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Abstract 

 

 

The Network-on-Chip (NoC) approach for designing (System-on-Chip) SoCs is currently 

emerging as an advanced concept for overcoming the scalability and efficiency problems of 

traditional on-chip interconnection schemes. This thesis addresses the design and 

evaluation of a parameterizable NoC router for FPGAs. The importance of low area 

overhead for NoC components is crucial in FPGAs, which have fixed logic and routing 

resources. We achieve a low area router design through optimizations in switching fabric 

and dual purpose buffer/connection signals.  We propose a component library to increase 

re-use and allow tailoring of parameters for application specific NoCs of various sizes.   A 

set of experiments were conducted to explore the design space of the proposed NoC router 

using different values of key router parameters: channel width (flit size), arbitration scheme 

and IP-core-to-router mapping strategy. Area and latency results from the experiments are 

presented and analyzed.   
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Chapter 1 

Introduction 

1. Introduction 

 

The complexity of a system on silicon is comparable to other macro systems such as 

space shuttle or skyscrapers, when measured in terms of the number of basic elements 

intricately connected together, but at a micro level [22].  Moore’s law describes an 

important trend in the history of the integrated circuit (IC): the number of transistors that 

can be placed on an IC is increasing exponentially, doubling approximately every two 

years.  This trend has continued for more than half a century.  Increasing transistor 

density, higher operating frequencies, shorter time-to-market and reduced product life 

cycle, characterize today's semiconductor industry.  As semiconductor technology 

evolves, electronic industries continually push the envelope for greater functional and 

performance capabilities in new electronic systems.  This is creating a continuing need for 

new design methodologies and design space exploration.  

   An embedded system is a special-purpose computer system designed to perform 

one or a few dedicated functions, often with real-time computing constraints.  Embedded 

systems range from portable devices such as digital watches, cameras and MP3 players, 

to large stationary units like traffic lights and factory controllers.  Complexity varies from 

low, with a single micro-controller chip, to very high with multiple intellectual property 

(IP) cores and peripherals.  The exponential growth in chip density is opening the door for 

the implementation of even larger and more complex systems, where complete embedded 

systems can be built onto a single chip.  This paradigm shift is known as System-on-Chip 

(SoC) and is becoming increasingly common and complex.  SoCs may contain many 
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hardware and/or software blocks, such as processors, DSPs, memories, peripheral 

controllers, gateways, and other custom logic blocks.  

   The communication architecture implemented in SoCs is an important 

contribution to the overall performance.  Since the introduction of SoC concept, designers 

relied on a custom-designed ad-hoc mixture of buses and dedicated wires as 

communication mechanisms.  Dedicated wires are effective for systems with a small 

number of cores, but available routing resources are quickly used up as system 

complexity grows.  They also provide poor reusability and flexibility.  A shared bus is a 

set of wires common to multiple cores, which increases both reusability and scalability.  

This scheme works well for Master-Slave communication patterns, where peripherals 

(slaves) wait for data to be received or requested from a more complex processing IP core 

(master).  However, when there are several masters in the system, contention creates a 

bottleneck which gets worse as complexity grows.  And although using hierarchical bus 

models separated by bridges may reduce some of these constraints, it also complicates 

protocols while failing to fully eliminate the scalability problem.  Design and verification 

times also grow with SoC complexity [13].  

   With the current trend in integration of more complex SoCs, there is a need for 

better communication infrastructure on chip that will solve the scalability problem by 

supporting multiple concurrent connections between IP cores, allow for pre-tested design 

reuse to minimize design and verification times, all while maintaining a low area-

overhead.  Many architectural templates have been proposed for hardware platforms for 

future SoCs to provide standardized communication.  NoC has been introduced as a new 

interconnection paradigm able to integrate IP cores in a structured and scalable way.  This 

idea aims to allow system modules to communicate with each other over an on-chip 

network and has been gaining support world-wide.  NoCs are based on the concepts 

adopted on the building of interconnection networks for parallel computers.  Each router 

has a set of ports which are used to connect routers with its neighboring routers and with 

the IP cores of the system.  This solution also promotes independent design of IP cores.  

NoC is still an active area of research, but many works [12], [13], [19],  [22] have provided 

promising performance results over current communication strategies (dedicated wires, shared 
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and locked buses) for FPGAs.  There is a great need for research in hardware 

implementation of NoC systems to determine the feasibility of implementing various 

parameters, and also to accurately determine what design tradeoffs are involved in NoC 

implementation.  

ASICs are increasingly being replaced by Field Programmable Gate Arrays 

(FPGAs) for applications with low to medium volume, due to longer design cycles and 

high cost [14].  FPGA's have also continued to grow with the increase in chip density.  

Modern FPGA's have various hardware and/or software blocks embedded within them, 

such as DSP blocks, memory, and even processors.  These blocks, along with 

customizable logic blocks, makes them the perfect candidate for NoC designs.  A 

fundamental difference between ASICs and FPGAs is that wires in ASICs are designed 

such that they match the requirements of a particular design.  Wire parameters such as 

length, width, layout and the number of wires can be varied to implement a desired 

circuit.  Conversely, in an FPGA, area is fixed and routing resources exist whether or not 

they are used.  The electrical characteristics of the FPGA are solved by the chip vendor, 

not by the user [3].  Exploiting the advantages of NoC in FPGAs for implementing SoC 

designs is an active area of research where the goal becomes implementing a circuit 

within the limits of available resources.  Hence, the importance of designing a generic 

light-weight router whose area can be traded-off for performance in many different ways, 

to meet applications requirements.  

   This thesis is primarily concerned with the challenges of parameter selection for a 

NoC-based system.   The emphasis is on the evaluation of NoC router parameters targeted 

for implementation on FPGAs, since FPGAs serve as an excellent platform for rapid 

prototyping and design space exploration.  Recent research suggests the shift of larger 

SoC implementations on FPGAs as well as the design of light-weight, FPGA based NoC 

routers, prompting possible future NoC implementations.   
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1.1 Thesis Objectives 

The main goal of this research was to evaluate NoC router parameters based on area and 

latency to allow designers to make informed choices for the creation of large embedded 

systems on FPGAs.   This research has the following major objectives: 

1. Investigate the feasibility of NoC router implementation on FPGAs.  

2. Explore the effects of varying NoC router parameters on area and latency. To date, 

not much research has been done to address this issue.   

3. Investigate and design benchmarks with features that would severely test the NoC 

router implementations.  

For the first objective, an experimental framework was developed using VHDL, 

allowing synthesis in Altera Quartus II CAD tool design environment.  A parameterizable 

NoC router was designed and tested. Literature survey was conducted that showed a lack 

of results on NoC router implementation for FPGAs.  Parameters that were not explored 

in previous research were selected and design space exploration was conducted for 

different values of those parameters.   To address the third objective, benchmarks for each 

parameter were developed based on application and random traffic patterns.  Finally, the 

proposed router was experimentally evaluated, using different parameter values, based on 

metrics such as area, latency, throughput, FPGA on-chip memory utilization and FPGA 

routing resource utilization.   

1.2 Thesis Organization 

This thesis is primarily concerned with evaluating the trade-offs for area and latency for 

many NoC router parameters.  Emphasis is placed on the design of NoC routers targeted 

for implementation on FPGAs.  The outline of this thesis is as follows.  Chapter 2 

presents a background on NoC router design, FPGA architecture and provides a 

description of recent related academic research.  An overview of the proposed router 

architecture is given in Chapter 3.  In Chapter 4, we present experimental evaluation 

results for the proposed router used in a variety of mesh configurations.  Chapter 5 

concludes the paper with a summary and discussion of future work. 
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Chapter 2 

Background and Previous Work 

2. Background and Previous Work 

 

In this chapter, the background and previous work that is relevant to this research is 

presented.  This chapter begins with an overview of Network-on-Chip (NoC) and NoC   

parameters.  That is followed by a section discussing   NoC evaluation metrics.  Next a 

section describing FPGA technology is presented. The chapter concludes with a 

discussion of previous work closely related to NoC router design and evaluation.   

2.1 Overview of NoC 

There are many research papers and books dealing with micro-networks, with many 

subtle differences in definitions, concepts, and theories.  In this section, for the sake of 

clarity, we present a collection of concise definitions of relevant concepts and theory that 

holds true for most NoC systems including our proposed router architecture.  Emphasis is 

placed on how such concepts relate to FPGA implementations wherever necessary.  

2.1.1 NoC Building Blocks  

NoC aims to allow computational components (IP cores) to communicate over an on-chip 

network.  An example of a NoC interconnection network is shown in Figure 2.1, which 

consists of four basic functional blocks.  These blocks include the IP cores, the network 

adaptor, the routing node, and the links.  IP cores are specific to the application and not 

considered part of the NoC design.   
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Figure 2.1: Illustration of Four Basic NoC Building Blocks [23] 

2.1.1.1 Links  

This component provides connections for a routing node with a network interface or 

another routing node.  It may provide buffer resources and separate control lines for 

connection establishment and teardown.   

2.1.1.2 Network Interface  

This component provides the conversion between the high level protocol (HLP) that the 

IP uses and the packet-based communication protocol of the NoC.  This component may 

be responsible for buffering packets, storing IP core addresses, creating and 

disassembling messages, implementing end-to-end flow control, crossing clock domains, 

and other higher level network issues.   

2.1.1.3 Routing Node  

This component carries out the task of receiving and forwarding messages inside the 

network based on NoC parameters.  The Router is the central component in a NoC 

interconnection network. Therefore, its area and speed play a big role in the performance 

of the overall system.  NoC interconnection networks have a large range of parameters 
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which are all focused around router design.  Research in this area still lacks in useful 

implementation results. 

2.1.2 NoC Parameters 

Network parameters are an important research topic among NoC designers.  To further 

enhance performance, the parameters of the NoC should be chosen based on the specific 

application.  Therefore, the goal in a general network design is to leave as much designer 

flexibility as possible.  Not every network parameter can be created flexible and many of 

the parameters are dependent on each other.  Evaluation and testing can provide insight 

into how to select these parameters, although a better solution may be a flexible library of 

interchangeable components.  We have chosen to create such a library using VHDL, and 

use an FPGA to provide fast prototyping for results.  Due to time and resource 

constraints, limitations had to be set on the amount of design space explored.  Network 

parameters can be broken into three groups as in [2]: Infrastructure, Communication 

Mechanism, and Mapping. Each of these groups will be discussed separately below. 

2.1.2.1 Infrastructure 

Infrastructure aims to determine the network architecture and includes channel width, 

topology, buffering and floor planning. These parameters are all application specific and 

should be left to the designer’s discretion. 

2.1.2.1.1 Channel Width 

This parameter describes the size of the data passed between routers.  It is important since 

it directly affects bandwidth but can lead to the side affects of increased area/power.  Our 

library allows for a parameterizable channel width which will also be tested for resulting 

area and latency tradeoffs. 

2.1.2.1.2 Topology 

This parameter refers to the way routers are connected in the network.  It should be 

chosen to minimize area, while maximizing utilization without causing bottlenecks.  
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Saldana et al. evaluate different topologies in terms of area and routing resources [3].  

Figure 2.2 shows some popular NoC topologies.  Ring and star achieve slightly better 

results, although both fail to provide solutions to the scalability problem.  As the number 

of nodes increases, ring suffers large end to end delay and star suffers from a central 

bottleneck.  Narasimhan et al. compare the performance of a two dimensional torus to 

mesh, showing a slight edge for two dimensional torus [4].  They however, do not 

compare the extra routing resources needed or the increase area of each router due to a 

more complex routing algorithm.  We restrict the topology to mesh, which is most 

common among FPGA networks, but allow for various implementation sizes up to an 8 x 

8 network.  We also create multiple local ports (up to four per router), which allows for 

multiple IP cores connected to each router or multiple router connections for single IP 

cores.  This increases the possible number of IP cores connected in the network from 64 

to 256.  With available FPGAs, it would be impractical to build anything larger due to 

area and routing resource constraints. 

 

Figure 2.2: Popular NoC Topologies [3] 
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2.1.2.1.3 Buffering 

This parameter defines the approach used to store messages while they cannot be 

scheduled.  This has a serious impact on the area overhead of the network, however, it 

can also have a serious impact in reducing network latency.  We use input and output 

buffering to prevent head-of-line blocking (HOL).  This occurs when a packet or packets, 

experience blocking and cause the blocking of later packets which could otherwise be 

processed.  The inclusion of an output buffer allows the blocked packet to move out of 

the input buffer, to unblock the later packets for processing.  Buffer allocation should be 

based on traffic patterns.  The authors of Hermes [8] design a generic router which has a 

parameterizable buffer depth.  They also include insight through testing various buffer 

sizes for area and performance values.    

2.1.2.1.4 Floor Planning 

Floor planning involves the placement of network components.  This is not important in 

FPGA-based NoC designs as it is done by vendor specific CAD tools (Altera Quartus II 

CAD tool).   

2.1.2.2 Communication Mechanism 

Communication mechanism deals with how data flows through the network and includes 

flow control, switching mode, switching mechanism, and routing algorithm.  These 

parameters are usually set when designing the NoC platform.   

2.1.2.2.1 Flow Control 

This parameter deals with the allocation of channels and buffers to data as it travels from 

source to destination.  The two extremes are packet switching (PS) and circuit switching 

(CS).  In circuit switching, there is a dedicated connection between the two modules in 

which raw data can be transmitted freely.  This technique requires a setup time to build 

and tear down connections, and its channel reservation nature often leads to idle times 

and causes unreliable blocking.  The only upside to this method is its ability to provide 
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guaranteed bandwidth during connection times.  This method does not scale as well and is 

not a popular choice for NoC systems.  In packet switching, data is broken into packets 

which carry routing information.  Packets can further be broken down into flow control 

units (flits).  Modules can send packets at any time and there are often many different 

packets in flight at a given time.  The routers must process and redirect each packet 

accordingly.  

2.1.2.2.2 Switching Mode 

This parameter only exists in PS networks and defines how packets move through the 

network.  The most important schemes are store-and-forward (SAF), virtual cut-through 

(VCT), and wormhole (WH).  In SAF, a router cannot forward a packet until all its flits 

have been received.  Therefore, latency is proportional to packet size and it carries large 

buffer requirements.  In WH, the first flit (header) determines the next hop and all 

remaining flits follow and can be sent as soon as it’s received.  Therefore, latency is 

proportional to flit size.  This method combines packet switched flow control with circuit 

switched ideas but also leads to channel reservation.  It also requires a complex routing 

algorithm.  VCT uses a combination of both ideas to provide latency based on flit size 

without idle times by guaranteeing buffering before setting up the connection.  However, 

this method uses large buffer amounts and very complex routing algorithms making it 

unsuitable for light-weight networks.  We have chosen SAF for its light-weight algorithm 

and to prevent channel reservation.  Future testing may extend flexibility to include WH 

as well.   

2.1.2.2.3 Switching Mechanism 

This parameter refers to how connections are made inside a router.  Common 

architectures include fully connected, crossbar matrix, and partial crossbar matrix.  We 

use a partial crossbar scheme to save area as it is the smallest configuration.  We have 

also implemented optimizations based on the chosen routing algorithm which we will 

discuss later.  
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2.1.2.2.4 Routing Algorithm 

The routing algorithm determines the path the packet will take.   There is not much 

research guidance available on effectiveness of available routing algorithms for NoC 

implementations.  We use XY routing for its simplicity and low area overhead.  This 

scheme also prevents livelock and assures flits and packets arrive in order.  Routing 

schemes can also require congestion control and recovery mechanisms, which can lead to 

added area overhead.  We allow this to be handled by the application layer. 

2.1.2.3 Mapping 

Mapping determines how to integrate a given application to the NoC platform and 

includes scheduling and module mapping.  

2.1.2.3.1 Scheduling 

This is a traditional computer science topic but most work neglects inter-processor 

communication.  Arbitration schemes consider priority of packets when making grants 

inside the routers among the network.  Arbiter schemes can be static or dynamic.  

Dynamic arbitration makes a decision at run-time and is more flexible, however also 

requires a larger area. Dynamic Schemes can also prevent starvation which is a downfall 

of static schemes.  Our library provides a few different components to allow for area and 

latency trade-offs.   

2.1.2.3.2 Module Mapping 

This parameter aims at selecting IP modules for different locations to minimize traffic.  

This parameter is application specific and is explored later. 

2.1.3 NoC Evaluation Metrics 

NoC architectures are designed to meet certain cost and performance constraints, which 

include, but are not limited to, speed, area, energy/power consumption, Quality of Service 

(QoS) and flexibility.  Through parameter selection, one or more metrics can often be 
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improved at the cost of other(s).  In the following sections we will discuss the evaluation 

metrics for NoC router architectures and their relevance to this thesis.   

2.1.3.1 Latency/Throughput 

When using FPGA technologies, evaluating speed can often be as easy as obtaining the 

synthesized maximum frequency the clock is capable of running at.  For NoC routers, this 

is not the case.  Although still important to the overall performance, NoC routers have 

multiple ports which can send, receive and process simultaneously.  Therefore, it is 

important to observe data transaction times.   

Speed can be measured in delay, which is referred to as latency.  Latency can be 

the overall run time, it can be decomposed into several intervals such as packet or flit 

latency, calculated as an average, along with other creative possibilities.  We use the 

overall application run time measured in cycles, which is converted to time as a function 

of the maximum clock frequency.  

Speed can also be measured in bandwidth, which is referred to as throughput.  

Throughput is the amount data transferred over a period of time.  Throughput can be; the 

ideal data processing rate (system working under the best possible conditions), it can be 

decomposed into several intervals such as overall application, packet or flit throughput, 

measured per system, IP core, router, or port, calculated as an average, along with other 

creative possibilities.  We use the overall application/simulation throughput measured in 

packet and flits per cycle, which is converted to time as a function of the maximum clock 

frequency. 

Finally, some papers suggest NoC router speed be measured in terms of 

bottlenecks.  Either the number of occurring bottlenecks, or the time in which a router has 

a bottleneck occurring.  This metric was not used in our experiments but is very 

interesting to note. 

   It is important to understand that speed characteristics for NoC routers are 

application specific and do not represent speed characteristics of the router alone.  This 

makes comparing different router performances quite hard.   
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2.1.3.2 Area  

In an FPGA, overall system area is limited and therefore important to keep minimal.  

Area can be measured as a number or a percent of available resources.  Area is a very 

vague term.  In an FPGA, there are many components which occupy area.  For our 

experiments, we use area in terms of logic elements (LE’s), memory blocks, and routing 

resources (direct wires, interconnects, and clocks).  This Information is obtained   from 

Altera Quartus II CAD tool after compiling and synthesizing the VHDL code.  Altera 

Quartus II CAD tool gives the option to synthesize for the lowest area or highest speed. 

2.1.3.3 Energy/Power Consumption 

For FPGA technologies, power consumption is a metric not often evaluated.  This is due 

to the fact that power consumption has a direct relation with area. Also, designing low 

power circuits for FPGA implementation is based on trial and error.  Therefore, most 

research including ours focuses on area and excludes the use of power estimation tools. 

2.1.3.4 Quality of Service (QoS) 

Quality-of-Service (QoS) is a networking term that refers to guarantees that the system 

can make about its performance.  In computer networks, certain application such as video 

streaming are required to give a guarantee of high uninterrupted bandwidth because of the 

uniqueness of the application.  It is difficult to actually predict the behavioral nature of 

the data in the network, thus making it nearly impossible to guarantee the required 

bandwidth without some margin of error.   PS suffers even more in its ability to predict 

the timing of its services.  To help provide QoS, NoCs must provide service free of the 

following causes of failure: 

1. Livelock:  data is prevented from reaching its destination because it is in a cyclic 

path. 

2. Starvation:  data is prevented from reaching its destination because some resource 

does not grant access. 



14 

 

3. Deadlock:  data is prevented from reaching its destination because it is blocked at 

some intermediate resource. 

 Livelock occurs when the packets are being routed around their destination and are 

placed in a cyclic holding manner.  Livelock can be avoided by allowing the packet to 

travel the shortest route.  XY routing avoids this situation. 

Starvation is a common PS problem.  It occurs when the packet is discriminated 

against as low-priority data, thus never getting service.  This can be avoided by allocating 

resources to process all packets equally, automatically dropping and resending packets in 

the network for too long, or by use of dynamic arbitration insuring all ports receive 

service.   

Deadlock is cause by packet being continuously blocked and it is the hardest 

problem to solve because packets that are blocked stay blocked while waiting for an event 

that cannot happen.  This problem is solved by restricting channel reservation.   

2.1.3.5 Flexibility 

Flexibility refers to the number of manipulations the designer can make.  Our router 

design allows that some of the parameters be changed at design time allowing the 

designer to choose trade-offs.  Designs with a high degree of flexibility are the ones that 

allow more parameters to be changed.  Other flexibility characteristics include scalability 

(ability to add more and more IP cores) and design re-uses (ability to use the same NoC 

architecture for multiple designs).   

2.2 FPGA Technology 

A field-programmable gate array (FPGA) is an integrated circuit (IC) which can be 

reprogrammed many times to implement any desired digital circuit which doesn’t exceed 

the limits of the device.  An FPGA contains a two dimensional array of programmable 

logic components, called logic elements (LEs), a hierarchy of wires and buses with 

reconfigurable interconnects that allow the LEs to be physically connected and is 

surrounded by configurable I/O blocks (IOB’s).  Figure 2.3 shows this two dimensional 

FPGA architecture.  In addition, FPGAs typically include other specialized blocks, such 
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Figure 2.6.  The LUT consists of an array of 1-bit memories which implement a truth 

table connected to a multiplexed output pin.  In short, a Xilinx slice is basically made up 

of 2 LEs.  Altera Stratix II EP1540F1508C5 was selected as the target device for this 

research.   This device contains 41, 250 LE’s and was chosen for its popularity and large 

output pin capability for synthesis of large designs.    

 

Figure 2.6: Four Input LUT [25]  

2.3 Related Work 

Our Router has been designed and synthesized on an Altera Stratix II FPGA, therefore 

although there are a number of ASIC and custom IC implementations, we restrict our 

discussion of related work to FPGA implementations.  This section is intended to provide 

a comprehensive state of the art for NoCs, although the authors do not pose claims about 

its completeness.  The results of our review are summarized in Table 2.1.  
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 The first working implementation of FPGAs was presented by Marescaux et al. 

[6].  It has many faults mainly large size, and a one dimensional architecture which fails 

to provide a high degree of scalability.  They extend their work in [7], allowing a more 

flexible architecture, but still suffering from large area overhead.  They use VCT flow 

control which is now considered too area-intensive for FPGA platforms because of 

complex routing logic without eliminating any buffer constraints. 

 Moraes et al, present Hermes, a router with parameterizable data width and buffer 

depth.  They perform simulations of a 5 x 5 mesh while varying buffer depth.  They 

conclude with the notion that increased buffer size reduced latency, but only to a 

saturation point.  Their design uses centralized arbitration and routing units, which 

decreases area but stalls performance as routing requests are queued to be handled one at 

a time.  Their design also suffers from a very low clock speed.  They later extend their 

work to provide an automatic router generation and traffic analyzer [9].  

 A comparable router, RASoC [10], was presented by Zeferino et al.  The main 

difference being they use a WH flow control.  Performance differences are yet to be 

compared and may be considered for future work as a WH downfall is that it reserves 

channels which can cause blocking.  However, WH also requires complex routing logic 

as well as extra bits in the datapath for framing.  They also used Altera to synthesis their 

5-port, 8-bit router which occupies 486 LE's and has a clock frequency of approximately 

57MHz.  This area is quite large for a router whose buffers are limited to 4 per port.   

 PNoc, proposed by Hilton et al in [13], gives us a router with circuit switched flow 

control.  They test their router against bus based approaches to show improvements.  

However, routing complexity grows as the number of ports, or number of routers increase 

and therefore reduces scalability.  It also suffers typical CS setup and teardown latencies 

and possible blocked idle time.  

 Sethuraman et al. propose LiPaR in [14], which was a starting point of our design, 

but significant improvements were added by us. They use SAF, input and output 

buffering, and decentralized components. Optimizations are made in the crossbar matrix 

to reduce area through careful analysis of the XY routing algorithm. However, we extend 
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these optimizations to the arbitration unit.   They use a single 5x5 crossbar matrix for 

switching rather then 5 5x1 partial crossbars leading to a larger area. Their complex 

crossbar design results in a slower clock speed and increased area.  

 They later propose multi-local port routers (MLPR) in [15], which have the 

potential of improving area and performance metrics. However, the authors fail to provide 

any synthesis results to support their proposal. Another extension the authors propose is 

Optimap [16], an exhaustive CAD tool for mapping IP's and choosing network size.   

 Vestias et al. propose GNoC in [17], a generic router which supports a range of 

routing, switching and arbitration protocols. They create a tool for exploring the sharing 

of some decentralized components to reduce area that is based on the injection rate of 

ports. Unfortunately, they lock all protocols to certain values and do not explore them 

further. Their tool shows how they can save area when injection rates are low but does 

not test to see if performance is degraded. 

 MoCres, designed by Janarthanan et al. in [18], uses complex VCT flow control 

and attempts to reduce area by sacrificing area through centralizing components. They 

create multi-clock domain to enable high clock frequencies during transfers. 

Optimizations from XY routing in the crossbar matrix have been extended to the routing 

algorithm, and gave us the idea for a further   arbitration unit extension. We have also 

used their idea of creating VHDL wrappers to simulate the stand-alone router or routing 

configurations to compare parameters. 

 Our paper attempts to zero in on all the best router characteristics from the above 

to make as many optimizations in area as possible while concentrating on system 

performance. We notice a lack of evaluation and comparison of network parameters on 

FPGAs and try to test accordingly. Most work has focused on dynamic arbitration 

schemes, mainly round robin (RRA), which may be too area consuming when 

implementing decentralized components. We see that the data width size is often set to 8-

bit flits as many papers assume a size without analysis. Most importantly, we agree with 

the opportunity to optimize data traffic through use of MLPR. Our plan is to present area 
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utilization and performance values for the above network parameters to help future 

designers make accurate decisions for their computing needs. 

2.4 Summary 

In this chapter, the relevant background material and related previous work was 

presented.  First, a short collection of concise definitions of NoC building blocks was 

presented.  We then listed relevant concepts and theories about NoC Parameters.  Our 

NoC discussion concluded with the presentation of evaluation metrics.  Next, the basic 

concepts of FPGA technology were discussed.  Finally, the Chapter concluded with a 

discussion of some of the previous work that is closely related to this research, and how it 

was used to motivate our own research.  In Chapter 3, a detailed description of the 

proposed NoC Router architecture hierarchy and functionality is presented. 
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Chapter 3 

A Parameterizable NoC Router Architecture 

3. A Parameterizable NoC Router Architecture 

 

In this chapter a detailed description of our proposed NoC router architecture is presented.  

This chapter begins with a discussion of basic functionality of the NoC router based on 

protocols chosen.  That is followed by a discussion of the NoC router architecture 

describing the main components used and the data flow.  NoC design is presented next, 

including functionality and how to assemble. We briefly discuss how the NoC router 

architecture was verified using Altera Quartus II CAD tool and then conclude the chapter.   

3.1 Functionality 

In section 2.1 we discussed NoC router parameters and gave some insight into the choices 

we have made for our router design.  In the following sections, we will discuss those 

parameters in which directly affect the functionality of the router which include protocols 

and algorithms.  

3.1.1 Protocols and Algorithms  

NoC router protocols and algorithms govern the flow of data through the NoC network.  

They make decisions on where data flows, at what speed, in what order, how it is stored, 

ect.  Therefore they directly affect performance.  These parameters are hard to create 

flexible due to how they often control the router design as a whole.  Therefore, their affect 

on area can also be significant.  Careful selection is crucial and there is much work to be 

done in creating new or testing existing protocols and algorithms for NoC router design.  
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The following sections describe our protocol and algorithm choices to provide working 

knowledge of our NoC router.  These parameters include flow control, switching mode, 

routing algorithm, and scheduling.   

3.1.1.1 Flow Control 

We have chosen a packet switched flow control.  In PS networks, data is separated into 

small blocks called packets at the core.  This packet includes a header which has 

information about its destination.  Upon creation of the packet, IP cores simply release the 

packet into the network where a series of interconnected routers forward the packet to its 

destination.  PS is referred to as connectionless as there is no direct connection between 

communicating cores.  This is an attractive choice as it allows multiple IP cores to 

communicate without contention.   

3.1.1.2 Switching Mode 

Switching mode can often be confused with flow control as it plays a large part on the 

flow of the packet.  Switching mode is only a parameter of PS networks.  This parameter 

is in charge of allocating buffers and channels to the packet and deciding when it will 

receive service.  A packet is broken down into flow control units (flits).  We have chosen 

to break the packet into 8 flits.  Each flit is the size of the channel.  We have chosen a 

store & forward (SAF) scheme.  In this scheme, packets are buffered at each router, and 

the router waits for the full packet to arrive before forwarding.  This prevents a single 

packet from blocking more than one channel at a time.  The downfall is that it increases 

the buffering requirements of each router.  Testing this parameter would be great future 

work as there are a few other alternatives.  However, designing a router with different 

switching modes is very complex and was omitted from the scope of this research.   

3.1.1.3 Routing Algorithm 

The routing algorithm is implemented within the router and is in charge of choosing the 

next hop toward the packets destination.  We have chosen XY routing for its simplicity 

allowing for the implementation of a low area router.  XY routing prevents livelock from 
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occurring.  Since all packets leaving the same source and headed for the same destination 

will travel the same path, it also prevents having to deal with complex scenarios like 

packet reordering.  Unfortunately, using the same logic, XY routing cannot provide any 

type of congestion control.   

 

Figure 3.1: Coordinate Configuration for XY Routing 

In XY routing, each router is given a coordinate based on its position in the 

network.  We restrict our mesh size to 8X8 and therefore our coordinate is 6 bits.  The 

most significant 3 bits portrays the routers vertical displacement with 000 being the 

lowest (southern) router and 111 being the highest (northern) router.  The least significant 

3 bits portrays the routers horizontal displacement with 000 being the left most (western) 

router and 111 being the right most (eastern) router.  Figure 3.1 shows router coordinate 

configuration within a mesh.  A packet arrives at the router with an 8 bit header.   This 

header contains the destination of the packet.  The vertical displacement is checked first.  

If the destination is greater then the coordinate, the packet is forward north.  If the 

destination is lesser then the coordinate, the packet is forward south.  If the destination is 

equal to the coordinate, then its vertical displacement is ok.  The same process then 

…………………………………

………….…

…………

................

…
 



26 

 

occurs for the horizontal displacement.  Eventually, the packet arrives at the router with 

the proper coordinate.  At this point the packet is at the proper port and must now be 

forwarded to the correct destination port.  Since routers in our mesh can have up to 4 

ports, the least significant 2 bits of the header are used to distinguish among local ports.  

Figure 3.2 shows the configuration of local ports within the router.   

 

Figure 3.2: Configuration of Local Ports for XY Routing 

An important note can be made about this algorithm.  Since the vertical 

displacement is always found first, a packet coming in from the east or west ports must 

already be in its proper vertical position.  Therefore, a packet coming in from the east or 

west ports cannot be forwarded north or south.  This observation is exploited later to 

optimize the area selected components.   

3.1.1.4 Scheduling 

Scheduling of data depends largely on IP cores.  However, scheduling can occur within 

the network.  If two or more packets request the same port at the same time or while it’s 

busy, the requested (output) port will have to make a decision on which to grant access 

first.  This is called arbitration.  Our router allows for some flexibility in choosing 
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arbitration schemes that consider priority of packets in routers among the network and are 

classified into static and dynamic schemes.   

In static arbitration schemes, the priority of each port is chosen during design.  

First, we use a generic fixed scheme where priority is given to the north first, and 

degrades clockwise.  We use two other static arbiters, both based on the fixed scheme.  

Both schemes were designed during the evaluation phase.  Custom scheme was designed 

based on the setup of the simulation.  Custom each port scheme included a different fixed 

priority in each port based on the setup of the simulation.   

Dynamic arbitration makes a decision at run-time and is more flexible, however 

also requires a larger area.  However, dynamic schemes can avoid deadlock.  We include 

3 counting schemes and a coin passing scheme.  The counting schemes all have similar 

area results, but their performance depends on the application.  The first scheme gives 

priority to the port that has been busiest (sending the most requests).  The Next scheme 

gives priority to the port that has been waiting the longest.  Here, the arbitration unit 

counts cycles after a request has been received for all ports.  The last counting scheme 

gives priority to the port that sends the least packets (opposite to the first scheme).  

Finally, in coin passing scheme, one input port is assigned the coin.  The port assigned 

with the coin, has priority, until it has been granted.  Then the coin is passed to the next 

port, clockwise.  If the port with the coin is not making a request, the unit grants the 

request of the port closes to it, again clockwise.  This scheme is much like round robin 

used in many FPGA NoC router implementations.   

Scheduling is one of the parameters we wish to test.  Interesting results may show 

static arbiters latency is quite reasonable considering  its area savings.  This is especially a 

concern in decentralized routers, where each port has its own control logic.   

3.2 Router Implementation 

The router was designed with 4 ports for communication with neighboring routers, North, 

East, South, and West and anywhere from 0 to 4 local ports for communication to IP 

cores.  A router with no local ports would be used just to complete a mesh and help with 

congestion control within the network.  Generic port and component design was used, 
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therefore and input port has the ability to forward to its own output port, although this 

situation could never occur.  Figure 3.3 shows the port architecture and it’s interaction 

with the switch.  Packet size has been set to a depth of 8.  Flit size is parameterizable, 

with 8 bits being the smallest possible size for routing information purposes.  Our 

implementation does not include High Level Protocols (HLP) but could easily be 

implemented on an application level.  The router is decentralized meaning each port runs 

its own control logic and hence can request and set up concurrent connections.  Below we 

will include details on inter-router data transfers, the I/O channels and the crossbar switch 

designs.   

 

Figure 3.3: Architecture of Port: I/O Channels and Switch 
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3.2.1 Data Transfer between Input and Output Ports 

Communication between ports is established by use of a two-way handshake of 

request/grant signals. Figure 3.4 shows a handshake scenario between local and west 

ports.  Upon packet arrival, local sends a request for west’s output port.  Once local 

receives a grant from west it can drive its request line back to low and it is free to send the 

packet, one flit at a time.  West will hold its grant line high until the full packet has been 

received.  Any other ports which have high request lines to west, will keep them high 

until they also receive a grant.   

 

Figure 3.4: Handshake Scenario between I/O Ports  

3.2.2 Input Channel 

All input channel modules include a buffer unit of depth 8 and a logic controller.  This 

module grants access to input buffers, accepts and stores packets, performs routing 

algorithm, issues requests to appropriate output ports, and sends data to the switch.   
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3.2.2.1 Input Buffer 

The input buffer is shown in Figure 3.5.  It is capable of storing the whole 8 flits of the 

packet.  It has 2 status signals letting the input controller know if it is full and ready to be 

forwarded or it is empty and ready to accept a new packet.  It also has 2 control signals 

allowing the input controller to store or forward its contents.    

 

Figure 3.5: Architecture of Input Buffer 

 

Figure 3.6: Architecture of Input Controller  
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3.2.2.2 Input Controller 

The input controller is shown in Figure 3.6.  This unit is responsible for running the 

routing algorithm.  It continually monitors the header flit and determines its next hop.  

When the buffer becomes full, the controller issues a grant to the appropriate output port.  

It then waits for the grant, when it can prompt the transfer.  When the buffer becomes 

empty, the input controller can prompt transfers from the outside.   

3.2.3 Switching Mechanism 

The crossbar switch is shown in Figure 3.7.  It is a set of multiplexers having an 

interconnection allowing all possible connections between input and output channels.  

Three optimizations have been made in the crossbar switch.  First, it uses a partial 

scheme, which includes one 5 by 1 unit for each output rather then one 5 by 5 unit for all 

outputs, for a 5 port router.  Initial design included 2 switching options, full and partial 

switch.  Early synthesis results eliminated the full switch design because it was larger in 

area and slower in clock frequency.  Each output is connected to a different port.  Next, 

there are no demultiplexers in the design.  The input data is connected to all partial 

crossbar units which will choose the appropriate data for the output.  The fact that at a 

time, the output channel can only serve one input request is exploited here.  The final 

optimizations are made in the partial units of the north and south.  Though analysis of the 

XY routing algorithm, we can conclude that these units will never receive data from the 

east or west.  This reduces the inputs of all of these units by two.  All optimizations 

reduce the area without effecting latency of the router.  

3.2.4 Output Channel 

All output channel modules include a buffer unit of depth 8 and a logic controller.  This 

module grants access to output buffers, accepts and stores packets, performs arbitration, 

issues requests to the next hop, and sends data to the next hop.   
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Figure 3.7: Architecture of Switching Fabric 

3.2.4.1 Output Buffer 

The output buffer is shown in Figure 3.8.  It is capable of storing the whole 8 flits of the 

packet.  It has 2 status signals letting the output controller know if it is full and ready to 

be forwarded or it is empty and ready to accept a new packet.  It also has 2 control signals 

allowing the output controller to store or forward its contents.    

 

Figure 3.8: Architecture of Output Buffer  

MUX MUX MUX MUX MUX
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3.2.4.2 Output Controller 

The output controller is shown in Figure 3.9.  This unit is responsible for running the 

arbitration algorithm and making grants.  It continually monitors request line.  When one 

or more become high, the controller issues a grant to the prioritized input port.  It then 

waits for the packet, when it can prompt the transfer outside.  When the buffer becomes 

empty, the output controller can continue issuing grants. 

 

Figure 3.9: Architecture of Output Controller  

3.3 NoC Architecture 

Although we propose the design of a stand-alone router with the purpose of testing its 

parameter, the router can of coarse be used in the building of a NoC network.  The router 

protocols will only work for two dimensional mesh architecture, with properly positioned 

coordinates.  The following sections discuss the intra-router data transfers, along with 

how to build a NoC using the proposed router and accompanying components.   

3.3.1 Data Transfer between Routers 

Figure 3.10 shows the proposed router with its external signals.  For each port, there are 4 

generic control signals, and 2 data paths.  One data path is for incoming packets while the 

other is for outgoing packets.  Similarly, 2 control signals are input controlled and two are 

output controlled.  Figure 3.11 shows interaction among 2 adjacent routers, mainly the 
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transaction of data from a routers output port to the other routers input port.  The output 

port will let the adjacent routers input port know when its buffer is empty, and therefore 

ready to receive a packet, through use of emptyout/emptyin signals.  Once the output port 

has received a packet and the emptyin signal has been driven high by the adjacent router, 

it can begin sending.  To start, it drives the sendingout signal high for just one clock 

cycle, which prepares the output port that all 8 flits will begin transferring upon the next 

clock cycle.  When data begin to flow, the input port will send the emptyout signal to a 

low state, and stay that way until the packet has been forwarded within that specific 

router. 

 

Figure 3.10: Architecture of Proposed Router  
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Figure 3.11: Connections between Adjacent Routers  

   Since are router provides a variable number of ports, and extra signal was added, 

NEP to make sure that there are no requests for a non-existent local port.  This signal is 

driven high if the header of a packet requests a local port that is not included in that 

particular router.  This signal is common on all routers and could be sent to a central 

processor (CPU), where it could stop the program and re-assess where the IP cores are in 

terms of NoC network position.   

   Future re-design/improvements of this router architecture would see the output 

control logic increase.  This would be to provide an option to skip the output buffer if the 

receiving router is ready.  Although the output buffer is useful in preventing HOL 

blocking, it adds un-needed delay in cases where the receiving router is ready. 
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3.3.2 Building a NoC Network 

With our parameterizable router design, building a router takes careful placement of 

components.  The design makes choices on channel width, number of local ports per 

router, and arbitration type.  Also, when building a NoC, designers must configure the 

coordinates of each router based on its network position.  Figure 3.12 shows a flowchart 

outlining how to build a NoC network.  It is recommended to start with the lower left 

corner of the NoC and maintain a pattern when designing each router.  This is to make 

integration of the coordinate a little easier.   

 

Figure 3.12: NoC Router Design Flow  

Run Benchmark or 
application and 
evaluate results 



37 

 

First is the choice of channel width.  This cannot be made smaller then 8 bits for 

routing purposes.  Once chosen, it must remain the same for all routers within the NoC 

network.  This can be modified in the top level module by changing the generic parameter 

called flit size.   

Next is the choice over how many local ports.  Each router in the NoC network 

can have anywhere from 0 to 4 local ports independent of the other routers.  This option is 

as simple as choosing the correct top level module for router design.  Each top level 

router module is named after the number of local ports it has (router_fs_xx).  Here the xx 

should be chosen to be 0l, 1l, 2l, 3l, or 4l implying the number of local ports each router 

has. 

The final choice to be made is on which arbitration unit is to be used.  The number 

of changes made here depends on the number of ports chosen.  Each port must be opened 

separately, to change the name of the output controller used.  Ports are named based on 

numbers (port_ns_x).  Here the x is a number and is based on the number of ports in the 

design.  So if you build a 6 port router, ports with numbers 0 to 5 should be opened and 

changed.  Output controllers are named after their arbitration unit (outputcontrol_xx).  

Here the xx is replaced by select options listed in Table 3.1.   

Table 3.1: Coding Scheme for Different Arbiters 

Arbiter code Arbiter Type 

fa Static – fixed scheme 

c1, c2, c3 Dynamic – various counting schemes  

cp Dynamic – coin passing (RRA) scheme 

cap Static – custom application fixed scheme 

ca0, ca1, ca2, 

ca3, ca4 

Static – custom each port for application fixed scheme 
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Lastly, the router must be configured with its proper coordinates.  Router 

positioning must be done carefully.  Coordinates are configured in the input controller 

(inputcontrol) and are called router_coordinates.   

Future re-design/improvements of this NoC router would see the use of corner 

routers which would eliminate the need for a couple ports further reducing area.  Since we 

simply wish to test the parameters, this omission is fine.  This reduction in area and power 

would be crucial for use of this router in a NoC system for real world implementation.   

3.4 Verification    

ModelSim [21] was used to create tests and obtain latency results, but before that phase 

testing on the routers functionality was needed.  After choosing the parameters of the 

router, design began with the creation of components (buffers, controllers).  As each 

component was finished, it needed to be tested for functionality.  Each component would 

have to be verified before moving on in the design.  There is no point in creating a router 

with components that do not work correctly.  This phase was completed in Altera Quartus 

II CAD tool using the waveform editor and simulation tool.  The output controller needed 

extra testing as the priority of each port needed to be tested for different arbiter types 

   First each component was tested to ensure its control signals were working and 

data was flowing through the components with proper timing.  Then came creation of a 

generic port composed of the components.  Testing was done to ensure each port could 

receive and send data properly.  Finally a 5-port router was designed.  As it is nearly 

impossible to verify every possible bit stream scenario in a router, a few situations were 

simulated.  First was a common transfer.  The north port obtained a packet and was sent 

to the south.  Next was a concurrent test where the local port was requested and provided 

service to the west and east ports.  Finally, a test was developed where all five ports 

obtained a packet and five simultaneous connections were established.   

   Figure 3.13 shows the output waveform for east to north transfer.  Only the east 

and north ports signals are shown.  Note that the sending in, si, signal of the east port go 

high.  East begins to receive the packet.  Once it has been received and routed, we see the 
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north output buffer begins to receive it.  This figure shows all sending and empty signals 

and how they act during transfer.  The input data was held steady at 11001001 for input to 

the east port.   

 

Figure 3.13: East to North Transfer Simulation Output in Altera Quartus II CAD tool  

      Other routers were created containing different number of local ports.  Since 

each port is generic, building a bigger router should be similar. Therefore verification was 

as easy as creating a transfer which utilizes the new port to make sure it has been wired 

correctly.   

   For router with less the 4 local ports, another quick test was developed to ensure 

the functionality of the NEP signal.  Here, a packet sent with the heading for a local port 

that was not there.   

3.5 Summary 

In this chapter, we discuss functionality of the router protocols and how a packet flows 

through the network.  We provide a detailed description of the proposed NoC Router 

architecture hierarchy and design.  The NoC network design and functionality was then 

presented.   The chapter concluded with a description of the design and verification 

process.  In Chapter 4, experimental evaluation results, and their analysis are presented.   



40 

 

 

Chapter 4 

Experimental Evaluation Results 

4. Experimental Evaluation results 

 

This chapter starts with a discussion of the design methodology for implementing a 

Network-on-Chip (NoC) system. This methodology also facilitates rapid prototyping and 

exploration of various aspects of NoC implementation.  This is followed by a brief 

description on the difficulties involved in testing NoC components.  Then, we describe 

how we choose to test each parameter of our NoC router.  Lastly, the synthesis and 

simulation results are presented and analyzed.  

4.1 Design Methodology 

As previously discussed, NoC routers have many parameters.  These parameters can often 

be flexible for allowing different choices for different target applications.  Choosing 

parameters can often be a difficult task for embedded SoC system designers.  In the 

following sections, we aim to provide insight into the latency and area trade-offs to allow 

designers to make informed decisions. 

4.2 Synthesis Results 

We use Altera Quartus II CAD tool [20] to synthesize the system to obtain area utilization 

and clock frequency values.  We chose to target a popular Stratix II FPGA family, device 

EPIS40F1508C5.  All components and modules have been implemented in VHDL.  

Components were originally tested for functionality in Altera Quartus II CAD tool 

environment.  The router coordinates are set during synthesis before simulation takes 
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place.  We have performed experiments on the parameters arbitration type, flit size, and 

configuration.  Table 4.1 shows synthesis results for our 5-port, 8-bit router using fixed 

arbitration.  Here area utilization is broken down into usage by each component.  For full 

fitter utilization results, refer to Appendix A.  The router consumes only 598 (1.45%) 

LEs, making it one of the most competitive NoC routers with standard features (I/O 

buffers, decentralized routing and arbitration logic) targeted for FPGAs.  This shows a 

very small input control due to the simple routing algorithm.  We notice a large output 

control unit, motivating our arbitration test as this unit is already large.  We notice the 

buffers taking up most of the space.  This may prompt future experiments involving other 

flow control protocols which do not require such large buffer sizes.   

Table 4.1: Area Utilization for Router Components 

Component Sub-Component Area (LE’s) 

Input Channel Input Buffer 157 

Input Control 54 

Output Channel Output Buffer 156 

Output Control 124 

Switch --- 107 

Router All 598 

   Here we would like to make a comparison with one of the most competitive 

routers in current research, LiPaR.  Table 4.2 shows LiPaRs synthesis results.  All our 

components are comparable in total area, if not smaller.  Consideration should be taken 

for the fact that they used Xilinx to synthesize the design and that Xilinx slices are much 

larger then Altera LE’s.  Also, Xilinx has embedded FIFO buffers which were used in the 

design.  We created our own FIFO buffers and accompanying signals which may be the 

reason for the increased area.    
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Table 4.2: Area Utilization for LiPaRs Router Components 

Component Sub-Component Area (Slices) 

Input Channel Input Buffer 105 

Input Control 65 

Output Channel Output Buffer 105 

Output Control 132 

Switch --- 78 

Router All 485 

4.2.1 Arbitration 

Our first experiment was performed on Arbitration type.  Here, a 5-port, 8-bit router was 

synthesized many times swapping in different output controllers.  Each output controller 

contained a unique arbitration unit as described in Section 3.1.1.4.  Table 4.3 and 4.4 

show the synthesis results for this experiment optimized for area and speed, respectively.  

We can conclude that static fixed arbitration schemes are the least area expensive 

components.  The clock speed seems to get worse for more complex designs.  We cannot 

yet analyze the latency as clock speed is just a small aspect of the overall speed.  We will 

use these results to obtain accurate latency metrics in Section 4.5.    

Table 4.3: Effect of Arbiter Choice on FPGA Utilization, Optimized for Area 

Arbiter Type Area 

(LE’s) 

Memory Clock Speed 

(ns) 
M4k’s M512’s 

Fixed 598 0/183 8/384 9.71 

Counter 1191 0/183 8/384 10.89 
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scheme 1 

Counter 

Scheme 2 

1173 0/183 8/384 10.13 

Counter 

Scheme 3 

1191 0/183 8/384 11.4 

Coin passing 

(RRA) 

746 0/183 8/384 9.58 

Custom Fixed 598 0/183 8/384 10.14 

Custom Fixed 

Each Port 

598 0/183 8/384 9.79 

  

Table 4.4: Effect of Arbiter Choice on FPGA Utilization, Optimized for Speed 

Arbiter Type Area 

(LE’s) 

Memory Clock Speed 

(ns) 
M4k’s M512’s 

Fixed 1036 0/183 0/384 9.58 

Counter 

scheme 1 

1619 0/183 0/384 8.72 

Counter 

Scheme 2 

1606 0/183 0/384 10.56 

Counter 

Scheme 3 

1618 0/183 0/384 8.85 
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Coin passing 

(RRA) 

1182 0/183 0/384 11.23 

Custom Fixed 1036 0/183 0/384 10.52 

Custom Fixed 

Each Port 

1036 0/183 0/384 10.3 

4.2.2 Flit Size 

Our next experiment was performed on the flit size or data path size.  Here, a 5-port, 8-bit 

router was synthesized 4 times increasing the size of the data path each time.  Table 4.5 

and 4.6 show the synthesis results for this experiment optimized for area and speed, 

respectively.  We can conclude that larger flit sizes lead to more area intensive 

components.  The clock speed also seems to get worse for more complex designs.  We 

cannot yet analyze the latency as clock speed is just a small aspect of the overall speed.  

We will use these results to obtain accurate latency metrics in Section 4.5.    

Table 4.5: Effect of Flit Size on FPGA Utilization, Optimized for Area 

Flit Size Area 

(LE’s) 

Memory Clock Speed 

(ns) 
M4k’s M512’s 

8 610 0/183 8/384 9.71 

16 738 0/183 8/384 9.57 

32 994 8/183 0/384 10.16 

64 1505 16/183 0/384 10.87 
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Table 4.6: Effect of Flit Size on FPGA Utilization, Optimized for Speed 

Flit Size Area 

(LE’s) 

Memory Clock Speed 

(ns) 
M4k’s M512’s 

8 1036 0/183 0/384 9.58 

16 1596 0/183 0/384 9.45 

32 2716 0/183 0/384 8.91 

64 4956 0/183 0/384 11.91 

4.2.3 Configuration 

Our last experiment was performed on the configuration.  Here, multiple versions of our 

router were synthesized in many different topologies.  These topologies are discussed in 

greater detail in the following section.  During simulation, different mappings were also 

tested, but this did not affect the synthesis results and is not shown here.  Table 4.7 and 

4.8 show the synthesis results for this experiment optimized for area and speed, 

respectively.  We can conclude that NoC network topologies with a smaller number of 

routers are less area expensive, even though the routers tehmselves are larger.  The clock 

speed also seems to get better with fewer routers involved in the NoC topology.  We 

cannot yet analyze the latency as clock speed is just a small aspect of the overall speed.  

We will use these results to obtain accurate latency metrics in Section 4.5.  We have also 

included some routing resource information in Table 4.9.  For full fitter routing resource 

utilization, please refer to appendix A. It also seems adding more ports or routers to the 

topology will increase wire and interconnect usage.    
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Table 4.7: Effect of Configuration on FPGA Utilization, Optimized for Area 

Configuration Area 

(LE’s) 

Memory Clock Speed 

(ns) 
M4k’s M512’s 

Single Router 530 0/183 6/384 8.25 

1x2 Mesh 986 0/183 10/384 9.19 

1x2 Mesh 

Extended 

1107 0/183 12/384 10.02 

2x2 Mesh 1847 0/183 22/384 10.25 

Table 4.8: Effect of Configuration on FPGA Utilization, Optimized for Speed 

Configuration Area 

(LE’s) 

Memory Clock Speed 

(ns) 
M4k’s M512’s 

Single Router 829 0/183 0/384 7.5 

1x2 Mesh 1486 0/183 0/384 8.97 

1x2 Mesh 

Extended 

1722 0/183 0/384 9.36 

2x2 Mesh 2926 0/183 0/384 9.05 
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Table 4.9: Effect of Configuration on Routing Resource Utilization 

Configuration Direct Links 

/163,680 

Global Clocks 

/16 

Local Routing 

Interconnects 

Single Router 167 4 405 

1x2 Mesh 295 6 687 

1x2 Mesh 

Extended 

323 7 777 

2x2 Mesh 486 12 1291 

4.3 Router Performance 

NoC Systems are still in the research phase and not many implementation results are 

available in the literature.  For some FPGA synthesized designs, testing speed is as easy 

as maximizing the clock speed.  An example of such design is a Microprocessor.  This 

unit retrieves commands and data, performs operations and stores answers.  There is only 

one logical path in the design, in which each of these phases is completed.  These things 

take place one after the other and the speed at which the application can finish depends on 

how fast each stage can be completed (clock speed).   

   A NoC router involves multiple ports receiving data, a central switch which can 

be configured to send data multiple ports for transmission.  Although clock speed plays a 

role in the overall latency, it is not the only factor.  The authors of Hermes [8], attempt to 

compare recent router designs using the calculated maximum (or best-case) throughput.  

This is when all input ports can request simultaneous connections with different output 

ports.  They use simple mathematics involving flit size, clock speed, and number of ports 

to determine latency results.   
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For our in-depth test of parameters, this was not acceptable.  For instance, when 

varying arbitration type, area will grow for more complex designs.  Although no 

difference would be seen in maximum throughput calculations, a more complex arbiter 

may schedule transactions to prevent blocking which could lead to increase performance.  

Therefore, our tests involved some form of experimentation.   

The recent increase in SoC system implementation has lead to research for new 

communication architectures.  Unfortunately, there is a lack of commonly accepted 

methodology for performance analysis amongst NoC design research for FPGAs.  Some 

of the best results have come for simple applications being run on both a standard bus and 

a NoC system.  For our research of a NoC router, implementing an application would 

involve use of IP cores and NoC interfaces.  It would seem much more time efficient to 

simply inject packets into a stand-alone router.   

To create a test, we once again looked to academic research.  Since these NoC 

router parameters have never been tested, no benchmarks could be found.  One idea is the 

use of a traffic generator to provide traffic patterns which allow comparison of router 

parameters as well as comparison among other routers.  Researchers are working on a 

model which generates and absorbs traffic that simulates the behaviour of a real  IP core 

[27].  This project is not yet finished.  They have also proposed the use of a theoretical 

model to calculate performance in [28].  Another research group at the Royal Institute of 

Technology is working on a simulator that uses synthetic workloads and models real 

applications [30].  This simulator is designed specifically for use in simulating a two 

dimensional mesh, and the tool itself is designed for testing their router only, Nostrum 

[29].  The   research group from the University of Rostock designed E-core [31].  E-core 

is a traffic source and/or sink which is modeled in VHDL.  We explored this option as a 

possible test, since we could use it as an IP core.  The problem was that this module had 

much different control signals then our router and the VHDL comments were all in 

German.  We also recognized that although we would be using another research groups’ 

work, we could not perform a comparison as they have no published results.   
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We found it would be easier and just as useful to create our own test benches.  

Benefits to this include creating traffic flow tailored to test each parameter, creating re-

active traffic scenarios, having proper control signals.  The following sections discuss the 

detailed descriptions of the performed simulations.   

4.4 Experimental Evaluation Framework 

For this research, it is important to define a framework that helps guide this research for 

exploring the design space for NoC routers.  As discussed earlier in Chapter 2, NoC 

router architectures have a vast design space.  Figure 4.1 illustrates the design space for 

NoC architectures, including choices for our router design.  The following sub-sections 

describe how each parameters simulation evaluation was set up.    

 

Figure 4.1: Proposed NoC Router Design Space  



50 

 

4.4.1 Arbitration 

We implemented a wrapper around our stand-alone router with different arbitration units 

embedded within.  This wrapper focused on sending to the local node to create arbitration 

dilemmas, although packets were sent and received by all ports.  In total 111 packets were 

sent out from various ports in groups from as small as 1 to as large as 10.   

4.4.2 Flit Size 

We implemented various wrappers around our stand-alone router with different datapath 

sizes (flit size).  This wrapper was based on the traffic in the arbiter type test, but with 

larger packet sizes.  Two tests were created for testing flit size.   

   In test 1, a total 544 packets were sent out from various ports in groups from as 

small as 16 to as large as 64.  The number of packets stayed the same as the flit size was 

increased.  Here the amount of data transferred was also increased with flit size.   

   In test 2, a total of 544 packets were sent out for a flit size of 8.  Each time the flit 

size doubled, the size of the packet groups sent out was cut in half.  Here, the amount of 

data transferred stayed the same as flit size was increased.  For example, if 544 8-bit 

packets were sent, only half that (272 packets) would be needed for 16-bit flits. 

4.4.3 Configuration 

We implemented various wrappers around different configurations of mesh size, number 

of local ports and mapping.  This wrapper was designed to model a 4 IP core application. 

The 3 basic configurations are shown in Figures 4.2, 4.3 and 4.4.  In total 201 packets 

were injected into the mesh through local ports.  IP core 1 acted as the central processing 

node sending a total of 160 packets to IPs 2 and 3.  IP cores 2 and 3 acted as custom logic 

blocks receiving 20 packets at a time and responding 5 packets to IP 4.  IP core 4 acted as 

an output display of some sort, receiving the resulting 5 packets from IPs 2 and 3 each 

stage in the application.  The application ended with IP core 4 sending a final packet to IP 

core 1. 
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Figure 4.2: Single Router Architecture 

 

 

Figure 4.3: 1X2 Mesh Architecture a) Map 1 b) Map 2 c) Map 2 extended 

a) 

         b) 

c) 
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Figure 4.4: 2X2 Mesh Architecture a) Map 1 b) Map 2 

4.5 Experimental Results and Analysis 

We use Mentor Graphics ModelSim [21], to model IP traffic and simulate activity.  All 

test benches wrappers have been implemented in VHDL.  Results of simulations focused 

on overall latency in terms of cycles.  Using synthesis results, latency was later obtained 

in terms of time.  Average throughput was also calculated using total number of 

packets/flits sent.   

b) 

a) 
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4.5.1 Arbitration 

Our first experiment was performed on Arbitration type.  Here, a 5-port, 8-bit router was 

synthesized many times swapping in different output controllers.  Each output controller 

contained a unique arbitration unit as described in Section 3.1.1.4.  Table 4.10 shows the 

simulation results for this experiment.  Combining with synthesis results, we can obtain 

throughput for a more accurate performance measure.  Figure 4.5 presents throughput 

results, well Figure 4.6 re-iterates area results for accurate analysis.  We can conclude that 

static fixed arbitration schemes are the least area expensive with very competitive latency.  

Static schemes can even out-perform dynamic schemes when optimized for the specific 

application.  Dynamic schemes can be useful when QoS is the first priority, mainly 

preventing starvation, and that the RRA or coin passing scheme has the best metrics.  

This promotes the use of a flexible component library.  

Table 4.10: Simulation Results for Arbitration 

Arbiter Type Latency (cycles) 

Fixed 1476 

Counter scheme 1 1452 

Counter Scheme 2 1341 

Counter Scheme 3 1347 

Coin passing (RRA) 1266 

Custom Fixed 1254 

Custom Fixed Each Port 1237 
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Figure 4.5: Effect of Arbiter Choice on Throughput 

 

Figure 4.6: Effect of Arbiter Type on FPGA Area Utilization 
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4.5.2 Flit Size 

Our next experiment was performed on the flit size or data path size.  Here, a 5-port, 8-bit 

router was synthesized 4 times increasing the size of the data path each time.  We were 

unable to synthesis designs larger do to pin restrictions among current FPGA 

architectures.  Table 4.11 shows the simulation results for this experiment which consists 

of 2 tests explained in Section 4.4.2.  For test 1, the number of packets stayed the same 

and therefore there was no effect on latency.  Here, the amount of data in each packet 

increased with flit size.  Test 2 differences were seen in latency as the amount of data was 

kept equal by lessening the number of packets sent.  Combining with synthesis results, we 

can obtain throughput for a more accurate performance measure.  Figures 4.7 and 4.8 

present throughput results, while Figure 4.9 re-iterates area results for accurate analysis.  

We conclude that larger flit sizes lead to more area expensive components, although 

throughput is dramatically increased.  With this parameter, we would recommend 

designers to make the flits size as large as possible subject to their area constraints.  

Designs optimized for speed are much too large with little to no gain in throughput. 

Table 4.11: Simulation Results for Flit Size 

Flit Size Latency (cycles) 

All flit sizes for test 1 4296 

8 4296 

16 2136 

32 1136 

64 556 
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Figure 4.7: Effect of Flit Size on Throughput for Test 1 

 

Figure 4.8: Effect of Flit Size on Throughput for Test 2 
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Figure 4.9: Effect on Flit Size on FPGA Area Utilization 

4.5.3 Configuration 

Our last experiment was performed on the configuration.  Here, multiple versions of our 

8-bit router were synthesized in many different mesh sizes by varying the number of local 

ports.  During simulation, different mappings were also tested.  Table 4.13 shows the 

simulation results for this experiment.  Combining with synthesis results, we can obtain 

throughput for a more accurate performance measure.  Figures 4.10 and 4.11 present 

throughput results, while Figure 4.9 re-iterates area results for accurate analysis.  We   

conclude that NoC network topologies with a smaller number of routers are less area 

intensive, and provide better throughput making them superior.  From the 1x2 extended 

configuration, we are able to see the real benefit to MLPR.  For our router with SAF flow 

control, connecting the main processing IP core to multiple routers has an incredible 

impact.  Interesting future work could involve testing this theory against other flow 

control protocols.  With the flit size kept low, optimizations involving speed could turn 

out beneficial.  Different module mapping shows how designers must not overlook this 

final stage in the design process.  
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Table 4.12: Simulation Results for Configuration 

Configuration Latency (cycles) 

Single Router 3837 

1x2 Mesh Map 1 4112 

1x2 Mesh Map 2 4017 

2x2 Mesh Map 1 4210 

2x2 Mesh Map 2 4065 

1x2 Mesh Extended 2126 

 

Figure 4.10: Effect of Configuration on Throughput 
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Figure 4.11: Effect of Configuration on FPGA Area Utilization 

4.6 Summary 

In this chapter, we briefly present the design methodology for NoC implementation. This 

is followed by a detailed description of the synthesis results for the proposed router under 

various parameter tests.  Next, we discuss the details of the difficulties in evaluating NoC 

router performance.  The experimental framework for all experiments is discussed before 

presenting simulation results.  Finally, synthesis and simulation results are then analyzed 

to provide insight on parameter selection to future designers of NoC-based systems.  We 

make case for the use of fixed arbitration, especially on design with serious area 

restrictions.  We show the significance flit size plays on both area and throughput, making 

recommendations for routers with larger channel widths.  We conclude our analysis with 

the importance of optimizing the system through use of multi-local ports, especially for 

multiple router connections.    

   The next chapter concludes this thesis by providing a summary of the research 

contributions and a discussion of future work. 
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Chapter 5 

Conclusions and Future Work 

5. Conclusions and Future Work 

 

The design of computer hardware is entering a new phase.  Typically, designers focused 

on the computation aspect and simply used ad hoc mixture of direct links and buses as 

communication architecture.  As the number of transistors that can be placed on a single 

chip increases, designers are forced to concentrate on communication aspect as well.  It is 

evident that a new design methodology is required, with the adoption of NoC being the 

prime candidate for future SoC systems.  

   NoCs are seen as a solution to provide concurrent transactions among IP cores, 

leading to higher performance at reasonable area costs.  NoCs re-useable architecture 

allows designers to once again concentrate on the computation aspect.  Although future 

applications of NoC are still unknown, their flexibility provides vast potential.  Recent 

practical evaluations of NoCs versus standard communication architectures and 

significant amounts of theoretical work, points to the need for future research in this area. 

Importance must be placed on the evaluation of standard parameters to make proper 

design choices.   

   This thesis explored the design of an NoC router for FPGA implementation.  We 

compared metrics such as area utilization, routing resource utilization, and speed for 

various router parameters.  Using literature review, we constrain certain parameters to 

prune a vast design space, to make our research feasible.  In Chapter 3, the 

implementation of NoC protocols and design of router components was discussed in 
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detail.  In Chapter 4, experimental evaluation results for different values of router 

parameters were presented and analyzed.   

5.1 Summary of Research Contributions 

The following contributions were made over the course of this research: 

1. A preliminary case study was conducted in which the feasibility of designing and 

testing an NoC router for FPGA implementation was investigated. 

2. We succeeded in creating a NoC router platform in VHDL with flexible 

parameters such as number of local ports, channel size, and arbitration type.  The 

simple mesh topology can significantly reduce network complexity while still 

providing reasonable area utilization and reduced data latency. The 

implementation of a packet-switched protocol allows for parameter flexibility, low 

complexity of network control, high degree of scalability.   

3. Multiple experiments were conducted that evaluated and compared the area 

utilization and throughput of a NoC-based system using different NoC router 

parameters.  The results will be useful to future designers of NoC-based systems 

to help optimize NoC router design. 

5.2 Future Work 

Through the progression of this research, many interesting topics continue to surface 

during the development of the NoC router.  Because of time constraints, these topics are 

out of the scope of this research but they can provide an excellent opportunity for future 

work to further the design space exploration of NoC.  Follow-up research can use the 

router components that were developed, for implementing and evaluating different NoC 

architectures.   

   First, our design of output buffers to prevent HOL blocking, slowed the system.  A 

possible path for bypassing of the output buffers could be created for cases when the next 

router or IP core is ready and waiting.   

   Second, many parameters are yet to be thoroughly explored.  As the component 

area usage indicated, buffers occupy the largest area in NoC routers.  Different flow 
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control modes, such as VCT and WH should be evaluated.  Although XY routing 

provides low complexity, it makes no attempt to avoid blocked or busy routers.  New 

routing algorithms should be explored, as there is a current lack of research results on this 

topic.  Also, the parameters we explored were subject to specific communication 

protocols.  Further research is needed in exploring these parameters with other 

communication protocols. 

   Third, in order to produce more accurate results, the parameter exploration 

experiments must be done using real world benchmarks/applications.   

   Fourth, a CAD tool could be developed to synthesize different variants of the 

proposed NoC router, based on specific values of parameters. 

   Finally, increased theoretical research in NoC systems has shed light on their   

potential.  These future router designs need standardized methods of evaluation to allow 

comparisons between existing router designs.  This leads to the need for commonly 

accepted benchmark applications or traffic generators to allow researchers to spend more 

time on the design process and less time preparing experiments. 

   In our lab, research is being done on a network interface for our router to connect 

to a standard IP core running protocols such as Wishbone.  This will allow for practical 

testing of applications to further analyze the NoC router parameters.   

.   
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Appendix A 

Detailed Synthesis Results  

 

 

 

These are the synthesis results from our 5-port, 8-bit router using fixed arbitration.  It 

contains the closest comparable configuration to related work.  Results are obtained from 

Altera Quartus II CAD tool.  This is a copy of the fitter’s resource usage chart.   

 

Total logic elements 598 / 41,250 ( 1 % ) 

    -- Combinational with no register 300 

    -- Register only 40 

    -- Combinational with a register 258 

  

Logic element usage by number of LUT inputs  

    -- 4 input functions 307 

    -- 3 input functions 147 

    -- 2 input functions 93 

    -- 1 input functions 31 

    -- 0 input functions 20 

  

Logic elements by mode  

    -- normal mode 574 

    -- arithmetic mode 24 

    -- qfbk mode 8 
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    -- register cascade mode 0 

    -- synchronous clear/load mode 51 

    -- asynchronous clear/load mode 0 

  

Total LABs 91 / 4,125 ( 2 % ) 

Logic elements in carry chains 32 

User inserted logic elements  0 

Virtual pins 0 

I/O pins 102 / 831 ( 12 % ) 

    -- Clock pins  7 / 20 ( 35 % ) 

Global signals  4 

M512s 8 / 384 ( 2 % ) 

M4Ks 0 / 183 ( 0 % ) 

M-RAMs 0 / 4 ( 0 % ) 

Total memory bits 320 / 3,423,744 ( < 1 % ) 

Total RAM block bits 4,608 / 3,423,744 ( < 1 % ) 

DSP block 9-bit elements 0 / 112 ( 0 % ) 

Global clocks 4 / 16 ( 25 % ) 

Regional clocks 0 / 16 ( 0 % ) 

Fast regional clocks 0 / 32 ( 0 % ) 

SERDES transmitters 0 / 90 ( 0 % ) 

SERDES receivers 0 / 90 ( 0 % ) 

Maximum fan-out node CLK 

Maximum fan-out 306 

Total fan-out 2488 

Average fan-out 3.51 
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These are the synthesis results for the configuration test showing an in-depth look at 

routing resource information for each configuration.  They are presented in order of single 

router, 1x2 mesh, 1x2 extended mesh, and 2x2 mesh.  Once again, results are obtained 

from Altera Quartus II CAD tool.  This is a copy of the fitter’s routing resource chart. 

 

Interconnect Resource Type / Usage for Single Router 

C16 interconnects 148 / 7,039 ( 2 % ) 

C4 interconnects 338 / 109,820 ( < 1 % ) 

C8 interconnects 98 / 24,220 ( < 1 % ) 

DIFFIOCLKs 0 / 32 ( 0 % ) 

DQS bus muxes 0 / 76 ( 0 % ) 

DQS-16 I/O buses 0 / 8 ( 0 % ) 

DQS-32 I/O buses 0 / 4 ( 0 % ) 

DQS-8 I/O buses 0 / 20 ( 0 % ) 

Direct links 167 / 163,680 ( < 1 % ) 

Fast regional clocks 0 / 32 ( 0 % ) 

Global clocks 4 / 16 ( 25 % ) 

I/O buses 8 / 404 ( 1 % ) 

LUT chains 30 / 37,125 ( < 1 % ) 

Local routing interconnects 405 / 41,250 ( < 1 % ) 

R24 interconnects 42 / 7,259 ( < 1 % ) 

R4 interconnects 419 / 222,840 ( < 1 % ) 

R8 interconnects 99 / 36,138 ( < 1 % ) 

Regional clocks 0 / 16 ( 0 % ) 
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Interconnect Resource Type / Usage for 1x2 Mesh 

C16 interconnects 96 / 7,039 ( 1 % ) 

C4 interconnects 521 / 109,820 ( < 1 % ) 

C8 interconnects 182 / 24,220 ( < 1 % ) 

DIFFIOCLKs 0 / 32 ( 0 % ) 

DQS bus muxes 0 / 76 ( 0 % ) 

DQS-16 I/O buses 0 / 8 ( 0 % ) 

DQS-32 I/O buses 0 / 4 ( 0 % ) 

DQS-8 I/O buses 0 / 20 ( 0 % ) 

Direct links 295 / 163,680 ( < 1 % ) 

Fast regional clocks 0 / 32 ( 0 % ) 

Global clocks 6 / 16 ( 37 % ) 

I/O buses 1 / 404 ( < 1 % ) 

LUT chains 37 / 37,125 ( < 1 % ) 

Local routing interconnects 687 / 41,250 ( 1 % ) 

R24 interconnects 32 / 7,259 ( < 1 % ) 

R4 interconnects 515 / 222,840 ( < 1 % ) 

R8 interconnects 108 / 36,138 ( < 1 % ) 

Regional clocks 0 / 16 ( 0 % ) 

 

 

 

 

 

 

 

 

 

 

 



67 

 

Interconnect Resource Type / Usage for 1x2 extended Mesh 

C16 interconnects 127 / 7,039 ( 1 % ) 

C4 interconnects 600 / 109,820 ( < 1 % ) 

C8 interconnects 151 / 24,220 ( < 1 % ) 

DIFFIOCLKs 0 / 32 ( 0 % ) 

DQS bus muxes 0 / 76 ( 0 % ) 

DQS-16 I/O buses 0 / 8 ( 0 % ) 

DQS-32 I/O buses 0 / 4 ( 0 % ) 

DQS-8 I/O buses 0 / 20 ( 0 % ) 

Direct links 323 / 163,680 ( < 1 % ) 

Fast regional clocks 0 / 32 ( 0 % ) 

Global clocks 7 / 16 ( 43 % ) 

I/O buses 8 / 404 ( 1 % ) 

LUT chains 47 / 37,125 ( < 1 % ) 

Local routing interconnects 777 / 41,250 ( 1 % ) 

R24 interconnects 47 / 7,259 ( < 1 % ) 

R4 interconnects 658 / 222,840 ( < 1 % ) 

R8 interconnects 146 / 36,138 ( < 1 % ) 

Regional clocks 0 / 16 ( 0 % ) 
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Interconnect Resource Type / Usage for 2x2 Mesh 

C16 interconnects 113 / 7,039 ( 1 % ) 

C4 interconnects 1,067 / 109,820 ( < 1 % ) 

C8 interconnects 334 / 24,220 ( 1 % ) 

DIFFIOCLKs 0 / 32 ( 0 % ) 

DQS bus muxes 0 / 76 ( 0 % ) 

DQS-16 I/O buses 0 / 8 ( 0 % ) 

DQS-32 I/O buses 0 / 4 ( 0 % ) 

DQS-8 I/O buses 0 / 20 ( 0 % ) 

Direct links 486 / 163,680 ( < 1 % ) 

Fast regional clocks 0 / 32 ( 0 % ) 

Global clocks 12 / 16 ( 75 % ) 

I/O buses 1 / 404 ( < 1 % ) 

LUT chains 69 / 37,125 ( < 1 % ) 

Local routing interconnects 1,291 / 41,250 ( 3 % ) 

R24 interconnects 40 / 7,259 ( < 1 % ) 

R4 interconnects 1,022 / 222,840 ( < 1 % ) 

R8 interconnects 196 / 36,138 ( < 1 % ) 

Regional clocks 0 / 16 ( 0 % ) 
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