
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

Fall 1-31-2010

A FPGA/DSP design for real-time fracture detection using low A FPGA/DSP design for real-time fracture detection using low

transient pulse transient pulse

Akash Mathur
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

 Part of the Electrical and Electronics Commons

Recommended Citation Recommended Citation
Mathur, Akash, "A FPGA/DSP design for real-time fracture detection using low transient pulse" (2010).
Theses. 49.
https://digitalcommons.njit.edu/theses/49

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=digitalcommons.njit.edu%2Ftheses%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/49?utm_source=digitalcommons.njit.edu%2Ftheses%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

A FPGA/DSP DESIGN FOR REAL-TIME FRACTURE DETECTION
USING LOW TRANSIENT PULSE

by
Akash Mathur

This work presents the hardware and software architecture for the detection of fractures

and edges in materials. While the detection method is based on the novel concept of

Low Transient Pulse (LTP), the overall system implementation is based on two digital

microelectronics technologies widely used for signal processing: Digital Signal

Processor (DSP) and Field Programmable Gate Array (FPGA). Under the proposed

architecture, the DSP carries out the analysis of the received baseband signal at a lower

rate and hence can be used for large number of signal channels. The FPGA's master

clock runs at a higher frequency (62.5MHz) for the generation of LTP signal and to

demodulate the passband ultrasonic signals sampled at 1MHz which interrupts the DSP at

every 1 [Is. This research elaborates on designing a Quadrature Amplitude Modulator -

demodulator (QAM) on the FPGA for the received signal from the ultrasound and edge

detection on the DSP processor to detect the presence of edges/fractures on a test

Sawbone plate. In this work, the LTP technology is applied to determine the location of

the Sawbone plate edges based on the reflected signals to the receivers. This signal is

then passed through a QAM to get the maxima (peaks) at the received signal to study the

parameters in the DSP. This work successfully demonstrates the feasibility of modular

programming approach across the two platforms. The dual time scale platform readily

accommodates higher temporal resolution needed for the generation of Low Transient

Pulses and the processing of real time baseband signals on the DSP for various test

conditions.

A FPGA/DSP DESIGN FOR REAL-TIME FRACTURE DETECTION
USING LOW TRANSIENT PULSE

by
Akash Mathur

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Electrical Engineering

Department of Electrical and Computer Engineering

January 2010

APPROVAL PAGE
A FPGA/DSP DESIGN FOR REAL-TIME FRACTURE DETECTION

USING LOW TRANSIENT PULSE

Akash Mathur

/ 1(, (201

Dr. Timothy Chang, Deis Advisor -r-	Date
Interim Chairperson, Professor of Electrical and Computer Engineering, NJIT

Dr. Durgamadhab Misra, Committee Member 	 Date
Graduate Advisor, Professor of Electrical and Computer Engineering, NJIT

Dr. Edwin Hou, Committee Member	 Date
Associate Chair for Undergraduate Studies, Associate Professor of Electrical and
Computer Engineering, NJIT

BIOGRAPHICAL SKETCH

Author:	 Akash Mathur

Degree:	 Master of Science

Date:	 January 2010

Undergraduate and Graduate Education:

• Master of Science in Electrical Engineering,
New Jersey Institute of Technology, Newark, NJ, 2010

• Bachelor of Technology in Electronics and Communications Engineering,
Kurukshetra University, Haryana, India, 2006

iv

"100 yrs from now no one will ever remember what clothes you wore, which car you

	

drove, which perfume you put, which country you lived 	
But what will be remembered from this thesis is that blessed are

those whose parents are like mine and the love I have for them

	

is not something so easy to define 	

I dedicate my thesis to my parents

Akash

ACKNOWLEDGMENT

I am heartily thankful to my thesis advisor, Dr. Timothy Chang, whose encouragement,

guidance, lot of novel ideas and support throughout my research and in writing my thesis

is unquestionable. His extreme patience, forgiveness, inspiration, enthusiasm, and

immense knowledge are the primary reasons for the success of my research.

Alongside my adviser I would like to thank my thesis committee, Dr.

Durgamadhab (Durga) Misra and Dr. Edwin Hou, for their support and encouragement. I

am really honored and thankful to them for being in the committee for my defense.

I am indebted to many of my colleagues to support me. Dr. Biao Cheng has

helped me selflessly throughout the thesis and his contribution for my completion is

undeniable. Ashish Ratnakar and Lan Yu have supported and helped me in more than one

ways.

Lastly but most importantly, I will like to thank my parents and my sister for

supporting me in which ever way they could and because of whom I am able to complete

my thesis and hence achieve the degree of Master of Science.

vi

TABLE OF CONTENTS

Chapter	 Page

1 INTRODUCTION 	 1

1.1 Overview 	 1

1.2 Hardware Architecture 	 4

1.3 DSP Starter Kit 	 5

1.4 Daughter Board 	 5

1.5 Low Transient Pulse 	 7

1.6 Benefits 	 8

1.6.1 TMS320C6416T 	 8

1.6.2 SPARTAN lIE (XC2S300E) 	 11

1.7 RTDX (Real Time Data Exchange) 	 11

2 TMS32C6416: TI's DSP PROCESSOR 	 13

2.1 Digital Signal Processor 	 13

2.2 Memory Map 	 14

2.3 Interrupts 	 15

2.4 Timers 	 17

2.5 Software Programming 	 19

2.5.1 Project File (.pjt) 	 20

2.5.2 Linker File 	 20

2.5.2.1 Memory 	 21

2.5.2.2 Section 	 21

vii

TABLE OF CONTENTS
(Continued)

Chapter	 Page

2.5.3 FPGA (.out) File 	 22

2.5.4 main.c Program 	 22

2.5.4.1 Initialization 	 22

2.5.4.1.1 ADC(THS12O6) 	 22

2.5.4.1.2 Flag Setup 	 24

2.5.4.1.3 Miscellaneous 	 25

2.5.4.2 Loading the FPGA 	 26

2.5.4.3 Free Run 	 27

2.5.4.3.1 Moving Average Filter 	 28

2.5.4.3.2 Edge Detection 	 29

3 SPARTAN 2E:FPGA 	 31

3.1 Hardware 	 31

3.2 System Design 	 32

3.2.1 Programming 	 32

3.2.3 Simulation Analysis 	 33

3.3 Programming FPGA 	 34

3.3.1 Quadrature Amplitude Modulator-demodulator(QAM) 	 36

3.3.1.1 Since and Cosine Generator 	 36

3.3.1.1.1 Simulation Results 	 37

3.3.1.1.2 Register Transistor Logic 	 39

viii

TABLE OF CONTENTS
(Continued)

Chapter	 Page

3.3.1.1.3 Synthesized Output 	 4O

3.3.1.2 Infinite Impulse Response (IIR) Filter 	 4O

3.3.1.2.1 Simulation Results and Design 	 41

3.3.1.2.2 Register Transistor Logic 	 44

3.3.1.3 Square Root 	 45

3.3.1.3.1 Simulation Results 	 47

3.3.1.3.2 Register Transistor Logic 	 47

	

3.3.1.4 Full QAM 49

3.3.1.5 Frequency Spectrum 	 49

3.3.2 Low Transient Pulse 	 51

3.3.2.1 Register Transistor Logic 	 51

3.3.3 Clock Divider 	 52

3.3.3.1 Register Transistor Logic 	 52

3.3.4 Interface (FPGA- DSP) 	 53

3.3.4.1 Register Transistor Logic: Decoder 	 54

3.3.5 ADC Module 	 57

3.3.5.1 Register Transistor Logic 	 57

3.3.6 UnsignedtoSigned and SignedtoUnsigned Converters Module 	 58

3.3.7 Complete FPGA System Design 	 58

4 ALGORITHM AND RESULTS 	 6O

ix

TABLE OF CONTENTS
(Continued)

Chapter	 Page

4.1 Algorithm 	 6O

4.2 Experimental Verifications 	 61

4.2.1 Symmetric Placement 	 62

42.2 Asymmetric Placement 	 - 	 63

5 CONCLUSION 	 65

5.1 Conclusion 	 65

	

5.2 Future Work 66

APPENDEX A RESOLUTION 	 67

	

APPENDEX B DSP MEMORY 69

APPENDEX C SAMPLING TIME 	 71

REFERENCES 	 74

LIST OF TABLES

Table	 Page

1.1	 Comparison of various DSP processors in the market 	 9

2.1	 Variables used in the FPGA program 	 26

3.1	 System Information 	 31

3.2	 Available IOs with various Spartan 2E packages 	 31

3.3	 Filter Parameters defined in Matlab and the corresponding poles and zeros 	 41

3.4 Memory map of the EMIF for the interface between DSP and FPGA 	 54

4.1(a) Estimation of longitudinal parameter of the plate, symmetric placement 	 63

4.1(b) Passband maxima detection: summary of plate position errors 	 63

4.1(c) Envelope maxima detection: summary of plate position errors 	 63

4.2(a) Estimation of longitudinal parameter of the plate, asymmetric placement 	 64

4.2(b) Passband maxima detection: summary of plate position errors 	 64

4.2(c) Envelope maxima detection: summary of plate position errors 	 64

xi

LIST OF FIGURES

Figure	 Page

1.1	 Experimental ultrasonic crack detection system 	 ...	 3

1.2	 Block diagram to show the interface between the DSP and FPGA 	 4

1.3	 Block diagram for the on board components and their interfaces on the DSK 	 5

1.4	 Low Transient Pulse 	 7

1.5	 Millions instruction per second for various processors 	 1O

2.1 	 Architectural overview of TMS32OC6416 CPU 	 13

2.2	 Memory map of C6416T DSP Starter Kit (DSK) 	 15

2.3	 THS 12O6 configuration flow 	 23

2.4(a) Envelope signal before filtering 	 29

2.4(b) Envelope signal after filtering 	 29

2.5	 Snapshot of the value displayed in the Watch window of the CCS 	 3O

3.1(a) Matlab/Simulink model for the QAM system which is implemented on the
FPGA 	 33

3.1(b) Matlab/Simulink simulation results for the QAM system 	 34

3.2	 Design flow of FPGA 	 35

3.3	 Schematic displaying the design of the sine and cosine generator 	 36

3.4	 Matlab simulation result for the generated data for the sine wave generator 	 37

3.5(a) Simulation results for the sine and cosine generator for i= 1 to i=11 	 38

3.5(b) Simulation results for the sine and cosine generator for i=11 to i= 21 	 38

3.6	 RTL logic for the sine and cosine generator 	 39

xii

LIST OF FIGURES
(Continued)

Figure	 Page

3.7	 Sine generator output observed on the oscilloscope 	 4O

3.8	 Magnitude response of the filter with parameters from Table 3.3 	 41

3.9a Direct- II form for the implementation of an IIR filter 	 42

3.9b Direct-II form re-arrangsed for its implemented over the FPGA 	 43

3.1O RTL for the IIR Filter 	 45

3.11 Restoring 2n-bit square rooter, combinational implementation 	 46

3.12 Simulation result for the square rooter 	 47

3.13(a)RTL for the Square Root consisting on onemod and subtractor modules 	 48

3.13(b)RTL for the sub block onemod consisting modules 	 48

3.13(c) RTL for the sub-sub-block (A) consisting a 2's complement, full adder,
multiplexer and an inverter modules 	 48

3.14 Schematic of the QAM. Different sub-blocks port mapped to form one whole
system 	 49

3.15 Received signal and its FFT 	 5O

3.16 Envelope signal and its FFT 	 51

3.17 RTL for the LTP 	 52

3.18 RTL for the Clock Divider 	 53

3.19 RTL decoder schematic for the interface between the FPGA and the DSP 	 55

3.2O RTL schematic for the read enable for the ADC initialization 	 56

3.21 RTL logic for the write enable for the DAC1 initialization 	 57

3.22 RTL logic for the write enable for the DAC2 initialization 	 57

LIST OF FIGURES
(Continued)

Figure Page

3.23 RTL schematic for the retrieval of sampled data from the ADC 	 58

3.24 Top level schematic of the system on the FPGA 	 59

4.1 Sawbone plate with its dimensions with the edges 	 62

4.2 Received signal and its envelope signal observed on the oscilloscope with
symmetric placement of the transducers 	 63

4.3 Received signal and its envelope signal observed on the oscilloscope with the
asymmetric placement of transducers 	 64

C.1 Output on the oscilloscope showing the step size of 3.1O tis 	 71

C.2 Output on the oscilloscope showing the step size of 2.50 is 	 72

C.3 Output on the oscilloscope showing the step size of 1.66 ps 	 72

C.4 Output on the oscilloscope showing error for any sampling period above O.5ps
(2MHz) 	 73

xiv

CHAPTER 1

INTRODUCTION

1.1 	 Overview

Ultrasound has been used widely used in applications for the detection and location of the

cracks and fracture on various materials i.e. bone, composite structures, and metals

etc.[2-4]. Other detection methods are based on the monitoring of the nonlinear elastic

material behavior of damaged material [1], guided waveguides [2], magnetic leakage flux

[2] and laser based techniques [3] . This thesis applies the low transient pulse method [4]

for the determination of the crack in the Sawbone which is a synthetic composite material

designed to emulate the acoustic properties of the cortical bone.

The recent generation of 3-D X-ray bone densitometry and peripheral quantitative

CT (pQCT) has made major advances. However, they are expensive and emit ionizing

radiation. Therefore it is of significant interest to explore quantitative ultrasound (QUS)

because ultrasound is also highly sensitive to elastic properties and defects of bone

materials. In addition, ultrasound is safe and easy to deploy so that ultrasonic equipment

can be made portable and relatively inexpensive [2]. Ultrasonic methods have also been

used for monitoring bone fracture healing and creep in structural materials [5-8].

Although some researchers have employed ultrasonography and power Doppler

ultrasonography to assess the appearance and neo-vascularization of the callus tissue

during healing, the majority of the studies have utilized quantitative ultrasound

techniques [5]. Ultrasonic monitoring of bone healing is discussed in detail in [5]. Many

1

2

methods have been employed for the detection of edge cracks like the Frobenius method

to enable possible detection of location of the crack based on the measurement of natural

frequencies [9] ,the wavelet theory, eddy current and many more for various surfaces [1O-

12] .

There are various benefits of using ultrasound for Non Destruction Testing

(NDT). This work addresses the use of the low transient acoustic pulses to enhance

system resolution and to simplify hardware requirements. The Low Transient Pulse

(LTP), as opposed to the conventional acoustic pulse, has shorter pulse duration and thus

results in less phase interference and higher performance. To produce low transient

acoustic pulses, it is often necessary to have a prescribed signal to drive the transmitter

[4]. Nondestructive evaluation (NDE) is a term that is often used interchangeably with

NDT [13]. However, technically, NDE is used to describe measurements that are more

quantitative in nature. For example, an NDE method would not only locate a defect, but it

would also be used to measure something about that defect such as its size, shape, and

orientation. NDE may be used to determine material properties, such as fracture

toughness, formability, and other physical characteristics. In ultrasonic testing, high-

frequency sound waves are transmitted into a material to detect imperfections or to locate

changes in material properties [13].

Field-Programmable Gate Arrays/Digital Signal Processor (FPGA/DSP)

environment has been used so far for various designs like Predictive Current Control of

Voltage-Source Inverters, AC-voltage regulation, neural network controller so on and so

forth [14-16]. The purpose of using this setup varies, from unloading the DSP processor

by performing certain part in the hardware FPGA [14] to that design which cannot be

A mplified Received
Signal

DSK 6416

3

reached using a digital signal processor (DSP) [16].Also while some are used for cost

effective implementation [15] others are mainly used for performing high frequency

computation on FPGA and data processing on DSP [17]. In other words resources

(FPGA/DSP) partitioning of the architecture is based upon the functionality and speed

requirements [18].

FPGAs have become an extremely popular implementation technology for custom

hardware because they offer a combination of low cost and very fast turnaround, but the

use of FPGAs is hampered by the very large overhead of FPGA-based architectures [19].

This is the reason we are using the two technologies for their best use in our work. While

we will perform the high frequency (62.5 MHz) computing with FPGA all lower

frequency (>1MHz) data extensive processing will be done within the DSP. The

flexibility of FPGAs provides multiprocessor and open architecture interface [2O]. This

flexibility helps us to interface the DSP in our system with the eternal components like

the ADC (Analog to Digital Converter) and the DAC (Digital to Analog Converter)

through its EMIF bus for high speed data communication between them.

Figure 1.1 Experimental ultrasonic crack detection system

4

1.2 Hardware Architecture

The experimental test system shown in Figure 1.1 is implemented with DSP and FPGA

where, the DSP carries out the analysis of the received signal at 1MHz while the FPGA

operates at 62.5MHz for the generation of LTP signal and to retrieve the envelope of the

received signal. The software for DSP is written in C while that for FPGA is written in

VHDL. The FPGA executes front end processing tasks at a higher rate while the DSP

analyzes data of the received baseband signal from the FPGA at a much lower rate.

As shown in Figure 1.1, the experimental hardware consists of Spectrum DSP's

(TMS32OC6416) DSP Starter Kit (DSK), Dalanco Spry's daughter board (FPGA,

Spartan-I1E), Physical Acoustic Corporation's wide bandwidth AE amplifier and a set of

ultrasonic transducer. Figure 1.2 shows the interface structure of the DSK and the FPGA

and the task allocation among the two processors. The test plate is shown in lower right

hand side of Figure.1.1 where a set of two Physical Acoustic 15O KHz ultrasonic

transducers are mounted on the test material.

Decoder 'al 	 . ./ 	 i

stagy 	 —st—
on

al
rr:1
OI

Clock I
Divider)
— .--.1

1 \ -[

	62.5MHz Clock

I '/

V I
ADC 12-bits Un-signed bits I DAC 1

THSI 206 I
I 	 QAm 	 [12 	_ BUS 12 Bits 	 N

✓

LTP
AD0765--- 1

1 	 hZ Clock 4 Envelope
...J\ Signal DAC2N.

FPGA (Spartan 11E)

Daughter Board 	 1 MHz

Figure 1.2 Block diagram to show the interface between the DSP and FPGA

Voltage
Reg

j5P:

C
AlC23
odec

40 	 ,,,, _1 4V

,, 21 ____________
JTAG

Embedded
JTAG

to
Ext.

JTAG

2
Conlig
SW3

Peripheral Exp'

0123 0123

2

5

1.3 DSP Starter Kit

The C6416 DSK is a low-cost standalone development platform that serves as a hardware

reference design for the TMS32OC6416 DSP. Figure 1.3 shows the schematic diagram of

the DSK board with the on board components and interfaces. The C6416 DSP device

operates at 1GHz clock rate, with information processing rate of about 88OO M1PS

(nearly 9 billion instructions per second), three flexible multi-channel buffered serial

ports and the internal DMA engine which can provide over 2Gbps of I/O bandwidth with

64 independent channels, a high performance fixed point processor [21]. The sampling

rates of the ADC and DAC codec converters and the hardware interrupt are functions of

the timer frequency which is software controlled. The A1C23 is designed for

conventional audio processing and is not used in this experiment.

Figure 1.3 Block diagram for the on board components and their interfaces on the DSK
Source: TMS320C6416 DSK Technical Reference, 505945-0001 Rev. A April 2003

1.4 Daughter Board

Drive signal synthesis, receiver signal demodulation and interfaces between the DSK,

ADC, DAC, etc. are carried out on the Dalanco Spry daughter board. The main

components on the daughter board include: Spartan-I1E FPGA, THS12O6 ADC and

ADC9765 DAC. The THS 12O6 is a 12-bit ADC which runs at 1MHz (clock from the

6

FPGA), has four channels with signal-to-noise ratio of 68 db [22]. The AD9765 is a dual-

port, high speed, 2-channel, 12-bit CMOS DAC [23]. It integrates two high quality, 12-

bit TxDAC+ cores, a voltage reference, digital interface circuitry into a small 48-lead

LQFP and supports update rates up to 125 MSPS [23]. For the current system, AD9765 is

running on two clocks viz. 62.5 MHz and 1MHz for two different channels. A VHDL and

schematic mixed design entry is used to generated the configuration file for the FPGA.

VHDL is a hardware description language for very high speed integrated circuits; it is

used to describe electronic systems without any dependency on implementation [24].

The Spartan-HE FPGA itself has 6,912 logical cells and 16 bits/LUT distributed

RAM with a speed grade of -6.They are customized by loading configuration data into

internal static memory cells [25, 26]. Unlimited reprogramming cycles are possible with

this approach [25, 26]. Stored values in these cells determine logic functions and

interconnections implemented in the FPGA [25, 26]. Configuration data can be read from

an external serial PROM (master serial mode), or written into the FPGA in slave serial,

slave parallel, or boundary scan modes [25, 26]. The configuration of the Spartan HE

FPGA determines the interaction of the ADC, DAC, and digital I/O with the local bus.

The current experimental system utilizes 1,581 slices out of 3O72 with a total gate count

of 3O,892 [25, 26]. Other benefits of the Daughter Board include:

1) Higher sampling rate: The C6416 DSK has an onboard CODEC (TLV32OA1C23) that

has predefined sampling rates. This CODEC has the maximum sampling frequency of

96KHz [22], which is significantly less than the required sampling frequency of 1MHz

for the ADC and 62.5MHz required for the DAC (Low Transient Pulse Generation) . The

Input Pulse Impulse Train Transducer Drive Signal

7

Daughter Board's ADC and DAC operate in the MHz range and are adequate for this

application.

2) No DC blocking: The C6416 DSK CODEC blocks DC and hence cannot be used for

motion control. The Daughter Board's analog interface, on the other hand, operates from

DC to 125MHz.

1.5 Low Transient Pulse

The Low transient pulse (LTP) technology is an innovative technique [4] to

produce a short duration and compact acoustic pulse by means of pre-shaping the

excitation signal. It has been experimentally verified that the LTP method produces a

better measurement resolution and simpler hardware implementation due to less phase

interference and a less complex algorithm. No modulation circuits or regenerative loops

are necessary to synthesize the drive signal. Within the quantitative ultrasonography

context, the LTP method improves detection resolution by minimizing aliasing of signals

transmitted from soft and hard tissues. This improvement is achieved by convolving the

input pulse with the impulse sequence to generate a necessary drive signal. Figure 1.4

below shows the pulse-impulse convolution scheme.

Amplitude 	 Amplitude 	 Amplitude

i 	 i
PW6.4 	 P.-

.
A 	 A + A,

*

i

A, 	 -I.*4
I 	 t

I1
1

A,
 L...t

, 	 t2 I 	 11 	 12 	 t3 	 t4

Figure 1.4 Low Transient Pulses. Detailed descriptions of the LTP parameters are given
in [4].
Source: B. Cheng and T. Chang, "Enhancing ultrasonic imaging with low transient pulse shaping,"
Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 54, pp. 627-635, 2007.

8

A typical ultrasonic transducer can be approximated by a second order underdamped

transfer function as:

G(s)—
as

5 2 +2Cuon s+w2n

The design parameters for a two-impulse low transient pulse shaper can be summarized
as follows [4]:

1
A, — 	 t1=0i±m np

mn

	

A 	 P

	

2 	 /in

(n

	TUC	 117C
Mn = e V1-2t 2 — 	 ,n=1,3,5,...

COn 	-	 Wd

where A l and A 2 are the impulse amplitudes that occur at time t 1 and t 2 , respectively

cir \n

while M np = e the variable n determines the oscillation cycles of the LTP acoustic

signal.

1.6	 Benefits

1.6.1 TMS320C6416T

• C6416 is the world's first 9Onm DSP running at 1GHz. Moving transistors closer

together has increased the speed of the operation, as well as it allows a higher density of

on-chip memory to increase application efficiency [27]. This 9O nm process technology

has eased integration of system-on-a-chip architectures by streamlining communication

between the DSP, memory, peripherals, R1SC processors and analog components [27].

• There are three main vendors of single DSP core processor chips: Analog

Devices, Freescale, and Texas Instruments. Table 1.1 [28]compares these DSPs.

9

Table 1.1 Comparison of various DSP processors in market
Chip Family Price Data Clock Primary Primary
(Development Boards) Range Format speed/core Competitors Application

Telecom,
Infrastructure

ADI Black Fin (ADSP- 32bit C '55x and ,automotive
BF518F EZ-BOARD) $325 fixed 4OO MHz C'64x and video
AD1 Tiger Shark (Military
ADZS-TS2O1S- 32bit C'67x and Imaging and
EZL1TE) $1,OOO float 5OO MHz AD1Sharc Infrastructure

C'67x and
ADI Sharc (ADSP- 32bit AD1Tiger Audio
21371 EZ-K1T Lite) $495 float 266 MHz Shark Applications

Motor

C '64 and
Control,
Digital

Free Scale '5685x 24Bit T1 Power
(EVM1OO) $149 fixed 12O MHz C28x/24x supply

Control
(Automobile,
Industrial)

T1 C28x/24x (eZdspTM 32/16bit 6O/4O Freescale and digital
F2812) $325 Fixed MHz '5685 power

Portable
Audio,
Consumer

16bit AD1 Black Electronics
T1 'C55x (C55x DSK) $515 Fixed 2OO MHz Fin like Mobiles

T1 'C6416T (C64x 32bit AD1 Black
Telecom,
Infrastructure

DSK) $515 Fixed 1GHz Fin and video

ADSP-BF5xx(ADZS- 16bit

Automobile
and
consumer

BF561-EZL1TE) $5OO Fixed 6OO MHz TI' C55x Electronics

T1 '67 (C67x DSK) $414
32bit
Float 72O MHz

SHARC,
CPUs

Audio
systems

Source: BDTI 2009; Datasheet of TMS320C6414T, TMS320C6415T, TMS320C6416T Fixed-Point Digital
Signal Processors, SPRS226M, 2009; Datasheet of ADSP-BF512/BF512F ; Datasheet of ADSP-TS201S;
Datasheet of ADSP-21371; 56F826 Evaluation Module Hardware User's, Freescale Manual; Technical
reference eZdspTM F2812, Spectrum Digital ; Datasheet of TMS320LC549-80; Datasheet of ADSP-BF561;
Datasheet of TMS320C6713

Freescale 	 Freescale 	TI	 TI
'563)a 	 '5685x 	 'C55>< 	 'C55x+

275 MHz 120 MHz 300 MHz 500 MHz
(simulated)

Freescale 	 TI
MSC81xx 	 . C64x
(SC140) 	 1 01-1z
500 MHz

ADI
Blackfin
750 MHz

TI
'C64x+
1 0Hz

Low-Cost Fixed-Point Chips 	 High-Performance Fixed-Point Chips

1 0

12000

10000 I

8000

6000

4000

2000

0

Figurel.5 Millions Instructions per second for various processors.
Source: BDTI 2009; Datasheet of TMS320C6414T, TMS320C6415T, TMS320C6416T Fixed-Point Digital
Signal Processors, SPRS226M, 2009; Datasheet of ADSP-BF512/BF512F ; Datasheet of ADSP-TS201S;
Datasheet of ADSP-21371; 56F826 Evaluation Module Hardware User's, Freescale Manual; Technical
reference eZdspTM F2812, Spectrum Digital ; Datasheet of TMS320LC549-80; Datasheet of ADSP-
BF561; Datasheet of TMS320C6713

Based on the above data we use TMS32OC6416T chiefly for the following reasons

• C6416T running at 1GHz can execute close to approximately 1O billion

instructions per second. This can facilitate in performing exhaustive data crunching of the

demodulated data. RTDX which uses lot of instruction cycles for its execution for the

communication between the host and the DSP can be used to display the data on the host

PC in real time

• Since C6416T is a fixed point DSP, its power consumption is low hence this

feature can be exploited for the future design of a hand held ultrasound device.

• Most prominently, as per our design requirement, C6416T can generate a

maximum clock frequency (timer) of 62.5 MHz (16 ns) which helps in the enhanced

resolution of the Low Transient Pulse (LTP) generation. For the present application, LTP

width is about 3.75us. Although we do get a quantization error of (16*235= 375O11s,

376O-375O = lOns), this error is within experimental tolerances.

11

1.6.2 Spartan-IIE, (XC2S300E)

• Spartan-HE FPGAs are typically used in high-volume applications where the

flexibility of a fast programmable solution adds benefits and are ideal for shortening

product development cycles while offering a cost-effective solution for high volume

production [26].

• It offers on-chip synchronous single-port and dual-port RAM (block and

distributed form), DLL clock drivers, programmable set and reset on all flip-flops, fast

carry logic, and many other features [26].

• It contains an optimal number of gates for the design, hence extremely efficient

implementation for cost/transistor. It also readily interfaces, without any glitches, with

the DSP, ADC and DAC with multiple clocks.

• The design of the daughter board permits programming of the FPGA through the

DSP's Code Composer Studio® (CCS) and hence saves time from JTAG emulation

separately for the FPGA. The process of programming through the DSP is explained in

Chapter 2.

1.7 RTDX (Real Time Data Exchange)

Real-Time Data Exchange (RTDX) is a technology developed by Texas Instruments that

enables real-time bi-directional communication between a digital signal processor (DSP)

or microcontroller and a host application that provides real-time, continuous visibility

into the way DSP applications operate in the real world [29, 3O]. This property of

C6416T allows us to take our design to another level. By the use of RTDX we can

transfer the envelope signal received in the DSP to the host computer in real time. Since

12

RTDX is bi-directional, we are not restricted to receive the transducer signals but can

send data back into the DSP. This allows us to perform real time analysis using tools like

Matlab. Matlab's Embedded 1DE LinkTM CC is the tool which helps to interface the host

PC with the DSP and communicate in real time. It automates debugging, project

generation, and verification of object code executing on an embedded processor or on the

instruction set simulator provided by the integrated development environment (IDE) [31].

1

UTOPIA:
Up to 400 Mbps
Master ATMC

ROM:FLASH

SBSRAM

LBT SRAM I.+

FIFO

SRAM 	 I-4-o-

SDRAM

VCPT

TCPt

"

Timer 2

Tinter 1 	 1-s-•]

UTOPIAS

McBSP2

Tinier 0

,I. C640 DSP Core

Instruction Fetch Control
Registers

Instiuction Dispatch
Advanced Instruction Packet

Control
LogicInstruction Decode

Data Path A Data Path B
Test

A Register File B Register File
A31-A16 B31-B16 Advanced

In-Circuit -.-A16-A0 B15-BO

Emulation

/ 	 /	 /	 / - / 	 / 	 /

Interrupt
Control

.L1 I .S1 I .M11 M1 I I .D2 1.612 I .02 1 .L2 I

C64x Digital Signal Processor

L1P Cache
Direct-Mapped
16K Bytes Total

MOBS PS:
Framing Chips:

11,100, MVIP,
SCSA, Tl. El

ACO7 Devices,
SPI Devices,
Codecs

McBSPtt

McBSPO

L2
lernory
1024K
Bytes

LID Cache
2-Way Set.Associative

16K Bytes Total

32

i54. OP10[6:01

[FGP10(15:91

llPli

Or
Boot Configuration

L 	 _J

pca PLL
(xl. 06, 012,

and x20)

Power-Down
Logic

Interrupt

Enhanced
DMA

Control ler
(64-channel)

CHAPTER 2

TMS320C6416: TI's DSP PROCESSOR

2.1 Digital Signal Processor

In the design, C6416DSK functions as the central processing (Edge Detection) and

control unit (Initialization of ADC and FPGA, Clock Source, Interface between

FPGA/DSP) of the system. From executing the analysis of the received signal to

controlling all the peripherals components, C6416 acts as the key component of the

system. A brief review of the C6416 system is given in the following section based on

materials [21, 27-3O, 32-37]

Figure 2.1 Architectural overview of TMS32OC6416 DSP
Source: Datasheet of TMS320C6414T, TMS320C6415T, TM S32006416T Fixed-Point Digital Signal
Processors, SPRS226M

13

14

Figure 2.1 shows the functional unit of the C6416 and its key feature [37] are as shown

below:

• Highest-Performance Fixed-Point DSPs , 1 GHz instruction cycles, 8OOO M1PS

• VelociTL2Tm Extensions to VelociT1TM Advanced Very-Long-Instruction-

Word(VLIW) TMS32OC64xTm DSP Core

• Two External Memory Interfaces (EM1Fs)

• Enhanced Direct-Memory-Access (EDMA) Controller (64 Independent

Channels).

• L1/L2 Memory Architecture: 128K-Bit (16K-Byte) L1P Program Cache (Direct

Mapped), 128K-Bit (16K-Byte) L1D Data Cache (2-Way Set-Associative) 8M-

Bit (1O24K-Byte) L2 Unified Mapped RAM/Cache (Flexible Allocation).

• Three 32-Bit General-Purpose Timers

2.2 Memory Map

The memory map of C6416 is as shown in Figure 2.2, where by default, the internal

memory sits at the beginning of the address space and portions of memory can be

remapped in software as L2 cache rather than fixed RAM [21].

Each EM1F (External Memory Interface) has 4 separate addressable regions

called chip enable spaces (CEO-CE3) where the SDRAM occupies CEO of EM1FA,

CPLD and Flash are mapped to CEO and CE1 of EM1FB respectively and the

Daughtercards use CE2 and CE3 of EM1FA [21]. In the design, EM1FA is used to

connect to the Dalanco Spry daughter board. CE2 (OxaOOOOOOO) among two chip selects

(CE2 and CE3) is used for the interface with the daughter board hence with the FPGA

and other components like the ADC and DAC on board.

15

Address

0420000000

Ox00100200

Ox60000a00

N64200,200

Generic 6416
Address Space 6416 DSK

Internal Memory Internal
Memory

Reserved Space
Of

Peripheral Regs

Reserved
or

Peripheral

EMIFB CEO CPLD

EMIFB CE1 Flash

oxsaGommo
EtvlIFB CE2

Fez"
N6 ,0000000 r zEMIFB CE3

Ox80000000
EMIFA CEO 	 - c-DRAr 1

Ox90000-2,00
EMIFA CE1

re
0xAC-00 ,3090

EMEFA CE2
Daughter

Ox00000000 Card
EMIFA CE3

Figure 1-2, Memory Map, C64167 DSK

Figure 2.2 Memory Map of C6416T DSP Starter Kit (DSK)
Source: TMS320C6416 DSK Technical Reference, 505945-0001 Rev. A April 2003.

The DSK Board has two External Memory Interfaces (EM1F's)[36]:

• One 64-Bit (EM1FA) and a 16-Bit (EM1FB).

• Glueless interface to Asynchronous Memories (SRAM and EPROM) and

• Synchronous Memories (SDRAM, SBSRAM, ZBT SRAM and F1FO)

• 128O MB Total addressable external memory space

2.3	 Interrupts:

DSPs work in an environment that contains multiple external asynchronous events. These

events require tasks to be performed by the DSP when they occur. Real-time data

input/output handling by the C6416 includes:

A.	 Interrupts -An interrupt stops the current CPU process so that it can perform a

required task initiated by the interrupt whose source can be an ADC, a timer and so on,

by redirecting the program flow to an 1SR [38].

16

B.	 Polling - A polling-based program (non-interrupt driven) continuously polls or

tests whether or not data are ready to be received or transmitted which makes it less

efficient than the interrupt scheme [38].

•	 Interrupt service Table

A vectors file is used for the interrupt-driven program for the system. In the system

designed interrupt is used to fetch the sampled data from the ADC to the DSP and send it

back to the DAC. C6OOO DSP Peripheral set has up to 32 interrupt sources however the

CPU has 12 interrupts available for the use [32]. The interrupt service table (IST) is used

when an interrupt begins, which has Fetch Packets (FP) associated with it [38]. There is

an offset associated with each specific interrupt since each FP contains eight 32-bit

instructions (256 bits) or 32 bytes, each offset address in the table is incremented by

(Ox2O)h = 32 [38]. Below is the description of the vector.asm used for the system [38].

.ref _adc_ISR

.ref _c_intOO

.sect "vectors"

RESET RST: mvkl .S2 _ c _intOO,BO
mvkh .S2 _cintOO,BO
B	 .S2 BO

NOP
NOP
NOP
NOP
NOP

NM1 RST:
NOP
NOP

NOP
.endloop

1NT4:	 mvkl .S2 _adc_isr, BO
mvkh .S2 _adc_isr, BO

17

B .S2 BO
NOP
NOP
NOP
NOP
NOP

• .ref command refers to the 1SR naming used in the main.c program. _adc_ISR is

the name of the ISR used for the interrupt from the ADC in C program. The

function _c_intOO is the name of the 1SR which is the entry point in the BOOT

program which sets up the stack and calls for main in the C program [38].

• .sect command assigns the name of this sector to be vector which is used to

allocate it to the memory in the Linker Command (.cmd) file.

• All the NOPs (No operations performed) are for the FP (Fetch Packet) in the

interrupt which are not used.

• In 1NT4 (Interrupt No.4), mvkl.S2 moves (using the one of the eight functional

unit of the CPU .S2) the 16 LSBs of address _ adc isr to 16 LSBs of BO and

similarly mvkh.S2 moves the rest of 16 MSBs of address adc_isr to BO. Hence BO

contains the full 32 bit address of adc isr. B .S2 BO then branch to the address in

BO. For the other FPs still we don't use them we use NOPs [34, 38] . Refer to [38]

Chapter 3 (3.8.2) for more information on Types of Instructions.

2.4 Timers

The timers of C6416 have two signaling modes and can be clocked by an internal or an

external source with the input and output pins (TINP and TOUT) that can function as

timer clock input and clock output, where an internal clock, for example the timer can

signal an external ADC to start a conversion, or it can trigger the DMA controller to

18

begin a data transfer [33]. In the system designed, timer 1 is used to signal an external

ADC, DAC and the FPGA. Since the generation of the LTP in the FPGA requires a pulse

with of 3.75us, timer 1 is run at its maximum frequency of 62.5 MHz by setting up the

Period to be '1' as per equation (2.1),from [33].

Timer Frequency= CPUrate (1 GHz) / (2* Period *8) 	 (2.1)

More detail about setting up the timer and its register can be found at [33] and Appendix

C. Dividing the timer frequency (62.5MHz) for the clock of ADC (1MHz) and for other

modules (like QAM) in FPGA is done in the FPGA itself which using clock diver as

shown in later chapters. The system designed has timer 1 set as shown below.

void timerlstart()
{

*(unsigned volatile int *)_TIMER CTL1 ADDR &= Oxff3f; / hold the timer
*(unsigned volatile int *)_T1MER CTL1 ADDR1= Ox3O1; /Ox211;
*(unsigned volatile int *)_T1MER PRD1 ADDR = OxO1;	 /set for 32 bit cnt
*(unsigned volatile int *)_T1MER CTL1 ADDR1= OxCO; /start the timer

}

The first statement disables the counter and holds it at the current state. In the next, while

the counter is disabled, we configure the timer by setting the TOUT pin to be output pin

and enabling the clock mode and internal clock source (CPU clock/8). The period of the

timer is set to F. The last statement initialize the counter register to zero and it starts

counting from the next clock.

In the code at various locations we have used statements as shown below

*(short *) dacaddr 1 = value

*(unsigned volatile int *) TIMER CTLI ADDR &= Oxff3f

These statements are chiefly used for writing to peripherals (I/O) and setting external

19

registers. (short*)dacaddrl is the declaration of a pointer daccdrl to type short. It just

type cast dacaddrl to be a pointer of type short if not declared in the beginning of the

program. Hence *(short*)dacaddrl is the value stored at address pointed by dacaddrl.

Note that in the program dacaddrl has been defined with a hex value (address of the

DAC1). So *(short *) dacaddrl = value transfers the value to the external DAC1.

Similarly for *(unsigned volatile int *) TIMERSTL1 ADDR &= Oxff3,

T1MER CTL1 ADDR defines the address for the control register of timmerl.

*(unsigned volatile int *) TIMER_CTL1 ADDR is the value stored at the control register

and the complete statement mean ANDing it with the current value of the register.

2.5 Software Programming

Among the three different languages available for the coding of C6416 i.e. C, Linear

Assembly and Assembly [38], we have used C in our design. Although the choice will

have an impact on the programming and optimization efforts required but since our use of

the DSP is straightforward and doesn't involve tight code integration, we have written

our code in C. Also the compiler of CCS tool aids in optimization of the code into

assembly very efficiently.

Careful consideration is given to the data type when writing the code. While the

data communicated between the FPGA and the DSP and in the buffers for the moving

average filter are declared to be short since there are only 12-bits of data, both retrieved

from the ADC and sent to the DAC, unsigned int types are used for loop counters and

ADC sampled data (unsigned) to avoid any unnecessary signed extension instruction

[35].

20

After running the program in DSP from main, interrupt flags are set, the frontend

program is loaded on to the FPGA and the ADC is initialized. The DSP then enters into

an infinite while loop and waits for the hardware interrupt 1NT4 to occur (as defined in

vector.asm). At each sampling time, the ADC module in the FPGA acquires the data

from the THS12O6 and also triggers an interrupt to the DSP to send this over. This

interface (EMIF) between the FPGA and DSP has been explained in more detail in later

chapters. The data which the DSP gets through the FPGA during the hardware interrupt is

a 12-bit unsigned number and has a DC level of Ox8OO or +2.7 V (More about resolution

is given in Appendix A)

2.5.1 Project File (.pjt)

This is the main file and contains sub folders like Source (.c, .cmd and .asm), Library

(.lib), Include (.h), DSP/B1OS Configure (Ad) etc. Executing "Rebuild All" in the project

tab of the CCS integrates all these files to .out file [35]. This file is loaded onto to the

DSP for its execution.

2.5.2 Linker File (.cmd)

This file is used to map different section to the memory and it shows which section

resides in which part of the memory [38]. The linker allocates the program in memory

using default location algorithm and places the various sections into appropriate memory

locations, where code and data reside [38]. By using a linker command file with

extension .cmd, one can customize the allocation process, specifying MEMORY and

SECT1ONS directives within the linker command file [38]. The Linker file (.cmd) [39]

used for the system is as shown below:

21

MEMORY
{

vecs :	 org=OxO	 1=Ox2OO
1SRAM:	 org = Ox2OO, len=Ox1OOOOOOO
SDRAM:	 org=Ox8O5OOOOO, len=Ox4OOOOOO
CE2:	 org=OxAOOOOOOOOOOO , len=Ox4OOOOO

}

SECT1ON
{

"vectors" > vecs
.text >ISRAM
.bss >ISRAM
.cinit > 1SRAM
.const > 1SRAM
.far >ISRAM
.stack >ISRAM
.cio >ISRAM
.sysmem >ISRAM
.mw isrambuff >ISRAM
}
Linker file consists on two main parts:

2.5.2.1 Memory

This is used to declare all the memories (internal or external) or the interfaces associated

with the DSP. These include the Internal SRAM (ISRAM), SDRAM (FPGA's .out file)

and CE2 (EMIF, External Memory Interface). For each memory declared, the base

address and size are specified. The memory vecs declared in the memory is used for the

vector.asm file used for the interrupts. SDRAM declared in the memory is used to load

the .out data for the FPGA. CE2 is used for the communication between the DSP and the

FPGA through EM1F.

2.5.2.2 Section

This allocates the output sections into defined memory and designates the various code

sections to available memory spaces[38].All the mnemonics like .text .bss, .cint, .const

22

used in the SECT1ON are called the Assembler Directives. An assembler directive is a

message for the assembler which gets resolved during the assembling process and does

not occupy memory space, since it does not produce executable code [38]. Other sections

are assigned to the internal memory of the DSP. The vectors directive which is declared

in the vector. asm file is assigned to vecs memory in the .cmd file. More information on

different assembler directive and their use can be found in [4O].

2.5.3 FPGA (.out) File

A .hex file is generated for the design using the Xilinx 1SE. This file is converted to .out

file using a converter provided by Dalanco Spry. In the present system, this file is loaded

onto the FPGA through the DSP, so prior to running the program it is necessary to load

this file onto the SDRAM which is mapped to DSP through the Chip Select O (CEO) by

the Load option in the Code Composer Studio. This is then transferred to the FPGA as

explained in section 2.5.4.2.

2.5.4 main.c Program

The basic main.c program provided by [39] is modified to a large extent for the design of

the system as per the requirement in the FPGA-DSP environment .

2.5.4.1 Initialization

This process involves setting up the interrupt flags and initializing the ADC with values

for CRO and CR1. All the information for ADC and its setup used for the design is taken

from here [22].

2.5.4.1.1 ADC (THS1206)

Figure 2.3 shows the configuration flow for the THS12O6. The system designed doesn't

Write 0x401 to
THS1206

Set Reset Bit in CR1)

Clear RESET By
Writing 0x400 to

CR1

Use Default
Values?

Continue

Write 0x401 to
THS1206

(Set Reset Bit in CR1)

Write The User
Configuration to
CR1 (Can Include
FIFO Reset, Must
Exclude RESET)

Clear RESET By
Writing 0x400 to

CR1

Write Tice User
Configuration to

CRO

23

use the default configuration but configures the ADC as per the requirement instead.

Figure 2.3 THS 12O6 Configuration Flow
Source: Datasheet of THS1206: 12-Bit, 6 MSPS, Simultaneous Sampling Analog-to-Digital Converter
(Rev. H), Texas Instruments.

So as per the flow, Ox4O1 is first written to the ADC followed by Ox4OO. Then we set

CRO. Since the ADC receives the upper 12-bits of the 16 bits register in the DSP, in the

main.c we set the CRO to (Ox O1AO)h which the ADC receives as (OxO1A)h. This

basically sets the ADC for the following from the LSB to the MSB

• Internal reference voltage selected

• Continuous conversion mode selected

• ADC made active

24

• Analog input B1NP (ADC 4)

Then we set CR1. Same as for CRO we set CR1 to be Ox4d2O which gets to ADC as

Ox4d2. This configures the ADC for the following (LSB -MSB)

• No Reset of the ADC 'O'

• In the write only mode to the ADC we reset the F1FO '1'

• Trigger level set to O for single channel 'OO'

• Trigger condition for DATA AV set to Active low pulse 'O1'

• Since we are wiring to the ADC we set the bit to '1'

- •	 Since we want the ADC to given an unsigned output we set this bit to '1'

• Normal conversion mode 'OO'

• To be set to '1' by default for CRO.

For more information on the ADC and the registers refer to [22].

2.5.4.1.2 Flag Setup

Flags in the main.c file are set in the following order:

• CSR (Chip Select Register): This register is first set to a value of Oxl OO. This

disables all the interrupts except the NM1 and sets it to little endian.

• IER (Interrupt Enable Register): This register is first set to value Oxl. This resets

the interrupt enable.

• 1CR (Interrupt Clear Register): This register is first set to value Oxffff. This clears

all the corresponding flags in the 1FR (Interrupt Flag Register).

After 1ER, 1CR and CSR are set we perform the process stated in section 2.5.4.1.2 and

section 2.5.4.2 and just before going to the infinite while loop (section 2.5.4.3) we

configure the flags again for the following.

25

• IER (Interrupt Enable Register): To set this register we OR its current value with

Oxl 2. This enables all the nonreset interrupts and also enables interrupt No. 4

(non-NMI).

• CSR (Chip Select Register): To set this register we OR its current value with Oxl.

This is for global interrupt enabler.

More information on interrupt registers can be found in [41].

2.5.4.1.3 Miscellaneous

EM1FA CE2 space control register (CECTL2, Ox O18OO01O) [36] is configured since we

use this for our communication with the Daughter Board. This register is set with value

Ox3cOcf20 for the following

• Zero number of clock cycles for A0E_N and ARE_N 'OO'

• Reserved OO'

• Sets EM1FA to 32 bit Asynchronous interface 'O1O'

• Reserved 'O'

• 15 clock cycles for the width of read strobe 'OO1111'

• Reserved '11'

• 1 clock cycle for the read setup 'OOO1'

• O clock cycles for write hole width and the hold time of AOE and ARE rising '00'

• 6O clock cycles for write strobe width.

Also, the program system sets the EXTPOL (External Interrupt Polarity Register,

Ox 1 9cOOO8) to value Ox 1 which makes a high-to-low transition on an interrupt source

recognized as an interrupt [32].

26

2.5.4.2 Loading the FPGA

The various critical variables declared with their hex values in the main.c program with

their use are as shown in Table 2.1

Table 2.1 : Variables used in the FPGA program

Variable Name Hex Value Remark
This is the base address of SDRAM where we
load the .out file for the FPGA from the Code

V1RTEX_MEM Ox8O5OOOOO Composer Studio
This is the size of the memory of the FPGA
(3OOK). Any data bigger than this wont be

V1RTEX S1ZE Ox393D8	 transferred to the FPGA
This is the address line for sending the data to

V1RTEX ADDR OxaOOOOOOO the FPGA
Address for sending control bits for to the
FPGA. The 2nd and the 1st bit is for Write
(WR N) and Chip Select(CS_N) bits

V1RTEX WRCS OxaOOOOOO4 respectively

Address for sending the progress control bits to
the the FPGA.PROGH1 and PROGLO are used

V1RTEX PROG OxaOOOOOO8 to make it either high or low

A function AVR32_LoadVir () is used to load the data into the FPGA during its

execution in the main program. The execution of this function is described below:

• First, all the control bits are put to high (disabled all). Then status of the control

lines is checked by reading the bits on VIRTEX_STAT. If both the bits are zero, the

execution goes to the next line, else it waits on the statement till both get zero.

• Second, in order to write data onto the FPGA, the active low Chip Select and

Write bits are enabled by writing a OxOO at address for V1RTEX_WRCS. The program,

then checks and verifies to confirm that both the bits are 'O'.

• DSP then starts transferring data from the SDRAM to the FPGA. For this to take

place, the program goes to the address location V1RTEX_MEM to retrieve the 8 bits. The

27

data bus between the DSP and FPGA are mapped in a way that the bits are to be re-

arranged before they are sent e.g. the 1 st of the 8 bit data from SDRAM goes to the 31 st

bit of the data bus on to the address location of V1RTEX ADDR. This bits restructuring

is performed as shown below.

d31 = (1 & inword) ? BIT31 : O; // Virtex dO/din LSB
d23 = (2 & inword) ? B1T23 : O; // Virtex dl

output = d311d231d241171d111d6454O;

The last statement for output concatenates each individual bit to form one byte to be

transferred on to the FPGA. This transfer of data takes place for address V1RTEX MEM

+ pointer. This pointer gets incremented after transfer of each 8 bits of data till it reaches

the value equal to V1RTEX_S1ZE i.e. memory size in the FPGA. Since V1RTEX S1ZE

defined is little less than 3OOK we send O's to the FPGA for approximately 2O times after

the data from SDRAM to FPGA has been transferred.

• 	 After the transfer is completed Chip select and Write enable are pulled back to

high to stop any further erroneous transfer. These bits are then checked after they are

pulled back to '11'. At the end AVR32_LoadVir function returns the control back to the

main.

2.5.4.3 Free Run

Subsequent to the system being initialized and the data being loaded onto the FPGA, the

program then enters an infinite while loop to wait for the interrupt from the ADC. When

the interrupt occurs, the demodulated data for the received signal in the ADC are fetched

into the DSP. Inside the DSP we execute two main functions.

28

2.5.4.3.1 Moving Average Filter

As observed on the oscilloscope, the envelope (demodulated) signal of the receiver has a

high frequency noise component as shown in Figure 2.4(a). This is a problem for

detecting the 3 rd and the 4th maxima/peak during the estimation of plate parameter. To

remove this high frequency noise we use a Moving Average Filter (MAF). For the design

of this filter the demodulated data from the QAM is captured in the oscilloscope and is

used as the input to the MAF filter first designed in Matlab. Simulated results show

improved and desirable envelope with a MAF (window width=16) by removing all high

frequency noise and giving observable peaks of the demodulated signal. _ This is

implemented by construing a F1FO in the DSP. In this, on each interrupt, the 12-bit input

from the QAM is first converted to signed and then stored at the 1 st location of , the data

stored on the previous clock is shifted to 2 nd , so on and so forth. The data on the 16th

location is discarded. Then, all the signed values in the F1FO are added and later divided

by 16 to give the desired MAF output. The improvement on the received data from the

QAM is as shown in Figure 2.4(b).

29

(b)
Figure 2.4 Envelop signal (a) before filtering and (b) after filtering.

2.5.4.3.2 Edge Detection

To detect the maxima or peaks from the QAM demodulated signal, an edge detection

algorithm has been implemented to detect the maxima and then based on the time

difference between the 1 St peak and the subsequent peaks, it determines the parameter of

the plate since the speed of ultrasounds in Sawbone is known. The captured, demodulated

filtered data are first used to design and optimize an algorithm in Matlab which is later

implemented on to the DSP.

For the detection of 1 st maximum, we store the current value into a buffer from

the QAM demodulator if it is greater than the previous value. Also, in the main program,

a counter is incremented on each interrupt which starts from time t=O and on detection of

the Pt maximum , stores its value . This stored integer indexes the time for the first

30

maxima in [is.

For the 2 nd maximum, two conditions are taken into account. Firstly, the current

value should be smaller than the 1 st maximum. Secondly, unlike for finding the 1 st

maximum, the last value stored should be less than the current value. The second

condition is important because it prevents any false reporting of 2nd maximum from the

1 st parabola as many points over it will be greater than the maxima from the 2 nd parabola.

Therefore we check for the rising curve. When both of the conditions are satisfied, the

counter value during that interrupt is stored and displayed in the watch window of the

CCS. For subsequent maxima, we follow the same approach as for 2" maximum.

As shown in Figure 2.5, watch window displays the occurrence for the 1 st 2nd 3 rd

and 4 th maxima at time n1 (=51 1.1s), n2(=8O tts), n3(=1O2 [is) and n4 (=128 1.1s)

respectively.

Figure 2.5 Snapshot of the value displayed in the watch window of CCS

146 329XC2S300E 329 182

CHAPTER 3

SPARTAN 2E: FPGA

3.1 	 Hardware

A brief review of the Spartan-I1E system architecture is given in this chapter. Details are

given in [33, 34].This is followed by a description of the QAM demodulation loop

implementation.

The Spartan-I1E family provides programmable I/O pins that support 19 commonly used

I/O standards with system performance supported beyond 2OO MHz [25, 42]. These

standards include 16 single-ended standards and three differential standards and these I/O

standards allow a single FPGA to directly interface with backplanes, memories,

microprocessors, and other devices [25, 42]. It offers densities ranging from 93,OOO to

3OO,OOO system gates [25, 42] with functional elements that are interconnected by a

hierarchy by routing channel, as shown in Table 3.1 . The number of available I/Os for

Spartan 2E are show in Table 3.2

Table 3.1 System Information
Typical CLB Maximum Maximum

Logic System Gate Range Array Total Available Differential Distributed Block
Device Cells (Logic and RAM) (R x C) CLBs User I/O I/O Pairs RAM Bits RAM Bits

XC2S300E 6,912 93,000 - 300,000 32 x 48 1,536 329 120 98,304 64K

Source: Datasheet of Spartan-IIE 1.8V FPGA Family: Introduction and Ordering Information: Xilinx, Inc.,
2001.

Table 3.2 Available 1Os with various Spartan 2E packages

Device
Maximum
User 110

Available User I/O According to Package Type

T0144 	 1 	 PQ208 	 1 	 FT256 	 I 	 FG456

Source: Datasheet of Spartan-IIE 1.8V FPGA Family: Introduction and Ordering Information: Xilinx, Inc.,
2001.

31

32

3.2 SYSTEM DESIGN

3.2.1 Programming

The programming development is divided into 5 steps:

1 The Quadrature Amplitude Modulation-demodulation (QAM) architecture is first

examined and optimized with a high level simulation of the complete system

including the transfer functions of the ultrasonic transducers in S1MULINK using

floating point accuracy [43]. The transfer function is estimated from the datasheet of

the ultrasonic transducers. Based on the required output from the QAM, the filter

parameters are changed.

2 Then different sub-blocks (IIR Filter, square root and sine/cosine generator) of the

baseband processor are then translated into Matlab for hardware implementation

where only fixed point arithmetic operations are used [43].

3 Step 2 serves two purposes: first it validates the VHDL program from the simulator

(Modelsim®) output and second it verifies the experimental hardware output.

Additional validation in the analog domain will be performed with a spectrum

analyzer at the system [43].

4 A maximum detection algorithm is designed to operate on the captured and optimized

envelope data in the memory of the DSP to calculate the distance of receiver from the

edge of the sawbones.

5 This is then designed and implemented on the DSP with calibration due to noise from

the received signal.

Steps 1-3 are also followed for the generation of the LTP signal.

Cosine

Pulse
Generator

Transfer Function of the Tx and the Rx

Transfer Fon

Data Type
Conversion

Data Type
Conversion

Transfer Font

HR Filter Q)
f7t7.-khz

IIR Filter (I)
fo=75Khz

Squaring

Squareing 0

Math
Function

Snipe

33

3.2.3 Simulation Analysis

The test system implemented in Matlab is shown in Figure 3.1a, where the white blocks

implement the Transducer Transfer Functions (TTFs) while the grey blocks implement

the Quadrature Amplitude Modulation-demodulation (QAM). The signal from the TTF

blocks are then synchronously multiplied with the sine and cosine values (quadrate)

followed by a Butterworth 2nd order 1IR filter, squarer (multiplier), adder and a square

root calculator. Since the carrier frequency is 15O KHz, the cut-off frequency of the filters

is set at 75 KHz to cut out the carrier frequency as well as any other noise. The input

signal, receiver signal and envelope signal are shown in Figure 3.1b.

Qudrature Demodulationg Station
Figure 3.1a Matlab/Simulink model for the QAM system which is implemented on the
FPGA.

34

Figure 3.1b Matlab/Simulink simulation results for the QAM system.

Parameters of the transducers applied in Matlab are as shown below:

G(s)— 2
S +2CCO n s+w;,

Where

= O.O858;

a = 5OOO;

con = 8.3939x 1O 5 ;

3.3 Programming the FPGA

The FPGA is programmed using VHDL in Xilinx 1SE. Medium Scale Integration (MSI)

approach is used for the implementation of the QAM , LTP and other interfaces i.e. the

DSK, ADC, DAC etc. The design flow for the FPGA is shown in Figure 3.2

as

Required Results =Yes

Required Results =Yes

Dividing the function into
adders, multipliers and D-

Type flipflops

Required Resift = No

Writing the VHDL code for
each function in Xilinx ISE
and checking the simulated
output through Model Sim ce.i

Then different bloc-ice are
instantiated together to form the

function like Sine-Cosine
generator, Square root operator

etc.

Simulate the results
of these functions on

ModelSirnel

Required Results --Yes
Required Results =

Required Results = No

Required Results = No

Required Results = No
Required Results =Yes

First synthesis each
function separately
and observe the

output on the
oscilloscope

35

Port map different
function to form

functions tilde DAM
through the schernAtic
and synthesis the bode

Required Results =Yes

ystenl Design
, Complete

(

Figure 3.2 Design flow for FPGA
Source: X. Inc., ISE 9.1 In-Depth Tutorial: Xilinx Inc., 2007 ; D. L. Perry, VHDL: Programming by
Example: McGraw-Hill.

19th

• //
E :3"A .VKtu

N\ 6 Fit Vetpr
POilltEr

2Ctii

36

3.3.1 Quadrature Amplitude Modulator-demodulator (QAM)

Each Matlab sub-block as shown in Figure 3.1a is implemented exclusively and later port

mapped into the schematic. The QAM basic blocks consist of Sine and Cosine generator,

1IR Filter, Multiplier and the Square Root.

3.3.1.1 Sine and Cosine Generator

The sine and cosine generators are realized by constructing a circular buffer with fixed

point values from Matlab for a sine and cosine wave at 15O KHz sampled at 1MHz. At

each clock pulse the buffer gives an output and increments the pointer. Mathematically,

after three periods ((1MHz/15OKHz)*3=2O samples) or 2O samples, the values will repeat

from 1 st period. Therefore, in the VHDL program a circular buffer is designed with a

length of 2O (2O patterns of data) and on each clock it increments the pointer to the next

value and outputs it from the generator. It is determined that a 6 bit data length is

adequate for the present application. The overall buffer structure is shown in Figure 3.3

1M.

\ 	 0 	\	 clock it will go
% 	 \ 	 bitck to g1st / 	 ------,

\ 	 . 	 -,, olre\ 	 ----,f_ 	 ...,--""\ E Eit Vitr/'
• --.1 , tE Et Vxtor ,, ./ 3rd

6 Fit Vwt3r ,..----'.
------- I _4-----	4th

5:th
Figure 3.3 Schematic presenting the design of the sine and cosine generator

E Eft Vastar

E 4 t 4:be /
2nd

37

Since there are 6 bits among which the MSB is the signed, the remaining 5 bits gives sine

wave with amplitude +/- 31 (O11111-1OOOO1). The Matlab program below is for the

generation of data which are plotted in Figure 3.4.

%Matlab Program for the generation of the array
%f=15O Khz
%fs=1 MHz
for i=1:2O

y(i)=31*sin(2*pi*(15OOOO/1OOOOOO)*i);
end
y=round(y);

25,29,1O,-18, -31,-18,1O,29,25,O,-25,-29,-1O,18,31,18,-1O,-29,-25,O

Figure 3.4 Matlab simulation result of the data produced by the sine wave generator.

3.3.1.1.1	 Simulation Results

After converting the above data from decimal to 6 bits binary (signed), VHDL is used to

design a circular buffer which outputs a value at each clock cycle. The same procedure

applies to the cosine table as well. As shown in Figure 3.5a the system is initialized

(reset) which gives a sineout of OOOOOO. The sineout from the next clock starts from the

first value in the Look Up Table (LUT) which is 25 (O11OO1). The pointer gets

iie iluiLt kftliised/Paszt to

Li 	 to I Y„ -411111 '1'3...it

	11 '71:11 	 .1. I% 	 G11 4 1 	 AWL 414k
1001)1 4 t1.1.21.1,1,411.101 	 tg. 	 g
13 : IDA 'fIC011.401110114:011104 101110.1 4101C011 11:1 	4rt	 it 	 •rt,r 	 ,1

4 40.31(' 10.101.11134:44Qi0:(41:1111(4:111L044kkiji4/1ifixiliali0jill:x:olit.:?2,..b.i49iiiii -iiiii);

AlLial+ 4.4)1,v41:4111; h eiL
4113-	 r

111

38

incremented at each clock till it arrives at the last value (2O th) on the table which is O

(OOOOOO), subsequently the pointer moves back to the first value of 25 as shown in

Figure3.5b in a manner consistent with a circular buffer.

Figure 3.5a Simulation results for the sine and cosine generator for i= 1 to i=11

1, t)1,5 AIIINIVEIMMIRTIrini.,MBINS, 00000 	 00111 . 	 oo 	 annIII,oioclo
'CO. IMINIKDBMIIIIIMM14111.,. loam	 SIMMIIMIWZMINICiono	 Amon 	...rnalemL.,-
MI' 01110t owolo} (lot um. 'U00301).11011 iougoion} intim follow f000acoiii, 1111: ilocoxamoltpliolomaiottlItt {01o0.,
0100 1+Itollo 100511 10011 	 0' •00 011001 '011101 001014 9101110 '110001 1 101•10 0010109 1011101 '011001 M0400141001)-

nu'

111 10 29 Ell „. 	 .

21st value goes back to 1st = 25

comx#1122V. ,

Figure 3.5b Simulation results for the sine and cosine generator for i=11 to i= 21

FAUX Cosine

F

4.10

mux 	

FCC

2106,4i 2,

3.3.1.1.2 Register Transistor Logic (RTL)

The RTL generated for the VHDL code is shown in Figure 3.6.

39

elf

reset/

T
Figure 3.6 RTL for the sine and cosine generator.

The blocks consist of two multiplexers, one counter and two D-flip flops. At each clock

(elk) cycle, the counter (E, Pointer) gets incremented to the next integer value (F) which

is used to select the corresponding value from the LUT (multiplexer, C and D). In other

words, the selection lines of the multiplexers (A and B) driven by the counter (E) are

used to select one of the 2O input lines. This value then comes as an output on each rising

edge of the clock (D-Flip Flop, A and B) from the sine and cosine output ports. Also, the

40

RTL logic has an asynchronous reset which is used to initialize the counter and clear the

D- Flip flops. The clock runs at 1MHz (approx.)

3.3.1.1.3 	 Synthesized Output

Figure 3.7 is the output observed on the oscilloscope which demonstrates that the

synthesized sine/cosine generator code running on the FPGA fulfils the requirement. In

this setup, the frequency is 15O.8 KHz, corresponding to a period of 6.63us while the

peak to peak voltage is 14.7mv. This verifies our code and design for the sine-cosine

generator.

Figure 3.7 Sine generator output observed on the oscilloscope.

3.3.1.2 Infinite Impulse Response (IIR) Filter

Implementation of a low pass filter is considered in this section. A Finite Impulse

Response (F1R) filter is the most commonly used format. However, the Spartan 1I E has

lower gate count than required to implements a higher order F1R filter as per the system

requirement. Due to this reason we have implemented a 2" order Butterworth 1IR filter

instead, as it requires less number of gates. Since the filter is not part of a feedback loop,

phase delay introduced by the 1IR filter is inconsequential.

41

3.3.1.2.1	 Simulation Results and Design

The poles and zeros of the 1IR filter are generated in Matlab for the system requirement

given in Table 3.3.This gives us an IIR filter with magnitude response as shown in Figure

3.8.

Table 3.3 Filter parameters defined in Matlab and the corresponding filter coefficients.
Cut off Frequency
Sampling rate

Filter
Response Type
Filter Coefficients
Denominator
Numerator
Gain

,.._ Magnitude Response (dB) 	

75 KHz
1 MHz

2nd Order Butterworth Filter
Low Pass Filter

1 ; -1.3489 ; O.51398
1; 2 ; 1
O.O4125353724172O262

E -20

-40
En

-€0

50 	 100 	 150 	 200 	 25G 	 300 	 350 	 400
Frequency (kHz)

Figure 3.8 Magnitude response of the IIR filter with parameters from Table 3.3

Direct-I1 form as shown in the Figure 3.9a is used to implement the IIR filter on

the FPGA since it requires the least memory (buffer) for its implementation as compared

to the others. Here, X is the input, Y is the output, Qn are the poles and Pn are the zeros.

The gain of the filter is first kept low at the beginning of the design to avoid any

saturation that might occur. It is then increased based on the amplitude of the input signal

50

42

to the QAM.

Since the coefficients of the filter are fractional, extreme precaution is taken in

maintaining the filter's response characteristics. This is done by appropriate scaling of the

coefficients. Fixed point simulation is carried out in Matlab and compared with the

Simulink model shown in Figure 3.1a. These coefficient are then broken down into

multiples of WO" [44] so if input 'a' has to be multiplied with the coefficient 1.3489 it is

done as shown in equation (3.O) which gives an rounding error of O.OO2%:

a*1.3489=a+(a/4)+(a/16)+(a/32)+(a/256)+(a/1O24) 	 (3.O)

Figure 3.9a Direct- 11 Form for the implementation of an I1R filter. [45]
Source D. Kim and B. G. Lee, "Transform domain IIR filtering," IEEE Transactions on Signal Processing,
vol. 43, pp. 2431-2434, 1995.

43

U
inuut

Figure 3.9b Direct-II form re-arranged for its implemented over the FPGA
Source D. Kim and B. G. Lee, "Transform domain I1R filtering," IEEE Transactions on
Signal Processing, vol. 43, pp. 2431-2434, 1995.

The implemented IIR Filter on the FPGA matches the filter in Figure 3.9b which is

governed by the following equations:

Intern' = x12 + x11 +input; (3.1)

temp=y11+interm (3.2)

Output=temp+y12 (3.3)

F=(delaytwo/1O24)+(delaytwo/512)+(delaytwo/256)+(delaytwo/128)+

(delaytwo/2)

delayone=interm*z-1

(3.4)

(3.5)

Delaytwo=delayone*z-2 (3.6)

44

All the critical signals from the design (Figure 3.9b) are highlighted in red. Here, A and

B are the memory of the system (D- Flip Flops) which are used to performs operations as

shown in equations 3.5 and 3.6 respectively. xl 1 which is the output from multiplication

of delayone and the pole gets added (E) to the input of the filter whose output is then

added to x12 which is obtained by multiplying (Equation 3.O, F) the pole with delaytwo,

this gives interm (3.1). interm goes to the D-Flip Flop (A) to get stored for one clock

cycle (3.6) and also goes to the adder (C) to get added into yl 1 to get temp (3.2). temp

then gets added (D) to y12 to give the output yout(3.3). In the meanwhile, at the output of

delayone, which is the interm value from the previous clock cycle, the data gets stored in

B and comes out as delaytwo in the next clock equation (3.7).

Array of adders F (3.4) on page 2 represents the function Shift and Add (F) as

shown in (3.O) since the gain is fractional. This gives a better accuracy on the FPGA.

While the 1MHz clock synchronizes the circuit, an asynchronous reset is used to clear

and initialize the buffers (D- Flip-flop, A and B).

3.3.1.2.2 Register Transistor Logic: IIR Filter

Figure 3.1O shows the RTL of the I1R filter which has been implemented as per the

design shown in Figure 3.9b. The RTL for the VHDL code is generated on 4 pages which

consist of adders, multiplexers and D-type flip-flops.

Page 4

D

45

Figure 3.10 RTL for the 1IR Filter.

3.3.1.3 Square Root

Square root is implemented using the Restoring Shift-and-Subtract Square Rooter method

[46]. The restoring process is achieved by a multiplexer selecting the previous remainder

in case of a negative result from the subtraction step where the key factor rests on the

expression P(i) to be subtracted from the successive remainder R(i-1) and the final result

Q(-1) is built up by concatenation of the complemented sign bits, from q(n-1) to q(O)

[46].The function P(i) [46] is then computed as:

H(0) = X P(1) = 2'20 -1)

q(n-1)

0(n-1) = 0 0 1

shifter
22(n-2)

46

(3.7)P(i)= (4*Q(n-i)+1)*2 2(")

To achieve the above function , pseudo-operators are displayed in Figure 3.11 as

shifters, they stand for the rules to be respected to connect Q(n-i) to the subtractor input

P(i), input P(i) which is made up of Q(n-i), followed, from left to right, by the string 'O1'

then by a string of 2.(n-i) zeros[46].

v	 sign +subtractor

/ I
	 R(0) — P(1)

	i 1 	 (1

R(1)

Q(n-2

P(2)

sign +subtractor

R(1) — P(2)

01

shifter
22(n-3)

R(2)

P(3)

Figure 3.11 Restoring 2n-bit square rooter, combinational implementation
Source: Jean-Pierre Deschamps , Ge'ry Jean Antoine Bioul, and G. D. Sutter, "Synthesis of Arithmetic
Circuits," 2006.

For an input vector of length of 2n the algorithm calculates the square root of

length n and is the value in Q (-1) in the nth steps. This is one of the most efficient ways

to perform the square root operation. Sub-blocks for adder, shifter, multiplexers and gates

are designed and optimized which are later port-mapped to perform the square root

operations.

x(Input) =16 qn(output)=4

12=373
0 0 0 0 CO3 0 0 0 0 LX.:0 0 0 0 0 1 DM C
0 0 0 0 0:0 0 0 : 0 0

mooecc3300oc033)00 10mianurim

00000:000001:03:10000CC000

Agri(r
&ci 1-1q

{000)000000000000000100
K0-00000001: I 00 0f_ 0:000000

DIKEEMBEItilg fOlqW0Q0Qr., QQ99PQMCLISC91.0000M2 ,
0000010000 40000000001 ..

00000000001301t 00000000000 O00000000,
EVIMIREIM

• C

Cursor 1 	 3321 ps

Figure 3.12 Simulation result for the square rooter.

47

3.3.1.3.1	 Simulation Results

Figure 3.12 shows the simulation results for the square root generator. In this we input

the binary values of 16 and get 4 at the output.

3.3.1.3.2 Register Transistor Logic

Figure 3.13 shows the RTL logic for the square root generator. Figure 3.13a is the top

level RTL which has 11 onmod modules and one subtractor. 11 onemod represents the

n-I steps i.e. 11 steps for the algorithm. Since we just require the square root of the input

and not the remainder we just implement a subtractor instead of another onemod which

saves memory also. Figure 3.13b shows the RTL of the single onemod (right) module

compared with a single step of the algorithm (left). This RTL can be explained by naming

PP)

R(I)-. F.0N>

ell

An)
Figure 3.13b RTL for the sub block onemod consisting of submodule subtractor and calf
modules

tit0) al X lit2L01) 	

48

a part of it as A(subtractor) and another as B(cali) . P(i) from equation 3.7 and R(i-1)

which is the input to the square root calculator for the first step goes to the subtractor

(A). Below A as shown in Figure 3.13C consists of a subtractor (C, complement and full

adder) followed by a multiplexer which decides to output either the subtracted value (R-

R) or R based on the sign of the subtracted value. The inverse of the MSB of the output

from the adder is used as an input to the shifter in module B. B implements equation

(3.7).

:re-+a: 11

Uutput

on6odeiw.moti 	 wiermael_113 	 ,maracil

1pPut

mcmorti 	 onmod	 ontilod_4 	 rjne6igd,5 	 nioned

Figure 3.13a RTL for the Square Root consisting on onemod and subtractor modules

Figure 3.13c RTL for the sub-sub-block (A) consisting a 2's complement, full adder,
multiplexer and an inverter modules.
3.3.1.4 Full QAM

ors

multi

muliir

quadoutput

firm

adderfriir sqrrt

Figure 3.14 Schematic of the QAM. Different sub-blocks port mapped to form one
whole system.

49

After the design, verification and optimization of each module is completed, port

mapping is then carried out to design a system which closely matches the

Matlab/Simulink model in Figure 3.1a. As shown in Figure 3.14, Signed Input is the

input to the QAM module. Quadoutput (D) module multiplies the input with the sine and

cosine values respectively. These values then go to the modules iirm (I1R Filter, A) where

any signal with frequency above 75 KHz gets removed. Squaring is performed by mulliir

(B) followed by an adder adderfriir(C). The 24-bit output from the adder goes to the

square root module, sqrr (E) to give a 12-bit output. XLXN 30 is the demodulated 12-bit

signed value for the signal received from the ADC.

3.3.1.5 Frequency Spectrum

An aim for designing the QAM on the FPGA in the FPGA-DSP environment is to take

the advantage of performing all high frequency design requirement on it while

performing lower frequency large number crunching on the DSP.

The received signal from the transducers has frequency 15O KHz which is

sampled at 1MHz. If this is directly sent to the DSP without the QAM demodulator then

Receiver Signal from the Transducer Rover Spectrum of Input Signal

0

0.08

006

0.04

50

an interrupt to the DSP will occur at every 1 [is. So for real time system design all the

calculations are required to be done in with approximately 8OOO Instruction/ Interrupt.

This might be good enough for small analysis algorithm to be run on the DSP but

complex algorithm will require more time in real time for their execution.

This shortcoming of the system usage is overcome by performing QAM on the

FPGA. The frequency spectrum of the received signal shifts from 15O KHz to 37 KHz for

the QAM signal as shown in figure. This means that decimation of the demodulated

signal by a factor of 4 will give same us same precision and accuracy at a reduced rate.

The hardware interrupt can now be configured to occur at 4 1.1S which gives 32OOO

Instructions per interrupt. Receiver

0.12

0.5

as

E. 	0

-05

-2 	 -1 . 5 	 -1 	 -0 . 5 	 0 	 05 	 1 	 1. 5 	 2 	 25
Time (in Sec) x 10'

Figure 3.15 Received signal and its FFT.

	0.02 	 'II

	0 0 	 402 	 0 6 	 0 	 1.2 	 1_4 	 1_6
	11490811'0f (Hz)	 x 1174

51

ma,

x 7 	 Power Spectrum of the DAM Demodulated SignalIMAM Demodulated Signal

0

7

5

c 4

3

9

X 2.711e414
0.002525

■

0.05

0.a1

0.03
- '0
: 2

0.02

0.01

-0.01
-1.5 	 -1 	 -0.5 	 0 	 0.5 	 1 	 1.5 	 2 	 2.5

Time (in Sot) x 104

Figure 3.16 Envelope signal and it's FFT

3 	 2 	 4	 6 	 3 	 10 	 `2 	 14 	 '6
Frequercy (Hz) 	 x 105

3.3.2 Low Transient Pulse (LTP)

For the experimental system, the LTP drive signals are synthesized through the FPGA so

as to achieve high temporal resolution and design flexibility [4]. Temporal resolution of

the LTP is maximized by running the timer at its maximum frequency of 62.5 MHz. To

generate the LTP drive signal, the FPGA is configured as a 12-bit register module pre-

loaded with the corresponding binary values of each pulse level to drive the DAC

converter. These values are outputted through the DAC in a circular buffer.

3.3.2.1 Register Transistor Logic of Low Transient Pulse (LTP)

The LTP function is implemented in the DAC module in FPGA shown in Figure 3.17. In

this case, counter (F) gets incremented at each clock (62.5 MHz). The incremented value

of the counter is checked by the less than or equal to function (A and B). For A, if the

value is less than 264 then it outputs a value equal to 2.6 V (2.6/O.OO13= (2OOO)) if the

value of counter is greater than the value in A but less than the value in B it outputs a

value equal to 1.6V (1.6/O.OO13= 1231). XOE and Chip Select control bits are XORed to

52

get write control bit for DAC 1.

ka-ster Cluk =6 -2.5 Mhz

Figure 3.17 RTL for the LTP

3.3.3 Clock Divider

As the design require different module running at different clock frequency, clock divider

is implemented to run the LTP and DAC at high frequency while the QAM, ADC and

other modules at a relatively lower speed.

3.3.3.1 Register Transistor Logic of the Clock Divider

As shown in Figure 3.18, in the RTL of the clock divider, the counter (A) increments at

each clock edge whose value is checked against a pre-loaded value of 3O (B). If the

incremented value is less than 3O then input of FDR (C) gets transferred to the clock out

which is 1. When the value of the counter reaches 3O or more '1' is set as the output of B

whose inverted value is used to trigger the reset to generate a 'O' at each clock. In this

way a clock input running at 62.5 MHz will gives a clock frequency output of (62.5

MHz/ 2*3O = 1.O41 MHz — 1MHz).

FDR

tn1

53

clock in

Figure 3.18 RTL for the clock divider

3.3.4 Interfacing FPGA and DSP

The C64x DSP has a diverse set of interfaces, including two glueless external memory

interfaces (EMIFs): a 64-bit EM1FA and a 16-bit EM1FB that can support many glueless

interfaces to a variety of external devices including external asynchronous devices like

the daughter board [36]. It has a one cycle command-to-command turnaround time with

at least 1 data dead cycle that is always included between commands so that read data and

write data are never driven in the same cycle [36].

The DSP requests data on its bi-directional bus by communicating to the FPGA

through its address lines by sending value of CSADC over the address lines. After the

DSP receives the data it switched the bus from read to write (to the DAC) which also gets

updated with the FPGA through its address lines by sending WRDAC1 and WRDAC2

for channel one and channel two respectively. The data from the DSP after processing are

then sent back during the same period to the DAC module of the FPGA. The EMIF space

control register is configured so that the setup, hold and strobe time for both read and

write are 15x, lx, and lx respectively over the 133MHz clock cycles of the EMIF. For

the current setup the turnaround time which is the time needed to switch from writing to

the reading is, 13x (= O.22 ps). Since the interrupt is every lus (1MHz), it is required that

all the processing is done within that sampling time. Once the interrupt has been

clock out

54

completed the program goes to an infinite while loop and waits for the next interrupt.

Memory map of the EM1F is shown in Table. 3.4.

Table 3.4 Memory map of the EM1F for the interface between DSP and FPGA.
Source: S. D. Inc., Spectrum Digital Inc,TMS320C6416 DSK Technical Reference 505945-0001 Rev. A„

2003.; T. I. Inc., TMS320C6000 DSP External Memory Interface (EMIF) Reference Guide Literature
Number: SPRU266: Texas Instruments, Inc., 2004.; T. I. Inc., Datasheet of TMS320C6414T,
TMS320C6415T, TMS320C6416T Fixed-Point Digital Signal Processors ,SPRS226M, 2009.

Hex Address 	 Name
OxaOOOOOOO - OxaFFFFFFFF EM1FA

Ox 18OOO1O 	 EM1FA CE2

OxaOO8OOOO 	 CSADC

OxaOO8OOO4 	 WRDAC1

OxaOO8OOOC 	 WRDAC2

Remarks
EM1FA CE2 memory space
Address for the EM1FA CE2 configurable
registers
Address to send the initialization data for the
ADC
or to receive the sampled data from it
Address to send the data to channel one for the
DAC. DAC1
Address to send the data to channel two for the
DAC. DAC2

3.3.4.1 Register Transistor Logic: Decoder

As per the memory map shown in Table 3.4 above, the FPGA and the DSP

communication interface at the FPGA end is implemented with the control bits and the

address lines from the DSP's EM1F. The RTL developed for decoding these address lines

and control bits for the synchronization of data is shown in Figure 3.19. Out of the 32

address bits, the lower 16 bits go to the FPGA. This way, for every process the design

checks if the data on the data bus is intended for the FPGA, by checking the 15 th, 14 th and

13 th bits of the address lines. If all these bits are zero then the data is for the FPGA,

otherwise the data is disregarded. From the memory map bits O and 1 are redundant as

they remain zero for all the cases so we consider address lines 15 to 2.

55

10.3 3

43.4

43.1ia

3,3

A

04)

zti

3 3 csadc2N

r rit4

Figure 3.19 RTL decoder for the interface between the FPGA and the DSP.

During the initialization, the data bus is used to send data from the DSP to the

FPGA to configure the THS12O6. This communication is established if the 15 th 14 th and

13 th address bits with the write enable and decoder enable control bits from the EMIF are

56

all zero. For the design as shown in Figure 3.19 these bits are ORed (D) to get rdN to

check if it is zero or not. If rdN is zero then as shown in Figure 3.2O, the link between the

bus which sends the data to the DSP (to_dsp) through the from_dsp bidirectional bus is

established and the bus from_dsp (alias to_ad) as shown in Figure 3.23 is used to send the

data to the ADC through the from adc bidirectional bus.

For the sampled data transfer from the ADC to the DSP, it is necessary to check if

all the lower 16 address bits are zero as per the memory map (OxaOO8OOOO) along with

the decoder bit. To implement the logic all the address bits with the decoder bit are ORed

to give the output csadn, as shown in Figure 3.19. If all the address bits and the decoder

bit are zero then csadn will go low hence the FPGA will send the sampled data to the

DSP through the data line.

171Kr;

'from dspf 'I 5:0)>
BU FT

Figure 3.20 RTL schematic for the read enable for the ADC initialization

As shown in Figure 3.21, to write data on to the DAC1 from the DSP it is

necessary to set to zero all the address bits in the FPGA except on the 3 rd bit as the lower

16 bits of the memory location for WRDAC1 is OxOOO4. Hence if csdac1N is zero by

performing OR on all the address bit from x(15) to x(3) and inverted value of XA(2) then

the data on the bi-directional bus is for DAC 1 . In the same way as shown in Figure 3.22,

as the address for WRDAC2 is OxOOOC, so if by performing OR on all the address bits

from XA(15) to XA(4) with inverted values of XA(3) and XA(2) gives a low then

csdac2N is low hence DAC2 is selected to read the data from the data bus.

to dsp(1

57

xA(2o

usdaLlN>
X,.(4). >	

n0000>
OR 4

Figure 3.21 RTL schematic for the write enable for the DAC 1 initialization

I X,, ,,C 2),..:
INV

csda-c2N>

CR41 X4,(3)-2
IN's'

n 0 0/ 	

Figure 3.22 RTL schematic for the write enable for the DAC2 initialization.

3.3.5 ADC Module

The ADC RTL module in the FPGA communicates with the ADC on the daughter board.

While it transfers all the sampled values from the ADC to the DSP, it is also used to

initialize the ADC.

3.3.5.1 Register Transistor Logic of the ADC module

Refer to Figure 3.23, toadclk which runs at 1 MHz (approx.) is sent as an external clock

to the THS12O6. csad and XWE are ORed for the control bit ADRW. If this bit is set at

`O' then the DSP writes data on to the data bus to initialize the ADC; otherwise this bus

receives the sampled data from the ADC. AD (not in the Figure) is the bus between the

ADC and the FPGA. This is a 12-bit bidirectional bus which receives data from the ADC

to be sent to the DSP when the ADRW bit is high and reverses when ADRW is low.

H ADRW>

	 <frorrThd
BUFT

T

0R2

✓ 1 toadcik' 	-, > ALIAS
	 `, ALIAS	ADOTR 	I	 „:„._____

:„. ALIAS,

	

7sEi 	

XWE"

o ad(11:0)>

58

ADCLK

MISC1 VIR

I ADCS0

Figure 3.23 RTL schematic for the retrieval of sampled data from the ADC.

3.3.6 UnsignedtoSigned and SignedtoUnsigned Converters

Since the data coming from the ADC are unsigned, they are first converted to signed

using the unsignedtosigned converter before sending to the QAM. In a similar way, after

the data come out from the QAM, they are converted back to unsigned using the

signedtounsigned module implements on the FPGA.

3.3.7 Complete FPGA System Design

Figure 3.24 shows the different modules for interfacing DSP to the ADC, DAC as well as

for implementing the LTP and the QAM demodulator. In this realization, the ADC sends

the sampled data to the ADC module (B) through the AD I/O pin of the FPGA. After

being converted to signed (H), the data are sent to the QAM (A) for getting the envelope

of the received signal. After this operation, the data are converted back to unsigned (I)

before being sent to the DSP via the dskbus (F) module through the XD I/O port on the

FPGA. After completing the operation in the DSP (Moving Average Filtering and Edge

Detection), the moving average filtered data is sent back through the same I/O, XD. The

data from the DSP is then sent to the dskdac(D) to be send to the DAC2. Simultaneously,

a design in the dskdac generates the low transient pulse which comes out from the DAC1.

59

Figure 3.24 Top level schematic of the system on the FPGA.

Since we use 62.5MHz for the generation of LTP a clock divider (J) is used to run the

rest of the system including DAC2 and the ADC at a lower rate of IMHz.

CHAPTER 4

ALGORITHM AND RESULTS

4.1 	 Algorithm

The following algorithm is to be followed for the implementation of the crack detection

on the sawbones:

1	 LTP with a resolution of 62.5 MHz is generated from the FPGA's DAC module.

12-bit vector is sent to the DAC which coverts it to pulses, each with a 3.27us

duration and amplitude of A 1 =2.5V and A2=1.5V. This signal is used as a drive

signal for the alpha series ultrasonic transmitter.

2	 The receiver transducer captures the acoustic signal from the test material via the

PAC's wide band AE amplifier.

3	 This signal is then passed through the THS 12O6 ADC which samples it at 1 MHz

with a 12-bit resolution. The data array goes to the QAM module.

4	 The 12-bit vector is then multiplied with the 5-bit vector of since and cosine

generator respectively to make an 18-bit vector for each of the two IIR filters. The

gain of the filter is adjusted according to the amplitude of the input signal. The

outputs of the filters give a 12-bit vector which is then squared, making it a 24-bit

vector for the inphase and quadrature channels. The two channel outputs are then

added to form a 25-bit sum. Using the top 24 bits for the square root hence

generates a final 12-bit vector signal which is the envelope of the input receiver

signal.

5	 Hardware interrupt set at 1 MHz is used to send the QAM demodulated 12-bit

data from the FPGA through the EM1F (External Memory Interface) Data Bus.

60

61

6	 The data received by the DSP are passed through a Moving Average Filter with

the window size of 16. This is done to attenuate high frequency noise in the data

as shown in Figure 2.4. The maxima (peaks) are more clearly visible after the data

is passed through the filter.

7	 After the data pass through the filter, a program finds the first four maxima. This

is done by first finding the I st maximum. Then on the basis of rise and fall of the

envelope signal, the program calculates the rest of the maxima i.e. when a

maximum is reported, it is checked if it is incurred on the rising or the falling

edge of the signal. If it is on the falling edge, the maximum is discarded but if it is

on the rising edge, the maximum is reported. This can be observed in the Watch

Window of the Code Composer Studio® as shown in Figure 2.5. All the values

displayed are for time (in us). These values are later used to calculate the

parameter of the plate by taking into account the velocity of ultrasound in

Sawbone (2.5 mm/.µs).

4.2	 Experimental Verifications

Two sets of experiments are performed each with the Low Transient Pulse on the test

platform to verify the performance of the system. These two experiments are

• Symmetric placement of the transducers

• Asymmetric placement of the transducers

In these experiments, a Sawbone sheet with dimensions 13 cm x 17.8 cm x O.6 cm is

used. Figure 4.I shows the transducer placement configuration of the experiment with A,

B, C, D, and E being the distances to be determined. To observe the reflections from the

62

edges Rx and Tx are placed along the breath of the Sawbone plates, as shown in Figure

4.1. Errors based on the estimated maxima (EM) and observed maxima (OM) for the

received and the envelope signal are then calculated.

Figure 4.1. Sawbone plate with its dimensions with the edges

4.2.1 Symmetric Placement

In this test, the transducers are placed symmetrically with respect to the boundary, along

the centre line of the so that A= 3.8cm; B= 3.2cm; C= 6.Ocm; D=9.O cm; E=8.9 cm. The

received signals contain four maxima as shown in Figure 4.2. The values that are

calculated by the maxima from the received signal and the DSP are shown in Table 4.I.

As per the table there is an error for the estimation of the distance with the maxima. It is

observed that due to the proximity of signals corresponding to C, D, and E paths (within

+/- 5 microseconds), some signal aliasing takes place, affecting the boundary estimation

for C. This aliasing is also evident in Figure 4.2. It is therefore of interest to readjust the

transducer placement asymmetrically to obtain complementary data for a more complete

edge determination.

63

Figure 4.2. Received Signal and its envelope signal observed on the oscilloscope with
symmetric placement of the transducers

Table 4.1(a) Estimation of longitudinal parameter of the plate., symmetric placement

Position Distance (cm)	 ET(us) OT (us)	 Error (us) Error (cm) OM (us)

A	 3.8	 23.2	 23.6	 O.4	 O.1	 5O

Table 4.1(b) Passband maxima detection: summary of plate position errors

Position Distance EM (in us) OM(in us) Error (in us) Error (in cm)

A 3.8 38.7 OM- EM

B 3.2 64.3 65.4 1.1 O.27

C 6 86.7 85.4 -I.3 -O.32

D 8.9 96.3O 113 16.69 4.17

E 9.1 97.86 113 15.13 3.78

Table 4.1(c) Envelope maxima detection: summary of plate position errors .

Position Distance EM (in us) OM(in us) Error (in us) Error (in cm)

A 3.8 5O OM-EM

B 3.2 75.6 79 3.4 O.85

C 6 98 1O4 6 1.5

D 8.9 1O7.6O 125 17.39 4.34

E 9.1 1O9.16 125 15.83 3.95

4.2.2 Asymmetric Placement

The transducers are then placed at asymmetric positions for better determination of the

plate edges. The test configurations are: A= 3.8cm, B= 3.2cm, C= 6.Ocm, D=6.5cm and

E=11.3cm. In this case, the aliasing problem is not evident, as shown in Figure 4.3 and

64

the longitudinal parameters of the plate calculated from the maxima of envelope are

shown in Table 4.3. It is observed that error in estimating for C is reduced from 1.5cm to

O.75cm.

.1

A ‘ 	 ' i
WARn ,

Figure.4.3. Received Signal and its envelope signal observed on the oscilloscope with
the asymmetric placement of transducers.

Table 4.2 (a) Estimation of longitudinal parameter of the plate, symmetric placement.

OM
Position Distance (cm) ET(us)	 OT (us)	 Error (us) Error (cm) (us)
A	 3.8	 23.2	 23.7	 O.4	 O.125	 51

Table 4.2(b) Passband maxima detection: summary of plate position errors

Position Distance EM (in us) OM(in us) Error (in us) Error (in cm)

A 3.8 38.9 OM-EM

B 3.2 64.5 66.1 1.6 O.4

C 6 86.9 85.1 -1.8 -O.45

D 6.5 77.87 No Data No Data No Data

E 11.4 115.36 113 -2.36 -O.59

Table 4.2(c) Envelop maxima detection: summary of plate position errors .

Position Distance EM (in us) OM(in us) Error (in us) Error (in cm)

A 3.8 3.8 51 OM- EM

B 3.2 3.2 76.6 8O 3.4

C 6 6 99 1O2 3

D 6.5 6.5 89.97 No Data No Data

E 11.4 11.4 127.46 128 O.53

65

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

• In this work, an ultrasonic fracture/edge detection system has been implemented

on a joint DSP/FPGA platform. The DSP carries out the analysis of the received

signal at a much lower rate hence can accommodate a large number of signal

channels. The FPGA runs at a higher frequency (62.5MHz) for the generation of

LTP signal and to calculate the envelope of the received signal (sampled at

IMHz).

• A Sawbone plate serves as the test object from which the longitudinal dimensions

are estimated. Maxima of the envelope of the received signal are used to

determine the characteristics of the plate. Both symmetric and asymmetric

transducer placement configurations are deployed. It is shown that proper

placement of transducers significantly affect the test accuracy.

• The combination of DSP and FPGA provide an optimal solution to process

passband signals. This work successfully demonstrates the feasibility of modular

programming approach across the two platforms. The dual time scale platform

readily accommodates higher temporal resolution needed for the generation of

Low Transient Pulses and the processing of real time baseband signals on the

DSP for various tes conditions. This cost effective implementation enables a

transition of the detection system into a hand held ultrasound device.

66

5.2 Future Work

• This platform can serve as the basis for future research and applications in finding

better detection of cracks in Sawbones.

• Broaden the tuning of the LTP for various materials such as Titanium, Aluminum,

soft tissues, etc.

• Incorporate the use of RTDX in the analysis of data in real time on the host PC

RTDX enables simultaneous real time communication between the DSP and the

host PC.

APPENDIX A

RESOLUTION

Source: Datasheet of THSI2O6: 12-Bit, 6 MSPS, Simultaneous Sampling Analog-to-
Digital Converter (Rev. H)

• Peak-to-peak voltage (ADC/DAC) = (+2.7V) - (-2.7V) = 5.4 V

• No. of output bits (ADC/DAC) = 12-bits.

• Therefore, the resolution (ADC/DAC) = (5.4/ 2'12) = O.O13. Hence the program

will preempt any change at input equal to the resolution (O.OO13v) and will show

no change at the output. Any change greater than this will be observed at the

output

Example: a) Hex value for an input voltage (ADC) of I.5V and - I.5V

b) Voltage levels at the output (DAC) through the Hex value of Ox96O & Ox46O

Solution:

(a) Hex Value: This will be required to determine the hex value from the ADC for an

input voltage D.0 voltage.

For 1.5 V

4 Dividing with the resolution

I.5 / O.OO13 = 1138

-› Adding the DC level of 2O48 = (Ox8OO) h

1138+2O48 = 3186 = (0xC72) h

For -1.5V

-> Diving with the resolution

67

68

-1.5/O.OO13= -1138

4 Adding the DC level of 2O48 = (Ox8OO) h

2O48-1138 = 91O = (0x38E) h

(b) Voltage Levels: This will be required to determine the voltage output from the DAC

for a value written on the DAC lines. It is important for tuning the LTP from the DAC for

setting up the amplitude for the pulses.

For 0x960

4 Subtracting the DC level

(Ox96O) h= 24OO = 2O48 -24OO = 352

4 Multiplying with the resolution

352*O.OOI3= 0.4576 V

For 0x460

4 Subtracting the DC level

(Ox46O) h= 112O-2O48 = -928

4 Multiplying with the resolution

-928*O.OOI3= -1.2V

Since the register is 16 bits and the data received from the ADC is 12-bits we divide the

incoming sample by 16. After this we subtract it by Ox8OO (2O48) to convert the unsigned

data to sign.

APPENDIX B

DSP MEMORY

Source: Datasheet of TMS32OC6414T, TMS32OC641 5T, TMS32OC6416T Fixed-Point
Digital Signal Processors, SPRS226M, Texas Instruments

For the analysis of the system many times data stored it the memory of the DSP is

required to be analyzed in Matlab. The steps required for this are shown with the

following example

• Example: Construct a buffer in DSP, fill it with ADC values and display it in

Matlab.

• Solution: For this a buffer is first deisnged in the DSP program as shown below

valuel = (short) *(unsigned volatile int *)CSADC;

if (i<1000)

buffer vector[i] =valuel ; /Global Declaration, short buffer vector 1:1 =0;

i++;

(cont.)

Once the program has been executed the value is read from this buffers in the following

way. These values can be retrieved from the memory into a file for their analysis in

Matlab by the following steps.

1) File --> Data -› Save

2) File Name: Outputdata (let)

3) Click Save

4) Storing Memory into file

Address: OxOOOOO2OO

69

70

Length: Ox9DO*

5) Click on OK

Go into the folder of your program to retrieve the file

The starting address of the memory is OxOOOOO2OO since this the starting address for the

ISRAM (check the .cdb file). The processor is byte addressable. So if our starting address

is Ox2OO (512) and we have I,OOO samples the last address containing the data will be

512+ (I,OOO*2) = 2512 = (Ox9DO) h

APPENDIX C

SAMPLING TIME

Source : TMS32OC6OOO DSP 32-Bit Timer, Reference Guide,SPRU582B

• The sampling period for the ADC can be set from the main.c program. The line

below is to be modified to change the sampling time

*(unsigned volatile int *) TIMER PRD1 ADDR = OxO1;/* set for 32 bit cnt*/

• The value to be set in the above equation for a sampling time can be calculated

from equation 2.I.

• Below are few examples for setting up the clock for a system without a LTP. All

these results are true for system where the master (main) clock is used through out

the system. The dskbasic.out file is one such example

A. 	 *(unsigned volatile int *)__TIMER_PRD1_ADDR = OxCO

Period: 1100 0000 =int (192)

Step size : 3.1Ous

Figure C.1 Output on the oscilloscope showing the step size of 3.1O has

71

72

B.	 *(unsigned volatile int *)__TIMER_PRD1_ADDR = OxAO

Period: 1010 0000 =int (160)

Step size: 2.5Ous

Undo
Autoscale

Figure C.2 Output on the oscilloscope showing the step size of 2.5O ps

C. 	 *(unsigned volatile int *)_TIMER_PRD1_ADDR = Ox0B

Period: 0000 1010 =int (11)

Step size: 1.68-1.8Ous

Figure C.3 Output on the oscilloscope showing the step size of 1.66 ps

73

D. 	 *(unsigned volatile int *)_TIMER_PRD1_ADDR = OxOA

Period: 0000 1010 =int (10)

Step size: ERROR: The signal at the output is corrupted.

Figure C.4 Output on the oscilloscope showing error for any sampling period above O.5
ps (2MHz)

Important Notes

• Due to the problem shown in D the ADC runs can be run to the maximum

frequency of 1MHz.

• Since for the better LTP resolution we need the clock of the maximum timer

frequency of 62.5MHz at the DAC we have designed a clock divider to run the

ADC at 1 MHz.

RFERENCES

[1] U. Polimeno and M. Meo, "Detecting barely visible impact damage detection on
aircraft composites structures," Composite Structures, vol. 91, pp. 398-4O2, 2OO9.
[2] P. Moilanen, "Ultrasonic guided waves in bone," IEEE Transactions on
Ultrasonics, Ferroelectrics, and Frequency Control, vol. 55, pp. 1277-1286, 20O8.
[3] A. K. Kromine, P. A. Fomitchov, S. Krishnaswamy, and J. D. Achenbach, "Laser
Ultrasonic Detection of Surface Breaking Discontinuities: Scanning Laser Source
Technique," Materials Evaluation, vol. 58, pp. 173-177, 20OO.
[4] B. Cheng and T. Chang, "Enhancing ultrasonic imaging with low transient pulse
shaping," Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol.
54, pp. 627-635, 2007.
[5] V. C. Protopappas, M. G. Vavva, D. I. Fotiadis, and K. N. Malizos, "Ultrasonic
monitoring of bone fracture healing," Ultrasonics, Ferroelectrics and Frequency Control,
IEEE Transactions on, vol. 55, pp. 1243-1255, 2OO8.
[6] J. D. Achenbach, "Modeling for quantitative non-destructive evaluation,"
Ultrasonics, vol. 4O, pp. I-1O, 2OO2.
[7] J. Y. Kim, V. A. Yakovlev, and S. I. Rokhlin, "Surface acoustic wave modulation
on a partially closed fatigue crack," Journal of the Acoustical Society of America, vol.
115, pp. 1961-1972, 2OO4.
[8] C. Valle, M. Niethammer, J. Qu, and L. J. Jacobs, "Crack characterization using
guided circumferential waves," Journal of the Acoustical Society of America, vol. 11O,
pp. 1282-129O, 2OOI.
[9] T. D. Chaudhari and S. K. Maiti, "Modelling of transverse vibration of beam of
linearly variable depth with edge crack," Engineering Fracture Mechanics, vol. 63, pp.
425-445, 1999.
[10] N. Qaddoumi, E. Ranu, J. D. McColskey, R. Mirshahi, and R. Zoughi,
"Microwave detection of stress-induced fatigue cracks in steel and potential for crack
opening determination," Research in Nondestructive Evaluation, vol. 12, pp. 87-1O3,
2OOO.
[11] K. M. Liew and Q. Wang, "Application of wavelet theory for crack identification
in structures," Journal of Engineering Mechanics, vol. 124, pp. 152-157, 1998.
[12] R. Albanese, G. Rubinacci, and F. Villone, "An Integral Computational Model for
Crack Simulation and Detection via Eddy Currents," Journal of Computational Physics,
vol. 152, pp. 736-755, 1999.
[13] I. S. U. NDT Resource Center, "What is NDT? ," Iowa State University.
[14] H. Abu-Rub, J. Guziniski, Z. Krzeminski, and H. A. Toliyat, "Predictive current
control of voltage-source inverters," IEEE Transactions on Industrial Electronics, vol.
51, pp. 585-593, 2OO4.
[15] S. Jung and S. S. Kim, "Hardware implementation of a real-time neural network
controller with a DSP and an FPGA for nonlinear systems," IEEE Transactions on
Industrial Electronics, vol. 54, pp. 265-271, 2OO7.
[16] S. L. Jung, M. Y. Chang, J. Y. Jyang, L. C. Yeh, and Y. Y. Tzou, "Design and
implementation of an FPGA-based control IC for AC-voltage regulation," IEEE
Transactions	 on	 Power	 Electronics,	 vol.	 14,	 pp.	 522-532,	 1999.

74

75

[17] H. Liu, P. Meusel, N. Seitz, B. Willberg, G. Hirzinger, M. H. Jin, Y. W. Liu, R.
Wei, and Z. W. Xie, "The modular multisensory DLR-HIT-Hand," Mechanism and
Machine Theory, vol. 42, pp. 612-625, 2OO7.
[18] I. P. Seskar and N. B. Mandayam, "Software radio architecture for linear
multiuser detection," IEEE Journal on Selected Areas in Communications, vol. 17, pp.
814-823, 1999.
[19] C. Ebeling, C. Fisher, G. Xing, M. Shen, and H. Liu, "Implementing an OFDM
receiver on the RaPiD reconfigurable architecture," IEEE Transactions on Computers,
vol. 53, pp. 1436-1448, 2OO4.
[20] Z. Bielewicz, L. Debowski, and E. Lowiec, "DSP and FPGA based integrated
controller development solutions for high performance electric drives," in IEEE
International Symposium on Industrial Electronics, 1996, pp. 679-684.
[21] S. D. Inc., Spectrum Digital Inc,TMS320C6416 DSK Technical Reference
505945-0001 Rev. A„ 2OO3.
[22] T. Instruments, Datasheet of THS1206: 12-Bit, 6 MSPS, Simultaneous Sampling
Analog-to-Digital Converter (Rev. H) Texas Instruments, Inc., 1999.
[23] A. D. Inc., Datasheet of AD9763/AD9765/AD9767 Analog Devices Inc. , 2OO9.
[24] D. L. Perry, VHDL:Programming by Example: McGraw-Hill.
[25] X. Inc., Datasheet of Spartan-IIE 1.8V FPGA Family: Introduction and Ordering
Information: Xilinx, Inc., 2OOI.
[26] X. Inc., Spartan-HE 1.8V FPGA Family: Complete Data Sheet: Xilinx, Inc., 2OO3.
[27] T. Instruments, "The World's First 9Onm DSPs Running at IGHz are Now in
Volume Production," Texas Instruments Inc.
[28] BDTI, "A Survey of Mainstream DSP Processors ": Techlnsights, a Division of
United Business Media LLC, 2OO7.
[29] T. Instruments, How to Write an RTDX Host Application Using MATLAB,
SPRA386: Texas Instruments, Inc., 2OO2.
[30] T. Instruments, DSP/BIOS, RTDX and Host-Target Communications, SPRA895:
Texas Instruments, Inc., 2OO3.
[31] Embedded IDE Link 4.0: The MathWorks, Inc, 2OO9.
[32] T. Instruments, TMS320C6000 DSP Interrupt Selector,Reference Guide
Spru646A: Texas Instruments, 2OO4.
[33] T. Instrument, TMS320C6000 DSP 32-Bit Timer, Reference Guide,SPRU582B:
Texas Instrument, 2OO5.
[34] T. Instruments, TMS320C6000 Tools: Vector Table and Boot ROM Creation:
Texas Instruments, Inc., 1999.
[35] T. Instruments, TMS320C6000 Optimizing C Compiler Tutorial,SPRU425A:
Texas Instruments, Inc., 2OO2.
[36] T. Instruments, TMS320C6000 DSP External Memory Interface (EMIF)
Reference Guide Literature Number: SPRU266: Texas Instruments, Inc., 2OO4.
[37] T. Instruments, Datasheet of TMS320C6414T, TMS320C6415T, TMS320C6416T
Fixed-Point Digital Signal Processors,SPRS226M, 2OO9.
[38] R. Chassaing, Digital Signal Processing and Applications with the C6713 and
C6416 DSK: A John Wiley & Sons, Inc, Publication.
[39] D. Langmann, Dalanco-Spry Daughter Board code development, private
communications: Dalanco Spry, 2OO9.

76

[40] T. Instruments, TMS32OC6000 Assembly Language Tools v 6.0 Beta, User's
Guide, sprul86p: Texas Instruments, Inc., 2OO6.
[41] T. Instruments, TMS320C64x/C64x+ DSP, CPU and Instruction Set, Reference
Guide, SPRU732H: Texas Instruments, Inc., 2OO8.
[42] A. Chotai, Spartan-HE FPGAs, Lower I/O Cost: Xilinx, Inc, 2OO3.
[43] H. Lai and S. Boumaiza, "WiMAX baseband processor implementation and
validation on a FPGA/DSP platform,"in Canadian Conference on Electrical and
Computer Engineering, 2OO8, pp. 1449-1452.
[44] U. M.-. Baese, Digital Signal Processing with Field Programmable Gate Arrays:
Springer, 2OO4.
[45] D. Kim and B. G. Lee, "Transform Domain IIR filtering," IEEE Transactions on
Signal Processing, vol. 43, pp. 2431-2434, 1995.
[46] Jean-Pierre Deschamps , Ge'ry Jean Antoine Bioul, and G. D. Sutter, Synthesis of
Arithmetic Circuits: A John Wiley & Sons ,Inc, 2OO6.

	A FPGA/DSP design for real-time fracture detection using low transient pulse
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Blank Page
	Approval Page
	Biographical Sketch
	Dedication Page
	Acknowledgment
	Table of Contents (1 of 4)
	Table of Contents (2 of 4)
	Table of Contents (3 of 4)
	Table of Contents (4 of 4)
	Chapter 1: Introduction
	Chapter 2: TMS320C6416: Ti'S DSP Processor
	Chapter 3: Spartan 2E: FPGA
	Chapter 4: Algorithm and Results
	Chapter 5: Conclusions and Future Work
	Appendix A: Resolution
	Appendix B: DSP Memory
	Appendix C: Sampling Time
	References

	List of Tables
	List of Figures (1 of 3)
	List of Figures (2 of 3)
	List of Figures (3 of 3)

