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Abstract 

A number of architectural paradigms are available that target different needs, 

either that is programmability or high performance, ranging from GPPs to 

ASICs. Since no single architecture can deliver both design traits, the current 

solutions combine one or more of those paradigms to deliver applications that 

require post fabrication adaptation and high performance. However, such solu-

tions are faced with the added complexity of a multi-disciplinary task. Recon-

figurable computing devices promise to bridge the gap between programmable 

devices and the sheer performance of ASICs, thus offering a more balanced 

solution. 

This thesis offers a comprehensive set of solutions for the implementation of 

coarse grained, heterogeneous reconfigurable devices, which led to the devel-

opment of the Reconfigurable Instruction Cell Array (RICA), an architecture 

template for reconfigurable computing devices. Based on RISC-like instruction 

cell, this novel design provides a natural flow for compilers. Unique features 

introduced in this thesis include, a connection oriented configuration encoding 

scheme, that takes advantage of the intrinsic characteristics of reconfigurable 

fabrics, along with the decoding process and the interconnects to accommodate 

this technique. This innovative code-compression technique offers fast recon-

figuration speeds. The work continues by describing a method to improve the 

routability of the design by deriving a suitable physical placement based on the 

analysis of a set of input data-paths. It also present a performance improve-

ment by reducing the impact of the configuration latency, by pre-fetching the 

next configuration context and a method to deal with the variable data-path 

delays, including memory access operations. Finally, this thesis provides an 

introduction to a Simultaneous Multi-Threading extension for the RICA core. 

The above are accompanied by a set of mapping tools, such as routing and 

allocation, down to bit-stream generation and cycle accurate simulator, as well 

as a set of architecture generation tools, allowing one to deploy different core 

setups. 
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In digital electronics, there are several methods one can use to deliver a 

particular service or functionality. For instance, an algorithm can be realised 

using General Purpose Processors (GPP), with or without domain specific ex-

tensions, or Field Programmable Gate Arrays (FPGA) or Application Specific 

Integrated Circuits (ASIC), while the result can be a monolithic device or a 

synergy of several devices. The suitability of each of those implementation 

choices depends on the application domain one is working on. There are two 

main superset domains that sit at the two ends of the spectrum of application 

domains. 

Event Driven Respond to signals received from their environment. They 

are often referred to as 'real-time' application, meaning they are timing crit-

ical and latency intolerant. This is a natural domain for tP using interrupt 

controllers and performing relatively low computational complexity tasks per 

event. 

Streaming Processing a continuous flow of data. They are performance 

critical, but latency tolerant. A MP does not have the computational capacity 

to handle the amount of data and the algorithmic complexity often found in 

such application domains. DSPs include some well suited computational units, 

such as multiply-accumulate and VLIWs offer extra degrees of parallelism, 

which all result in performance improvements. However, when data streams 

are in the range of 10Gbps and above, VLIWs fall short. One needs to turn over 

to FPGAs, for those designs that require post-synthesis adaptation. Otherwise, 

the only solution is an ASIC design. 

However, most applications are in fact multi-domain. Parts of the system 

respond to external events and others process large amounts of streaming data. 

A digital camera is one example that comes to mind. The camera takes a shot 

as a response to a user's action, controlling the actuators, zoom lens and 

flash, while the image signal processing pipe works its way through the raw 

data received from the sensor. Such a mixture of event driven and streaming 

application is naturally covered by a combination of programmable and fixed 

hardware devices. 
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ASIC / FPGA 
	

VLIW DSP 	up 

AN 	Video 
	

DSC 	Camera Baseband 	Combustion 
encoder camera 	 phone 	 engine control 

Figure 1.1: Application domain spectrum 

Through specialisation, the various architectural paradigms available today 

position themselves to one or the other side of the spectrum. Unfortunately, 

that lends itself to various design trade-offs, where no single architecture is 

able to offer a balanced solution. These are: 

Flexibility 

Low NRE Performance/mm2  

Programmability 
	

Performance/Watt 

Figure 1.2: Design trade-off differences between uP/DSP/VLIW, FPGA and 
ASIC 
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Performance/mm' The computational density of the device. Programmable 

devices such as ftP, DSP and VLIW have low computational capacity for their 

size. The arithmetic units account for a small fraction of the overall design, 

with register files, caches and the execution pipe logic constituting the ma-

jority of the silicon area. An ASIC is theoretically the ideal case, where all 

silicon is contributing to the computational power of the design, be it tran-

sistors or metal layers. In reality, many algorithms have multiple modes of 

operations and thus parts of the design are inactive. Nonetheless, if looking at 

the individual functionality, an ASIC is the most efficient solution in the per-

formance/area metric. FPGAs have high computational capacity as well, but 

they also have significant interconnection overheads that limit their maximum 

speeds and occupy a significant portion of their silicon area. 

Performance/Watt The power efficiency of the design. Similarly to the 

performance/mm2  metric, the ASICs represent the ideal case. Each evolution-

ary step of the programmable device delivers some improvement in this area. 

Although FPGA are not considered low power devices, their performance/Watt 

is significantly higher than the programmable devices listed here. 

Flexibility The ability to be altered to suit a different environment / con-

figuration. This is what FPGAs are designed for. The programmable devices 

have fixed set of functionality. Some flexibility may exist on the memory setup, 

although that's rare. In terms of ASIC designs, this appears as modifiable 'pa-

rameters' which can alter some aspects of the design, such as memory geometry 

or algorithm coefficients. 

Programmability Programmability is the way of expressing an algorithm 

as a set of commands. In essence, a programmable device follows a written 

'script', like an actor performing a play. The entry level is an abstract represen-

tation of the algorithm which then gets decomposed to a series of intructions 

supported by the architecture. The advent of programmable devices allowed 

rapid development of applications. 
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Low NRE The amount of effort and time required to implement a new de-

sign. Programmable architectures have an advantage here, since developing, 

testing and deploying a new algorithm is relatively easy. The domain specific 

instructions in DSP may cause some extra effort to utilise them efficiently. 

Same applies for the ILP present in VLIWs. Both of these depend on com-

piler technologies to simplify the process. Since the entry level for FPGAs is 

HDL, the development cycle resembles that of an ASIC. However, the rapid 

prototyping and testing reduces NRE significantly. 

Flexibility 

Low NRE Performance/mm2  

Programmability 	 Performance/Watt 

Figure 1.3: The Reconfigurable Computing promise 

The graph in 1.2, which is growing outwards, shows that for every design 

metric, there is at least one architecture type that scores high. Contrary to 

popular thought, combining two or more architectural types together does not 

combine-the benefits as well. A good example is NRE that will largely depend 

on the worst performing architecture in that area and could even increase due 

to the complexity of working on a multi-disciplinary task. A design that can 
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approach the power efficiency and computational density of an ASIC, offering 

comparable programmability and flexibility to GPPs and FPGAs respectively, 

is sought by the industry and researched by the academia for nearly 50 years. 

Reconfigurable computing promises to deliver a high performance and low 

power solution that maintains a programmable nature, thus occupying a place 

between ASICs and GPPs. This is normally achieved using a number of func-

tional units and flexible interconnects, coupled with fast reconfiguration times. 

Such reconfigurable fabrics are able to deploy hardware data-paths, of the tar-

get application, thus improve upon GPPs' limited parallelism. 

1.1 The RICA project 

The focus in reconfigurable computing has been to reduce the area overhead 

as well as the reconfiguration times, with varying success. The work presented 

here describes a novel coarse grained heterogeneous reconfigurable computing 

architecture, a data-flow machine that delivers high performance, with a low 

area footprint comparable to small GPPs and significant energy savings, while 

maintaining a high level software design flow similar to DSPs. This is made 

possible by employing a number of innovative techniques, which are a direct 

result of the work presented here. 

This thesis is part of a joined EPSRC(GR/S24053/01) funded research 

project, undertaken at the System Level Integration group (SLIg) lab of the 

Science and Engineering department of the University of Edinburgh, under the 

name Reconfigurable Instruction Cell Array/Architecture(RICA). The project 

came to a conclusion at the end of 2007, having manufactured a technology 

demonstrator RICA chip, referred to here as the RICA-Pi prototype, filed a 

number of patents covering key aspects of the technology[1, 2, 3] and a num-

ber of publications, including the RICA VLSI journal[4]. The following are the 

people, other than myself, involved in the development of the main aspects of 

the RICA architecture and their main responsibilities/contributions within the 

project, under the guidance and supervision .of Professor Tughrul Arslan. 

E 



Dr Sarni Khawam Joined the project as a research assistant with pre-

vious experience in reconfigurable architectures, working in Domain Specific 

Arrays[5] at the SLIg lab. He completed his doctorate thesis midway the RICA 

project, including an initial overview of the architecture in his thesis[6]. Sami 

has been responsible for the majority of the hardware implementation of the 

RICA-P 1 prototype, including the system level aspects of the design, the DMA 

controller, memory arbiters, debug interface as well as the backend portion of 

the ASIC design flow. 

Dr Mark John Milward Research assistant with a background in paral-

lel data compression techniques. His role included project manager dueties, 

compiler improvements and sanitising, as well as design verification strategies. 

Dr Ying (Maggie) Yi Research assistant with a background in FPGA 

synthesis tools. Maggie has been responsible for the RICA specific optimisa-

tion stages added to the GNU GCC compiler framework, the RICA compiler 

backend as well as the initial RICA scheduler implementation [7]. 

Mark Muir A PhD candidate working on instruction scheduling for recon-

figurable architectures. He took over the RICA scheduler project, helped define 

the newer RICA netlist format, an evolutionary step of the format described 

in Appendix B, and shape the RICA software development environment. 

Numerous project have spawn based on the RICA architecture, within the 

SLIg lab, with a wide variety of applications ported to the RICA platform, 

ranging from communications standards to multimedia applications. Adam 

Major's work, on porting an h264 video decoder on RICA, is a notable example 

that has been used in this thesis as a testing case. Adam also helped define the 

shuffling SIMD operations on RICA-F1's LOGIC cell, listed in Appendix C.6. 

The RICA architecture delivers a number of novel techniques that make it 

an efficient data-flow machine. The following key aspects of the architecture 

have been defined in collaboration with the other core members of the RICA 

project. 
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Autonomous data-flow machine Unlike most known RCs, the presented 

architecture is a single fabric capable of handling the Row-control operation 

as well as the computational data-paths. This further simplifies algorithm 

development, since the core resembles a typical GPP. 

Coarse-grained Instruction Cells. Takes a different approach to what 

granularity and interfaces the functional cells have, compared to other known 

reconfigurable architectures. By using RISC-like single function instruction 

cells, with a typical of two inputs and one output, the architecture reflects the 

internals of a typical compiler, such as GCC and thus simplifies the software 

development flow. 

Distributed registers As part of the heterogeneous nature of the core, the 

storage elements or registers are distributed inside the array. These distributed 

registers match the parallel nature of the architecture and provide in place 

storage, while eliminating the serialised and power hungry access of a register 

file found in conventional GPPs. 

Variable length data-paths A synchronous implementation of a reconfig-

uration rate controller that determines the duration each configuration context 

should persist, before the core switches to another. This allows the architec-

ture to dynamically adjust its clock cycle based on the critical path delay of 

each configuration context. 

The following are aspects of the architecture I was responsible for, most of 

which are covered by specific publications. 

Setup agnostic tool-flow The various aspects of the target architecture, 

such as the array composition and size, physical layout description, as well 

as abstract description of the configuration context, are all defined in a cus-

tom language, referred to here as the RICA netlist (see Appendix B). This 

internal representation is common to all the tools of the RICA tool-flow, mak-

ing them architecture setup agnostic and allowing varying levels of details in 



expressing the configuration contexts, ranging from simple point-to-point de-

scription, down to detailed path formations. It is thus easy to deploy diverse 

array setups, using the same tools, which helps in design explorations. 

Refined heterogeneous array A significant portion of the area savings 

comes from the fact that the architecture is based on heterogeneous single 

function instruction cells, instead of large ALUs. Using a heterogeneous fabric 

is a trade-off between area and routability, since allocation is more restricted. 

This work demonstrates how, with the help of meta-heuristic, a refined place-

ment can be defined- that improves routability to levels similar to those of 

homogeneous counterparts, without requiring extra routing resource. 

Parallel data memory access The data memory sub-system of the archi-

tecture is partitioned into a number of memory banks, with an arbitration 

logic that allows parallel access to these banks via the memory interface cells 

on the core. Simultaneous access to the same bank causes a serialisation with. 

a fixed priority. Due to the parallel nature of the core, the system includes 

special timer tags per memory interface cell, that aligns the memory access 

fetches according to the combinatorial delays of the..signals feeding the data 

and address ports of the interfaces. Furthermore, the system provides a sus-

pend and resume mechanism, which dynamically adjusts the reconfiguration 

rate of the core, taking into account additional memory latencies that can be 

caused by multiple access to the same bank. 

Prefetching A dual page configuration context and the associated fetching 

mechanism that allows the core to pre-fetch a new configuration, while the 

previous one is still active. This hides the configuration loading latency in 

most cases, especially for contexts following kernel operations. 

Novel code compression A patented connection-oriented code compres-

sion technique, that models the point-to-point paths between functional nodes, 

achieving high compression ratios. Coupled with a distributed dictionary-

based compression and a refined configuration context partitioning, the pre- 
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sented code compression technique offers significant program memory band-

with and latency reductions, which reduce reconfiguration times. 

SMT on RCs A patented approach for further enhancing the performance 

of reconfigurable computing architectures, by introducing Simultaneous Multi-

Threading capabilities to the fabric, with partial thread execution. 
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Chapter 2 

Background 
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2.1 Reconfigurable Computing 

Reconfigurable computing is the field of research that attempts to make use 

of configurable devices, as efficient general purpose computational machines. 

It was Gerald Estrin who first described, in 1960, a close coupling between a 

configurable fabric and a general purpose instruction set processor(GPP) as a 

way to dynamically map circuits on härdware[8]. There have been several ar-

chitectures proposed in academia and industry since then, such as Morphosys, 

Carp, Elixent and Pact XAPP [9, 10, 11, 12] to name a few, which follow that 

same concept. Nowadays, reconfigurable computing is used mainly in High 

Performance Computing(HPC) application, which make use of a commercially 

available FPGAs, such as those from Xilinx, and a loosely coupled GPP or a 

set of GPPs that control them[13]. 

It's a thin line that separates a programmable from a configurable device, 

but one that is required to understand their architectural and execution model 

differences. A 'computer program' is a set of instructions or commands for 

a given processor. The processor executes those commands in sequence or as 

otherwise dictated by the control flow of the program, thus forming 'branches' 

or 'loops'. The most simple form of a processor, a single-issue machine, would 

execute one instruction at a time. On the other hand, the 'configuration 

stream' of a configurable device, forms a static data path that implements the 

entire functionality of the target algorithm. A traditional FPGA falls in this 

category. Therefore, we could say that a programmable device is dynamic in 

nature while a configurable one is static, as far as mapping of an algorithm 

is concerned. However, a new data path can be formed by mapping a new 

configuration stream to the FPGA, by means of reconfiguration. This is where 

the two classes of devices fuse together. 

A reconfigurable device bridges the gap between static and dynamic map-

ping. The algorithm is split into a manageable set of operations which are 

chained together or placed in parallel or both. Each set forms a configuration 

context that is mapped for a certain duration of time. In other words, the 

algorithm is mapped both spatially, like in an FPGA, and temporally, like in 

a processor, thus combining the best features of both worlds. However, such 
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combination introduces a number of difficulties, which make reconfigurable 

computing an interesting and active field of research. 

Rapid reconfiguration is an essential requirement and is one of the biggest 

challenges faced in reconfigurable computing. The speed of reconfiguration de-

pends on the size of the configuration bit-stream as well as the loading mecha-

nism in place. The configuration size depends on the interconnects complexity 

and flexibility, as well as the computational granularity of the array. The 

loading mechanism relates to the coupling between the core fabric and the 

configuration controller. All these factors, which are covered in more detail 

later in sections 2.2, 2.3, 2.4 and 2.5, form the basis of a general classification 

system for reconfigurable computing devices. 

Aside from the hardware architecture itself, often overlooked is the impor-

tance of appropriate software tools that are essential for programming the 

system and gaining maximum performance. It is vital for reconfigurable de-

vices to be programmed from a high level language, as this enables complex 

algorithms to be quickly and effectively mapped to the underlying architecture 

and thus reduce NRE. 

2.2 Interconnections 

What allows a reconfigurable computing device (RCD) to form arbitrary data-

paths, is the intra-communication network between its functional elements 

(FE). How flexible and scalable the overall design is, is determined by the 

design of that network. A number of interconnection network are possible: 

Shared Bus A common set of wiring is shared between the functional ele-

ments. Communication is established by means of arbitration. An arbitration 

unit resolves conflicts and assigns the bus to one pair of units at a time, the 

relationship of which is that of master-slave. The bus is often bidirectional, 

though the same concept can apply to single-drive unidirectional wiring. Such 

interconnects can offer high speed burst modes, but suffer from high latencies 

due to the arbitration process. Memory mapping abstraction is offered, via 

write and read operation with separate or multiplexed address and data buses. 
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Figure 2.1: Topologies 

Standardised interfaces such as AMBA and Wishbone[14] provide easy inte-

gration. This type of interconnects does not scale well and the bus becomes a 

performance bottleneck in high traffic, since all devices share the same rout-

ing resources. Extended versions of the typical shared-bus topology include 

several levels of interconnections, i.e. provide segmentation, in an attempt to 

localise traffic[15]. This offers some degree of parallelism but with a significant 

area and complexity overhead. Since most reconfigurable architectures contain 

tens, hundreds, or million functional elements, as in the case of FPGAs, there 

is no known practical reconfigurable fabric that makes use of a shared bus 

topology as part of its intra communication channels. They do make for good 

system level interconnects where traffic tends to be lower and sporadic. One 

such example is shown in figure 2.3 

One dimensional A set of parallel wires provide a number of 'tap-point' 

where the functional elements can connect to via connection boxes, as in fig-

ure 2.1a. This structure is logically seen as a 1 dimensional vector of units 

over a set of parallel wires. Both bidirectional and unidirectional wiring can 

be used. The wiring can be segmented, where some wires extend all the way 

along the axis, while others may cover only a part of the axis. Each wire seg-

ment support one connection at a time and resembles a shared bus. However, 

unlike shared bus topologies, one dimensional ones often use explicit connec- 
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tion setup and do not rely on arbitration logic. Compared to shared bus 

topologies, 1D ones offer higher levels of parallelism and thus scale to a higher 

number of functional units, which can be up to a few tens of units. Since they 

do not use an arbitration logic they are also simpler to devise, but they are 

not autonomous. The RaPiD architecture is one such example reconfigurable 

fabric with a 1D interconnection structure[16}. 

Neighbour The functional elements of the device, which are often laid out in 

a lattice structure, maintain local, dedicated, point-to-point channels between 

their neighbour units, as in figure 2.1b. These are normally single drive uni-

directional channels. Data flows on various direction and each 'hop' performs 

some operation, which could be chosen to feed-through the data to the next 

unit. Such structure suffer from scalability issues, since larger data-flow graph 

tend to have multi-fanout edges. An example architecture using this type of 

interconnects is Carp, which was developed at the University of California 

in 1997[10]. Others include the multi-core Ambric[17] architecture and the 

top-level interconnects of SiliconHive[18]. 

Sea of interconnects A two dimensional mesh of interconnects with switch 

boxes at the vertical-horizontal crossing points and connection boxes for al-

lowing the functional units to 'tap' onto available channels, as in figure 2.1c. 

These are logically and historically seen as the next step after 1D intercon-

nects. Again, both bidirectional and single-drive unidirectional wiring can be 

used. This type of interconnects is termed as 'sea of interconnects' or island 

based, because the tiled formation of crossing vertical and horizontal wires 

leaves empty regions where no wiring is present. This is where the functional 

units are normally placed. This is particularly useful when considering placing 

memory blocks in those tiles, which often prevent metal layers passing over 

them. These kind of interconnects scale well to over thousand of unit. The 

indirect connection between the functional units, introduces delay overheads. 

For large designs, the island based topology tends to be large and dominate in 

silicon area. The most familiar representative use of such structure are FPGAs 

with their island based topologies. Multi-million gate FPGAs have hierarchi- 
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cal interconnects build atop a traditional island-based structure. The Elixent 

architecture is also based on such island based structure[11] as are other more 

coarse-grained architecture such as picoChip[19] 

Crossbar Each unit can connect to every other unit with a point-to-point 

connection. Crossbars are fast but do not scale well. In fact the size of the 

interconnects increases exponentially to the number of units used. An ex-

ample use of crossbar interconnect is found on the top-level interconnects of 

SiliconHive and QuickSilver. 

Hierarchical Otherwise known us 'clustered' interconnects, these define re-

gions of the interconnection network that are grouped together forming a clus-

ter. A cluster can use any of the above topologies as intra-connection structure. 

The clusters themselves are connected to each other with a separate intercon-

nection network, which again can be any of the above topologies. Examples 

include modern multi-million gate FPGAs, SiliconHive with crossbar and near-

est neighbour interconnects and QuickSilver with a 2D mesh and crossbar. 

2.3 Granularity 

The culprit for the excessive routing overhead in FPGAs is the fine-grained 

granularity of the CLBs, which reflects on both the data and configuration 

interconnection networks, not to mention the local storage for the actual con-

figuration stream. This is where coarse-grained reconfigurable computing de-

vices (RCD) have an advantage, with significantly simplified interconnects and 

thus smaller configuration streams. The coarse-grained RCDs perform well in 

terms of speed and effective silicon utilisation when operating at their native 

level of granularity, but have a large overhead when diverting from that level. 

The graph in figure 2.2 gives an empirical comparison between the area 

usage for a given arithmetic operation, such as an adder, mapped to an FPGA's 

CLBs and a coarse grain unit of an RCDs, taking into account the routing 

resources as well. This figure should be used as an indication rather than 

accurate data. The inefficiency of FPGAs on coarse grain arithmetic has led 



bit width 

Figure 2.2: Empirical mapping overhead between fine and coarse grained de-
signs 

to the design of FPGAs with a number of such coarse grain arithmetic. units. 

Similarly, coarse grain RCDs tend to use bit-level manipulation special units 

or employ SIMD modes to allow finer grain operation, in a packed form. 

Bit Performing bit-level operations. Such fine grain granularity offers high 

degree of flexibility since it allows to construct arbitrary arithmetic logic of 

varying width down to the bit level. FPGAs are a classic example of bit level 

configurable devices. The LUT of the CLBs have a number of 1 bit inputs and 

a 1 bit output. The Garp architecture operates at a 2-bit level, performing 

logical or arithmetic operations. 

Nibble These perform 4-bit level operations. They are still considered fine-

grain. Increasing the granularity normally reduces the overhead of the inter-

connects, with the expense of a reduction in flexibility. One such example 

architecture is Elixent[11], which is composed of 4bit wide ALUs. 

Byte-Word Coarse grain granularity, performing byte or multi-byte arith-

metic and logic operations. This level of granularity is suitable for most pro-

gramming environments assuming byte operations or above. P have paved 

the way for such degree of granularity and high level languages like ANSI C 
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are designed around that assumption. As an example, the Morphosys recon-

figurable architectures is composed of 28bit ALUs [9]. Other architecture like 

SiliconHive[18], combine several VLIWs together to form a fabric of synergetic 

ALUs. On the end of the spectrum are architectures such as picoChip[19], 

Ambric[17] and RAW[20], which use a set of small RISC processors connected 

together via an NoC. 

Hybrid Since no given granularity can effectively tackle all domains, com-

bining bit-level with word-level functional units can be a solution. Although 

beneficial in matching the given granularity of the algorithm natively, the 

anisotropic nature of such design adds an extra complexity to the intercon-

nects as well as mapping process. Modern FPGAs include wide adders and 

multipliers, while some also include small RISC cores. Another example is 

QuickSilver's ACM which mixes bit-level with word-level functional units[21]. 

2.4 Coupling 

The reconfiguration process involves altering the state of the reconfigurable 

fabric to accommodate new functionality, which often involves a combination 

of routing between the functional units as well as modes of operation of those 

units. There is a range of possible scenarios of what makes the decision to 

reconfigure, as well as what performs the loading process itself. That respon-

sibility is often assigned to the CPU of the system, while the Reconfigurable 

Processing Unit(RPU) plays a passive role. But that's only one of many pos-

sible 'coupling' setups. In most scenarios, where a well defined CPU exist, this 

can be a single core or multiple cores in a MP environment. Same applies for 

the RPU. The various broad coupling scenarios are listed below. 

Loosely Coupled The RPU is being controlled by the CPU over a commu-

nication channel which is shared between the two and possibly other peripheral 

devices, as in cases 1 and 2 on figure 2.3. Due to the communication overhead, 

interaction between the CPU and RPU is kept to a minimum. The RPU is 

configured to operate on a large chunk of data and notify the CPU when it 
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Figure 2.3: Coupling scenarios 

is done, via an interrupt, message or having the CPU polling status registers. 

In such loose coupling, the RPU is a stand alone device. Elixent is an ex-

ample architecture that falls in this category. It combines a RISC processor 

with a reconfigurable fabric, communicating via an AMBA bus. Other such 

architecture is Morphosys, while Cray's XD1 system falls in this category as 

well. 

Close Coupled The RPU is seen as a co-processor unit to the central pro-

cessing unit, like in case 3 on figure 2.3. The two communicate over a ded-

icated channel and may share the main memory of the system. The closer 

coupling allows for more frequent exchange of information between the two. 

Garp combines a MIPS processor with a reconfigurable fabric which share the 

same memory subsystem. Pact's XAPP reconfigurable array is also seen as a 

co-processor to some GPP[12], and so are ADRES[22] and Pleiades[23]. 
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Tightly Coupled The RPU is part of the CPU, as in case 4 on figure 2.3. 

It is seen as an extension to the CPU's instruction set (ISA extension), able to 

execute complex, specialised, often SIMD instructions. These are also known 

as reconfigurable Application Specific Instruction Processors (ASIP). As such, 

the RPU is part of the execution pipeline and shares registers and I/O in-

terfaces with the host CPU. This form of coupling can offer a more unified 

programming model and is compatible with compiler frameworks. However, 

the often very dissimilar timing characteristics between the RPU and the rest 

of the CPUs instructions, makes scheduling a daunting task. A good example 

of such coupling is the Stretch architecture [24]. In fact, reconfigurable ASIPs 

are fairly popular, with applications ranging from Software Defined Radio 

(SDR)[25] to video processing[26]. 

Fused/ Autonomous The data flow and the control flow are handled by the 

same fabric. There is no clearly defined CPU. The RPU is autonomous, being 

able to alter its own configuration based on decisions made from the opera-

tions it performs and its current state. The sea of processors architectures, 

such as picoChip[19], Ambric[17], RAW[20] can loosely fall in this category, 

while Philips' SiliconHive[18] and QuickSilver's ACM[21] are probably better 

representatives. 

2.5 Programming Model 

Since 1960, when the first reconfigurable device was described by G. Estrin, 

there have been numerous architectures that followed that same idea. Even 

though they all claimed a new design paradigm shift to be imminent, to date, 

no such device has received broad acceptance in industry. The reason is that 

no reconfigurable device has managed to meet all the design targets of the RC 

promise, as seen in figure 1.3. Some did not quite meet an acceptable com-

putational density, others failed to meet the target power budget, but where 

most all fail is in programmability. Either the design entry is not convenient 

or in order to deliver good performance the designer has to tinker with low 

level constructs. The following lists a number of programming models. 
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HDL Hardware Description Languages (HDL), such as VHDL or Verilog, 

describe a design in terms of interconnected gates or higher functional elements. 

They offer a varying degree of abstraction, being able to describe an algorithm 

from a Register-Transfer Level up to behaviourally. However, the 'canvas' is 

the actual silicon, where the designer has to handle timing and synchronisation 

between the various elements of the design. The design flow involves a number 

of stages starting from high level, often behavioural level, design, moving on 

to a gate-level representation and finally a mask-set in case of ASIC. HDLs are 

the natural design entry for ASICs and as such describe a static design, with 

any temporal part described explicitly. Architectures that use this design entry 

lack in programmability due to the very low level nature of HDL. Traditionally, 

the design entry for FPGAs is HDL. 

Assembly The natural representation for intruction set processors is the 

assembly language, which describe an algorithm as a sequence of operators 

and their operands and is specific to that processor architecture. Code writ-

ten in assembly is not easily portable across varying architectures. Assembly 

is a very low representation and exposes the inner workings of the underlying 

hardware. When appropriate high level constructs are not available for a given 

functionality, assembly can be the only way to expose a feature of the underly-

ing architecture. Developing complex algorithm in assembly is a very difficult 

task and requires good understanding of the underlying hardware. Because of 

this and because of the portability issue, NRE tends to be high. Most of the 

architectures will use assembly as means to achieve higher optimisations than 

it's possible via high level programming. 

Custom HLL Most common high level languages, such as C/C++, have 

been designed with GPPs in mind, which include coarse-grain granularity and 

temporal mapping, with no explicit notion of parallelism. The spatial nature 

of reconfigurable devices is alien to those high level languages, which often fail 

to provide means to express it. This led to most reconfigurable architectures 

to provide their own high level languages, which are often extensions to ex-

isting ones, such as ANSI C. This form of design entry is a good compromise 

33 



between ease Of design and mapping efficiency, but cause inevitable portability 

issues. QuickSilver's ACM SilverC is one such example, which augments ANSI 

C with temporal and spatial extensions[21]. The RaPiD architecture comes 

with its own RaPiD-C language, which as the name implies, is also an ex-

tension to ANSI-C. Elixent is another example which makes use of Handel-C. 

However, Handle-C is closer to HDL than C. Ambric has a mixture of ANSI-C, 

to program the individual DSP cores and a custom language to describe the 

parallelism between those core. 

Generic HLL The use of common high level languages can improve the 

chance for an architecture to be accepted commercially. The familiarity to 

such language as well as the large set of algorithms already written in those 

languages, makes this form of design entry a desirable one. Abstraction from 

the underlying hardware and portability are some of the obvious benefits. 

Architectures such as ADRES and Stretch, recognise these advantages and 

offer ANSI C/C++ as a design entry. However, software partitioning between 

the host CPU and the coupled RPU is done manually and thus do not offer 

a complete solution to the problem. Architectures like picoChip, Ambric and 

RAW provide ANSI C as a design entry for each of their RISC cores, but 

coordination is done mostly manually. SiliconHive makes use of ANSI C as 

well which allows quick prototyping and evaluation. Their compiler is able to 

extract parallelism from the ANSI C code. For higher efficiency the designer 

needs to restructure the code to conform to a given style for the compiler to 

identify parallelism in the design. This design entry is comparable to that of 

DSPs/VLIWs and thus is seen as an acceptable compromise. Other examples 

include emerging compiler frameworks that promise 'C-to-gates' design flow, 

allowing FPGAs to be programmed directly from C, with a certain degree of 

success [27]. 

2.6 Code compression 

An aspect that is less explored in reconfigurable computing is code compres-

sion. A common practise in single issue cores[28], as well as multiple-issue [29] 
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architectures, code compression is applied to reduce the program memory 

bandwidth as well as the memory storage requirements of those devices. 

Code compression is a form of lossless compression, specifically designed 

around the constraints and requirements of the execution engine of programmable 

devices. These compression techniques trade compression ratio for low latency 

and are asymmetric, in that the decoder, which is done in hardware, is much 

simpler than the encoder, which is performed in software at compile time. 

Furthermore, unlike general lossless data compressions, code compression tech-

niques require random access to the encoded stream, so that the decoder can 

quickly respond to the execution flow of the running program. 

General lossless data compression starts with modeling the source data 

based on symbol frequency of occurrence. In essence, what modeling does, 

is extract the 'information' contained in the data source and thus identify 

potential redundancy in the code. An 'entropy encoding', such as Huffman 

arithmetic, Golomb and Rice coding, can then be used to associate variable 

size code patterns to input source patterns, according to their probability 

of occurrence, in ascending order [30], or build a 'dictionary' with the most 

common patterns [31]. Another option is to use 'run length coding'(RLC) 

that replace a repeating sequence of symbols with a 'run' and that symbol. 

The choice of coding depends on the characteristics of the source data, which 

is identified by the modeling performed at the beginning. In many cases, a 

combination of the above coding techniques is used to complement each other. 

Code compression is architecture as well as application domain dependend. 

While a dictionary based approach is simpler in hardware and potentially faster 

than entropy coding in single issue cores, it has been shown that, for multi-issue 

architectures, under dense program codes, entropy coding methods performs 

better than dictionary based ones [32]. When it comes to reconfigurable ar-

chitectures, the configuration stream is mostly sparsely populated and it is 

natural to expect that an entropy encoding does not scale well to a large num-

ber of parallel units. A dictionary compression performs well enough, although 

for very large number of functional units, such as in FPGAs, the dictionaries 

can be very large [33]. 

Code compression can be beneficial to reconfigurable computing devices, 
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due to the high count of functional units such architectures have, which are 

often underutilised. In many cases, even a simple RLC is enough to remove 

redundancy in the configuration stream. However, the highly parallel nature 

of these architecture, which is quite different from that of even VLIWs, makes 

the design of a fast decoder with low area overhead, as well as the associated 

program memory interface, a challenging task. Furthermore, the high diver-

sity of reconfigurable computing devices makes it difficult to generalise a code 

compression technique. The novel technique introduced in chapter 5, repre-

sents the first known code-compression technique specifically targeting recon-

figurable computing devices, due to its connection-oriented approach, which is 

an intrinsic characteristic of such designs. 

2.7 The role of heuristics in RC architectures 

In an ASIC design flow, the high level description of an algorithm, usually ex-

pressed in some HDL, is decomposed into primitive operations that correspond 

to cells from the 'technology library' and are connected with each other so as 

to form a netlist. This process, which is termed 'synthesis', is followed by a set 

of physical mapping procedures, with the most notable ones being 'placement' 

and 'routing'. The placement tries to find optimum relative positions for the 

cells of the netlist, mainly trying to minimise cross sections and distances, 

while routing lays metal channels to establish the connections between those 

cells. Each of those stages are guided by design rules, be it, timing constraints, 

physical spacing, metal layers et cetera. Although the canvas is a plain silicon, 

both placement and routing operate on some kind of a grid specified by the 

design rules. There is a lot more to do than that before getting a physical 

design, some of which are technology process specific, but the above stages 

form the basis of the ASIC design flow. 

The design flow of reconfigurable devices is not very different from that of an 

ASIC one, at least as far as the above stages are concerned. The application 

to be mapped is broken down into operations supported by the RC, which 

are then 'allocated' to the physical instances on the array and finally routed 

to form the data-paths defined by the target algorithm. The terminology is 
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slightly different, but the stages perform more or less the same functions, with 

the exception of the compilation phase that in addition to what a synthesis 

stage does for spatial mapping, it also deals with the temporal nature of the 

architecture. 

ASIC flow 
	

RC flow 

Synthesise 

	

LEEI 
Place 
	

Allocate 

Route 
	

Route 

Figure 2.4: Design flow for ASICs and RCs 

All these stages are NP-Complete problems, thus the solutions given are 

approximations. They are usually tackled with some form of heuristic or 

meta-heuristics algorithm, such as Simulated Annealing(SA), inspired by the 

process of heating and controlled cooling used in metallurgy to control the 

crystal structure of metals[34], and Evolutionary Algorithms(EA), inspired 

by genetics and natural selection process of species evolution{35]. Graph bi-

partitioning is also a known technique used in placement algorithms, with 

Fiduccia-Mattheyses move-based heuristic being a popular one [36]. 

VPR, which stands for Versatile Place and Route, is an example Place and 

Route (PnR) tool based on SA[37], delivering quality output and good process-

ing speed. Focusing on FPGAs, it supports homogeneous and heterogeneous 

FPGAs and means to define the architecture of the interconnects. However, 

it does make certain assumptions. An island-based topology is assumed for 

the interconnects and in case of heterogeneous CLBs, they reserve an entire 

column and can not be freely distributed ac cross the array. Furthermore, 

there is a strict decoupling of functionality and interconnects. 
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An example use of GAs for PnR is that used be the the Colt/Stallion 

architecture [38]. The placement here refers to logical placement or allocation. 

The chromosome encoding used by Colt's PnR uses integers as genes. As it 

is usually the case in such implementations, the author makes use of special 

genetic operators to avoid invalid conditions. 

This thesis investigates the various aspects of a practical reconfigurable ar-

chitecture, such as RICA, in an attempt to provide a fairly comprehensive set 

of solutions in reconfigurable computing. RICA forms a complete platform, 

that is build on those techniques described here. It all starts by combining 

the best features of known design, laying down a good foundation. To en-

sure a flexible a scalable design, the interconnects are build on an island-based 

approach. The ultimate goal is to have a programmable architecture and typ-

ically such architectures are composed of word-sized functional units. The 

use of coars-grained intruction cells is compatible to high level programming 

languages such as C, which generally does not cope well with bit-wise opera-

tions. To further simplify the programming model, the reconfigurable fabric 

can handle both the flow control and computational data-paths, providing an 

autonomous solution. 

More specifically, chapter 3 gives a general overview of the RICA architec-

ture, followed by a more detailed description of the interconnects in chapter 4, 

an innovative configuration compression technique in chapter 5 and the con-

figuration loading infrastructure in chapter 6. Chapter 7 presents the RICA 

toolfiow, while chapter 8 introduces a Simultaneous Multi-Threading(SMT) 

extension for the RICA core. Finally, future directions are given in chapter 9. 
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Chapter 3 

RICA overview 
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This chapter is a general overview of a complete reconfigurable computing 

core and its various sub-systems. Its main purpose is to give a birds-eye view 

of the system, before diving into the implementation details, as well as design 

decisions that led to this architecture, referred to as Reconfigurable Instruction 

Cell Architecture (RICA). A first overview of the core architecture can be found 

in [6] from Sami Khawam, one of the contributors to the design of RICA, 

others being myself, Mark Milward, Ying Yi and Mark Muir, all members of 

the System Level Integration group (SLIg) of the University of Edinburgh. 

A prototype chip has been produced out of this design, which is shown on 

figure 3.3, and it's used here as a reference. Certain aspects of the architecture, 

such as the array size, configuration context partitioning, resource mixture 

and other parameters can be used to tailor the design towards an application 

domain. The RICA prototype was designed with an MP3 decoder in mind, 

which helped to define the resource mix and overall size of the core. 

A block diagram of the RICA prototype chip is shown in figure 3.1. The 

'core' is 32bit wide and is composed of a 9x9 array of 81 switch-boxes and 72 

cells out of which 57 are functional cells and the rest are peripheral interface 

cells and contant value cells. The core is coupled with a 128KByte Data 

memory and an equally sized embedded program memory. The data memory 

is split into 4 banks of 8K words each and an arbitration logic allows access 

of those banks from any of the 4 read and 4 write memory interface cells of 

the core. The chip was build in UMC 180nm process and occupies a total of 

25mm2. Figure 3.2 shows the area breakdown of the chip, excluding the I/O 

pads, where it's shown that the program and data memories constitute 60% 

of the area, while the core is 40%. 

A 'debug interface' is provided that is able to access all major sub-systems of 

the core, including the program and data memories. The core can be paused 

and resumed via the debug interface and the output of all cells read from. 

This allows for a detailed introspection and control of the core via an external 

source. All accessible parts of the core are memory mapped in the debug 

interface and can thus be accessed via the address/data pair. A user can issue 

commands via the debug interface, such as pause and resume and wait for an 

acknowledgement from the core. The program memory is loaded, as well as 
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Figure 3.1: RICA prototype block diagram 

the data memory is filled with initial data, via the debug interface. The debug 

interface is flexible enough to allow a, host computer to operate the RICA chip 

as an accelerator unit, although the interface can become a bottleneck if the 

task is too data-transfer driven. 

The RICA prototype includes a 'handshaking protocol' based I/O port, as 

well as some general purpose I/Os that can be viewed via the debug interface. 

In addition to those, the prototype include, a slave-mode Direct Memory Ac-

cess(DMA) controller that can be used with a number of Digital to Analogue 
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Figure 3.2: RICA prototype area breakdown 

Converters(DAC) operating as a master. This has been specifically added to 

allow a direct audio output from the chip, since MP3 decoding was the primary 

target function. The DMA controller hooks onto the memory arbiter and is 

seen as another memory interface cell. It can thus access the data memory 

whilst the core is running, since conflicts are automatically dealt with by the 

arbitration logic. The implementation of the debug interface as well as the 

DMA controller, are not part of this work. 

Figure 3.3 shows an actual photo of the RICA prototype chip, with water-

marks indicating the program and data memories as well as the core in the 

middle. The visible metal layers over the core area are the toroidal channels. 

The following sections give a brief overview of the interconnects and re-

configuration sub-system, which allow the core to dynamically deploy compu-

tational data-paths in few cycles, as well as the general programming model 

and the data-memory sub-system of the implemented RICA prototype design. 

More details are provided in subsequent chapters. 
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data-paths that are then mapped to the core. In fact, the choice of compu-

tational units, in terms of granularity and operation, has been such that it's 

easy to do such mappings. RISC operations are known to be compiler friendly 

[40]. 

The end result is a set of 'netlists' of interconnected RICA instruction cells, 

which form the final configuration 'contexts' that runs on the core. These 

are often refereed to as 'steps' in RICA terminology. The contexts execute 

in sequence or as otherwise is dictated by the control flow graph(CFG) of 

the program that was mapped. The execution flow is controlled by a branch 

unit in a similar way to conventional processors, by updating the program 

counter accordingly. This branch or flow control unit is nothing more than an 

instruction cell inside the core. The branch condition is evaluated by the core's 

cells, within that context, and is routed to the input of the flow control, just 

as any other connection between cells. Thus, the branch conditions form an 

integral part of the cores execution, unlike coupling scenarios to a host CPU, 

where the branch conditions form a separate program running on the CPU. 

Unlike conventional processors that execute one instruction at a time, or in 

case of VLIWs, several in parallel, RICA can form any arbitrary combination 

of operations, by chaining together several computational units as well as hav-

ing several such data-paths independent from each other. Therefore, where 

VLIWs suffer from ILP limitations, RICA has the flexibility to run dependent 

and independent data-paths at the same time. Furthermore, the ability to 

chain operations together allows things like pipelining, by inserting pipeline 

registers in the data-paths and perform re-timing as well as other ASIC like 

optimisations. 

Compared to DSPs and VLIWs, which rely on complex instruction caches 

to reduce the penalty of instruction fetches from main memory in case of com-

putational loops, RICA, is able to map the operations of such loops as a static 

context and thus form an ASIC-like implementation of it, assuming enough 

resources are available. For example, a functional loop with 10 instructions 

that iterates 1K times, will result in one instruction fetch in RICA. In con-

trast, a single-issue conventional processor needs 10K fetches from its level 1 

cache, while a multi-issue core would still need around 2 - 3K fetches due to 
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a typical ILP limitation of 4 parallel instructions [41]. Fewer memory accesses 

to the program store will normally translate in lower energy consumption on 

that part. 

3.2 Heterogeneous versus Homogeneous 

Table 3.1 shows the post routing area figures for the various functional cells 

in the RICA prototype chip. It also includes the area of an ALU with the 

compined capabilities of each of the individual primitive cells, excluding the 

32bit multiplier. The table does not include the various interface cells, such as 

the general purpose and handshaking I/Os as well as the control flow unit and 

DMA interface cell. In a homogeneous environment, these are either assumed 

to be accessed by all ALUs or remain as separate cells. Eitherway, the impact 

these have on area is relatively small. At the end of the table are the total area 

figures of the total 56 heterogeneous functional cells in the RICA prototype 

chip and the same for an array made of ALUs. This shows a dramatic difference 

in area between the two design choices, with the heterogeneous one occupying 

a mere 1.3mm2, while the ALU based being 23mm2  in size. 

Area (mm2) Count 
64bit Mul 0.253 2 
32bit Mul 0.161 2 
Adder 0.028 5 
Logic 0.028 3 
Shift 0.045 3 
Mux 0.0028 3 
Comp 0.0088 2 
WMEM 0.0043 4 
RMEM 0.004 4 
Reg 0.0017 31 
ALU 0.403 57 
Heterogeneous 1.30 57(combined) 
Homogeneous 23.01 57 

Table 3.1: Heterogeneous versus Homogeneous 
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It's important to note that these two designs do not offer the same degree 

of flexibility. However, what a heterogeneoifs design offers is the choice to 

trade flexibility for area, based on the requirements of the target application 

domain. Apart from the reduced flexibility in terms of functional resources, a 

heterogeneous architecture also impact the routing flexibility of the design, due 

to restricted allocation. Section 7.6.1 in chapter 7 shows that, with the help of 

meta-heuristics, a carefully chosen physical placement can compensate for that 

loss of allocation choices, improving overall routability of the heterogeneous 

design to comparable levels to that of a homogeneous one. 

3.3 Interconnects 

RICA prototype's interconnects are a two dimension toroidal mesh with single-

drive, unidirectional channels, composed of switch-boxes with 4-to-1 multiplex-

ers. Each output multiplexor, of an sbox is driven by the input ports of the 

other sides and the remaining fourth input is driven by the output of a 'termi-

nal' cell. Each terminal cell has two input ports which are driven, indirectly 

via a multiplexor playing the role of a connection-box, by the outputs of the 

nearby switch-boxes. This sort of topology is similar to an 'island-based' one 

found in FPGAs 

The total configuration of a switch-box (sbox) and associated connection 

boxes (cbox), is thus Cf9width = 6 x 2 = 12bit. The RICA prototype has 81 

such sboxes, giving a total of 972bits raw configuration for the interconnects. 

However, as it is discussed in chapter 5, the interconnection configuration is 

not stored in its raw form and is rather compressed with a special encoding 

scheme. More details on the architectural decisions around the interconnects 

are provided in section 4.1. 

3.4 Reconfiguration 

The reconfiguration sub-system is responsible for delivering the configuration 

to the interconnects and cells as well. It is closely related to the configuration 
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Figure 3.5: RICA prototype interconnects 

format and the program memory interface and thus design decisions on one 

part influence the others. 

To reduce the configuration size, the RICA prototype utilise a special com-

pression scheme that is designed around path formation. Furthermore, to 

reduce the size of the configuration distribution network as well as the pro-

gram memory interface, the core is divided into a set of partitions, each of 

which is able to accept a configuration fragment and deliver it to one of its 

members. The program memory interface reflects that same partitioning. The 

partition is also referred to as 'group', while each member of that group is re-

ferred to as an 'insertion point' (IP) when talking about configuration loading. 

An insertion point can been considered to refer to a cell for now, although in 

reality it's not a one to one mapping. 

The number of partitions depends on the size of the array as well as the 

size of the individual configuration fragment. The size of the configuration 

fragment is set by the path-encoding, which is described in chapter 5, while 

the size of the array is set by the target computational power of the device. 

The RICA prototype, which is a 9x9 array, has 10 such partitions, resulting 

in a manageable program memory interface width of just under 256bits. Since 

a configuration context is larger than the interface width, it is split into a set 



of rows, each of which has fully or partially populated partitions. Figure 3.6, 

shows a 6-way partitioning of a configuration context, which is also split into 

multiple rows. 

field in use 
clusti 

rows 

patn-tiela IP address 

Figure 3.6: Configuration partitioning 

Each configuration fragment targeting a group, includes the encoded path 

description and the address of the insertion point (IP) to be delivered within 

that group. A decode logic is present on the interconnects, which unfolds 

and distributes the configuration across the core. More details are found in 

chapters 5 and 6. 

3.5 Data memory arbiters 

One of the most explored topics in computer science is that of memory archi-

tectures and most notably the work that has been done in caches [42]. Caches 

are used to hide the latency of slow memory interface, usually an off-chip one, 

by introducing one or more layers of faster but smaller intermediate buffers 

that shadow the main memory. In case of multiple core or processor configu-

rations, cache coherency systems are used to ensure all local copies of the data 

are in sync and up to date [43]. 

The choice of a memory architecture is highly architecture dependent. A 

single processor will issue one load or store operation per cycle. A single issue 

memory sub-system is enough to handle such access patterns. Ideally the low 

level cache is able to serve requests at the same speed as the processor issues 

them. The processor's data bandwidth is often dictated by the cache's memory 

bandwidth. 
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As seen at the beginning of this chapter, a single RICA configuration con-

text can map several data-paths of various operations at the same time, in-

cluding memory access operations. This raises the need for a multiple issue 

memory system. In RICA, this is done by including multiple memory interface 

units for read and write requests as part of the array. The implementation in 

use is based on a multiple memory bank system which shares the same ad-

dress space using arbitration logic. Sharing the address space simplifies the 

programming interface of the RICA core. 

The memory interfaces are divided into two sets, one for writting and the 

other for reading. Each memory interface has its own data and address ports, 

as well as a convenient offset port. The memory interface units are able to 

form parts of the operation-chains in data-paths. Memory reads are issued 

during the execution of a step and the core dynamically adjusts the required 

expiration time of that step, depending on the total memory latency due to 

arbitration. This is explained in more details in section 6.2. Memory writes 

happen at the end of a step and can progress while the core continues executing, 

as long as there is no other memory activity present. 

3.6 SIMD instruction cells 

The RICA prototype supports packed arithmetic or otherwise known as Single 

Instruction Multiple Data(SIMD) [44] or vector arithmetic. In a first spill of 

the RICA instruction set, as seen in [6] Appendix A, each cell has 3 modes 

of operation, 'single', 'half' and 'quarter' integer arithmetic and more specif-

ically, for the 32-bit RICA core, these are 32-bit, 16-bit and 8-bit operations 

respectively. Each mode performs a single computation of the right bit-width. 

Supporting packed arithmetic is a natural progression. Each computational 

cell is able to perform a full single integer, or 2 half integer, or 4 quarter 

integer operations, as listed on table 3.2. 

The benefits of vector operations are easy to spot. However, there is a hid-

den cost which is often overlooked. Apart from simple, straight forward vector 

computations, like the ones in figure 3.7a, most algorithms need to operate on 

the elements of a resulting vector, like in figure 3.7b. This requires unpacking 
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operation width 	operation count 
SI 	Single Integer (32-bit) 	1 
HI 	Half Integer 	(16-bit) 	2 
QI Quarter Integer( 8-bit) 	4 

Table 3.2: RICA cell operation modes 

spIit 

sign/zero extend 

a) simple' vector accumulation 
	

b) split and sign extension 

Figure 3.7: Example vector operations 

and often re-packing the data in different bit-widths, which in case of upwards 

conversion, it also involves sign or zero extension. The RICA prototype in-

cludes special modes of operation of the LOGIC cell, which perform packing, 

unpacking and shuffling operations, to accommodate SIMD arithmetic. A full 

list of the supported SIMD modes of operation for the LOGIC cell, as well as 

the other functional cell, can be found in Appendix C. 

3.7 Performance figures 
-I 

The RICA prototype chip was tested using the libmad MP3 decoding library 

and compared to ARM7 and ARM9 cores. Before looking at the results, it's 

important to mention some of the design decisions made before fabrication to 

reduce risk and meet the fabrication dates. Some of those design decisions im- 
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pact the overall area of the chip and others the performance. .These are. covered 

briefly below. The core is fully synthesisable and no layout optimisations have 

been performed. This first RICA prototype serves as a technology demonstra-

tor more than anything else and is an incredible achievement considering it is 

the first chip we ever produced. 

Minimum step time of 2 cycles The RRC design was forced to a minimum 

of 2 cycles due to combinatorial loops reported by the layout synthesis. A 

redesign of the RRC unit would have resulted missing the deadlines. This 

limits the shorted configuration context time to 2 master clock cycles. 

Data RAM reading takes several cycles The available memories at the 

time required several cycles to perform a read. This limits the memory band-

width of the core 

Two cycles for Path Decoding As discussed in chapter 5, the configura-

tion stream is encoded with a novel technique named 'path encoding'. Post-

layout simulations revealed timing errors on the decoder, which forced an extra 

cycle to be inserted to make sure the decoder will work. Unfortunately, there 

was not enough time to redesign the decoder.This impacts the performance of 

the core. 

No clock-gating Although, part of the design spec, clock gating was not 

implemented in time for fabrication. Instead, the clock tree feeding the regis-

ters inside the core is live all the time. Clock gating would have reduce power 

consumption by a large margin. 

Very relaxed routing The core utilisation was set to about 50%, to simplify 

place and route. This impacts the total core area. Normal figures are in the 

range of 80 to 90% utilisation. It's worth mentioning that there is no intrinsic 

problem achieving such utilisation. 

Other than those shortcomings added by design, there were a few errors 

discovered in the final hardware after testing. These are listed here: 
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Redundant program RAM reads The core performs an extra program 

memory fetch at the start of the step. This does not affect the core's operation, 

however it consumes power. 

Steps with no RMEMs have 1 extra delay cycle Part of the design 

specification, a time tag of 0 means 1 cycle for RMEM cells that are not 

cascaded. The idea is that, the inputs of an RMEM cell would require at least 

1 cycle from the beginning of a step until they are ready, so there is no point in 

counting that. This feature increases the available range by 1 cycle for those 

cells. However, a bug in the hardware ended up making all RMEM tags to 

be set to a +1 cycle. Combined with the fact that the minimum step time 

is 2 cycles, that ends up having a minimum of 3 cycles per step. For more 

information on RMEM cells, refer to section 6.2 in chapter 6. 

The achieved maximum frequency for the RICA setup is 36MHz. This clock 

frequency is obtained by the PCI bus clock of the FPGA board that the RICA 

board is attached to, for interfacing with the host PC. The core might be able 

to be clocked as high as 50MHz, but this was not tested, since such clock 

generator was not available. It's important to note that the RICA prototype 

does not include a PLL. 

Taking all of the above issues into account, a revised version of the RICA 

prototype chip was estimated and the results are included here to reflect the 

performance figures that could have been achieved had those errors and design 

shortcomings been avoided. Table 3.3 lists the results obtained by running 

libmad MP3 decoder on the ARM cores and the RICA prototype and revised 

version. All cores run at 36MHz, the maximum frequency of the RICA proto-

type setup. 

Figure 38 depicts the performance ratios betwen the various cores, obtained 

by the results of table 3.3. 

The results show that, performance wise, even the unmodified RICA proto-

type chip is faster than the ARM7 cores by 2.3x and by 1.8x from the ARM9 

core. The revised one improves on those figures with 4.25x and 3.3x respec-

tively. Area wise, the core of the RICA prototype chip is 3x larger than ARM9, 

while the revised one is 2x. On the energy front, the unmodified prototype 
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Core Area 
(MM 2) 

Time per frame 
(msec) 

Core energy per 
frame (uJ) 

ARM7-TDMIS 0.62 63.70 642.00 
ARM7EJSC 1.25 63.70 710.79 
ARM9966ES 2.00 49.50 1249.00 
RICA P1 6.00 27.50 1093.00 
Revised RICA P1 4.00 15.00 491.00 

Table 3.3: ARM vs RICA prototype 
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Figure 3.8: ARM vs RICA normalised performance ratios 

performs slightly better than the ARM9 core. However, looking at the revised 

version shows the true potential of the architecture, with a healthy 2.5x lower 

energy consumption compare to ARM9. 

The above results show that, despite being an early technology demonstra-

tor and a purely synthesisable design, the first RICA prototype chip performs 

favourably compared to ARM9, even with the design errors that ended up 

landing on the final hardware. Furthermore, considering that the core has a 

regular structure, with the repeatable instances of switch boxes, as well as the 

low number of cell types, silicon optimisations can be easily applied to further 

improve area figure as well as delay values. Any small improvements in the 

switch boxes can have a big impact in the overall design, which is why FPGA 

vendors, like Xilinx, handcraft their interconnects. 
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Chapter 4 

Interconnects 
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Probably the most important aspect of a reconfigurable architecture is its 

interconnects. Their ability to adapt to different configurations is a direct 

function of the flexibility of their interconnects and the prime factor of differ-

entiating them from static ASICs. However, this added flexibility comes with 

a significant area overhead, making it their biggest strength and their greatest 

weakness at the same time. Most of the design trade-offs come down to the 

right mixture of flexibility and tailoring of the interconnects. 

4.1 Topologies 

In a typical FPGA implementation, demonstrated in [45], over 70% of the sil-

icon estate is used by the various data interconnection components, with only 

10% being the actual logic and the remaining 20% forming parts of the con-

figuration distribution network. This is why significant design efforts, in com-

mercial FPGAs, is put in optimising those interconnects by handcrafting them 

and making the right trade-offs between flexibility and area overhead. Despite 

the clever interconnection topologies employed to maintain high routability, 

designs mapped on FPGAs are more often than not routing limited. 

Tailoring of the interconnects can provide the right amount of flexibility for 

a given area budget. This tailoring usually refers to the number of available 

routing tracks per channels and the topology in use. Figure 4.1, shows the 

basis of the interconnects on FPGAs. Termed as 'island based' interconnects, 

these are a class of 2D interconnects where wiring channels do not intersect 

with the logic units. The result is a 'sea' of interconnects surrounding the logic 

units, hence the metaphor. 

The interconnects are composed of 'connection boxes' (C) and 'switch boxes' 

(S). The connection boxes offer 'tapping' points for the logic units on the inter-

connects, while the switch boxes provide cross sections between the two dimen-

sional grid lines of the interconnects. The interconnects are clearly decoupled 

from the computational part, allowing them to be handcrafted independently, 

which is usually the case. Multi-million gate FPGAs have segmented tracks 

that span across multiple switch boxes, offering bypass channels and thus re-

ducing the number of 'hops' required to connect CLBs together, thus forming 
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Figure 4.1: Island-based interconnects 

a complex hierarchical structure[46]. Traditionally, the FPGA interconnects 

have been based on bidirectional channels with tristated buffers at the cross 

sections, but recent designs have moved to unidirectional, and single driver 

channels, due to the higher stability they offer compared to tristate buffers, in 

modern technology nodes, suchas 65nm[47]. 

RCs make use of similar interconnects to FPGAs, albeit being simpler and 

smaller. Figure 4.2 shows an overview of the interconnects used by the RICA 

prototype as in section 3.3. This topology is similar to the island based on 

seen in figure 4.1, but with toroidal channels, which can be seen as bypass 

channels. 	' 

The main difference here, compared to the traditional island-based inter-

connects, is that of the 'tap points' of the logic unit. In figure 4.1, the logic 

unit taps on the intra-connection channels between the switch boxes that sur-

round it, while in figure 4.2 the logic unit taps on the intra-channels of one of 

the switch boxes with its neighbours. This is better shown in figure 4.3. 

At first, this seems to complicate wiring, however it lends itself to a different 

implementation style, where a switch box and an attached logic unit, can be 

self contained. This simplifies the automation of core generation. 

A more minimal sbox design is that shown in figure 4.4. These 'T' shaped 
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Figure 4.3: Logic unit tap points 

sboxes are composed of 2tol multiplexers, unlike the 4tol ones in the 5-way 

sbox. Three T-sboxes are needed to form similar connectivity to that of a 

5-way sbox. The major benefit of a T-sbox is the lower fan-out count. Every 

4tol multiplexer on the 5-way sbox has 6 fan-outs (including the 2 terminal 

inputs), while a T-sbox has only 3. This has the potential for a smaller design 



3 'T' sbox 
per unit 

3 per unL 
(mirrored) 

with comparable routability and average wire-length. 

Figure 4.4: T switch-boxes 

4.2 Passive or dynamic interconnects 

The interconnects on an FPGA are explicitly set by the configuration bit-

stream, during the loading phase. These interconnects provide no dynamic or 

run-time adaptation, while the routing path-ways are pre-computed during the 

mapping stage; Such interconnects play a 'passive' role in the reconfiguration 

cycle. This simplifies the design of the interconnects, however leaves no room 

for adaptability. 

Dynamic interconnects, such as message-passing based ones, offer an ex-

tra level of flexibility with the expense of some latency, which can be non-

deterministic at times. These dynamic interconnects have many things in 

common to computer networks, which is why they are also known as Networks 

on Chip(NoC). A NoC can alter its connection routes at run time, allowing, 

among other things, the dynamic reallocation of operations to functional units. 

Dynamic reallocation is useful in fault tolerant applications, as well as Simul-

taneous Multi-Threading SMT, as seen in chapter 8. 
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The remaining of this chapter includes an investigation in switching and 

routing techniques used in dynamic interconnects, leading to the proposal of 

a lightweights switching technique and the inspiration to the on-line routing 

described in section 6.1.2. 

4.3 Switching and routing 

Dynamic interconnects can be classified by their 'switching' and routing tech-

niques. There are several switching techniques available, including circuit 

switching, packet switching and wormhole switching along with several deriva-

tives of those, such as store and forward and virtual cut-through. Wormhole 

switching is one of the most popular switching techniques for NoW and NoC 

for its simplicity and small footprint. Additionally, due to the pipelined nature 

of this technique, the propagation delay in wormhole switching is practically. 

independent of the routing path [48]. 

Adaptive and deterministic (or oblivious) are the main available routing 

techniques. Both have their strengths and weaknesses. However deterministic 

is most popular in NoC for its simplicity. Performance wise, adaptive routing 

provides better results for high workload, while deterministic is best for low 

workload [49]. 

The implementation simplicity of wormhole switching and its adequate per-

formance for relatively low traffic workload makes it the preferred switching 

technique for most application from Network of Workstation to Net?orks on 

Chip [50]. One of the main advantages of wormhole switching is a nearly 

buffer-less design. A packet is forwarded in a pipelined fashion flit by flit and 

the routing decision is made on reception of the header flit, while the data flits 

simply follow the header flit. 

Unfortunately wormhole switching suffers from contention problems. A 

blocked header flit results in a sequence of blocked data flits that tie a number 

of routing channels. In some cases this can lead to dead-locks, where two or 

more packets are blocked by each other in a vicious circle. 

As a solution to reduce congestion, prevent dead-locks and improve worm-

hole switching techniques performance, the physical channels are often time 
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sliced into a number of independent logical channels. These logical channels 

are also known as virtual channels (VC). However, the performance improve-

ments of VCs come with a price. VCs increase input/output buffer require-

ments by a large factor, which contradicts the initial decisiOn for a wormhole 

switching technique. For a large number of VCs the performance benefits are 

overshadowed by the resulting bandwidth degradation. However this is less of 

an issue in NoC environment where area and power limitations are dominant. 

A practical number of VCs is two per physical channel for moderate packet 

sizes. 

Conventional implementations for VCs use a set of circular queues, of a 

depth equal to the maximum expected packet length, one for each VC. Thus 

the maximum required buffer size per router for such implementations is as 

follows. 

= vc x plength x ports 	 (4.1) 

Where vc is the number of VCs, plength is the maximum packet length 

and ports the number of ports per router. In [51] the authors propose an 

improvement to the above, making the total buffer size independent of the 

number of VCs, i.e b,, = plength x ports. Further reduction of the required 

buffer size is achieved by using special flow control mechanisms. A number of 

choices are available including buffer-less, FIFO based, credit-based [52] and 

handshaking based as mentioned in [53]. 

The lightweight wormhole switching technique with virtual channels, pro-

posed here, is based on a simple credit-based, rate-control flow control mech-

anism, suitable for NoC environments. 

4.3.1 Virtual Channels with dynamic rate control 

This section describes a proposed light-weight flit rate control technique, re-

ferred to as Virtual Channels using Dynamic Rate Control(VCDRC), which 

attempts to minimise intermediate buffer requirement, by controlling the on-

line traffic and adjusting the sources flit transfer rate using feedback signalling. 

In the event of contention, the receiving node changes each packets transfer 
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rate so that the accumulative rate matches that of the physical channels one. It 

does so by requesting each source node to adapt their transfer rate accordingly. 

This signalling eventually propagates to the source logic unit. 

Based on the proposed scheme the required buffer size does not depend on 

the number of virtual channels and packet size, but only depends on the num-

ber of ports per router. The following equation gives the theoretical maximum 

required buffer size per router. 

bvcdrc  = 2 x (ports - 1) x ports 	 (4.2) 

The above equation derives form a logical analysis of the implementation. 

Each output port accepts flits from all input ports except its pair input, since 

loop-back is not allowed. Assuming pipelined packet flow, which stands true 

for a wormhole switching based network, the output buffering requires a stor-

age of 2 flits for every associated input port. A more analytical explanation 

on the factor of 2 is given below in relation to table 4.2. Thus based on equa-

tions 4.1 and 4.2 the buffer size ratio between the VCDRC technique and the 

conventional implementation of VCs is given by the following equation. 

2 x (ports - 1) 
bvcdrc = bve (4.3) 

vc x plength 

For a typical router of 5 ports using 2 virtual channels and a packet length 

of 128 flits, the VCDRC technique requires just 3% of the intermediate buffer 

size of the conventional VC implementation or 6.25% when compared to the 

one proposed in[51]. 

Output buffering tends to result in complex implementations compared to 

input buffering. Nevertheless, the intrinsic characteristics of the VCDRC tech-

nique are better suited for an output buffering approach, since direct control 

of the output flit rate is required. VCDRC is based on a 'suspend and resume' 

approach, where packet flits are temporarily suspended in an attempt to bal-

ance the transfer rate according to on-line network traffic. Using feedback flow 

control signals the routers make sure that the incoming flit rate matches the 

achievable output flit rate of the physical channel. The following description 

assumes a flit equal to a phit (physical channel width), although the proposed 
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technique applies for other data partitioning ratios. VCDRC is built on top of 

a wormhole switching network, which means that both data and flow control 

are pipelined. 

Lo Ro R2 R3 L3 

Lo Ri R2 R3 L3 

L2 -R2-'R3 - L3 

L3-R3-R2 -0  L2 

Figure 4.5: Simple communication scenario 

A small data transfer example is shown on figure 4.5 for a comparison 

between a conventional virtual channels implementation and the proposed one. 

The example illustrates how multiple packets share the same physical channel 

(here R2 to R3 channels). The logic units are designated as L while the 

routers are R. The example assumes two unidirectional channels per link. 

Table 4.1 presents the communication pattern at a flit transaction abstraction 

level in a conventional VC implementation 

Each row shows the output channel of a router/logic unit connected to its 

neighboring unit. Each column represents one instant in time. The shaded 

numbers are packet IDs and for simplicity are equal to their source logic units 

index. Thus packet 0 has generated from logic  unit L0. The buffer utilisation 

table shows the total buffer size in flits required by each router in every instant. 

The point of intersection, router R2 , is highlighted. 

At t=1, router R2  receives 2 flits simultaneously, one from R0  and one from 

R1, to be routed on the same physical channel. Since the incoming rate is 

higher than the achievable output flit rate of iflit/cycle, the remaining flits 

are buffered at R0  routers output buffer. From t=1 to t=5 router R0  accepts 

2 flits and outputs iflit every clock cycle, which means that a buffer of at least 

the size of one packet is required. Nevertheless, in order to support the worst 
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Table 4.1: Communication pattern in conventional VCs 

case scenario, when the output channel is busy, based on equation 4. 1, the 

router R2  would require 192flits total buffering for 3 VCs and 16 flit packets. 

Here the total buffer utilisation is liflits, which results in a total of 6% buffer 

efficiency. 

Table 4.2 shows the communication pattern in VCDRC, using the same 

traffic scenario of figure 4.5. 

The output flit pattern of router R2  towards R3  remains the same as in 

the previous example. What changes here is the output of the source routers 

and logic units. Two time instances are highlighted here, time t=2 and time 

t=8. At t=2, router R2  signals back to routers R0  and R0, requesting them to 

reduce their flit rate, by sending a transmission/idle ratio and a starting point 

delay (designated as Si). The starting point causes a misalignment in time 

between the two sources, which prevents them from overlapping. The decision 

of which one goes first can be made based on packets priority tags. 

The transmission ratio defines a variety of transmit and wait output stages, 

for example 2 wait and 3 transmit. Here the routers start with a wait stage 
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Table 4.2: Communication pattern in VCDRC 

(blank box). The same happens at t=8, when R2  receives packet 2 to be routed 

on the same channel. All transfer rates are updated accordingly. Packet 3 is 

routed via a different unidirectional physical track, so it does not interfere with 

the rest of the packets. 	- 

Since feedback signalling requires 1 cycle to take place, the router needs to 

store 2 flits from each packet. Thus if the physical channel was busy at the 

time of reception at t=3, buffer utilisation would be 4flits. This is where the 

factor of 2 comes in equation 4.2. 

4.3.2 VCDRC performance 

As described above, the proposed technique is based on packet handling using 

their IDs. Each packet is assigned a temporal slot which is identified by its ID. 

From a hardware implementation point of view, this would require the use of 

Content Addressable Memory (CAM). CAMs are normally larger than normal 

SRAMS and more specifically a UMC-13 CAM is around 2.5 times larger than 

65 	 - 



an SRAM with the same technology and configuration. This factor is taken 

into account on the following performance analysis for a more fair comparison 

with the conventional VC implementation. 

SystemC was chosen as the system level language for the implementation 

of a Transaction Level Model (TLM) of the proposed technique and the con-

ventional VC implementation, for performance analysis. Using a custom made 

script the simulation model allows the realisation of any given topology and can 

be tested under various communication patters. Figure 4.6 shows the percent-

age of activity distribution on a 4x4 2D-mesh network using uniform traffic. 

Additionally, it reveals internal properties of the selected traffic pattern, which 

can be used in conjunction with the performance results that follow. 

rik1 PH 
:Ui JflIjJ/4: 

.w• - i 
:. 

44 :ctti 
I 	LI liii : - 

i' ' 
Figure 4.6: Percentage of activity distribution on a 4x4 2D-mesh network under 
the tested traffic pattern 

A multi-hop Direct Network 2D-mesh topology is used here as a motiva-

tional example. The proposed technique can be applied to other multi-hop or 

complete DNs, such as hypercubes or toroidal topologies with similar results. 

All tests were made using the same uniform traffic pattern as seen in 4.6 over 

a lOOKfiits. For comparison reason the buffer area for the conventional VC 

implementation was made equal to that of the proposed technique. This fig-

ure was obtained by rearranging equation 4.3 while taking into account the 

2.5 area factor explained at the beginning of section 4.3.2. The following ex- 
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pression provides the allowed packet length when both implementations have 

the same buffer area, for a given number of VC and port count. 

plerigth = 
5 x (ports - 1) 

vc 
(4.4) 

Based on equation 4.4, in order to support 2 virtual channels, the packet 

length should be 10 flits for a 5-port router. It should be noted that a lOflit 

packet is relatively small and that in practice, packets of 64 or higher lengths 

are used. 

The graph in 4.7 shows the average throughput achieved on a per packet 

basis, for a range of packet injection ratios on the conventional VC implemen-

tation (light-line) and on the proposed technique (dark-line). The graph shows 

that the performance benefits of VCDRC increase as the packet injection ratio 

increases. More specifically at a 0.02p/c the performance difference is 7%. For 

extremely high packet injection ratio (above 0.2p/c, which is not shown here) 

both implementations saturate around 0.2flits/cycle. The maximum possible 

injection ratio for this test case of lOflit packets and 16 nodes is 1.6p/c. 
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Figure 4.7: Average throughput in flits/cc per packet in relation to packet 
injection ratio. 

The graph in 4.8 illustrates the average latency in clock cycles on a per 

flit basis for both implementations. Again VCDRC delivers, better results, 

especially for high packet injection ratio, i.e. high traffic work load. It is worth 
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mentioning that the performance benefits are even more apparent for larger 

packets. For a typical packet length of 64flits the performance difference is up 

to 15% for a 0.02p/c packet injection ratio. Of course for a 64flit packet length 

the buffer requirement for the conventional VC implementation increases by 6 

times, while for VCDRC it remains unchanged. 

20 

0.001 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 

packet Injection ratio(packets/cycle) 

- conventional VCS - VCs using rate control (VCDRC) 

Figure 4.8: Average latency in ccs for each flit 

Although the VCDRC technique does offer a measurable improvement over 

conventional VCs in terms of performance/ area, the fact remains that such a 

technique adds latency, area and complexity to the overall design. However, 

even though a wormhole routing technique may not be the most appropriate 

solution for the main interconnects of a reconfigurable system, as described 

in section 5, the packet based path establishing approach can be used as part 

of the configuration loading infrastructure, to reduce the bandwidth require-

ments. 
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Chapter 5 

Path Encoding 



5.1 A connection oriented approach 

The configuration of the interconnection network of a dynamically reconfig-

urable architecture, such as RICA, is probably the most critical section of the 

design. The speed of reconfiguration as well as the bit efficiency of the con-

figuration stream depend on it. The interconnects configuration describes the 

various connections between the computational, storage or interface units, as 

dictated by the data-path mapped on the array. Such a description can vary 

from an explicit set of raw configuration bits controlling the various routing 

nodes, up to a high level description of the participating connections. 

This chapter describes a novel connection-oriented encoding of the inter-

connects configuration, which exploits intrinsic characteristics of a valid path, 

referred to as path encoding. To assist in explaining the path-encoding scheme 

the following sections make use of a 2D-mesh lattice. The technique applies 

to toroidal topologies as well as any other form of multi-hop direct network 

topologies. In the following examples a 'node' is a routing unit within the 

network, such as an s-box (switch box), while an 'edge' is a unidirectional 

link/wire' that connects two nodes. A 'path' is the chain of edges and nodes 

that form a multi-hop connection from the source to the destination node. 

The path-encoding reduces the amount of information required to repre-

sent a point-to-point multi-hop connection. As such it can also be seen as a 

compression algorithm specifically applied to this domain. Most importantly 

the path-encoding offers an abstract representation of a path that, as shown 

below, can reduce the overhead of routing establishment or 'rendering', on a 

direct network topology [54] 

5.2 Path-Encoding Basics 

The path-encoding scheme exploits the intrinsic characteristics of a valid point 

to point connection on a given interconnection lattice. Between two points in 

the lattice there is a finite number of possible paths that can form a point-

to-point (multi-hop) connection. Some of these paths are practically useless, 

such as those that form loops. Others are too inefficient to be considered a 
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valuable solution, such as those that form obscure mazes. Finally there is a 

subset of paths that are relatively short and are fine candidates for a selected 

solution. 

\•4 / 0 0 
S ••-• / 

loop 

(a) closed loop 

o 0 	D 0 0 

0 0 

!i! : :0 

o 0 0 0 
S 

(c) sing le-moriotonic (b) non-monotonic 

Figure 5.1: Path formation scenarios 

Out of these 3 cases only the last 2 form valid paths. The second case, even 

though valid, covers a large set of interconnection resources and thus forms a 

very long and inefficient path. The third case is only a subset of the available 

valid solutions. This case is characterised by its single monotonic style, in 

one of the two axes. A single monotonic path is one that maintains a given 

direction on one of the two axes, in contrast to a fully monotonic one that 

both axes are maintaining a given direction. The later ones also define a set 

of paths with optimum length for a given directional choice. Note that in a 

multi-dimensional environment only one dimension of the path needs to be 

monotonic to be considered a single monotonic path. 

5.3 Path Encoding displacement format 

Any given point-to-point connection on a multi-hop network has at least two 

nodes that are fixed, the source and the destination node. The chain of partic-

ipating intermediate nodes defines the final path of the connection. Looking 

at a single monotonic path, there are a number of intermediate nodes that are 

'forced' to participate to ensure a continuous path. These nodes are named 

here implicit nodes. The rest of the nodes that play an important role to the 

formation of the path are called explicit nodes. Similarly an edge that emerges 
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from an implicit node is also called implicit edge. Edges that emerge from 

explicit nodes are called explicit as well or as discussed below, controllable 

segments. 
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(b) X monotonic axis 

Figure 5.2: Y or X monotonic axis 

The above figure shows two example single monotonic paths for the same 

point-to-point connection, one on the y-axis and one on the x-axis. Explicit 

nodes are shown as solid dots while explicit edges are shown as arrows. 

As seen above, in order to form a single-monotonic path the only informa-

tion required is the location of the source, the relative position of the explicit 

nodes or edges (controllable edges), plus the direction of the path on the mono-

tonic axis. In Figure 5.2 on the y-axis monotonic example, there are 4 con-

trollable edges. Each of these controllable edges can be placed in any position 

within a row. Using as a reference the sources x-coordinate, the position of 

each controllable edge can be expressed as the displacement from the reference 

line. 

Based on the above observation the example path can be expressed as two 

flags, one that defines the monotonic axis (Y or X) and one for the path 

direction (positive/negative), one coordinate and a vector of 5 signed integers. 

The above set of information forms the path-encoding packet and for a 2D-

mesh path is as follows: 

[m] 	[dir] 	[S(y,x5 )] 	[size] 	[do ... dc_i] 	(5.1) 
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Figure 5.3: Controllable edges' displacements 

m is the monotonic field, a flag that specifies the monotonic axis (X or Y) 

dir is the direction in the monotonic axis. 

n is the number of displacements. 

S(y3, cc3) is the source field and uses 1092 (Y) + 1092(X) bits (rounded up to 

the nearest integer), where Y and X are the arrays dimensions. 

size is the size of the displacement vector. 

d0 	. d 1  is the displacements field and uses n 1092(Y)  or n 1092(X)  bits, 

depending the monotonic axis 

Based on the example path on Figure, 5.3a, using the source node S as a 

reference, the path-encoding packet would be as follows: 

[0] 	[1] [4,1] [5] [-1, +3, —2, +1, +1] 	 (5.2) 

Or for the example in Figure 5.3b using differential displacements this is: 

[0] 	[1] 	[4,1] 	[5] 	[-1, +2,0, +1, +1] 	 (5.3) 
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These assume the upper left corner node has a coordinate of (0, 0), that a 

0 flag is used for a Y and 1 for X monotonic-axis and positive path direction 

is 0 while negative is 1. 

5.4 Non-monotonic Path-Encoding extension 

A non monotonic path-encoding requires a way to alter the reference axis. In a 

monotonic environment, a y-monotonic path uses an x-reference axis and vice 

versa. Further more the encoding must ensure valid path formation, in other 

words, avoid loops or conflicts. The example on figure 5.4 adds an extension to 

the monotonic path-encoding that allows non-monotonic paths to be formed. 

Figure 5.4: Non-monotonic path-encoding extension 

The added field in this scheme is able to alter the reference axis, which is 

needed to device a non-monotonic extension of the path-encoding. The alter-

ation is designated here with a switch-point and an associated fixed-segment. 

The later is there to ensure a valid path formation, by introducing a unit dis-

placement from the previous line of reference. The overhead of this extension 

is an extra bit per controllable segment. The non-monotonic extensions does 

require special handling and does complicate further the decoder logic. Sec-

tion 5.6 describes an alternative approach for covering non-monotonic paths, 

albeit using a different encoding scheme. 
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5.5 Practical example with s-boxes 

In a typical multi-hop direct network, each node is a form of fully connected 

or partially connected switch-box. The example in figure 5.5 uses a fully con-

nected switch-box. A partially connected switch-box introduces extra routing 

constraints that  could be used to further reduce the information required to 

express a path. 

N 

	

T II 	 NESWT  

W 	 wJ E 

	

(a) 	 (b) 	 (C) 

Figure 5.5: Example intra-connectivity of a 5-way sbox 

The example switch-box has 4 pairs of unidirectional network ports, desig-

nated as North, East, South and West and one pair of unidirectional Terminal 

ports, designates as N, E, 5, W and T respectively. The connection matrix of 

this example is shown in figure 5.5b. The arrows represent the intra-connection 

between an input port and an output port of the switch-box. Fort instance, 

an arrow on the T-N cell, defines an intra-connection between input T and 

output N. Figure 5.5c shows the resulting intra-connections when the 5.5b 

connection matrix is applied. 

A switch-box may have more than one terminals attached to it, though 

for simplicity, the example here assumes only one terminal per. switch-box. 

Similarly a multi-dimensional network will have switch-boxes with more than 

4 network ports. Each output can be driven by any of the switch-boxs inputs; 

Of course an output can only be driven by one input at a time. One input 

can drive more than one outputs, as in the case of the North input port and 

South and East output ports. Figure 5.6 shows an example path and how that 

is mapped on a 2D array of switch-boxes. 

The above decoding procedure can be performed in a dedicated unit before 
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Figure 5.6: Path formation example 

loading the result on the reconfigurable fabric (off-line routing) or on-the-

fly using a set of distributed decoders, which accept the path-packet directly, 

to perform a collective path rendering (on-line routing). An off-line routing 

is simpler to devise and usually result in a more compact implementation. 

However, an on-line routing can be much faster, assuming the appropriate 

bandwidth is available. An off-line routing implementation is presented in 

section 6.1.1 and an on-line implementation in section 6.1.2 which also forms 

the basis of the routing mechanism used by the RICA prototype. 

5.6 Turn-based format and chain encoding 

The displacement-based path-encoding format ensure the formation of valid 

paths for any combination of its fields, This is a very useful feature to construct 

meta-heuristic routing algorithms. Even though for a given source-destination 

distance the field size is always the same, in a given set of connections with 

various connection distances, we end up with a variety of field sizes. Decoding' 

those varying field sizes in hardware can be complex. A compromise is to 

choose the number of supported segments and have a fixed field size, a solution 

that trades overall bit efficiency for a simpler hardware implementation. 

A more simplified derivative format is that of the turn-based one, which de- 
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scribes one hop at a time. It uses three turn symbols: right-turn (+), left-turn 

(-) and no-turn (0). With those symbols, the turn-based format can describe 

the shape of a path and is not limited to monotonic paths. However, it does not 

ensure the valid formation of paths for every symbol combinations, which is a 

unique feature of the displacement-based format. Furthermore, on average, it 

requires more information to describe a path compared to the displacement-

based format. Nonetheless, due to the reduced amount of symbols it becomes 

a good candidate for a dictionary-like based encoding. 

Figure 5.7 shows an example path encoded using the turn-based format. 

The uni-directional connection from 0 (output) to I (input) is meant to be 

rendered here in reverse order, starting from the I node. Thus, if on-line 

routing is assumed, the I node is the insertion point and thus, contrary to the 

natural flow, I is also the start node. This is done for practical reasons: an input 

can be driven by one output only, while an output can drive several inputs. 

Choosing inputs as insertion points for on-line routing, increases parallelism. 

Otherwise, we would need more than one injection per insertion point. 
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Figure 5.7: Turn-based format 

The main body of the path, which is referred to here as path shape, is 

described as a sequence of turn symbols, while the direction of the starting 

edge is expressed explicitly. In a 2D-mesh, with the same path-shape, one can 

describe four different paths, each having a different end node by changing the 

starting-edge direction. For example, in Figure 5.7, this would involve rotating 



the shown path by 360 degrees in four 90 degree steps about the start node, I. 

In a given set of network connections it is possible to find several paths with 

the same shape along their full length or with the same shape along part of 

their length. On that simple observation, a long list of turn symbols based 

on a set of paths is formed, with the list of turn symbols normally defining 

many paths having the same shape. Using statistical analysis over a wide 

range of path-shapes, an efficient list or chain can be constructed with a high 

percentage of coverage, by exploiting the symbol pattern reuse that follows 

from the presence of the multiple same shape paths. The chain-generator tool 

described in section 7.6.4, is part the backend RICA toolfiow, does such an 

analysis to generate a chain with high coverage. Using a chain of turn symbols, 

the shape of a path can now be expressed as a starting chain entry and a length 

or symbol-count. Figure 5.8 shows such an example. 

entry -i 	 0 0 PO4 0 0 
I—I0I+IoJ—)oJ+1—E —I+4IOI—I31 	 j, 	I 

04___0. 
------------------------- 

Ni+--------  N 	0 0 0 --------------------------------- 

Figure 5.8: Chain encoded path 

To get the whole path, we also need the direction of the initial edge. By 

choosing a maximum supported path-shape length, the turn-based format with 

chain encoding, has fixed size fields. The chain can be stored as a look-up-

table (LUT) on the distributed decoding units of an on-line routing scheme. 

Figure 5.9 shows an example path-packet formated using chain encoding, as-

suming a 256 symbol chain and a maximum supported path shape length per 

packet of 8 symbols. Thus, 8bits are reserved for the chain entry, 2bits for the 

four possible initial directions for north, east, south and west and 3bits for the 

path length. This does not include the addressing of the insertion point, which 

is dealt separately by any of the schemes described in sections 5.11 and 5.12 

or explicit source coordinates. 

Experimental results presented in section 7.6.4, show that, out of thousands 
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Figure 5.9: Chain encoded path packet 

of connections, there are very few unique path-shapes and a list of 256 symbols 

is adequate to achieve close to a 100% coverage. As described in section 5.7, 

paths that do not match in the chain, can be split into fragments that do 

match. 

5.7 Splitting paths and fan-outs 

In case a path-shape is not covered by the chain, or its length exceeds the 

supported maximum length, a mechanism is required to express the path as 

a concatenation of smaller sub-paths. Figure 5.7 shows such a split point and 

how these sub-paths look lik. The path is then rendered using two or more 

insertion points. Every split point injection re-establishes the last edge from 

the previous sub-path, in order to ensure continuity. Path discontinuity also 

appears in case of fan-outs. Semantically, fan-outs and split points are the 

same, but there is a practical difference. 

Figure 5.10 shows an example set of  paths with 2 fan-out points, F0  and 

F1. Similar to a split point, a fan-out point divides the path into two fragments, 

which are rendered by injections on separate insertion points. However, to 

understand the difference between fan-out and split point injections, one needs 

to look at a normal path injection. 

As described in section 5.6, the insertion points associate to input terminal 

ports. A path-packet. describes the connection from an input terminal point, 

such as 10  on figure 5.10 to an output terminal port, such as 0 on the same 

figure. The path-packet is thus injected to the sbox of input terminal port. The 

first edge is expressed explicitly by the initial-direction' field. This establishes 

the terminal input multiplexor's configuration. The rest of the pathis rendered 
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Figure 5.10: Fan-out points 

based on the turn-symbols read from the chain, as shown in figure 6.3 on 

section 6.1.2. When the path-shape reaches its end, the rendering process 

finalises the path by connecting, implicitly, the output terminal port of the 

last sbox visited, to the rest of the path. Thus, a normal path-packet injection 

makes two assumptions: a path starts with an input terminal port and ends 

with the an output terminal port. These two assumption are not true when 

dealing with split and fan-out points. A split point starts from a network port, 

while a fan-out ends on a network port. To summarise the 3 cases: 

Normal injection The path starts with an input terminal point and ends 

with an output terminal port. 

Split-point injection The path starts with a network port and ends with 

a network port or an output terminal port. 

Fan-out injection The path starts with an input terminal point and ends 

with a network port. 	 , 

Based on the above, looking' back at figure 5.7, the I-S is in fact a fan-out 

injection, while the 8-0 a split injection. In other words, a split injection 

switches the starting port to a network one, while a fan-out injection switches 

the end port to a network one. Thus, a path-fragment that starts and ends 



with a network port is a split + fan-out injection. Fan-outs are fairly common. 

Thus the path-packet is amended with an extra flag to indicate if the injection 

is a fan-out one, as shown in figure 5.11. On the other hand, split path-packets 

are rare and are thus handled separately, as shown in section 5.13. 

i-8-----i 21-3--1 
I 	II:.•II 
/ / \ 

entry fanout 	length 
mit-dir 

Figure 5.11: Chain encoded path packet with fan-out field 

5.8 Implicit port activation 

A useful side-effect of the path-encoding is the implicit flagging of a port being 

active in the current configuration context. Some cells have 'optional' input 

values, like the 'offset' of the memory interface cells described in section 3.5. 

In such cases, it is required to know if the port holds a valid value. Even more 

important than this is the required extra state each output port of an sbox 

needs to prevent combinatorial loops from forming. 

Without this extra state, an sbox's output port that isn't configured will 

still route through one of it's inputs. It's thus possible to form arbitrary paths, 

even combinatorial loops that are undesirable. The extra state, ties the output 

to zero, thus preventing the propagation of signals. 

All these conditions can be stored explicitly in the configuration context 

with 1 bit per port. However, this results in a very large increase in the 

configuration size. The path-encoding offers a 'cheaper' solution. Part of the 

decoding process, as the paths are rendered on the array, each sbox port, as 

well as cell port, gets implicitly flagged as active. What would otherwise be 

stored explicitly in the stream is now derived from the path-decoding sequence. 



5.9 Clustered chain 

Using a 256 symbol chain, the index needs to be 8bits. However, the, entire 

range might not be needed on every set of connections. In a normal envi-

ronment of reconfigurable fabric, there is a small set of paths that are active 

at any given time. This set of paths forms the active context. Within that 

context we might only require a small region of the chain. Again, with care-

ful selection, a set of segments can be formed that provides enough coverage 

for any given active context. Doing so allows us to define a global segment 

for the context and have each path only define an offset within that context. 

Figure 5.12 shows a 256 symbol chain, divided into 4 segments of 64 symbols 

each. This results in using 6bits for each path, while having 2bits to define 

the segment for the entire set of paths of an active context. The end result is 

a significant increase of the bit efficiency. 

segment:offset 
U- 	 OU 	 OU 	 0 
(fl 	 om 	 am 	 0 

1 	 Ell~ 
64  

Figure 5.12: Clustered chain 

5.10 Hierarchical Enable Matrix 

The source field of the path packet shown in pattern 5.1, requires 1092(X) + 

1092 (Y) bits per connection, which is 6-bits for an 8x8 array. For 11 connections 

the source fields will occupy 66-bits in total for a 64-element array. For such 

active configurations it might be better to use a 64-bit enable-matrix, where 

every element of the matrix corresponds to one insertion point and specifies if 

it is active or not. The above statement is summarised in table 5.1. 

A scheme that performs well on both ranges is that of a hierarchical enable-

matrix (HEM). The insertion points, or nodes, are grouped together into clus- 



active connections suggested method 
< 10 
> 10 

source-fields 
enable-matrix 

Table 5.1: Source node addressing methods 

ters and thus addressing those nodes becomes a hierarchical system, with do-

mains and sub-domains, or levels as they are referred to here. 
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Figure 5.13: Hierarchical Enable Matrix 

The hierarchical symmetric clustering of the 8x8 lattice shown in figure 5.13 

has 4 elements per cluster. The leaf sub-clusters are also the nodes of the 

lattice. There are in total 64 nodes for this example that would otherwise 

require 64-bits to specify which node is active and which is not. Using the 

above clustring, each level of hierarchy requires 4bits as shown in figure 5.14. 

The enable matrix header is thus formed by ordering these fields in sequence 

as shown above. Based on the motivational example of an 8x8 lattice, the 

maximum header size will be 4+16+64 = 84-bits. However the header size is 

variable and in practice it is possible to reduce the total number of bits required 

to represent the active clusters. This is done by ignoring sub-clusters that 

ate not active. In the example on figure 5.13, the hierarchical enable-matrix 

requires only 24-bits. A typical 20% of array activity requires a hierarchical 
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Figure 5.14: Header decomposition in a 3-level hierarchical enable matrix 

enable-matrix of 48-bits on average. 

The example header on figure 5.13 is built as follows. Out of the 4 level-1 

clusters only two of them have at least one active node. These are clusterO 

and cluster3. To represent this as a bit sequence, the above example uses a 

little-endian representation where the 0th cluster is represented by the most 

significant bit (MSB), while the 3rd cluster is represented by the least signif-

icant bit (LSB). Thus for the above example the level-i field is [1001]. Since 

clusteri and cluster2 have no active nodes they can simply be ignored. This is 

why level-2 field in figure 5.13 has only two sub-fields, the first one for clusterO 

and the second one for cluster3. These sub-fields follow the same concept as 

the level-1 fields and the same applies to the level-3 fields. Note that each 

bit of level-3 corresponds to one node. The ones that are assigned with 1 are 

considered active and thus a path-encoding field (payload) should be present 

in the stream. The order in which the level fields appear in the header also 

dictate the order in which the path-encoding fields should be placed in the 

bit-stream, to maintain the correct association. 

5.11 Hierarchical clustering for loading 

One of the big concerns in flexible interconnection structures is the ability 

to propagate the configuration information across the lattice. This poses a 

significant implementation issue and often forms the bottleneck of the sys-

tem, due to high bandwidth requirements. In the path-encoding technique, 



each point-to-point connection is described as a set of path directives start-

ing from the source to the destination node. The encoded path is a compact 

information packet (unit) that can be loaded into the source node. Path for-

mation/rendering can be done on-the-fly in a wormhole-like fashion, in an 

asynchronous or synchronous manner, as described in section 6.1.2; 

On a typical configuration context, the number of insertion point nodes 

is only a fraction of the total number of active nodes. Because of that, the 

required number of parallel insertion points can be reduced significantly. This 

opens the possibility for a less interconnected loading network, with smaller 

bandwidth requirements. An example scenario with a quarter of the bandwidth 

requirements of the fully connected loading network is shown in Figure 5.15. 

---------------------------- 
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Figure 5.15: Hierarchical symmetric loading network 

For a 64-element array the fully connected loading network requires 64 

parallel fields. This could allow all nodes to be loaded simultaneously. The 

above example hierarchically clustered network has only 16 parallel fields which 

are evenly distributed across the array. This allows 16 simultaneous fields to 



be loaded to each of the 16 level-2 clusters. Each level-2 cluster encapsulates 4 

nodes. In general, to load all the nodes of a level-2 cluster it requires 4 cycles. 

This level of parallelism is sufficient for typical network utilisation; that is, the 

number of active point-to-point connections. 

5.12 Irregular/Asymmetric grouping 

Using clusters, the numbers of cycles required to load a configuration depends 

on the number of active insertion points and where these are located, as seen 

above. To reduce the average number of cycles required, an analysis can be ap-

plied to determine which insertion points to group together to form a cluster. 

A tool that does such an analysis is described in section 7.6.3. This will provide 

clusters that may not be spatially contained in one region, but rather could be 

placed physically anywhere in the array in an irregular, asymmetric fashion. 

As such, this approach represents a generalisation of the regular, symmetric 

approach described above with reference to figure 5.15. The irregular disposi-

tion of clusters of the present approach may introduce some extra complexity 

on the physical wiring to the clusters, but it improves the average loading time 

for a given placement. One thing to note is that the hierarchical clustering 

described in 5.10 can lend itself to an non-spatially contained physical cluster 

formation, such the one shown in figure 5.16. This figure shows the separation 

of insertion points into types, which is an implementation detail described in 

section 5.13. 

The hierarchical enable matrix can be disassociated from the physical po-

sitions of the insertion points it refers to. Doing so improves the efficiency of 

the HEM encoding. 

5.13 Context partitioning. Rows and groups 

The HEM encoding results in a variable configuration word. If all the elements 

of a top level cluster are inactive, the cluster is omitted from the stream. This 

variability offers good bit efficiency, but can result in a more complex decoding 
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Figure 5.16: Groups 

process. The following describes a way to eliminate the variability seen in 5.10. 

It's important to note that this method trades bit efficiency for implementation 

simplicity. 

The configuration context is split into rows, which are populated to dif-

fering extents, depending on the insertion points that are used, as shown on 

figure 5.17. Each row contains one member slot (field) for every cluster, which 

may be populated or not. The configuration context has as many rows as the 

element count of the most populated cluster. Each row matches and drives the 

configuration distribution network, which can be something like the one seen 

on figure 5.15. 

Figure 5.17 shows the configuration context partitioning used on the RICA 

prototype chip. As in described section 5.6, an insertion point corresponds 

to an input port of a connection pair. Section 3.1 shows that the RICA cells 

have one, two or three inputs. Looking at Appendix C, most cell types have 

2 inputs ports. When a cell is used, it's most likely that all of its input and 

output ports are in used. This is definitely the case for combinatorial cells, 

such as adders and shifters. In an attempt to reduce the number of insertion 

points, those that are part of the same cell are grouped and delivered together. 

Fewer insertion points means less IP address fields, which would otherwise be 
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Figure 5.17: Configuration context rows 

redundant. The aggregated insertion points are referred to here as typeo , while 

the single ones as type1. Figure 5.16 shows an example grouping of a section 

of the core and the two insertion point types. One can also see the cell types 

that occupy each insertion point type. 

Figure 5.17 shows the path-packets, which have now been amended with 

the insertion point index (IP address) within the given cluster. As discussed 

in section 5.7, the split-path are handled separately. To avoid adding an extra 

bit to every packet, the split paths are placed at the end of the configuration 

stream and a per row flag indicates that all the path-packets in that row are 

split ones. Although it seems a waste of space, split paths are very rare and 

thus the overall impact is smaller than what it would have been otherwise if 

an extra bit was added to each packet. 

Other notable features on figure 5.17 include the eos field, which stands 

for 'end of step'. This flag indicates the last row of the current configuration 

context. The rrc field includes timer fields for the read memory interfaces and 

the step time, controlling how long the configuration context should be retained 

before switching. This is described in more details in chapter 6, section 6.2. 
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5.14 Compressibility 

Each of the outputs of the example switch-box requires at least 2-bits to dis-

tinguish between the 4 possible intra-connections. In practice an extra output 

state for the un-driven case is required, to prevent combinatorial loops, which 

normally ties the output to a logical zero. Normally, this would require to be 

stored in the bitstream. However, as explained in 5.8 the path decoding pro-

cess will set or un-set those control bits implicitly, thus eliminating the need 

to store them in the stream. Although important, this extra state is ignored 

on the following analysis, thus keeping the bits 2 per port. 

For a total of 5 output ports, 4 network and 1 terminal one, each switch-box 

requires a configuration of lObits in total. The entire array would require N 

< lObits for the interconnection alone, where N is the number of sboxes. For 

a 64 sbox array, that is a total of 640bits for interconnect configuration. Even 

if there is only one active connection, which occupies a small subset of the 

network resources, we still need to provide the total amount of configuration 

bits including those that are not used. Clearly there is a significant amount of 

redundancy in the configuration stream, which can be removed. An encoding 

technique that stores only the active switch-boxes would require for the exam-

ple of figure 5.5 at least 13 x 10 = 130bits in total, since the example path 

occupies 13 switch-boxes. This represents the raw useful information required 

for this example. In practice more than that is required since some extra in-

formation is need to be able to re-assign the appropriate bits to the correct 

switch-box. 

Based on 5.1 and assuming a 8 x 8=64 switch-box lattice, the path-encoding 

technique requires 1092(8) = 3bits per axis for the source field, 2bits for mono-

tonic 

ono

tonic and direction flags, 3bits for the size fields, assuming a maximum dis-

placement vector size of 8 and another 3bits per controllable segment (5 of 

them). That is: 

[m] 	[dir] [S(ys, xe)] [size] [dj d3  d2  d1  d0 ] 

1 	1 	6 	1

3 	1 12 	=23-bits 

Compared to the minimum configuration required for the participating 
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switch-boxes of the example path, the path-encoding technique achieves a 

20/130 = 0.18 compression ratio. Worth mentioning again, is that the un-

compressed configuration size for the above scenario is 640bits no matter how 

simple or complex the active connections are. Thus the actual compression 

ratio achieved is 23/640 = 0.035. 

In practice, the compression ratio varies depending on the core utilisation. 

Table 5.2 shows various examples encoded with the path-encoding technique 

and the average compression ratio achieved. The lower the compression ratio 

is, the better. Each of those examples is composed of a set of configuration con-

texts, with varying core utilisation as seen by the standard deviation enclosed 

in parentheses. 

average utilisation raw PE compression 
libmad 12%(6.43) 1,507Kb 329.64Kb 0.22 
DCT 18.54%(9.85) 44.7Kb 15Kb 0.34 
h264 10%(5.32) 23,221Kb 4,644Kb 0.2 

Table 5.2: Path-encoding compression examples 

Figure 5.18 shows the relationship between core utilisation and compression 

ratio achieved in the MP3-libmad example, mapped on a 9x9 core. This off-

the-self MP3 implementation has more that 1.2K contexts and achieves a core 

utilisation that ranges from 2.67% up to a close 50%, with compression ratios 

ranging from 0.1 to 0.75. It thus offers a good set of data to analyse the 

path-encoding technique. 

The first observation is that the compressibility reduces as the core utili-

sation increases. In fact, following the extrapolated line, the path-encoding is 

not able to provide any benefits for core utilisation near 50%. Anything above 

that and the encoding expands the bit-stream instead of compressing it. This 

is a common characteristic of any code compression technique. On a practi-

cal implementation it would be best to disable the path-encoding, bypass the 

decoder and load the raw stream directly instead. 

Other than the total core utilisation, the compression ratio depends on the 

contents of the configuration context as well. This is shown by the range of 
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Figure 5.18: MP3-lihmad compressibility 

compression ratio in the graph for different core utilisation values. The second 

set of data on the bottom part of the graph, show how this range changes 

in relation to the total core utilisation. The extrapolated line shows that for 

high utilisation the compression ration range starts to saturate, which is only 

natural, since as the total core utilisation increases there are fewer possible 

permutations. 

The purpose of code compression, such as the path-encoding technique, is 

to reduce the footprint of under utilised configuration contexts, what in VLIW 

terminology would ammount to No Operation (NOP) slots. The goal of com-

piler optimisation is to increase overal core utilisation and thus reduce those 

NOP slots. However, due to the very nature of most applications, eliminat-

ing those NOPs is not possible. The path-encoding offers a solution here, 

occupying only 12% of the total design area, as seen in chapter 3. 

The effectiveness of the path encoding as a compression scheme can he seen 
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by looking at the program memory bandwidth requirements of an application, 

such as the MP3 decoder. Figure 5.19 shows the accumulative configuration 

bits transferred from the program memory over the process of decoding 5 

seconds worth of MP3 audio data, with and without path-encoding. The graph 

is composed by grouping the various executed configuration context based on 

their core utilisation figures. Therefore, for every core utilisation figure, the 

graph shows the context with the highest bit transfers. The transfer size 

depends on the number of times each configuration context was fetched as 

well as the size of the context itself. What the data shows is that, despite the 

diminishing returns in code-compression as the core utilisation increases, there 

is a total of 2.75 times reduction in total program data transfers. 
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Figure 5.19: MP3-libmad configuration transfers per core utilisation 
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6.1 Configuration distribution 

The configuration distribution network is responsible for delivering the con-

figuration stream to the various parts of the reconfigurable fabric, from the 

program memory store. The simplest form of this network is a set of point-

to-point wires driven by the program store itself. The configuration stream is 

stored in raw format in that case. A reasonably sized core of a few hundred 

computational units, has a fairly wide configuration context, in the range of 

a few kilobits. In case of an off-chip program store, it would be impractical 

to have such a wide distribution network. Thus the configuration stream is 

normally spilt into smaller, more manageable chunks, which are delivered in 

sequence. The core assembles those chunks into a local store for the entire 

configuration context. The same argument applies for on-chip program store 

of several hundred contexts. A kilobits wide memory would require a custom 

design with serious design challenges. 

The benefits of code compression are addressed in 5.14, which shows the 

total bandwidth savings achieved by applying compression to low utilised con-

texts. When code compression is applied, the configuration stream needs to 

be decoded before it is mapped to the core. There are two main options for 

the configuration distribution network in this case. It can either deliver the 

encoded stream to the core, where the decoding happens, or can come after the 

decoding process and thus deliver the raw stream instead. The first scenario 

is referred to here as on-line routing, while the second off-line routing. 

6.1.1 Off-line routing 

The decoding process is normally an iterative one, which, in the case of the 

path-encoding, involves the unfolding of each path based on the encoded in-

formation in the configuration stream. In the case of an off-line routing, other 

than the decoding processes, for the re-configuration to be complete, the re-

sulting configuration patterns need to be applied to the right routing resource 

to establish the paths and setup the operation modes of the right cells. 

There are two main ways to implement the configuration loading, after de- 



coding. It can either be done as a memory mapped storage space or loaded 

in a stream-like fashion. In the memory mapped scenario, the configuration 

context is accessible as a random access memory (RAM). The decoding pro-

cess can update any section of the configuration context, thus strict order is 

not required. On the other hand, a streaming-like loading process requires 

the input stream to be the right order. Depending on the implementation, 

the streaming approach may require a fixed number of cycles to load a con-

figuration stream. Due to the nature of the path-encoding, which follows the 

shape of individual tracks, it is difficult to devise a streaming-like loading sys-

tem without employing 'on-line' routing practises. Because of that, only the 

memory-mapped approach is covered here. 

[m] 	[dir] 	[size] 	[d0 . . . d_11 	 (6.1) 

The following assumes an enable matrix is used for addressing the insertion 

points, as seen in 5.10, and the packets are of the form found in 6.1. The 

HEM needs to be decoded first, before being able to decode the path packets. 

However, decoding of the path packets can start once the fields that correspond 

to the current subset of packets being decoded is ready. Due to the hierarchical 

structure of the matrix, it is possible to do an incremental decoding, alongside 

the path packet decoding process. A level-2 cluster of insertion point indexes 

can thus be derived using the 3 fields corresponding to that cluster, as seen in 

Figure 6.1. 

Every HEM field encodes n indexes, where n is number of sub-clusters and 

thus bitwidth of the field. In general, the index of an insertion point is the 

binary concatenation of the decoded indexes the corresponding set of HEM 

fields from each level, index = {l, 12,131.  Based on this inherent property of 

the HEM, it is possible to interleave the HEM fields with the path-packets in 

the stream, as shown in 6.2. This allows a more uniform memory access and 

an incremental decoding process. 

[Li] [[L2] [[L3] [PLO] ... [PL]] ... [[L3] [PLo]... [PL]] 1... [[L2] [[L3]...] 	(6.2) 
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Figure 6.1: Incremental HEM decoding 

are the HEM fields. 

PL are the path packets. 

Due to the variable nature of both the HEM and the path-encoding, the de-

coder consumes a variable number of bits at a time. A word assembly module 

plays the role of an interface between the decoder and the program memory 

store, fetching the right amount of data from the memory and delivering prop-

erly aligned fields to the decoder. The general overview of the decoder system 

is shown in Figure 6.2. 

The 'memory interface' module deals with the variable size requests and 

is what does the word assembly. The decoder does an incremental HEM de-

coding, by concatenating L1 , L2  and L3  fields as shown in figure 6.1. The 

path-packet decoding is state machines. The 'GET HEADER' stage collects 

and sets the monotonicity and direction on the monotonic axis of the path 

as well as the size of the displacement vector. The rendering process iterates 

through the displacement fields and derives the edges and vertices of the path 

based on those. 
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Figure 6.2: Off-line HEM and path decoder 

6.12 On-line routing 

Considering the routing configuration needs to be propagated across the rout-

ing network in order to render the tracks of the current context, an alternative 

solution would be to decode the path 'in place'. Instead of propagating the 

decoded stream, the fetching unit can propagate the relevant fragments of the 

encoded stream to the right place, inside the routing network, to be decoded. 

This is the basic concept behind the on-line routing approach, which resembles 

the pipelined propagation of a wormhole routing. 

There are several ways one could partition the encoded stream into au-

tonomous fragments. Treating each point-to-point connection as one fragment 

is probably the smallest granularity, in which case, the fragment would be, a 

path-encoding packet. Each point-to-point connection forms a track inside the 

routing network, from the source node to the destination one. The shape of 

this track is described in the relevant path-encoding packet. The fetch-unit de-

livers this packet to its source node, where the decoding processes commences. 

The decoding process is done here in a distributed fashion, where each node 

includes a small decoding logic. The track 'rendering' completes when the 
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packet reaches the destination node. 

Sou 

ath-packet 

Figure 6.3: On-line path rendering 

Figure 63 shows the process of rendering a path on-line. The packet is 

encoded using the turn-based format with chain-encoding presented in sec-

tion 5.9 and as discussed in section 5.6, this is rendered in reverse order, from 

the destination port to the source port. 

6.2 The Reconfiguration Rate Controller 

The active time of a configuration context depends on the critical path of its 

longest data-path. Due to the highly flexible interconnects of the architecture, 

data-paths can be formed with arbitrary shapes and lengths. The critical path 

of a context can thus vary from a few non-seconds to over hundred nano-

seconds, depending on the size and mixture of cells in the array. Using a 
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reasonably sized fixed context duration would limit the longest critical paths 

one could form and would introduce significant idle time for short critical paths. 

on the other hand, choosing a short fixed duration will limit the operation chain 

depth one can achieve. Clearly, the architecture should cope with the variable 

length contexts. 

Long critical paths are normally tackled with pipelining. Conventional 

RISC processors use pipelining to reduce the critical path of their fetch - decode 

- execute - memory- writeback circle. However, these often deep pipelines in-

troduce a latency,. which degrades performance when branching. To avoid the 

effects of this latency, modern processors employ sophisticated branch predic-

tion units. In the arms race for faster processors, the branch prediction units 

are the crown jewels of each architecture and are thus close guarded industry 

secrets. 

An important contributor to the critical paths of a reconfigurable fabric, 

is its interconnection network. If a fixed pipeline is to be used, the intercon-

nects should be pipelined as well.To avoid imposing limitations to the routing 

flexibility of the network, the minimum permanent pipeline stage size for a 

2D toroidal mesh is equal to the propagation delay of two switch boxes, as 

seen in figure 6.4a. A wider pipeline stage configuration introduces uneven 

path delays, as seen in figure 6.4b. Here the pipeline registers are inserted at 

the output ports of the selected switch-boxes. This requires 6 output registers 

(4 network and 2 terminal) per switch-box. A 64-element 2D toroidal array 

would thus require 192 registers to pipeline its network. 

The pipeline registers have an effect on the overall silicon area, but are not 

the main problem of such permanently pipelined interconnects. Path balanc-

ing and synchronisation are what make such a design complicated. A software 

solution could involve balancing out the pipe-line depths of the various paral-

lel data-paths, by inserting extra pipeline registers to the shortest ones. This 

becomes a complex routing problem, since extra registers means extra chops'. 

Hardware synchronisation techniques would involve a completion detection 

mechanism for every parallel .data-path. These issues are tackled in asyn-

chronous design methodologies. An asynchronous design is normally based on 

some kind of hand-shaking mechanism [55], thus becoming self-timed, where 
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Figure 6.4: Pipelined interconnects 

the critical path propagation delay is dynamically derived. An asynchronous 

design can also be seen as an 'event driven' one. Once no events are left to 

serve, the execution of the current configuration context is considered com-

plete and the core may switch to the next one, or re-execute the current one in 

the case of a loop. Even though it is a very attractive solution, asynchronous 

designs are still in their infancy. However, they are gradually winning the trust 

of the semiconductor industry [56, 57]. 

Software pipelining, which is supported by the current RICA implementa-

tion, can reduce the critical paths and increase parallelism and thus through-

put. This involves adding registers in long data-path chains, thus splitting the 

source configuration context into logical pipeline stages. The effectiveness of 

this approach depends on the number of available registers in the core. Fur-

thermore, software pipelining using registers as cells, requires more routing re-

sources to access those registers and has diminishing returns as core utilisation 

increases. Software pipelining is better suited to an architecture that incorpo-

rates controllable registers as part of the interconnects. Software pipelining is 

a performance enhancing features used in kernels, rather than a solution for 

the variable length paths. Although one can use software pipelining to enforce 

a fixed step clock, applying it to non kernels introduces unnecessary latencies. 
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The solution chosen for the RICA prototype is based on a conventional 

synchronous design that handles the configuration context duration variabil-

ity using timers. The Reconfigurable Rate Controller (RRC), as the name 

implies, manages the reconfiguration of the core. The critical path of each 

configuration context is calculated by the compiler/scheduler and is included 

in the configuration stream as a timer time-out. The RRC, which in simple 

terms is composed of a set of timers, counts until the execution timer expires, 

before issuing the next context-switch. The timer resolution is defined by the 

master clock of the device, which is also feeds to the RRC. 

MSB 	 LSB 

I C31 rmem31c2l rmem2IClI rmemilcol rmemol 	step 	I 
I-  WR ' 	Ws 	I 

Figure 6.5: RRC fields 

Figure 6.5 shows the various bit-fields of the RRC configuration, with the 

step field representing the configuration context/step execution timer. The 

width of the step field is Ws and depends on the timer resolution as well as 

the maximum allowed critical path. Other than the critical path duration time, 

the RRC's configuration also includes the starting times of the read-memory 

access requests of the relevant interface cells, shown here as rmem. The bit-

width of those fields is WR and depends again on the timer resolution. The 

C is the cascading bit and is explained later. 

Unlike write-memory accesses that occur at the end of the execution of a 

configuration context, read-memory accesses form parts of the various data-

paths. It is important to issue the read-memory access request once the address 

is ready. For that, we need to calculate the propagation delay of the data-path 

feeding the address input of the read-memory interface cell. This propagation 

delay forms the rmem start-time of the read-memory interface cell, as seen 

in figure 6.5. 

After a read-memory interface cell (rmem cell) issues a read request, its 

output will be ready after the memory latency time has elapsed. As discussed 

in section 3.5, simultaneous accesses to the same memory bank are queued 
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Figure 6.6: RRC read-memory interface start time 

by the arbiter. The total memory latency is thus unknown and depends on 

run-time conditions. To overcome this problem, the arbitration logic signals 

the RRC when a read memory operation completes. This way, the RRC can 

incorporate the run-time delays in the total execution time. 

Figure 6.6 shows an example critical path with two rme'rn. cells. The total 

'critical path' is t. The combinatorial delay of the path feeding the address 

input port of rmern0  is tR0 , while the memory latency for rme'rn0  is d0 . In 

this graph, rmem1  cascades to rmem0 . Its starting time would normally be 

(t R0+do)+t R . Since d0  is not known at compile time, the two rmem timers are 

'cascaded'. The start timer for r'mem1  will start once rmem0  has completed its 

operation and its output is ready. This accounts for the (tR0  + d0 ), leaving the 

tR1  for the rmem1  start timer. This 'cascading' condition is indicated using the 

cascading bit C1 . Similarly, the step timer will start once all rrnem operations 

have finished and thus it only requires to count the tstep time. Overall, the 

total critical path is tcp = (tRo  + d0 ) + ( tR1  + d1 ) + tstep, where t3, are static 
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delays, while d are dynamic. 

6.3 Pre-fetching 

The reconfiguration of reconfigurable core such as RICA can take several cycles. 

The configuration latency introduces can impact the overall efficiency of the 

core and thus reducing that latency is important. There are ways to hide some 

of that latency by pre-fetching the configuration into a 'back page' context 

storage, ready to be used when needed. There are 3 simple cases where the 

next context can be safely pre-fetched: 

a No branching is present in the current context/step. 

b The branching is unconditional and the address of the next context is 

provided as an immediate value. 

c We are in a kernel. The exit step can be prefetched 

By pre-fetching the 'next' context, the configuration time can partially or 

completely overlap to the execution of the current step, thus reducing the 

effect it has to the total execution time. Figure 6.7 depicts on such pre-

fetching scenario and compares it to the non-prefetching case. The core row 

shows the general switching activity on the core, with A to D corresponding to 

different context, the fetch re presends the configuration loading subsystem 

and the bank shows the activity of the data memory banks. As described in 

section 6.2, the memory reads are issued one or more cycles after the start of 

the execution of a context, which is shown here by 'synch'. Memory writes are 

issued at the end of a context and can run in parallel to the core execution. 

However, they can block subsequent reads. 

The top case corresponds to the non-pre-fetching scenario, while the bottom 

case to the pre-fetching one. When the core does not pre-fetch context, fetching 

always happens at the end of the execution of the current context and delays 

the start of the next context. However, when pre-fetching is enabled, the fetch 

unit can start loading the next configuration context whilst the core is running 
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Figure 6.7: Prefetching and dynamic delays 

the current one. This is show in figure 6.7 with B, C and D configuration 

context overlapping in time to A, B and C context respectively. This time 

'compression' introduces some rather interesting effects. One such is that of 

memory writes blocking memory reads. Since context B starts now earlier than 

before, the memory writes of context A conflict now with the memory reads of 

context B. This causes the core to delay the retirement of the current context 

B, shown here as an 'extend' in the time-line. Thus, read after write cases can 

reduce the effectiveness of pre-fetching, although in general the improvements 

are significant. 

The results in table 6.1 show the effect pre-fetching has on the libmad MP3 

decoder running on RICA. The core is clocked at 50MHz, which includes the 
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RRC and the program and data memories. 

pre-fetch non pre-fetch 
avg ns/step 73.96 88.43 
total time 2.5 2.99 
config latency 0.5 0.99 
MSarnples/sec 13.52 11.31 
step count 33839689 33839689 
fetch count 17379147 17379147 
pre-fetch count 10270603 0 
pre-fetch percentage 59.1 0 

Table 6.1: Results with and without pre-fetching on libmad 

Table 6.1 shows a reduction of about 50% in configuration latency, which 

amounts to an over 16% improvement in final throughput. Figure 6.8 shows 

the dynamic data retrieved from the RICA simulator. The graph shows the 

activity on a kernel step and the exit step that follows. The highlighted bars 

represent the fetching loading time. The bottom case has pre-fetching enabled, 

while the top case does not use pre-fetching. Thus, in the upper case, the core 

has to wait for the configuration context to load before it can start executing. 

The green vertical lines on the right hand side contexts, show the start of 

execution for each of those cases. The time delay between the non-prefetched 

and pre-fetched case is marked as d. 

The results show that, even without the use of complicated branch pre-

diction, the simple pre-fetching offers a healthy performance boost. From an 

implementation point of view, pre-fetching requires an extra set of configura-

tion context registers, which for the RICA prototype chip represents a 5% area 

increase on a 4mm2  total core area. 
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Figure 6.8: Time-charts with and without pre-fetching 
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Chapter 7 

Software Toolfiow 

107 



7.1 Toolfiow overview 

Several aspects of the design flow of reconfigurable architectures are similar to 

those of an ASIC design flow, such as place and route. On the other hand, since 

reconfigurable architectures are programmable in nature, parts of their design 

flow resemble that of GPPs, such as the compilation phase. The RICA toolfiow 

is no exception, combining stages from both ASIC like and GPP like toolfiows. 

Furthermore, since RICA is an architecture template, it also provides a set of 

tools that aid to the development of different core configurations, such as size 

and resource mix. The software toolfiow is thus split into two sets of tools, 

one targeting the software developer and the other the core developer. 

7.1.1 Frontend 

The following list of tools are what an application developer would use when 

writing an application for RICA. 

rMDF] 

f._[comiier ]J[Scheduier]1' 

Chain &I 

LFROUting 
AllocationJ Lstj1. 

____________ 	Config 
Bitstream)-1  
GeneratorJ 1+ 1 

__ ;ng 

[_T j-1'L  Simulator 

	

_ 	;n9 

	

BLM 	___ 
-+ Emulator 

Figure 7.1: Toolfiow overview: Frontend 

Compiler The design entry for RICA is ANSI C, although, since the com-

piler is based on GNU GCC, other language front-ends could also be used[58]. 

ME 



A RICA specific compiler backend is provided that emits a suitable assembly 

format. This backend also attempts to enable particular optimisations that are 

better suited to a RICA design, such as inferring multiplexor logic in certain 
/ 

branch conditions, thus extending the use of the conditional move instruction. 

The modifications to the compiler are not part of the present work and thus 

are not covered here. 

Scheduler This is a stand-alone, custom tool that accepts the output as-

sembly produced by the compiler. It also reads in the machine description 

file (MDF), which gives details of the target RICA core, such as resource mix 

and propagation delay per cell type. The compiler does not deal with the spa-

tial nature of the core. The scheduler re-builds the control flow and data flow 

graph of the application from the assembly and based on the MDF, determines 

appropriate mappings, which form the operations of a configuration context. 

The application is thus divided into a set of 6ontexts with their associated 

control flow information dictating the execution flow. These contexts, which 

are known as 'steps' in the RICA terminology, are then output in the RICA 

'netlist' file format, which is described in Appendix B. The global memory 

contents are also extracted from the assembly and saved in a separate file. 

This separation is done because RICA is a Harvard architecture with separate 

data and program memory. The scheduler does also perform some data-flow 

graph simplifications not picked up by the compiler. The implementation of 

the scheduler is a separate project which is not part of this work. 

Routing-Allocation Performs final allocation and routing of the design. 

Both the compiler and scheduler operate without a physical representation of 

the core itself. The compiler knows only about the supported type of instruc-

tions, while the scheduler has extra information on the resource mix, but not 

the physical placement of the core. The routing-allocation tool, described in 

section 7.6.2, accepts the physical layout of the target RICA core as well as 

the abstract netlist generated by the scheduler. It performs final register allo-

cation as well as per step functional cell allocation, with the physical layout in 

mind. The main objectives are congestion removal and wire-length minimisa- 
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tion. The final output is a netlist format amended with path information per 

conneclion. 

Bitstream Generation Based on a routed netlist, the bit-stream generator 

produces the final bit-stream to be loaded on the core. This tool includes the 

software side of the path-encoding, which is the configuration compression sys-

tem. It forms the encoded configuration fragments and populates with those 

the memory rows accordingly. Although part of this work, the bitstream gen-

erator is not explicitly covered here, since its function is described in chapter 5, 

which explains the path-encoding and configuration context partitioning. 

Simulator A cycle accurate, Transaction Level Model of the architecture, 

which allows the programmer to simulate the application. Depending on the 

level of detail of the input netlist, the simulator can check for path delays and 

report timing violations. It includes a detailed representation of the memory 

subsystem and thus can track the dynamic behaviour of memory access. The 

simulator can be used to get detailed timing analysis, switching activity and 

power estimation, utilisation trace graph, per step core dumps and memory 

dumps. Details of its implementation are found in section 7.4. 

Emulator A behavioural model of the architecture, which provides fast ex-

ecution for rapid prototyping. It provides similar debug facilities to the sim-

ulator, such as memory and core dumps and timing estimation. In addition 

to that, the emulator offers a virtual video frame buffer which can be used 

for testing multimedia application running on RICA as well as visual cues for 

debugging memory access patterns. The emulator is a separate project not 

covered by this work. 

7.1.2 Backend 

The following tools are part of RICA's physical design flow, suitable for archi-

tectural design exploration as well as final production of the core setup. 
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Figure 7.2: Toolfiow overview: Backend 

Physical Placement Produces the physical layout of the core. RICA is a 

heterogeneous architecture. The physical placement of the cells can impact the 

'routability' of the core. The physical placement tool accepts a set of netlist 

from the target application domain. It analysis the contexts in those netlist 

and derives a suitable layout that gives satisfactory 'routability' across the 

range of tested applications. The main objectives are similar to the routing-

allocation tool, but here, the tools is free to place each cell to any location 

on the grid of the array and does sd based on an average estimation across 

several steps, rather than one step at the time. Because of this input netlist 

dependent behaviour, the physical placement will favour netlists of the input 

application domain, although tests, presented in section 7.6.1, show that the 

generated layouts are fairly generic. 

Group Optimiser Defines the configuration context partitioning, which de-

termines which group each cell belongs to. Similar to the physical placement, 

the partitioning derives from an analysis of a set of netlists from the target 

application domain. More details are found in section 7.6.3. 

Chain Generator Produces the dictionary of the chain encoding. As with 

most of the RICA backend tools, the chain generation is based on a given 

target application domain. This tool is covered in section 7.6.4. 

Array Generation An automated array generation tool, based on an input 

physical layout. It's a translation tool from the RICA netlist architecture 

I/ 
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definition to a top level Verilog file with the instantiation of the individual 

modules of the design. 

The rest of this chapter describes those tools that have been developed as 

part of the work presented here. More specifically these include the routing-

allocation, simulator, physical placement, group optimiser, chain generator, 

while the array generator and bit-stream generator are omitted. 

7.2 Toolfiow walk-through example 

This section gives a brief overview of the compilation and configuration gen-

eration process by example, which form the basic steps of the RICA frontend. 

Entry C code The following C code snippet shows a simple kernel, operating 

on an array named input and storing the results to an array named output. 

These arrays sit on the global scope and thus will be stored in memory. The 

code includes an expression that is intentionally chosen here to show how the 

compiler eliminates redundant operations. This is referring to the i>100 within 

a for-loop where the counter i is in the range of [0,99]. This expression 

is always false and thus the condition always resolves to the right-handside 

expression of (a - input [i]). 

unsigned i0; 
for(i0; i<100; i++) 
{ 

mt a = input [i] * input [i]; 
mt b = i>100 ? (input[i-1001 + a) 	(a - inputli]); 
mt c = i%2 ? a b; 

- output[i] = c * C; 

Compilation After compilation, the resulting RICA assembly for the above 

C code snippet is as follows: 
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loop-label: 
CONST out=r4 conf!_input 
RMEM out=r3 in_addr=r5 in_off =r4 conf='RNEM_SI 
MUL out=r4 inl=r3 in2=r3 conf='MUL_SIG_SI 
ADD out=r3 inl=r4 in2=r3 conf='ADD_SUB_SI 
LOGIC out=rO ini=r6 in2=r7 conf='LOGIC_AND_SI 
MUX out=rO inl=r4 in2=r3 conf='MUX_SEL_IN1_IF_NEZ sel=rO 
MUL out=rO inl=rO in2=rO conf='MUL_SIG_SI 
CONST out=r3 conf= !_output 
WMEM in=rO in_addr=r5 in_off =r3 conf='WMEM_SI 
CONST out=r4 confl 
ADD out=r6 inl=r6 in2=r4 conf='ADD_ADD_SI 
CONST out=r3 conf =4 
ADD out=rS inlr5 in2=r3 conf='ADD_ADD_SI 
CONST out=r4 conf=100 
COMP out=rO inlr6 in2r4 conf'COMP_EQ_SI 
CONST out=w33 conf=loop_label 
JUMP addr_in=w33 nl_out=OPEN_cond=rO conf='JUNP_IF_EQZ_H 

where the redundant operation described above is optimised out. 

In the compiler terminology, the above set of instructions represents a 'basic 

block'. A basic block is a sequence of instructions between branch points, 

designated by labels. The 'entry' label of this basic blocked is loop-label, 

while the 'exit' is only implicit here. The assembly has a few more basic blocks 

that are not shown here, which perform thinks like register initialisations and 

other house keeping. 

The RICA assembly format, is fairly self explanatory, starting with an in-

struction name and followed by the output and input arguments of the in-

struction. Registers are represented with 'rN' and immediates with 'wN'. In, 

the assembly representation, data is passed on from one instruction to the 

next via registers. However, as seen later on, most of these registers are con-

verted into wires when mapped onto RICA. Unlike conventional ISAs, each 

instruction specifies modes of operation, which are passed on via the conf 

input argument 

Notice that the jump-to address (addr_in argument) used by the JUMP 

brunch instruction, is the loop-label label, indicating an execution loop. The 

branch condition for the JUMP instruction is stored in register rO, which is the 

result of a single-integer equal comparison operation, indicated by the macro 

'COMP_EQ_SI. For more information on the various operation modes of each 

instruction cell, refer to Appendix C. This comparison operation corresponds 

to the 1<100 comparison of the for-loop in the C source code, though it has 
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been converted into a do-while expression, hence the equal operation, rather 

than smaller-than. The loop counter here is register r6. 

Scheduling The assembly is passed on to the scheduler that produces the 

abstract netlist, which is composed of a sequence of steps. The RICA netlist 

format is described in section 7.3. The above basic block forms a single con-

figuration context (step), which is represented in the RICA netlist format as 

follows: 

step [hloop_label] 
{ 

.reg[2] .in = add[1] .out; 

.const_32b[1] .conf = 4; 

.add[1] { .in1=reg[2] .out(length=1.0); .in2=const_32b[1] .out; 
.conf='ADD_ADD_SI; } 

.const_32b[5].conf = 4; 

.reg[5] .in = add [41 .out; 

.rinem[O] { . conf='RMEM_SI; . in_addr=reg[5] . out; 
.in_off=const_32b[5] .out; } 

.mul[1] { .conf='MUL_SIG_SI; .inl=rmem[O] .out; .in2=rmem[0] .out; } 

.add[3] { .conf='ADD_SIJB_SI; .in1=mu1[1].out; .in2=rmem[0].out; } 

.reg[6] .in = add[2] .out; 

.reg[7]; 

.logic[O] { . conf='LOGIC_AND_SI; . in1=reg[6] . out; . in2=reg[7] . out; } 

.mux[0] -C .conf='MUX_SEL_INLIF_NEZ; .in1mu1[1] .out; . in2=add[3] .out; 
.se1=1ogic[0] .out; } 

.mul[0] { .conf='MtJL_SIG_SI; .in1=nux[0].out; .1n2mux[O].out; } 

.const_32b[2] .conf = 404; 

.winem[0] { .conf='WMEM_SI; .in=mul[0J .out; .in_addr=reg[2] .out; 
.in_off=const_32b[2] .out; } 

.const_32b[3] .conf = 1; 

.add[2] -C .conf='ADD_ADD_SI; .in1=reg[6] .out; . in2=const_32b[3] .out; } 

.const_32b[4] .conf = 4; 

.add[4] -C . conf='ADD_ADD_SI; . in1=reg[5] . out; . in2=const_32b[4] . out; } 

.const32b[6] .conf = 1oop_1abe1; 

.const_32b[0] .conf = 1; 

.reg[31].in = add[0].out; 

.add[0] -C .conf='ADD_SUB_SI; .in1=reg[31] . out; .in2=const_32b[0] .out; } 

.jump[0] -C . conf=' JUMP_IF_ECZ_L; . addr..in=const_32b[6] . out; 
.cond=reg[31] .out; } 

} 

In case there are not enough resources to map the basic block into one con-

text, the scheduler would split those up into a sequence of smaller steps. Unlike 

the assembly, the netlist explicitly specifies the instances of each instruction 

cell in use, although these will change later on during allocation. The majority 

of register transfers are converted here into wires connecting the various in-

struction cells together, into operation chains, as seen on figure 7.3. In fact, all 
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register instances present in the assembly are ignored and the scheduler infers 

registers as required, which is why the instances do not match the assembly. 

For instance, the for-loop counter was rO in the assembly, but is reg [5] in 

the resulting netlist and will yet again be relocated into something else dur-

ing allocations. The tools provide debugging facilities to track down variables 

throughout the toolfiow. 

In the example generated netlist, the scheduler has performed an in-place 

optimisation / simplification of the branch condition and loop counter data-

path, also show on the upper-left corner of figure 7.3. The initial counter 

increment and comparison to 100 has now been replaced with a shorter equiv-

alent version of decrement and check to 0 performed by the jump cell, which 

does not need a separate comparator instruction cell. Furthermore, the jump 

condition is fed directly by the register that holds the counter, thus forming 

the shortest possible path. 
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Figure 7.3: Example kernel: Data Flow Graph 

The critical path is highlighted with red. There are only 5 instantiated 
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registers in this step, where register reg [7] is an input, while registers reg [2], 

reg [5], reg [6] and reg [31] are both inputs and outputs to this step. 

Allocation and Routing The generated netlist is passed on to the alloca-

tion and routing tool that maps each step into the physical resources of the 

array. The allocator chooses the appropriate physical instance for each in-

struction cell, while the router forms the physical paths connecting the cells 

together, as see on figure 7.4, which is the live view from the allocation and 

routing tool. In this view, the arrows represent the physical routing chan-

nels of the array, the black boxes represent the switch-boxes while the smaller 

colourful boxes the instruction cells. Straight lines are used to show the logical 

connections between the cells. The colours of the physical routing channels as 

well as logical connection lines match those of the driver cells. Cell instances 

and routing channels that are not used are not shown. 

The instance indexes shown here are those of the input netlist, which helps 

maintain the association between the input netlist and the resulting mapping. 

However, these may not be the same as the physical instance indexes of the 

chosen cells, which can be viewed by selecting the alternative view in the 

viewer. The small sub-data-path responsible for the counter update and branch 

condition, is mapped here to the lower middle part of the array, where the jump 

instruction cell is situated. There one can see the counter reg[31] with a 

feedback to an adder add [0], as well as driving the condition of the jump [[0] 

branch unit. const_32b[0] holds the constant 1 used for decrement, while 

const..32 [6] the jump-to address, as can be seen by the above netlist. The 

reading and writing to the memory, done by rmem [0] and winem [0] respectively, 

can be seen at the upper part of the core, where the memory interface cells are 

located. The rest of the graph is mapped in a way to minimize wire-lengths. 

Bitstream generation The routed netlist is then passed on to the bit-

stream generation tool which produces the final configuration contexts to be 

loaded into the core's program memory. This tool path-encodes the connection 

tracks, assembles the path packets, appends the addresses and populates the 

appropriate 'groups' in every 'row' of each step. The resulting configuration 
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Figure 7.4: Example kernel: Routed 

contexts look like figure 5.17 in section 5.13. The tool offers several output 

choices, including hex, verilog test vectors and a C array format for modeling. 

7.3 RICA Netlist format 

The RICA platform is a template rather than a fixed design, with the presented 

RICA prototype being an embodiment. This is made possible by the use of an 
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abstract description of the various aspects of the design as well as the sequence 

of configuration contexts to be executed on the array. This description, which 

is defined as part of this work, is referred to as the 'RICA netlist' and serves 

as the common language/representation used by the entire RICA software 

toolfiow, as seen on figures 7.1 and 7.2. This common abstract representation, 

allows the tools to become architecture agnostic in terms of resource mix and 

layout. The RICA netlist is composed of the following 'fields': 

Architecture field Describes the various components of the architecture. 

It contains the cell and layout subfields as well as the alternative abstract row 

field. 

Cell field Lists the available cell types of the architecture and for each cell 

type includes the definition of its port types and configuration size. 

Layout field Provides the instantiation of the cells and thus specifies the 

instance count for each cell type as well as the switch box terminal port each 

of the cell instance ports are associated to. 

Row field An alternative abstract field for instantiating cells, which does 

not provided layout information. This only specifies the instance count for 

each cell type. 

Data field Includes the global data memory containts of the program 

Sequence field Is a list of step fields that describe the entire configuration 

sequence. 

Step field A connection oriented description of a configuration context. It 

can optionally include routing information, describing the detailed paths the 

connections use. 

The detailed RICA netlist format can be found in Appendix B. 
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7.4 RICA TLM simulator 

7.4.1 Transaction Level Modelling and SystemC 

Transaction Level Modelling(TLM) offers a high level of abstraction view of 

the target design, with emphasis in the interaction between the various com-

ponents of the system. As such, it allows easy and fast prototyping as well 

as early modeling of the underlying system. In case of a hardware design, 

early modeling of the system can then engage the development of the associ-

ated software stack much earlier in the design process, thus allowing parallel 

development of the two. This offers a huge improvement over conventional 

serialised methodologies, since the hardware spec can be forged to better serve 

the needs of the software as well[59]. 

TLMs are usually written in high level languages, such as SystemC. Sys-

temC is a general modeling language based on C++[60], which allows a broad 

scope of modeling levels of abstractions, including TLM. The reference im-

plementation comes as a C++ library that allows a developer to create an 

executable model of the target system. 

Although based on C++, SystemC adds hardware oriented concepts, such 

as concurrency. A SystemC model starts with the elaboration phase, where the 

individual components of the design are instantiated and the communication 

channels between them established. In this regard it's similar to HDLs. After 

the elaboration phase, the simulation is engaged, at which point no futher 

instantiations are possible. The system's skeleton it thus fixed. However, since 

one can describe almost any kind of construct, it's possible to describe flexible 

architectures, such as reconfigurable designs, albeit with some modifications. 

Section 7.4.3 describes one such modification. 

7.4.2 The simulator design 

The TLM simulator is more or less a software equivalent of the RICA hardware 

implementation. Some aspects are simplified, such as the interconnects, to 

improve flexibility and simulation performance, while others are close to a 

one-to-one mapping, such as the data memory arbiters. 
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Figure 7.5: Simulator overview 

The Core encapsulates the RICA cells and the interconnects. During the 

elaboration phase, the cells are instantiated and bound to the interconnects. 

The cell type and instance count is read from the architecture definition of 

the netlist file (see Appendix B). The RRC and Control units orchestrate the 

context execution, while the Monitor and Profiling units provide introspection. 

The interconnects are an abstract representation of the real routing re-

sources. Having an abstract representation allows the simulation of various 

topologies or types of routing resources, from crossbars to island based and 2 

Dimensional arrays. From a TLM point of view, these topologies only differ on 

the number of intermediate hops a given connection needs to go through. This 

is controlled here via a configurable set of delays. More complicated concepts, 

such as routing conflicts and arbitration, can be implemented on top of this 

design, that would allow the simulation of things such as shared-bus topologies 

or message passing protocols. A more detailed description of the interconnects 

implementation in SystemC can be found in section 7.4.3. 

The RRC is almost a direct implementation of the corresponding hardware 

module as seen in section 6.2. The Control unit implements part of the 

program memory interface of the hardware implementation. The Control unit 

emulates, among other things, the pre-fetching mechanism. An overview of its 

implementation is shown in figure 7.6. 

The condition to pre-fetch the next configuration context is given by the 
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Figure 7.6: The pre-fetching mechanism 

Core itself and more specifically the flow control unit (jump cell), as seen in 

figure 7.5. If any of the pre-fetching conditions described in section 6.3 are 

met, the Control unit will move to the PRE-FETCH state of its FSM and will 

remain there until either the pre-fetching is complete or a new context switch 

is requested. The core will switch to the next context when both pre-fetching 

is complete and a new context switch requested. The order is not important. 

7.4.3 Configurable interconnects in SystemC 

Reconfigurable interconnects are able to dynamically alter the physical route of 

a signal and thus establish a number of alternative connections. The possible 

combinations depend on the type and topology of the interconnects as seen in 

section 3.3. In HDL, such interconnects will involve a number of multiplexers. 

When it comes to high level modelling of such flexible structures, it is desirable 

to capture as many of those types and topologies as possible, thus maximising 

the design space exploration. A multiplexor is a low level implementation 

detail and thus not suitable for a high level model. 

In SystemC, binding of all ports to interfaces is done during the elabo-

ration phase and thus cannot be changed during simulation. In fact, ports 

left unbound cause run-time errors and the simulation aborts. This is not 

very different to HDL. All connections of a system are explicitly defined and 

form the system level wiring of the design. An abstract implementation of a 
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reconfigurable interconnection needs to work around this practical limitation. 

From a bird's eye view, the reconfigurable interconnects provide access 

points to the units that are attached to them and an interface to allow alter-

ing the connections. The method chosen here uses an input-centric approach, 

where a terminal input port 'decides' which terminal output port of another 

unit to establish a connection with. Compared to an output-centric approach, 

this is a more natural and simple representation, since it describes a one-to-one 

association rather than a one-to-many, in the case of a fan-out. 

The interconnects object encapsulates a 'sea' of channels and provides 

means to bind terminal ports to those channels and retrieve a channel by 

ID number. The channels are created during the elaboration phase, as ports 

are registered to the interconnects. Each terminal port gets its own channel 

which it either listens to or writes to. The output channels, those registered 

to an output terminal port, remain fixed throughout the simulation. The in-

put channels are not used to establish connection, but only provide a way to 

assign immediate constant values to ports, if the architecture supports such a 

thing. By default, an input terminal port listens to its channel. A connection 

reconfiguration will change that association to an output channel of an output 

terminal port. 

The connection establishment as well as the connection itself, can be cou-

pled with a number of properties to emulate possible arbitration logic, prop-

agation delays, congestions, et cetera. Through this abstract representation 

one can emulate a wide variety of topologies and communication protocols, 

providing an excellent design exploration tool. 

7.4.4 Features 

Other than a high level model of the RICA architecture, the simulator offers a 

number of useful features that can aid the software developer in profiling and 

optimising the target application. These are: 

Execution timing report Since the simulator is circle accurate, it is able 

to report the exact execution time of the entire program, as well as the con- 
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figuration latency. It provides a detailed report of the time each step took, as 

well as how many times each step was executed and how many of those times 

it was fetched or pre-fetched from the RAM. Along with the required number 

of configuration bits per step, this allows one to calculate the overall program 

memory bandwidth requirements 

Debug outputs To aid the debugging of an application running on RICA, 

the simulator provides a number of debugging outputs, such as core dump of 

all register and cell output contents, as well as the data memory contents. 

These debug outputs follow the execution flow and report the values on a per 

step bases. 

Dynamic model of RAM subsystem The simulator has a detailed view 

of the arbitration of the data memory subsystem. It can thus measure the 

stall times and performance degradation of accessing the same bank multiple 

times. It can thus offer the developer means to improve memory alignments 

and avoid such congestions. 

Switching activity The simulator can track the switching activity of every 

cell and every part of the system, such as the fetch unit and data memory 

arbiter. Using power and timing values from the actual hardware, the simulator 

can calculate the power consumed by the device whilst running the target 

application. A developer could then optimise the design for power as well as 

speed. The core switching activity can be viewed in the core utilisation output 

of the simulation, as in figure 7.7. 

Detailed time charts Having a detailed view of the core, allows the simu-

lator to provide a graph of the activity of each cell in time. These 'time-charts' 

show how long and at what point it time each cell is active, thus providing 

a simplified wave form for each step. An example time-chart can be seen on 

figure 6.8 in section 6.3. 
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Utilisation trace graph The simulator can produce dynamic trace of the 

core's utilisation as well as the data memory utilisation. Figures 7.7 and 7.8 

show the output of the simulator for the core and memory utilisation trace 

of the MP3 libamd application running on RICA. The green bars represent 

in figure 7.7, represent the static core utilisation, while the red the switching 

activity. 
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Figure 7.7: Core utilisation trace for libmad 

From these figures, one can see how the core iterates around the kernel 

steps, which represent high utilisation and high memory activity, with setup 

steps of low activity in between. 

7.5 The Multi-Objective Multi-Threading GA 

Framework 

The various optimisation and mapping tools described in section 7.6, are based 

on a genetic algorithm framework that is part of the research of this thesis, re-

ferred to us MoMtGA. The use of this multi-objective GA framework makes it 

easy to deploy a variety of problem solvers. Implemented in C++, it is based on 
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Figure 7.8: Memory utilisation trace for libmad 

an object-oriented programming model. The entire framework is autonomous 

and provides 'hooks' for the cost and chromosome decoding functions. 

MoMtGA is lightweight and exploits the intrinsic parallelism present in 

GAs, where individuals can be evaluated independently and concurrently to 

each other. The framework uses a batch processing engine suitable for fine 

grain tasks, implemented using POSIX threads [61], thus being able to har-

ness the parallel processing power of modern multi-core systems. Other known 

GA libraries on the public domain, have a serial implementation [62, 63], while 

some come with MT [64] or MP support [65, 66, 67] as well. Unlike those 

ones with parallel support, MoMtGA's MT support is transparent to the im-

plemented algorithm. Of course, as in all cases, the end performance of the 

algorithm depends on the implementation of the cost function, which is appli-

cation dependend. 

There are no special purpose genetic operators used or required. The chro-

mosomes are bit sequences and partitioned into parameterisable clusters that 

can be used to map to individual traits of the application's phenotype. The 

breeding process involves the creation of 4 offsprings, 2 of which are produced 

using single-point crossover and 2 using uniform recombination, as shown in 

figure 7.9. The best 2 offsprings are inserted into the gene pool after a tour-

nament. 

The natural selection is based on fitness proportionate selection using roulette 

wheel and ranking [35]. The individuals are ordered based on their fitness 

value. In addition to do this, each individual receives a 'ranking score' which 
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is roughly proportional to its position in the population list. The described 

implementation assigns a ranking score equal, to the population count starting 

from the highest ranking individual and one less for each next individual with 

smaller fitness score. Thus, individuals with the same fitness score will have 

the same ranking score. This 'proportionate' ordering provides fair selection 

probability later on when the roulette wheel is used. 

Initialise population 

1-point crossover 	 ,uniform crossover 

Breed All Breed Bl\\ I 
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Enhanced k/r Evaluate 	
01 
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Figure 7.9: GA Framework flow chart 

The roulette wheel selection, as the name implies, resembles a roulette wheel 

where each individual reserves a portion of the roulette's slices according to 

its ranking score. The higher the ranking score the greater the proportion 

assigned to the individual. As a consequence, the roulette's wheel slice count 

is equal to the sum of all ranking scores. The natural-selection is done by 

randomly selecting a slice from the roulette's wheel range, i.e. slice 	to 1, 

and then peeking the individual that the slice belongs to. 

The CA framework supports priority-based multiple objectives. This is 

done using a fitness vector, or composite, where each element is the fitness 
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of one objective. Given two vector fitness metrics Fa  and Fb, each with N 

objectives, where Fa  [0] represents the highest priority objective and F', [N - 1] 

the lowest, for Fa  to be greater than Fb, there must exist at least one objective 

n, where Fa[fl] > Fb [n] and for every other objective i in the range 0 to n - 1, 

Fa [] = Fb[i]. Same applies for the Fa  < Fb condition. A shared fitness can be 

represented by simply combining several objectives in one fitness component, 

with appropriate weighting. The vector fitness provides a wide variety of 

combinations of priority and shared based individual fitness metrics.. The 

common comparison operator conditions of a vector fitness are shown below. 

Fa  > Fb when Fa[] > Fb[n], Ti E [0,N1] and Fa[i] = Fb[i], Vi E [0,n-1] 

Fa  <Fb when Fa [] <Fb[fl], Ti E [0,N4] and Fa[j] Fb[i], Vi E [0,n-1] 

Fa  = Fb when. F,, [n]= Fb  [n], Vn e [0,N-1] 

The usual parameters, such as mutation and crossover probability as well 

as population size, are parameterisable. The default mutation and crossover 

values are 10% and 70% respectively, chosen empirically after numerous exper-

iments. The population size varies depending on the size of the search space, 

which is proportional to the chromosome length. The GA framework supports 

the notion of elitism and provides mechanism to overcome potential local 

optimum, as described below 

7.5.1 Enhancement 

As seen in figure 7.9, the GA framework described here is a hybrid ,one. It 

employs an enhancement function to overcome local minima, in case of a min-

imisation function. The algorithm branches out from it's normal iteration into 

the 'enhancement' section when the population's diversity is lower than a given 

threshold. The diversity can be measured by counting the number of identical 

elites in the population. The enhancement is applied to one of those identical 

elites, thus producing a variant of the original elite as described below. 

The enhancement is a heuristic that works on traits and their corresponding 

genes. It thus evaluates direct modifications to the phenotype. The enhance-

ment algorithm picks one random trait at a time and covers its entire range 
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of possible variations, trying to find one that results in higher total fitness. It 

does so for every trait available in a random fashion. In a way, the individual 

undergoes a regulated mass mutation. The resulting individual may well be 

quite different from the original one, but usually resembles the original elite. 

The enhancement brings new gene combinations into the gene pool, which 

helps the GA to overcome local minima. Due to the randomness built into the 

enhancement function, applying it to the same individual may give different 

results each time. Therefore, one could introduce more than one of those en-

hanced elites to the population with different genotypes, all derived from the 

same original elite individual. 

In most cases the GA evolves up to a given stage by its own until it can 

not find any better solution, at which,  point a cycle of subsequent enhance-

ments, with evolutionary steps in between, commences. The algorithm retires 

when no further improvements are seen after a given number of generations. 

The enhancement function kicks in when the diversity drops bellow a certain 

threshold. The diversity is calculated by observing the ranking scores of the 

individuals. Individuals with the same fitness receive the same ranking. Thus 

a larger ranking scale indicates higher diversity and vice versa. 

A further way to overcome local minima is to introduce random immigrants. 

As seen in figure 7.9, these are added when even the enhancements can't re-

sult in any improvements. The random immigrants rely on pure randomness 

and as such normally yield in low chances for improvements. A random im-

migrant will usually be rejected very quickly by the GA due to its low fitness 

score. In an attempt to prevent this from happening, the random immigrants 

are first enhanced, with the above enhancement function, before entering the 

population. 

7.6 The RICA EA tools 

Most of the backend tools of the RICA toolfiow, that involve finding a solution, 

are based on the GA framework described in 7.5. Four of those tools are 

described here, which include the physical placement tool, the allocation and 

routing, group optimiser and chain generator. 
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7.6.1 Physical Placement for HDRA 

In this context, physical placement refers to the positions on the sbox-array 

the functional cells are assigned to, as opposed to allocation, which refers to 

the association of an operation to a physical instance. In a heterogeneous core, 

the functional units can have different sizes. To maintain a balanced intercon-

nection network with uniform delays across the array, the switch boxes are first 

laid out in an uniformly spaced grid, allowing enough space for the function 

cells to be placed. The logic cells end up occupying the empty space around the 

sboxes, as seen in figure 7.10. The highlighted part in this figure is a logic cell 

which ends up spanning across 3 rows of sboxes. Other smaller cells will end 

up occupying less that the height of an sbox. This kind of arrangement may 

create a variation between the various cell instances. However, even if those 

variations end up being large enough to cause problems, they can be included 

as part of the delay estimations of the compiler/scheduler and mapping tools. 

Most of the aspects of the placement algorithm described here are generic 

and apply to a wide range of layout exploration applications. The few imple-

mentation dependent features that exist, exploit some intrinsic characteristic 

of the target platform which is described below. The placement tool accepts 

an abstract representation of the configuration contexts of an application and 

a description of the resource count and type of the target platform. This rep-

resentation is referred to here as temporal netlist or simply netlist as seen in 

figure 7.11. Optionally, the netlist may include the position of some of the 

logic units within the array. This allows us to shape the layout based on some 

pre-defined characteristics. Almost every aspect of the design is parameteris-

able. 

The target reconfigurable platform is the RICA prototype design, which 

consists of an array of heterogeneous logic units in a 2D toroidal mesh topology 

of interconnected switch-boxes (sbox) as seen in figure 7.12. The array consists 

of a wide variety of logic units, such as boolean and simple algebraic arithmetic 

operators, storage units, decision and predication units, memory interface units 

as well as control flow units. The mixture of those different types depends on 

the application domain the platform is targeted for. 
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Figure 7.10: RICA prototype physical placement 

As seen in figure 7. 11, the architecture definition field of the netlist, specifies 

the available resource count and type. For a given operation described in 

one context, the placement tool is able to use any of the available resources 

that can perform that operation. In other words, the placement algorithm is 

allocation aware. Nevertheless, some logic unit types are not re-allocatable, 

such as storage units, in which case the placement algorithm has to use the 

same instance as described in the input configuration context 

An sbox is assumed here to have 4 pairs of uni-directional network ports, 2 
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Figure 7.12: 2D toroidal mesh topology 

output and 1 input terminal ports, which connect to the attached logic unit(s). 

Furthermore, a logic unit has up to 1 output port, however it may have more 

than 2 input ports, thus requiring more than one sbox. A different setup could 

be used without affecting the applicability of the algorithm. The sbox can 
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connect every output port of one i/o port pair to one of the input ports of 

another pair only as seen in figure 7.12. Hence, loop-back connections are not 

allowed. This is one of the imposed restrictions of the target platform. Because 

of this restriction, if one logic unit connects to the input terminal port of an 

sbox, the output terminal ports should also be assigned to the same logic unit. 

Otherwise a connection between the logic units sharing the same sbox would 

not be possible. 

The above features of the target platform can be used here to reduce the 

total search space, thus improve convergence time. This is done by dividing 

the logic unit ports into two categories. The i/o bundled ports and the loose 

input ports. For instance, if a logic unit has one output and 4 input ports, 2 

of those inputs are bundled with the output and assigned to one sbox. The 

remaining 2 input ports are left as 'loose' and may occupy any of the 'free' 

output terminal ports in the lattice. An output terminal port is considered 

'free' when not in use and the input terminal port of its sbox is also free. 

Unless otherwise specified, any of the logic unit input ports can be part 

of an i/o bundle or be a loose one, in which case the final port allocation is 

controlled by the placement algorithm. The algorithm handles this by dividing 

the allocation process into 2 stages. In the first stage, the algorithm decides 

where best to place the i/o bundles and which sbox output terminal ports to 

use for the various loose ports. While in the second stage it shuffles around 

the physical ports trying to find the best allocation. 

To simplify explanation, let's assume that every logic unit has 3 input ports 

and 1 output port. Let L[i] be the i-th logic unit of our array and L[i] : input [p] 

its p-th input port, while L[i] : output be its output. Similarly, sbox [y][x] is the 

sbox in the (y, x) position and sbox[y][x] : term t [t] and sbox[y][x] : term 

are its t-th terminal output and terminal input ports respectively. If N is the 

number of sboxes in the array, then there are N! permutations available for 

the logic output ports. As explained above, every output port bundles 2 of the 

available inputs into an i/o bundle (L[i] : bundle) and thus 1 input remains 

loose (L[i] : loose[O]). 

The final port mapping is decided in the second stage. A possible outcome 

of the first stage could be the following: 

132 



Nbuadles 

I inputs shuffle I 	loose inputs 	I 	I 	1/° bundles 	I 

shuffle vector 

5I4I32 1oI 

tv1 1 1  6 

ra nge=6-2 

trait[n] 
range = Nbundlesfl 
traitsize = Iog2(range) 

Figure 7.13: Chromosome encoding 

L[4] : bundle assigned to sbox[3][2] 

L[4] : loose[O] assigned to sbox[1][5] : term t [O] 

The bundle reserves all terminal ports of the sbox it is assigned to, pre-

venting other logic units from using them. In the second stage, the final port 

mapping is decided by a shuffle vector controlled by the chromosome. A pos-

sible outcome could be: 

shuffle vector: [ 0 2 1 

L[4] : output attached to sbox[3][2] : term 

L[4] : input[1] attached to sbox[3][2] : term t [0] 

L[4] : input[2] attached to sbox[3][2] : term0t [1] 

L[4] : input[O] attached to sbox[1] [5] : term0t {0] 

where L[4] : input [0] is here the loose port 

As seen on figure 7.13, the chromosome is divided into 3 sections. The first 

section controls the positions of the i/o bundle, the second the loose input ports 

and the third is used during the second stage for the final input port mapping. 

Each section is a shuffle vector with variable length elements. Given an initial 

ordered layout vector, a shuffle vector repositions the elements of the layout 

vector by applying multiple swap operations on it. For an N sized layout vector 

there is an N-i shuffle vector, as explained below. Each element of the shuffle 
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vector defines a swap operation, where the operands are two layout elements. 

Let swap[i] be the i-th swap operation and layout[i] the corresponding element 

on the layout vector, which forms the first operand. The swap[i] controls the 

current layout[i] and can swap it with any layout element in the range of N - 1 

to i index, where choice i would leave it unchanged. Therefore, the 'range' of 

the swap[i] operation is (N - i), thus requiring 1092(N - i) bits. Since this 

can not always be an integer number of bits, the result is always rounded up. 

The decoded value is 'folded' to the specified range. The Nth element of the 

layout vector has no swap operation associated to it, since there is no element 

left to swap it with. Hence why the shuffle vector has a size of N-i. 

The effects of the shuffle vector have temporal dependencies. Thus the 

results of the i/o bundle are fed to the loose shuffle vector as an input. A 

single change in the genotype could result in several changes in the phenotype, 

which generally is something to be avoided, since it can cause instability during 

the evolutionary process. Unfortunately this interdependency is unavoidable, 

due to the inherent properties of the placement problem. 

Cost functions 

A DRA has a set of contexts that are meant to be mapped temporally and 

switch in various time intervals throughout program execution. A context is 

the physical description of connections between logic units along with their 

configuration status, if any. DRAs are programmable devices and as such can 

perform execution flow branches or loops. Hence, one or more contexts may 

repeat for several times within an execution loop controlled by a conditional 

branch. Logic units that tend to connect with each other more frequently than 

others, should get higher priority when making placement decisions. A post-

processing analysis is made to collect statistical information for the connection 

frequency of all pair combinations. The ideal scenario would be to use run-time 

statistical data extracted from program execution. Because this is not always 

possible, due to the often dynamic nature of the processed data, a statistical 

analysis of the program sequence is made with some hinting for potential loops. 

One of the objectives of the placement algorithm is to make the resulting 

134 



layout easier for routing the mapped netlists. This objective is based on a 

congestion indication metric that uses overlapping routing regions as those 

seen in figure 7.14, here after referred as routability metric. 
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Figure 7.14: Overlapping Routing regions 

A source (S) and destination (D) pair defines an optimum routing region, 

where paths from one node to the other have optimum lengths, given that 

they are fully monotonic. Fully monotonic paths are those that traverse in one 

direction in both axes, e.g. a path that goes East-South without ever turning 

West or North. During routing process, the routing algorithm will attempt 

to produce such fully monotonic paths, thus it is best to assume that most 

paths will be fully monotonic during placement evaluation. When two routing 

regions overlap, partly or fully, it is an indication that congestion may occur. 

The more regions overlap the higher the.congestion probability. Reducing the 

number of these overlapping areas is thus a wise move. 

Bearing in mind that each routing node (sbox) has two uni-directional chan-

nels per network port, two regions may overlap, but may not suffer from con-

gestion due to their source-to-destination directions. Therefore there are 3 

possible cases: 

a both directional-axis are the same, then the regions conflict, 
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b one of the directional-axis is the same, thus the regions can only conflict 

on the shared directional-axis and 

c none of the directional-axis are the same, in which case the regions are 

considered conflict free. 

When calculating the routability metric the above 3 cases are given different 

weights. 

Another objective of the placement algorithm is to reduce the total wire-

length. The actual wire length can not be known before routing is applied, 

but assuming that most paths will be fully monotonic, the minimisation of the 

optimum path lengths will suffice. Once again, due to the temporal nature of 

the configurations, the placement algorithm needs to prioritise the available 

connections based on their frequency of occurrence. The wire-length cost func-

tion applies a weight factor to each connection pair that is proportional to the 

frequency of that pair. 

The third objective, port-grouping, refers to the distance of the input and 

output ports of each logic unit. To prevent them from being placed far apart, 

that would otherwise cause issues during floorplanning, the placement algo-

rithm gives this objective the highest priority. For this to work, the algorithm 

needs a reference position to evaluate the distance of each port from that po-

sition. For those logic units that have an output port and thus form an i/o 

bundle, the reference position is the sbox where the bundle is assigned. For 

logic units that have only loose ports, the algorithm finds a middle point that's 

closer to all ports and uses that as the reference point. 

Experimental Results 

The target array for these experiments is an 12 x 12 dimensions with functional 

units composed of around 35% register, thus non re-allocatable, 27% boolean 

and algebraic operations, 20% decision and conditional/predication units, 17% 

program and data memory interface units, as well as 1 flow control unit for the 

execution of single threaded applications, as shown on figure 7.15. The input 

netlist used for the placement optimisation is from an MP3 audio decoder 
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ported to the target platform. The netlist consist of around 2K contexts and 

contains a wide range of DSP operations. 

flow control 
memory 

interfaces 	11% 

decision and 
conditional 

registers 

boolean and 
algebraic 

Figure 7.15: RICA array operations breakdown 

GAs are known to be non-deterministic in nature due to the randomness 

they employ. Therefore each optimisation run may have different outcomes. 

As long as the final results have acceptable quality and small deviation, this 

variability is not an issue. The results on tables 7.1 and 7.2 show that the 

standard deviation (stdev) is fairly small. The following graphs on figures 7.16 

and 7.17 show two diverse cases out of 10 runs. The graphs depict the nor-

malised cost of each of the placement objectives of the best individual on every 

generation, throughout the placement optimisation process. The routability 

metric is measured in 'area units' while the wire-length and port-grouping 

in 'distance units'. For illustration purposes the the costs/metrics have been 

normalised and scaled to the same unit-base. 

The first graph shows an optimisation run where the objectives improve 

progressively. This run also represents a case where the primary objective port-

grouping receives better improvement than the secondary ones, routability and 
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generations 

Figure 7.16: Normalised cost /generations 

The second graph shows an interesting side effect of the prioritised multi-

objective fitness. Since the port-grouping is the primary objective, its effect 

can 'dominate' over the secondary objectives in the calculation of the total 

fitness. An improvement on the primary objective will always result in a better 

total fitness score, even if the secondary objectives degrade. Figure 7.17 shows 

one such extreme case, during an enhancement process, where the secondary 

objectives degrade sharply. 

The effect is temporary though, since successive generations smooth things 

out. This is because, even though the 'enhanced' elite has bad secondary ob-

jective scores, other individuals in the population have good secondary scores 

for those same objectives. After breeding, the good traits are inherited over 
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Figure 7.17: Normalised cost/generations 

and the resulting fitness performs well on all objectives. A shared fitness does 

not exhibit such a behaviour, but at the same time it does not guarantee a 

high quality port-grouping, which is essential. 

In order to test the quality of mapping, the resulting placements have been 

used to allocate and route a set of netlists. Figure 7.18 shows the quality 

metrics of the resulting final routed netlists, compared to a uniform layout 

of the heterogeneous resource, as well as the same net lists on a homogeneous 

array using ALUs. The uniform heterogeneous layout has the instances of each 

cell type spaced appart in roughly-equal distances. The homogeneous array 

assumes that all functional units are the same ALUs which can perform any of 

the supported operations. Thus the allocation is free to choose any of them. 

The 'optimum contexts' in figure 7.18, refers to percentage of the contexts 

of the entire program sequence that have all of their routing paths optimum, 

i.e fully monotonic. The 'wire-length quality' metric is normalised against the 

results obtained by the homogeneous array. The 'routability' metric refers to 
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Figure 7.18: Placement quality 

the percentage of successfully routed paths. In all cases the 'routability' is im-

proved by about 30% compared to the uniform heterogeneous placement. The 

improvements in 'wire-length' vary from 26% to 42%, while the overall per-

centage of high quality contexts show an increase from 30% to 55%. Table 7.1 

includes more analytically those results. 

1 	2 	3 	4 	5 	6 	7 	8 	9 	10 uniform ALUs 
placement runs 

Figure 7.19: Average wire-length 

Figure 7.19 shows the average wire length achieved for all runs compared 
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to the uniform and homogeneous placement. The results show improvements 

ranging from 21% up to 29% compared to the uniform heterogeneous place-

ment. Table 7.2 includes the results obtained by the allocating and routing 

the test netlist on the various generated layouts. 

optimum 
context 

optimum 
paths 

wire-length 
quality  

routability 

runl 	- 
run2 

68.12 
58.78 - 

96.06. 
95.64 

91.57 
85.85 

99.52 
99.41 

run3 
run4 

73.49 
66.04 

97.21 
95.74 

84.75_ -- 99.52 
99.29 94.88 

run5 
run6 

66.36 
67.85 

95.71 
95.99 

92.21 
88.08 

99.52 
99.09 

riin7 
run8 

58.64 
66.59 

94.54 
95.88 

94.63 99.16 
99.52 91.85 

run9 
runlO 

65.41 
69.93 

9512 
95.95 

89J8 
85.73 

99.70 
99.42 

lev 
uniform 
ALUs 

4.55 
45.37 
79.95 

0.64 
91.95 
96.18 

3.69 
67.15 

'. 	100 

0.18 
76.49 
99.71 

Table 7.1: Placement quality results 

Heterogeneous architectures attempt to reduce the overall area of the design 

by introducing specialisation. This is a design decision that trades flexibility, 

which affect the routability of the design, for silicon area. What the results 

show here is that it is possible to improve routability by carefully selecting 

the physical placement of the functional units in the array, without requiring 

to increase the routing resources. In many cases, the optimised heterogeneous 

layouts perform very close to what the the homogeneous layout achieves. 

7.6.2 Routing and Allocation 

The mapping process for each configuration context(step) is done in 2 separate 

phases, the allocation and the routing. The allocation is based on the routing-

aware estimations, using the 'overlapping-regions, described in 7.6.1. As such, 

it has 2 objectives, the routability and the wire-length objective. The routing 
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a) optimised placement 

• average optimum average 	wire- 
wire-length length 

runi 4.22 4.39 
run2 4.50 4.70 
run3 4.55 4.68 
run4 4.072 4.24 
run5 4.19 4.37 
run6 4.38 4.56 
run7 4.08 431 
run8 4.20 4.38 
run9 433 4.52 
runlO 4.50 4.69 
stdev 0.17 0.16 
uniform 5.75 5.96 
ALTJS 3.86 	-• 4.02 

Table 7.2: Wire-length results 

b) uniform placement 

Figure 7.20: Optimised and uniform placement comparison 

phase makes use of a priority based composite fitness, as described in 7.5. It 

has 3 objectives, of which, one is to reduce conflicts, the other to minimise 

the wire-lengths and the last to increase fan-out sharing, with priorities that 
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follow that order. 
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Figure 7.21: Routing chromosome encoding 

The routing chromosome, shown on figure 7.21, contains those parame-

ters that affect the path's shape and which are modifiable. Since the source-

destination distance, as well as the monotonicity, are constant properties of 

a path, they are not encoded in the chromosome. These properties are de-

rived from the abstract connection-pair data model of the netlist, during the 

decoding process and the initial calculation of the chromosome length. 
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Figure 7.22: Example decoding of a -x monotonic path 

The chromosome is encoded using the path-encoding technique described in 

section 5.3. As seen on figure 7.22, each'controllable segment' coresponds to a 

gene cluster, expressing the displacement of that segment as a trait. A path is 

thus expressed by a series of genes describing the displacement vector of that 

path. The path-encoding, using the displacement format, provides a fixed size 
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representation for each connection, which results in an easier to manage, fixed 

size chromosome. 

A step is considered to be mapped successfully when all conflicts are elim-

inated. Otherwise the GA loop will continue trying until the 'idle' generation 

count reaches a given threshold, in which case the GA loop retires and restarts 

the mapping process for that step. The algorithm will try mapping the step 

several times, until reaching a user-defined repeat count, at which point the 

step is marked as 'un-routed' and the algorithm proceeds to the next. When 

the mapping is successful and all conflicts are eliminated, the GA loop will 

continue refining the tracks to further improve the secondary objectives un-

til the 'starvation' condition occurs, at which point the algorithm emits the 

resulting mapping and moves to the next step. 

Section 7.6.1 includes a set of routing results based on a number of place-

ment arrangements. 

7.6.3 Group Optimiser 

As described in 5.13, the configuration context of the RICA prototype is par-

titioned into clusters or groups. Each group addresses a set of insertion points, 

one at a time. Multiple groups form a configuration 'row' and are loaded si-

multaneously. On every row, each group addresses one of its insertion points. 

Since each row has a fixed size, as seen in 5.17, and may not be fully populated, 

the configuration stream ends up being fragmented with several empty slots. 

The amount of fragmentation depends on the insertion points in use and how 

these are organised in groups. For every insertion point in the configuration 

context, that is part of the same group, a new row needs to be formed. The 

more rows a configuration context is divided to, the higher the fragmentation, 

as well as the loading time. 

In order to maximise row utilisation and reduce the loading times, the 

configuration contexts are analysed and statistics are collected for the usage 

of all insertion points. Based on this analysis, appropriate group partitions 

are chosen that increase row efficiency. This process is of course application 

domain dependent, since it is based on the configuration context of a given 
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application or set of applications. Nevertheless, the results show that given a 

good set of applications, a generic enough partitioning can be made. 

The group partitioning analysis tool described here is once again based on 

the GA framework described in 7.5. 

J optimised for libmad • optimised for 1h264 	J random 

Figure 7.23: Average rows/step for MP3(libmad) and h264 

7.6.4 Chain Generator 

As described in 5.6, a chain is a sequence of turn symbols used to describe 

path-shapes. In a way it forms the 'dictionary' in an encoding that is similar 

to dictionary-based compression. With this encoding, a path shape becomes 

a starting index, to this dictionary and a path length parameter. 

Given a chain, there are a finite number of possible path shapes that can be 

described. Every shape is a 'sequence of symbols from a given starting point. 

The 'coverage' of the chain is an important figure that defines the efficiency 

of that chain. Once again, an analysis of the paths used in one ore more 

routed netlist can provide the required information to produce a chain with 

high coverage. 
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libmad MP3 h264 Decoder 
max length 16 21 
avg length  3.66 2.78 
Uniqueshapes 203 783 
total count 
%symbol coverage 

8378 
97.7 

142194 
95.34_ 

%path coverage 95.5 95.5 

Table 7.3: Chain encoding with 255 symbols 

Table 7.3 shows the results obtained after chain encoding the netlist of 

libmad MP3 decoder and the h264 decoder implementation. These results 

show that a 255 symbol list achieves high path coverage. 
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Chapter 8 

SMT on RICA 
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8.1 The SMT design paradigm 

In programming environments, threads are uncorrelated, independent tasks 

working in parallel', ideally on separate sets of data. Throughout the execu-

tion of a multi-threaded(MT) program there is no pre-defined or known order 

in which the threads are executed or synchronous to each other. If a known 

pattern could be constructed from analysing the program then it would be 

questionable to why one should implement this as an MT program. 

A multi-threaded program relies on dynamic information which is not known 

at compile time. Because of that it is practically impossible to statically anal-

yse the execution flow of a multi-threaded program and make allocation de-

cisions that will satisfy all active supported threads. Each thread is mapped 

independently without any prior knowledge of other active threads. 

Traditionally, true multi-threading is associated with the use of completely 

isolated execution cores. Conventional MT on a single core can be achieved by 

time-slicing the hardware resources, often referred to as temporal multithread-

ing. With the appearance of superscalar computers, true MT is possible even 

in a single core. Inherently parallel architectures rely on the use of a large 

number of computational resources and/or interconnection resources (in case 

of reconfigurable computing). Keeping these resources busy is a challenging 

task. Most parallel architectures suffer from low core utilisation. An attempt 

to reduce this effect is to employ Simultaneous Multi-Threading (SMT) in 

a single core [68, 69]. SMT usually comes as an extension to the execution 

flow control mechanism of a core, allowing sharing most of the cores resources 

by more than one concurrent thread. The realisation of SMT is very imple-

mentation dependent but a general overview for a given class of devices can 

be defined. One of the commercially available SMT implementation can be 

found in Intel's Pentium 4 generation of microprocessors [70], as well as IBM's 

PowerPC architectures [71]. 

To achieve resource sharing, SMT requires some duplication of key compo-

nents of the architecture. These typically include: 

. the flow control mechanism 
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. the architecture state 

On IBM's and Intel's advanced architectures before the introduction of. 

SMT, these resources had been already duplicated to allow out of order execu-

tion, along with duplication of the ALUs. SMT came as a realisation that, with 

some modification, the hardware could also be used to run multiple threads. 

Other than achieving higher core utilisation, SMT can hide cache latencies and 

fetch and decode latencies by using this time to perform useful operations. A 

stall condition for one thread can leave other threads running and keep the 

resources busy. 

82 SMT in reconfigurable computing 

RICA is used here to describe an SMT implementation on a reconfigurable 

computing architecture. However, the description is kept general enough to 

cover a wide range of architectures, as long as the following assumption are 

met: 

The architecture should provide: 

. a collection of computational units (functional and storage) 

.. a flexible interconnection structure to communicate information among 

these units 

. means to control the above to form useful operations 

RICA provides a number of heterogeneous computational units and a flexi-

ble 2-dimensional interconnection network allowing the formation of arbitrary 

complex data spathes. Flow control is performed via the 'jump' cell, which 

modifies the program counter conditionally or unconditionally. In the former 

case, the condition is given as an input to the 'jump' cell and can be driven by 

any cell in the array, thus allowing it to be control ed by complex logic. The 

'architecture state' in RICA refers to the actual configuration context, which 

includes cell modes and interconnection setup. 

As mentioned in section 8.1, both the flow control mechanism and the 

'architecture state' need to be replicated for each SMT thread. Introducing 
U 
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a second 'jump' cell is something trivial. However, the fetching unit requires 

some modification to accommodate both 'jump' cells and more specifically the 

addition of an arbitration logic. Assuming that the program memory interface 

bandwith remains the same and to avoid duplicating the configuration stream 

decoder logic, the arbitration logic is placed between the fetch unit and the 

'jump' cells, as seen in figure 8.1. 

stream 
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Figure 8.1: SMT: Arbitration coupling 

Each SMT thread maintains a complete configuration context, whichforms 

the 'architecture state'. The arbiter serves fetch requests from the 'jump' cells 

and directs the fetched configuration stream to the appropriate configuration 

context. The two threads share the same fetch unit and thus program inter-

face. As seen in section 6, in a mostly kernel based environment, the program 

memory bandwidth requirements are very low. 

Each thread is scheduled and mapped to the array resources separately. In 

temporal multithreading, only one thread is active at any given time. In an 

SMT environment, these threads will occupy different parts of the array and 

could operate in parallel. The example on Figure 8.2 shows 2 threads that 

share the same reconfigurable array without any conflicts. This is an ideal 
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case which maximises the array utilisation. Attempts to enforce such thread 

isolation can be made at compile time by restricting one of the threads to one 

corner of the core while allocating the other one to the opposite side of the 

core. 
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Figure 8.2: SMT: Non-Conflicting Threads 

In most cases, 2 concurrent threads would request one or more common 

resource at the same time. A form of interconnection resource 'conflict' is 

shown on Figure 8.3. In this example, the common resource will be assigned 

to one of the two threads first, while the other one would need to wait. 
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Figure 8.3: SMT: Conflicting Threads 
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8.3 Performance Improvements 

A typical thread might have more than one independent data-path ma given 

configuration. Unless a strict synchronisation is imposed, each independent 

non-conflicting data-path can operate in parallel to the rest. This could result 

in a thread being executed partially, i.e. only some of its data-paths. The use 

of partial execution can further increase core utilisation and as a consequence, 

increase the performance. Figure 8.4 shows the execution time chart for two 

threads running under various scenarios, such as temporal MT, SMT and SMT 

with support for partial executions. 

threado ciI execution 	 imii execution 

threadi 	 I6m11 execution 

I 	dtai 

threado cm1I execution 	ii1fl pending  I execution  I 
threadi 	Iflfl pending I execution 

Ii dtac 
—dtbc _1 

th read a !iflII execution IG!Zlfl I execution 

threadi 
	

I61IiIpartiaII Ipartiaul 

(C) 

Figure 8.4: Execution of two threads using (a) Temporal multithreading, (b) 
SMT, (c) SMT supporting partial execution 
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9.1 Contribution 

This thesis makes evolutionary steps in the development of a high performance 

programmable reconfigurable devices and data-flow machines in general. The 

outcome of this work is delivered as an architecture template, with an abstract 

representation allowing one to deploy arrays with different resource mix and 

layout setups as well as accompanied software tool-flow. The latter is made 

architecture setup agnostic by the use of a common representation/language. 

There are a number of enabling factors that have been described here, 

which help to achieve high perfOrmance figures in terms of speed, area and 

power, while maintaining a programming model comparable to GPPs. The 

use of a single autonomous fabric, for instance, capable of handing both flow 

control and computational data-paths, maintains a simple programming model 

comparable to GPPs'. The use of heterogeneous functional cells allows one to 

tailor the architecture to a given domain and save area in the process. The 

distributed registers enable parallel access and reduced power that is otherwise 

associated with accessing a register file. 

Bigger emphasis was given to the reconfiguration subsystem, configuration 
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	distribution and interconnects, as well as placement optimisations. This work 

has demonstrated that a carefully chosen physical placement can reduce the 

negative effects of a heterogeneous design on the routing side. With help of 

meta-heuristics, based on the connection patterns obtained by analysing a 

set of algorithms of a given domain, an optimised heterogeneous layout was 

produced with comparable performance to a homogeneous layout, in terms of 

rout ability metrics. 

To reduce the configuration times and program memory footprint, an in-

novative code compression technique has been developed that matches the 

intrinsic characteristics of a reconfigurable fabric. Based on a connection-

oriented approach and a distributed dictionary based compression, this novel 

code compression technique has managed to reduce program memory activity 

by 2.75 times on the tested multimedia applications. 

Finally, this work also takes the first steps towards the implementation of 

a SMT extension for reconfigurable cores and demonstrates the potential for a 
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partial execution technique, which offers further performance improvements. 

9.2 Future work 

Reconfigurable architectures, such as RICA, are still young with a plethora of 

exciting ideas yet to be explored or ported over to this new design paradigm. 

This section list some of those ideas that could benefit the development of 

RICA and other reconfigurable architectures in general. 

9.2.1 Thread partitioning 

Similar to the SMT approach described in 8, the core requires a control flow 

unit and the associated RRC, per supported thread. The configuration context 

is partitioned into slices that correspond to different sections of the core. Each 

slice is assigned to one flow control unit. However, a master flow control 

unit can also take control of one or more of the other slices. In that way, 

several partitioning scenarios are possible. The partitioning is stored in the 

configuration context, alongside the rest of the configuration. 

One of the most challenging parts is the memory access. Each thread 

operates on its own time domain, which results in complex access patterns. 

One solution is to have separate physical memories for each 'slice'. Some of 

these issues are addressed in 8.2. Another aspect that needs attention, is thread 

synchronisation. If dynamic re-partitioning is allowed, which is desirable, it 

makes thread synchronisation even more complex. 

9.2.2 Multi-Core 

Multi-core is the natural progression for a programmable architecture. A syn-

ergy of programmable cores combining the power of each individual core to 

increase parallelism and thus achieve higher performance. Unlike thread par-

titioning in section 9.2.1, each core is stand alone with its own reconfigurable 

fabric, memory interfaces and control flow. The available coupling scenarios 

are similar to those mentioned in 2.4. In addition, a shared memory coupling 
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can be done on a local common cache level, thus hiding some of the latencies 

going off-chip. As for load balancing and responsibilities, the cores can work as 

independent peers, conforming to a decentralised model or a more conventional 

master-slave approach, where one of the cores becomes the coordinator. 

Research in multi-core systems borrows a lot from multi-processor and has 

been studied extensively in the literature. Most of the things that apply to 

conventional MP are valid for RPUs as well, and thus the basic principles 

are similar to those found in multi-core architectures such as picoChip[19], 

Ambric[17] and RAW[20]. Basic features such as 'atomic' operations when 

accessing shared resource, allow the development of thread synchronisation 

protocols and thus enable a safe multi-threading environment. 

Lightweight NoC, such as that proposed in section 4.3.1 can provide the 

basis of a decentralised multi-core platform. 

9.2.3 Self-timed 

RICA is 'told' how long each context should persist for before switching to 

the next, or iterate the current one. This information, which is in effect the 

critical path delay time used by the RRC unit, is stored in the configuration 

context and is pre-calculated during the compilation face. The calculation is 

based on extracted characteristics from the core and tends to be fairly accurate. 

However, the core uses a finite time resolution, which is defined by its master 

clock. The resulting quantisation error can be as high as close to 2x the target 

critical path delay, when the timing resolution is comparable to the critical 

path. 

Furthermore, in some cases, a configuration context may include more than 

one conditional path-ways that are highly unbalanced. In such cases, the 

resulting run-time critical path is data driven and can vary significantly. The 

RRC expiration time is static. There are cases where the largest critical path-

way occurs only a fraction of the time, thus wasting idle cycles. 

Both of the above cases can impact performance by reducing the compu-

tational density of the core. A possible solution is to have a self-timed core. 

A self-timed core is able to detect when calculations have finished and thus 
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issue an appropriate event for reconfiguration or next iteration. Self-timing is 

usually done using asynchronous techniques as mentioned in 6.2. 

9.2.4 Dynamic Allocation and Routing 

The RICA core can dynamically reconfigure itself and form new data-paths. 

However, those data-paths are mapped during compile time and stored in the 

configuration context. That is, the cell instances used and the paths formed 

are pre-defined. Both allocation and routing are NP-complete problems and 

are normally tackled with heuristic and meta-heuristic algorithms. The im-

plementation complexity of a class of such algorithms is shown in 7.5. Due to 

that complexity, the mapping process, which involves allocation and routing, 

is done as a pre-processing stage and the result is stored in the core's program 

memory. 

Most application scenarios are well served by the above approach. However, 

there are some usage models that can benefit from, or even require, dynamic 

allocation and routing. One such example is the SMT extention shown in 

8. Normally a thread would freeze if some routing or computation resource it 

requires is occupied. With dynamic mapping, the threads could more efficiently 

negotiate the resources, thus reducing, if possible, the wait time. In a similar 

way, the 'static' thread partitioning, discussed in 9.2.1, would benefit from 

dynamic mapping. In fact doing so would make it similar to the SMT approach, 

where threads negotiate resources. 

Fault tolerance is another feature that would benefit from dynamic map-

ping. Traditionally, fault tolerance can be achieved by coupling the core with 

an external host processor that is able to run the mapping algorithms and 

update the configuration context accordingly. Having a built in dynamic map-

ping would simplify and speeds up this process. Once a fault is detected the 

core is able to re-evaluate its mapping and bypass it. 

A large part of the required structures is already present in the core, such 

as the spatial relationship between the various resource. There are numerous 

techniques in literature for fault-tolerance in networks [53] and other adaptive 

techniques that could apply in RICA. For instance, an implementation of the 
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Dijkstra shortest path algorithm [72], in a distributed fashion on the array 

could offer an interesting approach to dynamic routing. 

Dynamic allocation and routing would most likely require a self-timed 

RICA, as mentioned in section 9.2.3. 

9.2.5 Extended vector arithmetic 

As discussed in 3.6, the efficient use of SIMD instructions requires the existence 

of convenient unpacking operators. The RICA prototype makes use of special 

modes added to the Logic cell, which are found to limit the extent in which 

SIMD instructions can be used. A more flexible solution would be to enable 

unpacking and shuffling operators on the interconnection level. Define a small 

set of simple unpacking operators, which if combined in series can form more 

complex modifiers. Each of the operators should be small enough to avoid 

increasing the overall area of the design. With such modifiers in place, complex 

data-flow graphs utilising SIMD instruction will not impact routing as much 

and will not be limited by the otherwise small number of unpacking operators. 

9.2.6 Source and Target graph matching 

As seen in section 7.6, the mapping process of a source data-flow graph to 

the target architecture, or 'target graph', is a complex, often multi-objective 

problem. Given a source graph the mapping algorithms will try to choose 

an allocation that will offload some of the routing complexity, by minimising 

wire-length and shifting potential conflicts, where there are more free resources. 

Nonetheless, the end result is highly dependent on the input source graph and 

how that compares to the target interconnection architecture. 

Empirical results obtained by E.F Rent by observing several designs in 

terms of pin count and gate count, led to the formulation of a relationship 

between those features, which is expressed by the N = K x N13  equation, 

known as Rent's rule [73]; where N is the number of pins, Ng  is the number of 

gates and K and /3 are the proportionality constant and Rent's constant re-

spectively. The Rent's rule predicts an exponential increase in interconnection 

complexity as the number of elements increase and as such has been used to 
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estimate wire-lengths and overall interconnection complexity of designs [74, 75]. 

By dividing a design into several partitions, each of those partitions is subject 

to Rent's rule. Such a dissection of a design can reveal intrinsic properties for 

the interconnects of the design, which can be useful when mapping it onto a 

target architecture. More specifically, the source graph of a design can be anal-

ysed and its suitability for a given target architecture/graph measured. One 

can use such a classification to derive a suitable interconnection architecture 

for the target platform, based on the source data-flow graphs the architecture 

is subjected to. In addition, once an architecture is chosen, the source graph 

analysis can reveal potential problems that will appear during mapping of the 

source graph to the fixed target architecture. One can then modify the source 

graph accordingly to conform to certain characteristics, which would make it 

more appropriate for the target architecture. 

Source-target graph matching can offer an extra help in mapping a given 

design to the target reconfigurable hardware and thus improve the design traits, 

such as speed and computational density. It could also be the differentiating 

factor between a successful mapping and one that fails due to global or local 

routing resource starvation. 
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Glossary 

PP 	micro Processor, 14, 16, 29, 156 

ALU 	Arithmetic Logic Unit, 21, 29, 46, 139 

ASIC 	Aplication Specific Integrated Circuit, 1, 14, 

16-18, 33, 36, 56, 108 

ASIP 	Application Specific Instruction Processors, 

31 

CFG 	Control Flow Graph, 45 

CLB 	Configurable Logic Block, 28, 29, 37, 56 

CPU 	Central Processing Unit, 30-32, 34, 45 

DAC 	Digital to Analogue Converter, .41 

DMA 	Direct Memory Access, 41, 46 

DSP 	Digital Signal Processor, 14, 16, 18, 33, 34 

EA 	Evolutionary Algorithm, 37 

FE 	Functional Element, 25 

FPGA 	Field Programmable Gate Array, 14, 16, 17, 

24, 25, 27-30, 34, 35, 37, 47, 54, 56, 59 

FSM 	Finite State Machine, 120 

GA 	Genetic Algorithm, 37, 145 
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GPP 	General Purpose Processor, 1, 14, 17-20, 24, 

31, 33, 42, 44, 108, 154 

HDL 	Hardware Description Language, 16, 33, 36, 

119, 121 

HEM 	Hierarchical Enable Matrix, 8, 82, 86, 95, 96 

HPC 	High Performance Computing, 24 

ID 	Identification, 122 

ILP 	Instruction Level Parallelism, 16, 45 

ISA 	Instruction Set Architecture, 113 

LSB 	Least Significant Bit, 84 

LUT 	Look Up Table, 29, 78 

MDF Machine Description File, 109 

MIPS Million, Instructions Per Second, 31 

MP Multi-Processor, 30, 125 

MSB Most Significant Bit, 84 

MT Multi-Threading, 125, 148, 151 

NoC Network on Chip, 29, 59, 156 

NP Non-deterministic Polynomial time, 37, 157 

NRE Non-Recurring Engineering, 16, 17, 25, 33 

PLL 	Phase Lock Loop, 53 

PnR 	Place and Route, 37 

RAM 	Random Access Memory, 94 

RC 	Reconfigurable Computing, 19, 22, 32, 36, 57 

RCD 	Reconfigurable Computing Device, 25, 28 
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RICA Reconfigurable Instruction Cell Ar-

ray/Architecture, 1, 18-20, 38, 40, 42, 

44, 45, 47-49, 53, 54, 57, 75, 77, 87, 100, 

103-105, 108-111, 117, 155, 158 

RISC 	Reduced Instruction Set Computer, 1, 20, 29, 

30,, 34, 44, 99 

RLC 	Run Length Coding, 35 

RPU 	Reconfigurable Processing Unit, 30-32, 34, 

156, 

RRC 	Reconfiguration Rate Controller, 52, 100, 101, 

119, 120, 155, 156 

SA 	Simulated Annealing, 37 

SDR 	Software Defined Radio, 31 

SIMD ' Single Instruction Multiple Data, 1, 19, 28, 31, 

50, 158 

SLIg 	System Level Integration group, 18, 19 

SMT 	Simultaneous Multi-Threading, 38, 59, 148- 

151, 154, 155, 157 

TLM 	Transaction Level Model, 118, 119 

VCDRC Virtual Channels using Dynamic Rate Con-

trol, 61, 62, 68 

VLIW 	Very Long Instruction Word, 14, 16, 29, 34, 

35, 91 
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input-port = SOUTH; 
y--; 

} 

} 

if(monotonicO) 

if(directionO) 
{ 
s(x,y).south = input-port; 
input-port = NORTH; 
Y++; 

else 
{ 
s(x,y).north = input-port;'  
input-port = SOUTH; 

}Y 

} 
else 
{ 
if(directionO) 
{ 
s(x,y).east = input-port; 
input-port = WEST; 	0 	

0 

x++; 
} 
else 	' 
{ 
s(x,y).west = input-port; 
input-port = EAST; 
X--; 	 0 

} 
} 

0 	 s(x,y).terminal = input-port; 	
0 
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Appendix B 

RICA Net list Formal Language 
Syntax 

<source_text> 
11= <directive> 
:= <description_field> 

<directive> 
: <define_directive>* 

11= <include_directive>* 

<define_directive> 
:= 'define <define_name> <replacement> 

<define_name> 
::= <IDENTIFIER> 

<replacement> 
<IDENTIFIER> 

:= <formatted_number> 

<include_directive> 
:= 'include 	<netlist_file> 

11= 'includev 1? <verilog_file> 

<netlist_file> 
= <IDENTIFIER> 

<verilog_file> 
::= <IDENTIFIER> 

<description_field> 
<architecture>+ 

1I <data>+ 
I 1 <sequence>+ 
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<architecture> 
architecture { <cell>+ <layout>+ } 

11= architecture <cell> 
11= architecture <layout> 
I 1= architecture <row> 

<cell> 
cell { <cell_declaration>* } 

11= cell <cell_declaration> 

<cell_declaration> 
<cell_name> { <port_declaration>* } 

I 1= <cell_name> <port_declaration> 

<cell_name> 
::= <IDENTIFIER> 

<port_declaration> 
= <port_type> <port_definition>< ,<port_definition> 

<port _def mit ion> 
:= <port_name> <width_definition>? 

<port_type> 
output 

11= input 
11= config 

<port_name> 
<IDENTIFIER> 

<width_definition> 
[ <PLAIN_NUMBER> I 

<layout> 
:= layout { <cell_setting>* } 

11= layout <cell_setting> 

<cell_setting> 
<cell_name> <port_setting> 

I 1= 	<cell_name> -C <port_setting>* } 

<cell_index> 
:= <PLAIN_NUMBER> 

<port_setting> 
<port_name> <port_parameter_assign> 

I 1= 	<port_name> { <port_parameter_assign>* )- 
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<port_parameter_assign> 
= <port_parameter> = <PLAINNUMBER> 

<port_parameter> 
y 

II=x 
H=p 

<row> 
: <row_definition> 
I 1 { <row_definition>* } 

<row_definition> 
= ( <PLAIN_NUMBER> ) . <cell_name> 

<data> 
: data { <storage>+ } 

11= data <storage> 

<storage> 
:= ram { <storage_element>+ } 
1= ram <storage_element> 

11= rom { <storage_element>+ } 
11= rom <storage_element> 

<storage_element> 
align <PLAIN_NUMBER> 

11= space <PLAIN_NUMBER> 
11= byte <PLAIN_NUMBER> 
11= long <PLAIN_NUMBER> 
11= word <storage_entry> 

<Storage_entry> 
<PLAIN_NUMBER> 

11= <formatted_number> 
I 1= <step_link> 

<data_link> 

<data_link> 
= ! <data_rom_label> 

11= # <data_ram_label> 

<data_rom_label> 
:= <IDENTIFIER> 

<data_ram_label> 
:= <IDENTIFIER> 

<sequence> 
sequence { <step>+ } 
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11= sequence <step> 

<step> 
:= step [ <step_index>  I { <cell_configuration>+ } 

11= step [ <step_index>  I <cell_configuration> 

<step_index> 
:= <PLAIN_NUMBER> 

11= % <step_label> 

<Step_label> 
:= <IDENTIFIER> 

<cell_configuration> 
<cell_name> [ 

11= 	<cell_name> [ 

<cell_index> 
::= <PLAIN_NUMBER> 

<cell_index> I { <port_assignment>* } 
<cell_index> I <port_assignment> 

<port_assignment> 
<port_name> = <right_assignment> 

<right_assignment> 
<cell_name> . <output_port> 

11= <formatted_number> 
11= <PLAIN_NUMBER> 
11= <wire> 
I 1= <step_link> 

<formatted_number> 
<sign_symbol>? ' <radix_symbol><PLAIN_NUMBER> 

<signTsymbol> 

11= + 

<radix_symbol> 
d 

11= b 
11= h 

<wire> 
$ <wire_name> 

<wire_name> 
::= <IDENTIFIER> 

<step_link> 
<absolute_address> 
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11= <relative_address> 

<absolute_address> 
& <step_label> 

<relative_address> 
= @ <step_label> 

<PLAIN_NUMBER> 
normal integer number 

<IDENTIFIER> 
any alpharithmetic that does not start with a number. also 
character '_' is allowed 
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Appendix C 

RICA Instruction Set 

C.1 Adder 

ml 
ADD in2 : iIIIJ 

configuration 

operation type out = ml + in2 

SIMD yes 
- 	aritybmary 

0000 nteger Single Integer- 
O0 0 1 66 Vector 2x Half Integer Addition  
001-0  Vector 4x Quarter Integer 

O 0 11 
1 0 0 

Single Integer  

-16-  1 
Vector 2x Half Integer Subtraction 

ii 0 

Vector 4x Quarter Integer 

Half Integer Complex Addition 

iii Half Integer 

1 00 0 

 Complex Subtraction 

Single Integer 
1 0 0 1 Vector 2x Half Integer Absolute Difference 
1 0 1 0 Vector 4x Quarter Integer 

1 0 11 Single Integer  
11 0 0 Vector 2x Half Integer Average 
TI-6-1 Vector 4x Quarter Integer 
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C.2 Comparator 

operation type out = ml COMP in2 

COMP conf 	 SIMD yes 
?4f---bi-nary 	1 

configuration 
0000 Single Integer 
000 1 
00 1 0 

Vector 2x Half Integer 
Vector 4x Quarter Integer 

Addition  

00 ii  Single Integer 
Vector 2x Half Integer 

- 
Subtraction 01. 00 

0 1 0 1 

6 -1i 0 

Vector 4x Quarter Integer 

Half Integer Complex Addition 

0 111 

1 0 0 0 

Half Integer - Complex Subtraction 

Single Integer 
1 0 0 1 Vector 2x Half Integer 

Vector 4x Quarter Integer 
Absolute Difference 

1 0 1 0 

1 0 11 Single Integer 
Vector 2x Half Integer Average 1100 

11 0 1 Vector 4x Quarter Integer 
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C.3 Constant 

—con' CONST 9 
operation type out = conf 

onfbiidtlf32 	I 
SIMDN/A 

[aritynullaryj 

configuration 
x x 	x I Constant Single Integer 
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C.4 Divider 

in' 	 operation type out = ml 	in2 

in2DIV 	
, Lconf bifidth 2 

onf c, 	 SIMD no 
arity binary  

configuration 
00 Signed Single Integer 	Integer Divide  
0 1 

	

Unsigned Single Integer 	Integer Divide 

	

Signed. Single Integer 	Modulo  1 0 
11 Unsigned Single Integer 	Modulo 
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C.5. Jump 

cond, 	
I 

. 	operation type PC = cond? addr: next=PC+1 
addr JUMP J1 
conf 	 SIMD N/A  

arity binary 

configuration 
0000 
0001 

Always. 
N/A 

Relative Jump 

0 0 1 0 
. 

Always 
N/A 

Absolute Jump 
0011 

-6-100  Eual Zero 
Equal Zero 

Condition Low 
Condition High 

Relative Jump 
Relative Jump 0 1 —01 

0 11 0 Equal Zero 
Equal Zero 

Condition Low 
Condition High 

Absolute Jump 	- 
Absolute Jump 0 111 

1 0 0 0 
10-0  1 

Greater Than Zero 
Greater Than Zero 

Condition Low 
Condition High 

Relative Jump 
Relative Jump 

1 0 10 
1 0 11 

Greater _Than Zero 
Greater Than Zero 

Condition Low 
Condition High 

Absolute Jump 
Absolute Jump 

11 0 0 
11 0 1 

Greater Equal Zero 
Greater Equal Zero 

Condition Low 
Condition High 

Relative Jump 
Relative Jump 

1 11 0 
1111 

Greater Equal Zero 
Greater Equal Zero 

Condition Low 
Condition High 

Absolute Jump 
Absolute Jump 
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C.6 Logic 

inl operation type out = ml OP in2 
in2 , LOGIC conf 	 SIMD yes 

L 	 = 

configuration 
00000 -  N/A 
0 0 0 0 1 Single Integer Negate 
0 0 0 10 Single Integer OR 
000 11 Single Integer AND 
00 1 0 0 Single Integer XOR 
00 10 1 Single Integer NOT - 

00 1 10 Single Integer NOR 
0 0 111 Single Integer NAND 
0 1 0 0 0 Single Integer Absolute 
0 1 00 1 Single Integer FFS 
0 1 0 1 0 Single Integer CLZ 
0 1 0 11 Single Integer CTZ 
O 1100 Single Integer POPCOUNT 
0 11 0 1 Single Integer Parity 
0 1110 Half to Single Integer - Sign Extend 
0 1111 Quarter to Single Integer Sign Extend 
1 0 0 0 0 Quarter to 2x Half Integer Sign Extend 
1 0 00 1 Vector 2x Half Integer Negate - 

1 0 0 1 0 Vector 4x Quarter Integer Negate 
1 0 0 11 Half Integer - Merge MSB - 

1 0 1 0 0 Half Integer - Merge LSB & MSB 
1 0 1 0 1 Half Integer Merge LSB - 
1 0 11 0 Quarter Integer Merge Interleaved 
10 111 Quarter Integer Re-Order 
11 0 0 0 Half to. Single Integer Zero Extend 
1100 1 Quarter to Single Integer Zero Extend 
10 1 0 0 Half Integer Merge MSB & LSB 
11 0 11 Single Integer Bit Reverse 



C.7 Multiplier 

ni 	 operation type out = ml x in2 
in2 • MU L 	[if bitwidth 4 
conf 	 SIMD yes 

arity.  

configuration 
0000 Signed Single Integer Low Part  

0 -6 1 Unsigned Single Integer Low Part 

00 1 0 Signed Double Integer 
Unsigned Double Integer 

High Part  
High Part o ii 

1 00-,--  Signed Vector 2x Half Integer 
Unsigned Vector 2x Half Integer i 0 1 

ii 0 - 	Signed Vector 4x Quarter Integer  
Unsigned Vector 4x Quarter Integer iii 

-1000 
f-0--01 

 Signed Vector 2x Quarter Integer 
 Unsigned Vector 2x Quarter Integer 

.2x VectorHalf Integer 
2x Vector Half Integer 
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C.8 Multiplexor 

liii 	 operation type out = sel? ml : in2 

____0.  M ux 	L conf bitwidth 4 
sel 

conf 	 SIMD yes  
arity ternary 

configuration 
O 0 0 0 - 	Single Integer Equal Zero  
000 1 
6-0--i  0 

Single Integer 
Single Integer 

Not Equal Zero 
Greater Equal Zero 

o ii Single Integer 

Vector 2x Half Integer 

Greater Than Zero 

]Edaf Zer 1 0 0 
1 0 1 
ii 0 

Vector 2x Half Integer Not Equal Zero 
Vector 2xHalf Integer Greater Equal Zero 

01 1 1 

10 0 0 

 Vector 2x Half Integer 

Vector 4x Quarter Integer 

Greater Than Zero ,  

Equal Zero 
1 0 0 1 
1 0 1 0 

Vector 4x Quarter Integer 
Vector 4x Quarter Integer 

Not Equal Zero 
Greater Equal Zero 

1 0 1 1 Vector 4x Quarter Integer Greater Than Zero 



C.9 Read Memory 

addr 	 operation type out = mem[addr+offset] 
offset, RMEM 	Lcont bitwidth TIIii 
conf 	 SIMD yes  

	

arity 	Y 	IJ 
configuration 

0 1 Single Integer 
i o Half Integer Sign Extend  
ii Half Integer Zero Extend 

1 0 0 Quarter Integer Sign Extend  
1 0 1 1 Quarter Integer. -Zero Extiil 

j 

IM 



C.1O Shift 

inl operation type out = ml <</ >> in2 
in2 , S H I FT conf 	 SIMD yes 

LTarl mary  

configuration 

.00000  SingleInteger Logic Left 
0000 1 Single Integer - Logic Right  

o 0 1 1 Single Integer Arithmetic Right 

O10 0 0 Vector 2x Half Integer Logic Left 
10 0 1 Vector 2x Half Integer Logic Right 
1 0 11 Vector 2x Half Integer 

Vector 4x Quarter Integer 
Vector 4x Quarter Integer 

Arithmetic Right 

Logic Left 
Right 

-
Logic 

1 0 0 0 0 
1 0 0 P 1 
160-14  Vector 4x Quarter Integer 

- 	 Single Integer 

Arithmetic Right 

Left 31-1 0 0 11 0 
11000 - 	Single Integer _Left 

Single. Integer 
3O-2 

Left 28-4 11 01 -1 0 
111 0 0 Single Integer Left 26-6  
1111 0 Single Integer Left 24-8.  
60 111 Single Integer Right 31-i - 

11 0,0 1 Single Integer Right 30-2 
1 1 0 11 - 	- 	Single Integer 

Single Integer 
Right 28-4 	- 

Right 26-6 111 0 1 
ii Single Integer Right 24-8 
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C.11 Write Memory 

____ w 
	

[ 	 I 

addr1 	 operation type mem[addr+offest] = in 
offsets 	 nfbitwfdtIi2 

SIMD yes conf 	
arity ternary_______________ 

configuration 
00 Single Integer  
07 Half Integer 
1 0 Quarter Integer 
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