
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Doctoral Dissertations Graduate School

5-2001

Automatic mapping of graphical programming applications to Automatic mapping of graphical programming applications to

microelectronic technologies microelectronic technologies

Sze-Wei Ong

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss

Recommended Citation Recommended Citation
Ong, Sze-Wei, "Automatic mapping of graphical programming applications to microelectronic
technologies. " PhD diss., University of Tennessee, 2001.
https://trace.tennessee.edu/utk_graddiss/8562

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact
trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F8562&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a dissertation written by Sze-Wei Ong entitled "Automatic mapping of

graphical programming applications to microelectronic technologies." I have examined the final

electronic copy of this dissertation for form and content and recommend that it be accepted in

partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in

Electrical Engineering.

Donald W. Bouldin, Major Professor

We have read this dissertation and recommend its acceptance:

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a dissertation written by Sze-Wei Ong entitled "Auto
matic Mapping of Graphical Programming Applications to Microelectronic Tech
nologies." I have examined the final copy of this dissertation for form and content
and recommend that it be accepted in partial fulfillment of the requirements for
the degree of Doctor of Philosopy, with a major in Electrical Engineering.

(Ji 'TV?
Donald W. Bouldin, Major Professor

We have read this dissertation

and recommend its acceptance:

Accepted for the Council:

Interim Vice Provost and '

Dean of The Graduate Sch"bQl

AUTOMATIC MAPPING OF GRAPHICAL

PROGRAMMING APPLICATIONS TO

MICROELECTRONIC TECHNOLOGIES

A Dissertation

Presented for the

Doctor of Philosophy

Degree

The University of Tennessee, Knoxville

Sze-Wei Ong

May, 2001

ACKNOWLEDGEMENT

I would first like to thank my advisor, Professor Donald W. Bouldin, for his

support, guidance and encouragement during this research. Professor Bouldin

introduced me to the area of VLSI design and provided me many helpful ideas in

this research. The encouragement, valuable criticism, and technical advice from

Professor Bouldin has sustained my progress in the research. I also thank my

other committee members. Dr. Danny Newport, Dr. Michael A. Langston, Dr.

Daniel B. Koch and Dr. Chandra Tan, for their guidance and useful suggestions. I

would also like to acknowledge the Defense Advanced Research Projects Agency

for providing the financial support for this research under grant F33615-97-C-

1124. Finally, my sincere thanks go to Ee-Laine Cheong and my parents Yok-Ting

Ong and Siew-Sin Chew for their love, patience, understanding, and support.

n

ABSTRACT

Adaptive computing systems (ACSs) and application-specific integrated cir

cuits (ASICs) can serve as flexible hardware accelerators for applications in do

mains such as image processing and digital signal processing. However, the map

ping of applications onto ACSs and ASICs using the traditional methods can

take months for a hardware engineer to develop and debug. In this disserta

tion, a new approach for automatic mapping of software applications onto ACSs

and ASICs has been developed, implemented and validated. This dissertation

presents the design flow of the software environment called CHAMPION, which

is being developed at the University of Tennessee. This environment permits

high-level design entry using the Cantata graphical programming software from

KRI. Using Cantata as the design entry, CHAMPION hides from the user the

low-level details of the hardware architecture and the finer issues of application

mapping onto the hardware. Validation of the CHAMPION environment was

performed using multiple applications of moderate complexity. In one case, the

application mapping time which required six weeks to perform manually took

only six minutes for CHAMPION, yet comparable results were produced. Fur

thermore, the CHAMPION environment was constructed such that retargeting

to a new adaptive computing system could be accomplished in just a few hours

as opposed to weeks using manual methods. Thus, CHAMPION permits both

ACSs and ASICs to be utilized by a wider audience and application development

accomplished in less time.

Ill

TABLE OF CONTENTS

CHAPTER PAGE

1. Introduction 1

1.1 Motivation 6

1.2 Problem Statement 7

1.3 Goals and Expected Contributions 9

2. Background 10

2.1 Microelectronic Technologies 11

2.2 Design flows of ACS and ASIC 13

2.2.1 Design Flow of ACS 14

2.2.2 Design Flow of ASIC 17

2.2.3 Comparison between ACS and ASIC Design Flows 20

2.3 Khoros Software Development Environment 21

2.3.1 Cantata Graphical Programming Environment 22

2.4 Differences between Cantata and Hardware 25

2.4.1 Data Transfer : 25

2.4.2 Data Synchronization 27

2.4.3 Data Sizing 29

2.5 Related Work 30

2.5.1 CAMERON Project: Colorado State University 30

iv

CHAPTER PAGE

2.5.2 MATCH Project: Northwestern University 37

2.5.3 Commercial Software 42

3. Methodology 44

3.1 Overview of the Design Flow of CHAMPION 44

3.2 Glyph Development Flow 48

3.2.1 Glyph Development and Verification 49

3.2.2 Glyph Installation 53

3.2.3 Pipelined Glyphs 53

3.2.4 Control Lines in CHAMPION Glyphs 56

3.3 Front-end Flow 58

3.3.1 Converting Cantata Workspace to CHAMPION Netlist . . 58

3.3.2 Data Width Matching 59

3.3.3 Data Synchronization 61

3.4 ACS Back-end Flow 90

3.4.1 Partitioning 90

3.4.2 Netlist to Structural VHDL, Synthesis, and Placement &

Routing 92

3.4.3 Host Program Generation 93

3.5 ASIC Back-end Flow 93

3.5.1 Netlist to Structural VHDL 93

3.5.2 Design Compilation and Optimization 93

3.5.3 Physical Layout Generation 95

V

CHAPTER PAGE

4. Implementation 98

4.1 Wildforce Board 100

4.2 HP26G 103

4.3 CHAMPION Graphical User Interface and Command Line User

Interface 103

4.4 Glyph Development Flow 106

4.4.1 Glyph Development Tools 106

4.4.2 Glyph Installation Tools 107

4.5 Front-End Flow 110

4.5.1 Conversion of Cantata Workspace to CHAMPION Netlist 110

4.5.2 Data Width Matching Ill

4.5.3 Data Synchronization Ill

4.6 ACS Back-End Elow 120

4.6.1 Partitioning 120

4.6.2 Netlist to Structural VHDL, Synthesis, and Place & Route 120

4.6.3 Host Program Generation 121

4.7 ASIC Back-end Flow 121

4.7.1 Netlist to Structural VHDL 121

4.7.2 Design Compilation and Optimization 122

4.7.3 Physical Layout Generation 122

5. Experimental Results 123

5.1 High Pass Filter 124

vi

CHAPTER PAGE

5.1.1 Overview 124

5.1.2 Implementation Results 125

5.2 IR ATR algorithm from the Army Night Vision Laboratory 140

5.2.1 Overview of the Algorithm 140

5.2.2 Implementation Results 142

5.3 Face Detection Algorithm 148

5.3.1 Overview of the Algorithm 148

5.3.2 Implementation Results 149

5.4 START Algorithm 161

5.4.1 Overview of the Algorithm 161

5.4.2 Implementation Results 162

6. Summary and Future Work 167

BIBLIOGRAPHY 171

VITA 175

vu

LIST OF FIGURES

FIGURE PAGE

1.1 CHAMPION software design environment 4

2.1 Organization of a simple bus-oriented microprocessor 12

2.2 Architecture of the Wildforce board 14

2.3 ACS design flow 15

2.4 ASIC design flow 18

2.5 A sample Cantata workspace 23

2.6 Synchronization using delay buffers, (a) Unsynchronized glyphs

and (b) glyphs synchronized by delay insertion 28

2.7 Design flow of CAMERON project 33

2.8 The heterogeneous hardware system used in the MATCH project

[5] 38

2.9 Match compiler [5] 40

3.1 Design flow of CHAMPION 45

3.2 Four main flows in CHAMPION 46

3.3 Steps for developing a new glyph 50

3.4 Glyph verification methods 51

3.5 New glyph development using ART Library and Builder 52

3.6 Datapath structures, (a) Nonpipelined structure and (b) pipelined

structure 54

viii

FIGURE PAGE

3.7 Structure of CHAMPION glyph 57

3.8 Positive mismatch, (a) Example of a positively mismatched data

path and (b) insertion of "truncating" glyph in positively mis

match data path 60

3.9 Negative mismatch, (a) Example of a negatively mismatched data

path and (b) Insertion of "padding" glyph in positively mismatch

data path 62

3.10 An unsynchronized digital system 63

3.11 A digital system which uses clock-triggered registers to synchronize

the data 65

3.12 Synchronization approaches, (a) The result of synchronizing the

system using the simple approach and (b) an optimum synchro

nization 67

3.13 A block diagram of processing modules with their corresponding

SEG , , 70

3.14 Insertion of input and output nodes in the SEG 71

3.15 The SEG representation of the digital system shown in Figure 3.10. 72

3.16 Two methods for data synchronization 83

3.17 Hyperarc 87

3.18 Different representations of a hyperarc 88

3.19 Delays of the hyperarc 89

3.20 The design flow of Epoch tool 96

IX

FIGURE PAGE

4.1 Design flow of CHAMPION 99

4.2 A simplified block diagram of the Wildforce board 101

4.3 Wildforce board as used in CHAMPION 102

4.4 CHAMPION graphical user interface 104

4.5 Art Library classes [4] 108

4.6 Glyph installation process using Geninf. 109

4.7 Conversion of Cantata workspace to CHAMPION netlist 110

4.8 Example of truncating glyph, (a) VHDL file for a truncate_9_8

glyph and (b) the corresponding hardware architecture 112

4.9 Example of padding glyph, (a) VHDL file for a pad_8_9 glyph and

(b) the corresponding hardware architecture 113

4.10 Delay glyph using components from Xilinx Core Generator 116

4.11 Hardware architecture of the VHDL file in Figure 4.10 117

4.12 Delay glyph for ASIC implementation 118

4.13 Hardware architecture of the VHDL file in Figure 4.12 119

4.14 Data Synchronization process 119

5.1 Cantata Workspace for the high-pass filter 127

5.2 High-pass filter in CHAMPION netlist 128

5.3 High-pass filter in after data width matching 129

5.4 High-pass filter after data synchronization 131

5.5 First partition of high-pass filter 132

5.6 Second partition of the high-pass filter 133

FIGURE PAGE

5.7 The core of the high-pass filter generated using the top-down ap

proach 137

5.8 The core of the high-pass filter generated using the bottom-up

approach 138

5.9 The IR ATR algorithm 141

5.10 The core of the Round 0 generated using the top-down approach. 145

5.11 The core of the Round 0 generated using the bottom-up approach. 147

5.12 The basic algorithm used for face detection [27] 149

5.13 The core of Umec Layer 1 generated using the top-down approach. 151

5.14 The core of Umec Layer 1 generated using the bottom-up approach. 152

5.15 The core of Umec Layer 2 generated using the top-down approach. 154

5.16 The core of Umec Layer 2 generated using the bottom-up approach 155

5.17 The core of Facel7c generated using the top-down approach. . . . 156

5.18 The core of Facel7c generated using the bottom-up approach. . . 157

5.19 The core of Facel8c generated using the top-down approach. . . . 158

5.20 The core of Facel8c generated using the bottom-up approach. . . 159

5.21 The core of START generated using the top-down approach. . . . 164

5.22 The core of START generated using the bottom-up approach. . . 165

XI

LIST OF TABLES

TABLE PAGE

3.1 Pipelined computations 56

3.2 Equation 3.6 in matrix form 76

3.3 Dual of the ILP expressed by Equation 3.6 77

3.4 The MCNF problem in matrix from 80

4.1 Resources on XC4013XL and XC4036XL FPGAs 100

4.2 Comparison of execution time of Simplex algorithm 114

5.1 Sizes of the four applications implemented 124

5.2 Partitions of high-pass filter 133

5.3 ACS mapping time of high-pass filter 135

5.4 Execution time of high-pass filter 136

5.5 ASIC implementation results of the high-pass filter 139

5.6 Partitions of Round 0 143

5.7 ACS mapping time of Round 0 143

5.8 Execution time of Round 0 144

5.9 ASIC implementation results of Round 0 146

5.10 ACS mapping time of Round 0 150

5.11 ASIC implementation results of the neural networks 153

5.12 Execution time of START [12] 163

5.13 ASIC implementation results of the START algorithm 166

xii

CHAPTER 1

Introduction

Graphical programming environments such as Khoros [25, 31] from KRI, Lab-

VIEW from National Instruments, and Simulink from MathWorks, allow appli

cations to be graphically represented as a set of functional blocks connected

by signal paths. By insulating the application programmer from low-level or

machine-dependent programming details, these environments allow faster and

easier development of complex applications. Although complex applications can

be easily developed with the help of these graphical programming environments,

the execution times are often long due to large input data or computationally

intensive operators in the applications. For many types of commercial and mili

tary applications, which require high throughput, these long execution times are

simply unacceptable.

With advances in microelectronic technology, these complex applications,

which are traditionally implemented in software, can now be implemented in

hardware. Two main types of integrated circuits can be used to implement these

applications. The first type of integrated circuit is the programmable logic devices

such as Field Programmable Gate Array (FPGA) and Complex Programmable

Logic Device (CPLD). Programmable logic devices contain circuitry that can be

configured by the user to implement a wide range of logic circuits. These chips

include a collection of programmable switches that allow the internal cells to be

reconfigured in many different ways. The switches are programmed by the end

user, rather than during the fabrication of the chip. The programmable logic

devices can dramatically reduce manufacturing turn-around time and cost of low

volume manufacturing.

The programmable logic devices have a major drawback. The programmable

switches in these devices consume valuable chip area and limit the speed of oper

ation of the implemented circuits. To improve the circuit performance or reduce

the chip area, the circuit can be implemented in a custom-designed chip. Such

chips are intended for use in specific applications and therefore, are often called

application-specific integrated circuits (ASICs). The main advantage of a custom-

designed chip is that it usually leads to better performance since its design can be

optimized for a specific task. However, the cost of designing such chips is usually

much higher than that of programmable logic devices. But if the chips are used

in a product that is sold in large quantities, the design cost is amortized over

the large number of copies manufactured. Therefore, the cost per chip would be

lower than that of programmable logic devices.

Although hardware can be used to improve the performance of complex ap

plications, the lack of supportive design environments results in an unacceptably

long turn-around time for leveraging the benefits of hardware technology. To

reduce the design time significantly, it is necessary to develop mapping tools that

allow the designers to reduce the time required to move from specifications to

hardware implementation.

In this dissertation, a new approach for automatic mapping of software appli

cations onto ACSs and ASICs has been developed, implemented and validated.

This dissertation presents the design flow of the software environment called

CHAMPION, which is developed by the Microelectronic Systems Research Lab

oratory at the University of Tennessee. This software design environment takes

graphical programming applications, and automatically map them onto ACS and

ASIC (as shown in Figure 1.1). The graphical programming environment used in

the CHAMPION project is Cantata by KRI. The target hardware architectures

of the CHAMPION project are the programmable logic devices based computing

system known as Adaptive Computing System (ACS) and Application-Specific

Integrated Circuit (ASIC). Using CHAMPION, application designers can develop

their applications using Cantata and implement them on an ACS or ASIC.

In this dissertation, the design flow of the software to hardware mapping in

the CHAMPION project is presented. Relative to contemporary technology, the

design flow developed and implemented in this dissertation:

• allows the functionality to be captured faster and more accurately using

precompiled functions.

produces synchronous circuit by synchronizing the design using delay

buffers,

uses linear programming to minimize the number of delay buffers used for

Application

Cantata

Automatic

< Mapping

High Level Simulation
S.TISSS' ..i

Input Output

Design Space Visualization

Low Level Simulation

; tSn i

Input Output

ASIC

Figure 1.1: CHAMPION software design environment.

synchronizing the design

• partitions the design early instead of late to shorten the hardware mapping

time

• allows the automatic mapping to be targeted to both ACS and ASIC.

This dissertation presents the algorithms, approaches, and mathematical tech

niques used in the design flow of the CHAMPION project. The main emphasis

of the mechanisms used in this research is to shorten the mapping time while

producing an implementation with performance which is compatible to the con

temporary technology.

Several relatively complicated algorithms have been implemented using

CHAMPION. A two criteria automatic target recognition algorithm was first

implemented to validate the design flow. This algorithm was automatically as

well as manually mapped onto ACS. It serves as a benchmark for determining

the improvement in the designer productivity using CHAMPION. Three other

algorithms have also been implemented to validate the design flow of CHAM

PION. They are the neural network-based face detection algorithm [28] from the

Carnegie Melon University (CMU), the Infrared Automatic Target Recognition

(IR ATR) algorithm from the Army Night Vision Laboratory and a high pass

filter for image processing applications.

1.1 Motivation

The designing process of ACS and ASIC presents many problems to the ap

plication programmers. The task of developing applications for ACS and ASIC

requires considerable knowledge in digital logic, which is very different from the

kind of algorithmic expression that arises in application programming. In addi

tion, for ACS design, a sound knowledge of the programmable logic devices and

the control and interfacing circuits on the board is required in order to take ad

vantage of the ACS. Therefore, it remains a significant obstacle to the widespread

adoption of ACS and ASIC by application programmers, who are generally un

familiar with digital circuit design. Without supportive design tools such as

CHAMPION to assist the hardware development, ACS and ASIC will go unused

in many application domains.

In addition to the lack of hardware knowledge, the long and tedious process

of developing ACS and ASIC also keeps application programmer from utilizing

them. For instance, the implementation of an application on ACS requires con

siderable effort in generating, synchronizing, partitioning, and synthesizing the

digital circuit. Significant effort is also required to resolve the issue of the intri

cate interactions between the hardware (ACS) and the software (host machine).

Currently, the entire process of mapping an application onto an ACS requires

months for a hardware engineer to complete. With the automatic mapping, more

application designers will be able to achieve higher quality implementations in

less time.

The market for consumer electronics is characterized by rapidly growing tech

nology of hardware and rather short market windows. A key concept for coping

with such requirements is the retargeting of system components on different hard

ware technologies. In the CHAMPION project, the design flow streamlines the

process of implementing applications for new hardware technologies for designers

who are concerned about their competitive position in adopting new hardware

technology quickly.

1.2 Problem Statement

The problem of automatic mapping of graphical programming applications

to ACS and ASIC involves translating a software application into a form that

can be executed on both hardware technologies. Currently, there is a missing

link between the graphical programming application and both technologies. The

graphical programming applications are often developed by application program

mers who lack the knowledge of hardware design while the hardware systems

are often designed by engineers who are unfamiliar with the specific application

domain.

A software enyironment which automatically maps graphical programming

applications to ACS and ASIC will complete this missing link. This software en

vironment allows application designers to perform hardware designs at a software

level. To create a software design environment that provides an easier and faster

way for application programmers to implement their applications on ACS and

ASIC, several issues have to be resolved:

1. How can the mapping be automated as much as possible?

2. How to shorten the mapping time while producing a high performance

circuit?

3. What mechanisms should be used to handle the differences in data trans

fers and data sizes between the graphical programming applications and

hardware circuits?

4. Which synchronization algorithms should be used to synchronize the circuit

in the shortest possible time and to minimize the number of delay buffers

used?

5. For ACS implementation, what partitioning method should be used to yield

fast and optimized results?

6. For ASIC implementation, what compilation strategies should be used to

shorten the time required to synthesize, optimize and generate the layout

of the circuit?

7. What feedback estimates should be given to the user during the mapping

process?

8. How can the design flow be as hardware independent as possible?

9. What is required to target a new technology?

1.3 Goals and Expected Contributions

In general, the main objective of this dissertation is to create an easier and

faster way for application programmers to develop their applications for ACS

and ASIC. A software design environment has been developed to map graphical

programming applications automatically onto ACS or ASIC. This software design

environment allows application programmers who lack the knowledge of hardware

design to implement their applications onto ACS and ASIC. It also allows the

designers to achieve higher quality implementations in less time. As a result,

with the help of this design environment, both ACS and ASIC can be utilized by

a wider audience and application development will be accomplished in less time.

CHAPTER 2

Background

A considerable body of literature exists on ACS, ASIC and their design flows.

This chapter provides a brief description of ACS and ASIC, and covers the rele

vant aspects of the traditional design flows of ACS and ASIC.

The focus of the dissertation is upon improving hardware designer productiv

ity by automating the mapping of graphical programming applications (CPAs)

onto ACS and ASIC. Many of the tools that will be used to automate the map

ping process involve handling the differences between the CPA and hardware

implementation. Included in this chapter are sections containing material on the

CPA used in this dissertation and the major differences between the CPA and

hardware.

This chapter also includes a section describing the commercial software and

other research programs that perform the mapping automation similar to that in

this dissertation. The major differences between the approach taken by CHAM

PION and that of commercial software and research programs are discussed.

10

2.1 Microelectronic Technologies

Historically, digital hardware has been divided into two main groups, general

purpose processor and application specific hardware. General-purpose processor

is a fixed architecture device which implements a pre-defined set of instructions.

General-purpose processors commonly fall in one of two categories: microproces

sors and digital signal processing (DSP) processors. Examples of microprocessors

are Intel's Pentium family, SUN's UltraSparc family and Motorola/IBM's Pow

erPC family. DSP processors, on the other hand, include Texas Instruments'

TMS320C6xxx family. Motorola's DSP560xx family and Analog Devices' Tiger-

SHARC family. These processors execute programs stored in some internal or

external memories by fetching their instructions, examining them and then exe

cuting them one after another. An organization of a simple bus-oriented micro

processor is shown in Figure 2.1. New programs can easily be loaded into memory

as needed. The computation of any algorithm is determined by the software pro

gram, not the hardware. Because their instruction sets include very general oper

ations such as arithmetic and logical operators, general-purpose processors can be

programmed to perform any conceivable function. However, general-purpose pro

cessors are very slow at performing computational intensive functions. Execution

of these functions requires the functions to be translated into the general-purpose

instructions that are executed by the processors.

For application-specific hardware, an engineer designs all of the circuits

specifically for an application. These hardware, which are often referred to as

11

Microprocessor i

--Ii i Control ! |
' ! Unit 1 j

—I—
■ , t i
■ I Registers ;

I/O devices

i ' ^ ■ , • i ! I I

^ ' Main i ' ! ! ■ Mouse
I Momnn, l ' MonitOr | j &

Arithmeric | i ; Keyboard
Logic Unit ; , ; '
(ALU) . i : L ^ :

Bus

Figure 2.1: Organization of a simple bus-oriented microprocessor.

application-specific integrated circuits (ASICs), usually lead to better perfor

mance since they can be optimized for the specific application. However, an

ASIC can only be designed to perform one particular application. If they are

needed to perform a new function, then a new ASIC will have to be created.

Another disadvantage of ASIC is its labor-intensive nature. It typically takes

months for hardware engineers to design a new ASIC and have it fabricated. This

labor-intensive nature of ASIC also translates it into a high cost and long time-

to-market hardware. In spite of these drawbacks, application specific hardware

is widely used whenever performance is of primary importance. By optimizing

the hardware for a particular task, ASIC can often achieve computation speeds

several orders of magnitude faster than general-purpose hardware.

12

In recent years, a new class of computing hardware, called adaptive computing

system (ACS), has been increasingly gaining research interest. ACS has some of

the advantages of both general-purpose and application-specific hardware. A typ

ical ACS is composed of multiple programmable logic devices, memory elements

and circuits for control and interface with a host computer. The architecture of

the ACS board used in this research project is shown in Figure 2.2. The pro

grammable logic devices, which are also known as processing elements (PEs),

found in the ACS are commercially available Field Programmable Gate Arrays

(FPGAs) or Complex Programmable Logic Devices (CPLDs). These PEs provide

a relatively large number of programmable functional units and programmable

interconnections. The functionality of the hardware is determined by how the

functional units and interconnections are configured. By changing the configura

tion, the hardware can be made to perform a completely different function. Since

the configuration is specific to the application at hand, it is in effect a custom

computer for the particular design. Different types of application can be imple

mented at speeds close to those obtained using application specific hardware. In

addition, the configuration can be changed relatively quickly from one function

to another, giving some of the same flexibility as general-purpose hardware.

2.2 Design flows of ACS and ASIC

In this section, the entire synthesis-based ACS and ASIC design flows and

methodologies are discussed. The main function of this section is to bring to the

13

pa

Tnicrfacc Local Bus 32

i i 1
FIFO 0 ! FIFO 1

TT

JL.

' Xilinx
I 4036XL !

FPGA

Local RA\I

PEO

Xilinx

; 4013XL
FPGA

Local RAM

f PEl

= 36-bit Data Path

Crossbar

Xilinx

40I3XL

FPGA

Xilinx

40I3XL

FPGA

Local RAM

^ PE2
Local RAM !

JL.

FIFO 4

Xilinx

40I3XL I
FPGA

I Local RAM j
A PE4

Figure 2.2: Architecture of the Wildforce board.

forefront different stages involved in ACS and ASIC design. It will provide the

necessary background for understanding the design flow of CHAMPION.

2.2.1 Design Flow of ACS

The design flow for an ACS is depicted in Figure 2.3. To map an application to

ACS, the designer must first define the hardware structure for the application.

In the past, this was done using schematic capture, where the designer manually

draws the schematics of the design using the components of a cell library. This

process was time consuming and impractical for design reuse. To overcome this

problem, schematic capture is increasingly being replaced with hardware descrip

tion language (HDL). The two main HDLs in use today are VHDL and Verilog.

For both schematic capture and HDL coding, a sound knowledge of the digital

14

Functional

Specifications

HDL

Coding

Simulation Test Vectors

Synthesis

Partitioning

Placement &

Routing
Host Program
Generation

ACS

Figure 2.3: ACS design flow.

logic design is required.

After the design has been captured in schematic or HDL, it is essential to

verify that the schematic or HDL code matches the required functionality, prior

to synthesis. This step is commonly known as pre-synthesis behavioral simulation.

If errors are found during the simulation, appropriate changes need to be made

and the verification of the new design is repeated through simulation.

15

When the simulation results indicate that the design functions correctly, the

design is then partitioned spatially. The spatial partitioning of the design is

required to allow the design to be mapped onto multiple FPGAs available on

the ACS. The partitioning process considers many factors such as, the size of

the PEs, number of interconnections between partitions and number of memory

elements in a partition. If the design does not fit in all the PEs available in the

ACS board, then it must also be partitioned temporally, by allocating functional

units to different configurations of the same PE.

Once the design is partitioned, pin assignment has to be performed on each

partition to assign the I/O pins on each PEs to the schematic or HDL description

of the partition. This is a long and tedious process since the designer has to

manually assign all the input and output signals of each partition to the I/O pins

on the corresponding PE. Each partition is then individually synthesized into a

technology-dependent netlist. This netlist is specified in terms of the basic logic

cell of the PE. For example, if the Xilinx XC4000 series FPGAs are used as the

PEs on the ACS board, the netlist is specified in terms of Configurable Logic

Block (CLB).

After the technology-dependent netlists for each partition has been generated,

each logic cell specified in the netlists can be arranged on a layout surface of the

PE. For ACS design, the main goal of the placement process is to arrange all the

logic cells in such a way that the routing is feasible and all the critical nets are

minimized. In ACS design, area minimization is normally not as important as it is

16

in the ASIC design. After placing the logic cells in that particular arrangement,

the interconnections between logic cells are routed according to the specified

netlist.

The placement and routing processes produce physical implementations for

each partition of the design. These physical implementations are then translated

into binary streams (commonly known as configuration file), which are used to

program the PEs. A software program, which is normally written in C or C++,

has to be generated to give instructions to the host computer on when and how

to download the configuration file and data for the application to the ACS.

While commercial tools exist to help with parts of this design flow of ACS, it

still requires a great deal of skill, knowledge of hardware design, time, and effort

to design. These steep requirements have severely limited the potential users of

this type of ACS and prevented its widespread acceptance.

2.2.2 Design Flow of ASIC

Figure 2.4 shows the sequence of steps to design an ASIC. The design process

starts with the development of a hardware definition for the application. This

is usually done with HDL. The functionality of the HDL is then verified against

the initial specification. This can be done by assigning specific values to the

input signals, performing simulation runs and viewing the output waveforms in

a graphical simulation tool. An alternative is to write a testbench, which is an

HDL block whose outputs provide the stimuli for the design to be simulated. In

17

; Functional
i Specifications

HDL

Coding

Pre-synthesis
Simulation

Test Vectors

Logic I
Synthesis

Post-synthesis
Simulation

Placement &

Routing
Post-layout
Simulation

Fabrication

Figure 2.4; ASIC design flow.

ASIC design, testbench simulation is more commonly used compared to wave

form simulation. Simulation using testbench simplifies the post-synthesis and

post-layout simulation steps. The same testbench can be used for post-synthesis

and post-layout simulation and the results can be compared. As a result, the

testbench is used as the golden model for verifying the design at every level of

abstraction

After the initial simulation, the HDL description of the design is then synthe-

18

sized into a netlist consisting of logic gates and their interconnections. The logic

gates used in the netlist are obtained form a technology library provided by the

ASIC manufacturer. The library defines the delay models, models for variations

of temperature, voltage and manufacturing processes as well as the functionality

of each gate. Notice that in the ACS design flow, the netlist obtained through

the synthesis process is specified in terms of the basic logic block of the PE. But

for ASIC design, the netlist is specified in terms of logic gates provided by the

manufacturer.

This gate-level netlist is then simulated to verify the functionality of the de

sign. This post-synthesis simulation is performed using the same specifications

used during the pre-synthesis simulation. After verifying the design, the logic

gates are placed on the layout of the chip. The main goal of placement in ASIC

design is to find a minimum area arrangement for the gates that allows completion

of interconnections between the gates, while meeting the performance constraints.

This is typically done in two phases. In the first phase, an initial placement is

generated. In the second phase, iterative improvements are made to the initial

placement until the layout has a minimum area or best performance and con

forms to design specifications. After placing the logic gates, the interconnections

between logic gates are routed according to the specified netlist.

Another round of simulation can be performed after the placement and rout

ing processes. The simulation at this level is commonly known as post-layout

simulation. Post-layout simulation is performed mainly to verify that the design

19

meets the specified timing constraints. Once the design is verified, pin assignment

is performed to connect the input and output signals of the design to the I/O

pins of a chosen frame. After pin assignment, the physical layout of the design is

ready to be sent off for fabrication.

2.2.3 Comparison between ACS and ASIC Design Flows

Comparing the ACS and ASIC design flows shown in Figure 2.3 and Figure 2.4,

it can seen that the main difference between the two design processes is that ACS

design requires the design to be partitioned before synthesis. To map a design

onto ACS, the design has to be partitioned into smaller sub-designs, which can be

fitted into the PEs. The partitioning process is performed based on constraints

such as the size of the PE, the number of I/O pins on the PE, and the number

of memory elements allowed in each partition. For ASIC design, no partitioning

is required. The complete design is mapped onto a single chip.

The partitioning process in the ACS flow has caused simulation to be omitted

at lower levels of abstraction. In ASIC design, simulations are performed at three

different levels: pre-synthesis, post-synthesis and post-layout. The same set of

specifications can used to simulate the design at these three levels since the design

does not have to be partitioned into sub-designs. Once the design is partitioned,

as in the case of ACS design, the initial specifications cannot be used to verify the

design since each partition implements different functionality. In fact, it is almost

impossible to simulate each partition since the functionality of each partition is

20

not known due to the fact that each partition is performed based on constraints,

not according to the functionality of the partition.

The ACS design flows also requires the designer to generate a host program

responsible for communications between the host system and the ACS board. To

generate this host program, knowledge on the control and interface circuitry of

the ACS board is required. The designer needs to understand how the control

and interface circuitry on the ACS board works as well as the set of commands

provided by the ACS manufacturer for using the circuitry.

2.3 Khoros Software Development Environment

Khoros is a software integration and development environment developed by

Khoral Research Incorporated (KRI). It includes a suite of software development

tools and a set of toolboxes containing over 300 functions. These functions in

clude arithmetic operators for scalars, vectors, and matrices, image and signal

processing functions, data visualization and display operations, and many func

tions for manipulating and examining sets of data [31]. The functions can be

used as stand alone programs from the command line, or as functions called by

a C/C++ program.

All the functions in Khoros operate on data defined in three robust data

models. The geometry data model allows for representation and storage of com

plex geometric structures. It also allows easy access and manipulation of the

geometric structures. The color data model is designed for the storage of color

21

maps in a format that allows for easy transformation of the color space. The

polymorphic data model is the most flexible data model. It is capable of storing

multi-dimensional data including audio signals, images, video, vector spaces, or

virtually any other type of data that can be represented with up to three spatial

dimensions and optionally one time dimension [25, 26].

2.3.1 Cantata Graphical Programming Environment

While Khoros functions can be used as standalone commands, they are most

widely used with the Khoros graphical programming environment called Cantata.

Cantata allows users to develop their applications easily using the collection of

functions in Khoros. Each function in the Khoros toolbox is represented on the

screen by a small icon called a glyph. Graphical programs can be created by

interconnecting these glyphs with data paths (as shown in Figure 2.5). Each

glyph has an input terminal corresponding to each of the possible inputs to the

function and output terminals for each of the outputs. In addition, each glyph

has a pane, which is a set of interface objects that allows the user to set options

for the operation of the glyph. Each of these objects corresponds directly to a

parameter that can be passed on to each function on the command line.

Designed to act as an integrated software development environment, Khoros

allows users to add new operators or functions to its collection of toolboxes. These

new lunctions can be generated using C or C+-t- and installed in Cantata with

the help of Khoros tools. Complex software wrappers that provide sophisticated

22

|gj@ Cantata: \<suat mtgramming Langu^e for Uie KHOROS System

me Edit VAiricspace Options Cmtrol Cdyphs Hetp

El niM

□ P
User (foffrted

GrKt ?D Data

ASCO to LocatKm

Quaifemesh Maki^

is'i 15Qisato Vis»9lUation Colom^
User mi fined

Color legcnii

ASai to Value

User denned
MsdU9 S^eres froni Data

ASCII to Location

User defineil

Oirrent host fur execution; lucsAiosl MainVAarKspace

Figure 2.5: A sample Cantata workspace.

data handling are added to the glyph during the installation process.

Like most of the graphical programming environments, Cantata allows users

to develop their application programs by simply interconnecting functional

blocks. Once the applications are created, they can be executed in Cantata

without having to compile their code. In addition, in Cantata, users do not have

to worry about the details of how data is passed or where it is stored. Since

Cantata uses the polymorphic data model, users do not have to be concerned

about converting data from one data type to another. All these features allow

users who may not be familiar with traditional programming methods to quickly

implement and test their algorithms and ideas. Since Cantata can work on such

wide ranges of data, users can test their applications using real data. The visual

nature of Cantata also makes it easy to modify an existing application by simply

adding or removing glyphs and changing connections.

Cantata can be used by users who may be skilled in their own area of expertise,

but who may not necessarily be able to program well enough to test their ideas.

For instance, a physician who would like to apply an image processing algorithm

onto a computed tomography (CT) scan image, but might otherwise be limited

by a lack of programming ability, can use Cantata to apply the algorithm using

real data. Cantata has become widely used partly because of its ability to isolate

users from the underlying technology while still allowing them to exploit the

power of the computing platforms they are using. By providing a high-level

design environment for problem solving. Cantata increases the productivity of

24

both researchers and application developers, regardless of their programming

experience.

2.4 Differences between Cantata and Hardware

At first glance, an application in Khoros Cantata may seem to be similar to

a schematic of a hardware design. Each glyph in Cantata seems to be equivalent

to a hardware cell and the connections between glyphs seem to be equivalent to

the wires connecting the hardware cells. Unfortunately, upon closer examination

things are not quite that simple. The Cantata programming environment handles

many details that are not apparent from the graphical workspace. Operations

such as converting between different data types, synchronizing data, and trans

ferring blocks of data between glyphs are handled by Cantata at the background

during the execution of the program. In a hardware design, specific hardware

modules have to be created to handle these operations. Three different types of

operations that were handled significantly differently in Cantata and in hardware

implementation of an application were found. The next three sections describe

these operations and the way they are handled.

2.4.1 Data Transfer

In a Cantata implementation, data is transferred between glyphs through the use

of temporarily files. The data output by one glyph is written out to a temporary

file. Cantata will pass the filename of this temporarily file to any succeeding

25

glyphs that will use that data as their inputs. In other words, the input filename

of any particular glyph is set automatically to be the same as the output of the

preceding glyph. The succeeding glyphs can then read in the data for further

processing. The user does not have to worry about the filenames for the inputs

and outputs as they are chosen by Cantata. The actual transfer method involves

storage on a hard drive, where the entire file is transferred all at once time. The

data is stored in one of the three Khoros data structures.

In hardware implementation, data is transferred between hardware glyphs one

value at a time rather than an entire block of data. Instead of transferring an

entire image, as in Cantata, only a certain number of bits are transferred at each

clock cycle in hardware, depending on the bus width. In addition, the hardware

requires registers to hold the data values as they are being transferred between

the hardware glyphs.

In order to map a Cantata application to hardware, this difference in data

transfer must be accounted for. This data transfer difference will not affect the

operation of a glyph if the Cantata glyph operates on the data one value at a time.

For instance, a Cantata glyph that adds a constant to each value in a stream only

needs to work with one value at a time. The corresponding hardware glyph can

work with one data value at a time as well and the mapping of it will be simple.

If a Cantata glyph performs some accumulation of operations in a stream before

it produces a valid output, it will not map easily to hardware. An example of

such glyph is an accumulator that finds the sum of all the pixels in an image.

26

To map this type of glyph to hardware, the differences in data transfer methods

must be taken into account.

2.4.2 Data Synchronization

In a Cantata, executions of the programs are data driven. That is, each Cantata

glyph will begin execution only when all its input data is available. With this,

there are never any data synchronization errors in Cantata. However, hardware

systems are clock driven. At each clock cycle, each hardware glyph will process

whatever data is presented at its inputs.

Due to the difference in the processing time of each hardware glyph, data

traveling over different concurrent paths may arrive at the inputs of a multi-

input glyph at different times. To insure that each glyph generates the correct

time-sequenced output, it is necessary that each glyph receive all its input data

precisely at the same time.

In Figure 2.6 (a), a simple network for adding three images A, B and C, is

shown. The two hardware glyphs, designated X and Y, are triggered by the same

clock signal. Assuming that images A, B, and C all become available at the same

time. In the first clock cycle, glyph X will add its two inputs, which are the first

pixel from image A and the first pixel from image B. At the same time, glyph Y

will also add its two inputs, which are the first pixel from image C and an invalid

output from glyph X since glyph X is in the process of adding the its inputs.

This causes the inputs to glyph Y to be out of sync, resulting in hardware results

27

T1

Image A

Image B

X
i

Image C

Clock

Image A

Image B

Image C

Clock

(a)

a.
Y

(b)

Figure 2.6: Synchronization using delay buffers, (a) Unsynchronized glyphs and
(b) glyphs synchronized by delay insertion.

28

that are different from those obtained in Cantata.

To fix this problem, a delay buffer, D, needs to be inserted at the input of

glyph Y, as shown in Figure 2.6 (b). Now image C is delayed by one clock cycle

before it reaches glyph Y, synchronizing it with the output of glyph X. The data

synchronization for all glyphs with more than one input must be checked and

fixed throughout the entire application. It is important to note that the delay

glyphs inserted for data synchronization do not appear in the original Cantata

workspace. Instead, they are identified and inserted during the mapping process.

2.4.3 Data Sizing

In Cantata, data size, conversion is handled automatically by the glyphs. The

polymorphic data model adopted by Cantata frees users from having worry about

converting data from one size to another.

In hardware, the inputs of each glyph have fixed data width. Therefore, two

unsigned five-bit numbers can be added together, but a five-bit number cannot

be added to a six-bit number. If an input and an output of different sizes are

connected together, one of them must be converted to match the other. Since

there are so many different possible combinations of input and output sizes, it is

impossible for the glyph to do this automatically. Part of the mapping process

must therefore include a way of finding and fixing all the mismatches. To fix the

mismatched data path, a hardware glyph can be inserted to perform the correct

conversion. These conversion glyphs do not appear in the Cantata workspace.

29

Just like the delay glyphs inserted for data synchronization, they are identified

and inserted during the mapping process.

2.5 Related Work

Several research projects and commercial software that perform similar map

ping automation are being developed. In this section these research projects

and commercial software are presented. The major differences between the ap

proach taken by CHAMPION and that of the commercial software and research

programs are discussed.

2.5.1 CAMERON Project: Colorado State University

Project Overview

At Colorado State University (CSU), a research project called CAMERON [7]

is being developed. The CAMERON project develops compilers for mapping

image-processing applications developed using Khoros onto ACS boards. New

image processing operators in CAMERON are written in a high-level program

ming language called single-assignment C (SA-C). SA-C is a programming lan

guage based on C that has been developed at CSU and integrated in the Khoros

graphical programming environment. It is created as a language well suited for

image processing and amenable to compiler analysis and optimization.

SA-C is a subset of C with extensions for image processing. These extensions

include parallel loops, true n-dimensional arrays of variable precision scalars.

30

and access mechanisms such as windowing. These extensions make it easy to

implement image-processing algorithms [20].

SA-C is designed to exploit both coarse-grain and fine-grain parallelism as

appropriate for ACS. SA-C eliminates recursion and pointers manipulation, and

allows each variable to be assigned only once. The existence of recursion and

pointers in a program complicates the analysis of data dependencies at compile-

time. By eliminating recursion and pointers, SA-C makes data dependencies and

access patterns clearer and therefore, allows the compiler to easily identify loop-

level (coarse-grain) and instruction-level (fine-grain) parallelism. The reason for

the single assignment restriction is that it establishes a one-to-one correspondence

between variables in the program and wires in the resulting circuit. By allowing

each variable to be assigned only once, the value of the variables will not change.

Therefore, they do not need to be associated with memory. Instead, every oper

ator is a sub-circuit, and the variables it operates on are the input wires. This

will make the generation of VHDL circuits from SA-C easier. It will also make it

easier for programmers to understand this mapping and to write SA-C programs

that translate into efficient circuits [7].

The main goal of the CAMERON project is to allow low-level image processing

algorithms to be written using SA-C inside the Khoros software development

environment. These programs can then be manipulated as glyphs inside Cantata.

The application generated using these SA-C glyphs can then be mapped onto on

parallel architectures for execution in ACS.

31

The technology underlying the mapping approach taken by CAMERON

project is dataflow analysis. The image processing glyphs written in SA-C can

be directly translated into dataflow graphs (DFG). Once the program is trans

formed into a dataflow graph, dataflow optimizations such as loop merging, loop

unrolling, and data blocking can be applied. Since SA-C is single assignment, a di

rect correspondence exists between dataflow graph components and FPGA hard

ware components. Therefore, optimized dataflow graphs can easily be mapped

onto FPGA configurations.

The design flow of the mapping process of CAMERON project is shown in

Figure 2.7. Image processing applications can be implemented in Cantata by

interconnecting the SA-C glyphs. Once the application is developed using Can

tata, all the glyphs are merged into a single SA-C program. The SA-C compiler

is then used to optimize the SA-C program. The compiler first converts the entire

SA-C program to an internal data flow form called Data Dependence and Control

Flow (DDCF) graphs. Optimizations are then performed on the DDCF graphs.

The optimizations performed includes traditional optimizations such as Com

mon Subexpression Elimination, Constant Folding and Dead Code Elimination,

and optimizations specifically designed for the FPGA such as Loop Unrolling,

Function Inlining and Loop Nextification [6].

After the optimization process, the compiler translates the DDFG graph to

DFG graph. The DFG graph is then partitioned into DFG for the FPGA and

DFG for the host. The parallelizable loops in the DFG are assigned to the FPGA.

32

S
A
-
C

&O
pt

im
iz

in
g%

'#
ji
aG
om
pi
le
r.
S'

O
J

C
O

►I
DF

G

G
ra

ph
ic

al

-■
D

F
G

 S
im

ul
at

io
n

/

Kb
flG

^H
DS

ly
fi^

;C
om

pi
[e

r^
iv.

.-J

j|f
t,D

F(
^%

|l
0;

jfa
ni

\a
t6

tf.

V
H

D
L

H
 !

LT
rg

cc
;';] '/f
j

■fe
Sy

ritH
es

is',

X
N

F

sf
SS

J^
ilir

ix
lfe

li]
fis

&M
pji

#

-
.-

T

..
.

H
os

t
C

od
e

A
C

S
 C

od
e

(
 A

C
S

ex
ec

ut
io

n
)

Fi
gu

re
 2

.7
:

De
sig

n
flo

w
of

 C
AM

ER
O

N
 p

ro
je

ct
.

The sequential code not inside a loop is assigned to the host code. Using these

partition criteria, the main computational circuit that will be implemented in the

FPGA is entirely combinational. As a result, pipelining cannot be used in the

main computational circuit [6].

After partitioning, the DFG for the hardware is translated to VHDL. The

process of translating the DFG to VHDL is divided into two main parts. The DFG

is trarislated by converting each node into VHDL. For DFG nodes implementing

simple operations, such as arithmetic or logical operations, there is a one-to-one

correspondence between the nodes and VHDL statements. Therefore these nodes

are directly translated into VHDL statements. For more complicated operations,

such as array sum, the translator generates a connection to a predefined VHDL

component. A library of such components allows the SA-C compiler to directly

access hardware implementations for many complex operations.

The translated VHDL code is then processed by a commercial VHDL compiler

and place and route tools. These tools produce the final FPGA configuration files

that can be downloaded onto the ACS and executed. The DFG for the host is

translated into C code and compiled using a C compiler into the host program.

The host program is used to control the downloading of the FPGA configuration,

the process of sending data to the ACS and the results reading process.

34

Comparison Between CHAMPION and CAMERON

Our research shares a "system-level" perspective with the CAMERON project.

Both projects use Cantata as the entry point for application development and

ACS as the hardware for application implementation. However, our research

extends to support ASIC as an alternative hardware implementation since it

provides some advantages over ACS.

CAMERON is more strongly oriented towards compilation-based approaches

for implementing applications than our work. Most efforts are in the development

of the SA-C language to support the programming for image processing and

reconfigurable hardware, and the development of a SA-C compiler to optimize

the code. The SA-C language is a subset of C with restrictions such as single

assignment and the elimination of recursion and pointers manipulation. It is a

language well suited for image processing application.

In our research work, we allow the user to use both fixed point C and C-f-l-

during glyph development. The fixed-point C and C-f-l- are not restricted to

image processing domain. They are well suited for more application domains. In

addition, C-I-+ also provides an object-oriented feature for programming. The

only restriction that we imposed on C and C-|--f is the use of fixed-point number

as opposed to floating point number. The only disadvantage of using fixed-point

number is that a fixed-point number requires more data bits than a floating

number to achieve the same degree of accuracy.

In the CAMERON project, the compiler exploits both coarse-grain and fine-

35

grain parallelism. The compiler identifies loop-level and instruction-level paral

lelism to increase the throughput of the application implemented in the ACS.

However, the main computational circuit implemented in the FPGA is entirely

combinational. This restricts the pipelining in the main computational circuit.

Our research work improves the hardware throughput by mapping the Cantata

application to sequential logic circuit instead of combinational circuit. Therefore,

pipelining of the input data is possible in the entire circuit.

Perhaps the main difference between our research work and CAMERON is

the time required to map a Cantata application to ACS. In our research, we

perform synthesis and place/route on our library cells in advance. Thus, we

have accurate information on the size and delay of each cell and only have to

re-synthesize small net-lists that represent the collection of cells that fit in each

FPGA. The CAMERON approach merges the VHDL code into a single, large

file that must be fully re-synthesized and then partitioned at a finer grain than

our approach. Hence, CHAMPION is presented with a smaller netlist and can

be expected to execute in less time. Since the circuits produced by CHAMPION

allow pipelining, the performance of the circuits is expected to be compatible to

that of CAMERON, even though no optimization is performed on the circuit.

36

2.5.2 MATCH Project: Northwestern University

Project Overview

The objective of the MATCH (MATlab Compiler for Heterogeneous computing

systems) [5] project at Northwestern University is to make it easier for users to

develop efficient codes for heterogeneous computing systems. They are imple

menting and evaluating an experimental prototype of a software system that will

take MATLAB descriptions of various embedded systems applications, and au

tomatically map them onto a heterogeneous computing environment consisting

FPGA arrays, embedded processors and DSP processors.

The prototype heterogeneous hardware system (shown in Figure 2.8) designed

to work in the MATCH project consists of a controller (microprocessor running

Solaris Operating system) and three types of computing resources: an ACS board,

embedded processors, and DSP processors. A VME bus is used as the communi

cation backbone for these computing resources.

This heterogeneous system combines the advantages of microprocessor based

embedded systems, DSP processors and FPGA resources. The microprocessors

and DSP processors are used to support the computations, which are not ideally

suited for the FPGAs and the bulk of the functionality required to implement

an algorithm. Example of functions implemented by these processors are control

intensive algorithms, complex floating-point applications and computing tasks

with large amount of code that is rarely executed. The reconfigurable logic is

used to accelerate only the most critical computation kernels of the program.

37

L
o
c
a
l
 E
t
h
e
r
n
e
t

C
O
0
0

M
o
t
o
t
r
o
l
a
 M
V
M
E
-
2
6
0
4

E
m
b
e
d
d
e
d
 B
o
a
r
d
s

•
 2
0
0
 M
H
z
 P
o
w
e
r
P
C
 6
0
4

•
 6
4
 M
B
 R
A
M

•

O
S
-
9
 O
S

•
 Ul

tr
a 0
 co

mp
il
er

T
r
a
n
s
t
e
c
h
 T
D
M
B

4
2
8
 D
S
P
 B
o
a
r
d

F
o
u
r
 T
D
M
 4
1
1

6
0
 M
H
z
 I
M
S
 3
2
0
0
4
0
 D
S
P

8
 M
B
 R
A
M

Tl
 G
 c
om
pi
le
r

A
M
S
 W
i
l
d
c
h
l
l
d

b
o
a
r
d

9
X
i
l
l
n
x
 4
0
1
0
F
P
G
A
S

2
 M
B
 R
A
M

5
0
 M
H
z

W
i
l
d
f
i
r
e
 s
o
f
t
w
a
r
e

F
o
r
c
e
 5
V

M
i
c
r
o
S
P
A
R
C
 C
P
U

■8
5

M
H

z
64

 M
B

 R
A

M

V
M

E
 B

u
s

Fi
gu

re
 2

.8
:

Th
e

he
te

ro
ge

ne
ou

s
ha

rd
wa

re
 s

ys
te

m
 u

se
d

in
 th

e
M

AT
C

H
 p

ro
je

ct
 [5

].

The key issue that needs to be addressed in the MATCH project is how to

map a MATLAB program on such a heterogeneous architecture without expecting

the application programmer to get into the low level details of the architecture.

A compiler is being developed to generate efficient code automatically for the

heterogeneous target. An overview of the compiler is shown in Figure 2.9. The

compiler parses the input MATLAB program based on a formal grammar and

builds an abstract syntax tree (AST) [5]. The AST is then partitioned among the

various components based on the set of predefined library functions. The nodes

corresponding to the predefined library functions are assigned to the respective

targets.

The ASTs for the FPGAs are then converted to register transfer level VHDL.

Each user function is translated into a process in VHDL. Each scalar variable in

MATLAB is translated into a variable in VHDL. Each array variable in MAT

LAB is stored in a RAM adjacent to the FPGA. The read or write functions

of the memory corresponding the array variable are then generated. Control

statements such as IF-THEN-ELSE constructs in MATLAB are translated into

corresponding IF-THEN-ELSE constructs in VHDL. Assignment statements in

MATLAB are translated into variable assignment statements in VHDL. Loop

control statements are translated into a finite state machine. Once the transla

tion is completed, logic synthesis and place and route tools will then be used to

generate the FPGA binaries. The ASTs corresponding to the ACS host, embed

ded microprocessors and DSP processors are translated into equivalent C code.

39

MATLAB

Program

Directives and

Automation

ij^AtlAB td\p;/gpJ^
with' Library'Callsi^

i\^C;;Cbm^ileLf6^^
^'.'5. Errjbepded ^
; Micrpprocessbrs;;:

6t)je,ct code fpL%
■;,PowerPC .6p¥';H;

.^-P~d■rtitio^ior^. ^

1 ' . • ■ '

5&f^1|#iyiPL
^^with4jbLary;^C^

1

1 r

-|',bbjepL;Coba tori)

MATLAB Libraries
on various Target

:^~i\}iy^LAB?t^
XjRTL'y^pi^

^FPGAlSynthesis^'?

^>^BihariesjorTvJ-'^
v^iXiL^X^Q^:(D!^^

Figure 2.9: Match compiler [5].

40

Finally, these generated codes are compiled using the respective target compilers

to generate the object codes for the processors. A main thread of control is au

tomatically generated for the controller. The controller is used to make remote

procedure calls to the microprocessors, DSP processors, and ACS.

Comparison Between CHAMPION and MATCH

The MATCH project uses MATLAB for application development. Similar to

Cantata, MATLAB is a function-oriented language where most of the programs

can be written using predefined functions. However, MATLAB programs are

normally implemented as sequential codes since the language is designed to be

executed on a single conventional processor. To take advantage of the hardware

implementation, the parallelism within the MATLAB code must be exploited.

For graphical programming such as Cantata, application can easily be imple

mented in a parallel manner since the application is created in a form of data

flow graph. The user can increase the "amount" of parallelism by interconnect

ing the glyphs in parallel. This will make the application highly parallel at the

function-block level. The only remaining sequential part is the instruction-level

code within the glyph. This instruction-level parallelism can be exploited similar

to what is being done in the CAMERON project. However, this will require a

more restricted language, such as SA-C, to enable the compiler to analyze the

data dependency and therefore, extract the parallelism in the code.

The MATCH project uses a more complicated hardware architecture for the

41

mapping of application. A heterogeneous system consisting of FPGAs, micro

processors and DSP processors is used. The MATCH compiler is required to

partition the MATLAB code to based on the type of computations. For example,

control intensive algorithms, complex floating-point applications are not ideally

suited for the FPGAs and should be implemented in the microprocessors or DSP

processors. On the other hand, critical kernels which require fast computations

should be implemented in FPGAs.

Similar to the CAMERON project, the main difference between our research

work and MATCH will be the time required to map an application to hardware.

In our research, we perform synthesis, placement and routing on our library cells

in advance. Thus, we only need to re-synthesize small netlists that represent

the interconnections of high level cells. The MATCH approach, however, trans

lates the MATLAB code to VHDL code. The VHDL code must then be fully

resynthesized and then partitioned'at a finer grain than our approach. Hence,

CHAMPION is presented with a smaller netlist and can be expected to execute

in less time.

2.5.3 Commercial Software

There have been several major commercial efforts to automatically map high-level

applications to hardware. The COSSAP tool from Synopsys allows application

to be developed using a block diagram graphical language. The developed appli

cation is then translated into VHDL or Verilog and synthesized into hardware.

42

The Signal Processing Workbench (SPW) from Cadence also takes an applica

tion developed using a block diagram language and translates it to VHDL. The

Renoir tool from Mentor Graphics Corporation allows an application to be devel

oped in different graphical ways. The users can enter the design as either block

diagrams, flow charts or state diagrams. The Renoir tool will then generates the

corresponding behavioral VHDL or Verilog automatically. The Monet tool can

then be used to convert the behavioral VHDL into register transfer level VHDL.

The register transfer level VHDL can be synthesized using the Leonardo logic

synthesis tool.

The CHAMPION software differs from all of the commercial tools above in

that we perform synthesis, placement and routing on our library cells in advance.

Thus, we only have to re-synthesize small netlists that represent the interconnec

tions of high level cells and can be expected to execute in less time.

43

CHAPTER 3

Methodology

In order to automatically map a Cantata application onto ACS and ASIC, all

the steps shown in the ACS and ASIC design flows (Figure 2.3 and 2.4 respec

tively) have to be automated. In addition, the different types of" operations such

as data transfer, synchronization and sizing that are handled differently in Can

tata and in hardware have to be resolved. This chapter presents the algorithms,

approaches, and mathematical techniques used in CHAMPION to automate the

design flows and to handle the hardware and software differences.

3.1 Overview of the Design Flow of CHAMPION

The design flow of CHAMPION is illustrated in Figure 3.1. The entire design

flow can be divided into four sub-flows (as shown in Figure 3.2):

• Glyph development flow

• Front-end flow

• ACS back-end flow

• ASIC back-end flow

44

Pr
ec
om
pi
le
d

Li
br

ar
y

N
e
w
 G
l
y
p
h

De
ve
lo
pm
en
t

C
a
n
t
a
t
a

G
l
y
p
h
s

In
st
al
la
ti
on

W
o
r
k
s
p
a
c
e

t
o
 N
ct
li
st

X
N
F

—

E
D
I
F
 =

Da
ta

 W
id

th
 I

Ma
tc
hi
ng

I
Sy

nc
hr

on
iz

at
io

n

rj
ii
iu
ii
ii
ii
ii
ii
ni
[!
Ei
 ^

H
o
s
t

P
r
o
g
r
a
m

A
u
t
o
m
a
t
i
o
n

Sy
nt

he
si

s
a
n
d

P
l
a
c
e
 &
 R
o
u
t
e

Ne
tl
is
t
t
o

S
t
r
u
c
t
u
r
a
l

V
H
D
L

Ph
ys

ic
al

 L
a
y
o
u
t

G
e
n
e
r
a
t
i
o
n

De
si
gn
 C
om
pi
la
ti
on

i

An
d
Op

ti
mi

za
ti

on
 |

Pa
rt

it
io

ni
ng

 j
"

Nc
tl
is
t
to

j

St
ru

ct
ur

al

i*
V
H
D
L

A
S
I
C

Fi
gu
re
 3
.1

:
De
si
gn
 f
lo

w
of

 C
H
A
M
P
I
O
N
.

Precompiled Library

XNF ZZI EDIF =

Glyph

Development

Flow

Front-End

Back-End

Back-End

Figure 3.2: Four main flows in CHAMPION.

In CHAMPION, Cantata is used as a function-oriented programming environ

ment where all the application programs are developed using predefined functions

or modules called glyphs. Currently, a set of library glyphs has been developed

in the CHAMPION project. New library glyphs can be developed and added to

the existing precompiled library if needed. A set of tools has been developed to

automate the process of developing, verifying and installing the new glyphs in the

CHAMPION library. This set of tools constitutes the glyph development flow.

Once the designer has all the required glyphs, the application can be gener

ated by interconnecting these glyphs. The front-end flow is then used to trans

form the Cantata program into more of a hardware-like netlist. The Cantata

program is first translated into a more graph-oriented database, preserving the

original glyphs and their interconnections. Each interconnection is then checked

to verify that the bit-widths of the connecting ports are the same. After match

ing the width of all the interconnections, data synchronization is performed. In

CHAMPION, data synchronization is achieved by introducing delay buffers into

the system. The synchronization software determines the lengths and locations

of the delay buffers necessary to balance the various data paths. An optimiza

tion algorithm is employed to calculate a set of buffer lengths and insertion points

that maximizes the amount of buffer sharing which therefore, minimizes the total

number of delay buffers.

If the design is being mapped to ACS, the ACS back-end flow will be used.

The ACS back-end flow first partitions the synchronized netlist at the glyph-level.

47

After partitioning, the internal data structure or format is translated into a struc

tural VHDL representation. The required I/O ports for each of the sub-netlists

are then added to the VHDL files. Next, the VHDL files are synthesized and

merged with the pre-compiled VHDL components corresponding to the Cantata

glyphs. Each sub-netlist is then placed and routed. A host, program is generated

to download the resulting configuration files to the corresponding programmable

logic component on the ACS board.

If the design is being mapped to ASIC, the ASIC back-end flow will be used.

No partitioning is required for the ASIC implementation. The synchronized

netlist is translated into a VHDL representation. Next, the VHDL represen

tation of the circuit is synthesized to a target technology selected by the user. A

layout tool is then used to automatically generate the final layout of the ASIC

based on the synthesized netlist.

3.2 Glyph Development Flow

Application programs can be constructed by interconnecting the glyphs con

tained in the CHAMPION library using Cantata. If certain glyphs needed for the

application cannot be found in the CHAMPION library, the user can go through

the glyph development flow to generate, verify and install these glyphs to the

library.

48

3.2.1 Glyph Development and Verification

To incorporate a new glyph into the CHAMPION library, the designer must

first develop the fixed-point C/C+-1- program for the glyph. The reason for

using fixed-point arithmetic is to allow the C/C-f-f program to mimic hardware

operations. For complex functions, the C/C-|--|- program can be formed as a

macro of lower-level functions.

For each of the C/C4-+ program developed, a corresponding VHDL code

must be developed. The functionality of the VHDL code must be identical to

that of the C/C-|--|- program. A set of test vectors is used to simulate both the

C/C-I-+ and VHDL code. The simulation results are compared to verify that

bitwise identical behavior is achieved. The steps for developing the new glyph

are shown in Figure 3.3.

For the VHDL description, the functionality can be verified by:

• simulating the VHDL code using the commercial software such as Model

Technology's ModelSim, or

• executing the synthesized VHDL code in the ACS.

Both the VHDL verification methods are shown in Figure 3.4.

To accelerate the glyph development process, the commercial software, A|RT

Library and Builder [11] from the Frontier Design was integrated to the glyph

development flow. The A|RT Library and Builder provide the ability to generate

the VHDL description of the hardware directly from a C-code specification. The

49

Develop Fixed
Point C/C++ code

T
Functionality
Verification

Application

.In'"

Develop
VHDL code

Functionality
Verification

||4^;pmpajceM^^>^

Installation of glyph
in Khoros/Cantata

Installation of glyph
in CHAMPION

Khoros

Glyph
Hardware

Glyph

Khoros Glyph + Hardware Glyph = CHAMPION Glyph

Figure 3.3: Steps for developing a new glyph.

50

i VHDL

i Description

n

Simulation ^
(MAX+PLUSIIor \

ModelS/m)

n

I Logic Synthesis
t (Synplify)
r, - n V. ■; -i

Place and Route
[(XilinxMl)

Hardware Execution
(ACS)

Figure 3.4: Glyph verification methods.

Applications

T

Develop Fixed
Point C/C++ code

*

Functionality
Verification

AIRT Library

► AIRT Builder

Installation of glyph
in Khoros Frontier Design

Installation of glyph
in CHAMPION

Khoros
Glyph

Hardware
Glyph

Figure 3.5: New glyph development using ART Library and Builder.

A|RT Library facilitates the development of bxed-point algorithms required for

a hardware implementation. The A|RT Builder can then be used to directly

and automatically convert the fixed-point C applications to VHDL. Therefore,

the A|RT product line is able to increase the design productivity enormously.

The user no longer has to go through the process of generating, simulating and

verifying the VHDL code. The new steps for developing the glyph using A|RT

Library and Builder are shown in Figure 3.5.

3.2.2 Glyph Installation

Once the functionalities are verified, the C/C++ program is converted to a

Khoros glyph and installed in Cantata (as shown in Figure 3.5). The corre

sponding VHDL description is synthesized and converted to a hardware glyph.

The hardware glyph is installed in the CHAMPION library. Together, the Khoros

and hardware glyph constitutes a CHAMPION glyph.

To install the C/C++ program in Cantata, the Khoros tools. Craftsman and

Composer can be used. To install VHDL code into the CHAMPION library, a

software tool was developed to automate the synthesis of the VHDL code using

the commercial logic synthesis tool. Based on the ACS of ASIC architecture

specified by the designer, the tool will generate the required technology-dependent

netlist file (XNF or EDIF) and a glyph information file (INF file) for storing the

size, latency and I/O data bit-widths of the hardware glyph. This information will

be used during the data width matching, data synchronization and partitioning

processes.

3.2.3 Pipelined Glyphs

Pipelining can greatly accelerate the operation of a circuit. The idea of

pipelining can be easily explained using the following example. The circuit in

Figure 3.6(a) is used to compute the square root of | a; — j/ |. If this circuit is-

used to perform computation on a large set of input values, then x and y will

represent two streams of numbers. The minimal clock period, Tmini required to

53

■0>>;

acc<4

c
.9
o
CO

S
3

CO

I Absolute'
' Value !

^ Square [
Root i

(a)

6i:|^
'^-

y -1
lisMj

c

.9
%—«
o
CO

s
3

CO

Rcck'
' Absolute

Value '
i Square '
i Root

> s A \sv '

—► z

(b)

Figure 3.6: Datapath structures, (a) Nonpipelined structure and (b) pipelined
structure.

54

ensure that valid output can be obtained is given by:

Train ~ ̂reg gate (3.1)

where t^cg and tgaie are the propagation delays of the register and gates respec

tively. For the sake of simplicity, the registers are assumed to be ideal. That is,

the setup and hold time for the registers are assumed to be zero. Assume that

the propagation delay for the register, subtract gate and abs gate are 10 ns and

the propagation delay for the sqrt gate is 30ns. Using Equation 3.1, the minimal

clock period is found to be 70 ns. Therefore the maximum clock frequency for

the circuit in Figure 3.6(a) can operate at is approximately 14.2 MHz.

If registers are added between the logic gates, as shown in Figure 3.6(b), the

combinational circuit block will be partitioned into three sections. Each partition

has a smaller propagation delay compared to the original circuit. This effectively

reduces the value of the minimal clock period to:

Tmin — ̂rcg "t" ̂ n,x(tgatc) (^*2)

Since the maximum gate delay is equal to 30 ns, the minimal clock period is

equal to 40 ns. Therefore, the maximum clock frequency for the circuit in Eig-

ure 3.6(b) is approximately 33.3 MHz. The pipelined circuit outperforms the

original circuit by more than a factor of 2.

In addition to the improvement in clock frequency, the pipelining circuit also

allow the computation of input data to spread over a number of clock periods,

as shown in Table 3.1. The result for the first data set, (xi,?/;), appears at the

55

Table 3.1: Pipelined computations.

Clock Period Subtract Absolute Value Square Root

1 xi + yi

2 X2 + y2 2:1 + 2/1

3 2:3 + 2/3 2:2 + 2/2 2:1 + 2/1

4 2:4 + 2/4 2:3 + 2/3 2:2 + y2

5 2:5 + 2/5 ■2:4 + 2/4 2'3 + 2/3

output after three clock-periods. At that time, the second data set, [x2.y2)-. has

already gone through the subtraction and absolute value gates, and the third

data sets, {xz,yz), has already gone through the subtraction gate. This assembly

line type of computation can greatly improve the throughput of the circuit.

In CHAMPION, all the hardware glyphs are synchronous. Each CHAMPION

glyph consists of combinational logic with registers to hold the input data as

shown in Figure 3.7. As a result, the circuit produced by combining these glyphs

is always a pipelined system.

3.2.4 Control Lines in CHAMPION Glyphs

In hardware implementation, data is transferred between hardware glyphs one

value at a time rather than an entire block of data, as in Cantata. This difference

in data transfer must be accounted for when mapping a Cantata application to

hardware. The data transfer difference will not affect the operation of a glyph

56

Inputs -

>-

0)

CO

O)
0)
oc

Combinational

Logic
>■ Outputs

Figure 3.7: Structure of CHAMPION glyph.

if the Cantata glyph operates on the data one value at a time. For instance, a

Cantata glyph that adds a constant to each value in a stream only needs to work

with one value at a time. The corresponding hardware glyph can work with only

one data value at a time as well and the mapping of it will be simple.

If a Cantata glyph performs some accumulation operations in a stream before

it produces a valid output, it will not map easily to hardware. An example of

such glyph is an accumulator that finds the sum of all the pixels in an image. To

map this type of glyph to hardware, some control lines must be included in the

glyph. Three control lines, stream valid, data, valid and pixel valid, are included

in every CHAMPION glyph. The functions of these control lines are as follows:

• Stream Valid Control Line: indicates the presence of an image stream to a

hardware glyph.

Pixel Valid Control line: indicates whether or not a particular data value

within a stream represents an actual pixel in the image since the individual

57

pixels in a data stream may become separated from one another when it

passed through certain hardware elements.

• Data Valid Control Line: indicates whether or not a pixel value has become

corrupted through processes such as division by zero or the resulting border

pixels from convolution

These control lines help guiding the hardware glyphs to synchronize and control

operations on data streams. More details of these control lines can be found

in [21].

3.3 Front-end Flow

Using Cantata, the designer can develop the application by interconnecting

CHAMPION glyphs to form the Cantata workspace. Simulation, data analysis

and visualization can be performed in Cantata. Once the desired functional

ity of the application is achieved, CHAMPION front-end converts the graphical

program to a synchronized netlist with matching net width.

3.3.1 Converting Cantata Workspace to CHAMPION Netlist

The first step in the front-end flow consists of translating the Cantata workspace

into a more graph-oriented netlist format. The netlist format is a directed hy-

pergraph where each glyph is represented as a node and the interconnections

between glyphs are represented as directed hyperarcs. Based on the information

58

of the glyph, weights are assigned to the nodes and hyperarcs of the directed

graph. The weights of the nodes correspond to the size in terms of the number

of logic blocks, and the weights of the hyperarcs correspond to the net-width

of the glyph interconnections. This netlist format simplifies the use of graph

theories and network optimization theories during the data synchronization and

partitioning process.

3.3.2 Data Width Matching

Since Cantata uses the polymorphic data model, the data size conversion is han

dled automatically by the Cantata glyphs. The users do not have to worry about

the difterence in sizes for the input and outputs of the Cantata glyphs. However,

the inputs and outputs of each hardware glyph corresponding to the Cantata

glyph have fixed data width. If an input and an output of different sizes are

connected together, one of them must be converted to match the other.

Two types of data size mismaitch can be found. In a hardware application,

some functions may produce results that require fewer bits for their outputs than

for their inputs. Consequently, glyphs cascaded into one another will progres

sively require a narrower data path. When one path of operations is connected

to a parallel path, a mismatch in the number of bits for these inputs may occur.

This mismatch is called a positive mismatch since the bit width of the net carry

ing the data is larger than the bit width of the net receiving the data. An example

of a positively mismatched data path is shown in Figure 3.8(a). A software tool

59

8

8

9 8

add_8
1

negate_8

►
and 8

(a)

8

8

7^

add 8
9

7^ truncate_9_8

negate_8 /

and 8

(b)

Figure 3.8: Positive mismatch, (a) Example of a positively mismatched data
path and (b) insertion of "truncating" glyph in positively mismatch data path.

60

has to be developed to analyze each data path and truncates the additional bits

when appropriate. The truncating process (shown in Figure 3.8(b)) is performed

by inserting a "truncating" glyph at the mismatch data path. The "truncating"

glyph will remove the additional data bits from the signal.

Similarly, some hardware functions may produce results that require more bits

for their outputs than for their inputs. Glyphs cascaded into one another will

progressively require a wider data path to avoid round off errors. Consequently,

a negatively mismatched data path such as the one shown in Figure 3.9(a) may

occur. In this case, a "padding" glyph (shown in Figure 3.9(b)) has to be inserted

at the mismatched data path.

3.3.3 Data Synchronization

In the graphical programming environment such as Cantata, executions of the

programs are data driven. That is, each Cantata glyph will begin execution only

when all its input data is available. However, hardware systems are clock driven.

At each clock cycle each hardware glyph will process whatever data is presented

at its inputs.

Due to the difference in the processing time of each hardware glyph, data

traveling over different concurrent paths may arrive at the inputs of a multi-

input glyph at different times. To insure that each glyph generates the correct

time-sequenced output, it is necessary that each glyph receive all its input data

at precisely the same time. This requirement is often referred to as data synchro-

61

8

add_8

8 8 9
► negate_8 j—►

and 9

(a)

8

8 add_8
'

8
► negate_8

8
-NrtislW

9
and 9

(b)

Figure 3.9: Negative mismatch, (a) An example of a negatively mismatched data
path and (b) Insertion of "padding" glyph in positively mismatch data path.

62

T,=0 T„=l

I I.

i I.
T„=0 T„=2

1=2

5 I

T.,=2

T„=3

T„=0

"lA

0,

T„=0

Figure 3.10: An unsynchronized digital system.

nization.

To illustrate the data synchronization problem, the digital system shown in

Figure 3.10 will be used. In this system, there are two primary input modules,

two primary output modules and five processing modules labeled Pi through P5.

The processing time for each processing modules are labeled r„. Note from the

figure that the primary input and output modules have zero processing time.

This is due to the fact that these modules are storage devices for the input and

output data. No data processing will be performed in these modules.

We assume that all the input data are readily available in the input modules.

Therefore, all input modules are time synchronized. We also require that all the

outputs are made available at the same time. This is because if another digital

system is connected to this system, these output modules will become the input

modules for the new digital system. In addition, this requirement also allows us

to break a large digital system into smaller subsystems for synchronization.

Examining this system, it is clear that the two input signals entering P4 are

63

not synchronized; the lower signal arrives one time unit sooner than the upper

signal. Also, the primary output, O25 becomes available two-unit times earlier

than Oi.

There are two main approaches to synchronize the various signals impinging

on each processing module. The traditional approach is to use a control circuit

and edge-triggered registers to synchronize the data. The registers are inserted

at the input of each processing module (as shown in Figure 3.11). They are used

to feed and hold the inputs to the modules. When all the input data have arrived

at the register, the register is triggered by the control signal generated by the

control circuit. The control circuit generates the signal only when all the signals

have arrived at the inputs of the processing module. Therefore, the control circuit

is designed based on the delay information of all the processing modules in the

digital system.

When the register is triggered, it will feed all the input data to the processing

module simultaneously. The output data of that particular module is then kept

unchanged by holding the input data using the register. The input signal has.

to be held until the last module has finished processing the data. As a result,

the digital system using this data synchronization approach has a pipelined time,

which is equal to the processing time of the critical path (the data path having

the highest processing time). Each time a new input signal is presented to the

digital system, the signal has to be held unchanged for the length of the pipelined

time before another new signal can be presented to the system.

64

Input
J aj i

I CO f
I'n)!

-i oj r
cc

Module 1
1

Output

i

"! Control 1
-1 Circuit 1 i

1 ̂ !

n £ ;I OT i_
~ ra;
. 0} '

cc,

j Processing
! Module

^ ' m i—^ Processing
i §>!—! Module
iCC I

Figure 3.11: A digital system which uses clock-triggered registers to synchronize
the data.

The high pipelined time of the synchronization approach using edge-triggered

registers results in low throughput rate. To increase the throughput rate, data

synchronization can be achieved by introducing delay buffers into the digital

system. These delay buffers, are inserted at various locations to delay the signal

on the data path which has lower processing time, and therefore, match it with

the data path with higher processing time. For this synchronization approach,

the pipelined time is zero. That is, the input signal can be presented to the

system continuously without having to hold each new input signal, as in the case

of the synchronization approach using edge-triggered registers. This feature is

essential in many pipelined designs, which require high throughput rates.

For the delay buffer insertion approach, synchronizing the system requires one

to determine the lengths and locations of the delay buffers necessary to balance

the various data paths. Straightforward methods for performing this task are not

difficult to develop. For example, each multi-input processing module might be

65

examined to check if all the inputs have the same delay from the primary input

modules. If all the inputs do not have the same delay, the input with the largest

delay is identified. For those inputs with delays that are less than this maximum

value, delay buffers must be inserted into each of these "early" input lines in

order for all the inputs to the module to have equal processing delay from the

primary input modules.

Applying this method to Figure 3.10, we will find that two delay buffers with

a total of three unit time delays are recpiired to synchronize the system (as shown

in Figure 3.12(a)). One buffer with a unit time delay has to be inserted in the

path between P2 and P4. Another buffer with a two-unit time delay has to be

placed between P5 and Oi.

These straightforward methods, however, do not necessarily provide the op

timum solution in the sense that the total number of delay buffer units used is

not necessarily a minimum. The delay buffers can always be moved forward or

backward along the data path in order to achieve a maximal amount of delay

buffer sharing. This can be seen in Figure 3.12 where inserting the delay buffer

between p and P2 allows both p-P^ and P-O2 paths to share the delay. There

fore, a total of two unit time delays are required, compared to three unit time

delays required in Figure 3.12(b).

Some optimization algorithms can be employed to calculate a set of buffer

lengths and insertion points that maximizes the amount of buffer sharing and

therefore, minimizing total length of the delay buffers required. In CHAMPION,

66

T=0

T.=0

T.=l T =2

lo
►

►

T =2 T =2

T=3

\=0
O,

O.

T =0

(a)

T.=0

T, =0

T,=l T,.=2

lo —- p,
►

► p.

»-

T=2

uJ"

T =2

T =3

T,=0

o,

o.

T =0

(b)

Figure 3.12: Synchronization approaches, (a) The result of synchronizing the
system using the simple approach and (b) an optimum synchronization.

67

the algorithm developed by Hu [9] is adopted.

Research Work in Delay Buffer Minimization Problem

Many algorithms have been proposed in numerous publications to solve the prob

lem of inserting and/or minimizing the number of delay buffers. In [15], Lee and

Chang have proposed a systematic way of solving the buffer optimization prob

lem based on integer linear programming (ILP) theory. Since no polynomial-time

algorithm is available for general integer linear programming problems [24], a

pseudo-polynomial-time algorithm is suggested by Lee and Chang. However, us

ing a pseudo-polynomial-time algorithm, the computation time needed to solve

a buffer minimization problem of a large network can still be excessive. Lee

and Chang overcame this difficulty by using a path decomposition technique to

partition large networks into smaller sub-networks. However, this decomposi

tion method cannot guarantee that a given network is partitionable. In fact,

non-partitionable networks can easily be found [9].

In [16], the authors assume that a given network has already been synchro

nized. That is, straightforward synchronization method is first used to insert the

appropriate delay so that each module receives all its input data precisely at the

same time. The task is then to rearrange these buffers to minimize the num

ber of delay buffers in the already-synchronized pipelined system. The authors

show that the buffer minimization problem for the already-synchronized system

is the linear programming (LP) dual of a minimum-cost flow problem, which can

68

be solved in polynomial time. Thus, the entire synchronization process requires

two separate steps: synchronization followed by minimization. The synchro

nization step requires a processing time which is proportional to the number of

interconnections contained in the network, while the minimization step can be

accomplished in polynomial time. As a result, the two-step approach proposed

in [16] has an overall polynomial time complexity.

In [9], X. Hu et al. show that the synchronization and buffer minimization

can be combined into a single step. That is, a single formulation can be used

to solve the problem of minimizing the total buffer length for the synchroniza

tion of a system. The authors illustrate that the problem of synchronizing a

pipelined system with minimum buffer stages is also the LP dual of a minimum-

cost network-flow problem. Either polynomial time algorithms such as the ones

in [23], and [14] or the simplex technique [19] can be used to solve the buffer

minimization problem. A globally optimal solution is always guaranteed using

the formulation proposed by [9].. In addition, the original formulation can also

be extended to handle systems with hyperarcs and feedback loops.

Due to the advantages offered by the algorithm proposed by X. Hu et ah, the

formulation in [9] was adopted to solve the data synchronization problem. Slight

modification to the formulation is required in order to use it for solving the data

synchronization problem in the CHAMPION project. In the next few sections,

the formulation in [9] is presented.

69

Processing
Modules

P..

j Processing
^ Modules

! p..

u
"UV

V

Figure 3.13: A block diagram of processing modules with their corresponding
SFG.

Problem Formulation

To solve the buffer minimization problem using the algorithm proposed in [9],

the pipelined system has to be represented using a signal ffow graph (SFG).

In the SFG, each processing module is represented as a node and each data

path between the modules is represented as a directed edge. The weight of the

edge directed from node u (corresponding to processing module P„) to node

V (corresponding to processing module Py) is an unknown delay variable dyy

(as shown in Figure 3.13). This delay variable corresponds to the delay

buffer which has to be inserted between P„ and Py for synchronization. It will

be determined during the synchronization process (solving of the delay buffer

minimization problem). The value of computed during the synchronization

process equals the size of the delay buffer required to be inserted between node

u and node v.

70

Ga M O

Figure 3.14: Insertion of input and output nodes in the SFG.

Besides the nodes and edges that represent the modules of a system, two

virtual nodes are introduced. One is termed the primary input node, i, while

the other is called the primary output node, o. .A,ll of the input modules of

the digital system will be combined and represented using the primary input

node, i. Similarly, all the output modules of the digital system will be combined

and represented using the primary output node, o. Therefore, in the SFG, all

input signals to the system originate at node i, and all outputs from the system

terminate at node o (as shown in Figure 3.14). Both these special nodes are

assumed to consume zero processing time.

Based on the rules stated above, a SFG representation can be constructed for

any given digital system. For instance, for the digital system shown in Figure 3.10,

the corresponding SFG is shown in Figure 3.15. The synchronizing problem is

then reduced to assigning optimal values to the delay variables in the SFG.

To synchronize a system, all input signals to any given module must arrive

T=1 ri T.=2
U

T. =0 ^01 1 3 !
T =3

\r34 U

i 0 :< ^ 4 "46

24

d„
02

^ 2 ►i 5
56

25

T =2 T =2

T=0

►: 6\ o j

Figure 3.15: The SFG representation of the digital system shown in Figure 3.10.

at the same time. In other words, the accumulated delays along all the distinct

paths from the primary input node i to a particular SFG node should be ecpial.

The accumulated delay along a particular data path is simply the sum of all the

weights of the edges and the processing time, T, of all the processing modules

on the path from i to u in the SFG. Denoting the path between node i and

u as Pj{u) and the total delay along Pj{u) as Dj{u), it follows that Dj{u) equals

the sum of the delays associated with.all the edges along Pj{u), i.e., it can be

expressed as:

Dj(u) = ■ dxy (3-3)

where (.r,y) represents an edge from node x to node y.

The synchronization problem can now be defined as assigning a value to each

delay variable, d^y, such that the values of Dj{u) for j = \,2y..ku are identical

for each and every u. Here, ku denotes the number of distinct paths from the

primary input to processing modules Py Thus, the task of synchronizing a SFG

may he seen to be equivalent to assigning values of to all graph nodes and

72

values duv to all graph edges such that

Dv — Du = {Tu + duv) (^-4)

holds for each and every pair of nodes, u and u, that are connected by an edge.

The synchronization-minimization problem can then be expressed as an ILP:

Minimize duv
(^)

Subject to : —Du + Dv — duv = Tu

ueV

V ev

(u, v) £ E

Du integer

duv > 0, integer

where E and V represent the sets of all edges and nodes in the SFG, respectively,

and (u,u) denotes a directed edge from node u to node v. The variables Du

and duv are determined based on the known processing time delay of each node,

Tu. Equations 3.5 form a standard description of an integer linear programming

problem. For the SFG shown in Figure 3.15, the integer linear programming

73

problem can be formulated as follows:

Minimize doi + do2 + di3 + di3 + ̂24 + ̂25 + <^34 + + d^Q

Subject to : —Dq + Di — doi — 0

—Do + D2 — do2 0

—Do + D2 — di3 = 1

-Do + D2-d2A = 2 (3.6)

—Do + D2 — ̂25 = 2

—Do + D2 — <^34 = 2

—Do + D2 — d^o — 3

—Do + D2 — dse = 2

Solving the Synchronization-Minimization Problem.

Several algorithms can be used to solve the integer linear programming problem.

However, none of those algorithms has polynomial time complexity unless sub-

optimal solutions are acceptable [9]. As a result, finding an optimum delay buffer

set using the general ILP approach may be very time-consuming if the SFG

consists of a large number of nodes and edges.

In [9], the author avoids solving the ILP using the following steps:

• Form the dual of the ILP.

• Convert the dual into a minimum cost network flow (MCNF) problem.

• Show that the constraint matrix of the MCNF problem is totally unimod-

ular.

74

• Show that for MCNF problem with totally unimodular constraint matrix,

the integer constraint can be relaxed.

To avoid solving the ILP, the dual of the formulation given in Equations 3.5 is

first constructed. Each constraint equality leads to a dual search variable, z^v To

illustrate the process of forming the dual, the ILP expressed by Equation 3.6 will

be used. Equation 3.6 can be expressed in a matrix form as shown in Table 3.2.

The dual of the ILP problem can then be formulated as shown in Table 3.3.

The dual shown in Table 3.3 can be represented using the following equations:

Maximize :
(u,v)

Subject to : V - V Zy,^ = 0 for u; G F (3.7)
{u,wJEE {WjvJeE

'^UV — 1

where E and V are the sets of all edges and nodes in the SEG. Note that the

constraints in Equation 3.7 can be expressed in a matrix-vector form, and the

resulting matrix is the transpose of the constraint matrix in Equation 3.6. This

confirms the validity of the dual set given by Equation 3.7.

The ILP given by Equation, 3.7 can be transformed into a minimum-cost

flow problem by introducing the new variable defined as Xuv — Zyy -{■ 1 .

Substituting x^y into Equation 3.7, the following minimum-cost flow problem

can be obtained:

Minimize : {-Tu) • ^uv
(UyV)

Subject to : ^ Xuw - T, Xy,y = Sy. for w (3-8)
{u,w)E.E

X^uv ^ 0

75

Ta
bl
e
3.
2:
 E
qu

at
io

n
3.
6
in
 m
at

ri
x
fo

rm
.

—
I

M
i
n
i
m
i
z
e

Su
bj

ec
t
to

:

£>
0

D
2

D
z

D
,

D
,

D
e

d
m

do
2

<^
13

a
dl
Sb

C?
24

ds
A

^4
6

ds
e

0
0

0
0

0
0

0
1

1
1

1
1

1
1

1
1

-
1

1
0

0
0

0
0

-
1

0
0

0
0

0
0

0
0

=

0

-
1

0
1

0
0

0
0

0
-
1

0
0

0
0

0
0

0
=

0

0
-
1

0
1

0
0

0
0

0
-
1

0
0

0
0

0
0

=
 1

0
-
1

0
1

0
0

0
0

0
0

-
1

0
0

0
0

0
=

 1

0
0

-
1

0
1

0
0

0
0

0
0

-
1

0
0

0
0

=

2

0
0

-
1

0
0

1
0

0
0

0
0

0
-
1

0
0

0
=

2

0
0

0
-
1

1
0

0
0

0
0

0
0

0
-
1

0
.
0

=

2

0
0

0
0

-
1

0
1

0
0

0
0

0
0

0
-
1

0
=

3

0
0

0
0

0
-
1

1
0

0
0

0
0

0
0

0
-
1
=

2

Table 3.3: Dual of the ILP expressed by Equation 3.6.

Maximize

Subject to

2oi ^02 •213a •2136 224 225 234 246 256

0 0 1 1 2 2 2 3 2

- 1 -1 0 0 0 0 0 0 0 = 0

1 0 -1 -1 0 0 0 0 0 = 0

0 1 0 0 -1 -1 0 0 0 = 0

0 0 1 1 0 0 -1 0 0 = 0

0 0 0 0 1 0 1 -1 0 = 0

0 0 0 0 0 1 0 0 -1 = 0

0 0 0 0 0 0 0 1 1 0

-1 0 0 0 0 0 0 0 0 <: 1

0 -1 0 0 0 0 0 0 0 < 1

0 0 -1 0 0 0 0 0 0 < 1

0 0 0 -1 0 0 0 0 0 < 1

0 0 0 0 -1 0 0 0 0 < 1

0 0 0 0 0 -1 0 0 0 < 1

0 0 0 0 0 0 -1 0 0 < 1

0 0 0 0 0 0 0 -1 0 < 1

0 0 0 0 0 0 0 0 -1 < 1

77

where represents the difference between the number of edges coming into the

node w and the number of edges leaving w. Equation 3.8 describes a minimum-

cost flow problem with — as the "cost" of edge {u, v) and as the "supply"

to node w. For the dual in Table 3.3, the MCNF problem is given by:

Minimize : -.Tisa - a:i36 - 2x24 — 2x25 — 2x34 - Zx4e - 2x53

Subject to ; —.tqi — X02 = —2

^01 :^13a •'^136 — 1

—.^02 — X24 — X25 = — 1
(3.9)

^13a T :^136 *^34 f

-X34 4- X24 - 0)46 = 1

— •'^^25 ~ •''-'56 n 0

— 3)46 + .T56 = 2

To show that the integer constraint of the MCNF can be relaxed, we have to

first prove that the constraint matrix of the MCNF problem is totally unimodular

(TU). A matrix Apxq is said to be TU if the determinant of each square submatrix

of A is equal to 1, 0 or -1. That is, if Bnxn with n < min(p, 5) G Apxq, and

dei{B) G {0,-1,1}, then A is TU. The definition of total unimodularity does

not show us how to prove that a matrix is TU. To demonstrate that a matrix is

TU, we will need the following theorems.

Theorem 3.1 [22] If a matrix A is TU, the transpose of A and (A,I) are also

TU.

Theorem 3.2 [29] Suppose that A is a matrix with elements equal to 0, +1,

78

-1, and such that each column has at most two nonzero elements. A is TU if

and only if its rows can be divided into two disjoint sets I\ and I2 satisfying the

following: If the two nonzero elements of a column have the same sign, one of

them is in I\ and the other is in I2. If the two nonzero elements of a column have

the opposite sign, both of them are in Ii or both of them are in I2.

Using these two theorems, we will first show that the constraint matrix of the

example MCNF problem in Equation 3.9 is TU. We will then extend the proof to

include the MCNF problem expressed by Equations 3.7. Expressing the MCNE

problem in matrix form, we get the matrix in Table 3.4.

The constraint matrix. A, shown in Table 3.4 can be expressed as:

B

I

(14) where B is given by

(3.10)

B =

-1 -1 0 0 0 0 0 0 0

1 0 -1 -1 0 0 0 0 0

0 1 0 0 -1 -1 0 0 0

0 0 1 1 0 0 -1 0 0

0 0 0 0 1 0 1 -1 0

0 0 0 0 0 1 0 0 -1

0 0 0 0 0 0 0 1 1

and 7 is a 9 X 9 identity matrix. From Theorem 3.1 , we know that to show

that A is TU, we only need to show that B is TU. Since matrix B satisfies the

79

Table 3.4: The MCNF problem in matrix from.

A =

-1 -1 0 0 0 0 0 0 0

1 0 -1 -1 0 0 0 0 0

0 1 0 0 -1 -1 0 0 0

0 0 1 1 0 0 -1 0 0

0 0 0 0 1 0 1 -1 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 1

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 , 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

80

condition Theorem 3.2, it can easily be seen that the constraint matrix, A, of the

MCNF problem expressed by Equations 3.8 can always be expressed in the form

A =
B

I

where 7 is a n x n identity matrix and n is the number of edges in the SFG. Since

each column of B represents a directed edge Xuv in the SFG, there will always be

two elements, one +1 and one -1, in each column. The -1 will be included in the

constraint equation of node u, and +1 will be included in the constraint equation

of node v. The matrix B will always satisfy the condition of Theorem 3.2.

Since the constraint matrix of the ILP in Equations 3.5 can be written as

the transpose of the constraint matrix of the MCNF problem in Equations 3.8,

the conclusion that the constraint matrix of the ILP in Eciuations 3.5 is also TU

follows directly after applying basic linear algebra theorems found in [18].

Since the constraint matrix satisfies the definition of unimodularity, the ILP

problem in Equations 3.5 and the MCNF problem in Equations 3.8 can be reduced

to a LP problem based on the following theorem:

Theorem 3.3 [8]: Let A be any m x n matrix of integers and b be any vector

oj m integers. Then the following two statements are equivalent.

• P{A, b) = Pr{A, b) for all beZ"".

• A is totally unimodular.

with P{A, b) = {x e R"" : Ax <b,x> 0} and Pi{A, b) = conv{P{A, b) n Z""].

81

The buffer synchronization-minimization problems can then be solved using linear

programming algorithm such as simplex method. With this, the integer solutions

are always guaranteed.

Methods for Solving the Buffer Minimization Problem

Both the ILP problems in Equations 3.5 and Equations 3.8 can be solved by relax

ing the integer constraint. Therefore, we have two methods for solving the buffer

minimization problem as shown in Figure 3.16. Method 1 consists of forming

the ILP expressed by Equations 3.5 and solving the ILP with the integer con

straint relaxed, and Method 2 consists of forming the MCNF problem expressed

by Equations 3.8, solving the MCNF problem with the integer constraint relaxed

and converting the in the MCNF to duv

Although Method 2 involves more steps than Method 1, Method 2 may con

sume less time since much efficient algorithms such as the one proposed by [23]

can be used to solve MCNF problem. The solution of the MCNF problem can

then be used to obtain the solution of the ILP in Equations 3.5 based on the

following theorem: ■'

Theorem 3.4 Complementary Slackness Theorem Let x" and w" be any feasible

solutions to the primal and dual problems. Then they are respectively optimal if

and only if

{cj-w''aj)x] = 0, i = l, . . .,n

82

Method 1

Digital System

SFG
Method 2

Formulate ILP

Problem

Formulate

MCFN

Problem

Relax Integer
Constraint

Relax Integer
Constraint

Solve LP

Solve MCNF

Convert Xnv to

Figure 3.16: Two methods for data synchronization.

83

and

w"{a'x'' — bi) = 0, i = I,... ,m

This theorem can be used to relate MCNF problem to the ILP problem in Equa

tions 3.5. It indicates that at least one of the two terms in each expression must

be zero. In particular,

> 0 w'aj — Cj

XJO'Cj < Cj = 0

u;," > 0 => s^x" = hi

a'x" > hi lu" = 0

Hence at optimality, if a variable in one problem is positive, then the corre

sponding constraint in the other problem must be tight. If a constraint in one

problem is not tight, then the corresponding variable in the other problem must

be zero. To show how this theorem can be used to convert the solution of the

MCNF problem in Equations 3.8 to the solution of the ILP in Equations 3.5, we

will use the example MCNF problem in Equations 3.9. Solving Equations 3.9,

we get

.Toi - 2, X02 = 0, .Tisa = 3, .ti36 = 0, X24 = L X25 - 0, .-C34 = 2, a;46 = 2, xse - 0

Using the equation, we have

Zoi = 1, Z02 = —1, ZiZa = 2, Zi3i = —1, Z24 = 0, 225 = "U •2^34 = 1; -^46 = U ̂56 = —1

84

Substituting these values of z^v into the equations in Table 3.3, we find that

Equations in row 8, 10, 12, 14 and 15 in Table 3.3 are not tight. Therefore, the

corresponding primal variables are zero. That is,

do\ = d\Za — ̂24 — ̂34 = d^Q = 0

Substituting 0 for these duv in Table 3.2 and also notice that Dq = 0, we have

the following simultaneous equations:

A = 0

D2 — do2 ' 0

—Di + A = 1

—Di + A ~ disb = 1

—D2 + A 2

—Di + D5 — dis - 2

—A + A "" 2

—Di + De = 3

—Ds + A ~ dse - 2

85

Solving these simultaneous equations, we get

Di=0

D2 = 1

-D3 " " 1

D4 = 3
(3.11)

Bg = 6

C?02 = 1

di3b = 0

dis + dse = 1

Equation 3.11 indicates that a delay buffer of one unit delay can be inserted at

either edge (2,5) or edge (5,6) to obtain an optimal solution. This is due to the

fact that edge (2,5) and edge (5,6) are on the same path. Inserting the unit delay

buffer in either location will give the same effect to the synchronization of the

system. As a result, we have two sets of solutions that give the same J^duv, which

is equal to 2. Using Simplex algorithm to solve the ILP problem in Table 3.2

with the integer constraint being relaxed will give us the following solution:

Do — 0, Di — 0, D2 — 1, D3 - 1, D4 = 3, D$ = 4, Dq — 6

doi — 0, do2 = I5 di3a = 0) dl3i, = 0, c/24 — 0) ̂25 = 1- <^34 = 0, C?46 = 0, f/56 = 0

This solution is consistent with what we found from the MCNF method.

System Containing Hyperarcs

An output connected to more than one input is called a hyperarc (shown in Fig

ure 3.17. If hyperarcs exist in the digital system, special representations of these

86

Po [—►! p, I

I
I •
I

i

►T Pn-I

Pn

Figure 3.17: Hyperarc.

nets need to be considered so that the above procedure can be applied to these

situations. One easy solution is to treat the hyperarc as having multiple ordinary

outputs and constructs the SFG as shown in Figure 3.18(b). The second repre

sentation can be obtained by inserting a virtual node, VI, with zero processing

time as Figure 3.18(c) shows. Another representation, which is proposed in [23],

is depicted in Figure 3.18(d). This representation uses a binary tree structure,

which systematically introduces virtual node to the SFG.

Figure 3.19 shows an example of the delay buffer required for the three dif

ferent types of SFG representations in Figure 3.18. In the example, a total of

12 units of delay buffers are required to synchronize the hyperarc represented

using the SFG representation shown in Figure 3.18(b). With the insertion of a

virtual node, the total number of delay buffers can be reduced to 6 as shown in

Figure 3.19(b). If the binary structure is used, the total number of delay buffers

can be reduced to 5 as shown in Figure 3.19(c). This example demonstrates that

87

PO PI

PO

—K P2

'—P3

(a)

PI

P2

P3

(b)

PO iffi;

(c)

PI

^ P2 i

< P3

PO -►w

(d)

. ►Sii ►; PI

A P3 "a P2 ;

Figure 3.18: Different representations of a hyperarc.

88

PO

—H

(a)

> P3

>, PI

PO VI

(b)

-►{|M P2

P3

PO -- ► VI
liiSi

(c)

-> V2 >, PI

~ A P3 m P2

Figure 3.19: Delays of the hyperarc.

89

some of the delay buffers can be shared along the hyperarc through the insertion

of the virtual node. The use of binary tree structure in representing the hyperarc

can greatly exploit the buffer sharing property. To fully exploit the buffer sharing

property, an algorithm must be used to arrange the processing nodes in the hy

perarc. Different arrangements of the processing nodes driven by a hyperarc may

vary the total number of buffers along the hyperarc because each arrangement

may cause different length delay buffer to be shared among the nodes driven by

the hyperarc.

3.4 ACS Back-end Flow

Once, all the data paths are matched and synchronized, the ACS back-end

flow can be used to map the netlist onto the ACS.

3.4.1 Partitioning

In ACS, which is composed of reconfigurable devices such as FPGA, each of the

reconfigurable devices has a certain capacity in terms of logic blocks. If the netlist

does not fit in a single reconfigurable device, the netlist has to be partitioned

into sub-netlists. One of the main problems in partitioning is complexity. The

research in partitioning theory has seen many algorithms with good results even

with today's design complexity. The main disadvantage of these approaches is

that they are based on gate-level net-lists, thus requiring hours to execute.

In CHAMPION, we drastically reduced the complexity by keeping the struc-

90

tural information of the netlist. The partitioning is performed at the glyph-level.

This yields very low netlist complexity (hundreds vs. tens of thousands). There

fore, partitioning is performed with netlists containing hundreds of nodes instead

of tens of thousands, and the partitioning process has a very short runtime (sec

onds vs. hours). Another advantage of performing partitioning at the glyph

level is that the functional flow information is preserved. Thus, debugging and

simulation of the system are facilitated even after the partitioning.

To further reduce the complexity of the circuit, we configure the pro

grammable logic components and their interconnects in the ACS board into a

linear array. With this topology, the partitioning operates on an order that pro

ceeds in a forward-only direction. . A new recursive partitioning method based

on topological ordering and levelization (RPL) [12] has been developed to take

advantage of this topology and further reduces the partitioning time.

For our design flow, the partitioning problem is based on the following con

straints: capacity per partition, number of I/O pins per partition, RAM access,

and temporal partitioning. The first two constraints are used to meet the limita

tions of the programmable logic components. The third constraint deals with the

memory access for each the programmable logic component. The architectures

of some of the ACSs require that a fixed number of local RAMs are available to

each FPGA for data writing and data reading. Therefore, a partition can contain

only a certain number of RAM access modules. The fourth constraint deals with

temporal partitioning of the ACS board. If the entire application cannot fit in

91

one board configuration, then multiple configurations of the board are necessary

and storage of intermediate results between board configurations is needed. In

this case, one pair of" RAM-access modules must be added to each configuration.

To solve the partitioning problem, three different approaches were investi

gated in our research. In the first and second approaches, we implemented two

existing algorithms: a hierarchical partitioning method based on topological or

dering (HP) [30] and a recursive algorithm based on the Fiduccia and Matthey-

ses bipartitioning heuristic (RP) [13]. Some modifications have been made on

these algorithms to take advantage of the acyclic nature of our net-list, and to

handle the RAM access constraint and the temporal partitioning constraint. A

new recursive partitioning method based on topological ordering and levelization

(RPL) [12] was also introduced. In addition to handling the partitioning con

straints, the new approach efficiently addresses the problem of minimizing the

number of FPGAs used and the amount of computation, thereby overcoming the

weaknesses of the HP and RP algorithms.

3.4.2 Netlist to Structural VHDL, Synthesis, and Placement & Rout

ing

After partitioning, the graph-based netlist format is translated into a structural

VHDL representation. The required I/O ports for each of the sub-netlists are

then added to the VHDL files. The resulting VHDL files are synthesized and

merged with the pre-compiled VHDL components corresponding to the Cantata

92

glyphs. Each sub-netlist is then placed and routed.

3.4.3 Host Program Generation

The final step in the ACS design flow is the generation of the host program.

A CHAMPION software tool will generate the host program to download the

configuration file to the corresponding programmable logic component on the

ACS. A set of function calls to communicate with the board is provided by the

manufacture of the ACS. The host program will initialize the ACS board and

download the programming bit files using these function calls. The host program

will also read the input data from the host workstation, send the data to the ACS

and write the output back to the host workstation.

3.5 ASIC Back-end Flow

3.5.1 Netlist to Structural VHDL

To implement the design in ASIC, the entire graph-based netlist format is first

translated into structural VHDL. No partitioning is required in this process since

the entire design will be implemented in a single semiconductor chip.

3.5.2 Design Compilation and Optimization

Once the VHDL description of the design is obtained, the VHDL description is

synthesized and optimized to achieve the optimal gate-level for the design. The

synthesis and optimization process is performed using Synopsys Design Compiler.

93

A software tool was developed to automate the synthesis and optimization

process. Two compilation strategies have been implemented in CHAMPION:

• Top-down compile method.

• Bottom-up compile method.

The top-down compilation strategy compiles the VHDL source by reading

the entire design at once. All the glyphs in the design are then grouped and

flattened. The flattened design is then synthesized and optimized. The top-

down compile strategy provides better results since the optimization is performed

across the entire design. It provides a push-button approach since the inter-glyph

dependencies are handled automatically through the flattening of the design.

However, this approach is extremely memory intensive. It also requires a longer

compile time compared to the bottom-up approach.

The second compilation approach is performed bottom-up. The compilation

process begins at the lowest level and ascends to the topmost level of the design.

After synthesizing and optimizing each sub-design, the sub-design is preserved

from being modified or replaced during subsequent optimizations. This approach

allows the optimization process to be performed on one sub-design at a time

instead of the entire design at once. Thus, less memory resources and compile

time are required for this approach. However, the quality of the results obtained

Irom this approach is not as good as that of the top-down approach since the

optimization is performed locally. That is, the optimization is only performed to

one sub-design at a time.

94

Depending on the compilation approach used, two different types of gate-level

netlists are produced after the compilation process. If the top-down approach is

used, the resulting gate-level netlist consists of a flattened design. If the bottom-

up approach is used, the resulting netlist is hierarchical.

3.5.3 Physical Layout Generation

The final step in the back-end flow of ASIC is the generation of the physical lay

out. The layout generation is performed using the commercial software EPOCH.

The steps for generating the physical layout usipg EPOCH are shown in Fig

ure 3.20. The EPOCH tool reads the gate-level netlist and generates the standard

and datapath cells corresponding to the named parts in the technology library

specified by the user. These cells are then placed in a manner that optimizes for

density, route minimization and timing. The placement is performed bottom up,

starting at the lowest level and ascending to the highest level composites. Global

and detail routing on the cells are then performed using the routing channels

created during placement.

After the routing process, the sizes of the buffers are adjusted based on the

capacitive loads of the cells and routes. Once the appropriate size is chosen,

the cells affected are regenerated with the newly sized buffers. The power con

sumption at the different power nodes on the chip is then calculated and the

appropriate widths to the power rails are assigned. The placement of the cells is

adjusted to accommodate cells that have become larger due to upsizing of buffers.

95

Verilog

Cell

Generation

Placement

Routing

Buffer

Sizing

Chip Core

Figure 3.20: The design flow of Epoch tool.

96

The cells are then rerouted with the correct power rail sizes. The final output is

a finished design consisting of the core of" the ASIC.

As in the synthesis process, two approaches to the physical layout generation

are implemented. If the gate-level netlists provided by the synthesis process is

a flattened netlist, the top-down approach will be used., The entire netlist is

treated as a single design and the steps in Figure 3.20 are performed. Since the

placement, routing and buffer sizing are performed for the entire design, this

approach requires more memory resources and longer compile time compared to

the bottom-up approach

If the gate-level netlist is hierarchical, the bottom-up approach is used. The

entire layout process in Figure 3.20 are performed for each sub-design, starting at

the lowest level and ascending to the topmost level. After generating the layout

for each sub-design, the layout of the sub-design is preserved from being modified

or replaced during subsequent layout processes. This approach allows the layout

process to be performed on one sub-design at a time instead of the entire design

at once. Thus, less memory resources and compile time are required for this

approach. However, the area of the core generated using this approach is usually

larger than that of the top-down approach.

97

CHAPTER 4

Implementation

The design flow (shown in Figure 4.1) for automatic mapping of Cantata ap

plications onto ACS and ASIC has been implemented in this dissertation. A

complete design environment that allows the users to specify, simulate, debug

and implement their applications on ACS and ASIC has been developed. This

design environment, named CHAMPION, consists of a set of software tools that

implements all the steps of the design flow in Figure 3.1. For this design envi

ronment, the Wildforce board from Annapolis Micro Systems [1] was chosen as

the ACS board for the ACS flow. For the ASIC implementation, the Hewlett

Packard CMOS processes HP26G was used.

This chapter describes all the software tools in CHAMPION. Sections 4.1

and 4.2 pi'ovide brief descriptions on the Wildforce board and the HP26G tech

nology. Section 4.3 describes the two different user interfaces developed for the

software design environment. In Section 4.4, the software tools developed for

the glyph development flow are presented. The software tools implementing the

front-end flow are then described in Section 4.5. Finally, Sections 4.6 and 4.7

provide details of the tools implemented for the ACS and ASIC back-end flow

respectively.

98

Pr
ec
om
pi
le
d

Li
br

ar
y

N
e
w
 G
l
y
p
h

;

De
ve

lo
pm

en
t J

C
a
n
t
a
t
a

i-

G
l
y
p
h
s

In
st
al
la
ti
on

W
o
r
k
s
p
a
c
e

j

to
 N
et
lL
st

i

X
N
F

—

E
D
I
F
 =

D
a
t
a
 W
i
d
t
h
 !

Ma
tc

hi
ng

i

Sy
nc
hr
on
iz
at
io
n

t
i
i
i
i
L
 .
l
i
i
i
u
i
u
t
a
i
i
i
i
i
i
i
i
i
i

1
I

■I
1^
■

W
Jli

tai
'iu

m
-I w

I

A
S

IC

H
o
st

P
ro

gr
am

A
u

to
m

a
tio

n

Sy
nt

he
si

s
an

d
P

la
ce

 &
 R

o
u
te

N
e

tli
st

 t
o

S
tr

u
ct

u
ra

l
V

H
D

L

I
 '-■

r-
jr

\
P

hy
si

ca
l L

ay
ou

t.;
';

I
 G

en
er

at
io

n
I D

es
ign

 C
om

pil
ati

on
j A

nd
Op

tun
^tl^

n J
N

e
tl
is

t
to

S
tr

u
ct

u
ra

l
V

H
D

L

Fi
gu

re
 4

.1
:

De
sig

n
flo

w
of

 C
H

A
M

P
IO

N
.

Table 4.1: Resources on XC4013XL and XC4036XL FPGAs. Source: Xilinx, Inc,
The Programmable Logic Data Book 1998.

Logic

Cells

CLB

Matrix

Total

CLBs

Number of

Flip-Flops

Equivalent

Gate Count

XC4013XL 1368 13 X 13 576 1536 10,000 - 30,000

XC4036XL 3078 36 X 36 1296 3168 22,000 - 65,000

4.1 Wildforce Board

The Wildforce board from Annapolis Micro Systems (AMS) was chosen as

the first ACS board to be used in the CHAMPION project. It is a PCI-bus card,

which contains 4 Xilinx XC4000 family chips for computational purposes. These

four FPGAs are the XC4013XL FPGAs and are referred to as processing elements

(PEs) by AMS. The four XC4013XL FPGAs are designated as PEl, PE2, PE3

and PE4. A fifth Xilinx XC4000 chip for communicating with the host computer

is also included in the board. It is a XC4036XL FPGA and is referred to as

control processing element. The XC4036XL is designated as CPEO. Table 4.1

shows the resources on the XC4013XL and XC4036XL FPGAs.

CPEO has more than twice the amount of CLBs compared to the other

FPGAs. It also includes control lines for various resources on the board, such

as the external I/O interface and crossbar configuration register. These control

lines are not available to the other four FPGAs.

ICQ

I pa
, Inicrface Local Bus 32

T"
T

FIFOO

T.

FIFO I

!
j Xilinx

4036XL i
FPGA I

j

! Local RAM |
4npEo

Xilinx

4013XL

FPGA

Local RAM

A peT

- 36-bit Data Path

Crossbar

i;
Xilinx 4

4013XL !
FPGA

Local RAM |
i PE2

I

Local RAM '

PE3

FIFO 4

Xilinx ^
4013XL I
FPGA i

I

Xilinx ^
I 4013XL '

FPGA

Local RAM ;

~AnpE4

Figure 4.2: A simplified block diagram of the Wildforce board.

Each FPGA on the board has a small daughterboard, which allows memory or

a digital signal-processing chip to interface with the FPGA. Each of the FPGAs

on the Wildforce used in CHAMPION has 32 KByte of 32-bit SRAM on its

daughterboard. A dual-port memory controller-is included in the daughterboards

to allow both the FPGA and the host computer to access the SRAM.

A simplified block diagram of the Wildforce board is shown in Figure 4.2. The

four PEs are connected together in a linear array by a 36-bit systolic bus. All

five FPGAs can communicate with each other through a 36-bit crossbar, which

selectively allows connections between any of the processing elements. Since

CPEO is not connected to the systolic bus, it can only connect to the processing

elements through the crossbar.

To reduce the complexity of the Wildforce board to a more manageable level, a

101

pa
Local Bus

Inicrfncc

36-bit Data Path

Crossbar{ Xilinx
! 4036XL

FPGA

! Local RAM
' ̂~PEO

i Xilinx
i 40I3XL
i FPGA

! Xilinx•! Xilinx

i 4013XL
I FPGA

Xilinx

4013XL 4013XL

FPGAFPGA

Local RAM ^Local RAM ; Local RAM ;
A PE2

Local RAM

A PE3A FEl

Figure 4.3: Wildforce board as used in CHAMPION.

constrained configuration of the board was used in CHAMPION. This constrained

configuration of the board did not use any of the FIFOs avaliable on the board.

Communication between the host computer and the board was performed through

the SRAM associated with each PE. The PEs and their interconnects in the ACS

board was configured into a linear array and the direction of all connections

between the PEs was fixed in one direction only. With this configuration, all the

signals started in CPEO and traveled to PEl. No signals could travel from PEl

back to CPEO. Similarly, no signals were allowed to travel from PE2 to PEl.

The signals were only allowed to travel from PEl to PE2. The configuration of

the Wildforce board used in CHAMPION is shown in Eigure 4.3.

AMS provides a set of VHDL templates that define the signals used in the

Wildforce board. These modifiable templates were developed for the Synplify

102

tool from Synplicity. Thus, in the CAHMPION ACS flow, Synplify was used to

synthesize all the hardware glyphs and designs to be mapped onto the Wildforce

board.

4.2 HP26G

In the CHAMPION ASIC flow, the physical layouts of the cores were gener

ated in the Hewlett Packard HP26G technology. The HP26G is a 0.8 um CMOS

process. The HP26G process uses 3-metal layers for routing. The designs imple

mented in the HP26G technology use a 5 Volt power supply.

4.3 CHAMPION Graphical User Interface and Command Line User

Interface

CHAMPION supports both the graphical user interface (GUI) and command

line user interface (CLUI). If a workstation with the X Window System is used,

the CHAMPION GUI can be used to execute all the tools in CHAMPION. On

the other hand, if a workstation without the X Window System is used, the CLUI

can be used to execute all the CHAMPION tools, except for tools for viewing

schematics of the designs.

Figure 4.4 shows the CHAMPION GUI. The CHAMPION GUI provides a

menu-driven interface to all the CHAMPION tools for the ACS and ASIC map

ping. The GUI frees the user from having to learn and use the command line

103

m
m
r
n
m

language. It allows the user to setup up the CHAMPION project, specify the

ACS hardware architecture or ASIC technology, and execute all the CHAMPION

tools. In addition, the GUI also facilitates the data transfer from one CHAM

PION tool to another.

All the tools in the CHAMPION design environment can also be invoked

at the UNIX command prompt. At the UNIX command prompt, the user can

enter commands composed of command names, arguments, and variable values

to perform the ACS and ASIC mapping. The CLUI allows shell script to be used

to facilitate the ACS and ASIC mapping.

The user can use either the CHAMPION GUI or CLUI to perform the ACS

and ASIC mapping. In fact, the user can use both interfaces, moving between

them, depending on which interface is most convenient or informative for a certain

task. For debugging a design, the CHAMPION GUI is better than CLUI because

it can be used to view the schematic and other results after the execution of each

tool. However, if the user is proficient with CHAMPION, CLUI is often found to

be sufficient and easier to use. For example, the user can create script files to be

executed repeatedly from the UNIX command prompt, modifying values during

each cycle to optimize a design. In this case, the GUI is only required to view

the schematics or tool reports.

105

4.4 Glyph Development Flow

A set of library glyphs has been developed in the CHAMPION project. New

library glyphs can be developed and added to the CHAMPION library as needed.

A set of software tools can be used to facilitate the process of developing, verifying

and installing the new glyphs in the CHAMPION library. This set of tools

constitutes the glyph development flow.

4.4.1 Glyph Development Tools

To incorporate a new glyph into the CHAMPION library, two versions of the

glyph, a fixed-point C/C-f + version and a VHDL version, are required. To ensure

the same functionality between the C/C+-t- version and the VHDL version, the

glyph parameters and its functionality must first be defined. Based on these

predefined parameters and functionality, the fixed-point C/C-f-1- program for the

glyph can be generated.

Once the C/C-f+ program is developed, a hardware version of the C/C+-I-

program must be developed using VHDL. The functionality of the VHDL code

must be identical to that of the C/C-|--|- program. This can be achieved by using

the C/C-f-f- program to generate a set of output vectors for a set of applied input

test vectors. These input and output vectors constitute a test bench that is used

to verify that bitwise identical behavior is achieved between the C/C-l—|- program

and the VHDL code.

To accelerate the glyph development process, the commercial software, A|RT

106

Library and Builder [11] from the Frontier Design has been integrated to the

glyph development flow. The A|RT Library and Builder free users from having

to generate the VHDL description of the hardware. They provide users with the

ability to generate the VHDL code directly from a C-code specification.

The A|RT Library is a C++ library that allows the user to add fixed-point

arithmetic to C or C++ programs. A|RT Library consists of a set of C++ classes

(as shown in Figure 4.5) with the characteristics of fixed-point data types and a

set of operators for these fixed-point data types. The fixed-point classes model

the intended behavior in a bit-precise way, including overflow and quantization

effects. Therefore, the user can take full control over the number of bits and preci

sion that is used to represent the data, regardless of the compiler and computing-

platform. Once the C/C++ program has been developed, the A|RT Builder can

be used to convert the fixed-point C/C++ applications to synthesizable VHDL.

4.4.2 Glyph Installation Tools

To complete the glyph development process, the C/C++ code and the corre

sponding VHDL codes have to be installed in Cantata and CHAMPION precom

piled library respectively. Several tools can be used to facilitate the process of

installing the C/C++ and VHDL codes. To install the C/C++ program in Can

tata, the Khoros tools. Craftsman and Composer [2] can be used. The Craftsman

tool allows the creation and deletion of glyphs for Cantata. It also allows the

users to modify the glyph attributes such as the description, category, subcat-

107

Signed Fixed-Point
Fix<w,d>

Fix<8,3>
I I

• I I

Unsigned Fixed-Point
Ufix<w,d>

Ufix<8,3>

Signed integer
lnt<w>

int<8>

Unsigned integer
Uint<w>

Uint<8>

Figure 4.5: Art Library classes [4].

egory and icon name. When creating a new glyph for Cantata, the Craftsman

tool generates a complex C/C++ wrapper that provides the means for handling

operations such as data type conversion, data synchronization and data transfer

between glyphs. The C/C++ code for the glyph can then be inserted in this

wrapper with the help of the Composer tool. Once the C/C++ code has been

inserted in the wrapper, the Composer tool can be used to compile the code. Dur

ing the compilation, the Composer tool automatically generates an icon for the

glyph in Cantata. Applications can be developed in Cantata by interconnecting

this icon with other icons in Cantata.

To automate the process of installing the hardware glyph in the CHAMPION

library, a software tool, called Geninf was developed. Geninf automates the

process of synthesizing the VHDL code and generating the INF file. It first

108

TCHt Precompiled Library

VHDL—

Geninf

VHDL—
Post-mapping

Simulation

XNF — EDIF=

INF-

Figure 4.6: Glyph installation process using Geninf.

generates a Tool Command Language (TCL) description of the hardware based

on the hardware architecture specified in the technology file (TCH file). The TCL

file is then executed to synthesize the VHDL code and to obtain the required

technology-dependent netlist file (XNF, EDIF, AHDL, DSL or QDIF formats).

The synthesis is performed using the commercial logic synthesis tool, Synplify.

Based on the output of the synthesis, Geninf will then generate an INF file for

storing the size, latency and I/O data bit-widths of the hardware glyph. This

information will be used during the data width matching, data synchronization

and partitioning processes. The generated INF and technology-dependent netlist

file will then be stored in the CHAMPION precompiled library to complete the

glyph installation process. The hardware glyph installation process using Geninf

is shown in Figure 4.6.

109

Khoros Workspace:
• Glyphs
• Interconnections

• Hierarchical Information

Precompiled Library (INF files)
• Glyph size: number of LB
• Net Width ; number of bits

• Latency : number of clock cycles

WSP2NET

CHAMPION Netlist:

• Nodes

• Nets

• Node weights
• Net weights ^—

Figure 4.7: Conversion of Cantata workspace to CHAMPION netlist.

4.5 Front-End Flow

4.5.1 Conversion of Cantata Workspace to CHAMPION Netlist

The first step in the mapping process is to convert the Cantata workspace to

CHAMPION netlist. A software tool, named Wsp2net, was developed to perform

this task. WspSnet (shown in Figure 4.7) converts the Cantata workspace into a

more graph-oriented netlist format. The netlist is a directed hypergraph where

each glyph is represented as a node and the interconnections between glyphs

are represented as directed hyperarcs. Based on the information from the INF

file, weights are assigned to the nodes and hyperarcs of the directed graph. The

weights of the nodes correspond to the size in terms of the number of logic

blocks, and the weights of the hyperarcs correspond to the net-width of the glyph

interconnections.

4.5.2 Data Width Matching

A CHAMPION tool, called Widthmatch, was developed to perform the data

width matching. Widthmatch tracks and matches all the positively and nega

tively mismatched data paths. If a positively mismatched data path is found,

Widthmatch generates a "truncating" glyph and inserts it in the data path. In

order to generate the "truncating" glyph, Widthmatch first generates the VHDL

file for the glyph. The VHDL file for a sample "truncating" glyph is shown in

Figure 4.S(a). This glyph truncates a 9-bit signal to an 8-bit signal. Once the

VHDL file is generated, Widthmatch invokes Geninf to synthesize and install the

"truncating" glyph in the CHAMPION library. The hardware architecture of the

truncate.9-8 glyph in Figure 4.8(a) is shown in Figure 4.8(b).

If a negatively mismatched data path is found, Widthmatch generates a

"padding" glyph and inserts it in the data path. Widthmatch generates the VHDL

file for the glyph, and invokes Geninf to synthesize and install the "padding"

glyph in the CHAMPION library. The VHDL file for a sample "padding" glyph

is shown in Figure 4.9(a). This glyph pads an 8-bit signal to a 9-bit signal.

The hardware architecture of the pad-9-8 glyph in Figure 4.9(a) is shown in Fig

ure 4.9(b).

4.5.3 Data Synchronization

To synchronize the CHAMPION netlist, a set of tools was developed. A CHAM

PION tool, Net2sfg, was developed to first convert the netlist to signal flow graph

111

~ Filename: truncate_9_8.vhd
- Generated by : Widthmatch
- Date : Mon Mar 26 17:11:14 2001

library ieee;
use ieee.stdJogic_1164.ali;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.aii;

entity truncate_9_8 is
generic (q num input bits: positive:= 9;

g_num_output_bits: positive:= 8);
port (i: in std_logic_vector(g_num_input_bits -1 downto 0);

o: out std_logic_vector(g_num_output_bits -1 downto 0));
end truncate_9_8; '

architecture behave of truncate_9_8 is
begin

0 <= i(g_num_output_bits -1 downto 0);
end;

(a)

r7:01

(b)

Figure 4.8: Example of truncating glyph, (a) VHDL file for a truncate_9_8 glyph
and (h) the corresponding hardware architecture.

112

~ Filename: pad_8_9.vhd
~ Generated by : Widthmatch
-- Date : Mon Mar 26 17:11:14 2001

library leee;
use leee.stdJoglc_1164.ail:
use ieee.stdJogic_arith.all;

I ; use ieee.std_iogic_unsigned.aii;

i'i
I I entity pad_8_9 is
: i generic (g_num_input^bits: positive:= 8;
! i g_num_output_bits: positive:=9);
j j port (i: in std_logic_vector(g_num_input_bits-1 downto 0);
, ' o: out std_iogic_vector(g_num_output_bits-1 downto 0));

I end pad_8_9;

i I architecture behave of pad_8_9 is
I I begin
!-.j o(g_numJnputJbits -1 downto 0) <=' i(g_num_input_bits -1 downto 0);
| , i o(g_num_output_bits -1 downto g_num_input_bits) <= "0";

! I end;

(a)

0

i[7:0] iza
o[8:0];^

(b)

Figure 4.9: Example of padding glyph, (a) VHDL file for a pad_8-9 glyph and
(b) the corresponding hardware architecture.

113

Table 4.2; Comparison of execution time of Simplex algorithm.

LP problem Time required to solve the LP Problem

Highpass filter(16 nodes, 23 nets) 1 second

ATR(135 nodes, 321 nets) 2 seconds

(SFG). Once the netlist is converted to SFG, the CHAMPION tool, Lp-form,

can be used to formulate the linear programming (LP) problem for the delay

buffer minimization problem. The LP problem can then be solved using the non

commercial linear programming software, Lpsolve, written by Michel Berkelaar

from Eindhoven University of Technology. Lpsolve implements the Simplex al

gorithm, which is known to be very efficient for solving large LP problems. This

can he seen from Table 4.2, where the times required for Simplex algorithm to

solve two different LP problems are shown.

After solving the LP problem, the delay buffers that are required to synchro

nize the SFG are known. These delay buffers may not exist in the CHAMPION

precompiled library. Therefore, a CHAMPION tool, Gendly, has been developed

to generate the glyphs for those delay buffers that cannot be found in the CHAM

PION precompiled library. Two versions of VHDL files are generated for each

delay huffer. The first version of VHDL file is generated for the Wildforce board.

This version of VHDL uses the pipelined delay element generated by the Xilinx

CORE Generator. The Xilinx CORE Generator is a design tool that delivers

114

parameterizable cores optimized for Xilinx FPGAs. The delay cores generated

using the CORE Generator deliver high levels of performance and area efficiency

since the CORE Generator leverages Xilinx EPGA architectural advantages such

as look-up tables (LUTs), distributed RAM, segmented routing, floorplanning

and power utilization information. A sample VHDL file for a 4-bit, 5-cycle delay

glyph is shown in Figure 4.10. In the VHDL file, the dly-4-5 is a pipelined delay

component generated using the CORE Generator. The hardware architecture for

this VHDL file is show in Figure 4.11.

Since the first version of VHDL file contains Xilinx technology dependent

components, it cannot be used for ASIC implementation. Therefore, a different

version of VHDL file is required. The second version of VHDL is generated using

generic VHDL. Therefore, it is technology independent and can be implemented

onto any chosen CMOS process. A sample VHDL file for a 4-bit, 5-cycle delay

glyph for the ASIC implementation is shown in Figure 4.12. The corresponding

hardware architecture is shown in Figure 4.13. From Figure 4.13, it can be seen

that the 5-cycle delay is implemented using five D flip-flops instead of using the

delay component generated using CORE Generator.

Once these delay glyphs are created and installed in the CHAMPION library,

they are inserted into the SFG using the CHAMPION tools, Bufins. Bufins inserts

these delay glyphs in the SFG and then converts the SFG back to CHAMPION

netlist. This completes the entire data synchronization process, which is shown

in Figure 4.14.

115

- Filename : delay_4_5.vhd
-- Created by : Gendiy
- Date : Men Mar12 17:22:38 2001

library iEEE;
use IEEE.stdJogic_1164.ail;
use IEEE.stdJogic_unsigned.ali;
use IEEE.std_logic_arith.aii;

entity deiay_4_5 is
generic(g_num_input_bits: integer := 4);

port (g elk : in stdjogic;
i : in std_logic_vector((g_num_input_bits -1) downto 0);
0 : out stdJogic_vector({g_num_input_bits -1) downto 0));

end delay_4_5;

architecture struct of delay_4_5 is

attribute biack_box:boolean;
component dly_4_5
port (din : in std_iogic_vector((g num input bits -1) downto 0);

c : in stdjogic;
ce : in stdjogic;
dout: out std_logic_vector((g_num_input_bits -1) downto 0));

end component;
attribute black_box of dlyl4_5: corhponent is true;

begin

dly: dly_4_5
port map (din => i,

c => g_clk,
ce =>'1',
dout => 0);

end struct;

Figure 4.10: Delay glyph using components from Xilinx Core Generator.

116

g_cik

mM.

dly_4_5
c

ce clout[3:0;

din[3:0]

dly

J3:01 13:011—PTTXT1

13:01 13:0],
' ' 1013:01

Figure 4.11: Hardware architecture of the VHDL file in Figure 4.10.

117

- Filename : delay_4_5.vhd
- Generated by : Net2stv
- Date : Men Mar 12 17:22:38 2001

library IEEE;
use IEEE.stdJogic_1164.all;
use IEEE.stdJogic_unsigned.aii;
use iEEE.std_logic_arith.aii;

entity delay_4_5 is
generic(g_num_input_bits : integer := 4 ;

g_delay : integer := 4);

! i
, I port (g_reset, g_clk : in std_logic;
i ; i : in std_logic_vector((g_num_input_bits -1) downto 0);
! I 0 : out std_iogic_vector((g_num_input_bits -1) downto 0)

i I
' 1 end delay_4_5 ;

architecture struct of deiay_4_5 is .
1, i

type sarray is array(g_delay downto 0) of std_logic_vector((g_num_input_bits-1) i
downto 0); |
signal s:sarray; i

begin :
process(g_clk) |
begin I
if(g_reset='1') then |
o<= "0000"; I
for k in 0 to g_delay loop |
s(k) <= "0000"; I
end loop; i

elsif (g_clk'event and g_cik='1') then i
for k in 1 to g_delay loop

s{k) <= s(k-1); I
end loop; j
s(0) <= i; ;
0 <=s(g_delay-1); ;
end if; [
end process; j

end struct;

Figure 4.12: Delay glyph for ASIC implementation.

118

Figure 4.13: Hardware architecture of the VHDL file in Figure 4.12.

.sfg r": n
1 net2sfg \ — *■ Ipjorm

.Ip .dly : .inf 1 CNF
^ Ipjolve ! >igendly^ *-i . bufins

Figure 4.14: Data Synchronization process.

4.6 ACS Back-End Flow

The software tools for the ACS back-end flow was implemented by N. Kerkiz

in [12]. This section provides brief descriptions of these tools. More information

about the tools can be found in [12]

4.6.1 Partitioning

Three partitioning algorithms were implemented for the CHAMPION software

design environment. The first algorithm is a hierarchical partitioning method

based on topological ordering. The second algorithm is a recursive algorithm

based on the Fiduccia and Mattheyses bipartitioning heuristic. The third algo

rithm is an extension of the first two algorithms to handle the constraints imposed

by ACS. This new algorithm is a recursive partitioning method based on topo

logical ordering and levelization. Details of the three partitioning algorithms

implemented in CHAMPION can be found in [12].

4.6.2 Netlist to Structural VHDL, Synthesis, and Place Sz Route

A CHAMPION tool was also developed to translate the graph-based netlist for

mat into structural VHDL after the partitioning process. The tool takes the re

sulting files and passes them through the synthesis tool, which adds the required

I/O ports and merges the synthesized netlist with the pre-compiled VHDL com

ponents. Once the structural VHDL files have been synthesized, the resulting

netlist files are placed and routed separately.

120

4.6.3 Host Program Generation

The final step in the CHAMPION design flow is the generation of the host pro

gram. A CHAMPION software tool was developed to generate the host program,

which downloads the configuration file to the corresponding FPGA on the Wild-

force board. The host program generated by the tool can only perform simple

data transfer and movement. The host program uses the set of function calls

provided by Annapolis Micro Systems to initialize the ACS board and download

the programming bit files using these function calls. Once the programming bit

files have been downloaded, the host program reads the input data from the

host workstation, sends the data to the ACS and writes output back to the host

workstation.

4.7 ASIC Back-end Flow

To implement the ASIC back-end flow, a set of software tools has been de

veloped in this dissertation. This section describes the implementation of these

tools.

4.7.1 Netlist to Structural VHDL

To implement the design in ASIC, the entire graph-based netlist format is first

translated into a structural VHDL description of the netlist. A CHAMPION tool,

A'etSstv, has been developed to perform this translation. Net2stv translates the

CHAMPION netlist into a single structural VHDL file, which can be implemented

121

as a single semiconductor chip.

4.7.2 Design Compilation and Optimization

Once the structural VHDL description of the design is obtained, the VHDL de

scription can be synthesized and optimized using the CHAMPION tool, Stvcomp.

Stvcomp generates the required command to synthesize and optimize the design

using Synopsys Design Compiler. Both the top-down and bottom-up compilation

strategies have been implemented in Stvcomp.

4.7.3 Physical Layout Generation

The final step in the back-end flow of ASIC is the generation of the physical

layout. The CHAMPION tool, Laygen, automates the physical layout generation

process. Laygen generates the required commands to perform both the top-down

and bottom-up layout generation using the commercial software EPOCH.

122

CHAPTER 5

Experimental Results

Four applications have been used to verify the design flow of CHAMPION. A

high-pass filter for image processing applications was first implemented in both

ACS and ASIC using CHAMPION. To determine the improvement in mapping

time for the ACS design flow, a two criteria automatic target recognition algo

rithm, called START, was used. This algorithm was automatically as well as

manually mapped onto ACS. It serves as a benchmark for comparing the manual

and automatic mapping time for the ACS design. Two other algorithms:

• the infrared automatic target recognition (IR ATR) algorithm from the

Army Night Vision Lab (NYL) and

• the neural network-based face detection algorithm [27, 28] from the

Carnegie Melon University (CMU)

were also implemented to test the ACS and ASIC design flow. Table 5.1 shows

the sizes of the four applications in terms of glyphs and interconnections.

In this chapter, the results of the ACS and ASIC implementations of the four

applications are presented. Section 5.1 shows the implementation results of the

high-pass filter. Since the high-pass filter consists of a small set of glyphs and

interconnections, the netlist of the high-pass filter produced by each CHAMPION

123

Table 5.1: Sizes of the four applications implemented.

Applications Number of Glyphs Number of Nets

High-Pass 14 42

IR ATR 45 71

Face Detection 58 118

START 93 226

tool is presented. Sections 5.2, 5.3 and 5.4 present the results of the IR ATR, Face

Detection and START algorithms, respectively. Due to the sizes of the netlists,

only the mapping time, execution time, resources reports and physical layouts of

these three applications are presented.

5.1 High Pass Filter

5.1.1 Overview

High frequency components in an image correspond to edges and other sharp

details in an image. To emphasize these fine details in an image, a high-pass

filter can be used. The high-pass filter attenuates or eliminates low frequency

components, which are responsible for the slowly varying characteristics in an

image. Therefore, the net result of high-pass filtering is the reduction of low

frequency details and a correspondingly apparent sharpening of edges and other

124

sharp details in the image. High-pass filters are often used to sharpen an image

blurred by atmospheric seeing or poor focus.

In this dissertation, a basic 3x3 high-pass filter was implemented. For this

filter, the value of a pixel in the output image depends on the value of the pixel in

the same position in the input image and the eight pixels surrounding it (neigh

borhood of a pixel). For each pixel in the input image, the pixel and its neigh

boring pixels are multiplied by a set of coefficients called the mask. The output

pixel value is then obtained by summing all the products and finding the absolute

value of the sum.

The mask for the high-pass filter implemented in this dissertation is shown

below.

_i _i _i
8 , 8 8

-i f _1
8 8

_1 _1 _1
8 8 8

To simplify the hardware implementation, — | is used as the coefficients for the

neighboring pixels, instead of — | as in typical high-pass filter. The division by

eight can be achieved by simply shifting the binary number 3-bit to the right. If

— I is used as the coefficients, a much more complicated circuit will have to be

used to implement the division.

5.1.2 Implementation Results

In order to implement the high-pass filter, a set of CHAMPION glyphs was first

developed. Both C/C-f4- and VHDL codes were generated for each glyph. The

125

C/C++ codes were installed in Cantata and the VHDL codes were synthesized

and installed in the CHAMPION library using the CHAMPION tool, Geninf.

After developing all the required glyphs, the high-pass filter was imple

mented in Cantata by interconnecting the glyphs. Figure 5.1 shows the Cantata

workspace for the high-pass filter. Simulations were performed in Cantata to

verify that the desired functionality of the high-pass filter was achieved.

Once the Cantata workspace for the high-pass filter was developed and veri

fied, the CHAMPION front-end flow was used to transform the Cantata program

into a hardware netlist. The Cantata program was first translated into CHAM

PION netlist (as shown in Figure 5.2), preserving the original glyphs and their

interconnections. Widthmatch was then used to match all the data paths in the

netlist. Two mismatched data paths were found in the netlist. In the first mis

matched data path, an 8-bit output port is connected to an 11-bit input port.

Therefore, a "padding" glyph labeled padS-ll was automatically generated by

Widthmatch and inserted into the netlist to fix the data path. This glyph ap

pends three zeros to the 8-bit output port so that the output port has the same

bit width as the port connected to it. In the second mismatched data path, a

12-bit output port is connected to an 8-bit input port. Therefore, a "truncating"

glyph is required to fix this mismatch. Widthmatch generated a glyph labeled

truncate-12-8 and inserted it into the netlist. This glyph truncates four bits from

the 12-bit output port so that the output port has the same bit width as the

port connected to it. Figure 5.3 shows the netlist after the data width matching

126

ti
k'

' i
'v
'«
n'
^i
ii
<i
^'
''
r

-

^
 W
f
C
O

u
p

7

i
*

»
ts

?
*

n

: ̂

Fi
gu

re
 5
.1
:
Ca

nt
at

a
Wo
rk
sp
ac
e
fo

r
th
e
hi
gh
-p
as
s

fi
lt

er
.

r
'

T
'

(
1
0
1
 e
.
a

t
o

0
0

If
"

•
•
c
'

•
^
"
*
 (
3
)
 q
_
r
.
»
v
p
1
.
«
-

4
 *
.
1
2
)

i»
 :
i«

 t
r
e
I
.
»
<
'
J

4
C
«
&
v
«
a
r
>
M

ft(
t
.

•0
 I
ft

le
rf

 .■
pt

M
a.

nd
)

4
a

iS
:

j.
c
c
tr

c
il
.a

O
J

Fi
gu

re
 5

.2
:

Hi
gh

-p
as

s
fil

te
r

in
 C

H
A

M
P

IO
N

 n
et

lis
t.

r

t
o

C
O

L
,

(
3
)
 g
„
c
o
n
l
r
i
X
.
h
^
~
'

,
J

fa>
an

«»
C»

Jd
i»

tS
?S

Sl
si

uo
"

In
tv
ri
 u
p\
£c
»_
r>
'J
j

!i
.»

«a
)

^e
of
it
Po
T

Fi
gu
re
 5
.3
:
Hi

gh
-p

as
s

fi
lt
er
 i
n
af

te
r
da

ta
 w
id

th
 m
at

ch
in

g.

process.

After matching the width of all the interconnections, data synchronization

was performed. The result obtained from the data synchronization is shown in

Figure 5.4. Two delay buffers were introduced into the netlist. The CHAMPION

synchronization tools generated the VHDL files for an 8-bit, 3-cycle delay glyph

and a 3-bit, 3-cycle delay glyph. These two VHDL files were automatically syn

thesized and inserted into the netlist. After examining all the data paths in the

netlist obtained after the synchronization process, it can be found that all the

data paths have a latency of 520 clock cycles. Since all the data paths have the

same latency, the netlist is thus synchronized.

To map the synchronized design onto the Wildforce board, ACS back-end

flow was used. The netlist was partitioned into two sub-netlists as shown in

Figures 5.5 and 5.6 . The entire design can actually fit into one single FPGA

in the Wildforce board. However, due to the existence of two RAM modules in

the netlist, the design has to be partitioned into two sub-netlists. As Figure 5.6

shows, the second partition contains only one glyph, that is, the glyph for writing

the result to the RAM. The resources used by the partitions are listed in Table 5.2.

Table 5.2 shows that the total number of glyphs and nets of the two partitions

are more than the values shown in Table 5.1. This is due to the fact that four

new glyphs have been inserted into the netlist during the data width matching

and data synchronization processes.

After partitioning, the CHAMPION netlist was translated into a structural

130

r
'

C
O

p«
4^

9-
n

3

.
r

-
l
-

••

.
«
 >
5

.
J
-
*

'■
'I
V

«

(S
)
^
tw

i'
a

r*
 *■ *■

I) ,

p ;
I)

3.»

I

Fi
gu

re
 5

.4
;

Hi
gh

-p
as

s
fil

te
r

af
te

r
da

ta
 s

yn
ch

ro
ni

za
tio

n.

Q.aCi2)
g^control^a(3>
g^resBtCl) :
9-clk(l)^
g_" 1 ' S,

*?53W

&K<i}

-g.cantrol^resuU C3) g«control_a-

0 C9) g_a-

charepion-rtiTMri tB_pf4_6
g_reset(l)
g.clkCl)
MemBusGranl_n(l)
' InterruptAck_n(l)

g_aC8)
g_control_a(3)
.MemDaia<32)

^ MemAddr-Cl5)
M-jmBusRaq_nCl)
MGr!iWr-il€SBl^n(l)
''^»!r>StrDba_n(I)
Ini5rrup-lReq_n(' 1)

Figure 5.6: Second partition of the high-pass filter.

Table 5.2: Partitions of high-pass filter.

Partition Number of Number of Number of Number of

Glyphs Nets RAM Glyphs GLB Used

1 17 46 1 476 of 1296 (36%)

2 1 2 1 75 of 576 (13%)

VHDL representation. The required I/O ports for each of the sub-netlists were

then added to the VHDL files and synthesized using the Synplify tool. Xilinx

Ml tools were then used to^erge the synthesized netlist with the pre-compiled
VHDL components corresponding to the glyphs, and to place and route the

netlist. A host program was automatically generated to download the resulting

configuration files to the Xilinx
/

FPGAs on the Wildforce board.

Table 5.3 shows the time required to map the Cantata workspace for the

high-pass filter onto the Wildfo ce board. The entire mapping process took 39

minutes aind 18 seconds. From Table 5.3, it can be seen that most of the mapping

time (96'!73%) was spent on the

using the Xilinx software. The

placement and routing, which were performed

CHAMPION tools were able to perform data

width matching, data synchronization, partitioning and netlist conversions in

approximately^77 seconds.

Table 5.4 compares the execution time of the high-pass filter in Cantata and

on the Wildforce board. A 256 x 256 image was used during the execution. The

Wildforce execution is about 4 1;imes faster than the Cantata execution. The

execution time on the Wildforce can be broken down into board configuration

time, data transfer time and the^^ctual hardware execution time. The time
to process an image is greatly dominated by the time needed to configure the

board. The actual time to process one image is only 3 milliseconds, which is only

0.08% of the total execution time. If the configuration time could be eliminated,

the hardware implementation would be over 4100 times faster than the Cantata

134

Table 5.3: ACS mapping time of high-pass filter.

Mapping Tools Mapping Time

(seconds)

Percentage

Wsp2net 1 0.04%

Widthmatch 38 1.61%

Datasync 35 1.48%

Partition 2 0.08%

Net2stv 1 0.04%

Syn, P & R 2281 96.73%

Total 2358 100%

135

Table 5.4: Execution time of high-pass filter.

Cantata

(seconds)

Wildforce

(seconds)

Board Configuration — 1.049

Data Transfer 1.9 2.669

Data Processing 12.3 0.003

Total 14.2 3.721

implementation.

The high-pass filter was also mapped to ASIC using the HP26G technology.

The ASIC back-end flow was used to first translate the synchronized netlist into a

VHDL representation. The VHDL representation of the design was then compiled

using both the top-down and bottom-up approaches. Physical layouts for the

design compiled using both approaches were then generated. The physical layout

for the top-down approach is shown in Figure 5.7. From the figure, it can be seen

that the entire design is flattened and no signs of glyphs can be observed. The

entire mapping process using the top-down approach took 6 hours 40 minutes

and 15 seconds. The size of the core generated using this approach measures 13.7

mm

The physical layout for the bottom-up approach is shown in Figure 5.8. Fig

ure 5.8 shows that the layout is composed of blocks of a smaller layout. These

136

W
d
i
l

t
H
b

m
i

i
i

*
»
4
4
W
i
t
S
-
J
%
V

f
i

•4

|j
f»
»J
kr
ti
i

/■
t^

rn
rn

/it
^M

kit
/tt

m
^t

't-
itS

m
iU

/h
m

im
 <

lw
tiB

»
C

hl
ij
li
^
j^

 iM
a«

«4
 «

 m
m

M
i •

 t
^T

im
f

Fi
gu

re
 5

.7:
 T

he
 c

or
e

ol
th

e
hig

h-
pa

ss
 fi

lte
r g

en
er

ate
d

us
ing

 th
e

to
p-

do
wn

 a
pp

ro
ac

h.

E
i
l
M
0
i
y
O
[
L
y

i>
.

Fi
gu

re
 5
.8
:
Th
e
co

re
 o
f
th

e
hi
gh
-p
as
s

fi
lt

er
 g
en

er
at

ed
 u
si

ng
 t
he

 b
ot
to
m-
up
 a
pp
ro
ac
h.

Table 5.5: ASIC implementation results of the high-pass filter.

Core Area

(mm^)

Mapping Time

(seconds)

Top-down 13.7 24015

Bottom-up 15.0 2958

Difference 1.3 21057

blocks of layout are the glyphs in the design. The entire mapping process using

the bottom-up approach took 49 minutes and 18 seconds. The size of the core

generated using this approach is 15.0 mm^.

A comparison between the results generated using the two approaches is shown

in Table 5.5. Compared to the core generated using the top-down approach, the

core generated using the bottom-up approach is 1.32 mm^ or 9.5% larger. For the

core generated using the bottom-up approach, approximately 85% of the layout

area is used for one single glyph {champion-convstream-8-8-256 in Figure 5.2).

Not much area is wasted due to the placement problems. As a result, the size of

the layout generated using the bottom-up approach is compatible to that of the

top-down approach. However, the bottom-up approach only took about 1/8 of

the mapping time required by the top-down approach.

139

5.2 IR ATR algorithm from the Army Night Vision Laboratory

5.2.1 Overview of the Algorithm

One of the key problems in military applications is the ability to locate and

identify military targets such as tanks, trucks, and other mobile weaponry. The

collection capacity of the military imagery systems is far higher than the rate at

which humans can visually review the images. Over the years, many algorithms

have been developed to automatically locate and identify military targets. These

algorithms, which are known as Automatic Target Recognition (ATR) algorithms,

require both high throughput rate and low latency. Therefore, they are best

implemented in pipelined hardware such as those produced by CHAMPION.

The ATR algorithm implemented in CHAMPION is used to locate and iden

tify ground vehicles in a single infrared image frame. It is one of the research

challenge problems identified by the ACS program of the U.S. Defense Advanced

Research Projects Agency (DARPA). The analysis in this ATR algorithm is based

on techniques known as template matching. The algorithm consists of many con

ceptually simple steps for matching an image area and a template pair of target

and background. Decision tree is used in the algorithm to improve the computa

tional efficiency.

Figure 5.9 gives an overview of the algorithm. The algorithm is composed of

five major steps, named Round 0 to 5. In Round 0, six template pairs are used

to process the entire 480 x 640 input image to identify and locate the regions

140

640

480 j Image Round

0 1
1

ROIs
Round

1

Rounds

2,3.4,5

/ Target
T Type I
\ & /

Location /

/ \
Target
Super- I

1 Group I
\Type /

□ □ □□□□□
2 T emplates 5 T emplates

6 Templates

Figure 5.9: The IR ATR algorithm.

of interests (ROIs). An ROI is composed of image pixels whose surrounding

area meets a certain criterion. These image pixels are candidates for further

investigation in Round 1 to 5. In a typical infrared image, no more than 20% of

the image pixels become ROIs [10].

All the ROIs identified in Round 0 are passed to Round 1 for further hypoth

esis testing and classification into target groups. Based on which target group an

ROI belongs to, either two or five templates are used to process these ROIs. If

the ROIs pass the hypothesis testing in Round 1, further testing are performed

on these ROIs in the remaining 4 rounds. The output of the algorithm is the

pixels which pass the testing in all 6 rounds, and their identified target types.

Because of the pruning process. Round 0 is the most computational intensive

step [10]. Therefore, Round 0 was targeted for hardware acceleration using the

141

Wildlbrce board and ASIC. Details of Round 0 can be found in [10].

5.2.2 Implementation Results

To implement Round 0 of the IR ATR algorithm, another new set of CHAMPION

glyphs was developed. For each new glyph, both C/C++ and VHDL codes were

generated and installed in Cantata and the precompiled library respectively. Once

all the required glyphs were developed, a Cantata workspace for Round 0 was

developed. The Cantata workspace was executed to verify its functionality.

After developing and verifying the workspace, it was mapped onto the Wild-

force board using CHAMPION. The CHAMPION partitioning tool partitioned

the design into two sub-netlists as shown in Table 5.6. As in the case of the high-

pass filter, the entire Round 0 design could actually fit into one single FPGA

in the Wildlbrce board. However, due to the existence of two RAM modules in

the netlist, the design had to be partitioned into two sub-netlists. The second

sub-netlist contains only one glyph, that is, the glyph for writing the result to

RAM.

Table 5.7 shows the time required to map the Round 0 workspace onto the

Wildlbrce board. The entire mapping process took 57 minutes and 8 seconds.

From Table 5.7, it can be seen that most of the mapping time (99.82%) was spent

on the placement and routing processes, which were performed using the Xilinx

software. The CHAMPION tools were able to perform data width matching, data

synchronization, partitioning and netlist conversions in approximately 6 seconds.

142

Table 5.6: Partitions of Round 0.

Partition Number of Number of Number of Number of

Glyphs Nets RAM Glyphs CLB Used

1 44 71 1 920 of 1296 (70%)

2 1 2 1 47, of 576 (8%)

Table 5.7: ACS mapping time of Round 0.

Mapping Tools Mapping Time

(seconds)

Percentage

Wsp2net 1 0.03%

Widthmatch 1 0.03%

Datasync 2 0.06%

Partition 1 0.03%

Net2stv 1 0.03%

Syn, P & R 3422 99.82%

Total 3428 100%

143

Table 5.8: Execution time of Round 0.

Cantata

(seconds)

Wildforce

(seconds)

Board Configuration — 0.807

Data Transfer 72 153.128

Data Processing 15604 0.269

Total 15676 154.20

Table 5.8 compares the execution time of Round 0 in Cantata and on the

Wildforce board. A 640 x 480 image was used during the execution. The Wild-

force execution is about 100 times faster than the Cantata execution. The time

to process an image is greatly dominated by the data transfer time. The ac

tual time to process one image is only 0.2694 seconds, which is only 0.17% of

the total execution time. Comparing the data processing time in Cantata and

Wildforce, the Wildforce implementation is about 58,000 times faster then the

Cantata implementation.

Round 0 was also mapped to ASIC using the HP26G technology. The physical

layouts for the design were generated using both the top-down and bottom-up ap

proaches. The physical layout for the top-down approach is shown in Figure 5.10.

The entire mapping process using the top-down approach took 1 hour 17 minutes

and 27 seconds. The size of the core generated using this approach measures

144

p
:

jt
al
w*

ttU
ee
li
ew
we

a H
K
~
f

ri
r^
*

x^
*a

£
t
e

i-
»
i
i
«
^
 ♦

?

E
T
T
y
;
T
a

■
S

ir m

m.
 *

-

--

SV
uV

l,;

|p%
^J

»tt
|

tM
t

« 5
N»

^«>
 *

m
«t4

sr#
wi

Fi
gu

re
 5

.1
0:

 T
he

 c
or

e
of

 th
e

Ro
un

d
0

ge
ne

ra
te

d
us

in
g

th
e

to
p-

do
wn

 a
pp

ro
ac

h

Table 5.9: ASIC implementation results of Round 0.

Core Area

{mw?)

Mapping Time

(seconds)

Top-down 6.0 4647 .

Bottom-up 12.1 990

Difference 6.1 3657

6.0 mm^. Figure 5.11 shows the physical layout generated using the bottom-up

approach. For this approach, the entire mapping process took 16 minutes and 30

seconds. The size of the core generated using this approach is 12.1 mm^.

A comparison between the results generated using the two approaches is shown

in Table 5.9 Compared to the core generated using the top-down approach, the

core generated using the bottom-up approach is double in size. The large increase

in size is due mainly to the placement of the glyphs and the area used for routing.

The bottom-up approach took about 1/5 of the mapping time required by the

top-down approach.

146

W
m
m
m

n
V
i
m

fn
pt

mi

■m
m

rn
U

m
m

rn
i

m
m

"•
"n

m
•
T

J5
^

E
f,

u
j£

I?
1.

1
61

JS
.

^M
fc

'

E
J

_ .
'j a
M

t

iS
M

*
r

■|
P

m
m
4

r
.

-
>

**
*<

nr
.

•4
|»

«

M
*^

ft
-t

tj
K

tt
 /

W
M

nv
'M

i/'
cp

oc
h

(>
««

»>
 C

*U
!

fu
uH

K
U

M
f

fS
U

l.T
S

 N
 3

3Z
<l

,«
S}

 •
 l

.e
i»

«»
7

«(
|

n
itr

a
M

Fi
gu

re
 5

.1
1:

 T
he

 c
or

e
of

 th
e

R
ou

nd
 0

 g
en

er
at

ed
 u

si
ng

 t
he

 b
ot

to
m

-u
p

ap
pr

oa
ch

.

5.3 Face Detection Algorithm

5.3.1 Overview of the Algorithm

The third application implemented in CHAMPION is the neural networks used in

the face detection algorithm in [27]. The basic algorithm used for face detection

is shown in Figure 5.12. To detect faces in different sizes, the input image is

repeatedly reduced in size by subsampling. This image pyramid is shown on the

left of Figure 5.12. Each 20 x 20 pixel window of each level of the pyramid is

then preprocessed with standard algorithms such as histogram equalization and

lighting correction to improve the overall brightness and contrast in the images.

The preprocessed window is then broken down into smaller pieces of four 10 x 10

pixel regions, sixteen 5x5 pixel regions, and six overlapping 20 x 5 pixel regions.

These pixel regions are passed to three neural networks, which generate single,

real-valued outputs, signifying the presence or absence of a face. The output

from each network is then merged using an arbitrator to eliminate overlapping

detections.

In this research project, CHAMPION was used to map the three neural net

works in Figure 5.12 to hardware. The preprocessing steps such as size reduction,

histogram equalization, and lighting correction are done in the host. The three

neural networks are named Umec, Facel7c and FacelSc.

148

yfi*. isS#«»«4; Hn4f<f;tM4 t.%t»4if>.-'i Htxtf<tH-(k^
i^ib. Xsfi^riM ^ MfflAawilr,

]•*»
r'.XJLM ...*., 1 m , ur. \ ^rlU \
I"***
. 1 .*r

\ i ̂ ̂f% fi ® \

\, '!!^/caS^d^sos—4>.L-^ / c

^ I

Figure 5.12: The basic algorithm used for face detection [27].

5.3.2 Implementation Results

To implement the three neural networks, a new set of CHAMPION glyphs was

developed. Three Cantata workspaces for the three neural networks were devel

oped using the existing CHAMPION glyphs (developed for the high-pass and IR

ATR applications) and the newly developed glyphs. The Cantata workspaces

were simulated and their functionalities were verified.

Once the Cantata workspaces were developed and verified, CHAMPION tools

were used to map the workspaces onto the Wildforce board. During the mapping

process, it was found that the Umec network could not be partitioned for the

FPG.As on the Wildforce board. No partition with I/O connections of less than

32 bits can be found. Since the interconnection between each FPGA in the

Wildforce board is 32-bit, Umec could not be implemented onto the Wildforce

board. To solve this problem, the Umec network was manually partitioned into

Table 5.10: ACS mapping time of Round 0.

Mapping Time (Seconds)

Networks Wsp2net Widthmatch Datasync Partition Net2stv S,P&R

Layer 1 0 1 1 1 1 1684

Layer 2 0 0 1 1 1 735

FacelTc 0 1 1 1 1 1442

Facel8c 1 0 1 1 1 1538

two smaller networks called Umec Layer 1 and Umec Layer 2. In these two

networks, some of the interconnections were multiplexed to reduce the I/O.

All four neural networks were successfully mapped onto the Wildforce board

using CHAMPION. Table 5.10 lists the time for mapping the four workspaces

onto the Wildforce board.

The neural networks were also mapped to HP26G ASIC using CHAMPION.

The physical layouts for the design were generated using both the top-down and

bottom-up approaches. For Umec Layer 1, the physical layout generated using

the top-down approach is shown in Figure 5.13. The entire mapping process

using the top-down approach took 28 minutes and 8 seconds. The size of the

core generated using this approach measures 5.88 mrm?. The physical layout of

Umec Layer 1 generated using the bottom-up approach is shown in Figure 5.14.

The entire mapping process using the bottom-up approach took 12 minutes and

150

n
 n

n

w
*
.
.
 n

r«
Ja
«t

K
K

m

i
.
 J

l^-
't
m

1
:
2

li
l
i
i

l
a
w

)
c
:
j

f
P
«

C
f

a

s

z
:
^
.

:
m
r
.

i
s
i
«

1
2

f
 i
*

t
S
M
'

j
t
r
i
L

l
5

r
m

m
a

0
0
5

I
*

n
a
s
s
K
f
i
&
r
^
i
s
v

'
i
K
.
L
l
S
K

-
 -
1
"
 i
f
J
T
l

S
i

I
T
l
T
W
^

m
.

I^
oi

ni
ts

 /
i
l
«
i
^
4
l
k
i
l
i
Y
i
«
«
^
i
^
l
9
i
^
^
^

lf
««

8S
I
Ce

ll
:

«
 I
!f

34
«7

l
m

n
U
r
m
m

Fi
gu
re
 5
.1

3:
 T
h
e
 c
or

e
of
 U
m
e
c
 L
ay

er
 1
 g
en
er
at
ed
 u
si
ng
 t
he
 t
op
-d
ow
n
ap
pr
oa
ch
.

Fi
gu
re
 5
.1
4:
 T
he

 c
or
e
of

 U
m
e
c
 L
ay

er
 1
 g
en

er
at

ed
 u
si

ng
 t
he
 b
ot
to
m-
up
 a
pp
ro
ac
h.

Table 5.11: ASIC implementation results of the neural networks.

Network

Mapping Time (Seconds) Core Area (mm?)

Top-down Bottom-up Top-down Bottom-up

Layer 1 4819 4211 5.88 7.69

Layer 2 1909 2351 3.43 6.33

FacelTc 30818 6027 11.7 14.5

FacelSc 35448 6674 12.6 15.3

18 seconds. The size of the core generated using this approach is 7.69 mm?.

Figures 5.15 to 5.20 show the top-down and bottom-up layouts of Umec Layer

2, FacelTc and FacelSc, respectively. The corresponding mapping time for these

layouts are shown in Table 5.11. As Table 5.11 shows, for Umec Layer 2, the

mapping time for the top-down approach is actually shorter than the mapping

time for the bottom-up approach. The size of the core generated using the top-

down approach is also much smaller than the bottom-up approach. In other

words, the top-down approach produced a much smaller layout in a shorter time

compared to the bottom-up approach.

A hypothesis for why this happens is as follows: For the bottom-up approach,

the layout of each glyph was first generated. Therefore, the dimension and shape

of the layout of the individual glyph are fixed. During the placement of these

glyphs, blocks are positioned on a layout surface in such a way that no two

153

•qo'BOjddu UMop-do^ gqi Suisn pa'ju.iaugS g JS/t'eq o^uijq p
 aioo sqj^ -SI'S 9-in9tj

M
M
a
w
«
f
B
i
r
t

Fi
gu
re
 5
.1
6:
 T
h
e
 c
or
e
of

 U
m
e
c
 L
ay

er
 2
 g
en

er
at

ed
 u
si

ng
 t
he
 b
ot
to
m-
up
 a
pp
ro
ac
h

x
4

T
t

V

x
i
T
f
T
T
i

X
S

A
>

sS
sf
*

s
N
t
i
B
c
w
*
:

-

m
M

r
»

«
i

m

-
4
'
^

^
■

n
F

•M
i'*

lA
rti

iH
Tt

;
/th

^>
/«

nf
i/fw

>i
/|>

rt>
|jit

«-
lV

r«
»t

?«
:.l4

'«i
M

dh

C»
IJj

 '
w

l?
c

<S
>!«

.?S
 w

 ?
5«

W
.«>

 •
 U

t<V
w;

>
»,

 »
ian

an
«

Fi
gu

re
 5

.17
:

Th
e

co
re

 o
f F

ac
el

Tc
 g

en
er

at
ed

 u
sin

g
th

e
to

p-
do

wn
 a

pp
ro

ac
h

Fi
gu
re
 5
.1

8:
 T
h
e
 c
or
e
of
 F
ac
el
Tc
 g
en
er
at
ed
 u
si

ng
 t
he

 b
ot

to
m-

up
 a
pp
ro
ac
h.

«■
!

Ss

fc
<

n

fP
n«

Ji
«*

j
/4

tn
)u

>r
tm

/r«
nw

>p
rn

JL
M

rt^
«c

8l
*r

..t
itj

'V
««

^
lM

f6
S

»
tu

ll
i

f«
w»

1it
e

iiH
tS

.t'
ii

u
31

«5
,«

61
 •

 {
,^

4
0
7

xi
xr

xn
x

Fi
gu

re
 5

.1
9:

 T
he

 c
or

e
of

 F
ac

el
Sc

 g
en

er
at

ed
 u

sin
g

th
e

to
p-

do
wn

 a
pp

ro
ac

h

Fi
gu
re
 5
.2

0:
 T
h
e
 c
or

e
of

 F
ac
el
Sc
 g
en
er
at
ed
 u
si

ng
 t
he
 b
ot

to
m-

up
 a
pp

ro
ac

h.

blocks are overlapping and the total area of the layout is minimized. For Umec

Layer 2, the glyphs are shaped in such a way that there is no "good" optimum

arrangement that can be achieved. As depicted in Figure 5.16, the glyphs cannot

possibly be arranged in a way that no excessive empty space can be found. As a

result, the bottom-up approach produced a layout with a much larger area. The

long placement time might be due to the fact that the placement tool took many

iterations to achieve a placement with a layout area which is below a certain

threshold value. This threshold value is set at the beginning of the placement

process. It may be set to be a certain percentage larger than the sum of the area

of the individual glyphs. It is possible that the placement tool was never able

to produce a layout with an area smaller than the threshold. In this case, the

resulting placement is the best placement that the tool achieved once the tool

reached its maximum number of iterations. Thus, the bottom-up approach took

a longer time to generate the layout of the design.

For Face 17c and Face 18c, the layouts generated using the bottom-up ap

proach are less than 25% larger than the layouts generated using the top-down

approach. The large increase in size is due mainly to the placement of the glyphs

and the area used for routing. The bottom-up approach took about 1/5 of the

time required by the top-down approach to complete the mapping.

160

5.4 START Algorithm

5.4.1 Overview of the Algorithm

The fourth algorithm was implemented mainly to serve as a benchmark for mea

suring the CHAMPION performance improvement in mapping time. An ATR ap

plication developed by B. Levine [17] was chosen. The algorithm was named Sim

ple, Two-criterion, Automatic Recognition of Targets, or START. The START

algorithm uses a statistical approach to search Forward-Looking InfraRed (FLIR)

images for regions where a target may exist. The START algorithm does not pos

itively locate a target, nor does it identify the type of target. It is used to cue

human analysts to regions of interest, reducing the time required for them to

review each image. It identifies regions where there is a high probability that a

target is present.

The regions of interest identified by the START algorithm have two character

istics. First, they must be hotter than the surrounding. In a FLIR image, hotter

pixels are brighter. Therefore, a region of interest must contain pixels which are

brighter. The second characteristic of a region of interest is that it exhibits sharp

temperature gradients. This is due to the fact that military vehicles are likely to

exhibit sharp temperature changes, either between the vehicle and the surround

ing terrain, or between different components of the vehicle, such as the exhaust

system and the chassis. As a result, to qualify as a region of interest, they must

contain bright pixels and pixels that exhibit large temperature gradients. More

161

details of the START algorithm can be found in [17].

5.4.2 Implementation Results

As described earlier, START algorithm was implemented mainly to serve as a

benchmark for determining the improvement in mapping time for the ACS flow. It

was first manually mapped to the Wildforce board in [17]. It took over 250 hours

to complete the manual mapping, not including the time spent for developing

the required glyphs and performing the synthesis and placement/routing of the

design. That is, the 250 hours were required for performing the data width

matching, data synchronization, partitioning and generation of the structural

VHDL netlist.

To measure the improvement in mapping time of CHAMPION, CHAMPION

was used to map the START algorithm. The 250-hour manual process was per

formed automatically by CHAMPION in 5 minutes and 23 seconds, demonstrat

ing a productivity improvement of over 2,000 times.

The execution time of START algorithm in Cantata and on the Wildforce

board are shown in Table 5.12. Table 5.12 shows that the manual Wildforce

implementation has a faster execution time than the Wildforce implementation

achieved using CHAMPION. The main difference between the two implementa

tions is in the time required to reconfigure the board. During the manual mapping

performed in [17], the START algorithm is partitioned in a way that some of the

partitions can be reused in the next configuration. Therefore, the reconfiguration

162

Table 5.12: Execution time of START [12].

Cantata Wildforce Wildforce

(Manual) (CHAMPION)

(seconds) (seconds) (seconds)

Board Configuration — 5.125 9.147

Data Movement 3.4 0.583 0.735

Data Processing 1050.6 0.010 0.010

Total 1054 5.718 9.892

time is reduced. However, in the automatic mapping, the partitioning tool did

not perform partitioning in such a manner. As a result, the reconfiguration time

for the CHAMPION implementation is higher. However, compared to the Can

tata implementation, the execution time of the CHAMPION implementation is

184 times faster.

Effort was also spent on mapping the START algorithm onto HP26G layout.

However, due to the size of the design, the commercial tool. Epoch, was not

able to route the layouts generated using both the top-down and bottom-up

approach. The physical layouts for the top-down and bottom-up approaches

are shown in Figures 5.21 and 5.22 respectively. These figures show the layout

generated after the placement process. Since Epoch was unable to route both

layouts, no routing can be observed in the layout. The mapping process using

163

Fi
gu

re
 5
.2
1:
 T
h
e
 c
or

e
of
 S
T
A
R
T
 g
en

er
at

ed
 u
si

ng
 t
he

 t
op

-d
ow

n
ap
pr
oa
ch
.

m
la

■Wn: vsp-mfi
m

Table 5.13: ASIC implementation results of the START algorithm.

Core Area

{mm?)

Mapping Time

(seconds)

Top-down 6.0 4647

Bottom-up 12.1 990

Difference 6.1 3657

the top-down approach took 33 hours 48 minutes and 17 seconds. The size of

the core (without routing) generated using this approach measures 171.10 mm^.

For the bottom-up approach, the mapping time was 14 hours 15 minutes and 15

seconds. The size of the core without routing is 94.41 mm^. The results for the

ASIC implementation are summarized in Table 5.13.

166

CHAPTER 6

Summary and Future Work

With advances in microelectronic technology, complex applications, which are

traditionally implemented in software, can now be implemented in hardware such

as ACS and ASIC. As a result, hardware can serve as flexible accelerators for the

time-consuming and computationally intensive applications. However, the lack

of supportive design environments results in an unacceptably long turn-around

time for leveraging the benefits of hardware technology. To significantly reduce

the turn-around time, it is necessary to develop the mapping tools that allow the

designei's to capture an application faster as well as reducing the time necessary

to move from specification to hardware implementation.

This objective has been achieved by the CHAMPION software design environ

ment, which provides automatic mapping of applications in the Cantata graphical

programming environment to ACS and ASIC. CHAMPION is a software design

environment developed by the Microelectronic Systems Research Laboratory at

the University of Tennessee. It is a design environment intended for mapping

Cantata applications onto ASIC and ACS in multiple platforms. Three ACS

platforms are used in the CHAMPION research projects. They are the Wildforce

board and Wildcard developed by AMS [1] and the SLAAC board [3] developed

167

by the University of Southern California.

This dissertation developed and implemented most parts of the software de

sign environment for mapping Cantata applications onto Wildforce board and

ASIC in HP26G technology. The main contributions of this dissertation includes;

• detailing the design flow of the CHAMPION software design environment,

• developing the graphical user interface for CHAMPION,

• revising all CHAMPION glyphs for implementation in both Wildforce and

ASIC,

• developing and implementing the glyph development flow,

• developing and implementing the front-end flow,

• developing and implementing the ASIC back-end flow, and

• verifying CHAMPION using various applications.

In general, this dissertation created an easier and faster way for application

programmers to develop their applications for ACS and ASIC. A design flow

was developed and implemented to automatically map Cantata applications onto

Wildforce board and ASIC in HP26G technology. The primary strength of the

design flow developed in this dissertation includes:

• allowing the functionality to be captured faster and more accurately using

precompiled functions.

168

• demonstrating a productivity improvement of 2000x over manual methods

(5 minutes vs. 250 hours),

• producing synchronous circuit by synchronizing the design using delay

buffers,

• using linear programming to minimize the number of delay buffers used for

synchronizing the design,

• partitioning netlist at glyph-level instead of gate-level to shorten the hard

ware mapping time, and

• allowing a new ACS architecture to be adopted to the design flow easily.

It is particularly significant that the design flow can easily adopt a new ACS

board. To adopt a new ACS board to the design flow, the changes that need to

be made are:

• replacement of the Xilinx placement and routing tools with the placement

and routing tools for the FPGA on the new ACS, and

• generation of new host programs for interface between the host system and

the ACS.

As a result, one possibility of extending this dissertation is to include other ACS

architectures, which is being performed during the writing of this dissertation.

To retarget a previously captured application to the new ACS, a high-level de

scription of the new board, which is composed of information such as the number

169

of FPGAs in the ACS, the FPGA sizes and I/O, the RAMs available on the ACS,

can be used to guide the CHAMPION tools such as the glyph installation and

partitioning tools during the mapping process. With this retargeting compatibil

ity, application designers can determine the ACS architecture that best matches

the application.

This retargeting capability also allows an application designer to exploit

the rapid advances in FPCA offerings. For example, as soon as a new ACS

board is announced, the board-specific data file can be generated and the map

ping/partitioning performed by CHAMPION. Upon arrival of the new board,

the design can be downloaded and executed. The common situation of waiting

months for the arrival of a new board until the application can be manually

retargeted would be avoided.

Another possibility of extending this dissertation is to permit the design flow

to accept inputs from other graphical programming environments such as Lab-

VIEW from National Instruments and/or Simulink from Math Works. To in

clude these programming environments, the only component in the design flow

that needs to be modified is the front-end translator that converts the Cantata

workspace into a CHAMPION netlist. The rest of the steps in the design flow

will remain the same. With this extension, CHAMPION can be utilized by a

wider audience and more software applications can be implemented in ACS and

ASIC in less time.

170

BIBLIOGRAPHY

BIBLIOGRAPHY

[1] Annapolis Micro Systems. http;//www.annapmicro.com.

[2] Khoros Pro User's Guide. Khoral Research Inc., Albuquerque, NM.

[3] Systems Level Applications of Adaptive Computing (SLAAC).
http: / / www.east .isi .edu / projects/SLAAC.

[4] .A\RT Library User's and Reference Documentation. Frontier Design Inc.,
September 1999.

[5] P. Banerjee, N. Shenoy, A. Choudhary, S. Hauck, M. Haldar, P. Joisha,
A. Jones, A. Kanhare, A. Nayak, S. Periyacheri, M. Walkden, and D. Zaret-
sky. A MATLAB Compiler for Distributed Heterogeneous Reconfigurable
Computing Systems. In Int. Symp. on FPGA Custom Computing Ma
chines, Napa Valley, CA, April 2000.

[6] B. Draper, W. Najjar, W. Bohm, J. Hammes, R. Rinker, C. Ross,
M. Chawathe, and J. Bins. Compiling and Optimizing Image Processing
Algorithms for FPGA's. In Int. Workshop on Computer Architecture for
Machine Performance, pages 11-13, Padova, Italy, September 2000.

[7] J. Hammes, B. Rinker, W. Bohm, W. Najjar, B. Draper, and R. Beveridge.
Cameron: High Level Language Compilation for Reconfigurable Systems. In
P.ACT'99 Conference on Parallel Architectures and Compilation Techniques,
pages 12-16, Newport Beach, CA, October 1999.

[8] A. J. Hoffman and J. B. Kruskal. Integral boundary points of convex poly-
hedra. In H. W. Kuhn, editor. Linear Inequalities and Related Systems,
pages 223-46. Princeton University Press, Princeton, N.J., 1956.

[9] X. Hu, S. C. Bass, and R. G. Harber. Minimizing the Number of Delay
Buffers in the Synchronization of Pipelined Systems. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 13(12):1441-
1449, December 1994.

[10] J. Jean, X. Liang, B. Drozd, K. Tomko, and Y. Wang. Au
tomatic Target Recognition with Dynamic Reconfiguration. In
http://citeseer.nj.nec.eom/250639.html, July 1999.

[11] D. Johnson. Architectural Synthesis from Behavioral C Code to Implemen
tation in a Xilinx FPGA. In http://www.frontierd.com/. Frontier Design
Inc. °

172

[12] N. Kerkiz. Development and Experimental Evaluation of Partitioning Al
gorithms for Adaptive Computing Systems. PhD thesis, University of Ten
nessee, Knoxville, TN, December 2000.

[13] R. Kuznar and F. Brglez. PROP: A Recursive Paradigm for Area-Efficient
and Performance Oriented Partitioning of Large FPGA Netlists. In Inter
national Conference on Computer-Aided Design, pages 644-649, November
1995.

[14] E. L. Lawler. Combinatorial Optimization: Networks and Matroids. Holt,
Rinehart and Winston, New York, 1976.

[15] C. S. G. Lee and P. R. Chang. A Decomposition Approach for Balancing
Large-Scale Acyclic Data Flow Graphs. IEEE Trans. Comput., 39(l):34-46,
.January 1990.

[16] C. E. Leiserson, F. M. Rose, and J. B. Saxe. Optimizing Synchronous
Circuitry By Retiming. In Proc. 3rd Caltech Conf. Very Large Scale
Integration, pages 87-116, Pasadena, CA, March 1983.

[17] B. Levine. A system for the implementation of image processing algorithms
on configurable computing hardware. Master's thesis. University of Ten
nessee, Knoxville, TN, August 1999.

[18] A. H. Lightstone. Fundamental of Linear Algebra. Meredith Corporation,
New York, New York, 1969.

[19] K. Murty. Linear and Combinatorial Programming. John Wiley & Sons,
Inc., New York, 1976.

[20] W. Najjar, B. Draper, A. Bohm, , and R. Beveridge. The Cameron Project:
High-Level Programming of Image Processing Applications on Reconfig-
urable Computing Machines. In P.ACT'98 Workshop on Reconfigurable
Computing, Paris, France, October 1998.

[21] S. Natarajan. Development and verification of library cells for reconfigurable
logic. Master's thesis. University of Tennessee, Knoxville, TN, August 1999.

[22] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization.
John Wiley & Sons, Inc., New York, 1988.

[23] J. B. Orlin. A Faster Strongly Polynomial Minimum Cost Flow Algorithm.
In Proc. 20th ACM Symposium on the Theory of Computation, pages 377—
387, May 1988.

[24] C. H. Paradimitriou and K. Steiglitz. Combinatorial Optimization: Algo
rithms and Complexity. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1982.

173

[25] J. R. Rasure and S. Kubica. The KHOROS Application Development En
vironment. World Scientific, 1994.

[26] J. R. Rasure and C. S. Williams. An Integrated Data Flow Visual Language
and Software Development Environment. Visual Languages and Computing,
2:217-246, 1991.

[27] H. Rowley. Neural Network-Based Face Detection. PhD thesis, Carnegie
Mellon University, Pittsburgh, PA, May 1999.

H. A. Rowley, S. Baluja, and T. Kanade. Neural Network-Based Face De
tection. IEEE Transactions on Pattern Analysis and Machine Intelligence,
20(l):23-38, January 1998.

J. F. Shapiro. Mathematical Programming: Structures and Algorithms. John
Wiley & Sons, Inc., New York, 1979.

[30] B. Stanley. Hierarchical Multiway Partitioning Strategy with Hardware Emu
lator Architecture Intelligence. PhD thesis, Georgia Institute of Technology,
1997.

[31] M. Young, D. Argiro, and S. Kubica. Cantata; Visual Programming En
vironment for the Khoros System. Computer Graphics. 29(2):22-24, May
1995.

174

VITA

Sze Wei Ong was born on May 17, 1974 in Segamat, Johor, Malaysia. Af

ter receiving his primary and secondary education in Segamat, he studied at

Damansara Utama College, in Kuala Lumpur, Malaysia. In August 1993, he

transferred to University of Tennessee at Knoxville where he received his Bache

lor of Science degree in Electrical and Computer Engineering in December 1995.

Upon completion of his undergraduate education, he accepted a graduate research

assistantship at the University of Tennessee. He received his Master of Science

degree in Electrical Engineering from the University of Tennessee in August 1997.

He then began working toward his Doctor of Philosophy degree. While pursuing

his doctorate degree, he was a teaching assistant for the Department of Electri

cal and Computer Engineering and a research assistant for the Communications,

Information, and Signal Processing Laboratory and the Microelectronic Systems

Research Laboratory. He received his Doctor of Philosophy degree in Electrical

Engineering in May 2001.

175

	Automatic mapping of graphical programming applications to microelectronic technologies
	Recommended Citation

	Automatic mapping of graphical programming applications to microelectronic technologies

