
HAsim: Cycle-Accurate Multicore Performance

Models on FPGAs

by

Michael Pellauer

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2011

@ Massachusetts Institute of Technology 2011.

ARCH1W.,
IM TUT

K~ I

All rights reserved.

Author..w. . . j - r.- - -V.'1 . .
Department of Electrical Engineering and Computer Science

Novembpr 1, 2010

Certified by.
V

Arvind

Certified by.

Professor, Electrical Engineering and Computer Science

AhOiq Q-4)or

.

Joel Emer

Professor, Electrical Engineering and Computer Science
Thesis Supervisor

.- 4

A ccepted by
a DTerry Orlando

Chairman, Department Committee on Graduate Students

HAsim: Cycle-Accurate Multicore Performance Models on

FPGAs

by

Michael Pellauer

Submitted to the Department of Electrical Engineering and Computer Science
on November 1, 2010, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Computer Science and Engineering

Abstract

The goal of this project is to improve computer architecture by accelerating cycle-

accurate performance modeling of multicore processors using FPGAs. Contributions
include a distributed technique controlling simulation on a highly-parallel substrate,
hardware design techniques to reduce development effort, and a specific framework
for modeling shared-memory multicore processors paired with realistic On-Chip Net-

works.

Thesis Supervisor: Arvind
Title: Professor, Electrical Engineering and Computer Science

Thesis Supervisor: Joel Emer
Title: Professor, Electrical Engineering and Computer Science

Acknowledgments

I'm lucky enough to have had the experience of working on a large, multi-institution,

multi-company project for my thesis. As such I hope the reader will bear with me

as I thank those people who have contributed to this project's success. These few

paragraphs feel like an insufficient way to thank them for their help and support over

the years.

Let me start by thanking Dr. Joel Emer of Intel Corporation. Joel served for

many years an unofficial co-supervisor, and I'm glad MIT will now formally let me

acknowledge the role he played. Joel's years of experience in the computer architec-

ture community brought an extremely practical point of view to the project. This

project would not have been so successful without Joel's ideas and guidance.

Also at Intel Corporation, I should need to acknowledge the help and support pro-

vided by Michael Adler of the VSSAD group. Michael spent a lot of time wrestling

with the down-and-dirty technical aspects of interfacing with an FPGA, which freed

me up to concentrate on the more academic side of things. Michael also contributed

code to the HAsim functional partition, and designed a very elegant and useful

scratchpad memory abstraction. For this help I am deeply grateful.

Additionally, I must thank Angshuman Parashar, also of the VSSAD group. He

built the virtual platform infrastructure (tentatively named LEAP) which allows

HAsim to run on different FPGAs without recoding. This work has been invalu-

able and should prove to be applicable to applications beyond HAsim. Other people

at Intel who contributed feedback or code include Guan-Yi Sun, Tao Wang, Zhihong

(George) Yu, and Artur Klauser. Martha Mercaldi, Nikhil Patil, and Abhishek Bhat-

tacharjee served alongside me as summer interns in the Intel VSSAD group at various

points throughout the years. They contributed code to various parts of the HAsim

infrastructure.

At the MIT Computation Structures Group I must start by thanking Arvind, who

used infallible good cheer to cover an infallible demand for precision, which improved

the ultimate quality of this thesis immensely. Other contributions were made by

Muralidaran Vijayaraghavan, who designed the original out-of-order timing model

and contributed to the A-Ports formalism, and Elliott Fleming, who contributed

code to the virtual platform. Michel Kinsy allowed us to use his Heracles platform as

the basis for our experimental comparison. Richard Uhler wrote a timing model of

a simultaneous multi-threaded processor. Nirav Dave provided years of service as a

sounding board, and even contributed some code to early versions of the project. Chris

Batten wrote code that became some early benchmarks and testcases. Additional

feedback was provided by Alfred Ng, Myron King, Asif Khan, and Abhinav Agarwal.

Charlie O'Donnell served the role of making me laugh when needed.

Support was provided at Bluespec Inc by several hard-working employees. In par-

ticular Ravi Nanavati and Rishiyur Nikhil contributed compiler support and project

feedback. Other support was also provided at various times by Jacob Schwartz, Jeff

Newbern, Joe Stoy, Don Baltus, Ed Czeck, and Todd Snyder.

Through the RAMP project I was lucky enough to get the opportunity to present

my work for feedback to some of the best minds in the field. Let me start by thanking

Derek Chiou of the University of Texas, who always believed in the potential of

FPGAs as accelerators. The original RAMP vision articulated by Krste Asanovic,

John Warzwyrnik, and Greg Gibeling of UC Berkeley helped form this project's early

direction. (I hope that HAsim has had some reciprocal influence on their direction

over the years.) At Carnegie Mellon, Professor James Hoe and his student Eric

Chung's work on the ProtoFlex had a great influence on our thinking on time-division

multiplexing.

Last but not least, I should thank my parents Mary and David Pellauer, and my

wife Shauna. I beg forgiveness for any and all times I put research before family.

Michael Pellauer

1 Introduction

1.1 The Processor Simulation Problem

1.1.1 Summary of Contributions

1.2 FPGAs as Architectural Simulators

1.2.1 Traditional uses of FPGAs

1.2.2 The Model Clock Versus the FPGA Clock

1.2.3 Space-Time Tradeoffs in FPGA Modeling

1.2.4 Reasoning About Space-Time Tradeoffs

1.2.5 Logic Emulation and FPGA/Model Cycle Separation

1.2.6 FPGA Models and Target Circuit Characteristics . .

1.3 Related Contemporary Approaches

1.3.1

1.3.2

1.3.3

1.3.4

1.3.5

1.3.6

1.3.7

1.3.8

1.3.9

1.3.10

The RAMP Project

RAMP Blue

ATLAS (RAMP Red)

B eehive

Towards Flexible Architectural Models

RAMP Description Language

Protoflex

UT-FAST

RAMP Gold

LI-BDN PowerPC

1.4 Discussion 32

Contents

13

. 13

. 17

. 18

. 18

. 19

. 20

. 22

. 23

.. ... 24

. 24

. 25

. 26

. 27

. 27

. 27

. 28

. 29

. 30

. 31

. 31

.. .. 32

2 The HAsim Approach to Reducing Development Effort

2.1 The FPGA Development Effort Problem

2.1.1 FPGA Development Versus ASIC Development ...

2.1.2 FPGA Development Versus Software Development . .

2.2 HAsim Overview ..

2.3 High-Level Hardware Description Languages

2.4 Architect's Workbench and Modularity

2.5 The LEAP Virtual Platform

2.5.1 LEAP Scratchpads

2.5.2 LEAP Remote Request-Response (RRR)

2.6 Further Contributions .

2.7 Discussion...... .

3 A-Ports: Fine-Grained Distributed Simulation on FPGAs

3.1 Introduction .

3.2 Latency-Delay Port Specifications

3.2.1 Simulation Model for LDP Specifications

3.2.2 Latency-Delay Port Models of Systolic Pipelines . . .

3.2.3 Representing Parallel Pipelines as Multiple Ports . .

3.2.4 LDP Specifications of Non-Systolic Operations

3.2.5 Complete LDP Specifications

3.2.6 Considerations for Zero-Latency Ports

3.3 Parallel Simulation of LDP Specifications in Software

3.4 Applicability of Existing Distributed Simulation Techniques t

3.4.1 Correctness Issues of Modeled Clocks

3.4.2 The Emulation Approach

3.4.3 Simulation with Explicit Timekeeping

3.4.4 Simulation with Implicit Timekeeping

44

. 44

. 45

. 48

. 48

. 51

. 51

. 54

. 55

. 58

>FPGAs 61

. 61

. 62

. 63

. 64

3.5 A-Port Networks .

3.5.1 Developing a Distributed Simulation Scheme

3.5.2 Sim ulator Slip . 69

3.5.3 Obtaining Consistent Snapshots 71

3.6 Implementing A-Port Networks on FPGAs 72

3.7 Related W ork . 74

3.7.1 Synchronous Dataflow . 74

3.7.2 Process Networks and the NoMessage Value 75

3.7.3 Latency-Insensitive Design . 76

3.7.4 Latency-Insensitive Bounded Dataflow Networks 76

3.8 D iscussion . 77

4 Time-Multiplexed Simulation of Multicores and On-Chip Networks 79

4.1 Fine-Grained Time-Multiplexed Simulation 81

4.1.1 Port-Based Multiplexing . 81

4.1.2 Pipelining the Modules . 82

4.2 Time-Multiplexed Simulation of Networks via Permutations 84

4.2.1 First Approach: De-multiplexing 84

4.2.2 Time-Multiplexed Ring Network via Permutation 85

4.2.3 Time-Multiplexed Torus . 88

4.2.4 Time-Multiplexed Grid . 90

4.3 Generalizing the Permutation Technique 90

4.3.1 Permutations for Arbitrary Topologies 92

4.3.2 Heterogeneous Network Topologies 94

4.4 D iscussion . 98

5 Implementing Timing-Directed Simulation on FPGAs 99

5.1 Introduction . 99

5.2 Leveraging Latency-Insensitivity of A-Ports 100

5.2.1 Integrating Existing IP Cores 100

5.2.2 Interacting with a Software Simulator 101

5.3 Timing-Directed Simulation . 102

5.3.1 Partitioning Schemes . 103

5.4 Semantics of the HAsim Functional Partition

5.5 Functional Partition Implementation

5.5.1 Functional Partition Operations . . .

5.5.2 ISA-Independent Datapath

5.5.3 Register State

5.5.4 Memory State

5.6 Timing Model Implementation

5.7 D iscussion

. 105

. 109

. 110

.. 111

. 114

. 114

. 115

. 121

6 Assessment and Discussion

6.1 Impact of Partitioning on Development Effort

6.2 Single Core Simulator Characteristics

6.2.1 A-Ports and Simulator Performance

6.3 Multicore Simulator Characteristics

6.3.1 Muliplexing Versus Direct Implementation . .

6.4 Case Study: Effect of Core Detail on OCN Simulation

6.4.1 Scaling of Simulation Rate

6.5 Future W ork .

6.5.1 Scaling to Thousands of Cores

6.5.2 Hardware Functional Partition

6.6 Conclusion....

A Soft

A.1

A.2

A.3

A.4

A.5

A.6

Connections

The HDL Modularity Problem

Background: Static Elaboration

Soft Connections and Logical Topologies

A.3.1 HAsim's Simulation Controller .

Sharing A Physical Interconnect

Connection Algorithm

Assessing Soft Connections

122

. 122

. 125

. 127

. 130

. 130

. 132

. 135

. 138

. 138

. 139

. 139

141

. 14 1

. 14 3

. 14 5

. 15 1

. 15 2

. 154

. 15 5

List of Figures -

1-1 Comparison of approaches to the simulation modeling rate problem.

1-2 The circuit design flow

1-3

1-4

1-5

1-6

1-7

1-8

2-1

2-2

2-3

Separating the model cycle from the FPGA cycle.

CAM target and simulation.

Large cache target and simulation.

Timeline of RAMP collaborators.

Comparison of FPGA-based processor simulators.

Implementing an RDL Channel with 4 A-Ports.

Overview of a HAsim model.

A HAsim model in the AWB GUI.

HAsim's LEAP Virtual Platform.

2-4 Example of a LEAP RRR specification for instruction emulation. .

3-1 Example of Latency-Delay Port Specification

3-2 Sequential simulation of 5 cycles of the system shown in Figure 3-1

3-3 Latency-Delay Port Specification Model of a systolic multiplier . . .

3-4 Adding an arithmetic pipeline to the multiplier.

3-5 Adding a non-systolic divider to the ALU

3-6 LDP Specification of out-of-order, superscalar processor.

3-7 Re-cutting a module with zero-latency ports

3-8 Re-cutting a module that includes local state.

3-9 Sequential Simulation Scheme of LDP Specification

3-10 Parallel Simulation Scheme of LDP Specification on Multicore Host

. 18

. 20

. 21

. 21

. 26

. 28

. 29

42

47

47

49

52

53

55

56

57

59

59

3-11

3-12

3-13

3-14

3-15

3-16

3-17

3-18

3-19

3-20

4-1

4-2

4-3

4-4

4-5

4-6

4-7

4-8

4-9

4-10

4-11

4-12

4-13

4-14

4-15

4-16

4-17

5-1

5-2

Modeling a multicore via direct implementation and multiplexing. . .

Port-based processor model and multiplexing.

Pipelining the m odules .. .

Target multicore and de-multiplexing approach.

Time-multiplexing the ring and cross-router ports.

Connecting the ports each other and applying permutations.

General permutations implemented via indirection tables.

Permutations implemented via parallel queues.

Simulating a model cycle for ring network via permutations.

Time-multiplexing a torus topology.

Target grid network simulated using NoMessages on non-existent edges.

Building permutations for an arbitrary network.

Multiplexing a star topology. .

A heterogeneous grid, where routers connect to different types of nodes.

Time-multiplexing the heterogeneous network via interleaving.....

Multiplexing a butterfly topology. .

Multiplexing a tree topology. .

Integrating an existing floating point core.

Integrating the existing M5 simulator using LEAP RRR.

Parallel Simulation Scheme of LDP Specification on FPGA .

Overview of simulation techniques for FPGAs.

Dynamic barrier synchronization with centralized controller.

Dynamic barrier synchronization scaling.

An A-Port Network is a restricted Kahn process network. . .

A-Port Network performance improvement.

Obtaining a consistent snapshot from a slipped state.

Execution order to quiesce Figure 3-17.

A-Port implementation on FPGAs.

Usage of the NoMessage value.

. 59

. 62

. 65

. 66

. 68

. 70

. 73

. 73

. 73

. 75

80

82

83

84

86

86

87

87

88

89

91

93

93

95

95

96

97

100

101

5-3 Overview of simulator partitioning.

5-4 Mauer, Hill, and Wood's categorization of partitioned simulators.

5-5 HAsim's timing-directed simulation scheme.

Overview of functional partition operations.....

Three different timing models.

Out-of-order timing model with speculation.....

HAsim functional partition FPGA architecture.

Implementation of getToken and getInstruction c

Implementation of getDependencies operation. . .

Implementation of getOperands and getResult ope

pera

ratio

5-13 Implementation of doLoads and commit operations.

5-14 Functional Partition Register State

Functional Partition Memory State

Unpipelined processor target.

5-stage processor target.

Detailed inorder processor target.

Out-of-order, 4-way superscalar target.

Interface for cache models.

Null cache model that always hits

Pseudo-random cache model using LFSR

Direct-mapped cache model.

Set associative cache model using one-bit pseudo-LRU.

Cache model connected to a coherence interface.

Implementation of the partitioned model.

Assessing the target processors as a sanity check.....

Simulator performance of the three models

Single-core simulator synthesis results for Virtex 5 330T.

Two implementations of the 5-stage pipeline target. . . .

Assessing the in-order simulators.

5-6

5-7

5-8

5-9

5-10

5-11

5-12

102

104

106

. 106

. 107

. 108

. 109

tions. 112

. 112

ns. 113

. 113

. 115

. 116

. 116

. 117

. 117

. 118

. 119

. 119

. 119

. 119

. 119

. 119

. 124

. 126

. 126

. 127

. 128

. 129

5-15

5-16

5-17

5-18

5-19

5-20

5-21

5-22

5-23

5-24

5-25

6-1

6-2

6-3

6-4

6-5

6-6

Assessing the out-of-order simulators. 129

Out-of-order simulator performance improvement as buffering increases. 129

Component features of Heracles and HAsim. 131

Scaling a direct implementation versus the multiplexing approach. 131

Complete 16-way multiplexed HAsim simulator characteristics. 131

6-7

6-8

6-9

6-10

6-11

6-12

6-13

6-14

6-15

6-16

A-1 Introducing cross-hierarchical communication.

A-2 Alternative modules can worsen the problem.

A-3 Using a Send connection.

A-4 Using a Receive connection.

A-5 Connecting a point-to-point channel.

A-6 A one-to-many connection.

A-7 A many-to-one connection.

A-8 Basic client/server abstraction.

A-9 A multi-user server.

A-10 A client connected to multiple servers.....

A-11 Example: HAsim's simulation controller. . .

134

. 134

. 134

. 136

. 137

. 142

. 142

. 146

. 146

. 146

. 147

. 148

. 149

. 149

. 149

. 150

A-12 Multiple logical Soft Connections on a shared physical interconnect.

A-13 Number and use of Soft Connections in HAsim inorder model. . . .

A-14 Histogram of Soft Connection span in HAsim inorder model.

A-15 Running SPEC benchmarks on the shared interconnect version. . .

Per-Core IPC: Magic Core Grids

Per-Core IPC: Detailed Core Grids

Absolute Difference in Reported IPC

Impact on FMR of scaling inorder core to multicore.

Comparing overall simulation rate to per-core rates.

153

157

157

158

.

Chapter 1

Introduction

1.1 The Processor Simulation Problem

The processor design flow begins when the architect is given a set of requirements -

e.g., construct a high-performance out-of-order x86 processor, or a low-power in-order

ARM processor. The architect then uses intuition and knowledge of existing systems

in order to identify an initial target architecture. This intuition must be backed

up by detailed quantitative studies on representative inputs before the architecture is

finalized. This process is iterative, as each study leads to tweaking critical architecture

parameters. Eventually the target architecture is finalized and the costly and time-

consuming step of Register Transfer-Level (RTL) hardware description can begin.

These early studies are carried out using simulators called performance models,

so named because they give the architect a detailed trace of the dynamic behavior of

the target system from one clock cycle to the next, but generally do not give insight

into static circuit characteristics such as area or clock frequency.1 In order to be

successful, a performance model must meet three criteria:

1. Be accurate enough to give architects confidence in their decisions.

2. Be flexible enough to allow the architect to explore a wide range of potential

targets.

3. Total time of modeling (time to develop all interesting targets and total bench-

mark execution time) must be short enough to keep the architects at the head

of the design cycle.

Currently design teams write most such models in software, using home-brewed

C/C++ simulators or frameworks such as SystemC [41]. This eases model develop-

ment, but the simulation speed of software models has not been able to keep pace

with increasing complexity of modern processors. Although academic models typ-

ically claim simulation speeds in the 100s of KIPS (Thousands of Instructions per

Second) range, detailed industry models report simulation speeds in the low KIPS

range [13]. The following table shows an overview of typical simulation speeds of

performance models constructed using Intel's Asim framework [20]:

Simulator Detail Simulator Speed

(order of magnitude)

Low-Detail Model 100 KHz

Medium-Detail Model 10 KHz

High-Detail Model 1 KHz

Such low performance can limit the variety and length of benchmark runs, thus

reducing confidence in architectural conclusions. Faced with this researchers have

explored three complementary approaches, outlined in Figure 1-1. The first is to

transform the benchmarks so that a detailed model only needs to be run on a rep-

resentative part of the dynamic execution. The second is to transform the model,

reducing detail in order to facilitate exploration of a wider space. These approaches

are useful for initial architectural pathfinding, or if the phenomenon being studied is

not dependent on the cycle-by-cycle behavior of the cores. From a practical perspec-

tive, these kinds of studies must still be backed up by high-detail models if architects

are going to convince their skeptical managers, especially for more radical proposals.

This leads us to the third approach: accelerating high-detail performance model-

ing by parallelizing the simulator itself. Although this kind of parallelization can help

somewhat, the increasing popularity of multicore architectures will actually widen the

gap between simulator speed and target speed. This is because of a variety of factors.

(A) Transform the benchmarks:
SMARTS Wunderlich et al. [60] Systematic sampling of execution runs

alternating between detailed and functional modes.

SimPoint Perelman et al. [49] Automatic extraction of representative regions and
weighting of their frequency.

Trace-Graph Workloads Isshiki et al. [27] Transform benchmark into optimized trace-
graph based on branches.

(B) Abstract the model:
QEMU Bellard [4] Functional emulator: no timing details of target.

Regression Models Lee et al. [34] Represent cores and contention as functions
and explore space using regression modeling.

Interval simulation Genbrugge et al. [23] Characterize architectural performance
based on intervals between major events.

Adaptive Models Jones et al. [28] Use JIT compilation and code-caching to amortize
simulation overhead.

(C) Parallelize the model:
SlackSim Chen et al. [12] Allows slack synchronization between host threads

to tradeoff accuracy and performance.
Graphite Miller et al. [39] Scales slack synchronization technique across

multiple host machines.

DARSIM Lis et al. [37] Multi-threaded simulator with configurable slack
synchronization.

(D) Accelerate the model using FPGAs:
Protoflex Chung et al. [15] Time-multiplexed functional emulator to

accelerate functional modes of SMARTS-based
simulation.

UT-FAST Chiou et al. [13, 14] Uses FPGA to add timing information to trace
generated by modified QEMU that is able to rollback.

RAMP Gold Tan et al. [55] Time-multiplexed model with detailed caches but no
core pipeline timings or OCN.

LI-BDN PowerPC Vijayaraghavan Automatic transformation of
et al. [57] implementation to model.

HAsim Pellauer et al. [46, 47] General framework for time-multiplexed modeling
with emphasis on core detail and OCN,
as well as ease-of-use.

Figure 1-1: Comparison of approaches to the simulation modeling rate problem.

First, simulating four cores is fundamentally four times the work of simulating one

core, but running the simulator on a four-core host machine does not in practice re-

sult in a four-fold speedup due to communication overheads. Second, next-generation

multicores typically increase the number of cores, so that architects may find them-

selves simulating eight- or sixteen-core target machines on a four-core host. Third,

the On-Chip Network (OCN) grows in complexity as the number of cores increase,

requiring the simulation of more-complicated topologies and routers. To make mat-

ters worse, the age-old problem of increasing cache sizes of next-generation cores is

expected to continue, meaning longer-running benchmarks become necessary to fully

exercise the machine.

Some kind of sea change is necessary if high-detail modeling speeds are to remain

fast enough to keep architects at the head of the design process. Recently several

companies have begun producing products that allow a Field-Programmable Gate

Arrays (FPGA) to be added to a general-purpose computer via a fast link such as

PCIe [25], Hypertransport [18], or Intel Front-Side Bus [40]. These products have

led to an interest in the processor modeling community to explore whether they

can be used to accelerate performance models, similar to how a modern graphics

card accelerates 3D modeling. Distributed logic simulation has been shown to have

a degree of parallelism in the hundreds [53], yet these parallel tasks are typically

quite small, equivalent to simulating a few gates. The hope is that FPGAs will be

better able to exploit this extremely fine-grained level of parallelism. Contemporary

efforts to explore FPGA-accelerated processor simulation include Liberty [48], UT-

FAST [14, 13], ProtoFlex [15], RAMP Gold [55] and our own HAsim project [46, 47].

Collaboration between these groups is facilitated by the RAMP project [58].

Although FPGAs can improve simulator execution speed, the process of design-

ing a simulator on an FPGA is more complex than designing a simulator in software.

FPGAs are configured with hardware description languages, and are not integrated

into most modern debugging environments. There is a danger that increased simu-

lator development time will offset any benefit to execution time. We believe that no

discussion of FPGA-accelerated simulators is complete without presenting techniques

that address this problem.

This thesis presents HAsim, an approach to using FPGAs as an execution platform

to accelerate high-detail performance models, while attempting to address develop-

ment effort by building on techniques that have been successfully applied in Asim.

1.1.1 Summary of Contributions

HAsim is a collaborative project that spans industry and academic efforts. Within

the context of this project, this thesis makes several specific contributions:

" A-Ports, a framework for distributed control of simulation on FPGAs without

a centralized controller. (Chapter 3)

* A scheme for fine-grained time multiplexing of cycle-accurate processor models

on a module-by-module basis, including a scheme for multiplexing the on-chip

network via permutations. (Chapter 4)

" A hardware implementation of a generalized functional partitioning scheme.

(Chapter 5)

" A library of reusable "plug-and-play" components for rapidly constructing pro-

cessor models (Chapter 5).

" The Soft Connections abstraction to increase modularity in hardware descrip-

tion languages. Because this is a general technique that is applicable beyond

HAsim, it is presented in Appendix A.

Figure 1-2: The circuit design flow. Traditionally FPGAs have been used in (A), (B),
and (C). (D) represents the emerging usage model that HAsim explores.

1.2 FPGAs as Architectural Simulators

Using FPGAs for architectural simulation presents both new opportunities and new

challenges. In this section we explain exactly how this use of FPGAs differs from

traditional uses such as circuit prototyping. We present new metrics for reasoning

about FPGA simulators and concerns about their correctness. Finally we discuss

the increased development effort that comes from using FPGAs and argue for why

reducing development effort is key if FPGA accelerators are to gain any success.

1.2.1 Traditional uses of FPGAs

Traditionally FPGAs have occupied three positions in the circuit design flow, as shown

in Figure 1-2. The first is to distribute pre-configured FPGAs in place of a custom-

fabricated chip (1-2A). In this case the RTL description of the circuit is designed with

FPGAs in mind, thus can take advantage of FPGA-specific structures such as Xilinx

synchronous block RAM resources.

The second use is circuit prototyping (1-2B), where FPGAs are used to aid veri-

fication before the costly step of fabrication. In this use the RTL was designed with

ASICs in mind, and thus may contain circuit structures-such as multi-ported regis-

ter files or content-addressable memories-that are appropriate for ASICs, but result

in inefficient FPGA configurations.

The third use is functional emulation (1-2C), where a design is created which

implements the functionality of the final system, but contains no information on the

expected timings of the various components. Usually the goal of such an emulator is

to produce a version which is functionally correct with minimal design effort. These

designs may use FPGA-specific structures and avoid FPGA-inefficient ones, as they

are under no burden to create a circuit related to the final ASIC.

These uses are in contrast to the emerging field of using FPGAs to accelerate archi-

tectural simulation (1-2D). A simulator helps the architect to make key architectural

decisions via exploration, thus it must combine the functionality of the system with

some notion of expected timings of its final components, but these timings may vary

wildly from those of the FPGA substrate. Similarly, if the target is expected to be

implemented as an ASIC, then FPGA-inefficient structures should not be ruled out.

1.2.2 The Model Clock Versus the FPGA Clock

The key insight is that an FPGA-accelerated simulator must be able to correctly model

the timing of all structures, but does not have to accomplish this by directly config-

uring the FPGA into those structures. The FPGA is used only as a general-purpose,
programmable substrate that implements the model. This allows the architectural

simulator to simulate FPGA-inefficient structures using FPGA-specific components,

while pretending that their timings match their ASIC counterparts.

To illustrate this, consider the example in Figure 1-3. The architect wishes to

simulate a target processor that contains a register file with two read ports and two

write ports (1-3A). Read values appear on the same target cycle as an address is

asserted. External logic guarantees that two writes to the same address are never

asserted on the same model clock cycle.

Directly configuring the FPGA into this structure would be space inefficient be-

cause it cannot use built-in block RAM resources. Block RAM typically only has

two total ports, and has different timing characteristics than the proposed register

file-read values appear on the next FPGA cycle after an address is asserted. Thus

rdaddrl

rd addr2 2R/2W
Target G wr addrl Register

wr~va1l File
wr_addr2
wr_va12

wr addrl rd addrl

rd-adc
wrvall rd-vada

rd-ad

wr ad
wr va

wrva12(FPGA _rdva12 -

Registers jwra
wr va

wr addr2 rd addr2

® Direct Configuration

Figure 1-3: Separating the model cycle from the
take advantage of synchronous block RAM.

Direct
Config

Slices 9242
rd -v a ll ------------------- --

BlockRAM 0

FdP-a12 cyclerd-val2 Freq (MHz) 104

FPGA cycles I
per Model
cycle

dri

dr2 1R/1W rdval

dr Block
ll RAM rdva12

ir2
12

OModel
FPGA cycle helps the simulator to

a direct emulation would use individual registers and multiplexers (1-3B), which can

be quite expensive.

An FPGA-based simulator can separate the FPGA clock from the simulated model

clock. Such a simulator could use a block RAM paired with a small finite state

machine (FSM) to model the target behavior (1-3C). In this scheme the current cycle

of the simulated target clock is tracked by a counter. The FSM ensures that the cycle

counter is not incremented until two reads and two writes have been performed. Thus

we are able to design a simulator with a high frequency and low area, at the expense

of now taking 3 FPGA cycles to simulate one model cycle. 2

1.2.3 Space-Time Tradeoffs in FPGA Modeling

Separating the model clock from the FPGA clock allows the simulator architect to

trade time for area, using efficient circuits that may take multiple FPGA cycles to

simulate the target structure. For example, a Content-Addressable Memory (CAM)

would be inefficient to implement directly on an FPGA, resulting in high area and a

long critical path. However we can simulate a CAM using a single-ported Block RAM

Model

94

224

3

curce

Parallel idx
vaue CAM

valid

Figure 1-4: (A) CAM Target

G0

value' I I
RAM FSM v

beginCC endCC

(B) Simulating the CAM with a RAM and FSM.

SRAM
Cache
(2 MB)

tor hit/ iss

endCC

Figure 1-5: (A) Large Cache Target (B) Simulating the cache using a memory hier-
archy.

and an FSM that sequentially searches the RAM, as shown in Figure 1-4. The FSM

may take more or fewer FPGA cycles to search the RAM, depending on occupancy.

However the model clock cycle is not incremented until the search is complete, making

the structure simulate a parallel CAM. Taking more or fewer FPGA cycles affects

the rate of simulation, but does not affect the results.

Similarly, the FPGA is inserted into a host platform that contains large amounts of

host memory. Separating the model clock from the FPGA clock allows the simulator

to leverage this memory, even though the sizes and latencies may be radically different

than those being simulated. In Figure 1-5 the simulator is run on a platform that

has three levels of memory: on-FPGA Block RAM, on-board SRAM, and DRAM

managed by the OS running on the host processor. The simulator wishes to use this

hierarchy to simulate a 5 MB last-level cache. It can accomplish this by allocating

space in the Block RAM, the SRAM, and host DRAM- essentially using 3 caches in

place of a single large cache. To simulate an access of the target cache the FPGA

first checks if the line is resident in the Block RAM. If it is, the simulator can quickly

determine if the access hit or missed. Otherwise, it must access the SRAM or DRAM,

and possibly add the response to the BRAM. In this case, in the rate of simulation

Block RAM
5 MB hit/m ss Cache

load/store Cache (1 KB)
data

load/s

begin

DRAM
Cache
(5 MB)

will be slower, dependent on the distance of the memory where the line resides. But

note that the level of physical memory accessed affects only the rate of simulation,

and is orthogonal to whether or not the simulated 5MB target hit or missed.

An FPGA-accelerated simulator is composed of many parallel modules, each of

which can take an arbitrary number of FPGA cycles to simulate a model cycle. The

problem now becomes connecting them together to form a consistent notion of model

time.

1.2.4 Reasoning About Space-Time Tradeoffs

When faced with a target circuit which is inefficient to implement directly on an

FPGA, designers writing a performance model for an FPGA have a range of options.

They can use circuits which are fast but expensive, or can trade space for time,

shrinking area but either worsening the clock period or using multiple FPGA cycles to

perform the simulation. Sometimes these tradeoffs can be done in such a way that the

rate-limiting step of the simulator is not affected. Other times simulator performance

may suffer. To this end, HAsim has developed a series of metrics for reasoning about

FPGA performance models that can aid simulator architects in making judicious

tradeoffs. We will use these metrics to analyze our simulator throughout this thesis.

The most basic metric is the FPGA-cycles-to-Model-cycles Ratio (FMR):

F MR = CYCleSFPGA
cYClesmodel

In the example shown in Figure 1-3C, the model takes 3 FPGA cycles to simulate

one model cycle, for an FMR of 3. More generally, one can examine the FMR of a

single model cycle, a region, or a run. Similar to microprocessor Cycles Per Instruction

(CPI), one can consider the FMR of a specific instruction or operation type in order

to gain insight into performance bottlenecks. In practice, FMR is particularly useful

when considering the worthiness of potential refinements to a performance model.

Of course, a refinement which improves FMR would be useless if it degrades the

overall clock period too far. Therefore total simulator speed must take into account

the frequency that the FPGA configuration can achieve:

f requencysimulator FeReFPGA

This gives us simulator speed in cycles-per-second (Hertz). In practice we find that

simulated cycles-per-second is not the best metric to measure performance models of

processors on FPGAs. This is because models often require fewer cycles to simulate

pipeline bubbles than heavy activity, and thus these idle cycles lower FMR and im-

prove Hertz. A better metric is to evaluate simulators on their simulated Instructions

Per Second (IPS). For a software simulator this is calculated as:

I PSsimulator freuencysimul1tor
CPImodel

Plugging in the above formula, we can deduce the IPS of an FPGA performance

model:

IPSimulator = freuenCYFPGA
oCPImodel x FMRoveraui

1.2.5 Logic Emulation and FPGA/Model Cycle Separation

The field of logic emulation attempts to use multiple FPGAs to simulate a prototype

of a circuit netlist. Communication between FPGAs can take several FPGA cycles.

Therefore, if different FPGAs house logic that communicate in fewer cycles in the

original netlist, then some sort of separation between the FPGA cycle and model

cycle is necessary. To this end, logic emulators developed mechanisms whereby each

FPGA could separately perform logic emulation, then stall the FPGA's clock, then

perform synchronization between the various FPGAs, and then proceed with logic

emulation, and so on. The Standard Co-Emulation Modeling Interface (SCE-MI) [1]

is an industry-standard mechanism for doing this kind of coordination.

In such a situation, the physical pins leaving the FPGA become a precious re-

source. Virtual Wires [2] is a technique developed to enhance the utilization of each

physical pins by multiplexing several wires in the model onto a single physical pin.

In this scheme, the FPGA performs a logic emulation step, then stalls while the mul-

tiplexed communication is carried out, then resumes logical emulation, and so forth.

This scheme was later extended to the TIERS scheduling algorithm [52] which allowed

for intelligent scheduling of the logic emulation across multiple FPGAs, effectively re-

ducing the FPGA-cycle-to-model-cycle ratio by pipelining.

These techniques differ from the techniques we present in two key ways. Specifi-

cally, while logic emulation techniques do separate the FPGA cycle from the model

cycle, the logic emulation step itself always takes a single tick of the FPGA clock

it is coordination between the different logic emulation steps that requires multiple

FPGA cycles. In the scheme presented in Chapter 3 there is no such restriction,

which allows our work to make more efficient use of a single FPGA. The multiplexing

scheme presented in Chapter 4 is also performed for the logic emulation pipelines

themselves, rather than for off-FPGA communication.

Our work limits itself to the consideration of a single FPGA. A potential ap-

proach to expand our techniques to multiple FPGAs, would be to combine the Virtual

Wires/TIERS schemes with our approach.

1.2.6 FPGA Models and Target Circuit Characteristics

It is important to note one way in which FPGA performance models share the same

restriction as software simulators: they give little insight into the physical properties

of the target design. Because the RTL used to configure the FPGA into the simulator

makes many accommodations for FPGAs, its device utilization and critical path are

unlikely to give insight into those characteristics of the target design. We note that

there are scenarios in which the FPGA simulator characteristics may give some degree

of insight into the corresponding characteristics of the final design. However, this

should not be one of the goals of using an FPGA for architectural simulation, as it is

by no means guaranteed.

1.3 Related Contemporary Approaches

The HASim project started at a time when research into FPGA-accelerated simula-

tion was just beginning to emerge as a field. This is because of a confluence of factors.

First, FPGAs themselves became markedly better, passing a threshold whereby their

increased capacity and speed made them more attractive as a platform. (Contrast

the differences between Xilinx Virtex II generation, and its Virtex 4 and 5 genera-

tion.) Second, a new class of products emerged that allowed FPGAs to be added to

host computers via fast links such as PCIe, Hypertransport, or Intel Front Side Bus.

This allowed a shift in thinking from FPGAs as stand-alone systems to accelerators

of general-purpose computation. Finally, the difficulty of simulating multicore pro-

cessors led to simulator architects to explore if FPGAs were suitable for more than

just prototyping or emulation.

The approach taken by Penry et al.'s accelerator for Liberty [48] is a good ex-

ample of an early approach to FPGA-accelerated simulation. Liberty is an existing

software simulator that included a mechanism for execution on a parallel host via

barrier synchronization. Penry et al.'s work allowed a software thread to be replaced

with a PowerPC from a Xilinx Virtex IIPro FPGA. Additional logic was synthesized

around the processor to correctly integrate it with Liberty's parallel task scheduler,

and stall it when input was not ready. The PowerPC cores executed instructions

faster than a pure software model of an equivalent processor, however did not allow

architects freedom to change the characteristics of the pipeline model. Liberty's ap-

proach successfully demonstrated that large speedups could be gained from FPGAs

over software simulation.

1.3.1 The RAMP Project

The Research Accelerator for Multicore Processors (RAMP) project was founded

in 2005 as an umbrella project to explore using FPGAs to accelerate architecture

research [58]. RAMP brought together collaborators from different universities with

the goal of developing a common shared infrastructure for FPGA usage, as well as

a cross-pollination of ideas and approaches. HAsim was an early member of RAMP

and continued as a participant throughout the project's lifetime. In the following

sections we discuss these projects and contrast their approaches with that of HAsim.

A timeline of the various projects that participated in RAMP is given in Figure 1-6.

Direct
Implementations Simulators

2005

20062007 14 --
2008

2009

2010

Wavescalar ATLAS RAMP Power UT-FAST HAsim Protoflex RAMP LI-BDN
(RAMP Blue PC Gold PowerPC

Red)

Figure 1-6: Timeline of projects participating in the RAMP collaboration Source:
Derek Chiou

The earliest goal of RAMP was to provide multicore implementations that could

be used by software implementors and OS researchers as a platform that would be or-

ders of magnitude faster than software-emulated multicores [45]. To this end RAMP

projects turned to the Berkeley Emulation Engine 2 (BEE2) board [11], which was

originally designed for wireless research. A key contribution of the RAMP project

was the creation of the BEE3 board, [17], which was designed specifically with archi-

tectural modeling as an intended application.

1.3.2 RAMP Blue

RAMP Blue [32] was an early result of the RAMP collaboration. RAMP Blue con-

nects multiple BEE2 boards, each of which contains multiple FPGAs. The FPGAs

themselves are configured into several Xilinx MicroBLAZE soft cores connected into

a disjoint-memory, message-passing network. RAMP Blue met the goal of being sev-

eral orders of magnitude faster than software emulation, however a downside of the

approach was that it did not represent any particular future multicore processor that

would be fabricated, which reduced the incentive for software implementors to target

the platform.

1.3.3 ATLAS (RAMP Red)

ATLAS [59]-also known as RAMP Red-is a multicore processor that implements

a transactional memory multicore using the BEE2. Similar to Liberty, ATLAS uses

the hard PowerPC processors on the FPGA, but augments them with a transactional

memory component. Execution of code on ATLAS was several orders of magnitudes

faster than under software emulation, which aided software implementors tremen-

dously. However the timings of ATLAS's network communication were dictated by

the physical links of the BEE2 boards and the PowerPC processors, which reduced

utility for computer architects.

1.3.4 Beehive

The Beehive multicore [56] is the latest generation processor to take the RAMP

Blue/Red approach: it implements a multicore on an FPGA, but does not strive to

model any particular ASIC. Beehive's goal is to be accessible to a large audience by

moving away from the expensive BEE2/3 platforms, aiming instead for the widely

available Xilinx University Program (XUP) Virtex 5 board.

1.3.5 Towards Flexible Architectural Models

Within the RAMP community a realization arose that while these projects were

useful to software implementors looking for large multicore platforms, they were less

interesting to computer architects looking to model a next-generation ASIC [31].

The key idea that emerged was the notion that the target or model cycle can be

separate from the cycles of host or FPGA clock. This insight allowed the creation of

projects that model systems with different timings than those imposed by the FPGA

platforms, making the projects a means to an end, rather than an end in themselves.

HAsim has made liberal use of this technique (Section 1.2), as did the RDL,

UT-FAST, Protoflex, and RAMP Gold projects. An overview of the these projects

approaches is given in Figure 1-7. We discuss their approaches in detail and contrast

them with HAsim in the following sections.

Functional Timing Time
Model Model Multiplexed Comments

RDL [24] None FPGA None Language for constructing FPGA-accelerated
simulators, separating FPGA cycle from model cycle.

ProtoFlex [15] FPGA Software 64 SMARTS-style functional/timing split.
UT-FAST [13] Software FPGA None Software feeds trace to FPGA, which

adds timing and may rollback software.
RAMP Gold [54] FPGA FPGA 64 Loosely-coupled partitioning focuses on

efficient in-order core implementation.
HAsim FPGA FPGA 16 Closely-coupled partitioning enables

modeling out-of-order cores.

Figure 1-7: Comparison of FPGA-based processor simulators.

1.3.6 RAMP Description Language

As explained in Chapter 3 HAsim's A-Ports arose as a way to coordinate distributed

simulation between many modules, each taking a different number of FPGA cycles per

model cycle. Gibeling's RAMP Description Language (RDL) [24] attempted to solve

both the FPGA development-time problem and the simulation coordination problem

via a language-level solution. RDL modules were connected by channels somewhat

similar to A-Ports. The main differences between RDL channels and A-Ports were as

follows:

" RDL channels represent FIFO's in the target, and thus represent both the time

to move through the channel, and also the model-level state required to buffer

the FIFO. A-Ports simplify this by representing only the time to move through

the channel. This simplifies their implementation, and also increases their utility

by allowing them to connect modules in the target system even if these modules

are not connected by FIFOs.

" RDL channels impose a credit-based protocol on the users. This protocol is

convenient for modules that are separated by long latencies, but has less utility

for modules that are closely coupled.

Note that an RDL channel can be implemented using four A-Ports, and buffing

to represent the channel, as shown in Figure 1-8. RDL channels are well-suited for

large-scale modules that must be connected by a credit-based buffering. A-Ports

finer granularity makes them more widely applicable in a wider range of modeling

circumstances.

credit first

Figure 1-8: Implementing an RDL Channel with 4 A-Ports.

1.3.7 Protoflex

Chung et al.'s Protoflex [15] is designed to accelerate SMARTS-style simulation [60].

In this style, a detailed timing model is run only on small samples of a large bench-

mark run. For the rest of the run, a functionally accurate emulator is used, but de-

tailed timings are not needed. Using this style of simulation, it is not uncommon for

the functional emulation portion of the simulation to become the rate-limiting step

of simulation-although emulation executes instructions faster than cycle-accurate

modeling, the emulator must run on orders of magnitude more instructions than the

cycle-accurate model.

Given this, Protoflex attempts to accelerate the functional-emulation of a mul-

ticore processor using an FPGA. However the result of this emulation can later be

assigned a timing under SMARTS-style simulation, and this timing can be orthogonal

to the timings of the FPGA platform. Therefore we categorize Protoflex as a simula-

tor overall, even though it uses the FPGA to implement an emulator-like component

that does not track model time.

Not having to worry about FPGA timings allowed Protoflex to make two key

contributions. The first is migration of emulation between the FPGA and the CPU

in the host computer. Protoflex observed that there are a class of instructions that

are quite rare, but also expensive to implement on the FPGA, both in terms of de-

velopment effort and FPGA area. Rather than wasting resources on these, Protoflex

detects their presence, and migrates the state of emulation to the CPU. The instruc-

tions are emulated in software, and the resulting state is passed back to the FPGA.

This migration is slow, but if these events are rare enough than impact on simulation

rate is minimized.

The second contribution is time-multiplexing. Protoflex's implementors observed

that the physical pipeline was idle during migration events, and thus could be used

to execute other threads. This observation was extended to note that the processor

pipeline could be greatly simplified if each pipeline stage was executing a different

thread, as no hardware for hazard detection or stalling the pipeline was necessary.

Protoflex uses one physical emulator to sequentially execute 16 threads.

HAsim has been greatly influenced by Protoflex, using a technique similar to

migration to interact with a software simulator (Section 5.2.2). HAsim uses the

multiplexing approach but extends it to a fine-grained timing-accurate pipeline where

the cycle-by-cycle behavior is being continuously modeled (Section 4.1).

1.3.8 UT-FAST

Chiou et al.'s UT-FAST [13, 14] makes different placement decisions than Protoflex:

it uses a software functional emulator to generate an instruction stream which is

then fed to an FPGA that adds cycle-by-cycle timings to the stream. The functional

emulator is a version of QEMU [4] which has been modified to support checkpoint-

ing and rollback. This allows the timing model to redirect the functional emulator

when the architectural stream diverges from the timing model's path, similar to a

timing-directed simulator (Section 5.3.1). Unlike in a traditional software timing-

directed simulator, the long latency between the FPGA and CPU means that the

functional emulator cannot stall for feedback from the timing model after producing

every instruction. Instead, UT-FAST uses a speculative functional emulator whereby

the instruction stream is pre-computed along the path that the functional emulator

predicts the timing model will take. For example, the functional emulator uses a

branch predictor predictor to model which path the timing model takes.

As described in Section 5.3.1, HAsim also uses a timing-directed approach with

a functional partition and a timing partition. The main difference is that in HAsim

both partitions are placed on the FPGA. This leads to a more traditional partitioning,

whereby the functional partition does not need to speculate as to the timing model's

direction, as it can receive feedback directly after every instruction.

1.3.9 RAMP Gold

Tan et al.'s RAMP Gold [55] is a partitioned, time-multiplexed simulator. Like

HAsim, RAMP Gold places both the timing and functional partitions on an FPGA.

Where HAsim and RAMP Gold differ is in the granularity of the partitioning. RAMP

Gold places an emphasis on scaling cache studies to large multicores. As such, it fo-

cuses on efficiency of implementation and scaling, at the cost of reduced detail in

the model of the core pipeline. Because RAMP Gold does not model a realistic core

pipeline, it is able to scale its time multiplexing to 64 virtual instances. However,

this scaling comes at the cost of generality in the functional partition. RAMP Gold's

functional partition does not support rollback, and thus does not allow modeling of

micro-architectures that use branch prediction or out-of-order execution.

In contrast, HAsim's general partitioning scheme (Section 5.4) allows it to model

speculative, out-of-order, and superscalar cores, but at the cost of being able only

to scale to 16 virtual cores on the current generation of FPGAs. Which approach is

more appropriate depends only on the level of detail that the architect requires in the

core model in order to conduct their study.

1.3.10 LI-BDN PowerPC

The RAMP PowerPC project represents an interesting case of a project beginning as

an implementation, before moving into a simulator. The project originally began as a

direct implementation of a PowerPC processor on an FPGA [191. This implementation

was found to have unfavorable characteristics on the FPGA, particularly for structures

such as the multi-ported register file. Vijayaraghavan developed a technique known

as Latency-Insensitive Bounded Dataflow Graphs [57] which allowed the separation of

the FPGA cycle from the model cycle, and the transformation of the implementation

into a model.

Vijayaraghavan was an original collaborator on the A-Ports simulation scheme

(Chapter 3) and his LI-BDN work can be seen as an extension of that collaboration.

The main contribution of LI-BDNs is the ability to begin with an original circuit

description (such as the PowerPC) and automatically transform it into a latency-

insensitive circuit. This then allows the designer to alter the FPGA implementations

of problematic modules in the system without needing to coordinate the different

FPGA-to-model cycle ratios. This technique is discussed more thoroughly in Section

3.7.4.

1.4 Discussion

The idea of using FPGAs as accelerators for architectural simulation is an emerging

and active field of research. Unfortunately, developing an FPGA-accelerated sim-

ulator currently requires substantially greater engineering effort than developing a

traditional software simulator. If development effort is too high, there is a danger

that FPGA-accelerated simulation will fail because the total time of modeling (mean-

ing the time to develop the model plus the time to run the benchmarks) still exceeds

software simulation. HAsim treats development effort as a first-level concern and has

developed several novel contributions to address the development effort problem.

Document Outline

The rest of this document is organized as follows:

" Chapter 2 presents the FPGA development effort problem, and HAsim's specific

contributions to address this problem.

" Chapter 3 presents A-Port Networks, HAsim's novel fine-grained distributed

simulation scheme, which allows different parts of the FPGA to simultaneously

simulate different model clock cycles.

* Chapter 4 presents HAsim's technique for fine-grained time-multiplexing, allow-

ing a single physical core on the FPGA to be simultaneously simulating different

parts of many virtual cores. HAsim also uses a novel technique to simulate the

interaction between the virtual cores in the simulated on-chip interconnect.

" Chapter 5 presents details of HAsim's implementation on FPGAs.

" Chapter 6 assesses the impact of the various techniques, both on simulation

performance and development effort. We present a small case study that argues

the merits of high-detail simulation. We discuss potential future work, and

conclude.

" Appendix A presents Soft Connections, a general technique for improving mod-

ularity in hardware designs. HAsim uses soft connections extensively, but the

technique is general, and thus we have reserved it for an Appendix.

Notes

'We note that it is increasingly common to combine performance models with detailed estimates

of a system's power consumption and exposure to dynamic soft errors, as these are closely tied to

cycle-by-cycle behavior.
2 This is 3 instead of 4 because the simulator can perform the first write on the same FPGA cycle

as the second read to the synchronous block RAM.

Chapter 2

The HAsim Approach to Reducing

Development Effort

2.1 The FPGA Development Effort Problem

There is a danger that FPGAs as architectural simulators might fail not because of

simulator performance, but because the increased development time means that the

total time of modeling still exceeds that of slower-performing software models. Given

this, HAsim treats development effort as a first-order concern and applies several

techniques to minimize the development effort problem. This chapter presents an

overview of HAsim's approach, and presents two specific contributions designed to

reduce development effort.

2.1.1 FPGA Development Versus ASIC Development

Let us begin by clearly acknowledging that developing an FPGA accelerator is signif-

icantly simpler than ASIC hardware description and manufacture. This is for three

main reasons:

1. FPGA developers do not have to worry about physical circuit characteristics,

such as parasitic capacitance, that complicate ASIC development.

2. The reconfigurable nature of the FPGA allows an iterative approach to devel-

opment, rather than working towards an irrevocable tapeout.

3. Because FPGA accelerators are added to existing general-purpose computers,

the capabilities of the host computer can be used to aid in debugging and to

perform functions too complicated to implement on an FPGA.

Development of a manufacturable ASIC requires thousands of engineering-hours.

Even though FPGA development may be several orders of magnitude cheaper than

this, the effort required may still exceed what is considered acceptable for an archi-

tectural simulation.

2.1.2 FPGA Development Versus Software Development

Most contemporary architectural simulators are constructed in software. This eases

development time and allows computer architectural studies to be conducted by small

teams of skilled architects. Unfortunately, developing FPGA simulators currently re-

quires more investment of development effort than software, for the following reasons:

1. FPGAs are configured using hardware description languages, and are currently

not integrated into debugging environments.

2. There is no equivalent of software's standard library infrastructure. This com-

plicates printout-oriented debugging, among other problems.

3. The long running times of FPGA synthesis and place-and-route tools can lengthen

the compile-run-debug loop.

4. FPGAs have finite capacity, and so the design must fit in the FPGA or the

synthesis tools will fail.

2.2 HAsim Overview

Given the significance of the development effort problem, the goal of the HAsim

project is to create a framework for constructing efficient simulators out of a library of

Unmodel Functional Partition Timing Model

Simulation M5I Controller Architectural

Virtual Instruction Parameters
Platform Emulator

Host CPU (C++)

Link (PCle, FSB, etc.)

Unmodel Functional Partition Timing Model

Simulation Register State Core Model
Controller --.---- Component

Memory State Cache Model ------------ Library
Virtual -- " (Bluespec)

FPGA (Bluespec)

Figure 2-1: Overview of a HAsim model.

reusable components, rather than emphasizing any particular target processor. Where

possible, HAsim leverages techniques developed historically for the Asim simulator

[20]. In other places, HAsim has developed novel techniques that distinguish it from

contemporary FPGA-accelerated performance models.

Figure 2-1 shows an overview of a model written in HAsim. The details of many

aspects of this picture will be explained over the course of this document. The most

important thing to note is that HAsim is a hybrid model, consisting of code running

on a general purpose CPU as well as an FPGA. In this scheme we can leverage the

strength of each physical platform: the FPGA for fine-grained parallelism, and the

CPU for rare-but-difficult-to-implement events, such as system calls.

A key way to reduce development effort is to reduce the amount of code that the

architect must change in order to construct their design space exploration. HAsim is

divided into four major components:

* The functional partition is responsible for correct ISA-level execution of the

instruction stream.

" The timing partition (or timing model) is responsible for tracking microarchitectural-

specific timings, such as branch predictors and cache misses.

" A library of pre-defined modeling components, such as branch predictors and

caches.

" The unmodel component refers to all functionality not directly related to sim-

ulation, including the ability to track statistics and parameters, as well as the

virtual platform necessary to interact with the host CPU.

Under most scenarios, a computer architect using HAsim is required only to change

the timing model. Additionally, the library of pre-defined modeling components can

reduce this even farther, by allowing architects to adapt pre-existing modules for their

experiments.

In the remainder of this chapter we present detailed discussions of HAsim's ap-

proach to lowering development effort. We begin by discussing the application of

existing design engineering practices in the context of an FPGA accelerator. Tech-

niques described in this chapter is joint work with Angshuman Parashar and Michael

Adler. We will discuss this thesis's novel contributions in the domain of development

effort separately.

2.3 High-Level Hardware Description Languages

Structural hardware description languages such as VHDL and Verilog give designers

precise control over their microarchitectures. However, this control often comes at

the cost of complex, low-level code that is unportable and difficult to maintain.

When using an FPGA as a simulator the architect is not describing a final product,

and thus does not need such exacting control. Thus high-level hardware description

languages such as Bluespec SystemVerilog [7], HandelC [42], or SystemC [41] can be

a good fit.3

The HAsim [47], UT-FAST [13], and ProtoFlex [15] FPGA simulators are all

written in Bluespec SystemVerilog. The benefits of Bluespec are similar to those for

using high-level languages in software development: raising the level of abstraction

improves code development time and reuse potential, while simultaneously eliminat-

ing many low-level bugs caused by incorrect block interfacing. Bluespec also features

a powerful static elaborator that allows the designer to write polymorphic hardware

modules which are instantiated at compile time with distinct types. This brings many

of the benefits of software languages' high-level datatype systems into hardware de-

velopment. Static elaboration is discussed in more detail in Appendix A.

2.4 Architect's Workbench and Modularity

The Asim Architect's Workbench (AWB) [21] is an existing framework for the de-

velopment of performance models. It aims to improve the performance modeling

process, especially in the early exploratory stage, by supporting modularity and code

reuse. This support is provided at two levels: First, AWB supports a representation

of a model as a hierarchical tree of modules, where each module can be replaced with

alternative implementations that satisfy the interface requirements of the module.

In fact, these replacements allow complete control of the structure of the tree for a

particular model. This allows a wide variety of different models to be constructed out

a common pool of modules. At a second level of modularity, AWB allows these mod-

ules to be obtained from an arbitrary set of independently-maintained source-code

repositories.

HAsim has integrated itself into AWB. This allows computer architects to use a

GUI to configure their modules. Once a model configuration has been selected, AWB

automatically generates a build environment. Switching between software simulation

of the FPGA component and actually synthesizing for the FPGA becomes a point-

and-click choice. A typical HAsim model in AWB is shown in Figure 2-2.

Eft Edit MOMISP ModuIle Ji~p

Search[-- - 1--

Name: I norder Alpha Wrtetruh Caches Mesh ACP 16

Description: inorder Alpha Direct Writethrough Caches Mesh ACP

Attributes: hasim Inorder alpha acp

9 * model HW/SW Hybrid Project Foundation

e fiapplicationenv Soft Connections Hybrid Application Environment
e @connected application HAsIm Performance Model

8 0 hasim timep Single Chip Timing Partition
8 e hasim chip Multi-Core Chip

8 * hasim core Pipeline and Caches
hasim_pipene Inorder Pipeline, 2-bit branch predictor

Direct Mapped, Writethrough
8 @hasim uncore Uncore with interconnect

G * hasimInterconnect Mesh Interconnect
e Ohasim_lastlevelcache Writeback No Coherence Last Level Cache

8 0 hasim_last_levelcache aIg Set Associative Last Level Cache Alg
e 0 haslm_memorycontrober Latency-Delay Controller

8 @chlp_basetypes Chip Base Types
o @hasim memory Null Memory
q @ hasim-modellib HAsim Modeling Library

#hasim funcp Alpha Functional Model
8 *hasim-isa Alpha ISA Definition

hasim_model-services Default HAsIm Model Services
hasim common HAsim Common Defauit Configuration

#platformservices Standard Platform Services

#soft_connectionslib Standard Soft Connections Lib
#fpgaenv Hybrid ACP M2 Compute Environment (Nallatech)
#projectcommon Default Hybrid Project Common Utilities

F Direct Mapped. Wrltethrougn, NO TILE
#Null L1 caches
#Pseudo-Random Li caches
* Spit (instruction and Data)
0 Split (instruction and Data) No TLBs

V41 --- li

Description: Direct Mapped, Writethrough L1 Caches
Attributes: hasim model caches 11
Provides: hasimIlcaches
Requires:
Filename: /home/pellauer/srcworkspaces/nfoating-point/src/hasim-models/conflg/pm/hasim-modesI
Public:
Private:
Parameters:

]L~ i

Figure 2-2: A HAsim model in the AWB GUI. Plug-and-play alternatives to the Li

caches are highlighted in the Alternative Modules subpane.

11norderAlpha rKethrough Caches MeshACP 16

ane~I molementation

I

2.5 The LEAP Virtual Platform

Development efforts can be further eased by adopting a standardized set of interfaces

for the FPGA to talk to the outside world. This virtual platform provides a set of

virtualized device abstractions to FPGA developers, enabling them to focus on im-

plementing core functionality without spending time and energy debugging low-level

device drivers. Furthermore, most FPGA-based simulators are likely to be hosted on

hybrid compute platforms comprising one or more FPGAs, and one or more CPUs.

Extending well-understood communication protocols such as remote procedure call

(RPC) and Shared Memory to the hybrid CPU/FPGA environment makes the plat-

form more approachable for sharing responsibilities between the FPGA and the CPU.

Figure 2-3 illustrates the structure of HAsim's virtual platform. The primary

interfaces between the simulator and the platform are a set of virtual devices and

an RPC-like communication protocol called Remote Request-Response (RRR) that

enables multiple distributed services on the CPU and the FPGA to converse with each

other [43]. The primary benefit of this approach is portability- the virtual platform

can be ported to a new physical FPGA platform without altering the application.

Only low-level device drivers must be rewritten.

HAsim's virtual platform is a general abstraction for FPGA programming, and

is completely independent of architectural simulation. To emphasize this we have

renamed the virtual platform to LEAP-- Logic-based Environment for Application

Programming [44]. The LEAP platform has now been used in an H.264 implementa-

tion [22], and an academic study of a solid state disk drive [36].

2.5.1 LEAP Scratchpads

Traditionally, developers accelerating applications on FPGAs have nothing but raw

memory devices in their standard toolkits. Each project typically includes tedious

development of application-specific memory management which is not reused across

projects. Software developers expect a programming environment to include auto-

matic memory management. Virtual memory provides the illusion of very large arrays

Virtual Platform
(reusable across

all FPGAs)

Physical Platforn
(specific to

particular FPGAs

User Design FPGA User Application

Platform Interface

Scratchpad Memory Streams

Remote Request/Response (RRR) Remote Request/Response (RRR)

Local Remote ChannellO ChannellOMemory Memry

I/0 Interface Logic I/0 Interface Software

Figure 2-3: HAsim's LEAP Virtual Platform.

and processor caches reduce access latency without explicit programmer instructions.

LEAP scratchpads are an abstraction that dynamically allocate and manage mul-

tiple, independent, memory arrays in a large backing store. Scratchpad accesses are

cached automatically in multiple levels, ranging from shared on-board, RAM-based,

set-associative caches to private caches stored in FPGA RAM blocks. In the LEAP

framework, scratchpads share the same interface as on-die RAM blocks and are plug-

in replacements. Additional libraries support heap management within a storage set.

LEAP scratchpads allow accelerator authors to focus more on core algorithms and

less on memory management, analogous to software development.

HAsim uses LEAP scratchpads to aid in scaling the simulator to larger multicore

targets. The data required to model the caches of the processors does not fit on-

board the FPGA. We employ scratchpad memories to store modeled cache states, as

discussed in Section 5.6

2.5.2 LEAP Remote Request-Response (RRR)

LEAP provides a typed asynchronous request-response protocol called RRR (for Re-

mote Request Response) to allow typed method-call-like communication between an

FPGA and a software process. Similar to Remote Procedure Calls [6], the user de-

fines services whose servers reside on either the FPGA or in software, with the client

'0 116 A

service ISA EMULATOR

{
server fpga <- cpu

method UpdateRegister(in REGINFO rinfo);

};
server cpu <- fpga

method Sync(in REGINFO rinfo);

method Emulate(in IINFO iinfo, out IADDR newPc);

Figure 2-4: Example of a LEAP RRR specification for instruction emulation.

residing at the opposite end. The user defines the interface exported by each server.

An example interface is shown in figure 2-4.

At compile time, RRR stub compilers generate the marshaling, demarshalling and

multiplexing code that plumb the user code into underlying LEAP communication

channels. A system like RRR abstracts away almost all of the headache for communi-

cating between an FPGA module and a software module. Most of the LEAP virtual

services described earlier, as well as Scratchpads, are layered on top of RRR.

2.6 Further Contributions

The techniques presented in this section represent the application of good engineer-

ing practices in the context of FPGA-accelerated simulation. Beyond these, HAsim

has developed two specific contributions aimed to address development effort: Soft

Connections, a technique for increasing modularity in hardware description languages

(Appendix A), and a novel architecture for implementing timing-directed simulation

on an FPGA (Chapter 5).

2.7 Discussion

In this chapter we explored HAsim's techniques for offsetting the increased devel-

opment time that comes with using FPGAs and hardware description languages.

HAsim emphasizes plug-and-play modularity and code reuse, enabled by the Asim

Architect's Workbench. The LEAP virtual platform is a general abstraction and has

found applications beyond architectural simulation.

The problem now becomes assembling such a model in a way that is able to take

advantage of the fine-grained parallelism inherent in the FPGA. To this end we have

created an abstraction called A-Ports, which allows for distributed simulation without

the need for a centralized controller.

Notes

'It should be noted that high-level hardware description languages do not necessarily result in

worse FPGA utilization. There are cases where high-level knowledge exposes optimization opportu-

nities [26].

Chapter 3

A-Ports: Fine-Grained Distributed

Simulation on FPGAs

3.1 Introduction

Section 1.2.1 demonstrated that separating the FPGA clock from the simulated model

clock can result in significant benefits. The problem now becomes taking many

modules-representing the various functions of a target processor-each of which

takes a different number of FPGA cycles per model cycle, and composing them to-

gether in a manner that results in a consistent notion of model time. This section

examines how to construct such a simulator while simultaneously enabling the FPGA

to take advantage of the fine-grained parallelism available in the target design.

We begin by discussing exactly how a high-detail processor performance model is

specified, including a discussion of how parallel software simulators control simulation.

We then consider existing simulation techniques and discuss why they are unsuitable

for the specific conditions of FPGAs. Finally we present A-Ports: a novel technique

for controlling distributed simulation on an FPGA that removes all need for global

coordination.

3.2 Latency-Delay Port Specifications

A Latency-Delay Port (LDP) specification is an existing technique for describing a

high-detail, cycle-by-cycle model of a target hardware system. This type of specifica-

tion is used to create the models for simulators such as Intel's Asim [20]. Asim's main

goal is to allow architects to develop performance models quickly by reusing existing

pieces. To encourage this, the specification of the target system is decomposed into

individual modules (branch predictors, caches, etc.) that can be swapped for varia-

tions in a plug-and-play manner. In order for this swapping to be successful, practice

has shown that the modules must have a clear and well-documented interface as well

as an explicit and easy-to-change indication of the time the computation takes. To

this end, Asim has developed a structure known as ports, which formalizes the in-

terface and helps separate concerns of timing from functionality. A port is simply a

communication channel annotated with a static latency 1, representing the amount of

model cycles messages take to flow through the port.

In Asim modules are arranged into a directed graph connected by ports. This

graph must obey the following rules:

" Each port has a single writer and reader.

" Latencies are statically specified and may not change dynamically.

" The modules may have local state, but may not access each other's state

directly -all communication must go through ports.

Each module must now define its "cycle-by-cycle" behavior. This is done by

specifying a method called Clock(). This method takes as a parameter the current

clock cycle, held in a variable current-time. A module's Clock() method generally

does the following:

* Queries the module's input ports to determine if they contain any messages

which arrive at current-time.

" Performs all necessary computations and local state updates based on any mes-

sages it received (and its current local state).

" Possibly send messages into its output ports. It may send at most one message

on each output port.

Note that the modules themselves have no inherent notion of model time we

can consider their computation to be infinitely fast. Time is represented only in the

delay of communication between modules (and in each module's decision whether or

not to enqueue a message, as we will see in Section 3.2.4). The ports themselves

behave as follows:

* Each port has a method named HasMessage () to query if an message arrives

at current-time.

" Because at most one new message may be added every cycle, at most one

message will arrive each cycle. The content of messages may be accessed with

a Receive 0 method.

* The Send() method uses the port's latency 1 to record that the message will

appear on cycle current-time+l.

" At the conclusion of cycle current-time, all messages arriving on that cycle

are deleted- and thus are lost if the receiving module did not observe them.

A simple LDP system is shown in Figure 3-1. The system consists of two modules,

A and B. Module A has a local state variable r while B has s. Both variables have

an initial value of zero. Each module defines a clock() method that describes their

cycle-by-cycle behavior. A always increments r, but only sends a message when r is

even. B checks for a message, and increments s by that amount if one is present, and

by 1 otherwise.

port AtoB 2;

module A
var r = 0;
method Clock()

if (r[0] == 1)

AtoB.Send(r);

r = r + 1;

module B
var s = 0;
var tmp = 0;
method Clock()

if (AtoB.HasMessage()

tmp = AtoB.Receiveo;
s = s + tmp;

else

S = s + 1;

Figure 3-1: Simple example of a complete LDP specification.

Model Cycle Module Clocked r AtoB s
0 -0

0 A 1- 0
0 B 1 - 1
1 A 2 (3,2) 1
1 B 2 (3, 2) 2
2 A 3 (3, 2) 2
2 B 3 (3,2) 3
3 A 4 (3,2), (5,4) 3
3 B 4 (5,4) 5
4 A 5 (5,4) 5
4 B 5 (5,4) 6

Figure 3-2: Sequential simulation of 5 cycles of the system shown in Figure 3-1

...........

3.2.1 Simulation Model for LDP Specifications

Given an LDP specification of a system, the problem of simulating the system can be

reduced to the dynamic snapshot problem:

* Given a specification in state s and input i, what is the state of each module in

the system at time t?

The execution model for simulating an LDP Specification is to iterate through

each module in system, calling clock methods:

modelcycle = 0;

while (1)

foreach M in Modules

M. Clock (modelcycle);

foreach P in Ports

P.dequeue(modelcycle);

modelcycle++;

In order to determine whether or not the ports in the system contain a message

on any given cycle, messages in the port are stored as tuples (receiving-time,

msg-val), where receiving-time equals the clock cycle the message was sent, plus

the latency of the port. Figure 3-2 shows simulating 10 cycles of the system previously

described in Figure 3-1.

3.2.2 Latency-Delay Port Models of Systolic Pipelines

Latency-Delay Port specifications can be easier to write than a traditional hardware

specification if the system contains systolic pipelines. To see why, let us construct

an LDP specification for the multiplier pipeline of an ALU. Figure 3-3A shows the

specification of the functionality of the multiplier: it simply takes two numbers and

multiplies them together by applying a function called mul. The advantage of this

approach is that it is simple to describe and easy to understand.

Figure 3-3B shows an implementation of the multiplier as a 4-stage pipeline in a

traditional hardware description language (assuming mul = mUl 1 e mul 2 e ...). This

0
OPL Rs1 f

UP

U
U

U

V

yr

result

op2

Figure 3-3: (A) Functionality of a systolic multiplier. (B) Traditional hardware de-
scription of the multiplier can be tedious and hard to change. (C) Separating the
functionality from the timing of the systolic pipeline. (D) Latency-Delay Port Speci-
fication recovers a large degree of the simplicity of the original functional specification.

©

0

................ --__ ---

0Mil Resuft
mull mul2 mul3 mul4

.p2 0

OPL Result

description of the multiplier includes information on both the functionality of the

operation, and the precise timing that the operation takes. Traditional structural

hardware descriptions have several problems:

* Tedious to describe because they require verbose descriptions of each pipeline

stage.

e Hard to change, because adding or removing a pipeline stage requires changing

the logic functions of every stage.

e Confuses code that is required for functionality, from code that is required for

timing.

e Does not differentiate between state which is necessary for functionality, and

state that is introduced only to accommodate timing.

One solution to this problem is to re-time4 the description of the circuit, as shown

in Figure 3-3C. This description is much simpler, as the functionality of the multipli-

cation operation is separate from their timing. This also makes the timing easier to

change, and thus enables a certain class of architectural exploration (assuming that

the system around the multiplier is tolerant to these changes in latency).

An LDP specification of the multiplier is shown in Figure 3-3D. This approach

retains the benefits of the re-timing approach, in that the functionality is separated

from the timing. Additionally, it adds some new benefits:

* Local state which is stored inside the ports is clearly not relevant for function-

ality, but only for timing.

e Changing latency involves only changing a single number, rather than adding

new registers.

e Provides a clean separation between code for timing and code for functionality.

One criticism of the LDP specification is that systolic pipelines are relatively rare

in detailed microprocessor descriptions. Although this is true of the final system,

latency-delay ports have proved to be a useful abstraction for quickly describing long-

latency communication. For example a "magic" memory system that is simply a

latency delay can be modeled using a RAM and a port. This enables a certain class

of experiments simply by varying the latency of the memory.

3.2.3 Representing Parallel Pipelines as Multiple Ports

Now let us suppose the architect wants to expand the multiplier to the simple ALU

shown in Figure 3-4A. In this ALU all instructions are classified as either multiplica-

tions or simple arithmetic operations. The desired structural implementation of the

ALU is shown in Figure 3-4B. Simple arithmetic operations are expected to take 2

cycles, while multiplications take 5.

An LDP specification of the module is shown in Figure 3-4C. Here, we have added

a new port to represent the arithmetic pipeline. The ALU will enqueue at most one

message into either of the output ports, depending on the type of instruction it

receives.

Notice that this representation says nothing about what happens if the next stage

receives a result on both ports on the same cycle. This could result in an error if the

register file does not have sufficient ports to perform both writebacks. Presumably,

the Issue stage includes logic to ensure that writeback collisions do not occur. One

advantage to the LDP specification is that it allows the Issue stage's code to query the

latency of the various ports, allowing more concise description of collision detection.

3.2.4 LDP Specifications of Non-Systolic Operations

For operations which are not implemented as systolic pipelines, a simple latency is

not sufficient to describe the timing of the system. In this case the latency must be

combined with whether or not a message should be sent, which is determined by the

local state of the system.

Suppose we want to add a divider to our ALU. The functionality of the divider

(Figure 3-5A) is simply added to our specification. However, the timing of the divider

0
arith result

arith
Inst

opI

op2
mul result

ins
arith result-

op2
mul result

arith 2 '-

arith result

inst ops Ml7

fl: 1 mul result

Figure 3-4: (A) Functionality of ALU with separate arithmetic pipeline. (B) Tradi-
tional hardware description of the parallel pipelines. (C) Latency-Delay Port Speci-
fication representing the parallel pipelines as separate ports.

............

0

Inst

optOPL

o©

do
Arith

doMul

doDiv

*

arith result

mul result

div result

Figure 3-5: (A) Functionality of ALU with division pipeline. (B) Implementation
of the division operation as a circular pipeline. (C) LDP Specification uses separate
logic to calculate the division's result from the amount of cycles consumed.

.........

is more complex. Because the architect expects that divide operations are rare,

she is considering implementing them with a circular shift-and-subtract. (Let us

assume the issue stage knows not to place more than one divide instruction in flight

simultaneously.) The structural description of the shift and subtract (Figure 3-5B)

iterates the operation through the pipeline a number of times that is dynamically

dependent on the input data to the ALU. Again, this confuses issues of timing with

functionality.

In contrast, an LDP model of our circular divider is shown in Figure 3-5C. In

this model the functionality of doing the division operation (div) is separated out

from the timing. However, we cannot simply send the result on an output port, as

the latencies of ports are fixed statically. Instead, the result is delayed in local state.

A separate operation (divCount) sets a counter with the number of iterations that

the shift-and-subtract pipeline would take to calculate the result. The port itself is

assigned a static latency of 1. Therefore, if the divCount operation decides that a

particular operation should take 5 clock cycles, then the result of div is sent in the

output port 4 clock cycles later, so as to arrive on the 5th cycle.

In this way, the LDP specification is able to retain separation of timing and

functionality, but unlike in the systolic case the description of the timing is not as

easy as placing a message into a port. Similar techniques can be applied to make a

port (which is fully pipelined) simulate a communication channel which is not fully

pipelined.

3.2.5 Complete LDP Specifications

Figure 3-6 shows a complete target processor recast as a port-based model. The sys-

tem has been partitioned into modules using the pipeline stages as a general guideline.

Pipeline registers were replaced ports of latency 1, such as those connecting Fetch and

Decode. The instruction- and data-memories are represented as simple static laten-

cies, which is unrealistic but illustrative for the purposes of this example.

It is important to note that the graph of modules and latency-delay ports is not a

complete specification of the timings of the system. As with the circular divider above,

Figure 3-6: LDP Specification of out-of-order, superscalar processor.

a complete specification must also include code for each modules' local behavior, as

this determines if these modules send a message for a given cycle.

For example, the ROB in Figure 3-6 is connected to the Issue stage by a port of

latency 1. However, an instruction may be resident in the ROB for dozens (or maybe

even hundreds) of cycles before being issued. In fact, wrong-path instructions may

be dropped from the ROB before ever being issued at all. The only information that

the LDP graph conveys is that when an instruction does leave the ROB, it arrives at

Issue 1 cycle later.

In aggregate, the precise timings of any given instruction are dependent on the in-

struction itself, the local state of the ROB and other modules, and the static latencies

of the ports. The only way to determine this is to simulate the system in full.

3.2.6 Considerations for Zero-Latency Ports

It is legal to use zero-latency ports in an LDP Specification, so long as those ports

are not arranged into "combinational loops" - a familiar restriction to hardware

designers. Formally, every cycle in the graph must contain at least one port of latency

1 or more.

A #

Figure 3-7: Re-cutting a module with zero-latency ports. (A) Original module with
three sequential operations. (B) Illegal re-cutting with a "false" loop. (C) Legal
re-cutting removes the false loop.

Because of this restriction, a situation can occur whereby it can seem that the LDP

specification is fighting against modularity. To illustrate this, consider the example

shown in Figure 3-7. The original module contains three sequential operations M 1,

M2 , and M3 . The designer wishes to place M2 into a separate module, perhaps in

order to facilitate swapping in alternative modules. Unfortunately, doing this naively

results in a loop of zero-latency ports, as shown in Figure 3-7B. However, clearly this

represents a case where the modeler was describing legal hardware: a false loop rather

than a true combinational loop.

In this case the solution is to re-cut the graph so that the original is now three

modules, as shown in Figure 3-7C. This allows M2 to be isolated, as intended.

Re-cutting also applies when the module contains local state that is read by dif-

ferent operations. Figure 3-8A shows a more realistic example of a Fetch unit. The

original module has the following functionality:

1. Receive incoming credits from the instruction queue.

2. If we have 1 or more credits, send current PC to the line predictor and send the

......

@ InstQ
Credit

Branch
Redirect

Fetch

@

Fetch ~ ' ' '
Fetch2

Figure 3-8: Re-cutting a module which includes local state. (A) Original fetch module.

(B) Illegal re-cutting. (C) Legal re-cutting with transmission of new state to first

stage.

prediction to the ITLB.

3. If we receive a redirect from the back end, write that to the PC, otherwise write

the line prediction to the PC.

The architect wishes to move the line predictor out of the Fetch unit, in order to

facilitate "plug-and-play" replacement of different line prediction schemes. Unfortu-

nately, this would create a loop of the zero-latency ports (Figure 3-8B). The re-cutting

solution now must include a backwards path which carries the updated value of the

program counter, as shown in Figure 3-8C). This backwards path must not be zero-

latency, and must be configured to contain the initial value of the program counter

at simulator startup.

An alternative approach is to change the module simulation semantics to query

...........

input ports in a fixed dependency order. This is the approach taken by LI-BDNs, as

we discuss in Section 3.7.4. However, we believe the re-cutting solution is sufficient,

as there is guaranteed to be at least one legal cut of any hardware system that does

not contain combinational loops.

Finally, the execution model of the simulator must be updated to deal with zero-

latency ports. Originally, the order that we iterated through the modules in the

system was unimportant. If the system contains zero-latency ports, then they must

be done in causal order. Zero-latency ports represent a causal dependence between

the producer and consumer, implying that one must be simulated before the other.

The controller determines a simulation order by performing a topological sort of the

modules. (Cycles in the module graph can be cut at any non-zero-latency port for the

purposes of determining simulation order. Such a port is guaranteed to exist because

of the "no combinational loops" restriction.) As port latencies are static, this sort

only needs to be performed on simulator startup.

3.3 Parallel Simulation of LDP Specifications in

Software

The Asim simulator is a straightforward implementation of the sequential latency-

delay port simulation model. This results in the simulator performance shown in

Figure 3-9, whereby modules are simulated one-at-a-time on the host computer.

Within a target processor there is a large degree of fine-grained parallelism, as all

modules that are not connected (or transitively connected) by zero-latency ports may

be simulated in parallel. As the unit of parallelism represented a few instructions, the

implementors of Asim were concerned about whether this approach could be exploited

to improve simulation rate, as the overhead of running multiple threads on a parallel

host computer would overwhelm this granularity of parallelism.

However, when simulating a multicore target computer the target cores themselves

may be partitioned into separate threads, and the threads run in parallel. This

Core 1 Cache 1 Core 2 Cache n - Core 1
FED X MiWLF- L FK DfXMWI-F L S D X {MW --

Next model cycle

Figure 3-9: Sequential Simulation Scheme of LDP Specification

Core 1 Cache 1 Core 1
Core 2 M Cache2SoF 2)*

Core 2 Cache 2 * Core 2

F X MWFL S DXMW-Core n Cache n Core n
[FDX MW1FV F FTifXIF M w...

Next model cycle

Figure 3-10: Parallel Simulation Scheme of LDP Specification on Multicore Host

Core 1:
Fl
D

W
Cache 1 :

L

Core2

F

D m

Next model

Core 1
F"
D:

W

Cache 1

FJ

L

Core 2

Da

cycle Next model

Figure 3-11: Parallel Simulation Scheme of LDP Specification on FPGA

cycle

degree of parallelism is much more suited to running on a multicore host. This led

to Parallel Asim, an implementation where the centralized clock server runs in a

thread, and uses barrier synchronization to coordinate between a separate simulation

threads, as shown in Figure 3-10. The modules of the target are statically partitioned

between the threads (usually one-to-two target processors and their associated caches

are assigned per thread). The threads advance a model cycle, and stall on a barrier

when complete. Simulation of the on-chip network (the OCN, or so-called uncore) is

handled by a dedicated thread. This is because the OCN represents communication

between the various threads, and so must be synchronized to the barrier. This is

discussed in-depth in Chapter 4.

Assuming that the user has defined a partitioning of modules to threads, the

resulting simulation algorithm can be described as follows:

modelcycle = 0;

Threads = partition(Modules);

while (1)

parallel foreach T in Threads

parallel foreach M in T

M.Clock(modelcycle);

wait-for-barriero;

modelcycle++;

Barr [3] had earlier demonstrated that this centralized controller could be removed

and simulation controlled by using certain "SMP" ports, where the producer and

consumer would be in different threads. Since each module knows the explicit model

cycle, a consumer could "peer backward" through incoming ports to determine when

it was safe to proceed with simulation. The controller-less simulation for each thread

became:

modelcycle = 0;

while (1)

if (in-port .ProducerHasSimulated(modelcycle - in-port . latency))

foreach M in Modules

M.Clock(modelcycle);

modelcycle++;

As this demonstrates, each thread was still responsible for sequentially simulating

a number of modules. This was because assigning a thread per module would result

in hundreds of threads that would overwhelm the available parallelism of today's 8-

to-16 core servers. Unfortunately, limiting the number of parallel threads also undid

much of the benefit compared to barrier synchronization. In contrast, an FPGA is

fully able to take advantage of this level of parallelism, as shown in Figure 3-11.

The problem now becomes coordinating when the distributed parallel modules can

advance to the next model cycle. This will require additional hardware overhead to

perform this coordination. In the next section, we explore the overhead incurred by

existing parallel simulation techniques.

3.4 Applicability of Existing Distributed Simula-

tion Techniques to FPGAs

In this section we discuss various existing simulation techniques with the goal of

exposing as much parallelism as possible when implementing an LDP specification on

FPGAs. We compare these techniques to each other in Figure 3-12 and refer to this

figure throughout this section. The goal is to find a distributed simulation technique

that maximizes simulator performance minimizing the overhead in terms of FPGA

resource utilization. The technique must not introduce any errors into the simulation

results.

3.4.1 Correctness Issues of Modeled Clocks

As a performance model is a simulation rather than a direct implementation, we

must be concerned with both the correctness of the target specification, and of the

simulator's implementation. In order to function correctly, a performance model must

be free of temporal violations. A temporal violation occurs when a value from model

cycle n + k is accidentally used to calculate a value on model cycle n. On an FPGA,

Figure 3-12: Overview of simulation techniques for FPGAs.

a temporal violation typically occurs because of a race condition, whereby a producer

writes a value before a consumer has properly finished computing with the preceding

value.

Another issue is the ability of a simulator to advance the model clock. If the

simulator is unable to advance the clock, we will refer to this as a temporal deadlock.

Note that this is distinct from a model-level deadlock, which results when the target

design is faulty. If the target machine enters a deadlocked state, then the performance

model should correctly model the machine remaining in that state as model time

continues to advance. The absence of temporal deadlocks is important because it

gives the system architect confidence that a performance model which deadlocks is

due to a fault in the target machine, rather than a fault in the simulation methodology.

3.4.2 The Emulation Approach

The first approach we consider is to use the FPGA clock to represent the model

clock directly. In such a system running the model for t clock cycles would simply

require ticking the physical FPGA clock t times. We refer to this approach as direct

emulation, Node A in Figure 3-12.

As discussed in Section 1.2.1, if the target ASIC employs structures that do not

map well onto FPGAs (e.g., multi-ported register files, or content-addressable mem-

ories) then the resulting FPGA clock period is likely to be poor, and use a lot of

resources, as shown previously in Figure 1-3. We include this technique only for

completeness.

A better approach is to use a distributed simulation technique that separates the

model clock from the FPGA clock. Classically, such existing techniques fall into

two broad categories: those which track time explicitly (also called "event-driven"

simulation) and those that track time implicitly (also called "continuous" simulation).

3.4.3 Simulation with Explicit Timekeeping

Distributed simulation techniques that explicitly carry time are variants of the Chandy-

Misra-Bryant simulation technique [10, 8], Node B in Figure 3-12. In such schemes all

data in the system is associated with a timestamp. Operations on data also increment

the timestamp by the appropriate amount.

Any FPGA-optimized circuit may be used to perform the operations the number

of FPGA cycles that such a circuit requires to compute will have no impact on the

results of simulation, but only the FMR of the simulator. Additionally, this scheme

enables playing "what if" games with the simulated timings without substantial code

changes.

The main benefit of explicit-time schemes is that model cycles with no activity

do not need to be simulated explicitly. For example, on FPGA clock cycle 300 we

may be simulating model time t, but by adding 1000 to the timestamp we would be

simulating time t + 1000 on FPGA cycle 301. This is why such simulation schemes

are referred to as "event-driven," as idle model cycles are passed over until an event

occurs.

The disadvantage of such techniques is the overhead of explicitly storing, transmit-

ting, and manipulating timestamps. Practice has shown that processor performance

models-which simulate the core pipelines of synchronous systems do not gener-

ally demonstrate enough idle areas of the system to compensate for this overhead.

Additionally, modules which have changes to internal state triggered autonomously

without external events (such as counters) need to have an activation mechnasim pro-

vided to them. It is significant to note that the major performance models written in

software use continuous simulation techniques rather than event-driven techniques.

3.4.4 Simulation with Implicit Timekeeping

Continuous simulation techniques make use of the fact that the target system is a

synchronous system with only a single (or a small number of) distinct clock domains.

These techniques are able to make the timekeeping implicit, using the coordination

of behavior among the simulated modules to simulate the target clock.

One straightforward way to coordinate distributed modules is to assign each mod-

ule n FPGA cycles to simulate one model cycle. This is unit-delay simulation (Node

C of Figure 3-12), historically used in projects such as the IBM Yorktown Simulation

Engine [50]. This technique retains the benefit that any FPGA-optimized implemen-

tation of a circuit may be used, whether or not its cycle-by-cycle behavior matches

that of the target circuit.

The advantage of the unit-delay scheme is that there is very little overhead. All

modules can be implemented as finite-state machines which read their inputs, calcu-

late for n cycles, and write their outputs. Temporal deadlocks are impossible, and

temporal violations can be easily avoided by restricting producers to write their out-

puts only on the final FPGA cycle of a model cycle. As the FMR=n, We can create

a snapshot of the system on model cycle t by observing the state of the system on

FPGA cycle n x t.

Such a simulator would simulate at a rate of frequencyFPGA/n. Thus unit-delay

simulation is appropriate when the static worst-case n is small. In practice, however,

there are likely to be rare, exceptional events that require a large amount of time to

simulate. Moreover, unit-delay simulation cannot be used when n cannot be bounded

- for example if the FPGA occasionally communicates with a host processor via

a PCI connection. We conclude that although unit-delay simulation offers many

benefits, it is unsuitable in a large number of practical situations.

An alternative is to have the FPGA-to-model cycle ratio determined dynamically.

This would be a dynamic barrier synchronization (Node D in Figure 3-12), where

all modules coordinate dynamically on when to move to the next model cycle. As

Figure 3-13: Dynamic barrier synchronization with centralized controller.

is shown in Figure 3-13, a centralized controller tracks model time, and alerts all

modules when it is time to advance to the next model cycle. The modules then

simulate, and report back when finished. When all modules have finished, the time

counter is incremented, and the modules are alerted to proceed again. We may create

snapshots of our system by observing the state only on model cycle boundaries.

Temporal deadlock is possible if an individual module does not terminate a model

cycle, though this is avoidable in practice.

One example of a circuit that can take a dynamic number of FPGA cycles to sim-

ulate is a content-addressable memory (CAM). Directly implementing such a circuit

on the FPGA can be prohibitively expensive. One alternative is to use a synchronous

BlockRAM and sequentially search the memory. Under the unit-delay scheme we

would have to bound n as the worst case - searching the entire RAM, which is a

rare occurrence. In general, in dynamic barrier simulation we take the average num-

ber of cycles required to simulate a model cycle, while still tolerating rare worst cases

when they occur. The result can be a significant decrease in FMR.

The main problem with barrier synchronization is the scalability of the central

controller. Combinational signals to and from the controller can impose a large burden

on the FPGA place and route tools. To assess this problem we devised an experiment.

We created a simple module with a small amount of combinational logic, so that it

would not affect the critical path. This module was then replicated n times in a

140

120 -- --

Controller = 100

80

60

0

Mn 20

0
25 50 75 100

Number of Modules

Figure 3-14: Dynamic barrier synchronization's centralized controller limits scalabil-
ity.

strict linear hierarchy, so as not to impose any additional restrictions on the place-

and-route tools. The modules were synthesized for the Xilinx VirtexIIPro 30 FPGA

using Xilinx ISE 8.2i, and demonstrated a 39% loss of clock speed as a result of the

centralized controller, as shown in Figure 3-14. In addition, we observed that the

execution time of the FPGA place-and-route tools increased 20-fold over these same

data points, in spite of the fact that the largest target used less than 10% of FPGA

slices. We conclude that the dynamic barrier synchronization technique offers benefits

over the unit-delay case, but also faces scaling issues which limit it to a small number

of modules.

One approach would be to attempt to improve the clock frequency of the barrier

simulation method, perhaps by pipelining the combinational AND-gate, or arranging

the modules into a tree in order to ease the place-and-route requirements. But even if

the FPGA frequency problem could be solved completely, the barrier synchronization

approach still limits performance by forcing all modules to move in lockstep.

In the next section we present A-Port Networks, a distributed simulation technique

developed for NAsim specifically for the fine-grained parallelism of FPGAs. A-Port

Networks do not require explicit timestamps, static rates, or centralized barriers.

We quantitatively demonstrate a performance improvement for simulating our target

processor of up to 19% in FMR over dynamic barrier synchronization using the A-

Ports scheme.

3.5 A-Port Networks

As explained in Section 3.2, Asim performance models are specified using an explicit

representation of time and implemented using a centralized controller to coordinate

simulation. As we noted in Section 3.4.3, both of these choices would carry a large

overhead on the FPGA. To this end we developed a novel scheme tailored to the

particulars of an FPGA. We name our scheme A-Port Networks, to distinguish it

from prior work on Asim ports, and to emphasize the generality of the approach.

3.5.1 Developing a Distributed Simulation Scheme

As shown in Figure 3-15, a simulation of a latency-delay port specification can be

viewed as a Kahn process network [29]. The initial placement of tokens is derived

from the latencies of the ports themselves (n tokens are placed on a port of latency n).

We can exploit the parallelism in this model if we can allow each node, or module,

to proceed to the next model cycle when all incoming edges contain data, in the

standard dataflow manner.

Our simulator is not an arbitrary process network. It is a reflection of a particular

synchronous system. Therefore, we must restrict the nodes' behavior beyond that

of general process networks in order to avoid temporal violations. Specifically, each

node must always be at an identifiable model cycle k. Furthermore, the nodes at

model cycle k may only observe the kth element of their incoming message streams,

and may only produce the k + Ith element of their outgoing data streams. The key

insight of the A-Port Network is that we can accomplish this by making each node

behave as follows:

a Each time a node processes it must consume exactly one input from each in-

coming edge, and write exactly one output to each outgoing edge.

This represents a restriction over generalized process networks, where nodes can

dynamically choose how many inputs to consume, and how many outputs to write.

As a result of this restriction, an observer can deduce what model cycle k a node is

Figure 3-15: An A-Port Network is a restricted Kahn process network.

simulating by counting the number of times it has executed this simulation loop. Thus

the A-Ports scheme (Node E in Figure 3-12) is an implicit tracking of the model clock.

Additionally, no temporal violations are possible as long as nodes do not "peek" at

the next values in the message stream. Also, temporal deadlocks are avoided as long

as each node takes a finite amount of wall-clock time to simulate each model cycle,

and sufficient buffering is present, as we discuss in Section 3.6.

In order to accommodate this restriction we must change the semantics of classical

Asim ports. As described in Section 3.3, in the sequential simulator each module is

told the current model cycle by a centralized controller, thus there is no issue if a

module does not write one of its output ports. In the distributed A-Port Network,

neglecting to write a port is no longer an option. To resolve this we introduce a special

value called NoMessage, which indicates the lack of data at a particular location in

the data stream. (We also use NoMessage as the default initial tokens in the system.)

Thus the complete distributed simulation loop is as follows:

1. When all incoming A-Ports are not empty, a module may begin computation.

Note that some of its inputs may be NoMessage, and that this is explicitly

different from an empty port.

2. When computation is complete, the module must write all of its outgoing A-

Ports. It may write NoMessage or some other value, but must write all of them

exactly once.

3. One message is consumed from each incoming A-Port and the loop repeats.

3.5.2 Simulator Slip

The net effect of this simulation loop is to allow every module in the system to produce

and consume data at any wall-clock rate, while still maintaining a local notion of a

model clock step. To put this another way, an A-Port Network effectively turns a

synchronous system into an asynchronous system, while still preserving the timed

behavior of the synchronous system with respect to snapshots. In this respect A-

Port Networks are similar to the Chandy-Misra-Bryant simulation scheme. The main

contribution of A-Port Networks is to do this without explicit timestamps or a central

controller, making it amenable to implementation on FPGAs.

Because modules simulate at different wall-clock rates, adjacent modules often are

simulating different model cycles. This is called simulator slip. A producer may run

into the future, pre-computing values as fast as possible. Similarly, a fast consumer

can drain its input buffers.

Interestingly, observing the state of the A-Port itself is sufficient to determine the

relationships of its producer and consumer. Observe:

" On any given FPGA cycle, if an A-Port of latency 1 contains I elements, the

modules it connects are simulating the same model cycle.

" If the A-Port contains more than 1 elements, the producer module is simulating

into the future compared to the receiving module.

" If the A-Port contains fewer than 1 elements, the situation is reversed.

We say an A-Port of latency 1 is balanced when it contains exactly 1 elements.

When an A-Port contains more than 1 elements it is heavy, and similarly it is light

when it contains fewer than 1 elements.

G Model

@ Barrier
Syncrhonization

O A-Port

FPGA Cycle

Module A

Module B

Model Cycle

Model Cycle

Module A

Module B

Model Cycle

1 2 3 ,4 5 6 7 8 9 ,10 11 12 13

a a a b cI c d . .

a a alb Ic c c d

1 2 3 4 5

1 2 3 4

a Ia jb c c c d

a a a bc c c d

1 2 3 4 5

Figure 3-16: Demonstrating how an A-Port implementation can result in a perfor-
mance improvement over barrier synchronization.

This slipping does not alter results of simulation, but it can improve simulation

rate over barrier synchronization, as demonstrated in Figure 3-16. In this example,

instructions a and c take more FPGA time to simulate compared to b and d. Observe

that on FPGA cycle 6 module A is simulating model cycle 3, whereas module B is

simulating model cycle 2.

The amount that adjacent modules can "slip" in time is limited by the buffering

available. The consumer module of an i-latency A-Port can run ahead at most l

model clock cycles before draining the buffer. A producer writing into an A-Port with

k extra buffering can only proceed k cycles ahead before filling the buffer. Selecting

the appropriate buffer sizes can have a significant impact on simulator performance,

as we show in Section 3.6.

....

3.5.3 Obtaining Consistent Snapshots

Obtaining a snapshot of relevant state in the A-Ports scheme is complicated by the

fact that the decoupled modules may have slipped in time. As we are using an implicit

notion of time the modules themselves may not know what cycle they are simulating.

One possible solution is to observe every module in a distributed fashion, and

reconstruct the snapshot from these observations. For instance, an observer of the

processor Fetch module could record the Fetch state after model cycle t, which would

later be combined with the Execute state, etc. The overhead of communicating these

distributed observations could become costly, similar to those of dynamic barrier

synchronization's central controller. An alternative is to rebalance the decoupled

modules to the same model cycle before enabling the result capture. Similarly, such

a rebalancing scheme should not rely on an expensive global communication network.

To this end, we have designed a distributed protocol that modules may use to

resynchronize a slipped system. This involves changing rule 1 of the simulation scheme

above to the following:

1. If any output A-Ports are light, or any input A-Ports are heavy, simulate the

next model cycle (assuming all input A-Ports are not empty).

If all modules follow this protocol, the system will eventually quiesce. At the point

of quiescence every A-Port will be balanced, and thus every module will be on the

same model clock cycle.

To see why, consider that at any given FPGA cycle there will be a non-empty set of

modules which are furthest ahead in model cycles. These modules will, by definition,

have no light outputs or heavy inputs, and therefore will not move forward. Any

incoming ports to this group must be light and any outgoing ports must be heavy.

Therefore the modules which are connected to these ports will attempt to simulate

the next model cycle. The only reason they would not be able to proceed would be if

they did not have all of their inputs ready. Yet somewhere in the system there must

be a non-empty set of modules which is farthest behind in time, and thus able to

simulate the next cycle. Since the graph is connected, any module that can simulate

will only make progress towards increasing the set of modules farthest ahead in time.

Eventually this set will include every module, every port will be balanced, and the

system will not proceed.

Figure 3-17 shows an example of this quiescing. Our example processor model is

in a state where the Decode module has recently had the worst FMR, and thus is

simulating the oldest model cycle t. Note that the relationship between two modules

in model time can be derived by looking at the number of messages in the connecting

ports, represented by black circles.

Figure 3-18 shows the progression of the modules. Initially, only Decode will

proceed to the next model cycle (t + 1, which it will do because it has heavy inputs

and light outputs, as indicated by hv and it in the figure). Then Fetch, Decode, and

Issue will proceed to cycle t + 2. Every A-Port is now balanced, except for the ones

between IMem and Fetch. If the modules were using the normal protocol then IMem

would attempt to proceed into the future, but in this case it has no heavy inputs

or light outputs. As a consequence, all the other modules will proceed one more

cycle in causal order, as shown. At this point every A-Port in the system will be

balanced, so the system will quiesce until it receives a command to resume simulation

using the normal protocol. Note that in this state the number of messages in each

A-Port matches the initialization conditions, so simulation is guaranteed to be able

to resume.

As an additional benefit, when the simulator quiesces it is straightforward to add a

mode where the simulator can step forward one model cycle at a time. This stepping

mode can be useful for debugging or for real-time interaction between the user and

the simulator.

3.6 Implementing A-Port Networks on FPGAs

As shown in Figure 3-19, we implement an A-Port of message type t as a FIFO of

sizeof(t) + 1 bit-wide elements, the extra bit indicating NoMessage (in addition to

the standard FIFO valid bits). On an FPGA each A-Port must have finite buffer-

Figure 3-17: Obtaining a consistent snapshot from a slipped state.

DEC
* it+1l

FPGA
time

F ET
D+

(t+2
\hv/ IS

t+3

T (@

Figure 3-18: Execution order to quiesce Figure 3-17.

Figure 3-19: A-Port implementation on FPGAs.

I I .:::::: -nnn :: :: :%:., -":::.. ::% - - . ,,, '. I'll. 1.11". - ".. .. .1, - .1 - - .

ing. In order to guarantee the absence of temporal deadlock, the following sufficient

conditions must be met:

" Each A-Port of latency 1 must contain at least 1 + 1 buffering.

* Each A-Port of latency 1 is initialized to contain 1 copies of NoMessage at

simulator startup.

" Modules should be arranged in a connected graph.

To see why this prevents temporal deadlock, consider that when the simulator

starts up every module will be able to simulate a cycle, unless they have a zero-latency

input port. The "no combinational loops" requirement guarantees that any such

modules are transitively connected to modules which have non-zero-latency inputs,

and thus are able to simulate. Furthermore, note that by simulating a model cycle,

a module can never disable other modules from simulating model cycles, but only

enable them (though it may disable itself). Therefore there will always be one or

more modules in the simulator which are able to proceed to the next model cycle.

3.7 Related Work

3.7.1 Synchronous Dataflow

The conditions for initial token placement in an A-Port Network are closely related

to the correctness conditions of Lee's [35] static synchronous dataflow graphs. The

primary difference is that in A-Ports Networks the buffering requirements and initial

placement of data is derived from the latencies of the A-Ports themselves. Thus

the properties of the asynchronous implementation are correct because they reflect

properties of the modeled synchronous system, rather than requiring the user to

determine buffer sizes or placement of tokens manually.

Figure 3-20: In A-Port Networks, the NoMessage value is used in place of not sending
a message.

3.7.2 Process Networks and the NoMessage Value

As already noted, an A-Port network is a restricted case of a general Kahn process

network [29], where the buffer sizes are fixed and the nodes must consume and produce

exactly one input from each edge. With these restrictions the closest formalism is

that of Commoner's marked directed graphs [16]. As shown in Figure 3-20, the largest

difference between A-Port Networks and classic process networks or dataflow graphs

is handling the absence of data using the NoMessage value. Classically, a node may

choose to send a token on one output but not another. In an A-Port Network this

would cause the two recipients to disagree about the current model cycle, as the

consumer node cannot distinguish between the "previous node is still computing"

and the "previous node is done computing and no message is coming."

In this sense the NoMessage value plays a role similar to the null messages of the

Chandy-Misra-Bryant explicit timestamp scheme [10]. In this scheme the simulation

may deadlock unless individual modules communicate messages with a timestamp

of the node's local current simulated cycle. A-Port networks can be viewed as a

degenerate case of this where the fact that a message (or NoMessage) is sent at every

time step replaces the timestamp itself.

A-Port Networks are also a restricted case of Lee's static synchronous dataflow

[35]. In such a system nodes statically declare how many inputs they will produce

and consume, and this number need not necessarily be one per edge. It is believed,

though not yet proven, that introducing the NoMessage value into an arbitrary static

synchronous dataflow graph allows us to transform any synchronous dataflow graph

into one where every node only produces and consumes one token on each edge per

processing step (though some of those tokens may be NoMessage). If this is true,

A-Port Networks represent a complete restriction.

3.7.3 Latency-Insensitive Design

The theory of latency-insensitive design developed by Carloni et al. [9] shares a great

deal of motivation with our work, as it aims to convert an originally-synchronous

system into an asynchronous system. In a properly latency-insensitive system delay-

changing relay stations may be added as necessary in order to break long physical

wires into smaller segments. The resulting system is latency-equivalent to the original

system, a requirement which is weaker than maintaining the snapshot-equivalence we

discuss here. Carloni also uses a null-message T symbol, however this is used as a

stalling event which signals that a given node is not computing. Thus this symbol

is not equivalent to our NoMessage, but is more akin to the FPGA cycles on which

a module cannot proceed because one or more input A-Ports are empty. Because of

this, latency-insensitive theory also requires that when a module is able to compute it

must produce its output within one host clock cycle, whereas A-Port Networks allow

the module any number of FPGA clock cycles to compute before producing a result.

3.7.4 Latency-Insensitive Bounded Dataflow Networks

Latency-Insensitive Bounded Dataflow Networks (LI-BDNs) are an abstraction cre-

ated by Vijayaraghavan and Arvind [57] as an expansion of A-Port Networks and

Vijayaraghavan's work on HAsim. This work adds three main contributions over

A-Port Networks.

e The LI-BDN technique takes a specification of a circuit as a synchronous state

machine (SSM), rather than an LDP specification. The technique then auto-

matically transforms the SSM into an asynchronous specification suitable for

implementation on FPGAs. This resulting specification shares some proper-

ties with LDP specifications, as it allows users to then refine modules by hand

so that they take more FPGA cycles to simulate one model cycle. This can

help development effort because the user can focus on modules that need to be

optimized for FPGAs and leave others to automatic transformation.

" LI-BDNs define specific conditions that guarantee that the dataflow network

avoids temporal violations and temporal deadlock. One restriction, called no

extraneous dependencies, states that each module should only read its input

ports as late as possible when simulating a model cycle. This allows LI-BDNs

to simulate descriptions that have "combinational loops" of dependencies, where

these dependencies are actually false dependencies in the target circuit. In an A-

Port Network, the solution would be to "re-cut" the module boundaries (Section

3.2.6). Although a legal re-cut is always guaranteed to exist, LI-BDNs make it

so recutting is not necessary.

" LI-BDNs transform synchronous state machines into self-cleaning asynchronous

dataflow representations. This restriction ensures that tokens are only pro-

duced if they will be consumed later. This relaxes the A-Port restriction of

reading/writing every A-Port exactly once for every model cycle, and allows

LI-BDNs to coordinate simulation without a NoMessage value. Although this

does not add expressivity to the specification, it does allow for more flexibility

in the implementation.

Since LI-BDNs have been developed, HAsim has incorporated some of these in-

sights into the way the simulator uses A-Port Networks, in particular using the relaxed

dependency checking to deal with false loops.

3.8 Discussion

In this chapter we explored FPGAs as a platform for executing cycle-accurate per-

formance models. We discussed how performance models are created in software and

why contemporary multicores are not able to exploit the parallelism inherent in these

models. We explored the strengths and weaknesses of existing distributed schemes for

synchronous simulation in the particular context of FPGAs. This chapter introduced

A-Port Networks and explored how the ability of adjacent modules to be simultane-

ously simulating different model cycles can lead to a performance improvement. In

Chapter 6 we demonstrate that this technique can lead to an average improvement

in simulation rate of 19% over traditional dynamic barrier synchronization.

In the future we hope to extend the technique to efficiently handle modeling

multiple clock domains. Additionally we hope to use the multiple physical clock

domains on the FPGA to allow adjacent modules to run in separate FPGA clock

domains.

Notes

4Interestingly, from a modeling perspective "retiming" is not a good name, as the intent of this

transformation is to preserve the behavior of the the target system with respect to the model clock.

Chapter 4

Time-Multiplexed Simulation of

Multicores and On-Chip Networks

In this chapter we extend the techniques presented in the previous chapters to sim-

ulating multicore processors paired with realistic On-Chip Networks (OCNs). Using

FPGAs to simulate such a multicore immediately presents the challenge of fitting

the target system into the FPGA's capacity. Experience has shown that directly

configuring the FPGA into multiple cores, caches, and interconnect is too expensive

to be useful. (We explore a specific example of this in Section 6.3.1). Given this,

time multiplexing is a technique that can help enable scaling our models to larger

multicores.

In a time-multiplexed scheme a single physical core is used to sequentially simulate

several virtual instances that flow through the pipeline in sequence, as shown in Figure

4-1. Internal core state such as the program counter (PC) or register file (RF) is

duplicated, but the combinational logic used to simulate each pipeline stage is not.5

The disadvantage to time-multiplexing is that it can reduce simulation rate, as

a single physical pipeline is being used sequentially to do the work of many. In

HAsim, the performance reduction from time-multiplexing is minimized. Chapter 3

established that on any given FPGA cycle module in HAsim may be utilized, meaning

it is doing useful work for the simulation of a model cycle, or un-utilized, meaning

that it is unable to simulate the next cycle -either because an input port is empty,

UB 1VIFLUdI
Core

- Physical2
Core Core Core Core 3

1 2 3P a

Core Core Cor - - - -

A5

4--5-6-Interconnect

6

On-ChipNetwork

Core Core Core I
4 5 6 Interconnect

Figure 4-1: Modeling a multicore and OCN via (A) direct implementation (B) time-
multiplexed core.

or because an output port is full. We found that in a typical HAsim configuration

modules were utilized on an average of 13% of FPGA cycles over the course of a

benchmark run. This is because simulation rate was limited by accesses to off-chip

memory. In this situation, if we chose to duplicate the core models we would be

paying for modules that would often be unable to proceed to the next model cycle

because one of the cores was waiting for an off-chip response.

The time-multiplexing approach was first used in the Protoflex simulator [15]

(Section 1.3.7). Protoflex multiplexes a functional model between 16 threads, but

does not support any timing model on the FPGA. RAMP Gold [54] (Section 1.3.9)

is another FPGA-accelerated simulator that uses a coarse-grained approach whereby

a scheduler chooses a virtual instance to simulate, and performs the functional em-

ulation of that instance without adding any timing model of the core. RAMP Gold

does support timing models of caches, but does not currently support simulations of

on-chip networks.

In this chapter we address these two problems. First, we modify HAsim's A-Ports

scheme to time-multiplex the core pipeline. HAsim's scheme is unique in that the

fine-grained nature means that different pipeline stages can be simulating different

cores. We then extend this scheme to the simulation of a realistic on-chip interconnect

via a novel use of permutations. We generalize our technique and extend it to cover

heterogeneous topologies. HAsim is the first FPGA-accelerated simulator to allow for

the modeling of realistic on-chip networks in a time-multiplexed fashion.

4.1 Fine-Grained Time-Multiplexed Simulation

4.1.1 Port-Based Multiplexing

A major contribution of HAsim is to extend the multiplexing to detailed timing

models of core pipelines. HAsim uses the A-Ports between modules to implement

time-multiplexing. In order to accomplish this we simply change the A-Port initial-

ization rule. At simulator startup a port of latency n is initialized with n message

tokens from each virtual instance, as shown in Figure 4-2. Within a module, local

state is duplicated. The simulation loop for each module becomes:

e When all incoming ports are not empty, they all contain messages of the same

virtual instance. The module may simulate the next model cycle for that in-

stance.

e Use the virtual instance identifier as an index to retrieve the local state for that

instance.

* Any output messages it produces will be the output for that instance.

The original port-based simulation scheme (Section 3.5.2) allowed adjacent mod-

ules to be simulating different module clock cycles. In the time-division multiplexed

scheme, adjacent modules may now also be simulating different virtual instances.

This helps keep modules busy, as they are more likely to have work in the queue if

an up-stream module encounters a rare-but-slow event.

The round-robin ordering can be overly-restrictive as it can result in head-of-line

blocking. This means that a virtual instance that is stalled do to a slow event such

as an off-chip memory access, cannot be bypassed even in the situation where other

virtual instances are ready to simulate. One solution would be to allow a ready

ITLB aCache
ITLB ICache fault Iry
fault retry 3 3 Branch

2 R resolve

Branch Branch 1 I 3

Predictor resolve PCBranch 0 U 2-
PC Predictor 3 0

PC PC PC (x4) 2 Ppcsoe o PC1 Resolve stag. R
Branch 10 (1

Target 0Branch 20
Buffer Fault 1Target 3

redirect 2Buffer Fut2
3 (x4) urdie 3

Figure 4-2: (A) Port-based model of a processors' PC Resolve stage. (B) Time-
multiplexing between 4 virtual instances.

virtual instance to bypass an idle one at the head of the queue, but so far this scheme

has proven too expensive to implement on an FPGA. We have found it to be more

expensive than direct module duplication.

4.1.2 Pipelining the Modules

A more practical approach to minimize idle virtual instances is to pipeline the mod-

ule implementation.' Under ideal cases pipelining the simulator modules can entirely

eliminate the multiplexing performance penalty, achieving the performance of the

original duplicated modules (similar to fine-grained multi-threading in an actual mul-

tiprocessor).

To understand why, consider the situation in Figure 4-3A. Module A is faster than

module B, which has an FMR of 4 (4-3B). Multiplexing the system 4 ways without

pipelining would decrease the overall FMR to 4 x 4 = 16 (4-3C). However, if module B

can be pipelined into 4 stages, then overall FMR can be reduced back to the original

4 (4-3D). Note that the fourth stage of module B finishes each model cycle for the

first core on the same FPGA cycle as the original non-multiplexed design.

Of course, such a scheme will rarely be operating under ideal conditions, and

pipeline bubbles will be introduced. Such bubbles can be minimized if there are always

ready virtual instances waiting for simulation. Thus a key to achieving simulator

performance is keeping module pipeline depths less than or equal to the number of

virtual instances.

..

Model

Non-
Multiplexed

Multiplexed
Unpipelined

Multiplexed
Pipelined

Figure 4-3: Pipelining
multiplexing.

A B
(FMR=1) (FMR=4)

FPGA Cycle 1 2 ,3 ,4 5 6 7 8 9 10 11 ,12 13

Module A a b c di e

Module B a a a ab b bjbc cccl

Model Cycle

Module A al a2 a3 a4 b b2 b4 c c2 C3 C4 d

Module B a a a a a2 a2 a2 a2 a3 a3 a3 a

Model Cyce 1-1 2-1 3-1

Module A a a a a4 b bbIb3 cb4Ic2 CC21 C 14

B stage 1 a1 a2 a3 a4 b b b b4 c c c c

B stage 2 a a2 a3 a, b1 b 2 b b4 c c C

Bstage 3 a1 a2 a 3 a4 b 1 b 2 b3 b4 2cc

B stage 4 1 Ial a2 a a4b b2 b3l bi cI
Model Cycle L ur u-rYrjL

1-1 2-1 3-1 4-1 1-2 2-2 3-2 4-2 1-3

modules can offset the performance penalty from time-

Note that the time-multiplexing scheme is possible only because the state of the

different cores being simulated is independent. That is, the Register File of Core 0

cannot directly affect the Register File of Core 1. Only by going through the OCN can

the various cores affect each other's simulation results. Because of this cross-instance

communication, traditional time-multiplexing is insufficient for modeling the OCN-

different techniques are needed that can take the interaction into account while still

exploiting fine-grained parallelism.

(~) Virtual
Core

0

msgout Core Core Core Physical
crediti A Core 2

creditOut
msgln 3

er Router Router4msgToNe 0 e2
creditFrNext 1234

msgFrPre1234
creditToPrev

Router Router Router
5 __ 4 3Router Router: Rotr Router Router Router

0 1 3 4 5

Core Core
4 3

Figure 4-4: (A) Target multicore with uni-directional ring network. (B) Multiplexed
core connected to ring-network routers via sequential de-multiplexing.

4.2 Time- Multiplexed Simulation of Networks via

Permutations

4.2.1 First Approach: De-multiplexing

The previous section established that time-multiplexing the core works well because

it improves both scaling and utilization. Now, the problem becomes attaching a single

physical (time-multiplexed) core to an on-chip network. Consider the ring network

shown in Figure 4-4A. Each router has 4 ports that communicate with the core: msgln,

creditln, msgOut, and creditOut. Additionally each router has 4 more ports that

communicate with adjacent routers: msgToNext, creditFromNext, msgFromPrev,

creditToPrev.

A baseline approach to simulating this target is to duplicate the routers, and syn-

thesize an on-chip network directly. The messages from the cores are then sequentially

de-multiplexed and sent to the appropriate router. Each router can now simulate its

next model cycle when data arrives. Responses are re-multiplexed and returned to

the cores. This situation is shown in Figure 4-4B3. In this figure and throughout the

paper we represent sequential de-multiplexing by augmenting a de-multiplexor with

a sequence denoting where each sequential arrival is to be sent. In this case the first

arrival is sent to router 0, the second to router 1, and so on.

While this scheme is functionally correct, it presents many practical challenges.

Most significantly, the physical core is now no longer adjacent to any particular router.

Thus the FPGA synthesis tools are presented with the difficult problem of routing

the de-multiplexed signals to and from the individual routers. Second, the routers

themselves are under-utilized: at any given FPGA cycle only a small subset of routers

are actively simulating the next model cycle most are waiting for their corresponding

virtual core to the produce data for a given model cycle. HAsim solves this problem

by extending the time-multiplexing to the OCN routers themselves via a novel use of

permutations.

4.2.2 Time-Multiplexed Ring Network via Permutation

If we wish to time-multiplex the ring, observe that the simulation of router n is

complicated by the communication from routers n - 1 and n + 1. It is the ports

that cross between routers that present a challenge to time-multiplexing, as shown in

Figure 4-5, as they express the fact that the differing virtual instance's behaviors are

not independent. How can we ensure that each cross-virtual instance port's messages

are transmitted to the correct destination?

The key insight, as shown in Figure 4-6, is that we can connect these ports

to themselves. That is, the output from msgToNext is fed into msgFromPrev, and

creditFromNext produces creditToPrev. This makes sense intuitively: messages

leaving one router are the input to the next router. However note that simply mak-

ing the connection is not sufficient: router n produces the message for router n + 1,

not for router n.

One way to solve this would be to store cross-router communication in a RAM, as

shown in Figure 4-7. The index of the RAM to be read and written by each virtual

index would be calculated by accessing an indirection table. This approach is similar

to the way a single-threaded software simulator simulates an on-chip network. The

disadvantage is that a random-access memory is overkill, as the accesses are actually

following a static pattern determined by the topology.

Figure 4-5: Time-Multiplexing the ring is complicated by the cross-router

ports/dependencies.

creditFrNext,
creditToPrevl

msgFrPrev -

hysical Router
iutei*... 0..5

012345j O
123 45 0

c(x) =x+1modN-1

01 2345)
501 2 3 4

a(x)_=-x-1 modN-1I

Figure 4-6: Connecting the credit ports to each other, and the message ports to each

other, and applying permutations to the messages that pass through them.

wr idx

Permutation! RAM 0

Table Storage
rd id wr val deq 0

enqq
4 lo deq

rd idx0

enqcounte

Figure 4-7: General permutations imple- Figure 4-8: Permutations used in ring
mented via indirection tables. and torus topologies can be implemented

via parallel queues.

HAsim's insight is that the communication pattern can be represented by a small

permutation. For the msg port the output from router 0 is the input for router 1 (on

the next model cycle), 1 is for 2, and so on to N - 1, which is for 0. For the credit

port 0 goes to N - 1, 1 to 0, 2 to 1, and so on. The advantage of this approach is

that these permutations can be represented using two queues: a main queue and a

side buffer, as shown in Figure 4-8. A small FSM determines which queue will be

enqueued to, and which queue will be dequeued from.

Formally, given N cores the permutation o for the xth input of each port is as

follows:

* ous,(x) = x + 1 mod (N - 1)

" Ucredit(x) = x - 1 mod (N - 1)

In this paper we will express the permutations as shown in Figure 4-6: a concrete

table showing that the output for core 0 is sent to core 1, and so on, until core 5's

output is sent to core 0. This table is then supplemented with a generalized formula

that scales the permutation to any number of routers.

Given these permutations, Figure 4-9 shows a complete example of simulating a

model cycle in the ring network. In 4-9A the messages are in their initial configuration.

The router simulates the next model cycle, consuming N inputs and producing N

new outputs, resulting in the state shown in 4-9B. After the permutation is applied

we can confirm that the resulting configuration in 4-9C is correct: on the next model

cycle router 0 will receive the message from router 3, and the credit from 1. Router 1

creditFrNext
creditToPrev,

msgFrPrev _

' omex hysical 621231Physical '-Physica
3 210 uter / *t7).j Router 1 Router

L

ca(x x+ImodN - 1{ [a(x) x+1modN-1 c(x)x+1modN-1

T(x)=x -l modN -1 =x-1modN-1 a(x)=x-1modN-1-

Figure 4-9: Simulating a model cycle for ring network via permutations.

will receive the message from router 0, and credit from router 2, and so on. Although

we present this execution as happening in three separate phases, on the FPGA we

can overlap the execution.

4.2.3 Time-Multiplexed Torus

Let us extend the permutation technique to another topology, the 2D torus shown in

Figure 4-10. Here each router has ports going to/from 4 directions: msgFromNorth,

msgFromEast, msgFromSouth, msgFromWest and so on, as well as ports/to from the

local core. In the time-multiplexed implementation the msgToEast port is connected

to the msgFromWest port and so on, as expected. However, compared to the ring

network the permutation is different to reflect the width of the torus. In order to

simulate the cores in numeric order, the permutation for the East/West ports for a

network of width w is:

* UmsgFromEast(x) x + 1 mod (w - 1)

e UmsgFromWest(x) x - 1 mod (w - 1)

Similarly the permutation for the North/South port must take into account the

width of the network (not the height):

* UmsgFromNorth(x) x + w mod (N - 1)

e omsgFromSouth(x) x - w mod (N - 1)

(0 1 2 3 4 5 6 7 8

678012345)
0(x)=x -w modN -1

msgToWest msgToNorth
rnsgFrEast\" yy , msgFrSouth(01234567E

201534867
o(x) = x- 1 mod w-

msgToSo
msgFrNo

-1
C 012345678120453786)
a(x)= x+1mod w-1

uth- \msgoEast
rth m____jsgFrWest

(0 1 2 3 4 5 6 7 8)345678012
o(x)=x -w modN -1

Figure 4-10: Time-multiplexing an example torus network. Local cores/caches are
not pictured. Credit ports are omitted as they use the same permutations.

...........

Note that these permutations mean that the output from router 0 will be sent

to routers JmsgFromNorth(O) = , OrmsgFromEast(0) = 1, UmsgFromSouth(O) = 6, and

UmsgFromWest(O) = 2. Similarly router 0 will receive messages from JmsgFromNorth(6)

0, UmsgFromEast(2) = 0, JmsgFromSouth(3) = 0, UmsgFromWest(l) = 0, corresponding

exactly to the original target.

4.2.4 Time-Multiplexed Grid

Once we have a torus model it is straightforward to alter this model to simulate a grid

topology such as the one shown in Figure 4-11. We will not do this by altering the

permutations or physical ports of our network, but rather by just altering the routing

tables to send NoMessage along the links that do not exist in the grid network. For

instance, router 0, in the Northwest corner, will only send NoMessage West or North.

If other routers obey similar rules then it will only receive NoMessage from those

directions as well.

The permutations given in this section assume that the first processor that should

be simulated (core 0) is located in the upper left-hand corner of the topology. If the

architect for some reason desired a different simulation ordering they could accomplish

this by changing the permutation - analogous to a software simulator of a torus

changing the order of indexing in a for-loop.

4.3 Generalizing the Permutation Technique

The permutations described earlier correspond to picking the simulation order of

the routers in the network and properly routing the data between them, similar to

how a sequential software simulator cycles through nodes in sequence. It is always

possible to create a sequential simulator for any valid OCN topology. In this section

we demonstrate that it is similarly always possible to construct a set of permutations

to allow any valid topology to be time-multiplexed.

(01234:
20153

a (x)= X -11
n

0 12 345678
678012345)
a(x)=x-wmodN

St msgToNorth
msgFrSouth

(012345678
hysica

Router 120453786)
-1 a(x)= x+1modw -I

K 45678012)
a(x)= x+w modN

Figure 4-11: Target grid network. This can be simulated using the same permutations
as the torus and sending NoMessage values on non-existent edges.

..

4.3.1 Permutations for Arbitrary Topologies

Assume that the target OCN has been expressed as a port-based model: a digraph

G = (M, P) where M is the modules in the system and P is the ports connecting

them. Label the modules M with a valid simulation ordering [0,1, .. , nj such that 0 is

the first node simulated and n is the last. Note that if the graph contains zero-latency

ports then not all simulation orderings will be valid. However if the graph represents

valid hardware then there is guaranteed to exist at least one valid simulation ordering.

Once the simulation ordering is picked we must combine the ports into as few time-

multiplexed ports as possible. To do this we divide the edges P into the minimum

number of sets Po, P1.. Pm such that each set Pm obeys the following properties:

" V{s, d} C Pm, -]{s', d'} E Pm.s = s'

" V{s, d} c Pm, -,{s', d'} c Pm.d = d'

In other words, no two ports in any given set can share the same source, or

share the same destination. Each set Pm corresponds to a permutation that we must

construct in our time-multiplexed model. Ensuring that no source or destination

appears twice ensures that we will construct a valid permutation. We construct

permutations Uo... : M -- M using the following rule:

* V{s, d} c Pm, Un(s) = d

The remaining range of om represent "don't-care" values and so may be chosen in

any way that creates a valid permutation. (It is possible that certain permutations

will be cheaper to implement on an FPGA than others.)

Finally, each permutation should be associated with a port with a source and

destination of the remaining module. This module can be time-multiplexed using

existing techniques referenced in Section 4.1, with one additional restriction: the time-

multiplexed module should ensure that NoMessages are sent on port m for undefined

values in the range of Un. This represents the fact that these output ports do not

exist for a particular virtual instance. The grid versus torus discussion in Section

4.2.3 is an example of this phenomenon.

17(0 123 45)pp pl
1 (1,2) (0,4) (1,0)

0 (2,3) (4,1) (3,1) 012345, 012345)

4 2 (5'1) (92 3o 0 0 0 1 0 0

A B 2

Figure 4-12: Building permutations for an arbitrary network.

Router

U1 00 0

Router Router E+ Router 0
4 + 0 2-- 2 Ro

Router

313

ar(x)=x+4modN a(x)=x+2mod!N

mnsgFrNorth rT

0 12 3 4)
3 (3 0 e * *

a(x)=x+3modIN

Figure 4-13: Multiplexing a star topology results in many undefined values represent-
ing non-existent ports.

Figure 4-12 shows an example applying this process to an arbitrary, irregular

topology. First a desired simulation order is selected (4-12A). The ports are arranged

into three sets (4-12B), the fewest possible for this example. These sets then form

the basis of permutations (4-12C). The don't-care values of the permutations can be

can be resolved in any way that creates a legal permutation. The router is time-

multiplexed across 6 virtual instances, and the virtual instances are arranged to send

NoMessage values on non-existent ports. For example, instance 0 will send NULLs

on two of the output ports, as the original router 0 only had one output port.

The meaning of undefined values in the permutations can clearly be seen when

we apply the technique to a star network topology (Figure 4-13). The resulting time-

multiplexed network has the same number of physical ports as the grid network, but

the permutations themselves are different. Each leaf node only contains a subset

of nodes of the hub, and thus will send NoMessage on ports that do not exist for

them. Given this, the undefined values in the permutations can be filled in using

...

straightforward modular arithmetic.

4.3.2 Heterogeneous Network Topologies

Thus far we have presented OCNs where all of the routers are connected to homo-

geneous cores. This has kept the examples pedagogically clear, but is unrealistic.

Architects often wish to study multicores such as those shown in Figure 4-14, a 3x3

grid that contains a memory controller, 2 last-level caches, and 6 cores. The cores

and caches will be simulated using time-multiplexing. How then can we connect them

to our permutation-based grid? The answer is to sequentially multiplex the streams

together, pass them to the time-multiplexed OCN, and de-multiplex the responses.

This is shown in Figure 4-15. Unlike the original de-multiplexing approach presented

in Section 4.2.1 this imposes no difficult routing problem on the synthesis tools, as

the modules being connected are time-multiplexed physical cores. A key advantage

of this technique is that it requires no changes to the individual modules--they can

be time-multiplexed independently using established techniques.

This same technique allows for efficient time-multiplexing of indirect network

topologies such as butterflies, shown in Figure 4-16. The technique can also be ex-

tended to topologies where nodes have differing input and output degree, such as the

tree network shown if Figure 4-17.

This same technique allows us to support indirect network topologies. These are

networks that possess intermediate routers that are not connected to any external

modules, but only route messages to other routers. We implement this by interleav-

ing messages from the cores with messages from other routers. An example of this

for a butterfly network topology is given in Figure 4-16. Interestingly, the butterfly

topology can be implemented using only interleavers, without the need for permuta-

tions. Each node has four ports: fromO, from1, toO, to1. The output from the cores

and the routers are interleaved with the first 8 outputs from the routers to create the

input ports. The remaining 4 outputs are interleaved to form the inputs to the cores.

The interleaving technique can also be used to implement a tree topology (Fig-

ure 4-17). In this network each node has ports to/from North, SouthEast, and

Figure 4-14: A heterogeneous grid, where routers connect to different types of nodes.

Figure 4-15: Time-multiplexing the heterogeneous network via interleaving.

....

Router
0

From Core 1

From Core 2 - J
Router

1K
From Core3 -- -

From Core 4
Router

2 r

From Core 6
From Core 7

From Core 7

Routerl
3 ---

Router
4

Router
5

Router,
6

Router
-i 7

m
From Physical Core

[0, 1, 0,

[2, 2, 2, 2,

1,0, 1,0,'

[0,

[0, 0 1, 1, 0,

- To Core 0

Router
8

1To Corel0

-To Core 1

---------To Core 2

Router

------ --- --- - --949-------- To Core 3

RotrTo Core 4

Router
10

To Core 5

To Core 6

Router

To Core 7

1]\

0, 0, ,2, 2, 1, 1, 2, 1, 2, 1]

1,2, 1, 2, 1, 2, 0, 0, 0 0]

- -- -------

[0, 1, 0, 1, 0, 1, 0, 1]

To Physical Core

Figure 4-16: Multiplexing an indirect butterfly network via interleaving.

FC 0

Router
2 1

Router Router
.5 6

[0,1,2, 1, 2,, 2]

'hysica
Router

[0, ,0, 1,1, 1, 1] ~ [1 1, 0, 0, 0, 0]
L I

Figure 4-17: Multiplexing an tree network topology.

[0, 0, 0,
-_ - _ -_- ----

[1, 1, 1

SouthWest. In the target the root node has no to/from North port and leaf nodes

have no to/from SouthEast and SouthWest ports. The time-multiplexed version sim-

ulates this by using the NULLs leaf nodes send to the South as the NULL inputs

from that direction. Non-leaf messages that are sent SouthEast and SouthWest are

interleaved to create the fromNorth port, with an additional NULL for the root

node. Messages sent toNorth are de-interleaved and then re-interleaved to form the

fromSouthEast and fromSouthWest ports.

These realistic topology examples demonstrate the generality of the time-multiplexing

technique.

4.4 Discussion

Time-multiplexed simulation of detailed multicores using FPGAs represents a new

tool in the architect's toolchest of simulation techniques. By trading space-savings

for sequentialized simulation, it allows the possibility to free up substantial FPGA

area. This critically limited resource can then be utilized to increase fidelity without

negatively impacting simulation rate.

Alternatively, a natural extension of the techniques presented in this paper is to

store the state of the virtual instances off-chip. Careful orchestration of memory

accesses should be able to bury much of this latency and keep the physical pipeline

busy. Currently we are aiming to use the techniques discussed here to model a

thousand-node on-chip network using only a single time-multiplexed FPGA.

Notes

5This kind of multiplexing bears a resemblance to multi-threading in real microprocessors, but

it is important to distinguish that this is a simulator technique, not a technique in the target

architecture. The cores being multiplexed may or may not support multi-threading.

6Again, note that this refers to altering the implementation of the modules on the FPGA, not

altering the timing characteristics of the target circuit, which are preserved by the ports.

Chapter 5

Implementing Timing-Directed

Simulation on FPGAs

5.1 Introduction

Previous chapters demonstrated that separating the model cycle from the FPGA

cycle can lead to benefits for efficiency on the FPGA, increasing the amount of de-

tail that can be fit within an FPGA's capacity. In this chapter, we leverage the

latency-insensitive nature of this separation to aid with the development effort prob-

lem discussed in detail in Chapter 2.

We begin by demonstrating how this can be used to integrate existing FPGA

modules such as floating-point units into our simulator. We then expand this tech-

nique to include emulating rare-but-expensive-to-implement instructions. Finally, we

extend this technique to timing-directed simulation, an existing simulation technique

for reducing development effort whereby the simulator is divided into functional and

timing partitions. We present HAsim's specific partitioning scheme, and argue that

it is general enough to represent a wide range of cores. We present details of the

functional partition's architecture, including efficient implementation on FPGAs. We

then cover the implementation of a variety of timing models for cores, caches, and

on-chip networks. HAsim is the first project to implement a generalized functional

partition on an FPGA.

S1}-Execute -
inst4

fOloa dd

float__mul

Xilinx
Floating-

Point
Core

Figure 5-1: Integrating an existing floating point core.

5.2 Leveraging Latency-Insensitivity of A-Ports

5.2.1 Integrating Existing IP Cores

Chapter 3 established that one benefit of the A-Port network is that each module can

take a different number of FPGA cycles per model cycle, and that this number can

vary dynamically. We can leverage this to aid with development effort by integrating

existing modules into our simulator, thus increasing code reuse.

Specifically, there are many existing IP blocks designed for FPGAs. These blocks

have particular timings-taking a certain number of FPGA cycles to perform operations

determined by the particulars of the FPGA platform and the goals of the implemen-

tation (low area, low critical path, etc.). The A-port scheme allows us to use their

functionality while still simulating timings of the ASIC processor we ultimately wish

to construct.

For example, consider adding floating point support to our processor. Xilinx

provides a configurable IEEE-complaint floating point core as part of their Core

Generator utility. These cores use pipelines optimized for FPGAs, and therefore

have FPGA-specific timings. Figure 5-1 shows an implementation of a model of a

processor's Execute stage which sends floating points to an existing FPU. Because the

Execute stage's timings are determined by the A-Ports, the timings of the floating-

point pipeline will not affect the results of the simulation, but only its rate.

100

............
...........

inta ar ith

Execute t
inst4

float-add

1floatmul M5

LEAP LEAP
RRR :00 RRR

FPGA Link Host CPU

Figure 5-2: Integrating the existing M5 [5] simulator using LEAP RRR (Section
2.5.2).

5.2.2 Interacting with a Software Simulator

Additionally, there are classes of instructions for which no existing IP for FPGAs

exists-perhaps because they are too expensive to implement on the FPGA, or be-

cause the amount of development effort to implement them would be too high. Ex-

amples of this include system calls, CISC-style instructions with multiple side effects,

system calls, and non-standard rounding modes for floating point instructions-which

are not supported by Xilinx IP blocks.

To handle these classes of instructions we can use LEAP RRR (Section 2.5.2) to

communicate with an existing software simulator. As shown in Figure 5-2 HAsim uses

the M5 full-system simulator [5] as a software backer to handle system calls and page

faults. The modular nature of M5 allows HAsim to tie directly into M5's memory

subsystem while ignoring its CPU timing models. When the FPGA detects a system

call it transfers the architectural state of the simulated processor to HAsim's software,

which invokes M5. After the state update is calculated, it is transmitted back to the

FPGA, at which point simulation on the FPGA can resume.

The ProtoFlex project applied these principles to emulation [15]. They demon-

strated that if these events are rare enough the impact on performance can be mini-

mized, while still resulting in significant gains in development effort.

101

Timing -Functional
Partition interaction Partition

Microarchitecture .Architectural StateResource contention ISA Execution
Flow of control

Figure 5-3: Overview of simulator partitioning.

5.3 Timing-Directed Simulation

We can extend this notion of integrating existing IP into our latency-insensitive A-

Port network to use partitioned simulation, an existing technique used to reduce

development effort. In microprocessors, exploring a future generation is often mostly

about exploring when things happen (branch predictors, cache strategies, pipeline

depths), and only a limited amount of genuinely new functionality (what operations

do). A partitioned simulator is divided into functional and timing partitions, as shown

in Figure 5-3. As the functional partition may take an arbitrary number of FPGA

cycles to carry out its execution, the A-Port Network scheme's latency insensitivity

is necessary to coordinate the timing model while the functional partition operates.

In a partitioned simulator, the functional partition is responsible for correct ISA-

level execution 7 . The timing partition (or timing model) is responsible for driving

the functional partition in such a way as to simulate a particular microarchitecture.

Example responsibilities of the functional partition include decoding instructions,

updating simulator memory, or guaranteeing that floating point operations conform

to standards. Example responsibilities of the timing partition include deciding what

instruction to issue next, tracking branch mispredictions, and recording that floating-

point multiply instructions take 5 clock cycles to execute.

The goal of this partitioning is to speed development time. The functional parti-

tion might be complex to implement, optimize, and verify, but once it is complete it

can be reused across many different timing models. The timing models themselves are

significantly simpler to implement than simulators written from scratch: they do not

need to worry about ISA functional correctness, but only track microarchitecture-

102

specific timing details. Often structures can be excluded from the timing model

completely, or modeled only partially. A common example of this is a timing model

of a cache that needs to track tags and status bits but does not need to store the

instructions or data - the goal being to decide whether a particular load hits or

misses, but not actually track the data associated with it.

Most importantly, a large amount of code reuse is available between timing model

generations, as only those portions of the microarchitecture that change from one

generation to the next need to be re-implemented. Practice with the Asim simulator

environment has shown models can be decomposed in such a way as to reuse branch

predictors, cache hierarchies, or communication networks with no changes whatsoever.

In this section we describe the architecture of HAsim's functional partition, the

first functional partition implemented entirely on an FPGA, and a key contribution

of the HAsim project.

5.3.1 Partitioning Schemes

Contemporary partitioned software simulators include Asim and MASE [33). Within

partitioned simulation, there are many potential ways for these functional/timing

partitions to interact. Mauer, Hill and Wood [38] categorized such simulators as

functional-first (traditionally called trace-driven), timing-directed, and timing-first,

as shown in Figure 5-4. The schemes are differentiated as follows:

* In the functional-first scheme a functional model is used to generate an execution

trace that is fed into a timing model, which adds microprocessor-specific timing

information to the trace. The advantage is that an existing instruction-set sim-

ulator such as QEMU [4] can often be used to generate the trace with little or

no modification. The downside of this scheme is that the functional trace con-

tains only correct-path instructions, making it difficult to conduct evaluations

on speculative architectures.

" In the timing-first style timing is first calculated, and then a functional model

invoked to verify the results. Again, the benefit is that an existing emulator

103

Integrated Timing and Function

Functional-First iming Function

Timing-Directed iming Functin

Timing-First Tming Function

Arrows indicate inter-simulator interactions per simulated instruction.

Figure 5-4: Mauer, Hill, and Wood's categorization of partitioned simulators. Source:

[38]

can be used as the functional model with little modification. This style is rarely

used because in practice it results in too many rollbacks from the functional

model, which reduces simulation rate.

e In the timing-directed scheme, the simulator is execution-driven, meaning that

the timing model invokes operations on the functional model at the right time.

The benefit of this scheme is that it allows a full level of detail including spec-

ulation, and can easily be adapted to handle superscalar timing models. The

disadvantage of this scheme is that it requires a custom functional partition

that allows for phased execution, committing, and aborting of instructions.

HAsim is directed at high-detail modeling including speculative architectures. Ad-

ditionally, in the context of FPGA-accelerated simulation, there are no existing func-

tional partitions for FPGA. Therefore HAsim uses the tightly-coupled timing-directed

scheme. The reasoning behind this decision is as follows:

" The fine-grained parallelism of the FPGA can benefit both the timing and

functional partitions, which both have high degrees of parallelism.

" The FPGA is able to handle the frequent communication between the partitions.

" Since the simulator can use multiple FPGA cycles per model cycle (Section 1.2),

the functional partition can be implemented as multiple-FPGA-cycle pipelines

that are optimized by experts for FPGA implementation. The pipelining of the

timing model (Section 4.1.2) can help offset the latencies of these pipelines.

104

* Rare events which are difficult to place on the FPGA, such as system call

instructions, can be farmed out to software regardless of whether they occur in

the functional or timing partition, similar to Protoflex's migration scheme [15].

In the following sections we give the semantics of our particular timing-directed

scheme, give an architecture to implement it on an FPGA, and evaluate the efficiency

of our scheme.

5.4 Semantics of the HAsim Functional Partition

At a high level, the job of the functional partition is straightforward: given a machine

in a certain state and an instruction, calculate the new state of the machine after

executing the instruction. This coarse granularity is sufficient for modeling simple

in-order pipelines, but is not a high-enough level of detail to capture the behavior

of modern microprocessors which include features like out-of-order execution and

speculative execution.

In order to be able to precisely capture control speculation, data speculation, and

the timings of interactions between threads, we identified seven operations for our

functional partition, as shown in Figure 5-5. These operations roughly correspond to

stages in a traditional microprocessor pipeline, including support for controlling the

precise timing of store operations in order to simulate thread communication. The

effect of these operations is given in Figure 5-6.

The order in which the timing partition invokes these operations determines the

state of the machine at any given moment. Figure 5-7 demonstrates how the same

functional partition can be reused across three different timing models to simulate

different microarchitectures. Each simulator must do the same fundamental amount

of work the only change is how this work relates to model time. Figure 5-7A

shows a timing model of a simple in-order pipeline. This machine stalls on a read-

after-write hazard, as between instructions 1 and 2. Thus this small program takes 8

model cycles to execute, assuming a perfect memory hierarchy and a one-cycle ALU.

Figure 5-7B shows the same basic machine, but now modeling a bypass path which

105

Figure 5-5: HAsim's timing-directed simulation scheme.

Operation Params Returns Effect
translateAddr VAddr PAddr Translate a virtual address into a

physical address.

getInstruction PAddr Inst Fetch the instruction at this address and
place it in flight.

getDependencies Inst Deps Get the dependencies of this instruction
relative to other in-flight instructions.

getOperands Inst Srcs Read the register file and prepare the
instruction for execution.

getResults Inst Result Execute the instruction and return the
result, including branch information.
For loads and stores, do effective
address calculation.

doLoads Inst Value Perform all memory reads associated
with the instruction.

doSpeculativeStores Inst -Make any memory writes visible to local
loads.

commit Inst -Commit the instruction's local changes
and remove it from being in-flight.

abort Inst Abort the instruction's local changes
and remove it from being in-flight.

commitStores Inst -Make any memory writes globally visible.

Figure 5-6: Overview of functional partition operations.

106

Ox1O0 SUBI r1 ri-1
Ox11 ADD r2 r3+r4
0x102 MULI r2 r2*2

Stalling Bypassed Superscalar
getInst(Ox1O) getInst(Ox102) getInst(OxiOC)
g e t'nt 'Yi i getlnst(Oxi~l) getInst(Oxi~i)

D.....getDeps(Ct.............. (0 ge t st (0.dx10

get nst(xi) getInst(OxiQ2) getoeps(0)
getDeps(1) getDeps(i) .etDeps(i)
getOps(0) getOps(0)
getQps(1) getDeps(2) getOps(0)
getOps(i) getaps(i) a v2L221i)
g etResult(0) getResult(1) getOps(2)
get esuit (1) getyesuit (1)y getResuit (0)

....c m.mit. ()EO dt '(ps(2) ge t e s t (1

ggetOps(2) getResuet(2) commit(0)
COMMit(e)t ()MMIG Icomit (2)

commi'ET23 commit (2))~ omt2

Figure 5-7: Three different timing models operating on the same instruction stream.

removes read-after-write hazards. Figure 5-7C shows a 2-way superscalar model that

performs multiple operations on the functional partition before advancing the model

clock cycle. Note that the functional partition is oblivious to the fact that it is now

being used to model a superscalar processor.

For any given in-flight instruction, the operations are typically invoked in the or-

der they are given in Figure 5-5 (operations which do not apply may by skipped).

This corresponds to instructions flowing through pipeline stages in a real processor:

the instruction is fetched (get Instruction) before it is decoded (getDependencies),

which takes place before register read (getOperands), and so on. The order in which

the timing model invokes these operations on separate in-flight instructions deter-

mines the state of the machine. We can conceive of a timing model which fetches ten

instructions before decoding one, for example.

As the functional partition executes each operation, it changes the architectural

state of the simulator, and thus the result of subsequent operations. For example,

executing getResult () on an instruction which writes register R5 will mean that a

subsequent getoperands 0 call will see that value of R5. If an instruction is executed

in some way which is not consistent with program order, the abort () operation

107

Ox1OO BEZ r1 0x200
Ox101 SUB r2 r2 - r3
0x102 ADDI r4 r4 + 1

getInst (Ox1O0)

getInst (0x102

getDeps (2)

ogetOps (1)getOps (2)

getOps (0)
getResult (2)

abort (1)

.......abort (2)
commit (0)
getInst (0x200)

Figure 5-8: Timing model demonstrating out-of-order issue and speculative execution.

undoes its effects and allows it to be retried. All operations are speculative and

may be aborted until the commit O operation is called, at which point they become

permanent. The distinction between local writes and global ones allows for accurate

tracking of thread communication.

Using these constructs a timing partition can accurately model advanced processor

features such as out-of-order issue, or speculative execution, as shown in Figure 5-8.

In this example the branch is stalled on a dependence, and the timing model predicts

branch not-taken and issues past it. Upon branch resolution the abort mechanism is

used to rollback speculative operations. Data speculation can be supported by having

the timing model provide results of the operations themselves (telling the functional

partition that the result of getOperands should be zero, for instance), though this is

not yet implemented.

It should be noted that the lack of ordering restrictions is loose compared to the

requirements of most modern processors. Using these operations one could construct

timing models which commit instructions out of program order, or fetch instructions

non-sequentially. We specifically chose this level of granularity because it allows

timing partitions the flexibility to model all types of speculation. In most cases it

makes sense for the functional partition to check that committed instructions follow

program order, raising a simulator exception if dependencies are violated.

108

Status Address Instruction Dests Result Effective
Address

Register Datapath Memory
State State

Figure 5-9: HAsim functional partition FPGA architecture.

5.5 Functional Partition Implementation

The FPGA implementation of HAsim's functional partition concentrates on making

good use of port-limited BlockRAMs while maintaining a high-degree of parallelism.

As shown in Figure 5-9, we use BlockRAMs to track the register state and memory

state of the machine, as well as information about each in-flight instruction. The

register state includes a physical register file, maptable, freelist, and snapshot/rollback

mechanism to handle aborts. The memory state includes an on-FPGA cache and a

store buffer which determines the youngest store to a particular address.

In-flight instructions are tracked using tokens - - pointers which allow the timing

partition to refer to specific instructions without passing large amounts of data back

and forth. The number of bits used to represent the token determines the number of

instructions which may be in-flight simultaneously. This size is set by a static compile-

time parameter, allowing it to be increased if a particular value proves insufficient

(though doing so will increase the size of all the tables). It is often necessary to

compare two in-flight instructions to see which is older (for example, see the store

buffer below). For efficiency we wish to do this comparison using the tokens of the

instructions. In order for this comparison to function properly we must add the

restriction that in-flight instructions are retired (or aborted) in token order. This

represents a restriction over the general semantics of our functional partition, but is

consistent with the semantics of the architectures we are modeling.

Time-multiplexing of virtual instances is supported by supplementing every to-

109

ken with a virtual instance ID. Functional partition register state is duplicated on

a per-instance basis. Age comparisons between tokens from different virtual in-

stances are meaningless, but this is unnecessary since this is supported through the

doSpeculativeStores and commitStores operation, which makes a memory update

visible to other virtual instances.

5.5.1 Functional Partition Operations

The functional partition operations described previously in Section 5.4 are imple-

mented as pipelines which read and write the token tables. For example, the getInstruc-

tion operation writes the address and instruction tables, which are later read by the

getResult operation. An extra operation, getToken, was added to allocate a new

in-flight instruction. Furthermore, the getOperands and getResult operations were

merged for efficiency none of the models we explored here utilized these separately,

and by merging them we were able to eliminate intermediate state. The details of

the operations implementations is as follows:

" Figure 5-10: The getToken operation creates a new in-flight instruction and

returns the associated token. The getInstruction operation fetches the given

address from memory, records it, and returns it.

" Figure 5-11: The getDependencies operation allocates a physical register file

for the destination, and looks up which physical registers will contain the

operands. The writers of those registers are returned.

" Figure 5-12: The getOperands and getResult operations are merged into one

pipeline for efficiency. This pipeline reads the physical register file, as well as

looking up the instruction itself to retrieve opcodes and immediate operands.

The instruction address is retrieved for relative branches. Memory operations

pre-calculate their effective addresses at this step.

" Figure 5-13: Loads read the value from memory, write it to the register file, and

return it. Stores read the register file and make the value appear to local loads.

110

The commit operation frees the previous physical register which was mapped

to a particular architectural register and deallocates the token. Not pictured:

the commitStores operation commits the store in the memory state.

To implement rollbacks the register state was implemented as a physical register

file with a maptable and a freelist, as would be found in many out-of-order processors.

Rollbacks of stores are supported via a store buffer in the Memory State. Aborts have

been grouped into a larger rewindToToken operation. Rewinds are implemented

by sequentially walking back the maptable and undoing the execution of individual

tokens. Therefore rewinds can take many FPGA cycles, but we expect them to occur

comparatively rarely - at least, if the architect is modeling a target architecture that

attempts to minimize speculative mispredictions.

5.5.2 ISA-Independent Datapath

When the timing model calls getResults the instruction sources are read from the

register file and passed to the datapath. The datapath itself is defined in such a way

as to be ISA-independent. In HAsim, support for a new ISA can be added by defining

the following:

* Information on decoding the instruction: number of sources and destinations,

and barrier information.

" A hardware datapath for executing common instructions.

" Optional software for emulating rare-but-expensive instructions such as system

calls.

When an emulated instruction is encountered, the functional partition uses a

migration system to transmit the updated register values of the current context to

software. The software emulates the instruction, transmits register and memory up-

dates (possibly invalidating the Memory State's caches), and returns control to the

FPGA.

111

To Timing Model

,token addless indst

Status Address Instruction

Figure 5-10: Implementation of getToken and

To Timing Model

token src1,
4a dest

getInstruction operations.

src2,

Instruction Dest

Figure 5-11: Implementation of getDependencies operation.

112

Instruction Address Dests Effective
Address

Figure 5-12: Implementation of getOperands and getResult operations.

..
To Timing Model

.............................
~Foken*.. re lu1t ..- toke'nl tack

Effective Dest
Address

Status

Figure 5-13: Implementation of doLoads/SpeculativeStores and commit operation.

113

Currently HAsim supports two ISAs: Alpha ISA and a subset of MIPS. Alpha

system call emulation is supported by invoking the M5 simulator [5]. Alpha floating-

point instructions are supported using floating-point accelerator blocks provided by

Xilinx.

5.5.3 Register State

The functional partition Register State is responsible for tracking the architecturally

visible registers. Because HAsim supports speculative and out-of-order timing mod-

els, the Register State must additionally track un-committed updates. As shown in

Figure 5-14, this is accomplished by means of a freelist and physical register file.

Architectural registers for each context are mapped onto physical registers. When

the getDependencies operation is called it uses the maptable to lookup the lat-

est mapping of source registers. These are the registers that will be read during

getOperands. Additionally, it updates the maptable with new mappings for the des-

tination registers. Additionally, the physical register which previously corresponded

to that architectural register is recorded. When commit is called, that previously cor-

responding register may be returned to freelist. Alternatively, if abort is called then

the new mapping is replaced with the previous one, and the new register returned to

the freelist.

5.5.4 Memory State

The functional partition Memory State is responsible for retrieving instructions, trans-

lating virtual addresses, and maintaining a consistent view of program loads and

stores. It accomplishes this by three components, shown in Figure 5-15. The first is a

simple cache, used to accelerate simulation. The second is a store buffer, which uses

the token age comparison method given above to ensure that any load will see the

most recent store written to a particular address. The third is a functional Transla-

tion Buffer (TLB), used to cache virtual-to-physical address translations for timing

model memory accesses. When an access misses in the TLB, the request is sent to

114

arch srcs, phys srcs, to er arch phys phys value
dsts dsts re eg reg

map free lookup read/
abort write

update ookup deq enq okup lo kup/update

Physical
Freelist Maptable Register

File
Previous
Physical
Register

Figure 5-14: Functional Partition Register State

software, where the M5 [5] page translator is invoked. Note that this is separate from

the timing model of the translation buffer, and does not affect the results of simu-

lation. The timing model determines the timing of TLB-misses in a model-specific

manner.

5.6 Timing Model Implementation

HAsim represents a framework for creating timing models, rather than any particular

model. In this section we give examples of timing models that we have implemented

in HAsim. These models do not represent any particular architecture, but rather

stand as examples of how the functional partition is invoked to model a processor. In

all of these examples, the modules are connected using A-Ports.

Core Models

Figure 5-16 shows the most basic processor timing model possible: an unpipelined

"magic" processor that executes every instruction in a single clock cycle. The model

is implemented by executing each functional partition operation before incrementing

115

Figure 5-15: Functional Partition Memory State

Figure 5-16: Unpipelined processor target.

model time. The ALU, IMEM, and DMEM, are not present, as they are simulated

entirely via functional partition operations. The register file is also not present as

the model never has more than one outstanding instruction, the functional partition's

register state is sufficient.

Figure 5-17 shows a more complex processor: a 5-stage pipeline similar to those

commonly used in pedagogical examples. As with the unpipelined model, the IMEM,

DMEM, ALU, and Register File are not present. The branch predictor structure is

implemented entirely in the timing model, as it controls which address the timing

model will pass to getInstrution. On mispredicts a rewind() is issued to represent

a pipeline flush, and simulated no-ops are passed through the pipeline.

116

Figure 5-17: 5-stage processor target.

PC getbken cek o DTLB DMEM Btoe d~oe

u eculativ

BPa Taret getinst getDeps getResult doLoads

Figure 5-18: Detailed inorder processor target.

Figure 5-18 shows a more detailed inorder processor target. This expands the

5-stage pipeline into a more realistic inorder pipeline, including address translation,

line prediction, faults, and cache retries. The PC Check stage resolves all possible

simultaneous redirects using an epoch scheme. Redirects that only involve the front

end (ICache retries, ITLB faults) do not trigger a rewind() in the functional partition.

Speculative stores are placed in a 4-entry store buffer, then moved to a separate 4-

entry write buffer when committed.

Figure 5-19 shows an out-of-order, 4-way superscalar target. The branch predic-

tors are reused from the 5-stage model. The superscalar behavior is simulated by

making multiple calls to the functional partition before advancing model time. The

117

Figure 5-19: Out-of-order, 4-way superscalar target.

simulated ROB is substantially simpler than a real ROB, as it does not need to im-

plement the dependency tracking logic. Instead it uses the result of the getDeps o

operation and then uses a sequential search to determine which instructions should

be issued next. The ALUs are not present, as they are represented by multiple calls

to the getResult (operation.

Cache Models

HAsim models caches using the interface shown in Figure 5-20. In this scheme, re-

quests are received from the processor, and are immediately answered with a response

of Hit, Miss, or Retry. If a miss occurs then this response is accompanied from a

miss token allocated from the Miss Address File (MAF). When a fill returns from

memory it is associated with its miss token and returned on the separate fill port.

This scheme allows responses to return from memory out-of-order (for example, if

modeling a cache hierarchy). The processor model may make a local decision how to

handle Miss and Retry events.

Note HAsim cache models are timing models only -the actual data associated

with a load is returned by the functional partition. Therefore these models are only

distinguished by the schemes they use to determine if an access hit or missed. Using

this interface we have constructed four radically different cache models:

118

req

Figure 5-20:
models.

Cache
Model

.is
AddressFile

memReq

invalReq
i-nas
invalRsp

Interface for cache

req
= -

hit/miss/ret

fillRsB

hit)-

.........................

ack:-..

Figure 5-21: Null cache model
that always hits.

...-- LFSR |-b

.i- - miss

MAF ack

Figure 5-22: Pseudo-random
cache model using Linear Feed-
back Shift Register.

Figure 5-23: Direct-mapped cache
model using LEAP Scratchpad to
store tags.

... Tagsx M !
lScratchpad)i

LWayiCheck)1.........s

L RU C.'feck

....M f il i

Figure 5-24: Set associative cache
model using one-bit pseudo-LRU.

Figure 5-25: Cache model connected to a co-
herence interface.

119

memReq

fillRsp

invalReq

invalRsp

memReq

invalReq

invaiRsp

memlReq

invalReq

invaiRsp

.... Tags --

.(-

MA Nis

fil

hit/missrer

filRs

req

hit/missre

memReq

fillRsp

invalReq

req
M 0

hlttrn iss/ret

" Figure 5-21: a null cache, or "magic memory." In this scheme all accesses are

returned as hits.

" Figure 5-22: a pseudo-random cache that uses a Linear Feedback Shift Reg-

ister to generate pseudo-random numbers. Hits or misses are determined by

comparing this number to a threshold parameter.

* Figure 5-23: a direct-mapped cache that stores the tags in a LEAP scratchpad

(Section 2.5.1). Size of the tag store is set as a static parameter.

" Figure 5-24: a set-associative cache parameterized both on tag size and number

of ways. In this scheme the scratchpad stores a vector of tags, corresponding

to the ways in the cache. Logic is used to search every way to determine if

accesses hit or miss. When a fill occurs, a one-bit pseudo-LRU scheme is used

to determine which entry will be flushed.

The cache models are designed in such a way as to be agnostic to the presence of a

cache coherence protocol. As shown in Figure 5-25, the models may be hierarchically

combined with a cache-coherence interface, which then interfaces with the on-chip

network to generate invalidation requests.

Network Models

HAsim network models have a parameterized number of virtual channels, but it is

assumed that a minimum of two virtual channels is required to model deadlock-free

cache-coherence protocols. By default, the high-priority virtual channel is used for

responses and the low-priority channel for requests. Using the permutation technique

described in Chapter 4 we have constructed three different network models:

" A bus network model that does not require permutations, but simply sequen-

tially reads and writes its ports.

" A ring network model using the permutations from Figure 4-6.

" A grid network model using the permutations from Figure 4-11.

120

All of these networks connect to a memory controller which represents off-chip

memory accesses. Currently HAsim uses a simple latency-delay model to represent

the time consumed by off-chip accesses. Addition of a more detailed model, such as

a row/column DRAM-controller, is future work.

5.7 Discussion

Implementation of HAsim is a mostly matter of optimizing hardware structures for

the specific constraints found on an FPGA. A key advantage of the HAsim approach

is that this implementation work can be done by FPGA experts, leaving only the

creation of the timing model itself for the architect.

It is our hope that HAsim is able to unlock the performance available in FPGAs,

while not burdening developers with an undue amount of development effort. In the

next chapter, we evaluate both HAsim's performance, and its impact on development

effort.

Notes

7The functional partition is sometimes referred to as the "functional model" but this is an over-

simplification. This term usually refers to a simple Instruction-Set Simulator (ISS). A general

functional partition includes a large degree of functionality beyond this. More appropriate would

be to call a functional partition paired with a timing model of a single-cycle "magic" processor a

functional model.

121

Chapter 6

Assessment and Discussion

We assess HAsim by examining the impact our partitioning technique has on devel-

opment effort. We assess single-core simulation performance, and the efficiency of

A-Ports as a distributed simulation scheme. We assess the impact time multiplexing

has on simulator scaling by comparing HAsim versus a traditional direct implemen-

tation. We present a small case study which serves both as a complete example of a

HAsim multicore model, and as an argument for the importance of high-detail mod-

eling. We examine simulator how simulator performance scales as more virtual cores

are added to the time-multiplexed pipeline. Finally, we discuss options for future

work, and conclude.

6.1 Impact of Partitioning on Development Effort

As we argued in Chapter 2, development effort is a key concern for FPGA-accelerated

simulators. Here we attempt to gauge the impact HAsim's contributions have made

on designer productivity. As we noted in Section 5.3, the timing-directed simulation

scheme has a double impact on productivity. First, the designer does not have to re-

implement the functionality of the instruction set for every new simulator. Second,

the timing model actually does not need to implement all structures, as some of their

functionality is handled by the functional partition, resulting in a further reduction

in developer effort.

122

To assess this, we examined three HAsim configurations: the unpipelined "magic"

core (Figure 5-16), the 5-stage pipeline (Figure 5-17), and the out-of-order core (Fig-

ure 5-19). Figure 6-lA shows a summary of the various structures in the target

systems, and the degree to which they were present in the performance models. Al-

most all large processor structures are implemented within the functional partition.

The timing model is responsible for controlling simulation, and thus implements the

program counter and branch prediction. The functional partition operations (Section

5.4) eliminate the need for structures such as the register file and ALU. The depen-

dencies tracking significantly eases the implementation burden of the issue logic, with

the timing model generally tracking details like the number of model cycles operations

consume.

Lines of code required to implement each partition are shown in Figures 6-1B

and 6-iC. The out-of-order model Decode stage interacts with the branch predictor,

which simplifies the Fetch stage despite its being 4-way superscalar. Similarly the

complex ROB simplifies the out-of-order writeback. Memory ops are folded into the

execute module.

Another motivation for the timing-directed scheme was to encourage reuse. Figure

6-iD summarizes the code reuse which was possible between the five-stage and out-

of-order timing models. First off, the entire functional partition was reused with

no changes. Within the timing partition, the greatest possibility for reuse came in

the branch predictor, which was reused verbatim. This matches our intuition, as

the behavior of a branch predictor is mostly separate from the surrounding pipeline.

Partial reuse was possible in the fetch, execute, and data memory modules, which were

essentially taken from the 5-stage pipeline and extended to more general, superscalar

versions. No such reuse was possible in the decode stage or issue stages, where the

out-of-order machine's ROB was different enough from the 5-stage pipeline's simple

scoreboard to necessitate full re-implementation.

All in all, these results demonstrate that HAsim's partitioning scheme can result

in a significant reduction in development effort, as the same functional partition can

be re-used across radically different timing models.

123

Design IMEM Program Branch Scoreboard/ Reg File Maptable/ ALU DMEM Store Snapshots/
Counter Predictor ROB Freelist Buffer Rollback

Functional Part. Yes No No Yes Yes Yes Yes Yes Yes Yes

Unpipelined No Yes N/A N/A No N/A No No N/A N/A
5-Stage No Yes Yes Partial No No No No N/A No
Out-of-Order No Yes Yes Partial No Partial No No No No

(a) Processor structure partitioning.

Datatypes Token Tables Scoreboard ALU Register State Memory State Store Buffer
691 896 303 487 136 187 433

(b) Lines of Bluespec code to implement the functional partition.

Model Fetch Decode/Issue Execute Memory Ops Writeback
Unpipelined 405
5-Stage 156 190 148 138 93
Out-of-Order 79 953 157 N/A 30

(c) Lines of Bluespec code to implement the various timing models.

Functional Partition Fetch Branch Predictor Decode Issue Execute Memory Ops Writeback
Full Some Full None None Some Some Some

(d) Code reuse between the 5-stage pipeline and the out-of-order model.

Figure 6-1: Implementation of the partitioned model.

6.2 Single Core Simulator Characteristics

Let us consider the performance of HAsim modeling single-core processors by con-

sideing three processor models. First, the unpipelined "magic" processor shown in

Figure 5-16. Second, the more realistic in-order microprocessor pipeline shown in

Figure 5-18. Third, the out-of-order superscalar processor shown in Figure 5-19. The

cores were configured to run 64-bit Alpha ISA with floating point support. To maxi-

mize the differences between the processor pipelines themselves, the cores were paired

with the one-cycle "magic" memory rather from Figure 5-21.

We synthesized all three configurations using Xilinx ISE 11.5, targeting a Nal-

latech ACP accelerator [40], which connects a Xilinx Virtex 5 LX330T FPGA to a

host-computer via Intel's Front-Side Bus protocol. As a sanity check, we ran the tar-

gets on some sample SPEC 2000 integer and floating point benchmarks, as shown in

Figure 6-2. While we acknowledge the limitations of trying to draw conclusions from

small benchmarks running on processors not paired with a realistic memory hierar-

chy, the results show that the out-of-order core executes between 1.3 and 2.5 times

more instructions per clock, depending on the amount of instruction-level parallelism

available in the benchmark. These results match our intuition that the out-of-order

processor is a better architecture - it would execute substantially faster (assuming

the circuit design team was able to achieve an equivalent clock speed, and that the

area overhead was not prohibitive).

IPC represents the insight into the target design that most users of performance

models care about. However, as simulator architects, we are also interested in com-

parative simulator performance. The average number of FPGA cycles each simulator

requires to simulate a model cycle is given in Figure 6-3. For this metric the situ-

ation is reversed the inorder simulator can simulate model clocks nearly 4 times

faster than the out-of-order model, due to the multiplexing of the ALU which the

out-of-order superscalar processor does during every model cycle. Similarly, the in-

order model is faster than the unpipelined model due to being a better match for

the parallelism in the model. The unpipelined model must fetch, execute, and com-

125

Instructions per Clock

* magic
* in-order
l ooo superscalar

wupwise mgrid eon bzip2

Figure 6-2: Assessing the target processors as a sanity check.

FPGA-cycle Model-cycle Ratio (FMR)
90 - -- -

80

70 - --- -

60

50 - magic

40 E inorder

30 E ooo superscalar

20

10

0

wupwise mgrid eon bzip2

Figure 6-3: Simulator performance of the three models.

126

Unpipelined Inorder Out-of-Order
Lookup-Tables 65,167 (24%) 89,937 (43%) 108.677 (52%)

Registers 51,364 (31%) 74,634 (35%) 88,898 (42%)
Block RAMs 69 (21%) 69 (21%) 70 (21%)
Clock Speed 75.0 MHz 75.0 MHz 75.0 MHz

Average FMR 48.8 19.7 71.5
Simulation Rate 1.54 MHz 3.81 MHz 1.05 Mhz

Average IPC 0.84 0.73 1.31
Average Simulator IPS 1.29 MIPS 2.75 MIPS 1.38 MIPS

Figure 6-4: Single-core simulator synthesis results for Virtex 5 330T.

mit an entire instruction before fetching the next instruction. The inorder model, in

contrast, can fetch and execute different instructions in parallel.

Next let us consider the physical properties of each simulator, shown in Figure 6-4.

When we combine clock speed with FMR we obtain the in-order model's simulation

rate is almost four times faster than the out-of-order model. However, part of this

difference is due to the increased presence of pipeline bubbles, which are fast to

simulate. Combining clock speed with IPC we can consider simulated Instructions

per Second. Here the situation is more balanced, ranging from 1.29-2.75 MIPS. This

metric correctly compensates for the difference in target performance remaining

differences are due to the overhead of simulating out-of-order, superscalar execution.

Although these assessments were done on relatively simple cores without a memory

hierarchy, our experience is that adding detail to these models does not significantly

impact simulation rate. The reason is that a realistic model will use the FPGA to

perform the simulation of the cache hierarchy and interconnect network in parallel

with that of the core. Thus while these structures certainly require FPGA resources,

FPGA cycles per model cycle generally remain relatively unchanged.

6.2.1 A-Ports and Simulator Performance

In order to assess the impact of the A-Ports scheme, we devised the following experi-

ment: First, we took the models of the 5-stage pipeline and the out-of-order processor.

We removed the A-Ports from the system and replaced them with simple registers.

Coordination between the modules was acheived using the barrier synchronization

127

Score
Board [LALU

FET 'Maim DE [EXE [EM Writ
Brach BranchFr1~ ~ IlDel Back

FET DEC 1 EXE MEM WB FET DEC EXE MEM WB

Is

Figure 6-5: Implementing the 5-stage pipeline using A-Ports and barrier synchroniza-
tion.

approach described in Section 4.1. Finally we compared the simulation rates of the

two approaches.

The results of this experiment are shown in Figures 6-6 and 6-7. These results

show that the in-order simulator using A-Ports is an average of 23% faster versus

barrier synchronization. For the out-of-order model, the situation is more compli-

cated. Using the minimum buffer sizes results in a 4% improvement versus barrier

synchronization. However, as we noted in Section 3.5, the A-Ports buffer size limits

the amount adjacent modules can slip in model time. Figure 6-8 demonstrates that

increasing the amount of buffering results in a significant performance improvement

for the out-of-order model, allowing it to achieve a simulation rate 19% faster than

barrier synchronization. In contrast, increasing the buffer sizes does not result in

any further improvement for the 5-stage pipeline. This is because the modules in the

5-stage pipeline are more evenly balanced, and thus do not slip with respect to each

other as frequently for our benchmarks.

128

1400000

1200000

1000000

800000

600000

400000

200000

median

Figure 6-6:

multiply qsort

Assessing th

median multiply qsort towers

Figure 6-7: Assessing the

1.6

1.4

1.2

* .8
0.8

C.
U) 0.6

0.4

0.2

0

1 Barrier Sync
0 A-Ports

towers vvadd

e in-order simulators.

* Bamer Sync
OA-Ports Default Buffers
MA-Ports Optimal Buffers

vvadd average

out-of-order simulators.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Extra Buffering

Figure 6-8: Out-of-order simulator performance improvement as buffering increases.

129

...........................

6.3 Multicore Simulator Characteristics

6.3.1 Muliplexing Versus Direct Implementation

In this section we compare HAsim's time-multiplexed approach to Heracles [30], a tra-

ditional direct implementation of a shared-memory multicore processor on an FPGA.

Heracles aims to enable research into routing schemes by allowing realistic on-chip-

network routers to be paired with caches and cores, and arranged into arbitrary

topologies. Heracles emphasizes parameterization in an effort to fit in many different

existing FPGA platforms. A comparison of a typical Heracles implementation and a

typical HAsim model is shown in Figure 6-9.

We synthesized both configurations using Xilinx ISE 11.5, targeting a Nallatech

ACP accelerator [40], which connects a Xilinx Virtex 5 LX330T FPGA to a host-

computer via Intel's Front-Side Bus protocol. The resulting FPGA characteristics

are shown in Figure 6-10. Heracles is specifically made for efficiency, but the FPGA

synthesis tools still have a problem scaling a complete system with core, cache, and

router. This is because duplicating Heracles' caches exceeds the FPGA's Block RAM

capacity. The synthesis tool was able to complete even in the presence overmapping

for the 2x2 and 3x3 configurations, but ran out of memory for the 4x4 case. We

estimate that cache sizes would have to be reduced by a factor of 16 in order to

successfully fit onto this FPGA.

In contrast, despite HAsim's significantly increased level of detail, we are easily

able to fit a 4x4 multicore with Li and L2 caches onto the same FPGA. This is due to

four factors discussed earlier: First, separating the model clock from the FPGA clock

allows efficient use of FPGA resources (Section 1.2). Second, use of off-chip memory

allows large memory structures like caches to be modeled using few on-FPGA Block

RAM (Section 1.2). Third, using a partitioned simulator allows HAsim to reduce

the detail necessary in the timing model (Section 1.2): it is well-known that timing

models of caches need to store tags and status bits, but not the actual data. Finally,

and most significantly, the HAsim 4x4 model is actually a single physical core, single

cache, and single router that has been time-multiplexed 16 ways (Section 4.2). The

130

Heracles HAsim
Core

ISA 32-Bit MIPS 64-Bit Alpha
Multiply/Divide Software Hardware
Floating Point Software Hardware
Pipeline Stages 7 9
Bypassing Full Full
Branch policy Stall Predict/Rollback
Outstanding memory requests 1 16
Address Translation None Translation Buffers
Store Buffer None 4-entry

Level 1 Instruction/Data Caches
Associativity Direct Direct
Size 16KB 16 KB
Outstanding Misses 1 16

Level 2 Cache
Size None 256 KB
Associativity None 4-way
Outstanding Misses None 16

On-Chip Network
Topology Grid Grid
Routing Policy X-Y DO Wormhole X-Y DO Wormhole
Virtual Channels 2 2
Buffers per channel 4 4

Figure 6-9: Component features of Heracles and HAsim.

Heracles HAsim
2x2 3x3 4x4 4x4 (16-way multiplexed)

Registers 44,512 (21%) 65,602 (31%) DNF 120,213 (57%)
Lookup Tables 33,555 (16%) 59,394 (28%) DNF 165,454 (79%)

Block RAM 328 (101%) 738 (227%) DNF 88 (27%)
Critical Path (ns) 7.3 14.0 DNF 19.9

Clock Rate (MHz) 139 71 DNF 50
FMR 1 1 DNF 16

Overall Rate 139 MHz 71 MHz DNF 7.25 MHz

Figure 6-10: Scaling a direct implementation versus the multiplexing approach. Her-
acles performance is estimated assuming the design were able to fit on the FPGA.
Note that 2x2 is a special case as no router requires a 5-way crossbar.

Core Model L1/L2 $ OCN Func. Infra-
Detailed Magic Model Model Model structure

Registers 24,052 (11%) 4,157 (2%) 28,425 (12%) 6,060 (2%) 34,586 (14%) 29,119 (14%)
Lookup Tables 35,728 (15%) 12,037 (6%) 47,739 (22%) 8,572 (4%) 50,895 (20%) 34,838 (16%)
Block RAM 0 (0%) 0 (0%) 6 (2%) 0 (0%) 50 (15%) 13 (4%)
Critical Path 7.4 ns 8.5 ns 7.72 ns 8.6 ns 8.8 ns 9.5 ns

Figure 6-11: Complete 16-way multiplexed HAsim simulator characteristics.

131

grid network is implemented using the side-buffer style permutations described in

Section 4.2.2.

HAsim is an example of a space-time tradeoff. These techniques allow us to

fit much more detail onto a single FPGA, paying for scaling by reducing simulation

rate. Since at most one virtual instance can complete the physical pipeline per FPGA

cycle, it takes a minimum of 16 FPGA cycles to simulate one model cycle. As the

FPGA is clocked at 50 MHz, this gives HAsim a peak performance of 50/16 = 3.125

MHz, multiple orders of magnitude faster to software-only industry models that are

comparable levels of detail [13, 20].

6.4 Case Study: Effect of Core Detail on OCN

Simulation

It is not uncommon for architects who wish to study an OCN topology to reduce

the level of detail in the core pipeline for the sake of efficient simulation. In such

a situation the architect is hoping that the ability to run an increased variety of

benchmarks will offset the increased margin of error of each run. It our hope that

FPGA-accelerated simulators will present an alternative to reducing fidelity. This

idea is particularly appealing if the FPGA means that the extra detail has minimal

impact on simulation rate.

In order to evaluate the impact core fidelity can have on both simulation results

and simulation rate, we modeled 2 multicore systems that differed only in the core

pipelines. The first is a 1-IPC "magic" core running Alpha ISA that stalls on cache

misses, similar to an architectural model. The magic core will never have more than

one instruction in flight, and thus never produce more than one simultaneous cache

miss. The second is the 9-stage pipeline described in Figure 6-9. This core does not

reflect any particular existing architecture, but rather is representative of the general

result of adding a higher-level of detail to the simulator.

Each core was then connected to the cache hierarchy described in Figure 6-9 and

132

arranged into 4 different grid configurations: 1xi, 2x2, 3x3, and 4x4. In each case

one of the nodes was occupied by the memory controller, so the 4x4 configuration

consisted of 15 core/cache pairs and 1 memory controller.

It is well-known that adding more cores to a shared-memory multicore can degrade

the average IPC of each individual core, as contention on the OCN increases. This

phenomenon represents a typical concern that an architect would like to characterize

for a proposed OCN topology. We used HAsim to characterize the reported IPC of the

individual cores running a variety of integer benchmarks, ranging from microkernels

like Towers of Hanoi and vector-vector multiplication, to SPEC 2000 benchmarks

gzip, mcf, and bzip2.

The results are given in Figures 6-12-6-14. They demonstrate that the reported

IPC of a particular core varies 0.16-0.48 between the two models. The most variation

was shown by core (1,0) in the 4x4 model- the core directly south of the memory

controller. This is because in the detailed model the cores south and east of this core

generate more OCN traffic, due to simultaneous outstanding misses. The dimension-

order routing scheme overwhelms core (1,0)'s ability to serve its local traffic. In the

undetailed model the reduced contention allows (1,0) to sufficiently warm up its caches

to run without network accesses. An architect studying the detailed model might

conclude to move the memory controller, or institute a different routing policy-

insights that might be missed when using the magic core.

All in all, these results indicate that high-detail simulation will remain a useful

tool in the computer architect's toolbox.

133

1.00 0.6 .8 .0

0.62 0.64 0).64

0.50 0.55 0.56 0.50

0.50
0.00 0.00

(c) 3x3

MEM

0.74
0.58 0.69 1.00

0.61

0.59 0.66
0.32

0.34 0.41 0.53 0.50

0.33 0.38

0.30 0.36
<0.28 0.00

(d) 4x4

Figure 6-12: Per-Core IPC: Magic Core Grids

1.00

MEM 1.00

CTRL 050
0.50

0.00

(a) lxi

MEM
CTRL

0.50

0.00

(b) 2x2 (c) 3x3

1.00 MEM 1.00

0.1138

T 0.50 0.24 0.35 0.50
0 0601 0.21

0.07 0.10 020.00 0.0 0.10 0.00

0.06

(d) 4x4

Figure 6-13: Per-Core IPC: Detailed Core Grids

MEM 1.'00
CTRL

0.00

(a) 1x1

0.19 0

0.16

1.00

0.50

0.00

(b) 2x2

1.00

0.29

0.33 0.30 0.50

0.31 0.23
0.000.25 3x

(c) 3x3

Figure 6-14: Absolute Difference in Reported IPC

MEMI
CTRLI

1.00

0.50

> 0.00

(a) lxi (b) 2x2

(d) 4x4

MEM

6.4.1 Scaling of Simulation Rate

Now let us examine how HAsim's simulation rate scales as we add cores to the sys-

tem. As explained in Section 4.1, HAsim simulates multicore processors by time-

multiplexing a single physical pipeline between many virtual instances. In such a

situation we can only finish the simulation for one virtual instance per model cycle.

This means that simulating N processors has a best-case overall FMR of N, with a

best-case per-core FMR of 1.

As given previously in Figure 6-2, the single-core in-order model takes an aver-

age of 19.7 FPGA cycles to simulate a model cycle. At first glance this seems to

indicate that simulating N cores will reduce the FMR to N * 19.7. (FMR would

scale linearly with the number of cores.) However, as noted in Section 4.1.2, HAsim's

fine-grained multiplexing at the port granularity means that the modules themselves

are implemented in a pipelined fashion. This pipelining can lower the impact of

time-multiplexing. In the best-case scenario the FMR of 19.7 would mean that we

could simulate 19 virtual cores without impacting FMR at all, as we could finish the

simulation of a core per FPGA cycle.

Unfortunately the situation is not so simple. Adding more virtual cores to the

system impacts the per-core FMR of individual cores. This is because:

" Virtual cores increase cache pressure on the LEAP scratchpad memories used to

model the caches (Section 5.6). This can reduce the FMR of the cores (though

note that it has no impact on the simulation results themselves).

" The round-robin multiplexing scheme described in Section 4.1 means that when

a particular virtual instance stalls for an off-chip access, the amount of work

the rest of the system can perform is limited. For example, if we are simulating

a 4-core system and Core 0 has an off-chip access then we can only simulate

Core 1, 2, and 3 before we are back to 0 and cannot proceed.

Thus in the worst-case simulation rate could actually scale worse than linearly

with the number of cores. To test this phenomenon we used the time-multiplexed

inorder core scaling between 1x1 and 4x4, as described in the previous section.

135

300

250

200

150

100

50

0

FPGA-Cycle Model-Cycle Ratio (FMR)

-- --- -I

Tfu LU
1X1

E 2x2

E 4x4
0 Linear

slow-
down

4,0'
-16

Figure 6-15: Impact on FMR of scaling inorder core to multicore. The diamonds represent linear slowdown compared to the
FMR of a single core.

-

-

FMR FMR
Min Max Average Min Max Average

Overall 16 218 80 160 KHz 3.2 MHz 625 KHz
Per-Core 5 27 11 1.84 MHz 9.5 MHz 4.54 MHz

Figure 6-16: Comparing overall simulation rate to per-core rates.

The results of this scaling are shown in Figure 6-15. There are several interesting

features of this graph that are worth exploring. First, note that when we scale from

1x1 to 2x2, the performance impact is quite minimal. In fact, in the case of the

wupwise benchmark HAsim actually acheives the best-case scenario of not reducing

FMR at all. This is because wupwise has a small working set that exerts very little

cache pressure. On average the additional cache pressure slows the 2x2 simulation by

46% over the baseline. On average, this is significantly better than linear a slowdown

of 300%, which indicated by the diamonds on the graph. The fine-grained pipelining

offsets the increased cache pressure, but not completely.

As we scale to 8 and 16 cores the increased cache pressure begins to have a greater

impact. Although on aggregate we are still scaling better than linear slowdown, the

difference is clearly reduced. One interesting case is wupwise, which goes from having

the best 2x2 simulator performance to having the worst at 4x4. It seems that once

this benchmark's working set no longer fits in the functional cache the impact is quite

extreme.

A breakdown of per-core FMR and simulation rate is given in Figure 6-16. It

demonstrates that although the fastest simulator runs at 3.2 MHz, the average is 625

KHz. However, this rate is because we are simulating so many cores. The per-core

simulation rate averages 4.54 MHz, peaking at 9.5 MHz in the best case.

As simulation rates are almost entirely limited by off-chip accesses, current re-

search is focused on improving hit rates in the host memory hierarchy, either by

an improved cache algorithms, or using a hardware platform with larger on-board

DRAMs, or providing faster access to host memory. An alternative approach would

be to loosen the round-robin multiplexing in order to keep the FPGA busy longer

when off-chip accesses occur. Currently, no scheme is known that results in better

performance at an acceptable hardware cost.

137

6.5 Future Work

HAsim's approach to accelerating simulation demonstrates the potential FPGAs have

for accelerating microprocessor simulation. Separating the FPGA cycle from the

model cycle allows for much greater scaling of features that can be fit within a single

FPGA. That being said, HAsim's scaling is still limited by finite FPGA capacity. As

such, future extensions of the techniques presented here could be directed at scaling

the target while limiting the impact on simulation rate.

6.5.1 Scaling to Thousands of Cores

If we wish to scale HAsim's models, it seems we are limited by the FPGA's finite

capacity. However, there is no fundamental reason why the state of the target micro-

processor must be stored on the FPGA. This is similar to a software simulator, which

uses the operating system's virtual memory hierarchy to efficiently access the entire

state of the target.

A similar approach could be used on an FPGA simply by storing the state of the

target processors off the FPGA. The simulator would then simulate the next model

cycle by loading the state of the target, performing local state updates, and writing

the result back to the off-chip memory store. Using this technique scaling of the

FPGA-accelerated model is no limited by the exact same factors as scaling a software

model--adding extra state only affects the rate of simulation, but not whether or not

the simulation fits on the FPGA.

It is possible that such an approach would undo some of the benefit that an FPGA

has versus a conventional CPU. However we believe that the fine-grained parallelism

within the FPGA will still lead to a benefit over pure software simulators. Using this

technique we plan to scale the HAsim approach to simulating OCNs with thousands

of cores.

138

6.5.2 Hardware Functional Partition

One of HAsim's major contributions is an architecture for implementing a generalized

functional partition on an FPGA. This functional partition features a well-defined

interface that can be used to simulate inorder, out-of-order, or superscalar processors.

If more simulation speedup is required, then one possible approach would be to explore

fabricating the functional partition as an ASIC. Under such a scenario the functional

partition could benefit from increased speed and efficiency, possibly enough to offset

the burden that the increased scaling described above would place on simulation rate.

In such a scenario we would want the timing model to retain the flexibility it has

in the FPGA. Therefore, it would make sense to pair the "hard" functional partition

with a fabric of reconfigurable logic that would host a HAsim-style timing model. It

may also be possible to use the same fabric to augment the functional partition with

new features-such as new instructions that would not be otherwise possible if it

were implemented as a full ASIC.

6.6 Conclusion

HAsim does not represent a simulation of any particular target processor running

on any specific FPGA platform. Rather, HAsim represents a general framework

for modeling target processors of greatly varying characteristics, and running those

models on FPGA platforms with greatly varying underlying characteristics. HAsim

places a large emphasis on easing development effort, as the process of developing for

FPGAs remains significantly harder than developing software.

This thesis has made specific contributions to the HAsim framework, including:

" A hardware implementation of a generalized functional partitioning scheme.

(Chapter 5.3)

" The A-Port framework for distributed control of simulation without a controller.

(Chapter 3)

139

" A scheme for fine-grained time multiplexing of cycle-accurate processor models

on a module-by-module basis. (Chapter 4)

" The Soft Connections abstraction to increase modularity in hardware descrip-

tion languages. Because this is a general technique not directly related to

HAsim, it is presented in Appendix A.

Currently, the HAsim framework is being adopted within Intel to model experi-

mental future-generation architectural features. Although the details of these model-

ing efforts have not been made public, the HAsim general framework, including the

virtual platform, modeling library, and functional partition, have been made available

under the General Public License (GPL). For more information please visit HAsim's

homepage at http: //as im. csail .mit. edu.

140

Appendix A

Soft Connections

Modularity is a key feature of hardware description languages (HDLs) for reducing

development effort. Developing a model in HAsim entails frequent FPGA reconfigu-

rations, as parts of the model are developed and refined. This is a direct contrast to

ASIC production-the typical use case for an HDL-where designers work towards a

single "golden model" for tapeout. In the FPGA environment ensuring that designers

are able to swap alternative modules in a "plug-and-play" manner becomes even more

important. Such swapping enables code reuse and design-space exploration, and thus

enhances designer productivity.

In this section we describe a problem with modularity and HDLs that we encoun-

tered during HAsim's development. This problem was far-reaching enough that we

developed a generalized solution named soft connections. Although HAsim is used

as a motivating application, nothing in this chapter is restricted to the modeling of

processors. The technique is general and could additionally be used for ASIC design

instead of FPGA configuration. It is currently being applied to other AWB-based

FPGA designs beyond processor simulation.

A.1 The HDL Modularity Problem

In structural HDLs it can be surprisingly difficult to swap one module for an alterna-

tive in isolation. This is because communication between modules can only follow the

141

I WW1&WW%4W--I Instantiation.BranchPred I *- Communication
w/Debug Must change

Figure A-1: Introducing cross-hierarchical communication.

EFront End Sim

w/Cache

Fetch FrnV n Debug
2stages canony I I

Fetch et PCe
w/Prefetch

ranchPred
BranchPred

w /Debug

Figure A-2: Alternative modules can worsen the problem.

instantiation hierarchy. A module can only communicate to its parent and children.

Thus, cross-hierarchical communication must always go through the least-common

ancestor and every other intervening node. If a new module is inserted that requires

communication with anything other than its direct parent, then we must change the

parent module, the parent's parent, and so on. 8

For example, consider the situation shown in Figure A-1. The designer knows

that the Branch Predictor on the FPGA has a bug. He wants to swap it for a variant

that outputs additional debugging information, that is sent to the host processor

using PCIe. In order to do so he must add those wires to the Fetch, Front End, and

top-level Simulator modules, then down to the Debug block.

The situation quickly deteriorates as we add more module alternatives to the

system. In Figure A-2 we have three alternative Fetch units and two Front Ends that

the designer is exploring. Each setup uses the branch predictor, and each manifests the

142

bug in different ways. The designer must now produce alternative implementations

of these, one of which does not pass PCIe wires up, and one which does. In the

worst case the number of modules needed grows multiplicatively with the number of

alternatives.

In this Chapter we attack this problem by "softening" the rigid communication

hierarchy thus we name our technique Soft Connections. This scheme restores mod-

ularity by allowing the designer to specify a logical topology of communication which

is separated from its physical implementation. The endpoints are not connected by

the user, but rather done automatically using static elaboration. Using Soft Con-

nections restores modularity, allowing individual modules to be swapped in isolation,

independent of the instantiation hierarchy.

A.2 Background: Static Elaboration

Our approach leverages the static elaboration phase of Bluespec compilation. During

this phase:

" Polymorphic modules are instantiated with their specific types and parameters.

" Loops and recursive function calls are "unrolled" into combinational logic.

" Statically-known constants are propagated.

For example, the designer may describe a simple n-bit ripple-carry adder as fol-

lows:

function bit[n:0] addRC(bit[n:O] x, bit[n:0] y);

bit[n:0] res = 0;

bit c = 0;

for (int k = n; k >= 0; k) begin

res[k] = x[k] ^ y[k] ^ c;

c = (x[k] & y[k]) I (x[k] & c) I (y[k] & c);

end

return res;

endfunction

143

The designer may then call this addRC function multiple times using different

types. The HDL compiler will execute the function and its loop, using statically

known values of n and k. If x and y are known statically then the function itself

may result in no hardware, but rather a new static constant. However if x and y

are dynamic inputs to the hardware block then the result is a netlist of AND- and

XOR-gates. If for some reason n was dynamic, the result would be an error as the

loop could not be turned into hardware.

Standard HDLs such as Verilog feature elaboration primarily through the use of

generate blocks, which allow the user to create static control-flow structures such as

loops and if-statements. Bluespec expands the power of the elaboration phase into a

Turing-complete software interpreter. This allows the user to work with convenient

high-level datatypes such as linked-lists or unbounded integers. These types may

not have a hardware representation, but the designer can use them to influence the

hardware that the compiler generates. For example, here is a Bluespec module that

takes as inputs a list of integers. For each integer it instantiates a 32-bit FIFO of

that depth (note that <- is the module instantiation operator in Bluespec):

module mkFIFOList#(List#(Integer) depths);

let result-list = nil;

while (depths nil) begin

Integer d = head(depths);

FIFO#(bit[31:0]) q <- mkSizedFIFO(d);

result-list = append(resultlist, q);

depths = pop(depths);

end

return resultlist;

endmodule

This use of static elaboration could be thought of as "embedding a small soft-

ware program in our hardware description source that the compiler runs to generate

hardware." Soft Connections represent a novel use of static elaboration, and help to

demonstrate how a more powerful notion of elaboration can benefit hardware design-

ers.

144

A.3 Soft Connections and Logical Topologies

Point-To-Point Connections

Soft Connections are a library of communication primitives that the designer uses

to describe a logical topology of communication. The basic Soft Connection is a

point-to-point First-In-First-Out channel with a single logical sender and receiver.

Figure A-3 shows the branch predictor with debug information using a Send con-

nection. This module sends debug information into the channel when it is trained

with a misprediction, just as if it were enqueuing into a guarded FIFO. Elsewhere,

the Debug module takes the debug information from the channel and transmits it to

software using PCIe, as shown in Figure A-4. From the point of view of the module's

usage, there is no difference between these soft connection endpoints and a familiar

guarded FIFO.

Where Soft Connections differ is the instantiation of the channel itself. Instead

of instantiating a single channel module and passing it to both of the users, the

communicating modules instantiate the endpoints separately, naming the channel

with a unique identifier. For example:

let link-to-debug <- mkConnectionSend("debug");

Elsewhere, the receiving module instantiates the dual endpoint:

let linkfromsender <- mkConnectionRecv("debug");

The modules do not need to instantiate one buffer and pass references to its

interface through the hierarchy. Rather, the channel itself is instantiated during

elaboration, as shown in Figure A-5. The physical buffering is instantiated by code

in the Soft Connections library, rather than code written by the user.

As Soft Connections often represent communication between distant modules, we

have chosen to implement them using a guarded buffer. Flow-control on the buffer is

handled via Bluespec's standard guarded interface scheme [51], so that the producer's

action may not be taken if the buffer is full, nor the consumer's if it is empty.

145

BranchPred send
w/Debug "debug"

method Action train(BPredInfo inf);
if (inf .branchTaken != table.lookup(inf .pc))

link_to_debug. send (debugMsgMispredict (inf .pc));
table .update (inf . pc, inf .branchTaken);

endmethod

Figure A-3: Using a Send connection.

Debug[r
"debug"

rule debugToPCIe;
let msg = linkfrom-sender.receive();
pcie .transmit (pcieRequest (msg));
link_fromsender.deqO;

endrule

Figure A-4: Using a Receive connection.

BranchPred [............ ebugw/Debug [send 9rc
"debug" "debug"

Added during elaboration

Figure A-5: Connecting a point-to-point channel.

146

..---- *lv Fetch
"pause'.1

Controller | ...------ -- .--- rev Issue
broadcastI pause"
"Pause" ~ ecvd '*--.h . ..--1 r Cac 1

"pause"

Added during elaboration

Figure A-6: A one-to-many connection.

If our connection algorithm finds no matching endpoint with the same name, the

result is a compilation error. If an error is not desired either endpoint may be specified

as optional:

let linkfromsender <- mkConnRecv0ptional("debug");

An optional receiver with no corresponding sender will never receive data from

the channel (as if it was connected to a sender who never sent a message). A sender

that connects to a channel that that has no receiver may still enqueue messages -

data the sender transmits will simply disappear, and the FIFO will never appear to

be full. Both cases are similar to a wire unterminated on one side.

One-to-Many and Many-to-One

A one-to-many send is a broadcast channel that transmits the same data to all lis-

teners (Figure A-6). When every receiver has gotten the data the main queue is

dequeued. Note that the receivers connected to the channel are standard Point-to-

Point receives, and may be agnostic to the fact that there are other receives listening

to the same channel.

A many-to-one receive is a channel multiplexed by an arbitrator, that also tags

the data with a bit field indicating which sender the data comes from (Figure A-7).

These tags are assigned by our connection algorithm during compilation. Note that

the senders themselves are standard point-to-point sends, and may be agnostic to the

fact that there are other senders transmitting in this channel.

147

Fetch, sed--- ---.....
.. tag

Issu ndi---- ------- -Ans Assertion~s
-I--srt"/ data 'asserI Controller

Cache-end-----

Added during elaboration

Figure A-7: A many-to-one connection.

Clients and Servers

The uni-directional channels presented above represent the primitive Soft Connections

on which our elaboration algorithm operates. We then use these as building blocks to

create useful abstractions for bi-directional communication. The first abstraction is

that of a request/response paradigm (Figure A-8). The client has a request channel

(send) and a response channel (receive). The server listens for requests and makes

the appropriate responses. This arrangement is often used to connect functional

units to their users. Note that the send and receive channels are standard one-to-one

connections.

This idea can be combined with one-to-many and many-to-one connections to

make multi-user clients and servers. A server with a many-to-one request channel

can receive requests from multiple clients, and uses many one-to-one connections

which deliver responses, writing the appropriate output channel based on the tag

added to the incoming request (Figure A-9). Note that the clients that connect to

this server are standard one-to-one clients, and may be agnostic of the fact that other

clients are using the same server.

The dual of this is a client that is connected to many servers. It broadcasts its

requests to all of them, then receives the responses in serial. This is a one-to-many

send for the request channel, and a many-to-one receive for the responses (Figure

A-10). Note that the servers are standard one-to-one servers, and may be agnostic of

the fact that there are other servers receiving the same request.

148

send ---------- -1--.....-. recv
etch "- eoad" _reqload" Cac

[recvfsnd' -
-,--p load" rsp load"

clieiit ~ server
"load" "load"

Added during elaboration

Figure A-8: Basic client/server abstraction.

[1memory"

* zom r

sen H 4-----------...... send

recv-14.....]jj44 'memory'

"memory"

Added during elaboration

Figure A-9: A multi-user server.

Added during elaboration

Figure A-10: A client connected to multiple servers.

149

Sim

F Pe Stats Commdi Debug
Control client 1 Control | client | Control listen

"stats" "cmds" "debug"

Params Assertions Events
Control client | Control I listen Control client

"params" "asserts" "events"

"cmds" server Core

"asserts" send] FrontEnd BackEnd
- ------------ --

"stats" server
'Fetch I

"asserts" sen

"debug" send
stats" se BranchPred

Figure A-11: Example: HAsim's simulation controller mediates the connection between host software and hardware modules.

A.3.1 HAsim's Simulation Controller

HAsim's simulation controller, presented in Figure A-11, represents an example of

how Soft Connections can improve designer productivity. The controller is a module

that sits on the FPGA and communicates with software on the CPU, mediating

interaction with the virtual platform (Section 2.5). The controller instantiates six

sub-controllers based on functionality:

" Commands: This receives commands from software such as "start" or "pause"

and broadcasts them to listening modules. These modules respond when simu-

lation is finished. Thus this module is a client of many distributed servers.

" Params: This receives dynamic parameters set on the command line when the

user initiates the software. These parameters are broadcast to the appropriate

listeners. Thus, for example, a timing model's cache can be disabled without

re-synthesizing the design.

* Events: These represent a detailed trace of results from the simulator. The

host software can enable or disable event-dumping dynamically.

" Stats: Periodically the host software can request a dump of statistics. This

request is relayed to all listeners, who respond with their current values. The

controller relays these to the host software.

* Assertions: When an assertion fails in a hardware module, it is sent to this

controller, which relays the message to the host software, which prints out a

message and ends the simulation gracefully.

* Debug: This module listens for debugging messages and relays them to the

host software.

Using Soft Connections for the communication from these controllers to the simu-

lator modules results in several benefits. First, the designer can fluidly swap modules

without rewiring their connection to the controllers. This encourages users to create

151

many variations of their module, without worrying that (for example) a direct-mapped

write-through cache contains a smaller set of statistics than an associative write-back

cache. Finally, it raises the level of abstraction for the user, who just records stats

and assertion failures, without worrying about how this information is communicated

to software.

A.4 Sharing A Physical Interconnect

Soft connections make life easier for the designer by making module communication

implicit. The disadvantage of this is that the designer can lose intuition about the

implementation cost of their communication network. For example, we have found

that the assertions facility is useful for the FPGA in practice. Thus it becomes

frequently used. A typical HAsim configuration has 42 dynamic assertions, most of

them sanity checks relating to correct instruction execution. Implementing these as

42 FIFOs arbitrating directly with the controller would be expensive, and would place

a large burden on the place-and-route tools due to the fan-in.

Assertion failures are (hopefully) a rare occurrence, so it makes sense to aggregate

these using a multiplexed physical interconnect such as a tree. Such a scheme would

increase the latency a message takes to reach the endpoint, but could result in more

efficient hardware. Furthermore, other rarely-used connections such as statistics could

also be mapped onto the same interconnect. Thus the user can separate a Soft

Connection's physical representation (exclusive channel or shared interconnect) from

its logical representation (point-to-point, one-to-many, etc).

The user creates a shared connection by first instantiating a network station. This

station is then passed in to the constructor of the Soft Connection:

let fetchstation <- mkStationTree("fetch");

let link to assert <- mkConnSendShared(fetchstation, "asserts");

Whether a Soft Connection is implemented as an exclusive or shared interconnect

is transparent to the modules which use the endpoints-they use the connection's

152

"stats"
(server

--- Fetch
send]

"asserts"

Added during elaboration

Figure A-12: Multiple logical Soft Connections implemented on a shared physical
interconnect. Each station routes logical channels to the appropriate destination
using a generated routing table.

operations (send, receive, broadcast, etc) as normal. The only difference from the

user's point of view is that the latency of communication between sender and receiver

has increased, as the messages are in fact being passed over an interconnect which

is shared with other endpoints. Our elaboration algorithm connects the stations

together into a physical network, and creates a routing table to dynamically guide

messages to the appropriate destination. The addressing of messages is handled by the

stations themselves. Figure A-12 shows an example mapping many Soft Connections

onto the same shared interconnect.

Currently our algorithm connects the stations into a branching tree topology that

follows the module instantiation hierarchy. (Layers in the hierarchy with no stations

are optimized away.) This topology was chosen because it maximizes spatial locality

by keeping the stations near their endpoints, and because it results in a single static

route between two given endpoints, which minimizes station routing logic. In the

future, support is planned for other physical network topologies such as rings, two-

way rings, or grids.

153

Algorithm 1 Connecting Soft Connection endpoints directly.

1: (sends, recvs) = ... // Get collected info
2: for each s in sends do
3: rs - matchByName(s, recvs)
4: if rs = {} and not optional(s) then
5: error("Unmatched Send " + s);
6: else if rs = {r} and not manyToOne(r) then
7: connect(s, r) // Instantiate buffering
8: else
9: connectBroadcast(s, rs) // As in Figure A-6

10: recvs = recvs - rs
11: for each r in recvs do
12: if manyToOne(r) then
13: ss = matchByName(r, sends)
14: if ss = {} and not optional(r) then
15: error("Unmatched Receive " + r);
16: else if ss = {s} then
17: connect(s, r) // Revert to 1-to-1
18: else
19: connectListener(s, rs) // As in Figure A-7
20: sends = sends - ss
21: else
22: error("Unmatched Receive " + r);

A.5 Connection Algorithm

When a module instantiates a Soft Connection endpoint it is implicitly transforming

the interface it presents to the outside world. For a module with interface i, its new

interface is a tuple of i plus linked lists that describe what Soft Connection endpoints

the module has instantiated:

i = (i, {sends}, {recvs})

The module's parent (and the parent's parent) see only the original interface i.

This, along with collecting all the lists from all of the modules, is accomplished using

a standard Bluespec library called ModuleCollect.

Algorithm 1 describes our process for connecting Soft Connection endpoints di-

rectly. Connections that are unmatched (and not optional) result in a compilation

error via Bluespec's built-in error function, which halts elaboration. Note that al-

154

though a user may declare a connection to be many-to-one or one-to-many, we may

discover that during elaboration that it only has one sender and one receiver, in which

case it reverts to the hardware for the cheaper one-to-one connection.

The algorithm for instantiating Soft Connections sharing a physical interconnect is

most naturally described as a recursive module--it may call itself during elaboration,

resulting in a tree-topology of stations connected to each other:

module mkStationTree#(STATIONINFO info) (STATION);

List#(STATION) childstations = nil;

for (int x = 0; x < length(info.children); x++)

begin

let curchild = info.children[x];

// Recurse down the tree.

let c <- mkStationTree(cur-child);

childstations = append(child-stations, c);

end

let table <- mkRoutingTable(child-stations,

info.recvs, info.sends);

let s <- connectStation(table, childstations,

info.recvs, info.sends);

return s;

endmodule

The routing table is constructed mechanically using Algorithm 2. Note that one-

to-many sends have the potential to be sent to multiple local receivers, and to multiple

children. Additionally, they are always routed up to the parent (which drops the

message if none of its other children are receivers). When we reach the root of the

tree, endpoints that are unmatched result in an error, as in the basic point-to-point

case.

A.6 Assessing Soft Connections

In this section we examine HAsim in order to give some insight into how Soft Connec-

tions can improve the process of engineering a complex real-world application. Figure

155

Algorithm 2 Constructing a station's routing table.

1: let (childs, sends, recvs) - ... // Parameters
2: // Routing decisions for traffic from local sends.
3: for each s in sends do
4: if matchByName(s, childs) = {cs} then
5: // A child (or its descendant) has the recv.
6: sendRoute[s] := toChildren cs
7: else if matchByName(s, recvs) = {rs} then
8: // The endpoints are both local to this station.
9: sendRoute[s] := toRecvs rs

10: else // The endpoints are not in this subtree.
11: sendRoute[s] := toParent
12: if oneToMany(s) then
13: /7 oneToMany sends are always additionally routed to
14: /7 our parent as they may have more receive points,
15: 7/ and to any children that have receive points.
16: cs = matchInStation(s, childs)
17: sendRoute[s] := {toParent, toChildren cs} + sendRoute[s]
18: /7 Routing decisions for traffic from children.
19: for each c in childs do
20: // Find all sends this child could not match.
21: for each s in sendsRoutedToParent(c) do
22: if matchInStation(s, childs) = cs then
23: // This station is the least-common ancestor.
24: childRoute[c][s] := toChildren cs
25: // Continues as above...

A-13 gives an overview of how the HAsim inorder model from Figure 5-18 uses Soft

Connections. The connections are categorized according to the partitions shown in

Figure 2-1. The overall prevalence of soft connections is a demonstration of their

utility. The fact that so many soft connections cross partition boundaries supports

the argument that adding a new traditional connection would result in changing a

large number of intermediate interfaces.

In order to attempt to quantify the exact productivity a connection provides, we

define a metric called span. For each connection c between two modules:

span(c) = the number of module instantiation boundaries between the send and

receive endpoints.

Span measures the potential work the Soft Connection is saving the designer.

156

Category Number
Intra-Timing 33

Intra-Functional 19
Intra-Infrastructure 20
Timing-Functional 24

Timing-Infrastructure 42
Function-Infrastructure 76

Unused Optional 3
total 217

Figure A-13: Number

80

70

60
C

0

50
C

0 40
> 33

. 30-
E

20 --

10
3

0.

and use of Soft Connections in HAsim inorder model.

2 3 4 5 6 7 8 9

Span

Figure A-14: Histogram of Soft Connection span in HAsim inorder model.

Namely, the number of modules that the designer would have to change if she was

not using Soft Connections and swapped in a module with a different interface, or

added a new connection between distant modules. We acknowledge the limitations

of measuring the amount of work that our technique potentially can save, but believe

that this metric gives valuable insight into the degree that communication between

distant endpoints can exist in a hardware design.

Figure A-14 shows a histogram of the span of every connection in our simulator-

i.e. our simulator contains 74 connections with a span of 7. Spans of 0 represent

optional connections which are not being used. We found that the average Soft

Connection in our simulator crosses 5.27 module instantiations, and that 50% of

them cross 7 or more. This demonstrates that cross-hierarchical communication can

157

........................

Benchmark Model Cycles FPGA Cycles Change
Baseline Shared Tree

test-164-gzip 7,612,202,736 120,866,746,639 120,848,407,550 -.0002%
test_176_gcc 4,412,926,919 97,284,304,169 96,331,305,044 -.001%
test_181_mcf 515,321,465 13,393,128,486 13,375,809,359 -.001%

Figure A-15: Running SPEC benchmarks on the shared interconnect version.

be prevalent in real-world situations.

Much of the cross-hierarchical communication-and all of the many-to-one/one-to-

many connections-involve communicating data to or from the Simulation Controller

(Section A.3.1). The cost of multiplexors between these signals can be high, and

can result in a burden on the place and route tools. In order to explore this we

implemented an alternative version of our simulator where all connections to the

controller shared the same interconnect tree.

Overall 100/217 connections were mapped onto this tree, representing the statis-

tics, assertions, commands, parameters, and events facilities. The tree had 14 stations

arranged into a depth of 4, with the controller as the root node. All told, this tree

spanned 20 module instantiations. We found this version consumes an additional 3076

slice LUTs (4% of total available) because of its extra buffering and routing tables.

RAM utilization and clock speed are not affected, as the critical path is elsewhere.

Multiplexing these connections onto the same tree can increase the latency of

communication. To measure the impact of this on dynamic performance we ran three

SPEC benchmarks on each model. The results, shown in Figure A-15 demonstrate

that over a run which spans billions of model cycles there was no measurable impact

on performance-the differences in total FPGA cycles fall within expected run-to-run

variation.

Notes

8We do not consider Verilog's Out-of-Module References (OOMR) to be a satisfactory solution, as

they break modular abstraction. High-level HDLs such as SystemVerilog raise the level of abstraction

so that the user moves around typed interfaces instead of wires, but the basic problem remains.

158

Bibliography

[1] Accellera. Standard co-emulation modeling interface (SC-EMI) reference manual,

2010.

[2] J. Babb, R. Tessier, M. Dahl, S.Z. Hanono, D.M. Hoki, and A. Agarwal. Logic

emulation with virtual wires. Computer-Aided Design of Integrated Circuits and

Systems, IEEE Transactions on, 16(6):609 -626, June 1997.

[3] Ken C. Barr, R. Matas-Navarro, C. Weaver, T. Juan, and J. Emer. Simulating

a chip multiprocessor with a symmetric multiprocessor. In Boston Area Archic-

tecture Workshop (BARC), January 2005.

[4] Fabrice Bellard. QEMU, a fast and portable dynamic translator. In ATEC '05:

Proceedings of the annual conference on USENIX Annual Technical Conference,

pages 41-41, Berkeley, CA, USA, 2005. USENIX Association.

[5] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and S. K.

Reinhardt. The m5 simulator: Modeling networked systems. 52-60, 26.4:52-60,

2006.

[6] Andrew D. Birrell and Bruce Jay Nelson. Implementing remote procedure calls.

ACM Transactions on Computing Systems, 2(1):39-59, 1984.

[7] Bluespec Inc. http://www.bluespec.com, 2008.

[8] Randy Bryant. Simulation on a distributed system. In First International Con-

ference on Distributed Systems, July 1979.

159

[9] L.P. Carloni, K.L. McMillan, and A.L. Sangiovanni-Vincentelli. Theory of

latency-insensitive design. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, September 2001.

[10] K. M. Chandy and J. Misra. Asynchronous parallel simulation via a sequence

of parallel computations. In Communications of the A CM, pages 198-206, April

1981.

[11] C. Chang, J. Wawrzynek, and R.W. Brodersen. Bee2: a high-end reconfigurable

computing system. Design Test of Computers, IEEE, 22(2):114 125, mar. 2005.

[12] Jianwei Chen, Murali Annavaram, and Michel Dubois. Slacksim: a platform for

parallel simulations of cmps on cmps. SIGMETRICS Performance Evaluation

Review, 37(2):77-78, 2009.

[13] D. Chiou, D. Sunwoo, J. Kim, N. A. Patil, W. H. Reinhart, D. E. Johnson,

J. Keefe, and H. Angepat. Fpga-accelerated simulation technologies FAST: Fast,

full-system, cycle-accurate simulators. In MICRO, 2007.

[14] D. Chiou, D. Sunwoo, J. Kim, N. A. Patil, W. H. Reinhart, D. E. Johnson,

and Z. Xu. The fast methodology for high-speed soc/computer simulation. In

International Conference on Computer-Aided Design (ICCAD), 2007.

[15] E. Chung, E. Nurvitadhi, J. Hoe K. Mai, and B. Falsafi. Accelerating

Architectural-level, Full-System Multiprocessor Simulations using FPGAs. In

FPGA '08: Proceedings Eleventh International Symposium on Field Pro-

grammable Gate Arrays, 2008.

[16] F. Commoner, A.W. Holt, S. Even, and A. Pnueli. Marked directed graphs.

Journal of Computer and System Science, 5, 1971.

[17] John D. Davis, Chuck Thacker, and Chen Chang. BEE3: Revitalizing computer

architecture research. Technical Report MSR-TR-2009-45, Microsoft Research,

2009.

160

[18] DRC Computer Corp. http://www.drccomputer. com, 2009.

[19] Kattamuri Ekanadham, Jessica Tseng, and Pratap Pattnaik. Ibm powerpc design

in bluespec. Technical Report RC24706, IBM Research, 2008.

[20] J. Emer, P. Ahuja, E. Borch, A. Klauser, C. K. Luk, S. Manne, S. S. Mukherjee,

H. Patil, S. Wallace, N. Binkert, R. Espasa, and T. Juan. Asim: A performance

model framework. Computer, pages 68--76, February 2002.

[21] J. Emer, C. Beckmann, and M. Pellauer. Awb: The asim architect's workbench.

In Workshop on Modeling, Benchmarking, and Simulation (MoBS), June 2007.

[22] Kermin Fleming, Chun-Chieh Lin, Nirav Dave, Jamey Hicks, Gopal Raghavan,

and Arvind. H.264 decoding: A case study in late design-cycle changes. In

Proceedings of Formal Methods and Models for Codesign (MEMOCODE), Ana-

heim, CA, 2008.

[23] D. Genbrugge, S. Eyerman, and L. Eeckhout. Interval simulation: Raising the

level of abstraction in architectural simulation. In High Performance Computer

Architecture (HPCA), 2010 IEEE 16th International Symposium on, pages 1 -12,

jan. 2010.

[24] G. Gibeling, A. Schultz, and K. Asanovic. The RAMP Architecture & Descrip-

tion Language. Technical report, University of California, Berkeley, 2006.

[25] HiTech Global Design and Distribution, LLC. http: //www. hitechglobal. com,

2009.

[26] Interra Systems. Bluespec testing results: Comparing RTL tool output to hand-

designed RTL. http: //www. bluespec. com/images/pdf s/

InterraReportO42604.pdf, April 2004.

[27] Tsuyoshi Isshiki, Dongju Li, Hiroaki Kunieda, Toshio Isomura, and Kazuo Satou.

Trace-driven workload simulation method for multiprocessor system-on-chips. In

161

DAC '09: Proceedings of the 46th Annual Design Automation Conference, pages

232-237, New York, NY, USA, 2009. ACM.

[28] Daniel Jones and Nigel Topham. High speed cpu simulation using ltu dynamic

binary translation. In HiPEAC '09: Proceedings of the 4th International Confer-

ence on High Performance Embedded Architectures and Compilers, pages 50-64,

Berlin, Heidelberg, 2009. Springer-Verlag.

[29] G. Kahn. The semantics of a simple language for parallel programming. Infor-

mation processing, 1974. J.L Rosenfeld, editor.

[30] M. Kinsy. Heracles: Fully synthesizable parameterizable mips-based multicore

system. Technical report, MIT, forthcoming (private communication).

[31] Christos Kozyrakis. Using fpgas for sys-

tems research: Successes, failures, and lessons.

http://ramp.eecs.berkeley.edu/Publications/ramp-retro.kozyrakis

X20(Slides,X208-25-2010).pptx, 2010.

[32] Alex Krasnov, Andrew Schultz, John Wawrzynek, Greg Gibeling, and Pierre

yves Droz. RAMP blue: a message-passing manycore system in FPGAs. In In

2007 International Conference on Field Programmable Logic and Applications,

FPL 2007, pages 27-29, 2007.

[33] E. Larson, S. Chatterjee, , and T. Austin. MASE: A novel infrastructure for

detailed microarchitectural modeling. In Proceedings of the International Sym-

posium on Performance Analysis of Systems and Software (ISPASS), November

2001.

[34] Benjamin C. Lee, Jamison Collins, Hong Wang, and David Brooks. Cpr: Com-

posable performance regression for scalable multiprocessor models. In MICRO

41: Proceedings of the 41st annual IEEE/ACM International Symposium on Mi-

croarchitecture, pages 270-281, Washington, DC, USA, 2008. IEEE Computer

Society.

162

[35] E. A. Lee and D. G. Messerschmitt. Static scheduling of synchronous data

flow programs for digital signal processing. IEEE Transactions on Computers,

January 1987.

[36] Sungjin Lee, Kermin Fleming, Jihoon Park, Keonsoo Ha, Adrian M. Caulfield,

Steven Swanson, Arvind, and Jihong Kim. BlueSSD: an open platform for cross-

layer experiments for NAND flash-based SSDs. In The 5th Workshop on Archi-

tectural Research Prototyping (WARP), Saint-Malo, France, 2010.

[37] Mieszko Lis, Keun Sup Shim, Myong Hyon Cho, Pengju Ren, Omer Khan, and

Srinivas Devadas. Darsim: a parallel cycle-level noc simulator. In Workshop on

Modeling, Benchmarking, and Simulation (MoBS), June 2010.

[38] C.J. Mauer, M.D. Hill, and D.A. Wood. Full-system timing-first simulation.

ACM SIGMETRICS Performance Evaluation Review, 30.1:108-116, 2002.

[39] J.E. Miller, H. Kasture, G. Kurian, C.Gruenwald III, N. Beckmann, C. Ce-

lio, J. Eastep, and A. Agarwal. Graphite: A distributed parallel simulator for

multicores. In The 16th IEEE International Symposium on High-Performance

Computer Architecture (HPCA), January 2010.

[40] Nallatech, Inc. http: //www.nallatech. com, 2009.

[41] OSCI. Systemc language reference manual version 2.1.

[42] I. Page. Constructing hardware-software systems from a single description. Jour-

nal of VLSI Processing, 12:87 107, 1996.

[43] A. Parashar, M. Adler, M. Pellauer, and J. Emer. Hybrid cpu/fpga performance

models. In Workshop on Architectural Research Prototyping (WARP), June 2008.

[44] Angshuman Parashar, Michael Adler, Kermin E. Fleming, Michael Pellauer, and

Joel Emer. Leap: A virtual platform architecture for fpgas. In To Appear in

Proceedings of The First Workshop on the Intersections of Computer Architecture

and Reconfigurable Logic (CARL 2010), 2010.

163

[45] David Patterson. RAMP in retrospect. http: //ramp. eecs. berkeley. edu/

Publications/RAMPretroPattersonXA20(Slides,X208-25-2010).ppt, 2010.

[46] M. Pellauer, M. Vijayaraghavan, M. Adler, Arvind, and J. Emer. A-Ports: An

efficient abstraction for cycle-accurate performance models on FPGAs. In IEEE

International Symposium on Performance Analysis of Systems and Software (IS-

PASS), February 2008.

[47] M. Pellauer, M. Vijayaraghavan, M. Adler, Arvind, and J. Emer. Quick perfor-

mance models quickly: Closely-coupled timing-directed simulation on fpgas. In

IEEE International Symposium on Performance Analysis of Systems and Soft-

ware (ISPASS), April 2008.

[48] D. A. Penry, D. Fay, D. Hodgdon, R. Wells, G. Schelle, D. I. August, and D. Con-

nors. Exploiting parallelism and structure to accelerate the simulation of chip

multi-processors. In The 12th International Symposium on High-Performance

Computer Architecture (HPCA), February 2006.

[49] Erez Perelman, Greg Hamerly, Michael Van Biesbrouck, Timothy Sherwood, and

Brad Calder. Using simpoint for accurate and efficient simulation. SIGMETRICS

Performance Evaluation Review, 31(1):318 319, 2003.

[50] G. Pfister. The yorktown simulation engine. In 19th Conference on Design

Automation (DAC), 1982.

[51] Daniel L. Rosenband and Arvind. Modular Scheduling of Guarded Atomic Ac-

tions. In Proceedings of DAC'04, San Diego, CA, 2004.

[52] Charles Selvidge, Anant Agarwal, Matt Dahl, and Jonathan Babb. Tiers: Topol-

ogy independent pipelined routing and scheduling for virtualwire compilation.

In FPGA '95: Proceedings of the 1995 ACM third international symposium on

Field-programmable gate arrays, pages 25 31, New York, NY, USA, 1995. ACM.

[53] L. Soule and A. Gupta. Parallel distributed-time logic simulation. IEEE Design

and Test, pages 32-48, November 1989.

164

[54] Z. Tan, A. Waterman, H. Cook, K. Asanovic, and D. Patterson. RAMP Gold:

An FPGA-based Architecture Simulator for Multiprocessors. In Proceedings of

the 47th Design Automation Conference (DAC), 2010.

[55] Z. Tan, A. Waterman, H. Cook, K. Asanovic S. Bird, and D. Patterson. A Case

for FAME: FPGA Architecture Model Execution. In Proceedings of the 37th

International Symposium of Computer Architecture (ISCA), 2010.

[56] Chuck Thacker. Beehive: A many-core computer for fpgas (v5), 2010.

[57] M. Vijayaraghavan and Arvind. Bounded Dataflow Networks and Latency-

Insensitive Circuits. In Proceedings of Formal Methods and Models for Codesign

(MEMOCODE), 2009.

[58] J. Wawrzynek, D. Patterson, M. Oskin, S. L. Lu, C. Kozyrakis, J. C. Hoe,

D. Chiou, and K. Asanovic. Ramp: A research accelerator for multiple proces-

sors. IEEE Micro, Mar/Apr 2007.

[59] Sewook Wee, Jared Casper, Njuguna Njoroge, Yuriy Tesylar, Daxia Ge, Christos

Kozyrakis, and Kunle Olukotun. A practical fpga-based framework for novel cmp

research. In FPGA '07: Proceedings of the 2007 A CM/SIGDA 15th international

symposium on Field programmable gate arrays, pages 116-125, 2007.

[60] Roland E. Wunderlich, Thomas F. Wenisch, Babak Falsafi, and James C. Hoe.

SMARTS: accelerating microarchitecture simulation via rigorous statistical sam-

pling. SIGARCH Computer Architecture News, 31(2):84-97, 2003.

165

