed in exchange for reconfigurable logic’s
access speed (chapter 7).

Performance related system information (e.g. secondary cache and memory
organization, bandwidth, etc) is available (chapter 6).

Architectures

As we are still searching for a “favorable” system and component architectures (Figure
3-4 (d)), we do not assume knowledge of the exact partitioning boundaries between
fixed-logic instruction set core and reconfigurable logic core. However, we do
acknowledge that there are numerous instruction-set architectures (ISA) and
reconfigurable architectures (RA). One way or the other, all programmable architectures
are more favorable to some applications over the others. It is likely a myriad of ISA/RA
combinations can exist for different markets.

1.

We require the architecture contains a microprocessor core such that with the
rest of the non-reconfigurable components they constitute a programmable
system. This core is exemplified by current commercial ISP architectures: single-
issue, superscalar or VLIW, etc.

There are also a plethora of reconfigurable architectures of different granularities
in logic and routing configurability. We also do not exclude any architecture,
including multi-context reconfigurable logic [7], other than:

a. Our intended use is to compute, embedded memory is allowed but will
not be considered in our performance evaluation.

b. Specialized peripheral circuitry surrounding a typical commercial FPGA
is stripped for the same reason.

Cache, bus interface, memory controller can be customized later. This allows
fine tuning for better integration and sometimes trade-off for cost and utilization
concern is possible.

All performance-related information on the microprocessor core is available
(chapter 6)

All performance-related information on the reconfigurable logic core (all timing
information plus physical properties such as array sizes, organization, number of
interconnection ports to non-reconfigurable hardware) (chapter 5).

Compiler - Programming Tools

Programming a reconfigurable system (Figure 3-4 (c) and Appendix A) required both
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highly skilled hardware designers and software programmers [17, 19]. There were no
well-established development processes, nor design tools targeted toward solving
unique problems in programming a reconfigurable system. It required a well-
orchestrated, synergistic hardware and software development effort using tools
designed for other purposes. Therefore, it was often an iterative and time-consuming
process, especially when a particular application called for high performance and
efficient utilization of FPGA resources.

In addition to complexity, the problem was in part the architecture was ad hoc and so
were the programming language and tools. Noticeably, there was less focus on the
programming tools than on the architecture or applications of the system. In particular,
tools to help determine the “performance-directed” partitioning of tasks between the ISP
core and the reconfigurable logic core was lacking.

We have intended to leave programming language alone and instead focus on a higher-
level representation — DFG (see section on code). Following our discussion in 3.1, our
focus is to quickly evaluate and compare ISP and reconfigurable logic’s performance for
a task.

There are three approaches to performance evaluation: performance measurement,
analytical performance modeling, and simulation-based performance modeling [20].
Analytical performance modeling and simulation-based performance modeling are the
usual ways of performance evaluation for microprocessor architecture exploration in the
design phase (Figure 3-5). Such a priori evaluation in necessary to assure meeting
performance goals and avoid expensive non-recurring engineering cost. However,
either simulation or emulation uses the actual design as the starting point, which is what
we try to avoid.

In light of performance gains and task partitioning are very sensitive to system details,
we expect those two approaches infeasible. Instead, we are looking at ways to
analytically predict performance for the ISP core and the reconfigurable logic core. We
set several goals for this analysis approach:

1. The analysis should be progressively more accurate given progressively more
details about each core.

2. The analysis on the ISP core should yield optimistic estimate as what is possible
custom codes. This estimate can be used to check if the codes running on the ISP
core is efficient.

3. The analysis can be integrated with future compilers for partitioning exploration.
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4 Media Processing

To talk about performance of programmable systems, we must put them in context. In
this chapter, we discuss the characteristics of media processing from microprocessor and
computer architecture perspective. From this perspective, we discover areas of
weakness inherent in a fixed-logic programmable device. We use examples to illustrate
these points, which reconfigurable can explore .

4.1 Characteristics

Media processing finds its root in the general areas of multidimensional signal
processing, pattern/object recognition, and synthesis. These areas cover a large number
of applications. Some specific examples include speech recognition/synthesis, digital
audio, digital photography, digital video, video conferencing, computer graphics,
distance learning, pattern recognition, object recognition, data mining, etc. Whether for
the purpose of information communication or for entertainment, media processing has
become one of the most exciting area of computing,.

[21] has a good coverage on multidimensional digital signal processing. [22] [23] contain
media processing in numerous communication applications. More advanced
applications in pattern and object recognition based on media signals are still a largely
unfulfilled field. [24, 25] present computational characteristics of such applications. [26,
27] are two such examples involving image and video.

There are important intrinsic characteristics to consider when implementing a media
application to a computing device. Computational properties and structures are
difficult to quantify. While a systematic and quantitative characterization of application
properties doesn’t exist, some qualitative observations will help us develop intuitive
sense.

Continuous-Time Origins

In general, media processing involves the use of input and/or output devices that are
continuous-time analog signals from sensory input devices or to output devices for
human'’s perceptual processing. The analog signals are digitized for processing, storage,
and/or sent over a communication channel, eventually transformed back to analog
forms for human perception. Figure 4-1 shows that media processing has its data
originated from analog sources even though any particular subtask may not involve any
analog inputs or outputs.

A typical end-user level multimedia application involves processing of one or several
continuous streams of data from a source, to a destination, or both, in real time. The
inputs can be data streams generated from the sampling of continuous-time analog
signals, such as speech, audio, video, sensory or other forms of analog signals. They can
also be descriptions, models, programs, and scripts, which describe the composition or
synthesis process of an output data stream. The outputs can be data streams processed
from the input streams or rendered data streams from input descriptions. They can also
be commands calculated from the input streams for controlling other devices. The
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stream path from the input to the output may involve a network. Figure 4-2 shows
some typical processing tasks after analog-to-digital capturing phase.

Input Output
Communication
—_—
Object recognition/ Synthesg/(
feature extraction Composition
R Y /

| Text

Figure 4-1: Media processing covers a broad range of applications in digital signal processing,
communications, pattern/object recognition, etc.

The two boldface red lines Figure 4-2 also show complete applications may consist of
several subtasks chained together in time. Note that between processing tasks, the data
may go through a switch or a temporary buffer for data rate regulation between two
subtasks. This continuous-time origin at the inputs or outputs lends media processing
algorithms more naturally represented as data flow graphs versus control flow graphs.

Data locality
Since media data are sampled analog signals, their relationship inherit from what
is in the original analog signals. Storing and accessing data in memory are most
efficient when this sampling order is preserved since no additional information is
necessary to identify each datum in the original time or space domain. The
identity of each datum is implicit in the order.

For this reason, the time and space relationship in the original signals is preserved array
data. Media processing often involves neighborhood operations, rarely causing cache
misses [6].

Small discrete data types
There are only a few most commonly used media data types at the inputs and
outputs (Figure 4-2). This is due to our perceptual limitations. We can discern
only a relatively small number of levels for color, sound, etc.

Fuzzy data precision
Unlike scientific numeric computing or mechanical CAD, where precision is
mandatory, we are quite tolerate to errors in media signals. This lax data
precision requirement can be exploited to reduce processing requirement or
traded off for other requirements.
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Data parallelism
Parallelism arises in media processing due to:

* Multiple independent channels of sensory data.

* Data can be gathered in memory and presented to the next processing device
in parallel.

Authoring and
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(b) Media processing at destination end

Figure 4-2: Typical multimedia processing tasks involves a data stream at the input and/or
output.

Large amount of data

Large amount of data, possibly unbounded input and/or output data due to
runtime variables. For example, we cannot anticipate when an user will turn off
his digital television.

Same operations
These samples undergo the same processing operations.

Datapath intensive
Media processing involve more datapath processing than branching. This is also,
in part, due to the large amount of data between any semantically meaningful

boundaries, where special processing is required, (e.g. the edge pixels in an
image) in the data.



Data processing operations require data processing instructions and data transfer
instructions translates into more three-address instructions than the rest of the
instructions in the instruction set (6.1). Thus we focus on the datapath
processing capability of ISP less the instruction flow control aspects of the ISP.

4.2 Performance Metrics

The input/output bandwidth for multimedia computing is high due to the large amount
of data samples created or consumed continuously in time at the analog/digital
interface. A processor on the average must consume these data points at the same rate.
This requirement, in turn, translates into both high computational and high
communication bandwidths at intermediate processing stages (Figure 4-2). This
problem is exacerbated when in a multi-tasking environment, where multiple media
applications can be launched.

Therefore the most important multimedia applications performance requirements is
throughput, or the data processing rate. Depending on the application, latency may or
may not be as important. Figure 4-3 shows four scenarios of throughput and latency
requirement.

Input Output Input
NV AN N
(a) (b)
e Quiput
LAl -
(c) (d)

Figure 4-3: Four media processing application scenarios: (a) both input and output require
constant data rate (b) only input data must be consumed at a minimum rate (c) output must be
produced at a minimum rate (d) data processed from one form and stored back.

For example, (a) shows a scenario for communication applications, such as
videoconferencing, audio and video telephony, real-time broadcasting where
throughput must exceed a minimum and latency must be bounded. Throughput must
meet minimum for (b) and (c) because the analog source (destination) generates
(consumes) data at a certain rate. Neither is critical for (d) as the data is processed from
one then stored back. Regardless of the applications, on a programmable multi-tasking
system more media processing (or other) tasks can run if the throughput of each task can
be improved.

For most two-way multimedia applications involving symmetrical communication, such
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as videoconferencing, video telephony, Internet phone, and interactive Internet video
games, the latency must be small enough to make such applications viable in the
marketplace. Other applications, such as automatic target recognition and robot vision,
must also meet this requirement for the nature of these time-critical applications. Other
local, one-way, or two-way asymmetrical applications, such as virtual reality, interactive
graphics viewing, digital audiovisual services also require minimum latency.

4.3 Implementation Perspective

In this section, we examine mismatches between media processing characteristics and
common microprocessor architectures. We then look at whether these mismatches can
be exploited by reconfigurable logic. It is better to begin with an example.

Figure 4-4 shows an color transformation plus alpha blending example. It has all the
characteristics enumerated in the last section. A dynamic range analysis on inputs and
all dependent variables including the final output results in the minimum-sized data
representation shown in blue numbers.

A finer control on data precision is possible if we know exactly what the dynamic ranges
of individual inputs. Sometime data values do not cover the full range of the size (for
example, the Y, C;, Gy values conforming to CCIR 601). In this case, half of the input
variables are constants. We can use this information to further reduce the minimum-
sized data representations of intermediate variables (constant propagation). The
dynamic ranges are shown in purple, the minimum sizes are shown is red, and the
smallest microprocessor data types are shown in green.

We are interested in the latency and throughput of this task. The latency is the time
from which all inputs are valid to the time the output is valid. The throughput is the
inverse of initiation interval, the time between each set of input data can be updated.

We also assume the restrict ourselves in only considering this task as indivisible. This
allows to concentrate on region scheduling for local optimization. However, this is
sufficient to get our points across - to show weaknesses which ISP processor can never
overcome.
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Figure 4-4: A color transformation and alpha blending example (shown only the luminance).

4.3.1 Instruction Rate

Figure 4-5 shows a portion of Figure 4-4 (edges shown in red) in a register transfer style.
Figure 4-5 (a) shows a task fragment implemented in SIMD instructions. Figure 4-5 (b)
is the non-SIMD version. We also assume there is only one functional unit, which does
all arithmetic and logical operations, including multiply. These operations may be
associated with different costs (latencies) to reflect actual processor design. This is not
the case for modern processors with more than one integer units. This will be
considered later.
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The rectangles represent general-purpose (without solid dividends) and SIMD (with
solid dividends) registers. The SIMD registers consist of smaller regular registers
denoting that they are segmented. Half shaded rectangles represent registers with small
data occupants. The arrowed lines represent operations supported natively by the
processor.

The subword pack/unpack operations required in figure are common and are
supported by most SIMD extensions. However, it is very likely that each architecture
directly (through specific instructions) supports a different subset of all possible
combinations of packing and unpacking of different subword sizes. This subset
constitutes a basic set from which all permutations can be realized, through some
subword shuffling may require multiple packing/unpacking instructions.

In the above example, the input data for the MMX architecture are already packed,
while for the non-MMX version they are not packed. We assume previous processing
steps already prepare (pack/unpack) the data according to the respective architecture.
However, we do not assume, for the MMX-capable architecture, the input data is packed
for maximum parallelism for the current function (i.e. color space). This is to reflect that
it is unlikely for any particular one subword organization to remain optimal throughout
the whole application. ~Therefore, even though we can optimize one subword
organization for a particular function or a particular processing segment, the global
optimal subword organization may be different than this local optimal organization.
The above figure promptly exhibits the complexity of optimal packmg and unpacking,
which could vary for each operation.

From left to right, we arrange the instructions in their dependency order and it has the
notion of time (for single-ALU processors). We align the registers so that the length
reflect the number of passes through the ALU. In the single-ALU case, we can derive
the actual time by summing all instructions with their respective costs. We also observe
a couple of points for performance improvement:

1. Analysis can be based on input data “container (as containers are fixed in ISPs)”
types, not actual “legal” input dynamic range, but can cause use of larger
container than necessary, which degrade performance. If we know the input
“legal” input dynamic range, we can use precise types in hardware .

2. Subword organization and shuffling can be locally analyzed based on task
segments whose start and end subwords are of the same dynamic range. This
can reduce the complexity of analyzing a long path by breaking it down to
segments. If no such segments can be found, the analysis is done for the whole
path.
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Figure 4-5: Code segment of color space transform represented as a sequence of three-register
instructions on (a) MMX architecture (b) non-MMX architecture.
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Figure 4-5 reveals three areas where instruction set processors can never circumvent:

1. Whether “segmented” or not, microprocessors datapath (registers and functional
units) are “fixed-sized containers”. Except for integer division (can be viewed as
right shift operations), truncation (floor), and saturation (ceiling), the dynamic
range of the output always grows for all other arithmetic operations. Traversing
down the DFG, the dynamic ranges of variables is monotonically increasing
requiring bigger and bigger data containers. What appears to be m-subword
parallelism at the input can quickly vanish due to the growing dynamic range of
intermediate variables. This is confirmed by studies on the SIMD effectiveness to
performance improvement [28-30].

For any instruction set architectures, even the ones supporting SIMD, only a
small number of fixed data types (e.g. 8-bit, 16-bit, 32-bit, 64-bit) can be
realistically segmented. Further division will turn the datapath into fine-grained
bit-level functional units, which is what FPGA really is. At that point, the
processor can no longer run efficiently for the regular types (8-bit, 16-bit, 32-bit,
64-bit). Therefore, there is always some wasted processing bandwidth for
irregular data types. This problem is manifested when all the intermediate
results are irregular types.

For non-SIMD architecture, the bandwidth waste is more evident as shown in
Figure 4-5 (b). Having only one type of data container prevents algorithmic
innovation and performance fine-tuning. For example, one may not need 24-bit
color when browsing a video archive for content. A small latency and a high
frame rate are more desirable. An 8-bit color may be sufficient for content
differentiation and can be processed much faster than a 24-bit color. To a non-
SIMD architectures, reducing data precision doesn’t increase performance.

2. Segment ALU cannot perform inter-subword operations. If such is desired, one
must carefully (re-)arrange operand subword positions. We must carefully re-
arrange intermediate subword locations so that results can be in the right
subword locations for the next instruction. Not only programmers must pay
great attention to this subword shuffling, but also it costs extra instructions
whenever a re-shuffling is needed - performance hit.

3. Another observation from Figure 4-5 suggests the longer the instruction
sequence is, the longer the latency and throughput are. Even for superscalar or
VLIW architectures, the number of functional units are limited due to register file
design trade-off [31]. Therefore, the performance degrades with long processing
instruction streams. This means the more complex the task is, the worse the
performance. In addition, for the SIMD capable architectures, this means more
data shuffling between instructions. So far no compiler can optimize subword
organization.

4.3.2 Reconfigurable Logic

On the other hand, let’s look at how the same task can be implemented with
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reconfigurable logic.

Figure 4-6 shows the code segment is translated into high-level functions, such as
multipliers, adders, etc. At this point, this representation is all combinational. We can
insert registers at the high-level functional boundaries. However, this would not
“balance” the delays between these functions. It is desirable to break down the high-
level functions into lower-level blocks. It is possible one macro function has more than
one “child”. Each child implements the parent at different costs (e.g. area) and different
performances. We can traverse the hierarchy, breaking down each abstraction layer, to
the lowest level of the reconfigurable logic — technology library [32].

Along the hierarchical path, there are many places where we can optimize the
performance of the design by chaining functional blocks at each level and re-balancing
the delays among them. We can insert more registers at lower level as there are more
functional block boundaries. At the lowest level, we can insert as many registers as the
resources allow and reduce the delays by “retiming” [33]. Operation chaining,
pipelining, and retiming are three techniques ideal for dataflow task.
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Figure 4-6: Code segments in Figure 4-4 translated into hardware macro functions.

Figure 4-7 shows that more optimization options are available at lower level of the
design. To obtain better performance, this “architectural exploration” process is
necessary.

Note that whether in Figure 4-6 or Figure 4-7, the latency is determined by the number
of “pipeline stages”. The throughput is determined by the longest delay between any
tow successive registers.

In light of the three areas of weakness for microprocessor, reconfigurable logic can

compliment them all. In particular, the following points correspond to ISP’s areas of
weakness:
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1. The reconfigurable logic core has the same input data size and that the logic
array is at least as wide as the input data size. Ideally, the should be twice (for
intermediate data from multiplications) as wide plus some headroom for control.
This is not a necessary requirement, but it makes better performance possible
(chapter 5).

2. There is ample routing resources so that no longer paths between successive
registers. However, there is a trade-off between routing resources and
performance (and cost too, chapter 5).

3. The logic array should be deep enough to take in complex operations. However,
there is a trade-off for cost and design time.
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Wallace tree without Register boundary can be moved
final adder for pipeline retiming to achieve

minimum period (minimum
period retiming)

Figure 4-7: Pipeline retiming (or minimum period retiming) technique can be used to achieve
high clock speed.

4.3.3 Coding Efforts

Turning scalar code into SIMD (e.g. MMX/SSE [34, 35]) vector code is not a straight
path, and it is often necessary to rethink the algorithm from scratch when searching for
optimal performance [28-30, 36]. The SIMD instruction sets can offer performance
increases that range from zero to a theoretical m times. However, real applications have
shown speedups in the tens of %, though that numbers for kernel functions are usually
higher. Selecting a kernel function’s boundary for MMX is also a tricky task. On one
hand, small well-formed (no or little data expansion and misalignment) code segments
can produce the largest kernel speedup at the expense of frequent function calls when
put together in a master application. One the other hand, large code segments may
contain ill-formed code producing small speedup using MMX.
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These various difficulties serve as good arguments for reconfigurable hardware’s
potential for media processing. That is, it may be better off developing a reconfigurable
application than an MMX application both for time and performance benefits. Taking
one step further, it might be better to create an core architecture without MMX
instructions but with reconfigurable logic. Not only can one simplify the design of such
an architecture, but also improve the performance because the design of a segmented
ALU and data packing and unpacking registers will require less logic.

From Figure 4-5 and Figure 4-7, we can calculate the latency and throughput in each
case and decide whether this particular task should run on the ISP core or the
reconfigurable logic core. It is easier to visualize this comparison by putting them side
by side as shown in Figure 4-8.

Pmep << Pic ??

Figure 4-8: Instructions executed in sequence in the temporal domain vs. concurrent hardware
execution in spatial domain.

Figure 4-8 suggests we can make somewhat quantitative performance comparisons if we
can analyze the task and the implementation architectures, in particular the
microprocessor’s datapath and reconfigurable logic’s pipelining limitations. What and
how much information is needed (chapter 5 & 6)? What is the trade-off between routing
resources and performance (chapter 5)?
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5 Reconfigurable Architectures

The performance of reconfigurable logic depends on the applications to be implemented,
the architectures of the reconfigurable hardware, the expertise of the designer, and the
design tools®. In the case of developing applications on an existing reconfigurable
computer, two more conflicting constraints add to the equation: a speedup as the
performance constraint and the size of reconfigurable logic as the area constraint. With
so many factors and constraints, how do we predict reconfigurable logic’s performance?

In this chapter, we examine reconfigurable architectures with two most popular
architectures, representative in their respective class. ~We discuss their logic
compositions and routing structures. We also discuss the trade-offs between
programmability and performance.

The requirement of programmability on reconfigurable logic makes non-deterministic
routing delay unavoidable. The performance requirement affects the routability and
thus programmability. Given this unpredictable routing delay, how do we estimate
reconfigurable logic’s performance?

We propose a “heuristic” approach to put a ceiling on the maximum clock rate of a
reconfigurable device. We made minimum assumption about a real design. From there
we calculate the minimum delay as the sum of a combinational delay in logic blocks and
shortest propagation delays through the routing structures (switch and wire delays).

Finally, we argue that reconfigurable logic cannot achieve the same clock speed
compared to a fixed-logic device fabricated with the same semiconductor. We propose a
theory to make this claim.

5.1 Topology of Logic Cells and Routing Structures

Two general topological arrangements of logic cells and routing structures are most
commonly seen.

51.1 Symmetrical Array

A symmetrical FPGA places arrays of identical logic cells and identical routing
structures around each logic cells. Figure 5-1 shows a two-dimensional symmetrical
arrangement of logic cells and interconnects. The symmetry is exhibited in the identity
of each equal sized blocks partitioned by drawing imaginary, equally spaced vertical
and horizontal lines between adjacent logic cells.

? This is due to the complexity of today’s designs and designs to be done within a reasonable amount of
time, not because human cannot do a better job.
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Figure 5-1: Topology and organization of a symmetrical FPGA

Any logic cell output to any logic cell input, point-to-point, connectivity is impossible as
the routing requirement grows on an order of O(n*), where n is the number of logic cells
in one dimension. Thus routing structures are typically restricted to neighbors or
organized as a group to keep the growth of routing space linear, O(n2), with the number
of logic cells . Still routing space usually takes up over 90% of the silicon space on a
typical medium- to large-sized FPGA. One popular way to structure the routing is the
segmented channel architecture as used by Xilinx’s XC4000 FPGAs. A typical
segmented routing structure consists of segmented wires of length 1, 2, 4, and longer.
Length is measured in terms of the cell-to-cell distance, or CLB-to-CLB distance. Figure
5-2 shows XC4000’s topological organization of the single-length and double-length
wires.

The horizontal and vertical single- and double-length lines intersect at a box called a
programmable switch matrix (PSM). Each PSM consists of six pass transistors,
representing all possible connection combinations among four line segments. There are
single-length switch matrices in every row and column of CLBs and double-length
switch matrices every two rows and columns!l. Each switch matrices consists of
programmable pass transistors used to establish connections between the lines. Single-
length lines provide the greatest interconnect flexibility and offer fast routing between
adjacent blocks. Short-length lines are not suitable for routing signals for long distances
because it would require a signal to pass through many switch matrices to connect to a

10 Quad-length line segments are offered in XC4000X only. XC4000X family also offers direct connection
between adjacent CLBs.

11 Similarly, there are switch matrices every four rows and columns for quad-length line segments in
XC4000X.
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far away net. Each pass through a switch matrix incurs a delay through the pass
transistor. Therefore, short-length lines are normally used to connect signals within a
localized area and to provide the branching for nets with fanout greater than one.
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Figure 5-2: Xilinx’s XC4000 single- and double length lines, with programmable switch
matrices (PSMs) 12,

5.1.2 Hierarchical

The organization of logic cells and routing structures of a symmetrical array do not
favor or “bias” toward one particular topological order or another. It is “generic’ in this
sense. A “hierarchical” organization groups a fixed number of logic blocks and routing
structures into one level of hierarchy. Within a level of hierarchy, a fixed number of
logic cells are physically placed closer in clusters on the silicon so that routing delays
within the hierarchy are much smaller than those traveling outside the hierarchy. This
fixed number is a kind of architectural “bias” or architectural specialization in
anticipation of certain application characteristics, such as data type, in some market
segments. As such, a hierarchical FPGA can offer slight performance advantages to
applications with the same hierarchical structure but suffer some performance
degradation to others of a dissimilar structure. One such popular FPGA family is
Altera’s Flex 10K family. Figure 5-3 shows the structure and placement of logic cells
and interconnects.

12 Courtesy of Xilinx Corporation.
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Figure 5-3: Altera Flex 10K architecture.

In the FLEX 10K architecture, connections between logic elements (LE) and device 1/O
pins are provided by the FastTrack Interconnect, which is a series of continuous
horizontal and vertical routing channels spanning the entire device. Each row of logic
array block (LAB) is served by a dedicated row interconnect. The column interconnects
route signals between rows. For improved routing, the row interconnect is comprised of
a combination of full-length and half-length channels. The full-length channels connect
to all LABs in a row; the half-length channels connect to the LABs in half of the row.
Both row and column interconnects can drive I/O pins. This global routing structure
provides predictable performance, even in complex designs.

Figure 5-4 shows the details of routing structures between a logic element and row and
column interconnect.

This routing structure is “anti-symmetrical” in that a row channel can be driven by an
LE or by one of three column channels, whereas the column channel can be driven by an
LE or one row channel. The switches in this case are multiplexers!3. These multiplexers
allow column channels to drive row channels even when all eight LEs in an LAB drive
the row interconnect. A signal from the column interconnect, which can be either the
output of an LE or an input from an I/O pin, must be routed to the row interconnect
before it can enter an LAB. Access to row and column channels can be switched
between LEs in adjacent pairs of LABs. This routing flexibility enables routing resources
to be used more efficiently.

13 A multiplexer is an active device that increases signal strength. Compared to a pass transistor, it can drive
longer wires or it reduces the delay to the same length of wires.
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5.2 Minimum Clock Period Estimation

In last section, we have shown the topological structures of logic cells and routing
resources of two most popular commercial FPGA devices. While future reconfigurable
devices surely will have different variations in its topology and organization in logic and
routing structures. Once fabricated certain “intrinsic” properties are thus fixed. These
intrinsic properties are determined by the semiconductor process technology and the
particular topology, structure, organization, and circuit implementation of logic and
interconnects. Without specifying an application in the form of a netlist of the actual
target reconfigurable device, the exact benchmark of the reconfigurable device cannot be
determined. However, from the intrinsic properties, one can obtain a “heuristic”
performance upper bound, such as a minimum clock period, or maximum clock rate, for
all non-trivial applications. CAD tools for reconfigurable designs should expose
relevant intrinsic properties early in the design process to quickly rule out impossible
kernel candidates for reconfigurable implementation. Tools should also provide a quick
estimate of potential speedup. This potential speedup can be used as a speedup target
to guide further refinement and optimization of a design.

In chapter 3, we argue that, for a reconfigurable device to have any performance
advantages over a contemporary general-purpose microprocessor, it must implement an
application of medium-to-large complexity, excluding bit-level processing commonly
found in logic emulation. Medium complexity is loosely and relatively defined, from
the viewpoint of an instruction set processor, as computation requiring several to tens of
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instructions to produce an output datum per input datum.

By virtue of the above definition of a medium to large complexity design, a
straightforward design specification in a high-level programming language, or a
hardware description language, is impossible to automatically generate a high-
performance implementation close to an achievable optimum with efficient utilization of
the reconfigurable resources. Thus some expertise and hand optimization with
progressively improved performance are always required to fully exploit the potential of
a reconfigurable device. Depending on the application, this can mean a few man-days to
tens of man-months. One must consider the investment in effort against the backdrop of
possible improvement by re-structuring and possibly hand-optimizing a software
counterpart!4.

Current compiler technology still cannot take full advantage of all the hardware features
in a modern general-purpose processor that can help increase performance. One such
example is the multimedia instructions in almost all of the current state-of-the-art
microprocessor. This is due to the fact that a general programming language, by
definition of being “general”, does not contain application-specific syntactic constructs
supported by special hardware features.

To obtain an upper bound on the maximum clock rate for a reconfigurable device, some
assumptions and arguments must be made.

1. We know the timing models of logic blocks, wires, switches and capacitive
loadings parameters when a reconfigurable device is manufactured. These
pieces of data are available from the semiconductor foundry. Considering the
possible integration of reconfigurable logic with a general-purpose core in the
future, these pieces of information come with no cost.

2. We assume a realistic medium to large design contains a combinational datapath
of several to tens of arithmetic and/or logical operations deep. Any
combinational logic can be represented by a Boolean network or sum-of-
products, which can be mapped to a network of k-input LUTs [37].
Performance-driven technology mapping with pipeline retiming (or minimum
period retiming), such as the one described in [38, 39], can be used to obtain a
minimum clock period. This step can be used as a successive step with finer
target architectural details to generate greater accuracy since it requires more
time to compute.

3. By either manual or automatic insertion of buffers, internal nodes, and pipeline
stages in the data as well as in the control path, we can always achieve a design
of throughput one. An equivalent statement is that we can always slow down
the clock so that the critical path delay is smaller than one clock cycle. And we
can insert equal number of registers on all combinational paths then retime them

14 Re-structuring codes to follow certain coding styles that a compiler knows how to optimize.
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to reduce the minimum clock period?s. In this case, all combinational delays are
at most one path delay from the input of LUT to the register. This, of course, is a
pedagogical scenario assuming that the reconfigurable hardware always has
enough resources for extra logic and routing needs due to buffering, pipelining,
and replication of internal nodes!s. The number of internal nodes in a Boolean
network of n-inputs can grow exponentially making this impossible for large
designs. However, this ideal scenario does serve as a strong lower bound on the
minimum clock period, which represents the best-case scenario for comparison
with a general-purpose processor.

At least some internal nodes have more than one fan-outs making at least one
routing path cross one row and column boundary'. Figure 5-5 shows two
routing delay paths with a fan-out of two. The longer delay is the one crossing
the row and column boundary.

Node i

—

Node j Node k

row+column delay CLB

Figure 5-5: Assuming there exists a node with fanout of two in a real design.

5.2.1 Combinational Delay

We can estimate combination delays by summing up all the delays in the combinational
path. For example, in the case of Xilinx’s XC4000 FPGA, the combinational delay is the
sum of all component delays on the combination path, shown as a blue path in Figure

5-6.

1> For sequential circuits, such as a state machine, retiming requires derivation of new initial states for the
sequential part. [40] describes a forward retiming technique to solve that problem.

16 In fact, one can make an argument that area and speed trade-off is also true for reconfigurable hardware.
Therefore, if performance is the goal, the utilization of reconfigurable resources is not likely high. Also, in
general, the larger the chip, the longer the global routing delay will be. This seems to work against the
previous argument. However, the “penalty” is not as severe as having to route a signal through more
switches or LUTs.

171f all internal nodes have only one fan-out, then the combinational network becomes a tree or a forest.
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Figure 5-6: Estimation of combinational delay. Example uses Xilinx XC4000 family FPGAs.

The purple line shows the clock to output delay through the flip-flop. This delay will be
added to the final total delay between two registers to calculate the minimum clock
period.

Similarly, other logic cell architectures can be estimated this way. Shown in Figure 5-7,
the red line is the combinational path delay of Altera’s FLEX 10K family FPGA.

5.2.2 Routing Delay

Routing delays typically constitutes 40% - 60% of the total delay, which is much greater
than that for mask-programmed gate arrays [41]. Three key factors affect interconnect
delays in an actual design implemented on FPGA devices: the routing architecture of the
chip, which comprises wires and switches interconnecting logic cells; the application in
the form of a RTL description; and the CAD tools used to implement the application.
FPGA routing (as well as logic cell) architectures varies due to practical constraints and
some architectural specialization toward particular application segments. This
phenomenon will continue to exist and continue to evolve. Each architecture imposes
different structural and physical constraints that only dedicated CAD tools can generate
quality results. Optimal technology mapping, placement, and route tools for a
particular FPGA architecture, under different constraints, are often open research
problems. Many of them are either shown to be NP-complete, no polynomial time
solutions have been found yet, or no proof has been contemplated [42, 43].
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Figure 5-7: Altera FLEX 10K family FPGA combinational path delay.

Switches, wires and capacitive loadings cause signal delays. Accurate delay calculation
is possible only after routing. However, one can obtain a lower bound, without
specifying an actual application, based on previous assumptions 1-4. Figure 5-8 shows
the minimum routing delay in a segmented channel architecture is due to three pass
transistors and three segment length wire delays.

single length
segment \
CLB1 CLB
r—x-1 switch box
| D
T

switch

double-length \

segment \ CLB2

Figure 5-8: Estimation of a lower bound on routing delay (e.g. switch based routing structure).

Capacitive loadings will add some additional delay, but, as a “theoretical” lower bound
on routing delay, this omission strengthens the bound. So delay due to three pass
transistors and three single-length segments, available from semiconductor foundry as
technology library, can be used as a (strong) lower bound estimate for the segmented
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channel architecture.

Similarly, one can establish a lower bound of routing delay for the Altera’s FastTrack
routing architecture. In Figure 5-9, a signal traverses from a logic element in A to a logic
element in B through a column then onto row routing channel.

[T

Row
Channel

[T
T[]k

Figure 5-9: Estimate of minimum routing delay in Altera’s FastTrack routing architecture.

Unlike Xilinx XC4000, multiplexers make up of the switches in FLEX 10K, as shown in
Figure 5-4. The row and column routing channels are global. That is, they span the
entire chip in width and length in each horizontal and vertical dimension. This means
delays due to wire and capacitive loads are larger in large-sized FLEX 10K chips.
XC4000 family also has long segments that span the entire chip horizontally and
vertically.

FPGA architecture with global routing paths is the major reason that its minimum clock
period doesn’t scale well with the shrinking size of transistors if the size of the chip
remains the same. XC4000 family also has long line segments that span the entire chip.
If a design has high fan-out internal nodes, routing through long line segments, instead
of a series of short segments, greatly improves performance [44]. The number of
switches traversed by a long line is much smaller than the number of switches traversed
by a series of short segments. However, long line segments can reduce the routability of
a FPGA since they take up chip space, which can otherwise used for short line segments.
Figure 5-10 shows the combinational and routing delays in FLEX 10K devices with the
same speed rating!8. The combinational delays are pretty much the same while the

18 ]t is assumed the process technology that these devices were fabricated was the same.
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routing delays increase with the size of the chip.

Delays in FLEX 10K Family Devices

12

B Combinational

Delay (ns)

Delay
B Routing Delay

Figure 5-10: Delays in Altera FLEX 10k family devices (speed rating -3)

Figure 5-11 shows the routing delays as percentage of minimum clock period as the size
of the chip increases. The comparison is based on devices made by the same process
technology, a 0.42 micro, four layer metal process. The result is expected because FLEX
10K devices have global routing channels, which make global routing delay longer in

proportion with the size of the chip.

70.00%

Routing Delay in Percentage of Total
Delay (Combinational + Routing)

60.00% -
50.00% -
40.00% -

Figure 5-11: Percentage of Routing Delay in Minimum Clock Period increase with the Size of
the FPGA.

Figure 5-12 shows the percentage of routing delay can increase if the chip size remains
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the same and the architecture of the chip remains the same!®. That is, logic and routing
structures are simply replicated to make up the extra die area but global routing
channels still span the chip horizontally and vertically.

Routing Delay in Total Delay

EPF10k50-3 EPF10K100A-3 EPF10K200E-3

FLEX 10K Devices over Three Process Generations

Figure 5-12: Routing Delay in FPGA Grow with Process Technology Upgrades?.

As a transistor’s size shrinks, one must reconsider this effect to various source of
performance related issues. Individual delay components may change as well as its
relative effect to the overall delay as formulated by Amdahl’s law. New architectures or
micro-architectures must reduce the overall delay to take advantage of the smaller
feature sizes?!. Routing delay is the largest and most unpredictable delay component in
a FPGA design. It can affect the performance on the order of 100% or more, while
combinational delay is completely predictable after technology mapping thus has less
room for improvement.

This is not the case with ASIC or general-purpose processor since both routing and
combinational delays in these devices can be reduced with technology upgrades, while
FPGA must provide “general” routing structures that cannot be “optimized”. Therefore,
the lower bound on the minimum clock period, or the maximum clock rate of a

19 Here we assume the chip size scales linearly with the number of gates on the chip and linearly with the
square of minimum feature size. Since these three devices span three process generations (0.42, 0.35, 0.25),
we assume that the chip area is the same for these three devices.

20 EPF10K50-3 is made in 0.42 micron, four layer metal process; EPF10K100A-3 in 0.35 micron, five layer
metal process; EPF10K200E-3 in 0.25 micron, optimized five layer metal process. This optimization
contributes to the drop in routing delay in FLEX 10KE family devices.

2l Large FPGAs break up the chip-wide global routing channels into half-sized routing channels. However,
this creates more complexity for the routing tools. Tools often need to be modified or created to fully utilize
to architectural or micro-architectural changes in new FPGAs. In fact, architectural changes can cause a
domino effect in the tool chain that the whole methodology needs to change. This has been a major problem
for the FPGA users since software tools have been far behind FPGA's increasing versatility and complexity.
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reconfigurable device, has not followed the Moore’s law as the general-purpose
processors have. This disparity in the maximum clock rate between a general-purpose
processor and a reconfigurable device can grow wider given the same process
technology and the chip areas unchanged. @ An examination of performance
improvement on these two computing media over the last decade supports this claim.

In 1991, the state-of-the-art microprocessor ran around 33 MHz. An FPGA (Xilinx
XC3090) could run as fast as 33 MHz as reported in [45]. Today a Pentium 4 processor
runs as fast as 1.7GHz (as of June, 2001), a fifty-fold increase over ten years ago. A
survey on the performance claims in the Altera’s Megafunction library reveals top
speeds reaches only around 200 MHz. Even taking a most optimistic estimate on ideal
designs from Xilinx Virtex-II devices’ data sheet, the top speed is around 400 MHz, only
a ten-fold increase since 1991. These numbers are not exact, but should provide a good
comparison basis.  This disparity is a very important factor to consider for
reconfigurable computing - whether current reconfigurable architectures can maintain
their performance advantages over general-purpose processor as semiconductor process
technology keeps moving forward; and whether new reconfigurable architectures,
especially, the routing structures, are needed. Indeed, from the above observation and
analysis of the current FPGA routing structures, faster interconnects are necessary to
keep pace with heavily optimized interconnects in microprocessors22.

5.2.3 Clocking: Reconfigurable logic vs. Fixed Logic

Why configured FPGA seemingly cannot run as fast as a microprocessor fabricated with
the same semiconductor processes? We offer an explanation from two perspectives.

1. Microprocessors have more optimization options at all levels of the circuit, while
FPGA does not.

2. The majority of silicon area on FPGA is dedicated to routing structures, the
average “distance” between registers is longer than that of a microprocessor.

All logic definitions on the microprocessor are known at design time, therefore, the
following can be optimized to the design specification [46]:
1. Pipelining can reduce combinational delays between registers.

2. Retiming can balance combinational delays on a path so that the dynamic range
is small.

3. Custom gates can be designed to increase or decrease drive strength according to
actual output loads.

4. Fabrication process can be tweaked (e.g. doping level, metallization) for further
optimization.

2 Xilinx Virtex-II devices have replaced the pass transistors with active buffers to reduce delays.
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Figure 5-13: VLSI design hierarchy (a) register transfer level (b) gate level (c) circuit level (d)
physical layout

In addition, we can attack this question from a different angle. The “average”
combinational delays between registers is somewhat correlated to the register density
(number of registers per unit area). In the case of reconfigurable logic, we must consider
the actual “active” registers, the ones that are clocked in the configuration. Figure 5-13
(a) shows all registers in a fixed-logic design are clocked, while not all registers in a RLA
can be used. To summarize:

1. The ratio of raw register density of (a) vs. (b) is conservative. The majority of
FPGA'’s area is dedicated to routing [7, 47, 48] [49].

2. The active register density of (a) vs. (b) is higher than their raw register density
ratio, suggesting greater distance between active registers in (b).

3. Pathsin (b) can have additional delays due to switches, muxes, etc.
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active register combinational logic only (register bypassed) not used
g g y (reg YP:

Figure 5-14: Register packing density (a) every register in a microprocessor is active (b) not
every logic cell is used for every configuration, some are used for its combinational part only.
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6 Performance of Microprocessors

From Figure 3-3, we see a microprocessor plays the most important role in the complex
interactions among performance contributors. How do we evaluate a particular
processor’s performance given a task? Figure 4-5 suggests we can calculate it through
analysis of instructions execution and properties of microprocessors’ datapath.

In this chapter, we examine the factors affecting microprocessor’s performance. We
point out that given the same fabrication processes, microprocessor performance
improvements come from three areas: instruction supply, data supply and instruction
processing. These areas translate into three problems: branch prediction, memory
bandwidth, and effective data flow.

We focus on microprocessors’ ability (or inability) to maintain effective data flow
because that is the area reconfigurable can be advantageous. Therefore, we are
interested in the data processing rate, or the throughput of the functional units. A
relationship between the data processing rate with the better known “instruction rate”
can be established if we know the proportions of the data processing instructions in a
task.

We then visualize instruction execution as instruction flow through a two-dimensional
array of functional units. The one dimension represents the multiplicity of functional
units, while the other dimension is time.

We then specify a set of variables associated with the properties of microprocessor
datapath. This set includes the number of functional units, their operation and operand
types, the latencies and throughputs and clock speed. Together with the instruction
execution model, we can calculate the execution time.

6.1 Performance Analysis

The broad area of performance evaluation can be divided into the three categories of
performance measurement, analytic performance modeling, and simulation based
performance modeling. The first category, performance measurement refers to
measurements done on actual hardware such as a test board or actual system box.
Simulation modeling typically uses software to simulate the processor or system and
predict performance. An execution based simulator simulates execution of the actual
design, generating program results and essentially runs code much the real hardware
would.

Both performance measurement and simulation are too expensive propositions for
reconfigurable system and/or application development. In the former case, we have to
build the system and/or develop the application, and risk our efforts being fruitless. In
the later case, we need to build processor behavioral models and essentially completed
the reconfigurable logic design. That requires significant investment in time too. Both
methods require substantial amount of time and speedup is not guaranteed.
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We must look for ways to evaluate speedup candidates that give us good enough
assurance to warrant further development. It seems an analytical approach would avoid
the expensive cost of the trial-and-error approaches. However, modern microprocessors
are very complex and include a wide range of architectures. How much information to
we need to analyze a microprocessor’s performance? We want to keep this to a
minimum while still being able to include all architectures.

Fortunately, we can take advantage of media processing characteristics and concentrate
on the datapath of microprocessors. As Figure 4-5 illustrates, we should start with
instruction counting.

6.1.1 Instruction Rate

In general, microprocessor instructions can be subdivided into the following categories:
integer instructions (INTI), floating-point instructions (FPI), load and store instructions
(LSI), flow control instructions (FCI), processor control instructions (PCI), memory
synchronization instructions (MSI), memory control instructions (MCI), and external
control instructions (ECI) [35].

Instructions can also be dichotomized into three-address instructions (TAI) and the rest.
Three-address instructions involve moving data in general-purpose registers (or SIMD
registers) to other registers, possible via functional units, or cache, and vice versa. We
can further divide three-address instructions into data transfer instructions (DTI) and
data processing instructions (DPI). In other words, DTI is equivalent to LSI, while DPT is
INTI plus FPI in our terminology.

A “datapath-intensive” task involves more TAI than the rest of instructions. This ideal
task for reconfigurable co-processing is data-intensive, has long runs of TAls, has little
data dependency. We can re-order instructions to make longer runs of TAls, creating
more speedups. Figure 6-1 shows how we separate instructions and look for
opportunities for reconfigurable co-processing.

In addition, we can “schedule” these instructions, find a minimum schedule (if possible),
and compare it with a fully pipelined reconfigurable function (4.3).

A performance comparison of microprocessors using MIPS or MFLOPS gives us basis to
make general statements for all applications. A more accurate comparison can be made
once the target application is specified. By running the actual application on the target
system, one can obtain program execution time, which is a product of the following
three factors.

The most accurate microprocessor performance metric for a particular program is the
total execution time. Here we extend the meaning of program to include functions and
basic blocks. The program runtime is the product of instruction count, clock per
instruction, and clock period.
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Program runtime = Instruction Count * CPI*Clock Frequency
T=N=*C, *F,

where T is the program runtime, N instruction count, C, clock periods per instruction,
and F, clock frequency.

We can also gauge how well a program is executed on an microprocessor by instruction
processing rate.

Instruction Processing Rate = Instruction Count =IPC *Clock Period (Cy)

Program runtime

Le=Ng=1+c,

where [, is instruction processing rate (instructions/second), I, number of instructions
per clock period, and Cp the clock period.

Clock frequency (C,) or clock period is largely dominated by a transistor’s switching
speed, which is turn, depends largely on the implementation semiconductor technology.
Instructions per cycle (IPC) indicates how many instructions an ISP can execute per
cycle — a measure of its superscalar capability. Whether IPC or CPI, they reflect an ISP’s
architectural or micro-architectural capabilities, compiler’s ability to explore those
capabilities, and a program’s characteristics to take advantage of those capabilities.

An instruction stream can contain instructions involving the functional units, or not
involving any functional unit of a processor. Here our definition of a functional unit
denotes a notion of data transformation. In other words, it involves arithmetic, logical,
shift, rotation, etc. The rest of the instructions, whether it is branch, load/store, memory
synchronization, cache management, processor control etc., we call it control and data
moving instructions.

We can view a running program as a stream of instructions feeding an ISP. This
instruction stream can be split into the data processing instruction stream, and the
control and data moving stream as shown in Figure 6-1. Figure 6-1 also shows that
processor architecture affects the data processing rate, and that system organization
(cache and memory) affects the load and store instruction rate.

We define instruction throughput to be the data processing rate, or data processing
instructions per second. A program may contain very different ratios of data processing
instructions versus control and data moving instructions. For media processing, we
argue that the data processing instructions take up a majority of the total instructions. In
addition, media processing instruction stream often consist of large blocks of data
processing instructions interspersed with intermittent control instructions.
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Figure 6-1: An instruction can be separated into data processing stream and control and data
moving stream.

6.1.2 Factors

No mater what performance evaluation methods we choose, a microprocessor’s
performance is affected by the following factors:

1. Semiconductor Fabrication Technology

Advances in semiconductor processing technology have been the major
contributor to the superior performance of the latest generations of processors.
Semiconductor processing technology has enabled the size reduction of
transistors by half every eighteen months over the last two decades as predicted
by the Moore’s law. Shrinking minimum feature sizes translates into reducing
gate delays thus increasing maximum clock speed. This has been the major
source of performance gains in computing devices thus far.

2. Architectures
VLIW and superscalar increase CPI, SIMD reduces instruction count.

3. Micro-architecture
* Pipelined datapath increase clock speed (smaller Cp)
* Dynamic register renaming to eliminate WAW pipeline hazard, increase CPI
* Branch Prediction (ignored for multimedia applications because of low BP)
*  Qut-of-order execution increase CPI
Among different architectural families but fabricated with the same generation of
technology — micro-architectures affect scalability with technology process upgrades,

thus indirectly affect the maximum clock rate. In addition, the degree of superscalabilty
of each architecture directly contributes to the MIPS and MFLOPS numbers.

6.1.3 Speedup

The performance gains that can be obtained by improving the performance of some
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portion (let’s call it A) of an application can be calculated using Amdahl’s law.
Amdahl’s law states that the performance improvement to be gained from using faster
hardware for A is limited by the fraction of the time the hardware can be used.
Specifically, Amdahl’s law can be formulated as the following:

SU:—I_F
1-F)+—
( ) S

Speeding up the “critical block”, which takes up the largest percentage execution time,
may not produce the largest speedup. Other blocks may take smaller percentages of
execution time but have much individual speedups. This could result in a higher overall
speedup. Therefore, picking the “optimal” block should be considered first.

In addition, we may not be able to put a speedup candidate on the reconfigurable logic
core (RLC). The task may be too big to fit on the RLC. Then we can look for other
opportunities. On the other hand, the reconfigurable logic core may have ample
resources to accommodate more than one block. It is possible to integrate several blocks
into one. Therefore, choosing a SW/HW partition that meets all constraints and
performance goals is always an iterative process. We argue that obtaining as much
performance possible requires a significant amount of effort.

6.1.4 SIMD

The most direct support to media processing is the addition of multimedia instructions.
SIMD, coupled with segmented ALUs, explores subword parallelism. However, SIMD
suffers the most when the task requires lots of data re-alignment between successive
instructions and the subwords grow out of current subword sizes (4.3).

Figure 6-2 shows how we visualize the SIMD datapath. Note that the apparent subword
parallelism at the input may not be fully realized due to growth of subwords’ dynamic
ranges during the entire task. Segmented ALUs use saturation arithmetic, where any
operations on the subwords do not carry into the next neighboring subwords. Figure
6-2 (a) shows that the full subword bandwidth is utilized, if the dynamic ranges of all
subwords stay unchanged. However, this is hardly the case for few real-world
applications. Repeated saturations on the intermediate variables will accumulate and
propagate producing undesirable results. Figure 6-2 (b) shows that the full subword
parallelism cannot be realized because multiplications or any variable whose dynamic
range “grows” with processing stages (shown are segmented multipliers of 2x precision
of subword operands).
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Segmented ALU: m
subword ALUs of w bits

Segment multiplier: m/2
subword MULSs of dw bits

dw = 2*w
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Figure 6-2: (a) Segmented (subword) ALUs for saturated arithmetic, (b) Segmented (subword)
ALUs for arithmetic, logical, shifting, and any other operations

Table 6-1 shows the nomenclature used in this thesis and the Intel’s. Note that we use m
to denote the “degree” of subword parallelism. An m-subword parallelism means there
are m subwords in a word.

Table 6-1: Nomenclature of “packed” data in SIMD context. Numbers represent the number
of bytes in the data.

This Thesis Intel
Word 2m | Quad word 8
2m1 | Double word | 4
Subword Word 2
1 | Byte 1

In section 4.3, we discover that, even with SIMD instructions, a microprocessor still
cannot take advantage of all parallelism in the task. For example, Intel's MMX
technology pack 8 bytes into a quad word. Ideally, there is 8 degree of parallelism. For
the reasons discussed in section 4.3, only it cannot be exploited by a fixed-logic design.

We compile a few research results to show this is the case. Table 6-2 shows that the
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overall performance gains are less than the highest kernel gains. In one case, the overall
gain is negative, affirming the belief that programming with SIMD instructions requires
much of knowledge of the hardware, or one may not produce a desirable result.

Table 6-2: Reported speedups using MMX instructions for some multimedia applications.

Applications | Overall | Kernel | References
Gains Gains

MPEG-I 15%- [50]

Decoder 25%

MPEG-II 40%- 50%- [50]

Decoder 50% 250%

H.263 67% 5%- [28]

Encoder* 70%

JPEG** -50% 60% [29]

(*: Compare hand-optimized scalar code vs. hand-optimized MMX code. However, some MMX
kernel functions, e.g. DCT/IDCT were coded in much less precision than the scalar code.
Therefore, the speedup should be taken as optimistic. **: Negative speedup is due to repeated
MMX library calls to functions operated on 8x8 blocks. In other words, the application is not
globally hand-optimized.)

Table 6-2 also suggests that there is room left for speedup opportunities from
reconfigurable logic. This claim is based on the analysis in Figure 4-5 and confirmed
from data in Table 6-2. All these kernel functions have 8-fold data parallelism in the
memory word, but were only able to much less that half of it.

6.2 Datapath Performance Analysis

In section 4.3, we describe how we can derive performance estimate with the knowledge
of the microprocessor. How do we formalize it?

First we need to identify critical parameters and architectural points that affect an ISP’s
datapath performance. We hope to extract a minimum set of such parameters and use
them in our performance bound estimation and speedup opportunity exploration, and
integrate these steps in a large framework for reconfigurable application development.

We start by making generalization on the datapath, in particular the register file and
functional units, of a microprocessor. Our generalization is based on an observation that
ISP datapath designs converge into a few good architectural points [51-53]. These points
include multiple functional unit data paths (FUDP), separate register file for integer and
floating-point FUDP, and pipelined FUDP.
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6.2.1 Datapath Properties

Figure 6-3 shows a simplified ISP FUDP with only one functional unit attached to the
register file. A FUDP consists of a function unit plus two register read ports and one
register write port. The inputs (operands) to the FUDP come from either Load/Store
unit (i.e. memory) or its own output from previous cycle.
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Figure 6-3: A single pipelined functional unit connected to a register file.

The functional unit is P-stage pipelined and can process data every I cycles. We call ],
the initiation interval. We allow the register file to have a small latency of R cycles from
write ports to read ports. For most ISPs, R is zero. The total latency of the pipeline is T
cycles, T=P+R. This total latency is defined as the number of cycles from a data entering
the write port to a dependent result written back to the write port. We call T and I, the
pipeline properties of a functional unit.

A simple cycle operation has P=I=1, and a multi-cycle operation has a P=I not equal to
one. A pipelined operation has P divisible by I but P>I. A throughput of 1 operations
has I=1.

In reality, a FU can have multiple pipeline latencies and initiation intervals. It can
execute multiple sets of operations, or the same operations but on different operand
sizes, with fixed but different latencies and initiation intervals. We call a group of
operators with the same latency a latency group (LG). We call this grouping as latency
grouping.  We represent the pipeline latency and initiation interval as P; and I
respectively, where [ is the [th latency group sorted from the smallest .

Some integer units are designed to execute different arithmetic operations with different
latencies. Some execute the same operations but with different latencies for different
operand sizes. Typically, this is to reduce delay for small size data. We call it a
multiple-latency integer (MLIU) unit. For example, PowerPC603 has only one integer
unit for arithmetic, logical, and multiplication. Multiplication requires more cycles to
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complete. This means it is multi-cycled as a multiplier. Alpha 21164 has two integer
units, one of them is MLIU and one is single-latency integer unit (SLIU).

We assume each FU has two read ports from the register file and one write port to
register file. We do not know of any architectures that have multiple FUs sharing the
same read ports and write ports because this will cause port content and defeats the
purpose of providing multiple functional units to the same register file. Two register file
read ports, one register file write port and one FU completes one datapath pipeline.

In actuality, superscalar or VLIW processors all have multiple functional units and most
have multiple register files according to data types. The register files may be connected
to multiple functional units at the same time, but each functional unit has its own two
read ports and one write port.

Figure 6-4 shows an multi-FU datapath connected to the same register file. Typically the
functional units sharing the same register file operate on the same data representations.
For example, integer and float-point units have separate register files. They may
implement some different of arithmetic or logical operations with many other
overlapping operations. Each functional unit may have different total pipeline latencies
depending on the operation and operand size.

[ad][aa] [@a] [dd]

From L/S —‘%]RF

Figure 6-4: Multiple functional units sharing the same register file.

Sharing the same register file lets the member functional unit pipelines obtain previous
results so that register moves (incur overhead) between register files can be reduced.
For example, typically, integer functional units (ALUs and multipliers) share the same
register file. Floating point, and MMX data type use separate register file. An arithmetic
ALU pipeline can use a result from a multiplier pipeline for multiply-accumulation and
vice versa.

It would seem that connecting all types functional units and as many of each one type to
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the same register file would reduce unnecessary traffic between register files. However,
we have a very different data representation for integer and real numbers, represented
as floating-point (FP) numbers. Integer and floating-point representations cannot be
converted into one another without conversion cost. In addition, their dynamic ranges
are different. It is possible to lose data precision through conversion. Therefore, all
architectures keep separate integer and FP FUPs.

Even operating on the same type of data, the number of functional units connected to
the same register file cannot scale indefinitely without hitting register bandwidth and
subsequently memory bandwidth limits first. ~ In addition, it has practical
implementation drawback on the performance of register file [54].

General purpose registers serve as variable cache for the functional units it connects to.
Each functional units can consume up to two variables as its operands. Therefore, the
number of (general-purpose) registers in a register file must be twice the number of
functional units, i.e. the same number as the read ports. However, this minimum is far
from enough as it implies only two live variables (or one live variable and a constant)
can be kept per functional unit processing pipeline. Real applications simply have more
live variables and/or constants most of the time. These extra live variables will “spill”
(register spilling) over into memory (most likely cache first). Get data from or sending
data to load/store units will incur extra cycles (either cache or memory) compared to
getting data from register file.

Therefore the number of registers in a register file, N, should scale with the number
functional units, M, or we create a separate register file to accommodate more FU. The
formal case makes register allocation and scheduling more difficult. The latter case
creates register move overhead when variables are stored in other register files. Modern
microprocessors are carefully designed that register bandwidth can sustain the
processing bandwidth.

Increasing registers in a register file brings up an undesirable performance penalty to the
read/write ports. Whether they are implemented as buses or decoder/mux pair, the
high fanouts will have an impact on the capacitive loading, possibly making it a critical
path [51].

6.2.2 Data Processing Execution Model

We can view a stream of data processing instructions as temporal expansion of our
FUDP model. Chained together, it can be viewed as a N-stage pipeline with different
pipeline properties. For example, an temporal expansion of a block of N data processing
instructions is shown in Figure 6-5.
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Figure 6-5: Temporal expansion of N data processing instructions.

Note that this view implicitly implies each of these n instructions (except the first) are
dependent on previous instruction. Therefore, it can be viewed as how a 100%
sequential block of instructions will execute on this FUDP. We can calculate the total
number of cycles (sum of all T;) assuming that all data are available before each
instruction executes.

This temporal expansion conceptualization also provides us a comparison basis to an
equivalent spatial arrangement of these operations on RLC in register transfer style. We
can remove the registers and make further optimization through behavioral
optimization of arithmetic and pipeline retiming.

Time

Figure 6-6: A block of N instructions execute on a pipeline functional unit.

However, Figure 6-5 does not reflect the pipeline opportunities when successive
instructions are independent and of the same latency group. A more accurate picture is
shown in Figure 6-6. Note that due to pipelining, successive instructions executions
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overlap in time.

Similarly, a temporal expansion of N data processing instructions on superscalar or
VLIW processors lead us to the following conceptualization.

: E
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Figure 6-7: Temporal expansion of multiple FUDP. N instructions may be distributed among
M functional units.

Path 1 and Path 2 represent two possible parallel routes for data to flow through the
temporal expansion pipeline. At each register file to FU boundary, there may be
multiple choices of routes if the next instruction can be executed on more than one FU.
At the end of the paths, two variable are generated. Though not shown due to the
difficulty of diagramming, there may be pipeline opportunities along both paths. The
colored functional units execute instructions along the dependency graph. Uncolored
functional units are not used because they don’t support the instructions or they execute
slower than other functional units for the same instructions.

Having multiple functional units avoids forced serialization due to resource constraints.
It is equivalent to creating false dependency. Figure 6-7 shows that the paths may look
more like the original computation structure, whether is a single DAG or multiple
independent DAGs.

We can follow Path 1 and Path 2, chain up the whole register transfer paths and
compared it to an implementation on reconfigurable logic core (Figure 6-7).

6.2.3 Performance Properties

So far, our performance modeling require only the following parameters
= M :# of functional units attached to a register file

= L, :latency groups, [(operator group, operand size), latency]

i)



= ]:initiation interval

= T:pipeline latencyC, : clock period, or 1/F,

In addition, we know under performance trade-off and limits of physics:

* M is a small number, usually 2-3 per register file, and cannot scale indefinitely

[54].

o RF performance will suffer because it must be able to broadcast to more
recipients (constraints of physics) — bus, switch.

o Will suffer “register spilling” if the number of registers not increase
accordingly, then we have the same problem as above.

o Memory cannot keep up.

» L aresmall. L'is at most the number of (operator, operand size) pairs for each
FUDP. We model a functional unit having multiple latency group if it is one of

the following two:

o FU performs different functions (+, -, *, etc.) at different costs (powerPC
603 [55], Alpha21164 [56]). We know operators such as +, -, &&, | |, shift,
etc. are often grouped into one latency group, and *, % are in separate
latency groups.

o FU perform the same functions on different operand sizes at different
costs (603 [55], 604 [57], alpha 21164 [56]).
We model this property by [(operator group, operand size), latency] pairing.

® Pipeline stages cannot be infinite (T/I relatively small) before other components
become bottleneck. Pipelining is to increase throughput by reducing clock
period. However, register and memory bandwidth must keep up with the
processing bandwidth.

Table 6-3 list three popular microprocessors, whose performance properties are reported

in the literature.

Table 6-3: Performance properties of three popular microprocessors.

Processor PowerPC | PowerPC 604 | Alpha 21164
603
Functional U1 U1 102 | TU3 | 1U1 102
Unit
Operator AN RN E VAN RV L AR PV
*
T/ 1Ly 1/1 14/2(1/1]|1/1[4/2|1/1({1/1(8/4
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7 Architecture of Reconfigurable System

How should hardware reconfigurability be added to a general-purpose system? What
should the architecture and organization of a GPRS look like? Figure 3-7 elicits the
questions remain for a high-performance reconfigurable computer architecture and
organization. What implications each architectural point and organization elicits? And
what tradeoffs and constraints that must come with them?

In this chapter, we propose a general-purpose reconfigurable processor architecture,
which consists of a ISP core and a reconfigurable core, and necessary fixed-function
hardware subsystems supporting reconfiguration and operations involving
reconfigurable hardware. This architecture is based on our experience in building
media processing hardware [58, 59] and conclusions from our discussion on past
architectures in Appendix A.

In our architecture, we recognize the intrinsic differences in the achievable minimum
clock periods between a fixed-logic custom designed microprocessor core and an
uncommitted array of reconfigurable logic cells. We preserve the processor core’s ability
to optimize for higher clock speed by not forcing synchronicity with the reconfigurable
logic core. This asynchronicity between the two cores has profound implication on the
“achievable performance” by both cores.

We do not incorporate any special hardware in order to keep is generality. We define all
necessary hardwired subsystems and their functionalities in order to support
reconfigurable computing. These subsystems should be integrated with the processor
and reconfigurable core.

Our architecture provides a fast control mechanism from microprocessor core to RLC. It
can be used as a secondary one-way data transfer from microprocessor core to RLC,
though it will tie up the microprocessor. This mechanism requires a simple addition to
the microprocessor core’s control register. Though we do not specifically require an
addition to the microprocessor’s instruction set to use this register, it is much more
desirable to add such an instruction. This will allow compiler to automatically generate
code using such an instruction instead of having a programmer to instantiate it.

Finally we compare other reconfigurable architectures and discuss pros and cons from
the performance standpoint.

7.1 Technology Backdrop

As minimum feature size keeps shrinking, the same amount of logic occupies less and
less area. The area vacated can be used to integrate more logic, embedded memory, or
analog circuitry according specific applications. Transistor count on a microprocessor
chip keeps increasing and soon it will, if not already, reach a point of diminishing return
in performance if no change in microprocessor architecture or micro-architecture can be
made. From a system point of view,

1. Integration of cores
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2. Logic and memory will be fabricated on the same chip in the future. It will
increase memory bandwidth and memory bottlenecks will be alleviated. More
applications will change from memory bound to compute bound. Thus more
applications will benefit from reconfigurable hardware.

3. It is likely, in the process of applying reconfigurable applications, that we
discover that some processor real estate can be traded off for reconfigurable real
estate. For example, a large cache takes up a significant amount of silicon area.
However, its effect on performance may be marginal. Reconfigurable logic
becomes one of many options for a “synthesizable” processor.

4. The cost of reconfigurable devices are a non-event since it can be amortized with
increasing volumes. The cost gaps between reconfigurable devices and
microprocessors are closing in fast due to the manufacturing prowess of
dedicated semiconductor foundries.

7.2 System Architecture and Organization

In this section, we describe the architecture and organization of a general-purpose
reconfigurable core. This core consists a microprocessor core, a reconfigurable core, and
a fixed function subsystem to support reconfiguration and reconfigurable computing.
We explain each architectural and organizational choice by examining past systems.

7.2.1 Core Pairs

As different applications require different computing power and have different cost
considerations, future reconfigurable computing machines will probably encompass a
variety of architectures. Different pairing of microprocessor cores and reconfigurable
logic cores will likely coexist.

The one important system design and operational feature is to allow microprocessor and
reconfigurable core be asynchronous. This is to allow microprocessor to run at full
speed and to allow more speedup candidates for reconfigurable core.

Microprocessor Core

Whether a microprocessor or a reconfigurable core, an architecture favors some
applications, whose program structures map well to its internal structures, and loses its
advantages over some other applications. We do not know global application statistics.
We cannot optimize architectures with maximum likelihood. Even if we can, there will
always be market segments in need of some kind of specialization, in other words,
architectures biased toward some structures Therefore, to specify a particular
microprocessor core as the “best” choice is moot. Though our target application
domain is media processing, we want our architecture to be general so that our
performance evaluation method is equally applicable to all microprocessor architectures.
Thus the microprocessor core in our architecture can be a superscalar microprocessor
core, a VLIW core, or a single-issue microprocessor core. However, to make discuss
easier, we will use a superscalar general-purpose core from here own. We should stress
that this is not a requirement, but a convenience for discussion.
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Reconfigurable Logic Core

The same argument goes to the reconfigurable logic core. We don’t favor one
architecture over another. Throughout this thesis, we deliberately leave the architecture
of reconfigurable logic core unspecified. This non-commitment allows us to include a
broad range of architectures.

To have a clearer picture of this core, we use commercial FPGAs as a visualization aid.
Our core is an array of logic cells, such as the ones in Figure 5-1 or Figure 5-3. However,
there are several points

* The core does not have embedded memory. Imagine the hierarchical array
architecture in Figure 5-3 without the embedded memory.

* Though LUTs can be used as memory, we restrict our discussion on performance
evaluation strictly on its logic capability.

» The core does not have the peripheral circuitry found in many commercial FPGAs so
that area can be saved.

* There are many reconfigurable architectures with different “granularities”. In our
reconfigurable logic core model, this is also allowed. We understand granularities
can affect performance for certain tasks. Our performance evaluation does not
restrict it. More accurate estimation of the minimum clock period can be made if we
nail down the granularity.

There are two “preferable” physical attributes on our reconfigurable core. One is that it
has medium to large number of reconfigurable logic cells (> 1000). Many media
processing functions are of medium to high complexity. There is little speed advantage
to be gained when the task is very simple. This reflects the fact that ILP is well exploited
by modern microprocessors.

The implication of this medium to high complexity to design effort, coupled with
performance requirement, is that a simple straightforward compile will not generate
satisfactory results. There is a trade-off between reconfigurable core size with
potentially more speedup candidates and higher speedup. However, this is a decision
for the system designers to make.

The second of the preferable physical attribute is it is organized as (2W+c) x D cell array,
where W is the memory word size, c is a constant a bit more than 2m. These parameters
are defined in Figure 6-2. The reconfigurable core is oriented (2W+c) side connected to
the FIFO Figure 7-3. The reason for this physical attribute is that it allows intermediate
data sizes to grow. However, this is not a hard requirement for our performance
estimation. It is a sensible design decision.

Organization

Where should reconfigurable hardware be placed in a general-purpose computing
system? How does reconfigurable hardware access data in the host system? Ideally
reconfigurable hardware should be put in a place where it has access to the maximum
data bandwidth achievable by the system memory. Given that reconfigurable hardware
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and a host CPU were implemented on separate silicon chips?, there were two logical
placements for reconfigurable hardware—local bus and I/O bus.

An /0O bus is designed for other subsystems to access system memory and other system
I/0 devices. It is easier to design a reconfigurable subsystem with an I/O interface to
attach to an existing main system. It does not require re-design of the host general-
purpose system.

The local bus of a particular CPU is typically proprietary and inaccessible (unless the
chipset has built in supports) to other devices. It is also faster than its I/O bus. A local
bus is short and is not open to support other peripheral devices, whereas an 1/0 bus is
longer, thus slower, and is designed to let other standard devices to connect to the host
system. Figure 7-1 shows an over simplified diagram of a reconfigurable subsystem
attached to a general-purpose system’s I/O bus.
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Figure 7-1: A reconfigurable subsystem attached to the I/O bus of a general-purpose system.

PAM, Splash, and other reconfigurable systems are attached processors. Therefore, their
maximum achievable bandwidth to the main memory is limited by the 1/O’s capacity.
This was the reason both PAM'’s and Splash’s second version came out with hardware
support to a faster I/O standard.

This organization let us leverage on existing general-purpose system infrastructure. No
massive system re-design or re-writing of operating system software is required. One
only needs to plug the reconfigurable subsystem to the system and use existing

The drawback of this organization is reconfigurable hardware has a slower bus to get
data from or into system memory. The maximum sustainable data rate, or bandwidth,

23 It is possible to integrate reconfigurable hardware with a core CPU and other peripheral circuitry, but the
potential performance gain has not been verified to justify the concerns of economic and complexity.
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for the I/O bus is no greater than that of the system bus. In addition, the overhead (in
particular, latency) to send small amount of data through the I/O bus is high (compared
to the local bus). Thus this organization favors transfers of large data sizes to the
reconfigurable subsystem. PAM and Splash all went through revisions, which included
faster I/O interfaces.

Figure 7-2 shows a different organization — putting reconfigurable hardware subsystem
on the processor’s local bus. Putting reconfigurable hardware on the CPU local bus
would imply that the reconfigurable hardware subsystem is not simply “attached” to
the host system through an open standard I/O interface. One must re-design the
general-purpose host system to support the reconfigurable subsystem specifically.
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_1/O Bus__

Figure 7-2: A reconfigurable subsystem directly sitting on the processor bus.

This organization, though giving the reconfigurable subsystem direct access to the
system memory, requires much more hardware and software support. For example, the
reconfigurable subsystem must contain host CPU interface, bus interface (processor
specific) and memory interface hardware. Issues regarding how reconfigurable
hardware subsystem interacts with CPU, how it accesses system memory, and other
system resources must be resolved and built into hardware.

Besides the design and debug considerations of the system, one must devise a
verification strategy for the reconfigurable subsystem since its behavior varies from one
application to another. Each design must be verified in-system to guarantee its correct
behavior. Each design could require different test strategies. In the author’s opinion,
this presents a major roadblock for general-purpose reconfigurable systems. A
discussion on how to verify a hardware design on reconfigurable substrate is still an
open research question (not much in the research community at this point) and is
beyond the scope of this work.

In addition, to support the reconfigurable subsystem (initialization, reconfiguration,
read/write, data transfer, etc.) in addition to all the devices found in a general-purpose

computer, a full-fledged operating system must be re-written.

It requires significant time, (human as well as financial) resources, and expertise to
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implement a GPRS with organization such as the one depicted in Figure 7-2. To
demonstrate the benefits and viability of GPRS, one can remove the irrelevant, massive
infrastructure hardware and software required to a full-fledged general-purpose system,
and design a simpler proof-of-concept subsystem. It allows us to keep the complexity
and development time to a manageable degree. Most importantly, it allows us to focus
on the organization of the microprocessor-RP subsystem, the architectures of the
microprocessor and RP, the applications, and development process. Furthermore, it
closely resembles the kind of system structures and organizations of ERS, and recent
core-based reconfigurable devices. CHIDI and Prism are two such examples [59, 60].

7.2.2 Reconfigurable Subsystem

Bus Interface

Reconfigurable hardware attached to a bus such as Figure 7-1 and Figure 7-2 requires a
bus interface controller (BIC). This bus interface controller is an integral part of the
reconfigurable subsystem. BIC can be implemented in a separate ASIC or FPGA for a
particular bus. It should not be implemented with reconfigurable resources from the
reconfigurable hardware.

Variable Clock Speed

Reconfigurable hardware functions should not run synchronously with the bus clock.
However, BIC must run synchronously with the bus clock to capture the bus activity.
Data from the bus must also be synchronized to the reconfigurable hardware functions.
Therefore, a data-regulating buffer is also an integral part of a reconfigurable subsystem.
We can model this by an imaginary clock boundary separating the reconfigurable
subsystem into two logical subsystems as depicted in Figure 7-3.
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Figure 7-3: Bus interface and FIFO are an integral part of the reconfigurable subsystem, but
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should be implemented with fixed logic (not reconfigurable).

In order to run as fast as the hardware functions can on reconfigurable logic array, the
reconfigurable subsystem must contain a programmable clock generation circuit as part
of the reconfigurable subsystem. Though this means the hardware functions will run
asynchronously with the bus, it removes the constraints that the hardware functions
must run only a few multiples (or quotients) of the bus speed.

The programmable clock generation circuit must provide a range of clock speeds with
finer intervals according to the intrinsic properties of the reconfigurable hardware. The
upper bound of the range should be determined by the minimum clock period estimate
of a particular reconfigurable architecture. The lower bound should be determined by
what is a reasonable speed estimate below which very little performance gain is
possible.

The actual clock speed is the floor value of the interval within which a hardware
function maximum speed falls. It is statically bound to a particular hardware function.

The programmable clock generation circuit must also have a processor interface. The
CPU programs the clock as part of the (re-) configuration operation of the reconfigurable
substrate. The processor interface within the programmable clock generation circuit
must also be part of the reconfigurable subsystem.

Local Memory Subsystem

In the attached processor architectures as in Figure 7-1, access to memory through an
1/0 bus incurs a high latency. It renders addressing small data sets a very inefficient
operation. Even for the local bus architectures, higher memory bandwidth (though
localized within the reconfigurable subsystem) is possible with wider memory word
width coupled with faster alternative memory technology. Therefore, PAM, Splash,
PRISM, and CHIDI all include a local fast memory (SRAM). This memory can serve two
purposes: as a fast memory page of the system memory, or as a lookup table for
computation.

Though fast local memory reduces the latency and increase throughput for the data in
the page, it incurs overhead in transferring data from the system memory. For
applications, such as multimedia, whose data can be viewed as an infinite stream, data
paging does not improve overall processing throughput. The ultimate performance is
still limited by the bus’s capability unless the whole program can run in the dedicated
memory.

Furthermore, the slower memory and fixed data word width is part of a cost structure
(e.g- DRAM is smaller, consume less power) that influenced the decision on the choice of
the type of memory and the organization of a general-purpose computer. It is not an
intrinsic property of a general-purpose system, nor has it to do with a general-purpose
processor’s datapath’s performance. One can certainly design a general-purpose system
based on SRAM to improve system performance.
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The need for local memory in systems such as Figure 7-1 was an organizational shortfall,
not one of the computing limitations of microprocessors. For systems organized as
Figure 7-2, the need is moot. However, that fast local memory contribution often
confused people and was often compounded into many reconfigurable subsystem’s
performance benchmarks boasting speedup numbers, in particular, on memory-bound
problems. This effect should not be attributed to reconfigurable logic’s intrinsic
performance advantage over microprocessors.

Our reconfigurable subsystem architecture does not use dedicated memory. Data come
from the main memory. This makes the microprocessor core and RP core face the same
memory performance characteristics. It is left to system designers to decide what
memory performance they need for their applications.

FIFO

Since reconfigurable substrate runs asynchronously with the bus, a FIFO is necessary to
regulate the speed difference between the bus and the reconfigurable subsystem. If the
reconfigurable subsystem has external 1/0O, additional FIFO between the hardware
functions and I/0 is necessary to regulate the data rate difference there. Thus, FIFO is
also an essential part of the reconfigurable subsystem. It also undermines the need for a
local memory, which can be used as a buffer. Figure 7-4 shows a FIFO subsystem for
regulating data between the system bus the reconfigurable substrate. Signals on the left
hand side are synchronous to the bus interface. Signals on the right hand side are
synchronous to the reconfigurable hardware function’s operating clock. The graded
shade indicates a clock boundary.
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Figure 7-4: A FIFO subsystem buffering data from system to reconfigurable substrate and vice
versa.

Configuration Control Subsystem

In order for the CPU to program the reconfigurable logic, a configuration control
subsystem (CCS) is necessary as part of the reconfigurable subsystem. Typically,



configuration is a slow process compared to CPU’s clock speed. It is often done
serially?. The configuration control subsystem mediates between CPU writes of the
configuration bitstream and the actual reconfiguration process.

There are many ways to implement CCS with different cost and efficiency
considerations. For example, CPU can write a configuration in 32-bit words (in a 32-bit
architecture) into the shift register of the CCS and signal to CCS a word is ready. CCS
shifts the word bit by bit to the configuration memory of the reconfigurable logic. Then
it signals to the CPU of the completion of a word through interrupt or raise a status flag
in CPU'’s register space. The former incurs a context switching cost, and the later ties up
CPU in a polling loop.

Another way to implement CCS is to use a FIFO to hold the entire configuration
bitstream. CPU writes the FIFO, in one service request, the complete configuration.
CCS then configures the reconfigurable logic and signals its completion through
interrupt. This implementation will reduce the overhead on CPU’s context switching or
polling, and reduce the configuration time by making configuration continuous from the
beginning to the end.

In our model, the CCS is not an essential part in the discussion of performance
evaluation. For a hardware function operating on a large data set, the overhead can be
amortized to become a non-factor. For multimedia applications, this is often the case.
We will use the second implementation for our model, since it reduces synchronization
cost (thus performance) at the expense of the cost of a small amount of memory.

Processor Register Interface

It is often necessary for the host CPU to write initialization, control, or formal
parameters to a hardware function implemented on the reconfigurable logic. For
example, the coefficients (formal parameters) of the color space transformation can be
implemented as a hardwired or “programmable” function (Figure 4-4). In the
programmable form, the coefficients can be written from the microprocessor while the
function does not need to be reconfigured for different sets of coefficients. The
programmable 3x3 matrix multiply can do any 3x3 multiplication with the correct input
data types. However, it loses some performance versus a hardwired version since more
optimization is possible with known coefficients.

Since reconfigurable logic’s clock is asynchronous to the CPU clock, this register
interface also creates a clock boundary within the reconfigurable logic. The
synchronization of CPU writes is done through a set of control registers.

The control register consists of common and application-specific control bits. The
common control bits include reset and start. Reset is to make sure that a hardware

24 This depends on how one implement the configuration memory. There is a trade-off between parallel
configuration and cost. Parallel configuration requires more configuration circuitry; that is, more space.
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function starts from a known state, or to abort current operation and start all over. Start
tells a hardware function that CPU has set up all information it would need to run
correctly and the controller of the hardware function can start its operation.
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Figure 7-5: Reconfigurable subsystem showing constituent fixed functions and a
reconfigurable logic core

The parameters are written through a set of application registers. For example, if we
implement the color space transformation with a programmable 3x3 matrix multiply
hardware function, the CPU must write nine coefficients (8-bit each in this case) to the
hardware function at the beginning of its operation. The nine coefficients require at least
three CPU write cycles (assuming we pack the coefficient into three 32-bit words). Five
memory addresses must be allocated for these registers. Figure 7-6 shows the fixed and
application specific register space.

There is a strong coupling between the memory mappings of the control, initialization
and the formal parameters registers and software drivers. The processor register
interface hardware and the corresponding pieces of software that initialize, control, and
configure the parameters are considered in unity to guarantee correct operations.

Our new architecture puts the register interface right inside the register file in an
microprocessor. A dedicated special register for reconfigurable logic serves this
purpose. This would require no addition or change to the instruction set (if we ask the
compiler not to allocate this register for any other general purpose uses). We can simply
add one more register to the register file, if there are still register addresses not mapped
to any registers. Or we can remove one general-purpose register from the register
address space and replace a special register for reconfigurable logic (SRRL).
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Figure 7-6: Memory address for common registers is fixed, while application specific registers
addresses can change with applications?s.

Figure 7-7 shows a 32-bit SRRL for a 32-bit processor (or a processor core). The sync bit
is located at the MSB position so that it can be predicated as a sign bit. The 7-bit address
field is enough to provide 128 distinct addresses. Along with the 24-bit data field, this
format can write 2G register bits, which is orders of magnitude more than the large
FPGA can offer today. ‘
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Figure 7-7: A special register for reconfigurable logic (SRRL) in an microprocessor’s register
file.

Since writing by the CPU to the register and reading from register by the hardware
function is asynchronous, we need to set up a mechanism for synchronization. This
mechanism is through a semaphore bit, or sync bit, in the special register (see Figure
7-7). When CPU writes to SRRL, it sets the sync bit to one indicating a control,
initialization, or parameter word is available in the data field. The corresponding
address is in the address field. The synchronization state machine (SSM) will latch on
the data and acknowledge this write by resetting the synchronization bit to 0.

2 The address map is randomly chosen. For practical consideration, one should choose a mapping that
minimizes required decoding logic, for example, one-hot mapping when less than 7 addresses are required
for an application.
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SSM is running with the same clock with the rest of the hardware function. It is
application dependent. However, SSM is a soft firmware?, just like the application
independent register interface, that it must be included in every reconfigurable
hardware function.

CPU can only write to SRRL when the sync bit is 0. Thus, in the register interface driver
software, SRRL should be always read first by the CPU to check the sync bit before it
attempts to write.

Memory Addressing Unit

Different microprocessor architectures do have different addressing capabilities that will
affect their performances. Custom addressing capabilities can be built in the
reconfigurable core to compliment the microprocessor core’s addressing capability.
However, since we allow reconfigurable core to run asynchronously with the processor
core and the its clock speed is programmable, it would be very inefficient to synchronize
on every memory access. This will probably offset any advantages.
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Figure 7-8: Reconfigurable system model showing the special register interface.

Therefore, it is best to implement it outside of reconfigurable core as a fixed function
unit. If we implement it as a fixed function unit, it won’t be able to reconfigurable for
the target applications. Hence the performance benefits (if any) from a hardwired

2% [t sounds like an oxymoron. What it means a hardware functionality that must be included in every
configuration, yet its placement in the reconfigurable logic need not be fixed.
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memory address generator should not be attributed to the advantages of a
reconfigurable core.

General-Purpose Reconfigurable Core

With the cores and fixed-function subsystems supporting reconfigurable computing, we
now have a general-purpose reconfigurable core as shown in Figure 7-9. The
microprocessor core can be taken from an existing superscalar, VLIW, or any
microprocessor core. We add one special register (SRRL) and one special instruction to
the instruction set.
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Figure 7-9: An integrate general-purpose reconfigurable architecture. The microprocessor core
and reconfigurable logic core run asynchronously.

This general-purpose reconfigurable architecture can be integrated on one chip so that
the microprocessor core and RLC are based on the same semiconductor technology
(Same minimum feature size, same core operating voltage, same metal processes).

Finally, we can visualize a datapath model for the integrated general-purpose
reconfigurable architecture. Figure 7-10 shows the microprocessor datapath model in
Figure 6-4 with the reconfigurable logic core. The fixed function logic for the rest of
reconfigurable subsystem is omitted for clarity. This model suggests both the
microprocessor core and reconfigurable logic core are subject to the same memory
system constraints.
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Figure 7-10: A datapath model of a general-purpose reconfigurable core.

Note that so far, we have not target our microprocessor cores to any specific
architecture, nor have we targeted the reconfigurable logic core to a particular
architecture. This “lazy binding” makes our approach to performance evaluation
applicable to a wide range of architectures.

7.3 Other Architectures

In this section, we explain why we made the decision to let the microprocessor core and
reconfigurable logic core run asynchronously. We also examine the performance
implication if we force the microprocessor core and reconfigurable logic core run
synchronously. We use some systems as examples and look into their limitations as a
result of forcing synchronicity.

Some architectures put reconfigurable logic directly on the datapath such as RAW [9,
10], or as an alternative datapath for the microprocessor datapath such as PRISC and
GARP [10, 61, 62]. In the former case, every instruction execution must go through the
reconfigurable logic. In the later case, reconfigurable logic serves as alternative
execution unit.

RAW is a drastically different architecture, which consists of arrays of small datapath
and local instruction and data memory. The reconfigurable logic sits on the register-
ALU-reconfigurable path. Because of this organization, every instruction execution
requires a configuration. This also means that the clock rate must tolerate the delay
through the reconfigurable logic on top of the ALU delay, which can adversely affect the
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achievable clock rate with fixed-logic ALU.

PRISC puts reconfigurable logic in the register file datapath, make it an alternative
functional unit Figure 7-11. This implies the PFU must have a fixed latency the rest of
the functional units would not know when its computation is done. It also means it
must be synchronous to the rest of the datapath because a register file cannot be efficient
if it needs to synchronize on every data. In addition, it is not clear how it is integrated
with register file without penalizing it for non-deterministic loading characteristics.
Finally, the rest of the functional units are fixed-logic execution units. From our
conclusion in chapter 8, PFU must implement medium to complex task, or bit-wise logic
to have any speedup advantages. In that case, PFU must be relatively large and it must
implement more than a few instructions. That makes synchronization problem worse

since making a few complex reconfigurable functions with a fixed latency is hard to
achieve.

--1GPR FU1 FU2 | = | PFU

Figure 7-11: The PRISC architecture. A programmable functional units is sitting on the
register bus.

Indeed, PRISC reported synchronization complexity and had to restrict PFU’s use for
two inputs and one output combinational functions. That is equivalent to logic
emulation. This is not surprising from our conclusion in chapter 8. Therefore, PRISC
does not offer performance benefits to any medium-size data types or simple arithmetic
operations.
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Figure 7-12: Problems with PFU as a functional unit attached to a register file

Figure 7-12 help us the understand the problems if a piece of reconfigurable logic sits
between register ports.
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Garp’s architecture is very similar to ours except that GARP is connected to processor
cache (Figure 7-13). As a result it must run synchronously with the processor. That
means its clock speed cannot be change with the application. It also must run a few
times slower than the processor core.

Fixing the clock speed adds one more constraint to potential speedup candidate on top
of the performance gain requirement and area constraints. The clock rate must be fixed
at the system design phase. If it is fixed too high, it can exclude many potential speedup
candidates leaving it virtually useless. If this is fixed too low, some performance gains
cannot be realized.

MIPS Core —|—

-
1eqgssor))

Cache —| ___I

_____________ : Reconﬁgurdble
Bus Subsystem

D

Processor Bus

Figure 7-13: Garp architecture [11].

Since GARP, does not have explicit synchronization mechanism, its latency must be
fixed at the design time. Fixed latency further reduces the number of potential speedup
candidates if they can only run with a larger latency at that clock rate. For other
candidate functions which can be run with a smaller latency, extra sets of registers are
necessary to add delay cycles to meet the latency constraint. These extraneous registers
can make the original function too big for the reconfigurable logic core.

Our objective on reconfigurable architectures is to avoid tying too much specificity at the
system design time instead of the application development time, which is what defines
reconfigurable computing.

In the next chapter, we develop analytical performance estimates using our architecture
as a performance evaluation platform.
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8 Performance Analysis

Reconfigurable computing suffers from limited applications due to long application
development cycle and hard-to-predict performance benefits. To over come these
problems, we must create more applications with less amount of time.

In this chapter, we use the datapath performance model derived in 6.2 for the
microprocessor core, and the general-purpose reconfigurable architecture in Figure 7-9
as future general-purpose reconfigurable processor. Given minimum knowledge about
the system and a task, we would like to know quickly if it is a speedup candidate. This
minimum set of properties includes the number of operations (defined as operations
directly supported by the microprocessor instruction set), the types of operations, the
operand types, and the number of input and output variables for memory bandwidth
limit.

We then establish an optimistic upper bound by assuming all N operations are
parallelizable, that is, there is no data dependency among them. We then establish a
lower bound by assuming that all N operations are serial. That is, all operations depend
on their immediate predecessors.

Using these two bounds and information on the number of memory accesses to support
those N instructions, we can determine if the task is bound by memory. The speedup
potential is confined in a region where memory bandwidth is higher than the upper
bound memory bandwidth.

With these bounds and memory bandwidth not limiting, we can use our minimum clock
period estimate to further rule out speedup candidates. This process will eliminate
wrong candidates very quickly.

These estimates are formally formulated. They show how various factors affect
processor datapath performance. From these formulas, we know what task properties
and microprocessor properties to look for speedup candidates. These formulas also
provide a mathematical base for some long observed rule of thumbs developed from
experiments.

Finally, the whole process can be integrated as a front end tool for reconfigurable
application space exploration.

8.1 Performance Estimates

Given a speedup candidate and a microprocessor datapath performance properties
(modeled by Figure 6-4), can we quickly get some performance number without actually
writing the code and measure the performance?

We assume we know the following information from our microprocessor properties and
task properties.
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* Multiple functional units, M
* Some operations can execute on different FU at the same or different costs

* Minimum information on task: the number of operations N, the type of each
operation, and its operand size. These N operations must be supported by the
microprocessor’s instruction set natively.

* Number of inputs, n, number of output, n,. Here we refer inputs and outputs as
variables obtained from memory. This information is not need for performance
bound estimate, but they will be used for compute-memory bound
determination.

The task can be represented as a DAG, a parsed forest, or taken from a block of three-
address instructions as discussed in chapter 6. However, we don’t need the dependency
information for our estimates.

Upper Bounds

The best possible performance (the minimum number of execution cycles required) is
when there is no dependency among variables. That is all operations can execute at the
same time. No dependency also means the data can be pipelined to a functional unit’s
maximum pipelining capability. In other words, the task is one such that

* Disregard dependency
= All parallel operations

* Maximum pipelining if available

The following equations formularize this problem.

M
EQ 8-1 N= Z.”
P
[1,
EQ 8-2 n = ;nu

where N is the total number of operations in a DAG, M is the number of functional units
connected to a register file, n, is the number of operations assigned to the ith FUDP, and
n,, is the number of operations assigned to its Ith latency group, and L, is the number of
latency groups in the ith FUDP.
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EQ 8-3 l, = ; 8
M
EQ 8-4 L= L

where I; is the total latency of all operations assigned to the ith FUDP, gi, is the total
latency from operations assigned to ith FUDP’s Ith latency group, and L is the total
number of latency groups in the whole RF-FU datapath model. Note that L is not the
sum of L; since different latency groups belonging to different FUDP can have the same
Tand I
EQ 8-5 g =1, *n,

where I;; is the initiation interval of ith FUDP and Ith latency group. The question now
becomes finding a set of 11, such that minimizes the longest li over M. That s,

M M L
rass 1 =mOMAX( ) =mMAX X o)
where min is a scheduling procedure. It finds the shortest “parallel” schedule by
searching over all functional units and their latency groups (Figure 6-7). min can
schedule multiple instructions for concurrent execution. For instructions which can
execute on multiple functional units, min schedules the one with the smallest I;;. MAX
is a function, which returns the maximum value in a set of M items.

We call this problem “finding the shortest distributed schedule” problem. We can think
about this problem as trying to compact the depth of the temporal pipeline shown in
Figure 6-7.

Lower Bound

Given a set of N operations and their operand types, and a microprocessor core, whose
datapath is modeled by Figure 6-4, the longest execution happens when all operations
must wait for previous operation to finish. That is, the lower bound is obtained by
assuming “maximum dependency”. The lower bound (on throughput) can be
calculated by chaining all operations together one after another.

* Multiple functional units

» Same operations can be performed by multiple FU at possibly different costs

We can formulate it as with the following equations:
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EQ 8-7
L
EQ 8-8 L= ]Z:,gi.l
M
EQ 8-9 L= Z{li
L . . d
EQ 8-10 I"=Min(l,) = A{;n@ ]Z,Tu 1)

i=1 1

where Min is a scheduling procedure. It searches over all functional units and latency
groups for the shortest “serial” schedule. For each instruction, Min finds the smallest
Ti;, whose functional unit can execute the instruction. However, it cannot schedule
another instruction until the previous one finishes execution.

The ratio of upper and lower bounds, R,, tells us how far apart are these bounds, or the
“spread”. It gives an indication of how good are these estimates.

u L
Y

EQ 8-11 Ratio of Bound (ROB) R, = = T

Min(}, 3T, #ny)

=l I=l

Equation 8-6 suggest the upper bound estimate is a function of M, L, I, and N. I, are
constants for any (operator, operand size) pair. If M, L, and N are all unbound integers,
the search for IU will be O(M-1)""). However, limits of physics dictate that M and L, are
small integers (6.2). In addition, in many cases, there is only one choice for expensive
operators such as multiplication and/or division. Single resource makes determining I
much simpler than EQ 8-6 suggests. Some very intuitive heuristics suffices. This is best
explained by some examples.

Examples

Figure 8-1 shows two typical media processing tasks. The rgb2yiq transform requires a
total of 21 operations, nine multiplies (O1-O9) and twelve adds (010-O21), while the 19-
tap filter needs nineteen multiplies and nineteen adds. Note that we treat a shift as an
add because the shift and add are implemented in the same integer unit and has the
same performance properties.

Finding upper bound can be visualized as filling M buckets with N bricks (Figure 8-2).
M buckets are M functional units. Instructions are bricks with certain heights. Some
bricks” heights change with the buckets. Some bricks can only go to certain buckets.
The objective is to find a filling that produces the shortest highest height.
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Figure 8-1: Examples for bound estimates (a) color space transform (b) a 19-tap filter.

The filling strategy starts from the most restricted bricks that can go to only one bucket.
If all such bricks are exhausted, then we take the bricks that have the most heights and
fill them first. Because there are multiple choice of buckets, we choose the one the brick
has the least height. This process repeat until all bricks are exhausted.

In our examples, we recognize that there is only one multiplier in each of these targets.

The multiplication instructions can only go to one functional unit (the multiplier). Since
nine multiplications alone take more time than the twelve adds, the remaining twelve
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adds can go to other functional units.

Finding lower bound is equivalent to filling the buckets, where the heights of all buckets
are increased by the same amount no matter which bucket actually gets the brick (Figure
8-3). For every brick which can fill multiple buckets, the one, which makes the brick
shorter, gets it.

Time li
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Figure 8-2: Finding upper bound visualized as minimizing the highest bucket.

Figure 8-2 shows that the upper bound can be viewed as a measure of M. Though some
instructions can only execute on one functional unit, real applications have instruction
mix that execute on all functional units.

Indeed, we can use a trivial instance to see how M is reflected in the upper bound
estimate. Let’s assume every functional unit have the same latency of T cycles and
initiation interval of I. We can sum up the numbers of operations according to their
types and divide them by the number of functional units for each type to obtain
scheduling length n. We then multiply I and n, for each functional unit to obtain the
total number of cycles, I. The largest [, of all functional units is the trivial upper bound,
[u.If all functional units are identical, then the instructions are evenly distributed
among M functional units, (1n,= N/M).

Finding lower bound is much easier since we assume 100% dependency. This
assumption becomes a reality when,
1. There is only on functional units that execute all instructions (e.g. PowerPC 603).

2. One functional unit execute all instructions faster than the rest (pedagogical).
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Figure 8-3: Finding lower bound visualized bucket filling. The heights of the buckets all
increase by the same amount.

Table 8-1 shows these bounds and the range of bounds using PowerPC 603, PowerPC
604 and Alpha 21164 as example [51, 55, 57]. We show how instructions are distributed
among mulit-FU processors for the upper bound estimate. The lower bound is not
shown because it is much easier to picture it with Figure 8-3. From Table 8-1, we can
make several observations:

1. The ROB is relatively small, and are very close to the number of FU.
2. UB, LB increase when increasing

* Nincreases

= Many expensive instructions such as multiplication.

= There is only one functional units.

In other words, the following are true.

L
EQ 8-12 I"~N
EQ 8-13 I“"~NIM
__ LU
EQ 8-14 Ry=l"I"~N/N/M)~M

This is not surprising if we think about the bounds from some very intuitive point of
views.

We obtained the lower bounds by assuming complete dependency. So all N instructions
execute serially. Though instruction costs vary, the number of instructions still factor
into the lower bound. If we use a pedagogical example - all instructions have the same
cost, then EQ 8-11 produces NT. Even with different cost, we can still see how N factors
into the equation by letting instruction costs represented by (c+x), where c is a constant
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representing the least expensive instructions and x depends on the instructions. Then
EQ 8-11 will become ¢N plus a summation term.

Therefore we can view this simple lower bound as a measure of instruction length, N
and T. So the lower bound exposes the effect of N and T, the latency of each operation,
as no pipelining is possible if all data are serially dependent. Results shown in Table 8-1
confirms this observation. We call this the task load test.

Table 8-1: Performance upper bound and lower bounds on color transform example using
three representative microprocessors (32-bit datapath).

Processor PowerPC | PowerPC 604 Alpha 21164

603
Functional U1 IU1 | 1U2 | IU3 | IUI 102
Unit
Operator +/- * ol - | - R I N I Y o
T, /1, UL (472 11 | 1/1 |42 (1/1| /1 |8/4
Scheduling | 12 6 | 6 | 9 |12 9
Length (1)) 9
Total 30 6 6 | 18 | 12 36
Latency (/)
Upper 30 18 36
Bound (1Y)
Lower 48 48 84
Bound (It)
ROB (R,) 1.6 2.67 2.33

(a)

Scheduling | 19 101 9 | 19| 19 19
Length (1) 19
Total 57 10 | 9 | 38| 19 76
Latency (/)
Upper 57 38 76
Bound (IV)
Lower 95 95 171
Bound (It)
ROB (R,) 1.67 25 2.25

(b)

For the upper bound, if we assume all functional units are identical, then from EQ 8-6
the upper bound is simply NI/M. In reality, functional units are not identical because
they some operations takes more time than the other, and it is best to separate them.
Thought is some cases, designers chose to share the circuit with simple instructions
execute faster than more complex ones.
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Therefore, the upper bound also exposes whether the instruction distribution from the
cost point of view matches what is available. For example, since multiplier is scarce, the
more multiplications in the instructions will make the cause the upper bound dominated
by the availability of multiplier, thus I will be reflected in the upper bound. On the
other hand, if the instructions are roughly distributed according to “distribution” of the
functional units, the effect of H/M will dominate.

So it is fair to say the upper bound estimate is a test to the “fitness” of the number and
the “distribution” of functional unit to the task’s. We call this task characteristic test.

Finding Memory Bottleneck

So far we have ignored potential memory bandwidth problem. We have not required
prior knowledge about the input and outputs of the task. That is, whether the inputs
variables are memory reads and output variable are memory writes. If we know which
input variables are coming from memory and which outputs are going the memory, we
can use our bounds to check potential memory bound problems. Memory system
performance parameters are either fixed as in an existing system, or as variables as
design parameters for a new system.

Our upper bound estimate can be calculated to obtain upper bound memory bandwidth
requirement, m". m" is what is required to sustain upper bound data processing rate.
Similarly, lower bound estimate translates into lower bound on memory bandwidth
requirement m'. We obtain m" and m" from Y, and IL.
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il [
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where, n,, is the number of memory words read from and written back to memory.
Given memory performance information, we know the memory bandwidth, M;. There
are three cases with respect to M, relative to m" and m", as shown in
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From these equations, we can derive what causes a task compute bound or memory

bound.

1. M, is smaller than both m“and m". EQ 8-19 suggests either ny (a) is large, C, (b),
Tii(c) and N (d) are small, or simply M, is small.

a.

e.

Too many memory accesses in the task
High clock frequency, result of advanced semiconductor processes

Since Ti,l corresponds to [(operator group, operand size), latency], Ti,l
small means instructions in the task are inexpensive simple instructions.

Too few instructions means the task is too simple. Consider the extreme
case where there is no instructions (N->0), only memory accesses.

Simply slow memory, not matched to the microprocessor, bad system
design.

This task is memory bound, we should look for other opportunities.

2. M, is smaller than both m", but greater than m" Memory bandwidth very close to
processing bandwidth. There may be some room for speedup, but speedup is
going to be relatively small if any. The ROB, or the spread, should give an
indication of how much room there is to maneuver.

3. M, is greater than m". EQ 8-21 suggests that either it is ny (a) being small, or C,
(b), Iis (c), N/M (d) (from EQ 8-2), or M, being large (e). This means:

a.
b.

C.

Few many access in task.
Slow microprocessor, result of fabrication processes.

Long initiation intervals, this more reflects that the instructions are
expensive instructions.

Either the task is complex or there is too few functional units.

Memory bandwidth is too high? This is more pedagogical than real.
Together with b, it means somebody use very old microprocessors with
the fastest memory.
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This is the best speedup candidate. However, it depends on how far apart
between M, and m" as well as the ROB for the magnitude of speedup. The
greater the distance between M, and m", the speedup will be greater.

To determine whether a task is memory bound from EQ 8-17 and EQ 8-18, we can detect
memory bound tasks and zone in on potential speedup area, as shown in Figure 8-4.

Figure 8-4 (c) shows we can only gain speedups up to when it hits memory bandwidth
limits.

In addition, we conclude that the properties that make a task compute-bound are high

instruction counts, expensive instructions, and few memory accesses. The opposite is
true for memory-bound task.

My mt mY High clock speed

Low memory
bandwidth
<

’ Area of

High instruction counts // / "~ potential
Expesive in%rucho%
Few memory access

m* <m¥ <Mpg

Figure 8-4: Speedup candidate decision diagram and properties that move the dividends.

This is why encryption, Boolean satisfiability can have thousand fold speedups [63]. In
addition, what makes N increase without increasing memory access are those tasks with
small sized variables, e.g. bits. Imagine all the variables in Figure 8-1 are bits. The
number of operations per variable is not changed, but the number of variables we can
packed into a word increases dramatically. As a result the total number of instructions
increases. This is why logic simulation is really slow on microprocessor-based systems.

Media processing sits in the middle of those cases. On one hand, the variables are
smaller- to medium-sized. “Variable-packing” is modest. MMX cannot fully take
advantage of this data packing if the precision of intermediate results grow. In the
worst case, no packing is possible. That puts the potential speedup from reconfigurable

103



logic to m, plus the effect of N. Therefore, the number of operations per variable can
determine the speedup magnitude.

In addition, we show that processor clock speed that factor into performance equations,
though it often has to trade off with M, T, and I by the laws of physics.

Our investigation not only give us some performance bounds quickly, but it also yields
insights to the relationship between microprocessor performance properties and task
properties. In summary, our performance bounds

8.2 Application Scope

So far our discussion is limited to datapath with one RF, but it can be easily extended to
include multi-RF architecture because:

* Our UB estimate assume no dependency, it doesn’t matter which RF executes
instructions . There is no RF transfer. We can treat it as more M attached to one
RF with more LG to consider instruction distribution.

* Our LB estimate assume complete dependency. Though it is likely one RF
execute some instructions faster and some slower than the other, we can account
for RF transfers with by adding that fixed cost to functional units no in current
RF.

* In reality, different RF are often used for different data representations.
Therefore, there is only one or two RF to choose from. For example, integer, FP,
and MMX have separate RFs.

* We assume there is enough registers in an microprocessor that register spilling
will not happen. This argument is an observation on media processing
characteristics — data flow and few branches. There are a few input or output
variables representing streams of data. All intermediate variables (represented
by internal processing nodes) have very short lifetime such that simultaneous
live variables are small. There are very few control variables in a dataflow.
Most contemporary microprocessors have more than 32 registers.

In addition we can extend our model to include effect load/store unit and cache, that is,
the data transfer instructions. This is equivalent to covering all three-address
instructions. If a register file cannot hold all life variables, then variables will spill to
cache, them memory. Load/Store unit’s throughput is fixed. If this number is smaller
than either the consumption and/or production rates of our function, then the function
in memory bound.

We have not considered estimates for SIMD-capable microprocessors. The reason is
given as little information as the number of operations, the input sizes, and the
operations, without dependency. We cannot possibly detect variable packing
opportunities. Even with dependency, it still remains an open question. However, if the
variables are already packed by hand, then we can obtain estimates the same way.

No MMX, but if data alignment instructions is in the task representation, we can still
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account for it. The problem is to pack the data automatically. For microprocessors with
SIMD hardware and instructions, such as MMX or any segmented datapath, we assume
that no compilers can automatically detects SIMD parallelism. Therefore, we assume
hand-coded library functions exist.

8.3 Front End Tool

So can do we use performance bounds for reconfigurable computing? From our
conclusion in the last section, we know what makes good speedup candidates evaluated
against a particular processor. We conclude that a good speedup candidate is complex,
it requires operations the microprocessor has very few resource for and does it slowly, it
has few memory accesses.

These conditions put us in a limited area to explore reconfigurable logic’s performance
benefits. They also suggest that complexity will become an issue on top of the
unpredictable nature of reconfigurable logic. Therefore, our performance analysis will
help to explore new areas of performance benefits with more certainty about the
prospect of performance benefits. In particular, we contemplate two applications
scenarios as suggested in Chapter 1.

1. When we are designing an embedded reconfigurable system (chapter 1) and are
wondering which microprocessor core to integrate with reconfigurable logic on
the same chip, we can make quick estimates with a few intend applications to
choose the right combination. In addition, once we know the bound estimates,
we can choose the memory devices so that memory bandwidth bottleneck will
not become a oversight. On the other hand, we don’t want to use more
expansive than necessary.

2. When we have a new computer with a integrated reconfigurable microprocessor,
we would like to develop more applications. This scenario requires exploring
the partitioning space on a per application basis. In this case, we have multiple
tasks of potential performance gains. The task for the largest potential gain may
not be achievable due to the resources constraints. However, the second, third...,
areas may offer some performance gains.

In both cases, we need to explore design space, find the right SW/HW partition. This
process is iterative. With our conclusion that complex operations are more likely
speedup candidates, the complexity will be equally thrust upon reconfigurable design.
Thus we must reduce unnecessary efforts.

Our bound estimates can be integrated into design tools. With more information on the
reconfigurable logic architecture, we can make better estimates. For example, Figure 8-5
shows how our estimates are used in a design process.
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Figure 8-5: Front end for new reconfigurable system design

In this case, the problem is given a few initial applications we want to time-multiplex on
a system, what is the best combination of a microprocessor core and some amount of
reconfigurable logic with know architectural features. We imaging in the future,
integration will be on a “on-demand” basis. That is, we can integrate cores of different
architectures for different applications under different cost considerations.

Figure 8-5 shows that we can explore the system design space along four axes of
variables — the processor core, the reconfigurable core, the speedup task, and the

memory system.

The second scenario is critical to the concept of reconfigurable computing. If it is meant
to provide added performance on top of a general-purpose computer for the mass, we
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must be able to discover more applications for speedups. In this case, it does not even
matter if the reconfigurable logic is integrated with the microprocessor. We can modify
our performance properties accordingly. The main issue is given a system already
equipped with reconfigurability, how does application developers explore it.
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Figure 8-6: Front design flow for reconfigurable application development on existing systems.

Considering the reconfigurable is already fixated in the system, unlike the case in Figure
8-5, where it is a variable. Now the physical limitations of the available resources in the
reconfigurable logic becomes hard constraints. We have to contend with potential
resource constraints on top of speedup requirements. Meeting these two contradicting
requirement is no easy task. In addition, average developers are not experts in both
software and hardware. They should have some intuitive idea about the speedup

107



candidates without writing profiling codes.

Thus our performance estimates can serve as front end tools to these developments.
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Figure 8-7: Performance bound estimates as a front end tool integrated into hardware design
flow.

Figure 8-7 shows how our performance estimates can be integrated into the
reconfigurable logic design flow After our estimates suggest that the target is a speedup
candidate. We translate the task into a high-level hardware description. In fact, with
more specificity, a DAG can serve as a high level hardware description. We use the
upper bound as a performance constraint to the behavioral compiler.
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A behavioral compiler can quickly estimate area and speed based on hardware primitive
library from the reconfigurable logic. These are not accurate estimates since the design
has not been placed and routed at this point. However, the area estimate provides the
requirement for logic resource

If we are developing a reconfigurable application as in Figure 8-6, both area and
performance goal must be met. If initial constraints are not met, we can refine either
refine the description to explore the design space, or we can change a speedup
candidate. If our are designing a new system as in Figure 8-5, we can opt for a bigger
reconfigurable logic device, or a different architecture with better performance fit to the
task.
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9 Recap, Contributions

We set out by putting performance gains as a hard requirement for reconfigurable
computing to be a viable computing paradigm. We envisioned reconfigurable logic will
be incorporated ubiquitously in future embedded and general-purpose computers. To
that end, we must achieve two conflicting requirements — high performance and
programmability.

Past reconfigurable systems showed us promises of performance benefits. They failed to
deliver the programmability part, though that was the other half of what reconfigurable
computing is all about.

We re-think how performance is improved in a general-computer, and what make it
general-purpose. We realize that a number of issues stand out with the coming of
reconfigurable computing.

Programmability involves ease of programming, which turns into more applications.
We try not to make reconfigurable application development more difficult than it
already is. We do this by minimizing dedicated hardware to the reconfigurable logic,
which creates its own organization within the general-purpose organization (7).

If we are talking about performance “gains”, we must have clear reference to make our
comparison. We do this by examining what are the properties that affect performance of
a programmable device, in particular, microprocessors and reconfigurable devices. We
eliminate the unfair advantages due to different technological backdrops in fabrication
processes. Instead we focus on the architectural aspects. We realize that, for
programmable devices, comparison can only be made under the context of a task.

The difficulty is we cannot exhaustively make comparisons for an unbound number of
tasks. Instead, we use a class of tasks, media processing, exhibiting some common
characteristics as targets. The commonality makes our result of comparison more
applicable when we keep the task specificity to a minimum.

Media processing characteristics also allow us to “visualize” how tasks are executed on
the microprocessors and reconfigurable devices. We view the processing as flow of data
through processing nodes from input to output. In the case of microprocessors, this
flow is visualized as instructions flowing through functional units replicated in temporal
domain.

We realize we can estimate the execution time required N instructions to flow through
this fabric of functional units with a few variables and knowledge about the limits of
these variables as they are confined by the law of physics and performance trade-offs.

We then can formalize performance estimates in mathematical forms. Our performance
estimates use minimum information about the task. In fact, they don’t even require
dependency information. The lower bound estimate reflects the effects of the
complexity of the task and the total latency of the functional units. The upper bound
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reflects the effects of the “cardinality”, the operator type, and the pipeline intervals of
the functional units.

Using performance bound estimates, we check potential memory bottlenecks under the
general-purpose system architecture we proposed earlier. We conclude that good
speedup candidates require many microprocessor instructions to execute, they are slow
to execute, and/or the microprocessor has very few such functional units.

Finally, our performance bound estimates can be incorporated, as a front tool, into
design of reconfigurable system or application development on a reconfigurable
computer.

Contribution

This thesis proposes an “general-purpose” architecture intended to address the issues of
too much customization, difficult to program in past systems.

The analysis of processor datapath performance is unique in that it takes the analytical
route as opposed to the usual simulation or emulation route. The analysis formulizes
microprocessor performance and shows how it is affected by the task and processor
properties. The processor properties reflect the effects of architecture and fabrication
technology. The findings of this analysis concur to experts’ consensus, though through
experience not through analysis.

Finally, this thesis tie up different and difficult issues in hardware architectures,
applications, and design tools under one context and presents a more complete view to
these issues.
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A Reconfigurable Computing Systems

A.1 Custom Computing Machines

In 1960, Estrin described a “Fixed-Plus-Variable” structure system consisting of a high-
speed general-purpose computer (the fixed part) operating in conjunction with a second
system (the variable part) comprising large and small high-speed digital substructures
[64]. The “variable” part was designed to compute the eigenvalues and eigenvectors of
real symmetric matrices [65]. Due to technological constraints, his “variable”
substructures had very limited variability and thus limited applicability. The
introduction of the first commercial FPGA by Xilinx in 1986 rekindled Estrin’s idea. A
flurry of activities based on the idea of using FPGA as the “variable” or “reconfigurable”
structure soon followed. Three most significant efforts, where actual systems were built,
applications were developed, and performances were evaluated, are the PAM [15, 66],
the Splash [14, 18, 67], and the PRISM project [60, 68].

These early systems were called custom computing machines (CCM?) because the
FPGAs could be “customized” to the target applications. A typical CCM consisted of a
general-purpose computer and a FPGA-based subsystem. The “customizable” FPGA
subsystems were attached to either a high-speed 1/O (or peripheral) bus [14, 15, 18, 66,
67], or a host processor’s local bus [60]. These systems all reported performance
increases from single digit to thousands folds. The reference systems ranged from
single-issue processor based computers to massively parallel supercomputers.

Table 9-1 tabulates some information about these system and performance claims. This
list is not comprehensive to provide reciprocal evaluations of the sources of performance
gains. Some relevant pieces of information are not reported in literature, such as the
host system’s CPU and its clock rate, memory bandwidth, size of cache, the
reconfigurable subsystem’s local memory, clock rate, etc.

A.2 Multimedia Reconfigurable Computing

Driven by a need for a fast acquisition, processing and display machine for research in
digital video and model-based representations of moving scenes, Bove et al. started
building a prototype programmable video processing system - Cheops in 1989 [58].
Cheops abstracted a fixed set of computationally intensive kernel functions from
common video processing algorithms and embodied them in specialized hardware. It
sped up overall performance of applications using these kernel functions. Though
Cheops performed well for its initial intended applications, its performance edge could
not be extended over to other algorithms not using these kernels. A reconfigurable

¥ We define CCM as a machine with a general-purpose subsystem and a dynamically reconfigurable
subsystem.
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subsystem, State Machine, to replace the specialized hardware was later designed [69,
70]. The assumption was that reconfigurable hardware could provide both
programmability and significant speedups over general-purpose processor based
architectures for multimedia applications.

State Machine was partially functional and could be reconfigured. However, it was built
for the Cheops Imaging system as an attached subsystem. By that time, it was clear that
Cheops no longer had the performance advantage over then a state-of-the-art general-
purpose system. In addition, it was very difficult to debug, maintain, and develop new
applications. Cheops was a prototype system thus it was not completely bug-free, stable
and reliable?s. A PCI based reconfigurable subsystem, CHIDI, was thus built to replace
State Machine [59]. CHIDI had design several problems and was not functional?.

A.3 Myth of Performance Claims

Leveraging on existing general-purpose systems’ infrastructure (system architecture and
organization, microprocessor architecture, memory subsystem, bus standards,
programming tools etc.) and commercial FPGA devices, early CCMs were built as add-
on subsystems. This allowed researchers to avoid enormous amount of time and
expertise required if they were to re-think and re-build a GPRS® from scratch.
However, this ad hoc approach also limited their ability to explore better architectures
and organizations not bound by existing technology. As a result, very little experience
was gained in exploring new architectures and organizations of future reconfigurable
systems.

The last row of Table 9-1 shows speedups reported in [14, 45, 60, 68]. Though these
performance claims seemed to suggest reconfigurable hardware’s viability as a
performance enhancing computing substrate, careful examination raises questions on
the specifics of reference platforms and the magnitude of the speedups.

We found that these claims were not based on well-defined reference platforms and
were very loosely documented in the literature. None of these reports included a
detailed information on all performance-related parameters. Typically, some of the
following information is missing

1. Reference system processors, their operating frequency, and semiconductor
processing technology.

2. Organization and operating frequencies of the reference systems’ cache and
memory subsystems, as well as the semiconductor manufacturing process.

38 A few Cheops main boards were built, each one in different states due to manufacturing, usage, and
engineering change orders.

29 See [59].
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3. Reference systems’ local bus and peripheral (I/O) bus performance
characteristics.

4. Reconfigurable logic devices’ (FPGAs) manufacturing technology (for
comparison with the host processor). This information is only obtainable from
the vendors.

The aforementioned points suggest that it is likely that the system components used in
the reconfigurable subsystems were based on newer manufacturing technology with
smaller feature sizes and thus faster switching speeds. These components include the
FPGAs, the memory, peripheral components, and glue logic.

Our interests is in FPGA’s advantages of being logically and structurally reconfigurable,
allowing it to match task characteristics. We are not interested in the advantages of the
newer manufacturing technology, which can be neutralized by process upgrades.

In addition, these reconfigurable subsystems had more degree of freedom in organizing
memory and I/O devices. Typically, widening the memory word and coupling it with
I/0 specifics could increase data transfer rates not achievable in the reference platforms.
However, this freedom of organization was not necessarily an intrinsic deficiency of the
reference systems itself as they must maintain compatibility of components from
different technology generations. It was even less a deficiency of the host processor for
the same reason. In fact, strong coupling among the FPGA, the memory, and the I/Os
makes the subsystem more application-specific less adaptable to other applications.
This undermines reconfigurable systems’ viability as programmable systems.

Our concern is that performance gains were greatly exaggerated when we compare
squarely a microprocessor with RLA for a target task. A naive interpretation of these
numbers may mislead novice system designers or application developers into expecting
the need and magnitude of performance benefits from reconfigurable hardware. It can
cause them setting unrealistic performance goals and consequently significant loss in
time and financial resources when design decisions are based on such misinformation.
The following section discuss these points in greater details.

A.3.1 System Organization

PAM and Splash were simply “attached” to an 1/O bus of a general-purpose host
machine. There was a clear physical and logical boundary that separated the overall
system into a general-purpose host system and a reconfigurable subsystem. One such
typical reconfigurable subsystem could be physically and functionally separated into a
data processing part, performed by the reconfigurable hardware, and a data transfer
part, performed by three subcomponents: local high-speed 1/O, fast local memory, and
host system interface (see Figure 9-1). These components involved moving data in and
out of the reconfigurable hardware and/or the reconfigurable subsystem.
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Figure 9-1: A typical functional datapath block diagram of a reconfigurable subsystem on early
custom computing machines.

Though CCM designers could improve the speed of each data transfer component,
ultimately it was the access to the host system memory (if the application dictates) from
reconfigurable subsystem, or the access by host CPU to the reconfigurable subsystem’s
local memory that became the bottleneck of data transfer. This bottleneck is fixated at
the speed of the host bus connecting to the reconfigurable subsystem. For most early
CCMs, it was the host system’s I/O bus. Whether 1/O bus speed can scale with
semiconductor technology upgrade is an open question and beyond the scope of this
thesis. Matter-of-factly, an I/O bus has been the last part of a system that will be
brought up with the capability of current technology. Over the years, the speed gap
between I/0O bus and processor local bus has grown wider with technology generation

[53].

Memory

Local memory was considered a must to reduce access latency exactly due to the
inefficiency of this attached architecture [15]. SRAM memories were used for these
subsystems because of their faster access time compared to slower DRAM used in
general-purpose systems. However, the makeshift organization blindsided the fact that
performance of a general-purpose system would also improve if the same amount of
SRAM had been used in its memory system as cache or as main memory. DRAM was
the choice of memory because of its cost (and the infrastructure built around it), not its
performance. Given the fact that the state-of-the-art microprocessor at that time
typically had no more than 8k to 16k cache and 1M to 4M DRAM, the amount of SRAM
memory used in these systems could also be used for cache and main memory.

We do not know some of the host systems” memory bandwidths. Memory bandwidth is
determined by the width of a memory word and the inverse of the memory cycle time.
Typically, the memory cycle was much longer than CPU’s clock cycle. Even if it ran as
fast as the CPU, the bandwidth for a 32-bit bus would be around 100 MB/s (25 MHz
memory cycle time, DecPeRle-1). This was only % of the local system memory
bandwidth on DecPeRle-1. Therefore, the performance claims possibly included a
significant contribution from the local memory alone3. However, the same amount of

31 It depends on the applications as well.
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SRAM could also improve the host system when used as cache and/or system memory.

I/O0

The local memory could also help regulate differences in data processing rates among
the I/O devices, the reconfigurable hardware, and the host system. Most CCMs built in
high-speed I/O ports to connect to external high-speed I/O devices. Figure 9-1 shows
the reconfigurable hardware can be connected to a logic device implementing a
particular fixed-function standard I/O protocol, or it can implement the protocol using
reconfigurable logic. In the former case, the reconfigurable hardware implements some
kind of upstream or downstream processing logic for a particular I/O protocol, thus
limiting its scope of applications. In the later case, the reconfigurable hardware can
implement any (limited by the resources) protocol and necessary processing, thus
broadening its application domain.

Regardless of the actual organization of a reconfigurable subsystem, one must be careful
in making performance claims, when comparing a CCM with a general-purpose system,
and drawing conclusions from such claims. Component contributions to the overall
performance measurement must be separated though this is very difficult if not outright
impossible.

A.3.2 Fabrication Technology

DecPeRle-1 was attached to a 25 MHz CPU host system, while some applications
implemented on FPGAs could run as fast as 33MHz [45]. This raises the prospect that
the CPU fabrication process might have predated the FPGAs fabrication process.

The comparison of “raw” processing power of fixed-logic processor versus
reconfigurable logic without the advantage/disadvantage of fabrication technology will
be invariant to technology. Therefore, the comparison should be based on equal
technological backdrop (Figure 9-2).

Comparing devices made from different technology generations confuses this issue. It is
not clear what host system was used for performance comparison in DecPeRle and
Splash CCMs. In fact, none of them separated the system’s contribution to the speedup
from the FPGA'’s effect. In particular, the semiconductor process generation effect was
not accounted for.

Central to this raw processing power is the maximum clock frequency as it determines
the theoretical maximum throughput of each processor32. In chapter 5, we present some
theory and argue that reconfigurable device can never achieve a higher operating clock

32 Clock frequency is not the only factor determining the theoretical maximum achievable throughput.
However, modern high-speed processors, general or application-specific, all deploy pipelined functional
units to increase throughput, it is safe to say this practice will continue as transistors’ switching speed
becomes faster and faster.
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frequency than a general-purpose processor fabricated with the same process
technology. The difference in the maximum clock rate can diminish much of the
reconfigurable hardware’s advantages.
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Figure 9-2: Performance comparison is more fairly judged using the same manufacturing
technology.

Table 9-1 also shows that local memories used in different systems had different speed
grades, possibly the result of different technology generations.

A.4 Discussions

We raised two points on previous performance claims — the effect of “local” organization
and the processing technologies, on which the FPGA and the microprocessor as well as
other system components were fabricated. These factors contributed to the overall
performance gains. Many reports seem to misrepresent their claims in lumping all
contributions from different factors.

We must understand where the performance gains come from and whether each
component’s contribution is invariant of the manufacturing technology. In the context
of reconfigurable computing, our focus is on the advantages of a reconfigurable logic
array as a system component over a microprocessor core.

A fair performance claim is based on all things equal except the ones under comparison.
An ideal scenario is that we could simply replace the CPU in the reference system with a
FPGA device, with everything else the same, and measure the speedups. A
microprocessor based programmable add-on subsystem may compare favorably in
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performance (for a set of applications) to a reconfigurable subsystem in Figure 9-1.

A even more fair comparison would be to require both devices to be fabricated using the
same processes and the same silicon area. The same area requirement is based on
economics. However, we feel that this is not a strong requirement since the cost of real-
estate can be justified by its added value — performance. Figure 9-3 shows this “drop-in
replacement” concept.
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host interface data rate

Figure 9-3: Drop-in replacement for performance comparison.

However, Figure 9-3 is most likely impossible to achieve since interfacing properly to
the two candidates under test require different set of components. Nonetheless, we
could try to make all things equal by requiring equal data word sizes. This requirement
ensures that organizational advantage be eliminated.

We must base our comparison on the same semiconductor process generation so that
architectural merits or deficiencies of general-purpose and reconfigurable architectures
can be detached from the fabrication technology. We will examine whether these
architectural merits or deficiencies are still valid today and whether future technology
advances will change the dynamics of their relative standings. This will help system
and microprocessor architects, FPGA architects, and reconfigurable application
developers to optimize their efforts for their respective design goals in the future.

In addition, the performance dynamics have changed quite markedly in the process
technology, microprocessor architecture, and micro-architectures. These advances will
likely to make performance gains from reconfigurable logic even more difficult to obtain
(i.e. requiring careful implementation).

Over the last ten years, the clock speed of a microprocessor has increased 50 folds from
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33 MHz to 1.7 GHz. The estimated maximum clock speed3® of a FPGA has increased
only 6 folds from 33 MHz to 200 MHz. The rates of increase in maximum clock speed
are not the same. Though these numbers are crude and depend on FPGA
configurations, FPGAs’ maximum clock speed appears not following the Moore’s law.
In other words, if we were to plot the clock speed for microprocessors and FPGAs
versus technology generations, we would find the slopes of the microprocessor curve
are higher than the slopes of the FPGAs. This discrepancy can change the relative
performance of microprocessors and RLA over time.

One question regarding to this phenomenon is whether there is a fundamental physical
underpinning causing this scaling disparity. Our argument is that the reconfigurable
logic array, with its regular structures on programmable logic and routing, cannot
optimize beyond the fixed placement of these resources. Whereas process upgrades can
change the delay dynamics in critical paths in a custom design and make further
optimization possible. This observation is backed up by the fact that only 25% of
improvement is due to process improvement and another 25% is due to design
innovations, such as circuit design and physical organization [46, 71]. For FPGAs, such
low-level innovations are very limited due to its reconfigurable logic and routing
requirements (for more details, see Chapter 5).

The difference in the rates of change of this underpinning suggests three things. First,
the magnitudes of performance benefits reported in early systems would probably
decrease if we simply scale the same (architecturally and organizationally) systems with
new process technology. Second, FPGA designs probably require more careful
optimization for hard-earned speedups. Novice designs or designs using automatic
compilation tools from high-level descriptions may reduce the achievable performance
benefits to a marginal or even a negative level. Third, the software-hardware
partitioning boundaries may require re-consideration from technology generation to
generation.

On the architectural front, new microprocessor architectures have emerged with new
application domains. DSPs, media processors and multimedia extensions of general-
purpose microprocessors are such examples. Using these microprocessors as the
general-purpose processor in a reconfigurable computer may further reduce the
performance benefits from reconfigurable logic for media processing applications.

Lastly but not the least, micro-architectural improvements, such as branch prediction
(BP), superscalar (SS), out-of-order execution (OOE), dynamic register renaming,
exploited all forms of instruction-level parallelism (ILP). In the author’s opinion, this
trend leaves little room for small pieces of reconfigurable hardware, which can only
accommodate a few operators, to outperform a contemporary microprocessor. This is
the argument for deploying medium to large number of reconfigurable logic gates in a
reconfigurable system.

33 FPGA’s clock rate (if not already fixed in system) depends on applications. The maximum clock rate
represents a realistic maximum for all applications.
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Table 9-1: System information on several reconfigurable subsystems.

Reconfigurablej
Subsystem Prism-I | Prism-II |DecPeRle-0| DecPeRle-1| Splash1 | Splash2 | CHIDI
Host DEC Sun-3
Workstation Sun-3 | Sparc IPC - 5000/200 Sun-4 Sparc I #
Host System MIPS PowerPC
ICPU 68030 68040 - R3000A 604
On-Board CPU | Motorola AMD
68010 | AM29050 None None

CPU clock rate
(MHz) 10 33 - 25 None None 266
FPGA Fllex10k-

XC3090 | XC4010 XC3020 XC3090 XC3090 | XC4010 100
Number 4 3 25 23 34/32 17/16 1
Topology Linear 16x16

[68] [60] 5x5 4x4 array Crossbar -
Aggregated
Number of
Gates 40k - 50k 200k - 160k 100k
Aggregated
Number of
Registers 1.28k 2.4k 3.2k 14k 12.4k 12.8k 4992
Aggregated
Number of CLB| 320x4 400x3 128x25 400x23 320x32 400x16 4992
FPGA clock
rate - Variable Variable Variable Variable
FPGA
maximum
clock rate
(MHz) - - 25 10-33 32 40 -
Local Memory
Size (MB) 0.5 4 0.5 4 4 8 2
Local Memory | 150ns
Bandwidth access 50ns
time 200MB/s H400-640MB/s{50ns SRAM| SRAM |9ns SRAM

Communicatio
n Bus to Host - - VME  |turbochannell VME S-bus PCI
Communicatio
n Bandwidth to
Host (MB/s) - 8 100 8 - 264
Speedup
Claims 2.9-54 | 6.34-86.30 - 10-1000 - 10-1500 -
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B FPGA Design Issues

Several FPGA design related issues were also raised during State Machine and CHIDI's
development. These issues involved how FPGAs would be used in a system, the design
constraints, the design methodology, and development tools used. They are
representative of the complex interactions among different requirements and constraints
of the development process. Underlying these interactions is the ever-growing
complexity in semiconductor devices that comes with the shrinking minimum feature
size. FGPA devices not only grew in the number of logic and routing resources, but also
their architectures and micro-architectures evolved in order to adapt to new application
domains. (For example, Xilinx’s XC4000 FPGA devices contained embedded memory
(SRAM) and different logic cell and routing architectures than XC3000 devices [72]

[73])

Architectural changes require new CAD tools (new tools to generate or synthesize
memory control logic, new optimization and technology mapping tools for different
logic implementation, new place and route tools for different routing structures). For
high-performance designs or designs under hard constraints, FPGA designers often
must understand the FPGA architectures and CAD tools’ capability to meet their design
constraints3. State Machine and CHIDI's (as well as other FPGA-based reconfigurable
systems) development issues manifest the dynamic nature of a fast-changing technology
base, which in turn seeds new applications, which then sets new requirements, which
needs a new development methodology and the tools to help reap the benefits of
technological advances.

From the experience of State Machine and CHIDI as well as other efforts in the
literature, we examine how FPGA devices have been used in the past, and the
development process and methodology supporting reconfigurable computing
applications. We also conjecture possible reconfigurable hardware’s use in the future -
in a general-purpose environment and in an embedded environment. Our conjecture is
based on the strength and weakness of reconfigurable hardware relative to those of
general-purpose architectures.

B.1 Design Issues

Normally in its traditional use, FPGAs are used in fast prototype systems or low
quantity production systems as a low cost substitute for ASIC. The target applications
are known at the beginning of the actual design of a system. Designers know and
specify the exact functionality to be implemented on FPGAs. They then make an initial

3 An analogy to high-performance software development, one must know the instruction set details of the
processor and how compiler works so that he can write codes in a style that exposes parallelism (that
compiler can detect) to the compiler, or one must write assembly codes. In a FPGA design, unlike software
programmers, some vendor’s CAD tools do not give designers control of low-level details (or not all
details).
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attempt at implementing the functionality on the FPGAs. That is, they implement either
a complete or a partial (often the potential trouble part) design; estimate the size and
performance of the design with the help of FPGA vendor’s software; then select the
FPGA devices that can meet these requirements. The actual board fabrication is
normally started after going through these steps®. At that time the designer should
have much deeper understanding in the implementation details and thus should have
higher confidence in making implementation decisions.

This design methodology is a result of accumulation of past experience shared by many
experts. It varies with the difficulty of the application itself, the devices used, the
experience of the designer, and the CAD tools. In some cases, the FPGA design should
be almost completely designed and verified before selecting a particular FPGA device
for board fabrication. In other cases, one can bypass this stage if the application is
simple3 or he is very experienced and is confident in his decisions.

One common mistake is for designers, who have done SPLD and CPLD designs, to
commit to fabricate an FPGA-based system board without going through some of the
abovementioned steps. Unlike PLD devices, a FPGA design was most noticeably
different in its unpredictability of routing delays. For SPLD and CPLD devices, delays
are predictable [74]. One can design and fabricate a system board with a CPLD device
without actually finishing the logic design first since its minimum clock period can be
estimated from the beginning®. This is much more difficult to do with FPGA, especially
under performance constraints.

In the case of CHIDI, there were two logical FPGA devices. One contained fixed
functionalities such as bus interface, memory controller, and data organizer (or data
shuffler, data packing/unpacking). The second logical FPGA device was to be used as a
reconfigurable computing substrate, whose function was to be developed after board
fabrication on a per application basis. The bus interface imposed certain requirements
on the fixed-function FPGA device (bus protocol and signaling speed, etc). It must meet
a set of hard performance constraints set by the operating environment of the hosting
system.

These two different usage scenarios represent different timing of functionality (the
actual FPGA design is in the form of a configuration) and performance specification.
For the fixed-function FPGA, the binding of its specification and performance happens
before the hosting system board is fabricated. This means one is free to choose a FPGA

35 Of course, if cost is not a factor, but time-to-market is. Then one can always select the fastest and largest
possible device as a way of “defensive” design.

3 For example, performance is not important.
7 Assuming the number of logic cells are more than necessary to implement the application.

3 Here the distinction is based on whether the device is to be reconfigurable for different application or not.
One logical device may contain multiple physical devices.
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device with appropriate resources (number of logic cells, routing capacity, number of
1/0 pins, etc.) to meet this functionality and performance specification. If one particular
FPGA device lacks in some kind of resources, one can “bump up” his selection to one
that has more such resources. Of course, this is limited by the availability of different
FPGA devices offered by the vendors. The development methodology of fixed-function
FPGA was relatively well established™.

For the reconfigurable FPGA, the binding of its functionality and performance occurs
after the hosting system is fabricated. This means a FPGA device is chosen somewhat
randomly for unknown functionality and performance characteristics. For whatever
reasoning behind the choice of this reconfigurable FPGA, it’s architecture, resources, and
performance characteristics become constraints or limitations for its applications. For
reconfigurable computing application development, there was no well-established
methodology to support it.

Two constraints almost always come up in hardware design - speed and area
constraints. For system designs using FPGAs as components, these constraints must be
carefully considered against selected FPGA devices if board fabrication time is to
precede or parallel the FPGA design.

In particular, for high-performance designs, where we may want to exploit every
possible bit of performance out of a FPGA, we may want to know what is the maximum
achievable clock rate for realistic designs. This question is difficult to answer due to
FPGA’s unpredictable routing delays. It is often compounded by the vendor’s
proclaimed maximum clock speed using a few pedagogical designs. In addition, high-
speed designs translate into area trade-off. CHIDI encountered both problems.

A FPGA device (FLEX 10K50) chosen to interface with a 66 MHz local bus could not run
at speed. That was even after very careful hand-optimization. This is a result of the
designer’s not understanding the FPGA’s limitations (see Section 5.2). Though FPGAs’
routing delay is very unpredictable, it cannot run as fast as one wishes. So how do we
know their speed limits?

The second problem CHIDI encountered was its aggressive area estimation at the
beginning of its design. A FPGA device was selected to implement a bus interface and
various data organization mechanisms. An area estimate was made based on the
number of sequential elements, such as flip-flops, were needed in the datapath and state
machines. However, the number of logic cells needed to implement the combinational
part can exceed the number of estimated registers. This situation arises when there are
high fan-in Boolean functions in the design. A logic cell has a fixed number of inputs to
its combinational circuit that implements a combinational function. High fan-in

3 However, there were always the issues of supporting the latest architectures and features in new FPGA
devices by the vendors. Typically, new FPGA devices are available before the tools that optimize for their
architectures and features become available. In addition, automatic synthesis from a high-level behavioral
description of the circuit faces the same problems a software compiler faces ~ it cannot infer all hardware
features without introducing errors.
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combinational functions may require more than one logic cell (and thus multi-level) to
realize.

Combinational delays are difficult to estimate by a human designer. In addition, for
high performance designs (i.e. performance requirement close to the limit of the FPGA),
pipelining and signal buffering are two most often used techniques to increase
throughput. Both require more logic cell resources, making the initial tight resource
budget even tighter. Most of all, tight logic cell budget can force placement tools spread
clustered logic into unused logic cells located in different rows and columns. This either
makes routing delay longer or the design cannot be routed at all.

CHIDI's problems manifested the particular issues of “putting constraints” before
applications development. This is exactly the issues reconfigurable application
development must face.

B.2 Tool Issues

At the time of State Machine’s development, a FPGA application development was
considered as designing a piece of hardware. The capacity of a FPGA device had grown
to hundreds of thousands of transistors or more. However, FPGA vendors offered only
schematic or simple textual (a netlist of bit-wide register-level primitives and
parameterized modules) entry methods, more suitable for SPLD (Simple Programmable
Logic Device) and small CPLD (Complex Programmable Logic Device). The largest
FPGA (then ORCA2C40) had equivalent gate capacity of forty thousand gates. The
complexity of this scale rendered traditional design entry methods for SPLD (Simple
Programmable Logic Device) and CPLD (Complex Programmable Logic Device)
difficult to enter, explore, manage, and modify. Furthermore, CAD tools vendors were
barely able to keep up the pace to providing solutions to their majority market - ASIC
development, which was also growing exponentially in complexity. The FPGA tools
was much more behind what the hardware was capable of.

The initial FPGA design methodology at that time was a two-stage, non-synergistic,
makeshift process. A third party CAD tools provided high-level design entry, usually in
the form a hardware description language, and logic synthesis tools with technology
independent logic minimization. The FPGA vendors provided “foundry tools” for
mapping a technology-independent netlist to a technology library, placement of logic
functions and sequential circuits, and routing among these functions. However,
traditional logic synthesis approaches were not suitable for LUT based logic functions.

Applying the traditional two-level logic synthesis and minimization techniques, which
were more suitable for PAL-like logic structures, to LUT-based logic did not produce
satisfactory results (this problem was amended later when CHIDI was designed). In
addition, constraints entered at the front-end high-level entry tools could not be
effectively translated into constraints for the low-level foundry tools. Furthermore,
device specific features could only be instantiated at the back-end tools, making the
front-end and back-end design descriptions inconsistent.
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As a result, changes of design specification at the front-end tools could not be
automatically propagated to the foundry tools. One must manually modify such
changes. These problems were addressed by FPGA vendors and third party synthesis
tool vendors later. The solution to logic synthesis was to have third party provide
synthesis tools targeted toward LUT-based logic functions. Third party synthesis tool
vendors and FPGA vendors agreed on a way to pass constraints from front-end tools to
back-end tools. To address the ability to include device specific features (which HDL
cannot infer) at the original design entry level, front-end tools incorporated compiler
pragmas or compiler directives to encapsulate them from the high-level compiler as
black boxes.

The lack of tool integration illustrates the difficulty of developing reconfigurable
applications.
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