349 research outputs found

    Resource Management for Data Intensive Tasks on Grids

    Get PDF

    Master/worker parallel discrete event simulation

    Get PDF
    The execution of parallel discrete event simulation across metacomputing infrastructures is examined. A master/worker architecture for parallel discrete event simulation is proposed providing robust executions under a dynamic set of services with system-level support for fault tolerance, semi-automated client-directed load balancing, portability across heterogeneous machines, and the ability to run codes on idle or time-sharing clients without significant interaction by users. Research questions and challenges associated with issues and limitations with the work distribution paradigm, targeted computational domain, performance metrics, and the intended class of applications to be used in this context are analyzed and discussed. A portable web services approach to master/worker parallel discrete event simulation is proposed and evaluated with subsequent optimizations to increase the efficiency of large-scale simulation execution through distributed master service design and intrinsic overhead reduction. New techniques for addressing challenges associated with optimistic parallel discrete event simulation across metacomputing such as rollbacks and message unsending with an inherently different computation paradigm utilizing master services and time windows are proposed and examined. Results indicate that a master/worker approach utilizing loosely coupled resources is a viable means for high throughput parallel discrete event simulation by enhancing existing computational capacity or providing alternate execution capability for less time-critical codes.Ph.D.Committee Chair: Fujimoto, Richard; Committee Member: Bader, David; Committee Member: Perumalla, Kalyan; Committee Member: Riley, George; Committee Member: Vuduc, Richar

    A Nine Month Progress Report on an Investigation into Mechanisms for Improving Triple Store Performance

    No full text
    This report considers the requirement for fast, efficient, and scalable triple stores as part of the effort to produce the Semantic Web. It summarises relevant information in the major background field of Database Management Systems (DBMS), and provides an overview of the techniques currently in use amongst the triple store community. The report concludes that for individuals and organisations to be willing to provide large amounts of information as openly-accessible nodes on the Semantic Web, storage and querying of the data must be cheaper and faster than it is currently. Experiences from the DBMS field can be used to maximise triple store performance, and suggestions are provided for lines of investigation in areas of storage, indexing, and query optimisation. Finally, work packages are provided describing expected timetables for further study of these topics

    Helmholtz Portfolio Theme Large-Scale Data Management and Analysis (LSDMA)

    Get PDF
    The Helmholtz Association funded the "Large-Scale Data Management and Analysis" portfolio theme from 2012-2016. Four Helmholtz centres, six universities and another research institution in Germany joined to enable data-intensive science by optimising data life cycles in selected scientific communities. In our Data Life cycle Labs, data experts performed joint R&D together with scientific communities. The Data Services Integration Team focused on generic solutions applied by several communities

    Fine-Grained Workflow Interoperability in Life Sciences

    Get PDF
    In den vergangenen Jahrzehnten führten Fortschritte in den Schlüsseltechnologien der Lebenswissenschaften zu einer exponentiellen Zunahme der zur Verfügung stehenden biologischen Daten. Um Ergebnisse zeitnah generieren zu können werden sowohl spezialisierte Rechensystem als auch Programmierfähigkeiten benötigt: Desktopcomputer oder monolithische Ansätze sind weder in der Lage mit dem Wachstum der verfügbaren biologischen Daten noch mit der Komplexität der Analysetechniken Schritt zu halten. Workflows erlauben diesem Trend durch Parallelisierungsansätzen und verteilten Rechensystemen entgegenzuwirken. Ihre transparenten Abläufe, gegeben durch ihre klar definierten Strukturen, ebenso ihre Wiederholbarkeit, erfüllen die Standards der Reproduzierbarkeit, welche an wissenschaftliche Methoden gestellt werden. Eines der Ziele unserer Arbeit ist es Forschern beim Bedienen von Rechensystemen zu unterstützen, ohne dass Programmierkenntnisse notwendig sind. Dafür wurde eine Sammlung von Tools entwickelt, welche jedes Kommandozeilenprogramm in ein Workflowsystem integrieren kann. Ohne weitere Anpassungen kann unser Programm zwei weit verbreitete Workflowsysteme unterstützen. Unser modularer Entwurf erlaubt zudem Unterstützung für weitere Workflowmaschinen hinzuzufügen. Basierend auf der Bedeutung von frühen und robusten Workflowentwürfen, haben wir außerdem eine wohl etablierte Desktop–basierte Analyseplattform erweitert. Diese enthält über 2.000 Aufgaben, wobei jede als Baustein in einem Workflow fungiert. Die Plattform erlaubt einfache Entwicklung neuer Aufgaben und die Integration externer Kommandozeilenprogramme. In dieser Arbeit wurde ein Plugin zur Konvertierung entwickelt, welches nutzerfreundliche Mechanismen bereitstellt, um Workflows auf verteilten Hochleistungsrechensystemen auszuführen—eine Aufgabe, die sonst technische Kenntnisse erfordert, die gewöhnlich nicht zum Anforderungsprofil eines Lebenswissenschaftlers gehören. Unsere Konverter–Erweiterung generiert quasi identische Versionen desselben Workflows, welche im Anschluss auf leistungsfähigen Berechnungsressourcen ausgeführt werden können. Infolgedessen werden nicht nur die Möglichkeiten von verteilten hochperformanten Rechensystemen sowie die Bequemlichkeit eines für Desktopcomputer entwickelte Workflowsystems ausgenutzt, sondern zusätzlich werden Berechnungsbeschränkungen von Desktopcomputern und die steile Lernkurve, die mit dem Workflowentwurf auf verteilten Systemen verbunden ist, umgangen. Unser Konverter–Plugin hat sofortige Anwendung für Forscher. Wir zeigen dies in drei für die Lebenswissenschaften relevanten Anwendungsbeispielen: Strukturelle Bioinformatik, Immuninformatik, und Metabolomik.Recent decades have witnessed an exponential increase of available biological data due to advances in key technologies for life sciences. Specialized computing resources and scripting skills are now required to deliver results in a timely fashion: desktop computers or monolithic approaches can no longer keep pace with neither the growth of available biological data nor the complexity of analysis techniques. Workflows offer an accessible way to counter against this trend by facilitating parallelization and distribution of computations. Given their structured and repeatable nature, workflows also provide a transparent process to satisfy strict reproducibility standards required by the scientific method. One of the goals of our work is to assist researchers in accessing computing resources without the need for programming or scripting skills. To this effect, we created a toolset able to integrate any command line tool into workflow systems. Out of the box, our toolset supports two widely–used workflow systems, but our modular design allows for seamless additions in order to support further workflow engines. Recognizing the importance of early and robust workflow design, we also extended a well–established, desktop–based analytics platform that contains more than two thousand tasks (each being a building block for a workflow), allows easy development of new tasks and is able to integrate external command line tools. We developed a converter plug–in that offers a user–friendly mechanism to execute workflows on distributed high–performance computing resources—an exercise that would otherwise require technical skills typically not associated with the average life scientist's profile. Our converter extension generates virtually identical versions of the same workflows, which can then be executed on more capable computing resources. That is, not only did we leverage the capacity of distributed high–performance resources and the conveniences of a workflow engine designed for personal computers but we also circumvented computing limitations of personal computers and the steep learning curve associated with creating workflows for distributed environments. Our converter extension has immediate applications for researchers and we showcase our results by means of three use cases relevant for life scientists: structural bioinformatics, immunoinformatics and metabolomics

    Grid-centric scheduling strategies for workflow applications

    Get PDF
    Grid computing faces a great challenge because the resources are not localized, but distributed, heterogeneous and dynamic. Thus, it is essential to provide a set of programming tools that execute an application on the Grid resources with as little input from the user as possible. The thesis of this work is that Grid-centric scheduling techniques of workflow applications can provide good usability of the Grid environment by reliably executing the application on a large scale distributed system with good performance. We support our thesis with new and effective approaches in the following five aspects. First, we modeled the performance of the existing scheduling approaches in a multi-cluster Grid environment. We implemented several widely-used scheduling algorithms and identified the best candidate. The study further introduced a new measurement, based on our experiments, which can improve the schedule quality of some scheduling algorithms as much as 20 fold in a multi-cluster Grid environment. Second, we studied the scalability of the existing Grid scheduling algorithms. To deal with Grid systems consisting of hundreds of thousands of resources, we designed and implemented a novel approach that performs explicit resource selection decoupled from scheduling Our experimental evaluation confirmed that our decoupled approach can be scalable in such an environment without sacrificing the quality of the schedule by more than 10%. Third, we proposed solutions to address the dynamic nature of Grid computing with a new cluster-based hybrid scheduling mechanism. Our experimental results collected from real executions on production clusters demonstrated that this approach produces programs running 30% to 100% faster than the other scheduling approaches we implemented on both reserved and shared resources. Fourth, we improved the reliability of Grid computing by incorporating fault- tolerance and recovery mechanisms into the workow application execution. Our experiments on a simulated multi-cluster Grid environment demonstrated the effectiveness of our approach and also characterized the three-way trade-off between reliability, performance and resource usage when executing a workflow application. Finally, we improved the large batch-queue wait time often found in production Grid clusters. We developed a novel approach to partition the workow application and submit them judiciously to achieve less total batch-queue wait time. The experimental results derived from production site batch queue logs show that our approach can reduce total wait time by as much as 70%. Our approaches combined can greatly improve the usability of Grid computing while increasing the performance of workow applications on a multi-cluster Grid environment

    The 4th Conference of PhD Students in Computer Science

    Get PDF
    • …
    corecore