
University of Windsor
Scholarship at UWindsor

Electronic Theses and Dissertations

2009

Design and Evaluation of a Parameterizable NoC
Router for FPGAs
Michael Brugge
University of Windsor

Follow this and additional works at: http://scholar.uwindsor.ca/etd

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These
documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative
Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the
copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of
the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please
contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

Recommended Citation
Brugge, Michael, "Design and Evaluation of a Parameterizable NoC Router for FPGAs" (2009). Electronic Theses and Dissertations.
Paper 115.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship at UWindsor

https://core.ac.uk/display/72782594?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fetd%2F115&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F115&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F115&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd/115?utm_source=scholar.uwindsor.ca%2Fetd%2F115&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Design & Evaluation of a Parameterizable
NoC Router for FPGAs

By

Mike Brugge

A Thesis
Submitted to the Faculty of Graduate Studies

Through Electrical and Computer Engineering
In Partial Fulfillment of the Requirements for the

Degree of Master of Applied Science at the
University of Windsor

Windsor, Ontario, Canada
2009

© 2009 Mike Brugge

All Rights Reserved. No Part of this document may be reproduced, stored or otherwise
retained in a retrieval system or transmitted in any form, on any medium by any means

without prior written permission of the author

Design & Evaluation of a Parameterizable NoC Router for FPGAs

By

Mike Brugge

APPROVED BY:

N. Zamani
Mechanical, Automotive, and Materials Engineering

K. Tepe
Electrical and Computer Engineering

M. A. S Khalid, Advisor
Electrical and Computer Engineering

Mitra Mirhassani, Chair of Defense
Electrical and Computer Engineering

September 21, 2009

iv

Author’s Declaration of Originality

I hereby certify that I am the sole author of this thesis and that no part of this thesis

has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon

anyone’s copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my thesis,

published or otherwise, are fully acknowledged in accordance with the standard referencing

practices. Furthermore, to the extent that I have included copyrighted material that

surpasses the bounds of fair dealing within the meaning of the Canada Copyright Act, I

certify that I have obtained a written permission from the copyright owner(s) to include

such material(s) in my thesis and have included copies of such copyright clearances to my

appendix.

I declare that this is a true copy of my thesis, including any final revisions, as

approved by my thesis committee and the Graduate Studies office, and that this thesis has

not been submitted for a higher degree to any other University or Institution.

v

Abstract

The Network-on-Chip (NoC) approach for designing (System-on-Chip) SoCs is currently

emerging as an advanced concept for overcoming the scalability and efficiency problems of

traditional on-chip interconnection schemes. This thesis addresses the design and

evaluation of a parameterizable NoC router for FPGAs. The importance of low area

overhead for NoC components is crucial in FPGAs, which have fixed logic and routing

resources. We achieve a low area router design through optimizations in switching fabric

and dual purpose buffer/connection signals. We propose a component library to increase

re-use and allow tailoring of parameters for application specific NoCs of various sizes. A

set of experiments were conducted to explore the design space of the proposed NoC router

using different values of key router parameters: channel width (flit size), arbitration scheme

and IP-core-to-router mapping strategy. Area and latency results from the experiments are

presented and analyzed.

vi

Acknowledgements

I would like to express my sincere gratitude to my supervisor, Dr. Mohammed A. S.

Khalid, where my research would not be possible without his advice and wisdom that

guided me over the course of this research. I first met Dr. Khalid during the third year of

my undergraduate degree, when he taught a class in digital system design. He stimulated

my interest in this field. Although this class was based on processor design, he also

provided an introduction into VHDL and embedded system design. The next year, I was

able to get into his embedded system design class where I developed my skills and received

excellent experience in the exciting field of reconfigurable computing. For this very

reason, it had motivated me to continue my academic career in this field. My appreciation

also goes out to my thesis committee members, Dr. K. Tepe and Dr. N. Zamani, for their

time to sit on my committee and for reviewing my thesis.

 I want to thank my family for all their constant support and encouragement. Thanks

to my parents for their understanding throughout. Thanks for helping to keep me focused

day after day. Thanks to my brother Shawn for providing some less stressful activities such

as movies and Spitfire games. Thanks to my girlfriend Amy for always listening and

helping me work through any and all problems.

 Finally, I need to acknowledge my friends and fellow graduate students at the

University of Windsor. Pat, Steven, and Chris thank you for your friendship and guidance.

Thanks to Matt for your company and making those long days at the office a little less

stressful. You could always provide me with the help I needed. Lastly, thanks to the rest

of my colleagues; to Thuan, Lin Lin, Omar, and everyone else who made this great

milestone in my life so enjoyable.

vii

Table of Contents

Author’s Declaration of Originality ... iv

Abstract .. v

Acknowledgements .. vi

List of Figures ... xi

List of Tables ... xiii

List of Abbreviations ... xiv

1. Introduction ... 1

1.1 Thesis Objectives .. 4

1.2 Thesis Organization .. 4

2. Background and Previous Work ... 5

2.1 Overview of NoC .. 5

2.1.1 NoC Building Blocks ... 5

2.1.1.1 Links ... 6

2.1.1.2 Network Interface ... 6

2.1.1.3 Routing Node .. 6

2.1.2 NoC Parameters ... 7

2.1.2.1 Infrastructure ... 7
2.1.2.1.1 Channel Width .. 7

viii

2.1.2.1.2 Topology ... 7

2.1.2.1.3 Buffering ... 9

2.1.2.1.4 Floor Planning ... 9

2.1.2.2 Communication Mechanism ... 9
2.1.2.2.1 Flow Control .. 9

2.1.2.2.2 Switching Mode .. 10

2.1.2.2.3 Switching Mechanism ... 10

2.1.2.2.4 Routing Algorithm ... 11

2.1.2.3 Mapping .. 11
2.1.2.3.1 Scheduling ... 11

2.1.2.3.2 Module Mapping .. 11

2.1.3 NoC Evaluation Metrics .. 11

2.1.3.1 Latency/Throughput .. 12

2.1.3.2 Area ... 13

2.1.3.3 Energy/Power Consumption ... 13

2.1.3.4 Quality of Service (QoS) .. 13

2.1.3.5 Flexibility .. 14

2.2 FPGA Technology .. 14

2.3 Related Work .. 17

2.4 Summary ... 22

3. A Parameterizable NoC Router Architecture .. 23

3.1 Functionality ... 23

3.1.1 Protocols and Algorithms .. 23

3.1.1.1 Flow Control ... 24

3.1.1.2 Switching Mode .. 24

3.1.1.3 Routing Algorithm .. 24

3.1.1.4 Scheduling .. 26

3.2 Router Implementation ... 27

3.2.1 Data Transfer between Input and Output Ports ... 29

ix

3.2.2 Input Channel ... 29

3.2.2.1 Input Buffer ... 30

3.2.2.2 Input Controller ... 31

3.2.3 Switching Mechanism.. 31

3.2.4 Output Channel .. 31

3.2.4.1 Output Buffer .. 32

3.2.4.2 Output Controller .. 33

3.3 NoC Architecture .. 33

3.3.1 Data Transfer between Routers.. 33

3.3.2 Building a NoC Network ... 36

3.4 Verification ... 38

3.5 Summary ... 39

4. Experimental Evaluation results ... 40

4.1 Design Methodology ... 40

4.2 Synthesis Results .. 40

4.2.1 Arbitration .. 42

4.2.2 Flit Size .. 44

4.2.3 Configuration ... 45

4.3 Router Performance .. 47

4.4 Experimental Evaluation Framework ... 49

4.4.1 Arbitration .. 50

4.4.2 Flit Size .. 50

4.4.3 Configuration ... 50

4.5 Experimental Results and Analysis .. 52

4.5.1 Arbitration .. 53

4.5.2 Flit Size .. 55

4.5.3 Configuration ... 57

4.6 Summary ... 59

5. Conclusions and Future Work .. 60

5.1 Summary of Research Contributions .. 61

x

5.2 Future Work .. 61

Appendix A .. 63

Detailed Synthesis Results .. 63

References .. 69

VITA AUCTORIS .. 72

xi

List of Figures

Figure 2.1: Illustration of Four Basic NoC Building Blocks [23] .. 6

Figure 2.2: Popular NoC Topologies [3] .. 8

Figure 2.3: FPGA Architecture [25] ... 15

Figure 2.4: Altera Logic Element Architecture [26] ... 16

Figure 2.5: Xilinx Slice Architecture [26] .. 16

Figure 2.6: Four Input LUT [25] .. 17

Figure 3.1: Coordinate Configuration for XY Routing .. 25

Figure 3.2: Configuration of Local Ports for XY Routing ... 26

Figure 3.3: Architecture of Port: I/O Channels and Switch .. 28

Figure 3.4: Handshake Scenario between I/O Ports ... 29

Figure 3.5: Architecture of Input Buffer ... 30

Figure 3.6: Architecture of Input Controller ... 30

Figure 3.7: Architecture of Switching Fabric ... 32

Figure 3.8: Architecture of Output Buffer .. 32

Figure 3.9: Architecture of Output Controller .. 33

Figure 3.10: Architecture of Proposed Router .. 34

Figure 3.11: Connections between Adjacent Routers ... 35

Figure 3.12: NoC Router Design Flow ... 36

Figure 3.13: East to North Transfer Simulation Output in Altera Quartus II CAD tool 39

Figure 4.1: Proposed NoC Router Design Space .. 49

Figure 4.2: Single Router Architecture ... 51

Figure 4.3: 1X2 Mesh Architecture a) Map 1 b) Map 2 c) Map 2 extended 51

xii

Figure 4.4: 2X2 Mesh Architecture a) Map 1 b) Map 2 ... 52

Figure 4.5: Effect of Arbiter Choice on Throughput .. 54

Figure 4.6: Effect of Arbiter Type on FPGA Area Utilization ... 54

Figure 4.7: Effect of Flit Size on Throughput for Test 1 .. 56

Figure 4.8: Effect of Flit Size on Throughput for Test 2 .. 56

Figure 4.9: Effect on Flit Size on FPGA Area Utilization .. 57

Figure 4.10: Effect of Configuration on Throughput ... 58

Figure 4.11: Effect of Configuration on FPGA Area Utilization ... 59

xiii

List of Tables

Table 2.1: Related Work ... 18

Table 3.1: Coding Scheme for Different Arbiters .. 37

Table 4.1: Area Utilization for Router Components ... 41

Table 4.2: Area Utilization for LiPaRs Router Components .. 42

Table 4.3: Effect of Arbiter Choice on FPGA Utilization, Optimized for Area 42

Table 4.4: Effect of Arbiter Choice on FPGA Utilization, Optimized for Speed 43

Table 4.5: Effect of Flit Size on FPGA Utilization, Optimized for Area 44

Table 4.6: Effect of Flit Size on FPGA Utilization, Optimized for Speed 45

Table 4.7: Effect of Configuration on FPGA Utilization, Optimized for Area 46

Table 4.8: Effect of Configuration on FPGA Utilization, Optimized for Speed 46

Table 4.9: Effect of Configuration on Routing Resource Utilization 47

Table 4.10: Simulation Results for Arbitration .. 53

Table 4.11: Simulation Results for Flit Size ... 55

Table 4.12: Simulation Results for Configuration .. 58

xiv

List of Abbreviations

Abbreviation Definition___

ASIC Application Specific Integrated Chip

BRAM Block Random Access Memory

CAD Computer Aided Design

CPU Central Processing Unit

CS Circuit Switched

DSP Digital Signal Processing

deMUX De-Multiplexer

FIFO First In / First Out

Flit Flow Control Unit

FPGA Field Programmable Gate Array

FSM Finite State machine

HLP High Level Protocol

HOL Head-Of-Line

I/O Input / Output

IC Integrated Circuit

IOB I/O Block

IP Intellectual Property

LE Logic Element

LUT Lookup Table

MLPR Multi-Local Port Router

MUX Multiplexer

xv

NEP Signal (Non-Existent Port)

NoC Network-on-Chip

NRE Non-Recurring Engineering

PS Packet Switched

QoS Quality of Service

RRA Round Robin Arbiter

SAF Store and Forward

SoC System-on-Chip

VCT Virtual Cut-Through

VHDL Very high speed integrated circuit Hardware Description Language

WH Wormhole

1

Chapter 1

Introduction

1. Introduction

The complexity of a system on silicon is comparable to other macro systems such as

space shuttle or skyscrapers, when measured in terms of the number of basic elements

intricately connected together, but at a micro level [22]. Moore’s law describes an

important trend in the history of the integrated circuit (IC): the number of transistors that

can be placed on an IC is increasing exponentially, doubling approximately every two

years. This trend has continued for more than half a century. Increasing transistor

density, higher operating frequencies, shorter time-to-market and reduced product life

cycle, characterize today's semiconductor industry. As semiconductor technology

evolves, electronic industries continually push the envelope for greater functional and

performance capabilities in new electronic systems. This is creating a continuing need for

new design methodologies and design space exploration.

 An embedded system is a special-purpose computer system designed to perform

one or a few dedicated functions, often with real-time computing constraints. Embedded

systems range from portable devices such as digital watches, cameras and MP3 players,

to large stationary units like traffic lights and factory controllers. Complexity varies from

low, with a single micro-controller chip, to very high with multiple intellectual property

(IP) cores and peripherals. The exponential growth in chip density is opening the door for

the implementation of even larger and more complex systems, where complete embedded

systems can be built onto a single chip. This paradigm shift is known as System-on-Chip

(SoC) and is becoming increasingly common and complex. SoCs may contain many

2

hardware and/or software blocks, such as processors, DSPs, memories, peripheral

controllers, gateways, and other custom logic blocks.

 The communication architecture implemented in SoCs is an important

contribution to the overall performance. Since the introduction of SoC concept, designers

relied on a custom-designed ad-hoc mixture of buses and dedicated wires as

communication mechanisms. Dedicated wires are effective for systems with a small

number of cores, but available routing resources are quickly used up as system

complexity grows. They also provide poor reusability and flexibility. A shared bus is a

set of wires common to multiple cores, which increases both reusability and scalability.

This scheme works well for Master-Slave communication patterns, where peripherals

(slaves) wait for data to be received or requested from a more complex processing IP core

(master). However, when there are several masters in the system, contention creates a

bottleneck which gets worse as complexity grows. And although using hierarchical bus

models separated by bridges may reduce some of these constraints, it also complicates

protocols while failing to fully eliminate the scalability problem. Design and verification

times also grow with SoC complexity [13].

 With the current trend in integration of more complex SoCs, there is a need for

better communication infrastructure on chip that will solve the scalability problem by

supporting multiple concurrent connections between IP cores, allow for pre-tested design

reuse to minimize design and verification times, all while maintaining a low area-

overhead. Many architectural templates have been proposed for hardware platforms for

future SoCs to provide standardized communication. NoC has been introduced as a new

interconnection paradigm able to integrate IP cores in a structured and scalable way. This

idea aims to allow system modules to communicate with each other over an on-chip

network and has been gaining support world-wide. NoCs are based on the concepts

adopted on the building of interconnection networks for parallel computers. Each router

has a set of ports which are used to connect routers with its neighboring routers and with

the IP cores of the system. This solution also promotes independent design of IP cores.

NoC is still an active area of research, but many works [12], [13], [19], [22] have provided

promising performance results over current communication strategies (dedicated wires, shared

3

and locked buses) for FPGAs. There is a great need for research in hardware

implementation of NoC systems to determine the feasibility of implementing various

parameters, and also to accurately determine what design tradeoffs are involved in NoC

implementation.

ASICs are increasingly being replaced by Field Programmable Gate Arrays

(FPGAs) for applications with low to medium volume, due to longer design cycles and

high cost [14]. FPGA's have also continued to grow with the increase in chip density.

Modern FPGA's have various hardware and/or software blocks embedded within them,

such as DSP blocks, memory, and even processors. These blocks, along with

customizable logic blocks, makes them the perfect candidate for NoC designs. A

fundamental difference between ASICs and FPGAs is that wires in ASICs are designed

such that they match the requirements of a particular design. Wire parameters such as

length, width, layout and the number of wires can be varied to implement a desired

circuit. Conversely, in an FPGA, area is fixed and routing resources exist whether or not

they are used. The electrical characteristics of the FPGA are solved by the chip vendor,

not by the user [3]. Exploiting the advantages of NoC in FPGAs for implementing SoC

designs is an active area of research where the goal becomes implementing a circuit

within the limits of available resources. Hence, the importance of designing a generic

light-weight router whose area can be traded-off for performance in many different ways,

to meet applications requirements.

 This thesis is primarily concerned with the challenges of parameter selection for a

NoC-based system. The emphasis is on the evaluation of NoC router parameters targeted

for implementation on FPGAs, since FPGAs serve as an excellent platform for rapid

prototyping and design space exploration. Recent research suggests the shift of larger

SoC implementations on FPGAs as well as the design of light-weight, FPGA based NoC

routers, prompting possible future NoC implementations.

4

1.1 Thesis Objectives

The main goal of this research was to evaluate NoC router parameters based on area and

latency to allow designers to make informed choices for the creation of large embedded

systems on FPGAs. This research has the following major objectives:

1. Investigate the feasibility of NoC router implementation on FPGAs.

2. Explore the effects of varying NoC router parameters on area and latency. To date,

not much research has been done to address this issue.

3. Investigate and design benchmarks with features that would severely test the NoC

router implementations.

For the first objective, an experimental framework was developed using VHDL,

allowing synthesis in Altera Quartus II CAD tool design environment. A parameterizable

NoC router was designed and tested. Literature survey was conducted that showed a lack

of results on NoC router implementation for FPGAs. Parameters that were not explored

in previous research were selected and design space exploration was conducted for

different values of those parameters. To address the third objective, benchmarks for each

parameter were developed based on application and random traffic patterns. Finally, the

proposed router was experimentally evaluated, using different parameter values, based on

metrics such as area, latency, throughput, FPGA on-chip memory utilization and FPGA

routing resource utilization.

1.2 Thesis Organization

This thesis is primarily concerned with evaluating the trade-offs for area and latency for

many NoC router parameters. Emphasis is placed on the design of NoC routers targeted

for implementation on FPGAs. The outline of this thesis is as follows. Chapter 2

presents a background on NoC router design, FPGA architecture and provides a

description of recent related academic research. An overview of the proposed router

architecture is given in Chapter 3. In Chapter 4, we present experimental evaluation

results for the proposed router used in a variety of mesh configurations. Chapter 5

concludes the paper with a summary and discussion of future work.

5

Chapter 2

Background and Previous Work

2. Background and Previous Work

In this chapter, the background and previous work that is relevant to this research is

presented. This chapter begins with an overview of Network-on-Chip (NoC) and NoC

parameters. That is followed by a section discussing NoC evaluation metrics. Next a

section describing FPGA technology is presented. The chapter concludes with a

discussion of previous work closely related to NoC router design and evaluation.

2.1 Overview of NoC

There are many research papers and books dealing with micro-networks, with many

subtle differences in definitions, concepts, and theories. In this section, for the sake of

clarity, we present a collection of concise definitions of relevant concepts and theory that

holds true for most NoC systems including our proposed router architecture. Emphasis is

placed on how such concepts relate to FPGA implementations wherever necessary.

2.1.1 NoC Building Blocks

NoC aims to allow computational components (IP cores) to communicate over an on-chip

network. An example of a NoC interconnection network is shown in Figure 2.1, which

consists of four basic functional blocks. These blocks include the IP cores, the network

adaptor, the routing node, and the links. IP cores are specific to the application and not

considered part of the NoC design.

6

Figure 2.1: Illustration of Four Basic NoC Building Blocks [23]

2.1.1.1 Links

This component provides connections for a routing node with a network interface or

another routing node. It may provide buffer resources and separate control lines for

connection establishment and teardown.

2.1.1.2 Network Interface

This component provides the conversion between the high level protocol (HLP) that the

IP uses and the packet-based communication protocol of the NoC. This component may

be responsible for buffering packets, storing IP core addresses, creating and

disassembling messages, implementing end-to-end flow control, crossing clock domains,

and other higher level network issues.

2.1.1.3 Routing Node

This component carries out the task of receiving and forwarding messages inside the

network based on NoC parameters. The Router is the central component in a NoC

interconnection network. Therefore, its area and speed play a big role in the performance

of the overall system. NoC interconnection networks have a large range of parameters

7

which are all focused around router design. Research in this area still lacks in useful

implementation results.

2.1.2 NoC Parameters

Network parameters are an important research topic among NoC designers. To further

enhance performance, the parameters of the NoC should be chosen based on the specific

application. Therefore, the goal in a general network design is to leave as much designer

flexibility as possible. Not every network parameter can be created flexible and many of

the parameters are dependent on each other. Evaluation and testing can provide insight

into how to select these parameters, although a better solution may be a flexible library of

interchangeable components. We have chosen to create such a library using VHDL, and

use an FPGA to provide fast prototyping for results. Due to time and resource

constraints, limitations had to be set on the amount of design space explored. Network

parameters can be broken into three groups as in [2]: Infrastructure, Communication

Mechanism, and Mapping. Each of these groups will be discussed separately below.

2.1.2.1 Infrastructure

Infrastructure aims to determine the network architecture and includes channel width,

topology, buffering and floor planning. These parameters are all application specific and

should be left to the designer’s discretion.

2.1.2.1.1 Channel Width

This parameter describes the size of the data passed between routers. It is important since

it directly affects bandwidth but can lead to the side affects of increased area/power. Our

library allows for a parameterizable channel width which will also be tested for resulting

area and latency tradeoffs.

2.1.2.1.2 Topology

This parameter refers to the way routers are connected in the network. It should be

chosen to minimize area, while maximizing utilization without causing bottlenecks.

8

Saldana et al. evaluate different topologies in terms of area and routing resources [3].

Figure 2.2 shows some popular NoC topologies. Ring and star achieve slightly better

results, although both fail to provide solutions to the scalability problem. As the number

of nodes increases, ring suffers large end to end delay and star suffers from a central

bottleneck. Narasimhan et al. compare the performance of a two dimensional torus to

mesh, showing a slight edge for two dimensional torus [4]. They however, do not

compare the extra routing resources needed or the increase area of each router due to a

more complex routing algorithm. We restrict the topology to mesh, which is most

common among FPGA networks, but allow for various implementation sizes up to an 8 x

8 network. We also create multiple local ports (up to four per router), which allows for

multiple IP cores connected to each router or multiple router connections for single IP

cores. This increases the possible number of IP cores connected in the network from 64

to 256. With available FPGAs, it would be impractical to build anything larger due to

area and routing resource constraints.

Figure 2.2: Popular NoC Topologies [3]

9

2.1.2.1.3 Buffering

This parameter defines the approach used to store messages while they cannot be

scheduled. This has a serious impact on the area overhead of the network, however, it

can also have a serious impact in reducing network latency. We use input and output

buffering to prevent head-of-line blocking (HOL). This occurs when a packet or packets,

experience blocking and cause the blocking of later packets which could otherwise be

processed. The inclusion of an output buffer allows the blocked packet to move out of

the input buffer, to unblock the later packets for processing. Buffer allocation should be

based on traffic patterns. The authors of Hermes [8] design a generic router which has a

parameterizable buffer depth. They also include insight through testing various buffer

sizes for area and performance values.

2.1.2.1.4 Floor Planning

Floor planning involves the placement of network components. This is not important in

FPGA-based NoC designs as it is done by vendor specific CAD tools (Altera Quartus II

CAD tool).

2.1.2.2 Communication Mechanism

Communication mechanism deals with how data flows through the network and includes

flow control, switching mode, switching mechanism, and routing algorithm. These

parameters are usually set when designing the NoC platform.

2.1.2.2.1 Flow Control

This parameter deals with the allocation of channels and buffers to data as it travels from

source to destination. The two extremes are packet switching (PS) and circuit switching

(CS). In circuit switching, there is a dedicated connection between the two modules in

which raw data can be transmitted freely. This technique requires a setup time to build

and tear down connections, and its channel reservation nature often leads to idle times

and causes unreliable blocking. The only upside to this method is its ability to provide

10

guaranteed bandwidth during connection times. This method does not scale as well and is

not a popular choice for NoC systems. In packet switching, data is broken into packets

which carry routing information. Packets can further be broken down into flow control

units (flits). Modules can send packets at any time and there are often many different

packets in flight at a given time. The routers must process and redirect each packet

accordingly.

2.1.2.2.2 Switching Mode

This parameter only exists in PS networks and defines how packets move through the

network. The most important schemes are store-and-forward (SAF), virtual cut-through

(VCT), and wormhole (WH). In SAF, a router cannot forward a packet until all its flits

have been received. Therefore, latency is proportional to packet size and it carries large

buffer requirements. In WH, the first flit (header) determines the next hop and all

remaining flits follow and can be sent as soon as it’s received. Therefore, latency is

proportional to flit size. This method combines packet switched flow control with circuit

switched ideas but also leads to channel reservation. It also requires a complex routing

algorithm. VCT uses a combination of both ideas to provide latency based on flit size

without idle times by guaranteeing buffering before setting up the connection. However,

this method uses large buffer amounts and very complex routing algorithms making it

unsuitable for light-weight networks. We have chosen SAF for its light-weight algorithm

and to prevent channel reservation. Future testing may extend flexibility to include WH

as well.

2.1.2.2.3 Switching Mechanism

This parameter refers to how connections are made inside a router. Common

architectures include fully connected, crossbar matrix, and partial crossbar matrix. We

use a partial crossbar scheme to save area as it is the smallest configuration. We have

also implemented optimizations based on the chosen routing algorithm which we will

discuss later.

11

2.1.2.2.4 Routing Algorithm

The routing algorithm determines the path the packet will take. There is not much

research guidance available on effectiveness of available routing algorithms for NoC

implementations. We use XY routing for its simplicity and low area overhead. This

scheme also prevents livelock and assures flits and packets arrive in order. Routing

schemes can also require congestion control and recovery mechanisms, which can lead to

added area overhead. We allow this to be handled by the application layer.

2.1.2.3 Mapping

Mapping determines how to integrate a given application to the NoC platform and

includes scheduling and module mapping.

2.1.2.3.1 Scheduling

This is a traditional computer science topic but most work neglects inter-processor

communication. Arbitration schemes consider priority of packets when making grants

inside the routers among the network. Arbiter schemes can be static or dynamic.

Dynamic arbitration makes a decision at run-time and is more flexible, however also

requires a larger area. Dynamic Schemes can also prevent starvation which is a downfall

of static schemes. Our library provides a few different components to allow for area and

latency trade-offs.

2.1.2.3.2 Module Mapping

This parameter aims at selecting IP modules for different locations to minimize traffic.

This parameter is application specific and is explored later.

2.1.3 NoC Evaluation Metrics

NoC architectures are designed to meet certain cost and performance constraints, which

include, but are not limited to, speed, area, energy/power consumption, Quality of Service

(QoS) and flexibility. Through parameter selection, one or more metrics can often be

12

improved at the cost of other(s). In the following sections we will discuss the evaluation

metrics for NoC router architectures and their relevance to this thesis.

2.1.3.1 Latency/Throughput

When using FPGA technologies, evaluating speed can often be as easy as obtaining the

synthesized maximum frequency the clock is capable of running at. For NoC routers, this

is not the case. Although still important to the overall performance, NoC routers have

multiple ports which can send, receive and process simultaneously. Therefore, it is

important to observe data transaction times.

Speed can be measured in delay, which is referred to as latency. Latency can be

the overall run time, it can be decomposed into several intervals such as packet or flit

latency, calculated as an average, along with other creative possibilities. We use the

overall application run time measured in cycles, which is converted to time as a function

of the maximum clock frequency.

Speed can also be measured in bandwidth, which is referred to as throughput.

Throughput is the amount data transferred over a period of time. Throughput can be; the

ideal data processing rate (system working under the best possible conditions), it can be

decomposed into several intervals such as overall application, packet or flit throughput,

measured per system, IP core, router, or port, calculated as an average, along with other

creative possibilities. We use the overall application/simulation throughput measured in

packet and flits per cycle, which is converted to time as a function of the maximum clock

frequency.

Finally, some papers suggest NoC router speed be measured in terms of

bottlenecks. Either the number of occurring bottlenecks, or the time in which a router has

a bottleneck occurring. This metric was not used in our experiments but is very

interesting to note.

 It is important to understand that speed characteristics for NoC routers are

application specific and do not represent speed characteristics of the router alone. This

makes comparing different router performances quite hard.

13

2.1.3.2 Area

In an FPGA, overall system area is limited and therefore important to keep minimal.

Area can be measured as a number or a percent of available resources. Area is a very

vague term. In an FPGA, there are many components which occupy area. For our

experiments, we use area in terms of logic elements (LE’s), memory blocks, and routing

resources (direct wires, interconnects, and clocks). This Information is obtained from

Altera Quartus II CAD tool after compiling and synthesizing the VHDL code. Altera

Quartus II CAD tool gives the option to synthesize for the lowest area or highest speed.

2.1.3.3 Energy/Power Consumption

For FPGA technologies, power consumption is a metric not often evaluated. This is due

to the fact that power consumption has a direct relation with area. Also, designing low

power circuits for FPGA implementation is based on trial and error. Therefore, most

research including ours focuses on area and excludes the use of power estimation tools.

2.1.3.4 Quality of Service (QoS)

Quality-of-Service (QoS) is a networking term that refers to guarantees that the system

can make about its performance. In computer networks, certain application such as video

streaming are required to give a guarantee of high uninterrupted bandwidth because of the

uniqueness of the application. It is difficult to actually predict the behavioral nature of

the data in the network, thus making it nearly impossible to guarantee the required

bandwidth without some margin of error. PS suffers even more in its ability to predict

the timing of its services. To help provide QoS, NoCs must provide service free of the

following causes of failure:

1. Livelock: data is prevented from reaching its destination because it is in a cyclic

path.

2. Starvation: data is prevented from reaching its destination because some resource

does not grant access.

14

3. Deadlock: data is prevented from reaching its destination because it is blocked at

some intermediate resource.

 Livelock occurs when the packets are being routed around their destination and are

placed in a cyclic holding manner. Livelock can be avoided by allowing the packet to

travel the shortest route. XY routing avoids this situation.

Starvation is a common PS problem. It occurs when the packet is discriminated

against as low-priority data, thus never getting service. This can be avoided by allocating

resources to process all packets equally, automatically dropping and resending packets in

the network for too long, or by use of dynamic arbitration insuring all ports receive

service.

Deadlock is cause by packet being continuously blocked and it is the hardest

problem to solve because packets that are blocked stay blocked while waiting for an event

that cannot happen. This problem is solved by restricting channel reservation.

2.1.3.5 Flexibility

Flexibility refers to the number of manipulations the designer can make. Our router

design allows that some of the parameters be changed at design time allowing the

designer to choose trade-offs. Designs with a high degree of flexibility are the ones that

allow more parameters to be changed. Other flexibility characteristics include scalability

(ability to add more and more IP cores) and design re-uses (ability to use the same NoC

architecture for multiple designs).

2.2 FPGA Technology

A field-programmable gate array (FPGA) is an integrated circuit (IC) which can be

reprogrammed many times to implement any desired digital circuit which doesn’t exceed

the limits of the device. An FPGA contains a two dimensional array of programmable

logic components, called logic elements (LEs), a hierarchy of wires and buses with

reconfigurable interconnects that allow the LEs to be physically connected and is

surrounded by configurable I/O blocks (IOB’s). Figure 2.3 shows this two dimensional

FPGA architecture. In addition, FPGAs typically include other specialized blocks, such

as

st

bi

co

sp

sp

co

(A

F

co

th

s block rand

till provide s

its in mem

onnections.

peeds of tens

We c

pecific integ

onsume mo

ASICs). The

PGA allow

ompared to

hrough repro

dom access m

some degree

mory cells w

 An FPGA c

s of megaher

an use an F

grated circuit

ore area and

e use of FPG

ws for faster

ASIC. The

ogramming.

memories (B

e of configu

which contr

can support

rtz.

Figure 2.3

FPGA to im

t (ASIC) cou

d energy co

GA to implem

r prototypin

e main advan

15

BRAMs) and

urability. An

rol transisto

hundreds of

3: FPGA Arc

mplement an

uld perform,

ompared to

ment digital

ng, shorter t

ntage comes

d digital sign

n FPGA is p

r switches

f thousands

chitecture [2

ny logical f

, however FP

application

circuits is o

time to ma

s from the ab

nal processo

programmed

to establish

of gates of l

5]

function tha

PGAs tend t

n-specific in

n the rise ov

arket, and lo

bility to fix

ors (DSPs) w

d by loading

h non-perm

logic operati

at an applica

to run slowe

ntegrated cir

ver ASIC des

ower NRE

bugs in the

which

g data

manent

ing at

ation-

er and

rcuits

signs.

costs

e field

In

E

re

lo

The tw

ncorporated

Element (LE)

eferred to as

ook-up table

Fi

wo largest m

[24]. The b

) and is show

s a slice and

 (LUT) whic

igure 2.4: Al

Figure 2.

manufacture

basic buildin

wn in Figure

is shown in

ch is basical

16

ltera Logic E

5: Xilinx Sli

s of FPGAs

ng block in a

e 2.4. The b

n Figure 2.5.

ly a block of

Element Arc

ice Architec

s are Altera

an Altera FP

basic buildin

 The basic

f programma

hitecture [26

ture [26]

Corporation

PGA is refer

ng block in a

building blo

able memory

6]

n [20] and X

rred to as a L

a Xilinx FPG

ock of the LE

y and is show

Xilinx

Logic

GA is

E is a

wn in

17

Figure 2.6. The LUT consists of an array of 1-bit memories which implement a truth

table connected to a multiplexed output pin. In short, a Xilinx slice is basically made up

of 2 LEs. Altera Stratix II EP1540F1508C5 was selected as the target device for this

research. This device contains 41, 250 LE’s and was chosen for its popularity and large

output pin capability for synthesis of large designs.

Figure 2.6: Four Input LUT [25]

2.3 Related Work

Our Router has been designed and synthesized on an Altera Stratix II FPGA, therefore

although there are a number of ASIC and custom IC implementations, we restrict our

discussion of related work to FPGA implementations. This section is intended to provide

a comprehensive state of the art for NoCs, although the authors do not pose claims about

its completeness. The results of our review are summarized in Table 2.1.

18

Table 2.1: Related Work

Te
st

in
g

ty
pe

 a
nd

re
su

lts

no
 te

st
in

g

no
 te

st
in

g

si
m

ul
at

es
 5

x5
 n

et
w

or
k

w
ith

 d
iff

er
en

t b
uf

fe
r

si
ze

s,
 la

te
nc

y
de

cr
ea

se

fo
r l

ar
ge

r b
uf

fe
rs

(p

er
ha

ps
 d

ue
 to

 c
en

tra
l

bo
ttl

en
ec

k)

4
m

ic
ro

bl
az

e,

m
as

te
r/s

la
ve

 a
pp

lic
at

io
n

w
ith

 s
ha

re
d

an
d

lo
ca

l
m

em
or

y,
 3

2-
bi

t b
us

 v
s.

32

-b
it

ro
ut

er

Pe
rf

or
m

an
ce

fe

at
ur

es

40
M

H
z

cl
k

50
M

H
z

cl
k

25
M

H
z

cl
k

55
.8

-6
6M

H
z

cl
k

FP
G

A
 a

re
a

sy
nt

he
si

s
re

su
lts

61
1

sl
ic

es

55
2

sl
ic

es

5-
po

rt/
8-

bi
t 2

78

sl
ic

es

5-
po

rt/
8-

bi
t I

np
ut

bu

ffe
r d

ep
th

 2

46
0-

57
0

LE
's

de

pt
h

4
48

6-
79

5

LE
's

A
re

as
 to

 im
pr

ov
e

up
on

1-
D

 ro
ut

er
 c

on
fig

ur
at

io
n

le
ad

in
g

to
 s

am
e

bo
ttl

en
ec

k
pr

ob
le

m

la
rg

e
ro

ut
in

g
ta

bl
e

lo
gi

c,

se
tu

p
tim

e,
 p

os
si

bl
e

bl
oc

ki
ng

 d
ue

 to
 V

C
T

flo
w

co

nt
ro

l,
w

ith
ou

t r
em

ov
in

g
bu

ffe
r r

eq
ui

re
m

en
ts

ar
bi

tra
tio

n
an

d
ro

ut
in

g
lo

gi
c

is
 c

en
tra

liz
ed

cr

ea
tin

g
re

qu
es

t
bo

ttl
en

ec
k

an
d

re
st

ric
tin

g
si

m
ul

ta
ne

ou
s

co
nn

ec
tio

n
po

ss
ib

ilit
ie

s

va
rio

us
 p

ac
ke

t l
en

gt
hs

le

ad
s

to
 2

 e
xt

ra
 fr

am
in

g
bi

ts
 in

 e
ac

h
fli

t a
nd

co

m
pl

ex
 ro

ut
in

g
lo

gi
c

(u
pd

at
es

 h
ea

de
r a

t e
ac

h
no

de
)

N
ov

el
, u

se
fu

l f
ea

tu
re

s

fir
st

 w
or

ki
ng

 im
pl

em
en

ta
tio

n
on

FP
G

A

im
pr

ov
es

 u
po

n
ne

tw
or

k
st

ru
ct

ur
e

al
lo

w
in

g
2-

D
 ir

re
gu

la
r

to
po

lo
gy

si
m

pl
ifi

es
 ro

ut
in

g
lo

gi
c,

 p
ro

vi
de

s
pa

ra
m

et
er

iz
ab

le
 d

at
a

w
id

th
 a

nd

bu
ffe

r d
ep

th
, l

at
er

 w
or

k
pr

od
uc

es
 C

AD
 to

ol
 fo

r a
ut

o
ge

ne
ra

tio
n

an
d

ev
en

 tr
af

fic

an
al

ys
is

 (l
at

en
cy

)

de
ce

nt
ra

liz
ed

 ro
ut

in
g

an
d

ar
bi

tra
tio

n
lo

gi
c,

 c
on

cl
us

io
n

of

sh
or

te
r n

et
w

or
k

w
ire

s
le

ad
in

g
to

hi

gh
er

 c
lo

ck
 fr

eq
ue

nc
ie

s
th

en
 in

bu

se
s.

N
am

e,

A
ut

ho
r,

ye
ar

pu

bl
is

he
d,

re
fe

re
nc

e
[]

N
/A

,
M

ar
es

ca
ux

,

20
02

, [
6]

N
/A

, B
ar

tic
,

20
03

, [
7]

H
er

m
es

,
M

or
ae

s,

20
04

, [
8]

[9
]

R
A

S
oC

,
Ze

fe
rin

o,

20
04

, [
10

][1
1]

[1
2]

19

Te
st

in
g

ty
pe

 a
nd

re
su

lts

im
ag

e
bi

na
riz

at
io

n
ap

pl
ic

at
io

n
co

nt
ro

lle
d

by

m
ic

ro
bl

az
e,

 8
 b

lo
ck

 in

to
ta

l,
1

ro
ut

er
 v

s.
 s

ha
re

d
an

d
lo

ck
ed

 b
us

si
m

ul
at

es
 1

, 1
x2

, 3
x3

ro

ut
er

 c
on

fig
ur

at
io

ns

w
ith

 w
ith

ou
t b

lo
ck

in
g

an
d

w
ith

 w
or

st
 c

as
e

bl
oc

ki
ng

, t
ak

es
 2

4
cy

cl
es

 to
 p

ro
ce

ss
 8

-fl
it

pa
ck

et

si
m

ul
at

io
n

re
st

ric
te

d
to

S

A
F,

 R
R

A
, 4

 fl
it

pa
ck

et
s,

36

 n
od

es
, r

es
ul

ts
 s

aw

th
e

C
A

D
 to

ol

si
gn

ifi
ca

nt
ly

 re
du

ce
 a

re
a

fo
r l

ow
er

 in
je

ct
io

n
ra

te
s

si
m

ul
at

es
 a

 3
x3

 n
et

w
or

k
by

 im
pl

em
en

tin
g

a
w

ra
pp

er
 to

 in
je

ct

pa
ck

et
s

at
 v

ar
io

us
 ra

te
s

an
d

re
po

rts
 a

ve
ra

ge

la
te

nc
ie

s

Pe
rf

or
m

an
ce

fe

at
ur

es

13
8-

15
1M

hz

cl
k

33
.3

M
H

z

cl
k

10
7

M
H

z

cl
k

28
6M

H
z

cl
k

(c
om

m
on

)
35

7M
H

z
cl

k
(m

ul
tip

le
 c

lk

do
m

ai
ns

)
el

im
in

at
e

pa
d

de
la

ys

FP
G

A
 a

re
a

sy
nt

he
si

s
re

su
lts

8-
bi

t 4
-p

or
t 2

49

sl
ic

es
 8

-p
or

t 1
11

3
sl

ic
es

 (n
ot

in

cl
ud

in
g

R
AM

 fo
r

ro
ut

in
g

ta
bl

e)

5-
po

rt/
8-

bi
t

35
2-

43
2

sl
ic

es

5-
po

rt/
8-

bi
t (

4
fli

t
bu

ffe
rs

) 2
30

 s
lic

es

ex
tre

m
e

ca
se

 =
>

al
l p

or
ts

 s
ha

rin
g

ou
tp

ut
 lo

gi
c

88

sl
ic

es

5-
po

rt/
8-

bi
t 2

82

S
lic

es
 c

om
m

on
 c

lk

5-
po

rt/
8-

bi
t 3

32

sl
ic

es
 m

ul
tip

le
 c

lk

do
m

ai
ns

A
re

as
 to

 im
pr

ov
e

up
on

C
S

 c
re

at
es

 s
et

up
 a

nd

te
ar

do
w

n
la

te
nc

y,
 b

lo
ck

s
ch

an
ne

ls
 d

ur
in

g
id

le

tim
e,

 c
om

pl
ex

 ro
ut

in
g

lo
gi

c
re

du
ce

s
sc

al
ab

ilit
y

la
rg

e
5x

5
cr

os
sp

oi
nt

m

at
rix

, d
yn

am
ic

sc

he
du

lin
g?

 (w
or

th
 th

e
ex

tra
 a

re
a)

, s
lo

w
 c

lo
ck

(d

ue
 to

 la
rg

e
re

qu
es

t/g
ra

nt
 p

ro
ce

ss

tim
e)

fu
lly

 c
on

ne
ct

ed
 s

w
itc

h,

on
ly

 s
up

po
rts

 o
ut

pu
t

bu
ffe

rin
g

V
C

T
cr

ea
te

s
se

tu
p

an
d

te
ar

do
w

n
la

te
nc

y,
 b

lo
ck

s
ch

an
ne

ls
 d

ur
in

g
id

le

tim
e,

 w
hi

le
 s

til
l u

si
ng

bu

ffe
rs

, a
ls

o
go

es
 b

ac
k

to
 c

en
tra

l a
rb

itr
at

io
n

w
hi

ch
 c

re
at

es

pe
rfo

rm
an

ce
 b

ot
tle

ne
ck

s

N
ov

el
, u

se
fu

l f
ea

tu
re

s

ci
rc

ui
t-s

w
itc

he
d

flo
w

 c
on

tro
l

pr
ov

id
es

 g
ua

ra
nt

ee
d

th
ro

ug
hp

ut
, s

up
po

rts
 a

ny

cu
st

om
 to

po
lo

gy
 o

r n
um

be
r o

f
po

rts

In
pu

t a
nd

 o
ut

pu
t b

uf
fe

rs
, d

ua
l

pu
rp

os
e

si
gn

al
s

re
du

ce
s

lo
gi

c,

im
pr

ov
es

 c
ro

ss
ba

r b
as

ed
 o

n
X

Y

ro
ut

in
g,

 p
ro

po
se

s
M

LP
R

 id
ea

,
la

te
r w

or
k

cr
ea

te
s

ex
ha

us
tiv

e
C

A
D

 to
ol

 fo
r m

ap
pi

ng
 IP

's
 a

nd

ch
oo

si
ng

 n
et

w
or

k
si

ze

su
pp

or
ts

 ra
ng

e
of

 ro
ut

in
g,

sw

itc
hi

ng
, a

nd
 a

rb
itr

at
io

n
al

go
rit

hm
s,

 e
na

bl
es

 re
so

ur
ce

sh

ar
in

g
to

 lo
w

er
 a

re
a

w
he

re

hi
gh

er
 b

an
dw

id
th

 is
n'

t n
ee

de
d,

C

A
D

 to
ol

 d
ec

id
es

 s
ha

rin
g

ba
se

d
on

 in
je

ct
io

n
ra

te

ta
ke

s
cr

os
sb

ar
 re

du
ct

io
n

(b
as

ed

on
 X

Y
 ro

ut
in

g)
 id

ea
 fu

rth
er

 b
y

de
si

gn
in

g
cu

st
om

 p
or

ts

N
am

e,

A
ut

ho
r,

ye
ar

pu

bl
is

he
d,

re
fe

re
nc

e
[]

P
N

oC
, H

ilt
on

,

20
05

, [
13

]

Li
P

aR
,

S
et

hu
ra

m
an

,

20
05

,

[1
4]

[1
5]

G
no

C
,

Ve
st

ia
s,

20
06

, [
17

]

M
oC

re
s,

Ja

na
rth

an
an

,

20
07

, [
18

]

20

 The first working implementation of FPGAs was presented by Marescaux et al.

[6]. It has many faults mainly large size, and a one dimensional architecture which fails

to provide a high degree of scalability. They extend their work in [7], allowing a more

flexible architecture, but still suffering from large area overhead. They use VCT flow

control which is now considered too area-intensive for FPGA platforms because of

complex routing logic without eliminating any buffer constraints.

 Moraes et al, present Hermes, a router with parameterizable data width and buffer

depth. They perform simulations of a 5 x 5 mesh while varying buffer depth. They

conclude with the notion that increased buffer size reduced latency, but only to a

saturation point. Their design uses centralized arbitration and routing units, which

decreases area but stalls performance as routing requests are queued to be handled one at

a time. Their design also suffers from a very low clock speed. They later extend their

work to provide an automatic router generation and traffic analyzer [9].

 A comparable router, RASoC [10], was presented by Zeferino et al. The main

difference being they use a WH flow control. Performance differences are yet to be

compared and may be considered for future work as a WH downfall is that it reserves

channels which can cause blocking. However, WH also requires complex routing logic

as well as extra bits in the datapath for framing. They also used Altera to synthesis their

5-port, 8-bit router which occupies 486 LE's and has a clock frequency of approximately

57MHz. This area is quite large for a router whose buffers are limited to 4 per port.

 PNoc, proposed by Hilton et al in [13], gives us a router with circuit switched flow

control. They test their router against bus based approaches to show improvements.

However, routing complexity grows as the number of ports, or number of routers increase

and therefore reduces scalability. It also suffers typical CS setup and teardown latencies

and possible blocked idle time.

 Sethuraman et al. propose LiPaR in [14], which was a starting point of our design,

but significant improvements were added by us. They use SAF, input and output

buffering, and decentralized components. Optimizations are made in the crossbar matrix

to reduce area through careful analysis of the XY routing algorithm. However, we extend

21

these optimizations to the arbitration unit. They use a single 5x5 crossbar matrix for

switching rather then 5 5x1 partial crossbars leading to a larger area. Their complex

crossbar design results in a slower clock speed and increased area.

 They later propose multi-local port routers (MLPR) in [15], which have the

potential of improving area and performance metrics. However, the authors fail to provide

any synthesis results to support their proposal. Another extension the authors propose is

Optimap [16], an exhaustive CAD tool for mapping IP's and choosing network size.

 Vestias et al. propose GNoC in [17], a generic router which supports a range of

routing, switching and arbitration protocols. They create a tool for exploring the sharing

of some decentralized components to reduce area that is based on the injection rate of

ports. Unfortunately, they lock all protocols to certain values and do not explore them

further. Their tool shows how they can save area when injection rates are low but does

not test to see if performance is degraded.

 MoCres, designed by Janarthanan et al. in [18], uses complex VCT flow control

and attempts to reduce area by sacrificing area through centralizing components. They

create multi-clock domain to enable high clock frequencies during transfers.

Optimizations from XY routing in the crossbar matrix have been extended to the routing

algorithm, and gave us the idea for a further arbitration unit extension. We have also

used their idea of creating VHDL wrappers to simulate the stand-alone router or routing

configurations to compare parameters.

 Our paper attempts to zero in on all the best router characteristics from the above

to make as many optimizations in area as possible while concentrating on system

performance. We notice a lack of evaluation and comparison of network parameters on

FPGAs and try to test accordingly. Most work has focused on dynamic arbitration

schemes, mainly round robin (RRA), which may be too area consuming when

implementing decentralized components. We see that the data width size is often set to 8-

bit flits as many papers assume a size without analysis. Most importantly, we agree with

the opportunity to optimize data traffic through use of MLPR. Our plan is to present area

22

utilization and performance values for the above network parameters to help future

designers make accurate decisions for their computing needs.

2.4 Summary

In this chapter, the relevant background material and related previous work was

presented. First, a short collection of concise definitions of NoC building blocks was

presented. We then listed relevant concepts and theories about NoC Parameters. Our

NoC discussion concluded with the presentation of evaluation metrics. Next, the basic

concepts of FPGA technology were discussed. Finally, the Chapter concluded with a

discussion of some of the previous work that is closely related to this research, and how it

was used to motivate our own research. In Chapter 3, a detailed description of the

proposed NoC Router architecture hierarchy and functionality is presented.

23

Chapter 3

A Parameterizable NoC Router Architecture

3. A Parameterizable NoC Router Architecture

In this chapter a detailed description of our proposed NoC router architecture is presented.

This chapter begins with a discussion of basic functionality of the NoC router based on

protocols chosen. That is followed by a discussion of the NoC router architecture

describing the main components used and the data flow. NoC design is presented next,

including functionality and how to assemble. We briefly discuss how the NoC router

architecture was verified using Altera Quartus II CAD tool and then conclude the chapter.

3.1 Functionality

In section 2.1 we discussed NoC router parameters and gave some insight into the choices

we have made for our router design. In the following sections, we will discuss those

parameters in which directly affect the functionality of the router which include protocols

and algorithms.

3.1.1 Protocols and Algorithms

NoC router protocols and algorithms govern the flow of data through the NoC network.

They make decisions on where data flows, at what speed, in what order, how it is stored,

ect. Therefore they directly affect performance. These parameters are hard to create

flexible due to how they often control the router design as a whole. Therefore, their affect

on area can also be significant. Careful selection is crucial and there is much work to be

done in creating new or testing existing protocols and algorithms for NoC router design.

24

The following sections describe our protocol and algorithm choices to provide working

knowledge of our NoC router. These parameters include flow control, switching mode,

routing algorithm, and scheduling.

3.1.1.1 Flow Control

We have chosen a packet switched flow control. In PS networks, data is separated into

small blocks called packets at the core. This packet includes a header which has

information about its destination. Upon creation of the packet, IP cores simply release the

packet into the network where a series of interconnected routers forward the packet to its

destination. PS is referred to as connectionless as there is no direct connection between

communicating cores. This is an attractive choice as it allows multiple IP cores to

communicate without contention.

3.1.1.2 Switching Mode

Switching mode can often be confused with flow control as it plays a large part on the

flow of the packet. Switching mode is only a parameter of PS networks. This parameter

is in charge of allocating buffers and channels to the packet and deciding when it will

receive service. A packet is broken down into flow control units (flits). We have chosen

to break the packet into 8 flits. Each flit is the size of the channel. We have chosen a

store & forward (SAF) scheme. In this scheme, packets are buffered at each router, and

the router waits for the full packet to arrive before forwarding. This prevents a single

packet from blocking more than one channel at a time. The downfall is that it increases

the buffering requirements of each router. Testing this parameter would be great future

work as there are a few other alternatives. However, designing a router with different

switching modes is very complex and was omitted from the scope of this research.

3.1.1.3 Routing Algorithm

The routing algorithm is implemented within the router and is in charge of choosing the

next hop toward the packets destination. We have chosen XY routing for its simplicity

allowing for the implementation of a low area router. XY routing prevents livelock from

25

occurring. Since all packets leaving the same source and headed for the same destination

will travel the same path, it also prevents having to deal with complex scenarios like

packet reordering. Unfortunately, using the same logic, XY routing cannot provide any

type of congestion control.

Figure 3.1: Coordinate Configuration for XY Routing

In XY routing, each router is given a coordinate based on its position in the

network. We restrict our mesh size to 8X8 and therefore our coordinate is 6 bits. The

most significant 3 bits portrays the routers vertical displacement with 000 being the

lowest (southern) router and 111 being the highest (northern) router. The least significant

3 bits portrays the routers horizontal displacement with 000 being the left most (western)

router and 111 being the right most (eastern) router. Figure 3.1 shows router coordinate

configuration within a mesh. A packet arrives at the router with an 8 bit header. This

header contains the destination of the packet. The vertical displacement is checked first.

If the destination is greater then the coordinate, the packet is forward north. If the

destination is lesser then the coordinate, the packet is forward south. If the destination is

equal to the coordinate, then its vertical displacement is ok. The same process then

…………………………………

………….…

…………

................

…

26

occurs for the horizontal displacement. Eventually, the packet arrives at the router with

the proper coordinate. At this point the packet is at the proper port and must now be

forwarded to the correct destination port. Since routers in our mesh can have up to 4

ports, the least significant 2 bits of the header are used to distinguish among local ports.

Figure 3.2 shows the configuration of local ports within the router.

Figure 3.2: Configuration of Local Ports for XY Routing

An important note can be made about this algorithm. Since the vertical

displacement is always found first, a packet coming in from the east or west ports must

already be in its proper vertical position. Therefore, a packet coming in from the east or

west ports cannot be forwarded north or south. This observation is exploited later to

optimize the area selected components.

3.1.1.4 Scheduling

Scheduling of data depends largely on IP cores. However, scheduling can occur within

the network. If two or more packets request the same port at the same time or while it’s

busy, the requested (output) port will have to make a decision on which to grant access

first. This is called arbitration. Our router allows for some flexibility in choosing

27

arbitration schemes that consider priority of packets in routers among the network and are

classified into static and dynamic schemes.

In static arbitration schemes, the priority of each port is chosen during design.

First, we use a generic fixed scheme where priority is given to the north first, and

degrades clockwise. We use two other static arbiters, both based on the fixed scheme.

Both schemes were designed during the evaluation phase. Custom scheme was designed

based on the setup of the simulation. Custom each port scheme included a different fixed

priority in each port based on the setup of the simulation.

Dynamic arbitration makes a decision at run-time and is more flexible, however

also requires a larger area. However, dynamic schemes can avoid deadlock. We include

3 counting schemes and a coin passing scheme. The counting schemes all have similar

area results, but their performance depends on the application. The first scheme gives

priority to the port that has been busiest (sending the most requests). The Next scheme

gives priority to the port that has been waiting the longest. Here, the arbitration unit

counts cycles after a request has been received for all ports. The last counting scheme

gives priority to the port that sends the least packets (opposite to the first scheme).

Finally, in coin passing scheme, one input port is assigned the coin. The port assigned

with the coin, has priority, until it has been granted. Then the coin is passed to the next

port, clockwise. If the port with the coin is not making a request, the unit grants the

request of the port closes to it, again clockwise. This scheme is much like round robin

used in many FPGA NoC router implementations.

Scheduling is one of the parameters we wish to test. Interesting results may show

static arbiters latency is quite reasonable considering its area savings. This is especially a

concern in decentralized routers, where each port has its own control logic.

3.2 Router Implementation

The router was designed with 4 ports for communication with neighboring routers, North,

East, South, and West and anywhere from 0 to 4 local ports for communication to IP

cores. A router with no local ports would be used just to complete a mesh and help with

congestion control within the network. Generic port and component design was used,

28

therefore and input port has the ability to forward to its own output port, although this

situation could never occur. Figure 3.3 shows the port architecture and it’s interaction

with the switch. Packet size has been set to a depth of 8. Flit size is parameterizable,

with 8 bits being the smallest possible size for routing information purposes. Our

implementation does not include High Level Protocols (HLP) but could easily be

implemented on an application level. The router is decentralized meaning each port runs

its own control logic and hence can request and set up concurrent connections. Below we

will include details on inter-router data transfers, the I/O channels and the crossbar switch

designs.

Figure 3.3: Architecture of Port: I/O Channels and Switch

29

3.2.1 Data Transfer between Input and Output Ports

Communication between ports is established by use of a two-way handshake of

request/grant signals. Figure 3.4 shows a handshake scenario between local and west

ports. Upon packet arrival, local sends a request for west’s output port. Once local

receives a grant from west it can drive its request line back to low and it is free to send the

packet, one flit at a time. West will hold its grant line high until the full packet has been

received. Any other ports which have high request lines to west, will keep them high

until they also receive a grant.

Figure 3.4: Handshake Scenario between I/O Ports

3.2.2 Input Channel

All input channel modules include a buffer unit of depth 8 and a logic controller. This

module grants access to input buffers, accepts and stores packets, performs routing

algorithm, issues requests to appropriate output ports, and sends data to the switch.

30

3.2.2.1 Input Buffer

The input buffer is shown in Figure 3.5. It is capable of storing the whole 8 flits of the

packet. It has 2 status signals letting the input controller know if it is full and ready to be

forwarded or it is empty and ready to accept a new packet. It also has 2 control signals

allowing the input controller to store or forward its contents.

Figure 3.5: Architecture of Input Buffer

Figure 3.6: Architecture of Input Controller

31

3.2.2.2 Input Controller

The input controller is shown in Figure 3.6. This unit is responsible for running the

routing algorithm. It continually monitors the header flit and determines its next hop.

When the buffer becomes full, the controller issues a grant to the appropriate output port.

It then waits for the grant, when it can prompt the transfer. When the buffer becomes

empty, the input controller can prompt transfers from the outside.

3.2.3 Switching Mechanism

The crossbar switch is shown in Figure 3.7. It is a set of multiplexers having an

interconnection allowing all possible connections between input and output channels.

Three optimizations have been made in the crossbar switch. First, it uses a partial

scheme, which includes one 5 by 1 unit for each output rather then one 5 by 5 unit for all

outputs, for a 5 port router. Initial design included 2 switching options, full and partial

switch. Early synthesis results eliminated the full switch design because it was larger in

area and slower in clock frequency. Each output is connected to a different port. Next,

there are no demultiplexers in the design. The input data is connected to all partial

crossbar units which will choose the appropriate data for the output. The fact that at a

time, the output channel can only serve one input request is exploited here. The final

optimizations are made in the partial units of the north and south. Though analysis of the

XY routing algorithm, we can conclude that these units will never receive data from the

east or west. This reduces the inputs of all of these units by two. All optimizations

reduce the area without effecting latency of the router.

3.2.4 Output Channel

All output channel modules include a buffer unit of depth 8 and a logic controller. This

module grants access to output buffers, accepts and stores packets, performs arbitration,

issues requests to the next hop, and sends data to the next hop.

32

Figure 3.7: Architecture of Switching Fabric

3.2.4.1 Output Buffer

The output buffer is shown in Figure 3.8. It is capable of storing the whole 8 flits of the

packet. It has 2 status signals letting the output controller know if it is full and ready to

be forwarded or it is empty and ready to accept a new packet. It also has 2 control signals

allowing the output controller to store or forward its contents.

Figure 3.8: Architecture of Output Buffer

MUX MUX MUX MUX MUX

33

3.2.4.2 Output Controller

The output controller is shown in Figure 3.9. This unit is responsible for running the

arbitration algorithm and making grants. It continually monitors request line. When one

or more become high, the controller issues a grant to the prioritized input port. It then

waits for the packet, when it can prompt the transfer outside. When the buffer becomes

empty, the output controller can continue issuing grants.

Figure 3.9: Architecture of Output Controller

3.3 NoC Architecture

Although we propose the design of a stand-alone router with the purpose of testing its

parameter, the router can of coarse be used in the building of a NoC network. The router

protocols will only work for two dimensional mesh architecture, with properly positioned

coordinates. The following sections discuss the intra-router data transfers, along with

how to build a NoC using the proposed router and accompanying components.

3.3.1 Data Transfer between Routers

Figure 3.10 shows the proposed router with its external signals. For each port, there are 4

generic control signals, and 2 data paths. One data path is for incoming packets while the

other is for outgoing packets. Similarly, 2 control signals are input controlled and two are

output controlled. Figure 3.11 shows interaction among 2 adjacent routers, mainly the

34

transaction of data from a routers output port to the other routers input port. The output

port will let the adjacent routers input port know when its buffer is empty, and therefore

ready to receive a packet, through use of emptyout/emptyin signals. Once the output port

has received a packet and the emptyin signal has been driven high by the adjacent router,

it can begin sending. To start, it drives the sendingout signal high for just one clock

cycle, which prepares the output port that all 8 flits will begin transferring upon the next

clock cycle. When data begin to flow, the input port will send the emptyout signal to a

low state, and stay that way until the packet has been forwarded within that specific

router.

Figure 3.10: Architecture of Proposed Router

35

Figure 3.11: Connections between Adjacent Routers

 Since are router provides a variable number of ports, and extra signal was added,

NEP to make sure that there are no requests for a non-existent local port. This signal is

driven high if the header of a packet requests a local port that is not included in that

particular router. This signal is common on all routers and could be sent to a central

processor (CPU), where it could stop the program and re-assess where the IP cores are in

terms of NoC network position.

 Future re-design/improvements of this router architecture would see the output

control logic increase. This would be to provide an option to skip the output buffer if the

receiving router is ready. Although the output buffer is useful in preventing HOL

blocking, it adds un-needed delay in cases where the receiving router is ready.

36

3.3.2 Building a NoC Network

With our parameterizable router design, building a router takes careful placement of

components. The design makes choices on channel width, number of local ports per

router, and arbitration type. Also, when building a NoC, designers must configure the

coordinates of each router based on its network position. Figure 3.12 shows a flowchart

outlining how to build a NoC network. It is recommended to start with the lower left

corner of the NoC and maintain a pattern when designing each router. This is to make

integration of the coordinate a little easier.

Figure 3.12: NoC Router Design Flow

Run Benchmark or
application and
evaluate results

37

First is the choice of channel width. This cannot be made smaller then 8 bits for

routing purposes. Once chosen, it must remain the same for all routers within the NoC

network. This can be modified in the top level module by changing the generic parameter

called flit size.

Next is the choice over how many local ports. Each router in the NoC network

can have anywhere from 0 to 4 local ports independent of the other routers. This option is

as simple as choosing the correct top level module for router design. Each top level

router module is named after the number of local ports it has (router_fs_xx). Here the xx

should be chosen to be 0l, 1l, 2l, 3l, or 4l implying the number of local ports each router

has.

The final choice to be made is on which arbitration unit is to be used. The number

of changes made here depends on the number of ports chosen. Each port must be opened

separately, to change the name of the output controller used. Ports are named based on

numbers (port_ns_x). Here the x is a number and is based on the number of ports in the

design. So if you build a 6 port router, ports with numbers 0 to 5 should be opened and

changed. Output controllers are named after their arbitration unit (outputcontrol_xx).

Here the xx is replaced by select options listed in Table 3.1.

Table 3.1: Coding Scheme for Different Arbiters

Arbiter code Arbiter Type

fa Static – fixed scheme

c1, c2, c3 Dynamic – various counting schemes

cp Dynamic – coin passing (RRA) scheme

cap Static – custom application fixed scheme

ca0, ca1, ca2,

ca3, ca4

Static – custom each port for application fixed scheme

38

Lastly, the router must be configured with its proper coordinates. Router

positioning must be done carefully. Coordinates are configured in the input controller

(inputcontrol) and are called router_coordinates.

Future re-design/improvements of this NoC router would see the use of corner

routers which would eliminate the need for a couple ports further reducing area. Since we

simply wish to test the parameters, this omission is fine. This reduction in area and power

would be crucial for use of this router in a NoC system for real world implementation.

3.4 Verification

ModelSim [21] was used to create tests and obtain latency results, but before that phase

testing on the routers functionality was needed. After choosing the parameters of the

router, design began with the creation of components (buffers, controllers). As each

component was finished, it needed to be tested for functionality. Each component would

have to be verified before moving on in the design. There is no point in creating a router

with components that do not work correctly. This phase was completed in Altera Quartus

II CAD tool using the waveform editor and simulation tool. The output controller needed

extra testing as the priority of each port needed to be tested for different arbiter types

 First each component was tested to ensure its control signals were working and

data was flowing through the components with proper timing. Then came creation of a

generic port composed of the components. Testing was done to ensure each port could

receive and send data properly. Finally a 5-port router was designed. As it is nearly

impossible to verify every possible bit stream scenario in a router, a few situations were

simulated. First was a common transfer. The north port obtained a packet and was sent

to the south. Next was a concurrent test where the local port was requested and provided

service to the west and east ports. Finally, a test was developed where all five ports

obtained a packet and five simultaneous connections were established.

 Figure 3.13 shows the output waveform for east to north transfer. Only the east

and north ports signals are shown. Note that the sending in, si, signal of the east port go

high. East begins to receive the packet. Once it has been received and routed, we see the

39

north output buffer begins to receive it. This figure shows all sending and empty signals

and how they act during transfer. The input data was held steady at 11001001 for input to

the east port.

Figure 3.13: East to North Transfer Simulation Output in Altera Quartus II CAD tool

 Other routers were created containing different number of local ports. Since

each port is generic, building a bigger router should be similar. Therefore verification was

as easy as creating a transfer which utilizes the new port to make sure it has been wired

correctly.

 For router with less the 4 local ports, another quick test was developed to ensure

the functionality of the NEP signal. Here, a packet sent with the heading for a local port

that was not there.

3.5 Summary

In this chapter, we discuss functionality of the router protocols and how a packet flows

through the network. We provide a detailed description of the proposed NoC Router

architecture hierarchy and design. The NoC network design and functionality was then

presented. The chapter concluded with a description of the design and verification

process. In Chapter 4, experimental evaluation results, and their analysis are presented.

40

Chapter 4

Experimental Evaluation Results

4. Experimental Evaluation results

This chapter starts with a discussion of the design methodology for implementing a

Network-on-Chip (NoC) system. This methodology also facilitates rapid prototyping and

exploration of various aspects of NoC implementation. This is followed by a brief

description on the difficulties involved in testing NoC components. Then, we describe

how we choose to test each parameter of our NoC router. Lastly, the synthesis and

simulation results are presented and analyzed.

4.1 Design Methodology

As previously discussed, NoC routers have many parameters. These parameters can often

be flexible for allowing different choices for different target applications. Choosing

parameters can often be a difficult task for embedded SoC system designers. In the

following sections, we aim to provide insight into the latency and area trade-offs to allow

designers to make informed decisions.

4.2 Synthesis Results

We use Altera Quartus II CAD tool [20] to synthesize the system to obtain area utilization

and clock frequency values. We chose to target a popular Stratix II FPGA family, device

EPIS40F1508C5. All components and modules have been implemented in VHDL.

Components were originally tested for functionality in Altera Quartus II CAD tool

environment. The router coordinates are set during synthesis before simulation takes

41

place. We have performed experiments on the parameters arbitration type, flit size, and

configuration. Table 4.1 shows synthesis results for our 5-port, 8-bit router using fixed

arbitration. Here area utilization is broken down into usage by each component. For full

fitter utilization results, refer to Appendix A. The router consumes only 598 (1.45%)

LEs, making it one of the most competitive NoC routers with standard features (I/O

buffers, decentralized routing and arbitration logic) targeted for FPGAs. This shows a

very small input control due to the simple routing algorithm. We notice a large output

control unit, motivating our arbitration test as this unit is already large. We notice the

buffers taking up most of the space. This may prompt future experiments involving other

flow control protocols which do not require such large buffer sizes.

Table 4.1: Area Utilization for Router Components

Component Sub-Component Area (LE’s)

Input Channel Input Buffer 157

Input Control 54

Output Channel Output Buffer 156

Output Control 124

Switch --- 107

Router All 598

 Here we would like to make a comparison with one of the most competitive

routers in current research, LiPaR. Table 4.2 shows LiPaRs synthesis results. All our

components are comparable in total area, if not smaller. Consideration should be taken

for the fact that they used Xilinx to synthesize the design and that Xilinx slices are much

larger then Altera LE’s. Also, Xilinx has embedded FIFO buffers which were used in the

design. We created our own FIFO buffers and accompanying signals which may be the

reason for the increased area.

42

Table 4.2: Area Utilization for LiPaRs Router Components

Component Sub-Component Area (Slices)

Input Channel Input Buffer 105

Input Control 65

Output Channel Output Buffer 105

Output Control 132

Switch --- 78

Router All 485

4.2.1 Arbitration

Our first experiment was performed on Arbitration type. Here, a 5-port, 8-bit router was

synthesized many times swapping in different output controllers. Each output controller

contained a unique arbitration unit as described in Section 3.1.1.4. Table 4.3 and 4.4

show the synthesis results for this experiment optimized for area and speed, respectively.

We can conclude that static fixed arbitration schemes are the least area expensive

components. The clock speed seems to get worse for more complex designs. We cannot

yet analyze the latency as clock speed is just a small aspect of the overall speed. We will

use these results to obtain accurate latency metrics in Section 4.5.

Table 4.3: Effect of Arbiter Choice on FPGA Utilization, Optimized for Area

Arbiter Type Area

(LE’s)

Memory Clock Speed

(ns)
M4k’s M512’s

Fixed 598 0/183 8/384 9.71

Counter 1191 0/183 8/384 10.89

43

scheme 1

Counter

Scheme 2

1173 0/183 8/384 10.13

Counter

Scheme 3

1191 0/183 8/384 11.4

Coin passing

(RRA)

746 0/183 8/384 9.58

Custom Fixed 598 0/183 8/384 10.14

Custom Fixed

Each Port

598 0/183 8/384 9.79

Table 4.4: Effect of Arbiter Choice on FPGA Utilization, Optimized for Speed

Arbiter Type Area

(LE’s)

Memory Clock Speed

(ns)
M4k’s M512’s

Fixed 1036 0/183 0/384 9.58

Counter

scheme 1

1619 0/183 0/384 8.72

Counter

Scheme 2

1606 0/183 0/384 10.56

Counter

Scheme 3

1618 0/183 0/384 8.85

44

Coin passing

(RRA)

1182 0/183 0/384 11.23

Custom Fixed 1036 0/183 0/384 10.52

Custom Fixed

Each Port

1036 0/183 0/384 10.3

4.2.2 Flit Size

Our next experiment was performed on the flit size or data path size. Here, a 5-port, 8-bit

router was synthesized 4 times increasing the size of the data path each time. Table 4.5

and 4.6 show the synthesis results for this experiment optimized for area and speed,

respectively. We can conclude that larger flit sizes lead to more area intensive

components. The clock speed also seems to get worse for more complex designs. We

cannot yet analyze the latency as clock speed is just a small aspect of the overall speed.

We will use these results to obtain accurate latency metrics in Section 4.5.

Table 4.5: Effect of Flit Size on FPGA Utilization, Optimized for Area

Flit Size Area

(LE’s)

Memory Clock Speed

(ns)
M4k’s M512’s

8 610 0/183 8/384 9.71

16 738 0/183 8/384 9.57

32 994 8/183 0/384 10.16

64 1505 16/183 0/384 10.87

45

Table 4.6: Effect of Flit Size on FPGA Utilization, Optimized for Speed

Flit Size Area

(LE’s)

Memory Clock Speed

(ns)
M4k’s M512’s

8 1036 0/183 0/384 9.58

16 1596 0/183 0/384 9.45

32 2716 0/183 0/384 8.91

64 4956 0/183 0/384 11.91

4.2.3 Configuration

Our last experiment was performed on the configuration. Here, multiple versions of our

router were synthesized in many different topologies. These topologies are discussed in

greater detail in the following section. During simulation, different mappings were also

tested, but this did not affect the synthesis results and is not shown here. Table 4.7 and

4.8 show the synthesis results for this experiment optimized for area and speed,

respectively. We can conclude that NoC network topologies with a smaller number of

routers are less area expensive, even though the routers tehmselves are larger. The clock

speed also seems to get better with fewer routers involved in the NoC topology. We

cannot yet analyze the latency as clock speed is just a small aspect of the overall speed.

We will use these results to obtain accurate latency metrics in Section 4.5. We have also

included some routing resource information in Table 4.9. For full fitter routing resource

utilization, please refer to appendix A. It also seems adding more ports or routers to the

topology will increase wire and interconnect usage.

46

Table 4.7: Effect of Configuration on FPGA Utilization, Optimized for Area

Configuration Area

(LE’s)

Memory Clock Speed

(ns)
M4k’s M512’s

Single Router 530 0/183 6/384 8.25

1x2 Mesh 986 0/183 10/384 9.19

1x2 Mesh

Extended

1107 0/183 12/384 10.02

2x2 Mesh 1847 0/183 22/384 10.25

Table 4.8: Effect of Configuration on FPGA Utilization, Optimized for Speed

Configuration Area

(LE’s)

Memory Clock Speed

(ns)
M4k’s M512’s

Single Router 829 0/183 0/384 7.5

1x2 Mesh 1486 0/183 0/384 8.97

1x2 Mesh

Extended

1722 0/183 0/384 9.36

2x2 Mesh 2926 0/183 0/384 9.05

47

Table 4.9: Effect of Configuration on Routing Resource Utilization

Configuration Direct Links

/163,680

Global Clocks

/16

Local Routing

Interconnects

Single Router 167 4 405

1x2 Mesh 295 6 687

1x2 Mesh

Extended

323 7 777

2x2 Mesh 486 12 1291

4.3 Router Performance

NoC Systems are still in the research phase and not many implementation results are

available in the literature. For some FPGA synthesized designs, testing speed is as easy

as maximizing the clock speed. An example of such design is a Microprocessor. This

unit retrieves commands and data, performs operations and stores answers. There is only

one logical path in the design, in which each of these phases is completed. These things

take place one after the other and the speed at which the application can finish depends on

how fast each stage can be completed (clock speed).

 A NoC router involves multiple ports receiving data, a central switch which can

be configured to send data multiple ports for transmission. Although clock speed plays a

role in the overall latency, it is not the only factor. The authors of Hermes [8], attempt to

compare recent router designs using the calculated maximum (or best-case) throughput.

This is when all input ports can request simultaneous connections with different output

ports. They use simple mathematics involving flit size, clock speed, and number of ports

to determine latency results.

48

For our in-depth test of parameters, this was not acceptable. For instance, when

varying arbitration type, area will grow for more complex designs. Although no

difference would be seen in maximum throughput calculations, a more complex arbiter

may schedule transactions to prevent blocking which could lead to increase performance.

Therefore, our tests involved some form of experimentation.

The recent increase in SoC system implementation has lead to research for new

communication architectures. Unfortunately, there is a lack of commonly accepted

methodology for performance analysis amongst NoC design research for FPGAs. Some

of the best results have come for simple applications being run on both a standard bus and

a NoC system. For our research of a NoC router, implementing an application would

involve use of IP cores and NoC interfaces. It would seem much more time efficient to

simply inject packets into a stand-alone router.

To create a test, we once again looked to academic research. Since these NoC

router parameters have never been tested, no benchmarks could be found. One idea is the

use of a traffic generator to provide traffic patterns which allow comparison of router

parameters as well as comparison among other routers. Researchers are working on a

model which generates and absorbs traffic that simulates the behaviour of a real IP core

[27]. This project is not yet finished. They have also proposed the use of a theoretical

model to calculate performance in [28]. Another research group at the Royal Institute of

Technology is working on a simulator that uses synthetic workloads and models real

applications [30]. This simulator is designed specifically for use in simulating a two

dimensional mesh, and the tool itself is designed for testing their router only, Nostrum

[29]. The research group from the University of Rostock designed E-core [31]. E-core

is a traffic source and/or sink which is modeled in VHDL. We explored this option as a

possible test, since we could use it as an IP core. The problem was that this module had

much different control signals then our router and the VHDL comments were all in

German. We also recognized that although we would be using another research groups’

work, we could not perform a comparison as they have no published results.

49

We found it would be easier and just as useful to create our own test benches.

Benefits to this include creating traffic flow tailored to test each parameter, creating re-

active traffic scenarios, having proper control signals. The following sections discuss the

detailed descriptions of the performed simulations.

4.4 Experimental Evaluation Framework

For this research, it is important to define a framework that helps guide this research for

exploring the design space for NoC routers. As discussed earlier in Chapter 2, NoC

router architectures have a vast design space. Figure 4.1 illustrates the design space for

NoC architectures, including choices for our router design. The following sub-sections

describe how each parameters simulation evaluation was set up.

Figure 4.1: Proposed NoC Router Design Space

50

4.4.1 Arbitration

We implemented a wrapper around our stand-alone router with different arbitration units

embedded within. This wrapper focused on sending to the local node to create arbitration

dilemmas, although packets were sent and received by all ports. In total 111 packets were

sent out from various ports in groups from as small as 1 to as large as 10.

4.4.2 Flit Size

We implemented various wrappers around our stand-alone router with different datapath

sizes (flit size). This wrapper was based on the traffic in the arbiter type test, but with

larger packet sizes. Two tests were created for testing flit size.

 In test 1, a total 544 packets were sent out from various ports in groups from as

small as 16 to as large as 64. The number of packets stayed the same as the flit size was

increased. Here the amount of data transferred was also increased with flit size.

 In test 2, a total of 544 packets were sent out for a flit size of 8. Each time the flit

size doubled, the size of the packet groups sent out was cut in half. Here, the amount of

data transferred stayed the same as flit size was increased. For example, if 544 8-bit

packets were sent, only half that (272 packets) would be needed for 16-bit flits.

4.4.3 Configuration

We implemented various wrappers around different configurations of mesh size, number

of local ports and mapping. This wrapper was designed to model a 4 IP core application.

The 3 basic configurations are shown in Figures 4.2, 4.3 and 4.4. In total 201 packets

were injected into the mesh through local ports. IP core 1 acted as the central processing

node sending a total of 160 packets to IPs 2 and 3. IP cores 2 and 3 acted as custom logic

blocks receiving 20 packets at a time and responding 5 packets to IP 4. IP core 4 acted as

an output display of some sort, receiving the resulting 5 packets from IPs 2 and 3 each

stage in the application. The application ended with IP core 4 sending a final packet to IP

core 1.

51

Figure 4.2: Single Router Architecture

Figure 4.3: 1X2 Mesh Architecture a) Map 1 b) Map 2 c) Map 2 extended

a)

 b)

c)

52

Figure 4.4: 2X2 Mesh Architecture a) Map 1 b) Map 2

4.5 Experimental Results and Analysis

We use Mentor Graphics ModelSim [21], to model IP traffic and simulate activity. All

test benches wrappers have been implemented in VHDL. Results of simulations focused

on overall latency in terms of cycles. Using synthesis results, latency was later obtained

in terms of time. Average throughput was also calculated using total number of

packets/flits sent.

b)

a)

53

4.5.1 Arbitration

Our first experiment was performed on Arbitration type. Here, a 5-port, 8-bit router was

synthesized many times swapping in different output controllers. Each output controller

contained a unique arbitration unit as described in Section 3.1.1.4. Table 4.10 shows the

simulation results for this experiment. Combining with synthesis results, we can obtain

throughput for a more accurate performance measure. Figure 4.5 presents throughput

results, well Figure 4.6 re-iterates area results for accurate analysis. We can conclude that

static fixed arbitration schemes are the least area expensive with very competitive latency.

Static schemes can even out-perform dynamic schemes when optimized for the specific

application. Dynamic schemes can be useful when QoS is the first priority, mainly

preventing starvation, and that the RRA or coin passing scheme has the best metrics.

This promotes the use of a flexible component library.

Table 4.10: Simulation Results for Arbitration

Arbiter Type Latency (cycles)

Fixed 1476

Counter scheme 1 1452

Counter Scheme 2 1341

Counter Scheme 3 1347

Coin passing (RRA) 1266

Custom Fixed 1254

Custom Fixed Each Port 1237

54

Figure 4.5: Effect of Arbiter Choice on Throughput

Figure 4.6: Effect of Arbiter Type on FPGA Area Utilization

55

4.5.2 Flit Size

Our next experiment was performed on the flit size or data path size. Here, a 5-port, 8-bit

router was synthesized 4 times increasing the size of the data path each time. We were

unable to synthesis designs larger do to pin restrictions among current FPGA

architectures. Table 4.11 shows the simulation results for this experiment which consists

of 2 tests explained in Section 4.4.2. For test 1, the number of packets stayed the same

and therefore there was no effect on latency. Here, the amount of data in each packet

increased with flit size. Test 2 differences were seen in latency as the amount of data was

kept equal by lessening the number of packets sent. Combining with synthesis results, we

can obtain throughput for a more accurate performance measure. Figures 4.7 and 4.8

present throughput results, while Figure 4.9 re-iterates area results for accurate analysis.

We conclude that larger flit sizes lead to more area expensive components, although

throughput is dramatically increased. With this parameter, we would recommend

designers to make the flits size as large as possible subject to their area constraints.

Designs optimized for speed are much too large with little to no gain in throughput.

Table 4.11: Simulation Results for Flit Size

Flit Size Latency (cycles)

All flit sizes for test 1 4296

8 4296

16 2136

32 1136

64 556

56

Figure 4.7: Effect of Flit Size on Throughput for Test 1

Figure 4.8: Effect of Flit Size on Throughput for Test 2

57

Figure 4.9: Effect on Flit Size on FPGA Area Utilization

4.5.3 Configuration

Our last experiment was performed on the configuration. Here, multiple versions of our

8-bit router were synthesized in many different mesh sizes by varying the number of local

ports. During simulation, different mappings were also tested. Table 4.13 shows the

simulation results for this experiment. Combining with synthesis results, we can obtain

throughput for a more accurate performance measure. Figures 4.10 and 4.11 present

throughput results, while Figure 4.9 re-iterates area results for accurate analysis. We

conclude that NoC network topologies with a smaller number of routers are less area

intensive, and provide better throughput making them superior. From the 1x2 extended

configuration, we are able to see the real benefit to MLPR. For our router with SAF flow

control, connecting the main processing IP core to multiple routers has an incredible

impact. Interesting future work could involve testing this theory against other flow

control protocols. With the flit size kept low, optimizations involving speed could turn

out beneficial. Different module mapping shows how designers must not overlook this

final stage in the design process.

58

Table 4.12: Simulation Results for Configuration

Configuration Latency (cycles)

Single Router 3837

1x2 Mesh Map 1 4112

1x2 Mesh Map 2 4017

2x2 Mesh Map 1 4210

2x2 Mesh Map 2 4065

1x2 Mesh Extended 2126

Figure 4.10: Effect of Configuration on Throughput

59

Figure 4.11: Effect of Configuration on FPGA Area Utilization

4.6 Summary

In this chapter, we briefly present the design methodology for NoC implementation. This

is followed by a detailed description of the synthesis results for the proposed router under

various parameter tests. Next, we discuss the details of the difficulties in evaluating NoC

router performance. The experimental framework for all experiments is discussed before

presenting simulation results. Finally, synthesis and simulation results are then analyzed

to provide insight on parameter selection to future designers of NoC-based systems. We

make case for the use of fixed arbitration, especially on design with serious area

restrictions. We show the significance flit size plays on both area and throughput, making

recommendations for routers with larger channel widths. We conclude our analysis with

the importance of optimizing the system through use of multi-local ports, especially for

multiple router connections.

 The next chapter concludes this thesis by providing a summary of the research

contributions and a discussion of future work.

60

Chapter 5

Conclusions and Future Work

5. Conclusions and Future Work

The design of computer hardware is entering a new phase. Typically, designers focused

on the computation aspect and simply used ad hoc mixture of direct links and buses as

communication architecture. As the number of transistors that can be placed on a single

chip increases, designers are forced to concentrate on communication aspect as well. It is

evident that a new design methodology is required, with the adoption of NoC being the

prime candidate for future SoC systems.

 NoCs are seen as a solution to provide concurrent transactions among IP cores,

leading to higher performance at reasonable area costs. NoCs re-useable architecture

allows designers to once again concentrate on the computation aspect. Although future

applications of NoC are still unknown, their flexibility provides vast potential. Recent

practical evaluations of NoCs versus standard communication architectures and

significant amounts of theoretical work, points to the need for future research in this area.

Importance must be placed on the evaluation of standard parameters to make proper

design choices.

 This thesis explored the design of an NoC router for FPGA implementation. We

compared metrics such as area utilization, routing resource utilization, and speed for

various router parameters. Using literature review, we constrain certain parameters to

prune a vast design space, to make our research feasible. In Chapter 3, the

implementation of NoC protocols and design of router components was discussed in

61

detail. In Chapter 4, experimental evaluation results for different values of router

parameters were presented and analyzed.

5.1 Summary of Research Contributions

The following contributions were made over the course of this research:

1. A preliminary case study was conducted in which the feasibility of designing and

testing an NoC router for FPGA implementation was investigated.

2. We succeeded in creating a NoC router platform in VHDL with flexible

parameters such as number of local ports, channel size, and arbitration type. The

simple mesh topology can significantly reduce network complexity while still

providing reasonable area utilization and reduced data latency. The

implementation of a packet-switched protocol allows for parameter flexibility, low

complexity of network control, high degree of scalability.

3. Multiple experiments were conducted that evaluated and compared the area

utilization and throughput of a NoC-based system using different NoC router

parameters. The results will be useful to future designers of NoC-based systems

to help optimize NoC router design.

5.2 Future Work

Through the progression of this research, many interesting topics continue to surface

during the development of the NoC router. Because of time constraints, these topics are

out of the scope of this research but they can provide an excellent opportunity for future

work to further the design space exploration of NoC. Follow-up research can use the

router components that were developed, for implementing and evaluating different NoC

architectures.

 First, our design of output buffers to prevent HOL blocking, slowed the system. A

possible path for bypassing of the output buffers could be created for cases when the next

router or IP core is ready and waiting.

 Second, many parameters are yet to be thoroughly explored. As the component

area usage indicated, buffers occupy the largest area in NoC routers. Different flow

62

control modes, such as VCT and WH should be evaluated. Although XY routing

provides low complexity, it makes no attempt to avoid blocked or busy routers. New

routing algorithms should be explored, as there is a current lack of research results on this

topic. Also, the parameters we explored were subject to specific communication

protocols. Further research is needed in exploring these parameters with other

communication protocols.

 Third, in order to produce more accurate results, the parameter exploration

experiments must be done using real world benchmarks/applications.

 Fourth, a CAD tool could be developed to synthesize different variants of the

proposed NoC router, based on specific values of parameters.

 Finally, increased theoretical research in NoC systems has shed light on their

potential. These future router designs need standardized methods of evaluation to allow

comparisons between existing router designs. This leads to the need for commonly

accepted benchmark applications or traffic generators to allow researchers to spend more

time on the design process and less time preparing experiments.

 In our lab, research is being done on a network interface for our router to connect

to a standard IP core running protocols such as Wishbone. This will allow for practical

testing of applications to further analyze the NoC router parameters.

.

63

Appendix A

Detailed Synthesis Results

These are the synthesis results from our 5-port, 8-bit router using fixed arbitration. It

contains the closest comparable configuration to related work. Results are obtained from

Altera Quartus II CAD tool. This is a copy of the fitter’s resource usage chart.

Total logic elements 598 / 41,250 (1 %)

 -- Combinational with no register 300

 -- Register only 40

 -- Combinational with a register 258

Logic element usage by number of LUT inputs

 -- 4 input functions 307

 -- 3 input functions 147

 -- 2 input functions 93

 -- 1 input functions 31

 -- 0 input functions 20

Logic elements by mode

 -- normal mode 574

 -- arithmetic mode 24

 -- qfbk mode 8

64

 -- register cascade mode 0

 -- synchronous clear/load mode 51

 -- asynchronous clear/load mode 0

Total LABs 91 / 4,125 (2 %)

Logic elements in carry chains 32

User inserted logic elements 0

Virtual pins 0

I/O pins 102 / 831 (12 %)

 -- Clock pins 7 / 20 (35 %)

Global signals 4

M512s 8 / 384 (2 %)

M4Ks 0 / 183 (0 %)

M-RAMs 0 / 4 (0 %)

Total memory bits 320 / 3,423,744 (< 1 %)

Total RAM block bits 4,608 / 3,423,744 (< 1 %)

DSP block 9-bit elements 0 / 112 (0 %)

Global clocks 4 / 16 (25 %)

Regional clocks 0 / 16 (0 %)

Fast regional clocks 0 / 32 (0 %)

SERDES transmitters 0 / 90 (0 %)

SERDES receivers 0 / 90 (0 %)

Maximum fan-out node CLK

Maximum fan-out 306

Total fan-out 2488

Average fan-out 3.51

65

These are the synthesis results for the configuration test showing an in-depth look at

routing resource information for each configuration. They are presented in order of single

router, 1x2 mesh, 1x2 extended mesh, and 2x2 mesh. Once again, results are obtained

from Altera Quartus II CAD tool. This is a copy of the fitter’s routing resource chart.

Interconnect Resource Type / Usage for Single Router

C16 interconnects 148 / 7,039 (2 %)

C4 interconnects 338 / 109,820 (< 1 %)

C8 interconnects 98 / 24,220 (< 1 %)

DIFFIOCLKs 0 / 32 (0 %)

DQS bus muxes 0 / 76 (0 %)

DQS-16 I/O buses 0 / 8 (0 %)

DQS-32 I/O buses 0 / 4 (0 %)

DQS-8 I/O buses 0 / 20 (0 %)

Direct links 167 / 163,680 (< 1 %)

Fast regional clocks 0 / 32 (0 %)

Global clocks 4 / 16 (25 %)

I/O buses 8 / 404 (1 %)

LUT chains 30 / 37,125 (< 1 %)

Local routing interconnects 405 / 41,250 (< 1 %)

R24 interconnects 42 / 7,259 (< 1 %)

R4 interconnects 419 / 222,840 (< 1 %)

R8 interconnects 99 / 36,138 (< 1 %)

Regional clocks 0 / 16 (0 %)

66

Interconnect Resource Type / Usage for 1x2 Mesh

C16 interconnects 96 / 7,039 (1 %)

C4 interconnects 521 / 109,820 (< 1 %)

C8 interconnects 182 / 24,220 (< 1 %)

DIFFIOCLKs 0 / 32 (0 %)

DQS bus muxes 0 / 76 (0 %)

DQS-16 I/O buses 0 / 8 (0 %)

DQS-32 I/O buses 0 / 4 (0 %)

DQS-8 I/O buses 0 / 20 (0 %)

Direct links 295 / 163,680 (< 1 %)

Fast regional clocks 0 / 32 (0 %)

Global clocks 6 / 16 (37 %)

I/O buses 1 / 404 (< 1 %)

LUT chains 37 / 37,125 (< 1 %)

Local routing interconnects 687 / 41,250 (1 %)

R24 interconnects 32 / 7,259 (< 1 %)

R4 interconnects 515 / 222,840 (< 1 %)

R8 interconnects 108 / 36,138 (< 1 %)

Regional clocks 0 / 16 (0 %)

67

Interconnect Resource Type / Usage for 1x2 extended Mesh

C16 interconnects 127 / 7,039 (1 %)

C4 interconnects 600 / 109,820 (< 1 %)

C8 interconnects 151 / 24,220 (< 1 %)

DIFFIOCLKs 0 / 32 (0 %)

DQS bus muxes 0 / 76 (0 %)

DQS-16 I/O buses 0 / 8 (0 %)

DQS-32 I/O buses 0 / 4 (0 %)

DQS-8 I/O buses 0 / 20 (0 %)

Direct links 323 / 163,680 (< 1 %)

Fast regional clocks 0 / 32 (0 %)

Global clocks 7 / 16 (43 %)

I/O buses 8 / 404 (1 %)

LUT chains 47 / 37,125 (< 1 %)

Local routing interconnects 777 / 41,250 (1 %)

R24 interconnects 47 / 7,259 (< 1 %)

R4 interconnects 658 / 222,840 (< 1 %)

R8 interconnects 146 / 36,138 (< 1 %)

Regional clocks 0 / 16 (0 %)

68

Interconnect Resource Type / Usage for 2x2 Mesh

C16 interconnects 113 / 7,039 (1 %)

C4 interconnects 1,067 / 109,820 (< 1 %)

C8 interconnects 334 / 24,220 (1 %)

DIFFIOCLKs 0 / 32 (0 %)

DQS bus muxes 0 / 76 (0 %)

DQS-16 I/O buses 0 / 8 (0 %)

DQS-32 I/O buses 0 / 4 (0 %)

DQS-8 I/O buses 0 / 20 (0 %)

Direct links 486 / 163,680 (< 1 %)

Fast regional clocks 0 / 32 (0 %)

Global clocks 12 / 16 (75 %)

I/O buses 1 / 404 (< 1 %)

LUT chains 69 / 37,125 (< 1 %)

Local routing interconnects 1,291 / 41,250 (3 %)

R24 interconnects 40 / 7,259 (< 1 %)

R4 interconnects 1,022 / 222,840 (< 1 %)

R8 interconnects 196 / 36,138 (< 1 %)

Regional clocks 0 / 16 (0 %)

69

References

[1] W. Dally, B. Towles, “Route packets, not wires: On-chip interconnection
networks,” IEEE, Proc. of Design Automation Conference, 2001, Page(s): 684-
689.

[2] R. Marculescu et al, “Outstanding Research Problems in NoC Design: System,
Microarchitecture, and Circuit Perspectives,” IEEE Trans. on CAD of ICs and
Systems, vol. 28, no. 1, January 2009.

[3] M. Saldana, L. Shannon, P. Chow, "The routability of multiprocessor network

topologies in FPGAs," ACM, Proc. of International Workshop on System-Level
Interconnect Prediction, 2006, Pages: 49-56.

[4] Narasimhan and O. Kumaravelu and R. Sridhar, "An investigation of the impact

of network parameters on performance of network-on-chips," IEEE, Proc. of
Circuits and Systems, Aug. 2005, Page(s): 1617-1620.

[5] T. Bjerregaard, S. Mahadevan, "A survey of research and practices of Network-

on-chip," ACM, Proc. of Computing Surveys, 2006, Issue 1.

[6] T. Marescaux, T. Bartic, D. Verkest, S. Vernalde, R. Lauwereins,

"Interconnection Networks Enable Fine -Grain Dynamic Multi-Tasking on
FPGAs," ACM, Proc. of Field-Programmable Logic and Applications, Sep. 2002,
Page(s): 795-805.

[7] T. Marescaux, T. Bartic, D. Verkest, S. Vernalde, R. Lauwereins, Mignolet, J.-Y.;

Nollet, V.; "Highly scalable network on chip for reconfigurable systems," IEEE,
Proc. of International Symposium on System-on-Chip, Nov. 2003, Page(s): 79-82.

[8] F. Moraes, A. Mello, L. Möller, L. Ost, N. Calazans, "HERMES: an infrastructure

for low area overhead packet-switching networks on chip," ACM, Integration -the
VLSI Journal, 2004, Volume 38, no. 1, Page(s) 69-93.

70

[9] L. Ost, A.Mello, J. Palma, F. Moraes, N. Calazans, "MAIA -a framework for
networks on chip generation and verification," IEEE, Proc. of Design Automation
Conference, Jan. 2005, Page(s): 49-52.

[10] C. A. Zeferino, M.E. Kreutz, A.A Susin, “RASoC: a router soft-core for networks-

on-chip,” IEEE, Proc. of Design Automation and Test in Europe Conference, Feb.
2004, Page(s): 198-203.

[11] C. A. Zeferino, A.A Susin, "SoCIN: a parametric and scalable network-on-chip,"

IEEE, Proc. of Integrated Circuits and Systems Design, Sept. 2003, Page(s): 169-
174.

[12] H. Freitas, D. Colombo, F. Kastensmidt, P. Navaux, "Evaluating Network-on-

Chip for Homogeneous Embedded Multiprocessors in FPGAs," IEEE, Proc. of
International Symposium on Circuits and Systems, May 2007, Page(s): 3776-
3779.

[13] C. Hilton and B. Nelson, "PNoC: a flexible circuit-switched NoC for FPGA-based

systems," IEEE, Proc. of Computers and Digital Techniques, May 2005, Page(s):
181-188.

[14] B. Sethuraman and P. Bhattacharya and J. Khan and R. Vemuri, "LiPaR: A light-

weight parallel router for FPGA-based networks-on-chip," ACM, Proc. of Great
Lakes Symposium on VLSI, 2005, Page(s): 452-457.

[15] B. Sethuraman, "Novel Methodologies for Performance & Power Efficient

Reconfigurable Networks-on-Chip," IEEE, Proc. of International Conference on
Field Programmable Logic and Applications, 2006, Page(s): 1-2.

[16] B. Sethuraman and R. Vemuri, “OptiMap: a tool for automated generation of NoC

architectures using multi-port routers for FPGAs," IEEE, Proc. of Council on
Electronic Design Automation, March 2006, Page(s) 6-11.

[17] M. P. Vestias, H. C. Neto, "Area and performance optimization of a generic

network-on-chip architecture," ACM, Proc. of Integrated circuits and systems
design, 2006, Page(s) 68-73.

[18] Janarthanan, V. Swaminathan, K. A. Tomko, “MoCReS: an Area-Efficient Multi-

Clock On-Chip Network for Reconfigurable Systems,” IEEE, Proc. of Symposium
on Computer Society, March 2007, Page(s): 455-456.

[19] Ling Wang, Jianye Hao, Feixuan Wang, "Bus-Based and NoC Infrastructure

Performance Emulation and Comparison," IEEE, Proc. of International
Conference on Information Technology: New Generations, 2009, Page(s): 855-
858.

71

[20] Altera Corp. http://www.altera.com last accessed, September 2009.

[21] MentorGraphics Inc. http://mentorgraphics.com last accessed, September 2009.

[22] T. Le, “Implementation and Evaluation of an NoC Architecture for FPGAs,” M.S.

Thesis, University of Windsor, 2009.

[23] EIT, NoC slides, http://www.eit.lth.se/fileadmin/eit/courses/eti135/slides/NoC.pdf

last accessed, September 2009.

[24] Xilinx Inc. http://www.xilinx.com.

[25] Article from embedded development site,

http://www.embedded.com/showArticle.jhtml?articleID=166403161?_requestid=
134990 last accessed, September 2009.

[26] Article from electronics engineering site,

http://www.element-14.com/community/docs/DOC-
12235;jsessionid=0792E50BDA4C9090757AAB360A8C05DF last accessed,
September 2009.

[27] U. Ogras, R. Marculescu, “Analytical Router Modeling for Networks-on-Chip

Performance Analysis”, IEEE, Proc. of Design, Automation, and Test in Europe,
April 2007, Page(s): 1-6.

[28] Integrated Microsystems Group, University of Victoria,

http://www.ims.ece.uvic.ca last accessed, September 2009.

[29] Z. Lu, R. Thid, M. Millberg, E. Nilsson, A. Jantsch. “NNSE: Nostrum network-

on-chip simulation environment,” Proc. of Design Automation and Test in
Europe, March 2005

[30] Department for Electronics, Computer and Software Systems at KTH, Stockholm,

http://www.ict.kth.se/nostrum last accessed, September 2009.

[31] S. Kubisch, H. Widiger, C. Cornelius, D. Timmermann, A. Strzeletz, “E-Core – A

Configurable IP Core for Application-specific NoC Performance Evaluation,”
Proc. of Design Automation and Test in Europe, Workshop on Diagnostic
Services in Network-on-Chips, Nice, France, April 2007.

72

VITA AUCTORIS

Mike Brugge was born in Windsor, Ontario, Canada in August 1985. He received his

B.A.Sc. degree in electrical engineering in 2007 from the University of Windsor in

Windsor, Ontario, Canada. He is currently a candidate in the electrical and computer

engineering M.A.Sc. program, at the University of Windsor. His research interests

include field programmable-related technologies, hardware and software development for

embedded system, and digital computing.

	University of Windsor
	Scholarship at UWindsor
	2009

	Design and Evaluation of a Parameterizable NoC Router for FPGAs
	Michael Brugge
	Recommended Citation

	Microsoft Word - mike_thesis_final

