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Yang Zhang 

Abstract 

Grid computing faces a great challenge because the resources are not localized, but 

distributed, heterogeneous and dynamic. Thus, it is essential to provide a set of 

programming tools that execute an application on the Grid resources with as little 

input from the user as possible. The thesis of this work is that Grid-centric scheduling 

techniques of workflow applications can provide good usability of the Grid environment 

by reliably executing the application on a large scale distributed system with good 

performance. We support our thesis with new and effective approaches in the following 

five aspects. 

First, we modeled the performance of the existing scheduling approaches in a 

multi-cluster Grid environment. We implemented several widely-used scheduling al

gorithms and identified the best candidate. The study further introduced a new 

measurement, based on our experiments, which can improve the schedule quality of 

some scheduling algorithms as much as 20 fold in a multi-cluster Grid environment. 

Second, we studied the scalability of the existing Grid scheduling algorithms. To 

deal with Grid systems consisting of hundreds of thousands of resources, we designed 

and implemented a novel approach that performs explicit resource selection decoupled 

from scheduling. Our experimental evaluation confirmed that our decoupled approach 

can be scalable in such an environment without sacrificing the quality of the schedule 

by more than 10%. 

Third, we proposed solutions to address the dynamic nature of Grid computing 



with a new cluster-based hybrid scheduling mechanism. Our experimental results 

collected from real executions on production clusters demonstrated that this approach 

produces programs running 30% to 100% faster than the other scheduling approaches 

we implemented on both reserved and shared resources. 

Fourth, we improved the reliability of Grid computing by incorporating fault-

tolerance and recovery mechanisms into the workow application execution. Our ex

periments on a simulated multi-cluster Grid environment demonstrated the effective

ness of our approach and also characterized the three-way trade-off between reliability, 

performance and resource usage when executing a workflow application. 

Finally, we improved the large batch-queue wait time often found in production 

Grid clusters. We developed a novel approach to partition the workow application and 

submit them judiciously to achieve less total batch-queue wait time. The experimental 

results derived from production site batch queue logs show that our approach can 

reduce total wait time by as much as 70%. 

Our approaches combined can greatly improve the usability of Grid computing 

while increasing the performance of workow applications on a multi-cluster Grid en

vironment. 



Il l 

Acknowledgements 

I would like to thank my late advisor, Ken Kennedy, for his guidance and support 

without which this dissertation would not have been possible. Ken not only intro

duced me to the cutting edge domain of high performance computing research but 

also inspired me to continue my work goes beyond this dissertation. I am grateful 

to my advisor, Dr. Keith Cooper. Keith Cooper has been extremely supportive of 

all my efforts and took me under his wings after Ken passed away. I am also very 

grateful to Dr. Chuck Koelbel. He has been a constant source of detailed help re

garding all areas of my research, from research problem definitions to conference talk 

presentations, ever since I started. I also would like to thank my committee member, 

Dr. Tim Warburton, for his support and insights. 

I worked in the VGrADS projects throughout my PhD years and I would like 

to take this opportunity to thank all the members. In particular, I would like to 

thank Yang-suk Kee, Lavanya Ramakrishnan, Daniel Nurmi and especially Anirban 

Mandal for their help in implementation at various points of time. Research discus

sions with several VGrADS Pis like Andrew Chien, Rich Wolski, Henri Casanova and 

Dan Reed have helped me shape my research. I would like to thank all my friends 

and research staff in the compiler group for the vibrant work environment Nathan 

Tallent, David Peixotto, Jason Eckhardt, Jeff Sandval, Yuan Zhao, Rui Zhang, An-

shu Dasgupta,Yuri Dotsenko, Apan Qasem, Cheryl McCosh, Alex Grosul, Cristian 

Coarfa, Zoran Budimlic, Timothy Harvey and Yi Guo. My sincere thanks to all the 

supporting staffs at the Computer Science department, including Penny Anderson, 

Darnell Price, Lena Sifuentes, Bel Martinez, Amanda Nokleby, Iva Jean Jorgensen 

and BJ Smith for being so helpful and supportive. 



IV 

Finally, my parents and wife are invaluable. They have been with me throughout 

this long journey and have provided all the support and encouragement that make 

me who I am. This dissertation is especially for my daughter, Sunny, all I pray for is 

her happiness. 



Contents 

Abstract i 

List of Illustrations ix 

1 Introduction 1 

1.1 Motivation 2 

1.2 Thesis 4 

1.3 Research Contributions 4 

1.4 Organization 5 

2 Background and Related Work 6 

2.1 Grid Computing 6 

2.1.1 Overview 6 

2.1.2 Grid Projects Related to Our Research 7 

2.1.3 Other Grid Projects 12 

2.2 Workflow Management Tools 15 

2.2.1 Workflow application Overview and Notation 15 

2.2.2 Workflow applications 16 

2.2.3 Related Workflow Management Projects 21 

2.3 Scheduling Algorithms 23 

2.3.1 Problem Definition and Notation 23 

2.3.2 Homogenous and Heterogenous DAG Schedulers 26 

2.3.3 Grid Schedulers 32 

3 Performance of Scheduling Algorithms in a Multi-cluster 



vi 

Grid Environment 36 

3.1 Introduction 36 

3.2 Background and Related Work 38 

3.2.1 Static Scheduling Algorithms 38 

3.3 Experimental Methodology 40 

3.3.1 DAG Generator 40 

3.3.2 Cost Model 41 

3.3.3 Grid Model 42 

3.3.4 Experimental Setup 43 

3.4 Results 43 

3.4.1 Results Analysis 44 

3.4.2 Effective ACP 50 

3.5 Conclusions 53 

4 Decoupled Resource Selection and Scheduling 55 

4.1 Introduction 55 

4.2 Decoupled Application Scheduling in Grid Environments 57 

4.2.1 Virtual Grid and Resource Selection 57 

4.2.2 Scheduling Algorithms 60 

4.2.3 Selection Methodology 61 

4.2.4 Case-Study: Workflow Applications 62 

4.3 Experimental Evaluation 63 

4.3.1 Methodology 63 

4.3.2 Results 65 

4.4 Related Work 70 

4.5 Conclusions 71 

5 Hybrid Scheduling Mechanisms 72 

5.1 Introduction 72 



vii 

5.2 Cluster based Hybrid Scheduling 74 

5.2.1 Scheduler 75 

5.2.2 Monitor Component 79 

5.2.3 Application Manager 80 

5.3 Experimental Methodology 82 

5.3.1 Workflow Applications 82 

5.3.2 Performance Model 83 

5.3.3 Grid Model 83 

5.3.4 Experimental Setup 84 

5.4 Results 85 

5.5 Related Work 89 

5.6 Conclusions 91 

6 Fault Tolerance and Recovery for Workflow Applications 92 

6.1 Introduction 92 

6.2 Scheduling with Fault Tolerance 93 

6.2.1 Scheduling and Fault Tolerance Techniques 94 

6.2.2 Scheduling Algorithms with Over-provisioning 95 

6.2.3 Scheduling Algorithms with Checkpoint-recovery 98 

6.2.4 Whole DAG Over-provisioning and Migration 99 

6.3 Experimental Methodology 101 

6.3.1 Resource Reliability Model 101 

6.3.2 Experimental Setup 102 

6.4 Results 103 

6.5 Related Work 114 

6.6 Conclusions 115 

7 Batch Queue Resource Scheduling for Workflow Appli-



viii 

cations 116 

7.1 Introduction 116 

7.2 Background 118 

7.2.1 Batch Queues 118 

7.2.2 Workflow Application Execution 119 

7.3 Workflow Application Aggregating 121 

7.4 Experiments 129 

7.4.1 Experimental Methodology 129 

7.4.2 Experimental Setting 130 

7.4.3 Result Analysis 132 

7.5 Related Work 140 

7.6 Conclusions and Future Work 141 

8 Conclusion 142 

8.1 Contributions 142 

8.2 Future Work 143 

8.3 Conclusions 146 

Bibliography 147 



Illustrations 

2.1 GrADSoft Architecture 9 

2.2 Virtual Grid Execution System (vgES) Architecture 11 

2.3 GridLab Architecture 14 

2.4 EMAN Refinement Workflow 16 

2.5 A Small Montage Workflow 17 

2.6 BLAST Workflow 18 

2.7 Gaussian Elimination Workflow 19 

2.8 Fast Fourier Transform Workflow 20 

2.9 A DAG schedule example 24 

3.1 HEFT and LHBS scheduling algorithms 39 

3.2 Aggregate behavior of scheduling methods 44 

3.3 Results for different DAG types 46 

3.4 Algorithms Performance on Different Resource Models 46 

3.5 Results for varying communication-computation ratios (CCR) . . . . 47 

3.6 Results for varying shapes (a) 48 

3.7 DAG Performance in Universal Resource Environment with Different 

Widths 49 

3.8 Comparing EACP version with the standard version 51 

3.9 Comparing EACP version with the standard version 52 

3.10 Comparing EACP version with the standard version 53 



X 

4.1 Time to complete vgDL queries with vgES 60 

4.2 vgDL for class 2 type of resource abstraction 65 

4.3 vgDL for class 3 type of resource abstraction 66 

4.4 Average Scheduling+Selection Time for Different Sizes of Resources . . . . 66 

4.5 Average Scheduling+Selection Time for EMAN DAGs 67 

4.6 Average Scheduling+Selection Time for Montage DAGs 67 

4.7 Average MakeSpan and Scheduling Time for DAGs with CCR=0.1 . . . . 68 

4.8 Average MakeSpan and Scheduling Time for DAGs with CCR=10 . . . . 69 

4.9 Average MakeSpan and Scheduling Time for DAGs with CCR=0.5,1,2 . . 69 

5.1 The system design 74 

5.2 The DAG ACP estimation procedure 76 

5.3 The selection procedure 77 

5.4 The application manager 81 

5.5 The Cluster Configuration and Performance Model 84 

5.6 Aggregate Results 86 

5.7 Results of Aggressive Rescheduling Batch 87 

5.8 Results of Conservative Rescheduling Batch 87 

5.9 Results of Artificial Batch Queue Loads Batch 88 

5.10 Results of Artificial Disk Write Loads Batch 89 

6.1 HEFT with Over-provisioning 97 

6.2 Whole DAG Over-provisioning 100 

6.3 Weibull Parameters in Our Experiment 102 

6.4 Overall Success Probability 104 

6.5 Overall Standard Length Ratio (SLR) 104 

6.6 Overall Cpu Time Usage 105 

6.7 Success Probability with Different Reliability Models 106 



xi 

6.8 Expected Resource Usage 108 

6.9 Expected Resource Usage with Different Reliability Models 108 

6.10 Performance with Different Reliability Models 109 

6.11 Fast Fourier Transform Performance 110 

6.12 Success Probability with Different Failure Prediction Accuracies . . . I l l 

6.13 Performance with Different Failure Prediction Accuracies I l l 

6.14 Resource Usage with Different Failure Prediction Accuracies 112 

6.15 Success Probability with Different Replication Limits 113 

6.16 Resource Usage with Different Replication Limits 113 

7.1 Workflow Application Aggregation 120 

7.2 Workflow Application Cluster by Level 121 

7.3 The DAG Application Manager 124 

7.4 The DAG Peeling Procedure 125 

7.5 The Peel Level decision Procedure 128 

7.6 Workflow Application Level Decision 129 

7.7 The Clusters 131 

7.8 The Experiment Settings 132 

7.9 Overall Average Wait time 133 

7.10 Cluster Configuration and Batch queue Job Characteristic 134 

7.11 The Effect of Queue Policy on Ada 136 

7.12 The CPU Hour Usage 137 

7.13 The Average Wait Time of Small DAGs on RTC Cluster 138 

7.14 Results on All Clusters With FL Policy 139 



1 

Chapter 1 

Introduction 

Advances in networking technologies have made it possible to use distributed infor

mation infrastructures as a computational resource as well as an information resource 

that we refer to as the Grid [40, 41]. Foster et al. [40] described it as a distributed 

infrastructure that connects computers, databases, instruments, and people in a seam

less web of computing and distributed intelligence, that can be used in an on-demand 

fashion as a problem-solving resource in many fields of human endeavor. Just as the 

electric power grid provides electricity, the ultimate "Grid" vision is to provide per

vasive access to large scale computation and data as an integrated problem-solving 

resource in diverse fields of science, engineering and commerce. 

Since the inception of Grid, it has advanced from an ambitious vision pursued by a 

small number of academic researchers into a large-scale research and production activ

ity involving hundreds of scientists and engineers. The Grid vision of flexible, large-

scale deployment and resource sharing across multiple organizations has spawned 

not only a wealth of research [4, 82, 3], but also commercial products [36, 112, 77] 

and large-scale deployment [107, 45] used by both scientific and commercial applica

tions [23, 110, 96, 34, 103, 1, 38, 60, 28, 47]. Those computational and data Grids 

provide access to software and hardware resources geographically distributed and 

maintained by different institutions. In more recent development, the Grid is evolv

ing towards the "cloud" computing but Grid technologies will still play a critical role 

in the new cloud computing. 
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1.1 Motivation 

The availability of Grid resources gave rise to a new computing paradigm: Grid com

puting. Unlike scalar or parallel computing, Grid computing enables users to share 

their resources, data and software instead of competing for them. Such collaborations 

have widespread appeal for the distributed and high performance computing commu

nities. However, as with most new technologies, only part of the Grid's potential is 

currently a reality. 

One of the fundamental challenges in Grid computing is that Grid applications 

typically involve massive task-parallelism and may include processing of large-scale 

data. The tera or even peta-scale of the applications not only put stress on the 

Grid software stacks but also on the hardware infrastructures. Another fundamental 

challenge is that the Grid applications run on resources that are distributed, heteroge

neous, dynamic and sometimes unpredictable. These characteristics of the resources 

have largely confined the use of Grid computing to engineers and scientists with ex

tensive training and experience. Finally, the synchronous use of shared resources 

distributed across multiple organization and administrative domains is largely unre

alized [9] partly because it requires a form of co-scheduling. The underlying technical 

challenge is that a Grid application needs to coordinate with several local resource 

managers to allocate enough resources for itself. 

Because the Grid environment is inherently more complex than previous computer 

systems, applications that execute on the Grid would inevitably reflect some of this 

complexity. However, we believe that it is possible to encapsulate the complexity of 

Grid computing away from the application developers. We believe that the key to 

make the Grid usable lies in sophisticated programming tools that embody major 

advances in both the theory and practice of building Grid applications. Our ulti

mate vision is that Grid application developers will write component-based workflow 

applications with the help of workflow generator tools. Workflow applications are 

an important class of applications that consist of multiple sub-tasks linked to each 
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other by dependences. The developers can be Grid-oblivious as long as they express 

the general software and hardware requirements for the application. Then, a user 

will submit the Grid application through a user portal and a Grid runtime system 

will automatically execute it on the matching Grid resources. A Grid runtime sys

tem usually consists of one global resource manager and one application manager per 

application. Finally, the Grid application finishes and automatically stages all the 

results to a user designated place for the user to collect. Unfortunately, the reality 

is, most Grid application developers have been experts in distributed computing and 

the users run the application by directly invoking remote procedure calls through the 

Grid middleware. Therefore, instead of our vision that users can submit an applica

tion onto Grid and leave it unattended, users need to continuously monitor the status 

of the application during its execution. 

In an effort to fulfill our ambitious vision, we focused on the development of a good 

application manager since it plays a critical role in the automation process. A fully 

automated application manager identifies the application requirements, selects Grid 

resources for the applications, coordinates with the global resource manager to allo

cate enough resources, schedules the application, executes the application in the right 

order, monitors the execution and reschedules or relaunches the application in case an 

unexpected event happens. We also believe that a good application manager is key to 

the performance of the application. It is already known that the distributed, hetero

geneous and dynamic characteristics of the Grid resources can unexpectedly hurt the 

performance of the application [129]. Thus, one important task for the application 

manger is to select and allocate the right resources and schedule the application onto 

these resources in a way to minimize the execution time which we usually refer to 

as the turn-around time. At the heart of this procedure is the scheduling problem 

which is known to be NP-complete except in the simplest scenarios [43]. Traditional 

scheduling assumes that the performance of the application on a certain resource is 

not only known but also invariant. In a heterogeneous dynamic Grid environment, 
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these assumptions do not hold. Thus, Grid application scheduling poses even larger 

challenges than does scheduling in a static homogenous environment. 

1.2 Thesis 

The thesis of this work is that Grid centric scheduling techniques of workflow appli

cations can provide good usability of the Grid environment by reliably executing the 

application on a large scale distributed system with good performance. To support 

this thesis, we designed and implemented several workflow application scheduling 

mechanisms in the context of the Virtual Grid Application Development Software 

(VGrADS) project. Our researches have provided the necessary techniques to reliably 

execute a workflow application on a Grid environment and achieve good performance 

(turn-around time) and scalability. 

1.3 Research Contributions 

The main contribution this thesis work is a set of published Grid-centric scheduling 

techniques for workflow applications. 

• We studied the performance of existing scheduling approaches in the Grid en

vironment. I analyzed the results and introduced a new measurement called 

effective aggregated computing power (EACP) that could improve the results 

of some scheduling algorithms by as much as 20 fold [127]. 

• We studied the scalability of existing scheduling approaches and designed and 

implemented a decoupled two-level approach that performs explicit resource 

selection decoupled from scheduling. The experimental results confirmed that 

our approach can be scalable in a large Grid environment without sacrificing 

the quality of the schedule by more than 10%. [130]. 

• We proposed a new cluster-based hybrid scheduling mechanism that dynami

cally executes a top-down static scheduling algorithm using the real-time feed-
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back from the execution monitor. The experimental execution results showed 

that this approach produces programs running 30% to 100% faster than the 

other scheduling approaches we implemented on both reserved and shared re

sources [129]. 

• We incorporated fault-tolerance and recovery mechanisms into workflow appli

cation scheduling and execution that improve the reliability of Grid computing 

by at much as 250% when the resources are unreliable [131]. 

• We proposed a new approach to aggregate a workflow application into several 

groups and submit them according to the batch queue wait time estimation to 

reduce the workflow's waiting time in the batch queues on production sites by 

as much as 80% [128]. 

1.4 Organization 

The thesis is organized as follows. In Chapter 2, we present the background of 

our research and related works. In Chapter 3, we present our study of the various 

scheduling algorithms on a multi-cluster Grid environment and propose and evaluate 

our new EACP approach. In Chapter 4, we present our two-level scheduling strategy 

that addresses the scalability issues for Grid applications. In Chapter 5, we present 

a novel two-level cluster based hybrid rescheduling technique and its evaluation on 

a real multi-cluster Grid. In Chapter 6, we present our work on incorporating the 

fault-tolerance and recovery mechanism with workflow application scheduling. In 

Chapter 7, we present a novel workflow aggregation algorithm that can reduce a 

workflow application's wait time in batch queue controlled resources. Finally, we 

conclude our dissertation in Chapter 8. 
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Chapter 2 

Background and Related Work 

In this chapter, we first describe Grid computing from the perspective of our re

search. Then we list related works on Grid middleware systems including the GrADS 

project, its successor the VGrADS project on which this thesis work is built, the 

Globus project and other Grid projects. Secondly, we present the background of 

workflow applications and list some existing workflow application management sys

tems. Finally, we present workflow application scheduling techniques and related 

works on scheduling strategies for homogeneous, heterogeneous and Grid platforms. 

We will also present comparisons with our work when appropriate. 

2.1 Grid Computing 

2.1.1 Overview 

The Grid is a distributed infrastructure that connects computers, databases, instru

ments, and people into a seamless web of advanced capabilities [40]. There are many 

types of Grid, such as computational Grid, desktop Grid, data Grid and utility Grid, 

to name a few. In our research, we focus on multi-cluster computational Grid. A 

multi-cluster Grid composes of several clusters that are physically located in a geo

graphically distributed manner and its main purpose is to provide enough computa

tional resources to accommodate applications with large computational needs. Grid 

computing is a new computing paradigm that could harness the computing power of 

a Grid. In our multi-cluster Grid environment, Grid computing means a user submits 

a large application, usually a workflow application, through an application manager 

onto one or more clusters and the user can collect the results later without further 
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intervention. In other words, we see Grid computing as an automation for a user to 

harness the computing power of multiple clusters or a large number of distributed 

resources in general. 

A flurry of research projects has been proposed on different aspects of the Grid 

computing around the world since the inauguration of the Grid concept. A non-

exhaustive list includes the GrADS project [9], the VGrADS project [55], the Globus 

project [39], the Condor project [109], the Enabling Grids for E-sciencE (EGEE) 

project [8], the GridBus project [83], the GridFlow project [16], the GridLab project [3], 

the TeraGrid project [107] and the Unicore project [93]. Here we summarize some of 

the more related and more influential ones on our research. 

2.1.2 Grid Projects Related to Our Research 

Globus 

The Globus project, started in 1996, produces by far the mostly widely-used Grid 

middleware, the Globus toolkit [39]. It is an open source toolkit that provides funda

mental technologies for people to share computing power, databases, and other tools 

securely online across corporate, institutional, and geographic boundaries without 

sacrificing local autonomy. The toolkit includes software services and libraries for re

mote procedure call, resource monitoring, discovery, and management, plus security 

and file management. 

The latest release of Globus toolkit version 4(GT4) converged with web services 

standards on building Grid middleware and service-oriented-applications. A web 

service is a software system designed to support interoperable machine-to-machine 

interaction over a network. It has an interface described in a machine processable 

format called Web Service Definition Language (WSDL). Other systems interact with 

the Web service in a manner prescribed by its description using Simple Object Access 

Protocol (SOAP) messages [90, 99]. In this way, a user can write his own client 

program that invokes services reside in the Grid server. Several standard services are 
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implemented in a Globus toolkit 4 container. 

The three mostly commonly used services are the job management service,reliable 

file transfer service and the delegation service. The Grid Resource Allocation and 

Management (GRAM) service enables users to execute a program remotely and get 

a handle to manage the job. A client can then use this handle to query the jobs 

status, kill the job and obtain notifications if the job status changes. The Reliable 

File Transfer (RFT) service enables users to stage in all the necessary files before a 

remote job starts and stage out the results to the next computing job. The delegation 

service can delegate a user's credential through the web service security authentication 

system so that a remote job can run with the same permission as the user on that 

resource. 

Both the GrADS and the VGrADS project use Globus as their infrastructure and 

add user level services on top of it. We use Globus in most of our work directly or 

indirectly (through VGrADS), as do many other Grid proejcts. However, GT4 services 

alone can not provide the type of automation and performance we are looking to 

achieve, because Globus is designed to provide the basic functionalities for distributed 

computing and is largely single job oriented, thus not directly applicable to a workflow 

application execution. 

GrADs 

Since 1999, the Grid Application Development (GrADS) Project has worked to attack 

the problems inherent in Grid computing [26]. The GrADS research has focused on 

five inter-institutional efforts: Program Execution System, Program Preparation Sys

tem, Macro Testbed, MicroGrid, and Applications. Based on those inter-institutional 

projects, the GrADS project proposed two key concepts [58]. First, applications are 

encapsulated as configurable object programs (COPs) which include not only the code 

for the application but also a portable strategy for mapping the program onto the 

available distributed resources and a mechanism to evaluate how well that mapped 
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Figure 2.1 : GrADSoft Architecture 

program will run. Second, the system relies upon performance contracts that specify 

the expected performance of modules as a function of available resources [115]. 

Figure 2.1 from Kennedy et al. [58] illustrates the overall architecture of the 

GrADS software.The left side of Figure 2.1 depicts tools used to construct COPs from 

either domain-specific ready-to-use components such as a MPI or multi-threaded pro

gram. The right side of Figure 2.1 depicts actions when a COP is delivered to the 

execution environment. The GrADS infrastructure first determines which resources 

are available and uses the mapper to map the application components onto an ap

propriate subset of these resources. Then the GrADS software invokes the binder to 

tailor the COP to the chosen resources and starts it on the Grid. Once launched, con

tract monitor[71] tracks its execution and detects anomalies. The rescheduler takes 

corrective action if necessary based on the monitor's feedback and the application's 

requirement. 

The GrADS project demonstrated through many proof-of-concept experiments 
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that it is possible to construct reasonably efficient schemes, such as process swap

ping, checkpoint/restart and dynamic load balancing, for dynamic rescheduling of 

Grid applications onto different resources during execution. It implemented a migra

tion framework that takes into account both the system load and application charac

teristics with the help of a contract monitor. It also showed that high performance 

can be achieved on the Grid for several different kinds of numerical applications with 

a low implementation and execution overhead. The GrADS framework can handle 

applications from varying disciplines with varying requirements, such as the biological 

sequence alignment application FASTA [121], the propositional satisfiability problem 

solver GridSAT [24] and the computationally demanding problem of determination of 

3-D structure of large macromolecular complexes from electron cryomicroscopy [66]. 

GrADS project laid the foundation of the workflow application execution on a Grid 

and also led to the VGrADS project that this thesis is built on. 

VGrADs 

The Virtual Grid Application Development Software (VGrADS) project is based on 

the earlier GrADS project. It extends GrADS by introducing the concept of virtual 

grids (VGs), that is, sets of selected and bound resources [55]. The virtual grid ex

ecution system (vgES) provides an additional level of abstraction and implements a 

simple interface for resource specification, resource selection, and resource binding in 

a complex Grid environment. Figure 2.2 from Kee et al. [55] illustrates the overall 

architecture of the original vgES architecture. The system includes a novel resource 

description language (vgDL), a resource selection and binding component (vgFAB), 

a dynamic resource information retrieving component(vgAgent), a distributed moni

toring component (vgMON) and an application launcher (vgLaunch). The system is 

built on top of the Globus middleware [4] which provides the standard Grid resource 

allocation and management (GRAM) service. 

The concept of virtual grid allows separation of concerns between levels of the 
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system and is the key to allow scalable scheduling. Results show that resource se

lection and binding for virtual grids of tens of thousands of resources can scale up 

to Grids with millions of resources while identifying good matches in less than one 

second [22]. Recently the virtual grid execution system extended support to include a 

"slot" resource abstraction, representing not only the quantity but also the duration 

when resources are available. Combined with advanced batch queue delay prediction 

and application performance prediction, the slot-based resource abstraction makes it 

possible for a Grid application to virtually reserve resources it needs on a busy batch 

queue controlled resource. All together, they provide the leverage for scheduling 

availability and allow more-advanced applications to run with VGrADS support. 

My thesis work is part of the VGrADS project. The work in Chapter 4 was built 

on top of the virtual grid execution system and used vgDL to describe resource needs 

for a workflow application. The work in other chapters are also motivated by the 

collaboration work with other project members in various phases of the VGrADS 

project and could be incorporated into the virtual Grid abstraction. 
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2.1.3 Other Grid Projects 

Condor 

Started in 1988, the Condor project has been focusing on customers with large com

puting needs and environments with heterogeneous distributed resources [82]. Condor 

is a specialized workload management system that provides a job queueing mecha

nism, scheduling policy, priority scheme, resource monitoring, and resource manage

ment. However, its main goal is to achieve high throughput for a system, not a typical 

object for high performance computing where the main objective is to finish a large 

amount of computation as fast as possible. It is not the case for Condor where an 

application would wait for a resource to become available. 

The first generation of the Condor system grouped agents, resources, and match

makers together to form what they called a Condor pool. The user submits jobs to an 

agent. Then the agent advertises itself through the ClassAd mechanism to a match

maker, which is responsible for searching potential matching agent and resource pairs. 

Once introduced, the agent will contact the resource. If the resource is available, a 

safe execution environment (sandbox) will be created for the job to protect the re

source from any mischief [109]. Although this version of the Condor system enabled 

users to harness the computing power of many workstations with a single portal, the 

size of the Condor pool was limited by having only one matchmaker. 

The second generation of the Condor system introduced the concept of flocking 

which allows resource sharing between different Condor installations. There are two 

flavors of flocking, gateway flocking and direct flocking. In a gateway flocking Condor 

system, the structure of two existing pools is preserved, while two gateway nodes pass 

information about participants between the two pools. In a direct flocking Condor 

system, an agent can advertise its ClassAd to multiple matchmakers in different pools. 

With the development of the Globus toolkit described in Section 2.1.2, the Condor 

project developed the Condor-G system that allows a user to treat the Grid as an 
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entirely local resource. It comes with a personal desktop agent that allows the user 

to submit jobs, query a job's status, cancel the job and be informed of job termina

tion or problems by invoking the GRAM services underneath. Condor-G empowers 

end-users to improve their productivity by providing a unified view of distributed 

resources [42]. However, the Condor-G system does not support workflow application 

execution directly. We will describe a workflow management system called DAGMAN 

in Section 2.2.3 that builds on top of Condor. All the resources in the Condor pool 

are accessible directly instead of having a local resource manager. 

GridBus 

The GridBus project is located at the Grid Computing and Distributed Systems 

(GRIDS) lab in the Department of Computer Science and Software Engineering at 

the University of Melbourne, Australia. The project name GRIDBUS is derived 

from its research theme: to create next-generation GRID computing and BUSiness 

technologies that power the emerging eScience and eBusiness applications [83]. 

The Gridbus project covers wide research topics on Grid economy, workflow appli

cation scheduling, service level based resource management, Grid environment simu

lation and other related areas. The Gridbus project has a market-based Grid resource 

broker and a budget aware just-in-time workflow scheduling system. They also have 

proposed several plan-ahead scheduling approaches such as greedily searching for the 

most cost-effective resources to meet the budget constraint [123], using genetic algo

rithm to achieve multiple goals [124] and adjusting the critical path of a workflow 

application dynamically to achieve better performance [67]. Many of these proposed 

approaches are evaluated on their GridSim toolkit [104] that models and simulates 

systems-users, applications, resources, and resource brokers (schedulers) in a parallel 

and distributed computing environment. 

The GridBus project works on many areas that overlap with my research but 

my research addressed the scalability problem, put more emphasis on the plan-ahead 
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scheduling approach and focused on batch queue managed local resources and resource 

reliabilities. 

GridLab 

The GridLab project is one of the biggest European research undertakings in the 

development of application tools and middleware for Grid environments [3]. GridLab 

provides twelve application-oriented Grid services and toolkits providing capabilities 

such as dynamic resource brokering, monitoring, data management, security, infor

mation, adaptive services and more. 

GridLab Architecture 
GridLab 
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GridLab Services 
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Gridsphere Portal Application Layer 
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Figure 2.3 : GridLab Architecture 

Figure 2.3 from Allen et al. [3] shows the GridLab project architecture. At the 

highest layer there is the application layer that is a web service application devel

opment portal called GridSphere. Below it is the Grid Application Toolkit (GAT) 

that is a set of coordinated, generic and flexible APIs for accessing Grid services. The 

http://www.gridlab.org
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service layer covers the whole range of Grid capabilities such as Grid resource manage

ment and brokering, data access and management, Grid authorization, Grid network 

monitoring and performance prediction service, Grid monitoring infrastructure and 

Grid data and visualization services. Some of the GridLab services overlap with the 

Condor-G system. Gridlab uses GRAM to submit jobs to remote resources. The main 

object of the GridLab project is to provide end users a unified Grid platform to eas

ily develop and test Grid-enabled application. However, it does not directly support 

workflow applications and does not provide resource co-allocation and application 

level scheduling. 

2.2 Workflow Managemen t Tools 

2.2.1 Workflow application Overview and Notation 

Workflow applications are widely used in scientific fields as diverse as astronomy [10], 

biology [60, 66] oceanography [47], and earthquake science [28]. It is the most impor

tant type of application that is suitable to run on a large scale distributed systems 

and especially Grids. In a workflow application, the overall application is composed 

of multiple (usually coarse-grain) tasks linked to each other by either data or logic 

dependences. This property makes workflow application an ideal form of application 

to run on a distributed system since the tasks in a workflow application can run on 

distributed resources in an asynchronized manner. 

The directed acyclic graph (DAG) is an abstract description and is frequently used 

to represent a workflow application. We define an abstract DAG as a pair G = (V, E), 

where V is a set of nodes, each representing an application task, and E is a set of 

edges, each representing a data dependence between tasks. We will later denote the 

source of the dependence as the predecessor tasks and the sink of the dependence as 

the successor tasks. Our complexity measures will often use v as the size of set V and 

e as the size of set E. We will later refer to an abstract DAG as the DAG model. We 

assume that an abstract DAG always has a single entry node and a unique exit node 
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Figure 2.4 : EM AN Refinement Workflow 

because we can insert dummy entry and exit tasks into the DAG that do not take any 

time to run and have no input or output files. We also quantify the needs of particular 

applications using a popular and simple metric: Communication- Computation Ratio 

(CCR). Following Blythe et al. [11], we define the CCR of a DAG as 

total communication cost 
CCR = 

number of tasks x AvgCompCost 

2.2.2 Workflow applications 

In this thesis, we use five workflow applications in various experiments to test our 

workflow scheduling algorithms. Here, we will describe their background and the 

characteristics of the DAGs that represent them. 

EMAN 

EMAN [Electron Micrograph Analysis] is a bio-imaging application developed at the 

Baylor College of Medicine [66]. It primarily deals with 3D reconstruction of single 
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Figure 2.5 : A Small Montage Workflow 

particles from electron micrographs. Human expertise is needed to construct a pre

liminary 3D model from the "noisy" electron micrographs. The refinement from a 

preliminary 3D model to the final 3D model is fully automated and is the most com

putationally intensive step that benefits from harnessing the power of the grid. The 

EMAN refinement can be represented by the workflow depicted in Figure 2.4. It is 

essentially a linear workflow with some sequential and parallel stages. The important 

and time-consuming steps are the large parameter sweep steps like "classesbymra". 

Montage 

Montage is a data-intensive astronomy application to create custom image mosaics 

of the sky on demand [10]. It consists of four steps: (i) Re-projection of input 

images to a common spatial scale; (ii) Modeling of background radiation in images 

to achieve common flux scales and background levels; (iii) Rectification of images 

to a common flux scale and background level; and (iv) Co-addition of re-projected, 

background-corrected images into a final mosaic. Figure 2.5 shows the structure of 
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Figure 2.6 : BLAST Workflow 

a small Montage workflow. The workflow consists of some highly parallel sections 

that can benefit from execution over multiple grid sites. Because this application is 

data-intensive, potentially large files are transferred on the edges of the workflow. 

BLAST 

Basic Local Alignment Search Tool (BLAST) [60] is a bioinformatic application that 

finds regions of local similarity between primary biological sequence information, such 

as DNA or protein sequences. Given a set of k sequences, the program compares each 

sequence to a database of n sequences and calculates the statistical significance of 

matches. The BLAST application uses a set of heuristic algorithms and is much 

faster than the traditional pattern matching dynamic programming. However, it just 

works to find the related sequences in a database search. Therefore, it cannot guar-
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antee the optimal alignments of the query and database sequences as in the dynamic 

programming. To further speed up the matching process, one often partitions the 

k input sequences and runs the BLAST matching algorithm in parallel. Figure 2.6 

shows the structure of the BLAST application workflow that the pattern matching 

process for the k input sequences can be potentially run in parallel since there is no 

data race between them. 

Gaussian Elimination 

The Gaussian Elimination algorithm is widely used in computational science for the 

solution of a system of linear equations [?]. It systematically applies elementary row 

operations to a system of linear equations until it converts the system to upper trian

gular form. Once the coefficient matrix is in upper triangular form, one can use back 

substitution to find a solution. Figure 2.7 shows the structure of the Gaussian Elim-
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Figure 2.8 : Fast Fourier Transform Workflow 

ination application workflow. We can see that it has a long critical path and there 

is less and less parallelism as the application executes. These two particular char

acteristics can affect the effectiveness of scheduling methods in a workflow execution 

system as we will see in later chapters. 

Fast Fourier Transform 

The fast Fourier transform (FFT) is a set of efficient algorithms to compute the dis

crete Fourier transform (DFT) and its inverse. A discrete Fourier transform (DFT) 

transforms one function, which is often a function in the time domain, into its fre

quency domain representation. By far the most common FFT algorithm is a divide 

and conquer algorithm that recursively breaks down a DFT of any composite size N = 

NlxN2 into many smaller DFTs of sizes Nl and N2, along with O(N) multiplications 

by complex roots of unity traditionally called twiddle factors. The most common 

use of this FFT algorithm is to divide the transform into two pieces of size N / 2 at 
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each step. Figure 2.8 shows the DAG structure of this commonly used fast Fourier 

transform algorithm. 

2.2.3 Related Workflow Management Projects 

Since it is an important type of application there are many research projects on 

workflow application management systems and many of them work closely with one or 

several Grid projects we described in section 2.1.2. Here we present several influential 

projects. 

Dagman 

DAGMan (Directed Acyclic Graph Manager) is a workflow met a-scheduler for Con

dor. It manages dependencies between jobs at a higher level than the Condor Sched

uler which is solely match based [72]. 

Condor finds matching resources for the DAG tasks, but it does not schedule 

jobs based on dependencies. It is DAGMan's job to make sure those dependencies 

are honored. DAGMan reads a specific input file format that includes a list of the 

programs and the dependencies in the DAG and a Condor submit description file for 

each program in the DAG. It then submits jobs to Condor in an order that satisfies all 

the dependencies. DAGMan is also responsible for monitoring, recovery and reporting 

for the set of programs submitted to Condor. DagMan is one of the most widely used 

workflow execution system although it lacks sophisticated scheduling mechanisms. 

Pegasus 

The Pegasus project explores issues related to scientific workflow management. It 

works with domain scientists to support their distributed computations in a scalable 

and reliable way [46]. 

The Pegasus project has four sub-projects: the Pegasus Mapper, Pegasus-WMS, 

Ensemble Manager and MCS. The Pegasus Mapper first reads in an XML formated 
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input abstract workflow (DAX) and all the associated catalogs that help the planning. 

Then the mapper tries to reduce the workflow DAG mainly based on the data size and 

dependancies. Finally, the mapper schedules different parts of the application onto 

different distributed resources based on a relatively simple list scheduling algorithm 

or genetic search based algorithms [11]. The Pegasus WMS is an end-to-end workflow 

management system that builds on top of the Pegasus Mapper, Condor, and DAG-

Man. Specifically, Pegasus WMS uses DAGMan (and through it, Condor) to execute 

the workflow application. Ensemble Manager manages the mapping and executions 

multiple workflows. It is build on top of Pegasus WMS. MSC is a metadata catalog 

service for the Grid [89]. 

The Pegasus project addresses the problem of automating workflow application 

execution but it does not emphasize on the performance. It also assumes that the 

underlying resources are dedicated (i.e. not batch queue controlled) which is more 

restrictive than the widely available batch queue system. 

Triana 

Triana is a workflow-based problem solving environment [106]. It is designed as a 

series of pluggable execution components. Triana has a workflow management GUI 

where users can drag and drop different components and connect them to create a 

workflow, which can easily be integrated with other systems. For example, Triana 

works with Pegasus to generate the DagMan input files for the GriPhyN project. 

Triana is also part of the GridOneD [88] project for creating Java middleware for grid 

applications. Triana is ready to use GridLab's GAT too. Kepler [86] and Taverna [87] 

are two other similar workflow-based problem solving environments that provide a 

GUI and execution methods. However, none of them have a sophisticated scheduling 

scheme and do not deal with the heterogeneous, dynamic and distributed resources 

directly. 
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2.3 Scheduling Algorithms 

Scheduling is one of the more important research topics in high performance com

puting. In this section, I will first introduce the problem definition and common 

notation. Then, I will summarize related work on workflow application scheduling on 

homogeneous, heterogeneous and Grid platforms respectively. 

2.3.1 Problem Definition and Notation 

The inputs to a scheduling algorithm are an abstract DAG, a set of resources P and 

two performance prediction matrices Mp = V x P and Mn = P x P. Here, Mp[i][j] 

represents the estimated computation cost of node rij on processor pj measured in 

seconds. Mn[i][j] represents the estimated communication cost of transferring data 

from processor pi to processor Pj measured in MB/s. The cost of an edge (i,j) will 

depend not only on the mapping of its endpoints, but also on the amount of data 

transferred. Our complexity measures will often use the term p for the size of P. 

We will later refer to P as the resource model, Mp as the cost model and Mn as the 

network model. 

The output of a scheduling algorithm is a concrete DAG G = (V, E, M), where V 

and E are the same as in an abstract DAG and M is a map from V to P such that 

M[vi\ is a pair (r;, £;), where T{ is the resource on which the node will be executed and 

U the time it will start. In this thesis, the objective of the scheduling algorithms is to 

output a concrete DAG corresponding to an abstract DAG such that certain metrics, 

such as makespan, cost or success rate, are optimized. 

The process of scheduling a parallel application on a distributed platform can be 

described as follows. Given an application that consists of m "tasks" (e.g., compu

tations, I/O operations), and a platform that consists of n "resources" (e.g., CPUs, 

disks, networks), compute a mapping of tasks to time and to resources (i.e., task i 

starts executing at time t on resource j). We will later use schedule to denote this 

process throughout the thesis. Occasionally, we will use "mapping" to denote the 
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Figure 2.9 : A DAG schedule example 

part of the schedule (or scheduling process) that determines only the task to resource 

mapping. That is, mapping is scheduling without the timing information, which is 

constructed by other means (e.g. by the dynamic scheduling mechanism). The sched

uler usually queries the cost model to determine the running time of a particular task 

on a resource and checks with the network model to get the file transfer time in order 

for all the input files to be staged onto that resource. Figure 2.9 shows an example of 

a round-robin schedule applied on an abstract DAG (left) that produces a concrete 

DAG (right). The upper table in the middle of the Figure 2.9 shows the cost model 

and the lower table shows the network model. The number on the left side of each 

task in the abstract DAG denotes the size of the output from this task. After apply

ing the round-robin schedule, we get a concrete DAG with a mapping (denoted by its 

color corresponds to the resource), a start time (upper right) and an end time(lower 

right) for each task. For each task, the start time is calculated by the finding the 

earliest finish time of each predecessor including the file transfer time. For example, 

the earliest finish time for task 3 is 35 sec to finish computation plus 10 sec to trans

fer 200MB output file of task 3 from P3 to P2 which is 45. Similarly, the earliest 
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finish time for task 4 is also 45, thus we get the start time of task 8 as 45. Here, we 

use round-robin just as an example to illustrate the basic concept of scheduling, we 

will describe in the following sections more sophisticated scheduling algorithms that 

provide better outcome. 

Makespan and turn-around-time are two widely used metrics that measure the 

quality of the scheduling output. In this thesis, we will use makespan to denote the 

estimated running time or the "scheduled length" of a workflow application. For ex

ample, the makespan of the DAG in Figure 2.9 is 287. Turn-around-time is used to de

note the actual measured time difference between the time an application is launched 

and is finished. It is usually different from makespan because it takes into account the 

external overheads (such as scheduling time) and because the performance models are 

usually not precise. The makespans may vary widely among DAGs, making it difficult 

to take meaningful averages or make cross-DAG comparisons. Following the method

ology of other scheduling work [62, 111, 7], we use Schedule Length Ratio (SLR) as 

the main metric for the comparisons so that the results will not be sensitive to the 

size of the DAG. Conceptually, the SLR is a normalization of the makespan to an 

estimate of the best possible schedule length of a given DAG in a given environment. 

In a perfect world, we would use an optimal schedule for this estimate; however, since 

finding the optimal makespan is NP-complete, we instead use the estimated critical 

path length. The critical path through a DAG is the most costly path from the entry 

task to the exit task, while the critical path length is the total cost of tasks and edges 

along this path. Because the costs of tasks depend on where they are mapped, in this 

calculation we approximate the computation cost of a DAG task by its average cost 

over all possible processors. Similarly, we approximate the communication cost of a 

DAG edge by its average over all possible processor pairs. We compute the Critical 

Path Including Communication (CPIC) as the cost of the critical path using these 

estimates, and define 

SLR = makespan/ CPIC 
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Intuitively, a small SLR indicates a better schedule than a large SLR. An SLR of 

1 occurs when all tasks and edges are mapped to average processors and network 

links, and no bottlenecks occur due to lack of resources. An SLR can be below 1 

when some tasks are mapped to faster-than-average resources or when a schedule 

avoids much cross-processor communication, and above 1 when resources are limited 

or when the schedule uses slower-than-average resources. Our definition of SLR differs 

slightly from the usual definition of SLR in Kwok and Ahmad [62] that uses CPES 

(critical path excluding communication).We prefer our definition because it includes 

an approximation of communication cost, thus providing a more realistic standard of 

comparison. 

2.3.2 Homogenous and Heterogenous DAG Schedulers 

Many polynomial-time scheduling heuristics have been proposed although the schedul

ing problem in general is a NP-complete problem [43]. Scheduling happens at all 

levels of high performance computing ranging from machine instruction scheduling 

to workflow application scheduling. In the next section, we will present two cate

gories of scheduling algorithms based on the resources it is used. Homogenous and 

heterogenous scheduling algorithms are mostly used in system level computing (i.e. 

instruction, thread, process scheduling) while Grid workflow application schedulers 

work at the application level. The difference between homogenous and heterogenous 

DAG scheduling algorithms is that the former assumes the underlying resources are 

identical while later assumes the resources have different capabilities. 

McCreary et al. [70] compared five different heuristics for scheduling DAGs on 

multiprocessors and Kwok et al. [62] did an excellent survey on the large body of 

literature on scheduling a DAG onto a set of homogeneous processors. Despite the 

different assumptions of the underlying resources, we can grossly classify various 

scheduling algorithms into three categories: list scheduling, clustering scheduling, 

task duplication scheduling and level based scheduling. We describe them in the 



27 

following sections. 

List scheduling heuristics 

One of the first areas DAG scheduling comes into play is in compiler technology. 

Instruction scheduling is a critical component in the back end of every compiler. The 

most commonly used version of instruction scheduling moves instructions within a 

basic block. It first determines the dependencies between instructions and creates a 

DAG to represent the block. Each instruction is a node in the DAG and the scheduler 

gives higher priority to instructions on the critical path. It then schedules the tasks 

in descending order of their priorities. This type of DAG scheduling is simple to 

implement and can achieve near optimal performance in most cases. Therefore, a 

family of similar scheduling algorithms have been developed. We usually refer to 

those scheduler algorithms as list scheduling. 

Numerous heuristics have been proposed for assigning the priorities and most of 

the time, the priority of a task is either a function of top-level (t-level), which is 

the length of the longest path from an entry node to the task itself; or bottom-level 

(b-level), which is the length of the longest path from the task itself to any exit 

node; or length of the critical path (CP) or some combination of these. This type 

of approach works well in a homogenous environment where all the resources are the 

same. However, it faces a chicken-and-egg dilemma in a heterogenous environment 

because all these attributes can not be calculated until the schedule is computed 

while computing the schedule relies on them. For example, a task's running time 

is unknown until a mapping has been made since the task takes different amount 

time to finish on each resource. In order to avoid this problem, approximations of 

computation cost and communication cost are used. The most commonly used are 

average values such as the average computing time on all the resources and average 

network bandwidth. The best, worst and median value have all been proposed but 

there is no decisive conclusion as to which one should be used [94]. 
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Here are a few of the more influential list-scheduling heuristics. The Modified 

Critical Path (MCP) [118] heuristic uses the As Late As Possible (ALAP) time, which 

is denned as the length of critical-path less the b-level as the priority. If two tasks have 

the same priority, the tiebreaker is the maximum ALAP time of the their successors. 

MCP also tries to insert a task to a processor that has previously been mapped to 

allow the earliest start time. The Earliest Time First (ETF) [48] heuristic assigns 

priority to tasks with a higher static level. Static level is defined as the maximum 

sum of computation costs along a path from the task to an exit task It is equivalent to 

the b-level without communication cost. EFT then computes the earliest start times 

for all the ready tasks on all the processors and assign them to the processor with the 

earliest start time. The Dynamic Level Scheduling (DLS) [100] heuristic was among 

the first list scheduling algorithms applied on a heterogenous enviroment. It uses the 

Dynamic Level (DL) attribute, which is the difference between the static level of a 

task and its earliest start time on a processor. For all the ready tasks the value of DL 

is calculated for all the processors. The task-processor pair giving the highest value 

of DL is scheduled next. 

Heterogeneous Earliest Finish Time(HEFT) [111] is a well-established list-based 

algorithm known to perform well on heterogeneous platforms [7, 111]. In the node 

prioritizing phase, HEFT uses an upward rank which is defined as 

ranku(rii) = wi+ max (c*J + ranku(rij)), 
njEsucc{rii) 

where succ(ni) is the set of immediate successors of node rij, wl is the average (esti

mated) computation cost of node rii and cTJ is the average (estimated) communication 

cost of edge E(i,j). Averages are computed over the set of all resources in Mp or 

the network model Mn, respectively. We assign ranku(nexit) = 0 and traverse the 

DAG edges backwards to compute the other upward ranks. In the processor selection 

phase, HEFT assigns each node, in order, to the processor that gives the earliest finish 

time, i.e. the minimal EFT. HEFT uses an insertion-based policy to find the earliest 

available time of a processor pj. Instead of using the time pj finishes its last assigned 
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node, HEFT tries to find an idle slot of pj that is later than the available time of the 

node rii (the earliest time that all rij's predecessors finish) and long enough to finish 

the execution of n*. Upon examination, we discovered that the upward rank used in 

HEFT is a heterogeneous adaptation of the definition of b-level commonly used in 

list-based scheduling algorithms. Thus, it can be considered as a heterogeneous ver

sion of MCP(Modified Critical Path) [118] algorithm. The computation complexity 

of this version of HEFT is 0(v2 + vp). The HEFT algorithm is considered one of 

the best algorithms for scheduling tasks onto heterogeneous processors [7]. We also 

compare this algorithm with our approaches in the rest of this thesis. 

Clustering scheduling heuristics 

Sarkar [97] proposed a two-step method for instruction scheduling on multiprocessors 

with communication. The main goal is to reduce unnecessary communication costs 

among tasks. 

• Aggregate tasks in the DAG together into clusters of tasks, with the intent that 

all tasks in a cluster to execute on the same processor. 

• If the number of clusters is larger than the number of processors, then merge 

the clusters further to the number of physical processors, and also incorporate 

the network topology in the merging step. 

The aggregation part depends on criteria that varies from one heuristic to another. 

One such clustering scheduling heuristic is called Edge Zeroing (EZ) proposed by 

Sarkar in [97]. It first sorts all the edges by weight and selects tasks on the highest 

weighted edges for aggregation. The aggregation process maps two tasks to a cluster 

and eliminates the communication cost if the merging does not increase the current 

parallel completion time. The parallel completion time is approximated by the maxi

mum b-level over all the tasks. Another heuristic is called Linear Clustering (LC) [59]. 

It first zeros all the edges on the current critical-path. Then it removes the nodes 
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and edges on them from the graph and reduces the entire path to one node. This 

process is repeated for the unexamined portion of the graph until all paths have been 

examined. If there are still more clusters than the number of processors, it tries to 

merge all cluster pairs that are not overlapping and merge clusters that can shorten 

the overall execution time. The Dominant Sequence Clustering (DSC) [120] and its 

heterogenous version [20] considers the dominant sequence (DS) of the graph and is 

reported to have a good performance with low complexity oiO((v + e)logv) [70]. The 

dominant sequence is the length of the critical path in a partially-scheduled DAG. 

DSC assigns the priority of a free task as the sum of the t-level and b-level. The pri

orities of other tasks are just their b-levels. It picks the free or partially free task with 

the highest priority. This task is merged into the cluster of one of its predecessors if 

that reduces its t-level, otherwise, it starts a new cluster. The t-level of the successor 

tasks are updated and the algorithm iterates until all the tasks are examined. 

We will propose a clustering scheduling heuristics in Chapter 7 to reduce the total 

batch queue wait time for a workflow application. 

Task duplication scheduling heuristics 

The basic idea behind task duplication based (TDB) scheduling algorithms is to mini

mize inter-processor communication delay or network overhead by executing copies of 

tasks on multiple resources. In this way, some tasks can start earlier because copies of 

their predecessors are running on the same resource and this eventually leads to ear

lier overall completion time of the entire program. Task duplication based scheduling 

algorithms are particularly useful for systems with high communication cost and data 

centric applications. Most task duplication based algorithms pay the most attention 

to the tasks on the critical path and join or fork tasks. 

The first duplication based scheduler was proposed by Kruatrachue [61]. It com

bines some ideas used in list scheduling with duplication to reduce the makespan. 

The algorithm considers each task in descending order of priority which is the b-level 
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excluding the communication cost. Then it tries to pick a processor for each task. The 

algorithm first calculates the start time of the task on a processor without duplication 

of any predecessor. Then the algorithm attempts to duplicate the predecessors of the 

task into the same processor until either the processor is used up or the start time 

of the task does not improve further. This process is repeated for other processors 

and the task and its duplicated predecessor tasks are scheduled to the processor that 

gives the earliest start time. 

Ahamd et al. [2] proposed a duplication based algorithm called Critical Path 

Fast Duplication (CPFD). The intuition behind it is to select the important tasks for 

duplication. They classified the task in a DAG into 3 categories in order of decreasing 

importance: Critical Path Nodes (CPN), In-Branch Nodes (IBN) and Out-Branch 

Nodes (OBN). CPNs are on a critical path. An IBN node is a task that is not a CPN 

and from which there is a branch reaching a CPN. An OBN is a node that is neither 

a CPN nor an IBN. The CPFD algorithm works like this. It first determines the 

critical path and creates the CPN-Dominant sequence which contains the topological 

order of all the CPNs and IBNs. Then for each task in the CPN-Dominant sequence, 

CPFD schedules it to the processor that gives the smallest value of earliest start time 

(EST) by recursively duplicating its important predecessors. The time complexity of 

CPFD is 0(ev2) and 

Task duplication scheduling not only can increase the performance but also provide 

fault tolerance since some tasks may still finish despite of some resource failures. We 

will propose a task duplication scheduling heuristic that focuses on providing the right 

amount of fault tolerance for a workflow application in Chapter 6. 

Level based scheduling heuristics 

Some argue that the main reason for heterogeneous algorithms to fail to provide good 

outcome is it becomes so difficult to estimate the b-level, t-level and the critical path 

without knowing the actual schedule. Iverson et al. [68] proposed a level based heuris-
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tic scheduling (LHBS) that does not rely on those estimations. The characteristic of 

a level-based scheduling algorithm is that it proceeds by partitioning the DAG into 

levels of independent nodes. Within each level, a LHBS can apply various heuris

tics [13] to map the independent nodes to the processors. The simplest approach is 

to use a Greedy algorithm that maps the nodes to the fastest processors which has 

a computational complexity of 0(vp). Three heuristics, min-min, max-min and suf-

ferage, are also widely used to compute the mappings for the independent tasks in a 

level. Details of these heuristics are presented in Braun et al. [13]. The computational 

complexity of the heuristic scheduling scheme is 0(v2p), which is more expensive than 

the greedy heuristic. 

Both the GrADS [11] and Pegasus [89] schedulers use a version of LHBS. Man-

dal et al. [69] and Sakellariou [94] also proposed similar level based heuristics that 

schedule independent sub-tasks in a workflow application level by level. This type 

of approach avoids the chicken-and-egg dilemma for those critical path based algo

rithms but this approach has a tendency to over parallelize one level which may leads 

to communication overhead [127]. 

2.3.3 Grid Schedulers 

Dong et al. [31] and Yu et al. [122] both did an excellent summarization on the 

state-of-the-art scheduling technologies in a Grid environment. There are two major 

types of scheduling in a Grid environment namely resource scheduling and application 

scheduling. A Grid resource scheduler is used to manage distributed resources in a 

Grid. Its common goal is to increase the utilization or balance of the resources. 

Meanwhile a Grid application scheduler is usually used to increases the performance, 

reliability and cost effectiveness of Grid application. Here we will present both the 

resource and application scheduling techniques but we focus on application scheduler 

techniques in this thesis. 
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Resource Schedulers 

Most Grids today consist of batch queue controlled clusters. In these Grid environ

ments, the individual resources (clusters, computing farms, servers, supercomputers) 

are managed by their local resource management (LRM) systems , such as PBS [79], 

SGE [73], LSF [65] and Condor [82]. Many LRMs are already mature commercial 

products. There are also numerous researches on how to achieve good schedule for a 

set of independent jobs on a local resource [13]. 

A LRM only controls a single resource while a typical Grid environment consists 

of several distributed resources. In order for the user to use all the shared Grid 

resources, most Grid environments have a portal from which the users can submit jobs. 

Users can use a meta-scheduler that contacts all the distributed resources to secure 

the resources for the jobs and then schedule and launch them onto those resources. 

Many meta-schedulers have been developed such as GRMS [3], HPC Synergy [112], 

Moab [25], GridWay [84] and SPRUCE [81]. Among them, HPC Synergy and Moab 

are commercial products that target mostly on enterprise clusters. GRMS is part 

of the GridLab project [3]. GridWay works closely with Globus Project [4] and 

SPRUCE specializes in providing urgent advanced reservation on TeraGrid [107]. 

The services those meta schedulers provide include automatic resource selection [51], 

advance resource reservation [102], co-scheduling, on-demand resources [81], support 

for workflow applications and fault tolerance which are critical steps towards the 

automated workflow application execution vision we have. However, none of them 

provide all of these services and few provide good support for automatic workflow 

application execution. 

Application Scheduler 

There are several flavors of application schedulers. For example, a static scheduler 

determines the schedule before the application starts to run while a dynamic sched

uler postpone the schedule decision until the application runtime. An independent 
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job scheduler schedules several independent applications at the same time while a 

workflow job scheduler schedules one application with internal dependences between 

tasks. Here we will mainly describe the workflow application scheduling techniques 

that are related to our thesis. 

Current Grid workflow management systems use simple approaches such as first-

come-first-served with matchmaking as in Condor DAGMan [82], the Data Grid re

source broker [132] and the GridLab resource broker [3], or random allocations or 

round robin as in Pegasus [89]. Since a Grid environment is a special heterogeneous 

platform, most of the DAG scheduling algorithms that work in a heterogeneous en

vironment can be applied to workflow DAGs executed on the Grid. However, since 

the Grid environment is dynamic and even non-deterministic, it is usually hard for 

an unmodified heterogenous scheduling algorithm to achieve good performance on 

it. Several approaches have been proposed to improve the schedules in a Grid envi

ronment. The most commonly-used approach is dynamic scheduling which does not 

make the schedule decision until a job is available to run. Several workflow manage

ment systems [82, 89] adopt this approach in that they use a match maker to dispatch 

the job to the resource that best matches the job's requirement when the job is ready 

to run. Dynamic scheduling has two major advantages 

• The algorithm usually has low computing complexity and is simple to imple

ment, thus a good fit for a runtime system. 

• The algorithm can make decisions based on the current system configuration 

instead of relying on prediction or estimation 

However, since dynamic scheduling does not have a plan phase, it assumes that by 

shortening the current job's execution time, it will help the workflow's performance 

which is not always the case. 

Since the scheduling problem in general is a NP-complete problem and a Grid 

environment is particularly heterogenous, some has proposed search based heuristics 
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for the Grid environment. Blythe et al. [11] introduced a fuzzy attribute a during the 

level by level scheduling. For each level, the algorithm randomly chooses a schedule 

that produces the makespan between Lmin and Lmin + a * (Lmax — Lmin) where Lmin 

and Lmax are the shortest and longest makespan of this level. The overall algorithm 

runs many times and records the best schedule. This approach can find a better 

schedule but takes longer to schedule. Another popular class of search based heuris

tics is the genetic algorithm. In a genetic algorithm, both the resource mapping and 

task execution order are usually represented as strings. After the initial population is 

generated, different algorithms apply different across and mutation rules on the popu

lation, represented by strings, in hope for breeding a better generation. Yu et al. [124] 

compared several search based algorithms in multi-objective workflow scheduling and 

showed that they are good candidates for optimizing multiple objectives such as the 

performance and budget. 

Although search based algorithms have better theoretical performances, they gen

erally take long time to run. Since a Grid environment is dynamic and has a large 

number of resources, the advance in the schedule quality of a search based algorithm 

may not be enough to overcome the schedule time it takes. Therefore, we will fo

cus on more light weight scheduling algorithms such as the level based heuristic and 

other traditional heterogenous algorithms. In this thesis, we will present several new 

techniques that can improve the performances of the existing scheduling algorithms 

in a dynamic multi-cluster Grid. 
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Chapter 3 

Performance of Scheduling Algorithms in a 
Multi-cluster Grid Environment 

This chapter presents a comparison of the performance of scheduling algorithms in 

a multi-cluster Grid environment. The multi-cluster Grid environment is different 

from traditional heterogeneous environments because of the drastic cost differences 

between the inter-cluster and the intra-cluster data transfers. In this chapter, we 

analyze the performance of several scheduling algorithms that represent two classes of 

widely used scheduling algorithms for Grid computing. Based on our experiments, we 

introduce a new measurement called effective aggregated computing power (EACP) 

that dramatically improves the performance of some schedulers. 

3.1 Introduction 

Although Grid technologies enable the sharing and utilization of widespread resources, 

the performance of parallel applications on the Grid is sensitive to the effectiveness 

of the scheduling algorithms used. In this chapter we are going to study the perfor

mance of several traditional static scheduling algorithms in a simulated multi-cluster 

environment and we focus on scheduling the important class of workflow applications. 

As described in Section 2.2.1, a workflow application consists of multiple (usually 

coarse-grain) tasks linked to each other by data dependences, typically requiring file 

transfers. 

Scheduling parallel and distributed applications is known to be NP-complete in 

general [43]. Numerous heuristics have been proposed for scheduling DAGs onto a 

heterogeneous or homogenous computing environment [6, 111, 92, 48]. Section 2.3.2 
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gives a survey of existing scheduling algorithms and showes that list-based schedul

ing heuristics are generally accepted as the best overall approach, exhibiting both 

low complexity and good results [62]. However, Iverson [68], Illvarasan [35] and 

Atakan [30] argue that the pre-computed order for list-based strategy cannot be used 

in heterogeneous environments and propose a new heuristic class that we call the 

level-based strategy. 

A Grid environment usually consists of many clusters with special properties that 

poses even more challenges for scheduling applications because not only are the pro

cessors heterogeneous but also the inter-processor communication variance is larger. 

Looking over surveys of state-of-the-art Grid scheduling algorithms [122, 31], we can 

see that many Grid projects simply use dynamic dispatching mechanisms similar 

to Condor [82]. Besides that, to the best of our knowledge, the list-based and the 

level-based algorithms are the only two scheduling heuristics implemented by a Grid 

project. Blythe et. al. [11] reported that the level based strategy outperformed the 

random matching strategy by more than 50%. However, to the best of our knowl

edge, there has been no published research that directly compares the performance 

of list-based and level-based algorithms in a Grid environment. 

In this chapter, we evaluate the schedules produced by several well-known list-

based and level-based scheduling algorithms. Relying on tens of thousands of experi

mental runs, we show how the performance of these algorithms varies with differences 

in resource environments and application DAGs. We analyze these results to explain 

why some scheduling algorithms perform better in certain settings and less well in 

others. Based on these observations, we introduce a promising new scheduling con

cept, called effective aggregated computing power (EACP) and demonstrate how it 

can be used in scheduling algorithms. 

The rest of the chapter is organized as follows. Section 3.2 briefly covers the basic 

characteristics of a Grid environment and introduces all the scheduling algorithms 

that we will evaluate in this chapter. Section 3.3 presents our applications, the 
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experimental environments we are using, and the Grid parameters we vary in the 

experiments. Section 3.4 presents our results; it also defines effective ACP and shows 

how it works in a scheduling algorithm. Section 3.5 concludes the chapter with a 

summary of contributions. 

3.2 Background and Related Work 

A typical Grid environment consists of many clusters, where the intra-cluster commu

nication is fast (often as fast as 10 Gigabit/sec) but the inter-cluster communication 

can be 10 to 1000 times slower. Thus, the Grid is not just a heterogeneous resource 

pool, but also an unevenly distributed (but hierarchical) interconnection network. 

Furthermore, while many homogeneous processors reside in any one cluster, the pro

cessors in different clusters are often significantly different. As Section 3.4 shows, 

these features have a big impact on how scheduling algorithms originally designed for 

homogeneous or heterogeneous platforms perform in Grid environments. 

As we mentioned in Section 3.1, the level-based and list-based algorithms are the 

most used ones in Grid environments and we want to compare their performance. 

For our experiments, we have chosen some representative and effective algorithms in 

both categories. This section gives a brief overview of each of those algorithms. 

3.2.1 Static Scheduling Algorithms 

Heterogeneous Earliest Finish Time(HEFT) [111] is a well-established list-based al

gorithm known to perform well on heterogeneous platforms [7, 111]. For more detail, 

refer to the Section 2.3.2 and Topcuoglu et al. [111]. Both Ma et al. [83] and Cao 

et. al. [16] use HEFT to help schedule application DAGs onto Grid resources. The 

computational complexity of this version of HEFT is 0(v2 + vp). Levelized Heuristic 

Based Scheduling(LHBS) [69] is a level-based algorithm for Grid scheduling we de

scribed in Section 2.3.3. The complexity of the LHBS using only the greedy heuristic 

is 0(vp); we will refer to this as Greedy LHBS. The complexity of the LHBS using 
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Figure 3.1 : HEFT and LHBS scheduling algorithms 

the any combinations of the three heuristics is 0(v2p); we will refer to this variant as 

Heuristic LHBS. 

Figure 3.1 depicts an example that illustrates the difference between HEFT and 

LHBS. The color of the tasks in a DAG denotes the resources it is mapped to and 

the table in the middle shows the time it takes for each task to run on each cluster 

(the performance model) and the time it takes to transfer files between clusters (the 

network model). The letter on each node denotes when the scheduler computes the 

map for each node. We can see that LHBS always schedule all nodes one level before 

moving to the next level. In contrast, HEFT can schedule a node (i.e node E) before 

all the nodes (i.e. G,H) in the parent level get a mapping. This is the major difference 

between these two types of schedulers and they both have advantages and drawbacks. 

The major argument against HEFT is that the order of which the scheduler computes 

the mapping is not accurate in a heterogeneous environment since the critical path can 

not be determined before a schedule is done. On the other hand, although the order 

LHBS uses is not affected by the resources characteristics, it only tries to optimize 

the makespan for a single level thus may leads overall less performance. 

Hybrid Heuristic Scheduling (HHS) [94] is a class of algorithms that use hybrid 
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versions of the list-based and level-based strategy. The version we study in this chapter 

first computes levels as in LHBS, then processes tasks in each level following the 

prioritized order used by HEFT. This version has the same complexity as HEFT: 

0(v2 + vp). Sakellariou [94] reports that it can achieve better performance than 

HEFT. 

3.3 Experimental Methodology 

In order to study how well these scheduling strategies perform in the Grid environ

ment, we implemented the algorithms described in Section 3.2 and compared the 

schedules produced on a variety of DAGs and grids. To achieve a thorough compar

ison, we developed a simulation platform to create test cases. The platform consists 

of three key components: the DAG generator described in Subsection 3.3.1, the cost 

generator described in Subsection 3.3.2, and a Grid generator described in Subsec

tion 3.3.3. As Subsection 3.3.4 discusses, our experiments combined these to schedule 

and evaluate over 10,000 combinations of DAGs and grids. 

3.3.1 DAG Genera tor 

We use DAGs from actual runs of the EMAN and Montage applications described 

in Section 2.2.2, with the total number of tasks, the communication patterns and 

output file sizes taken from those cases. Besides the DAGs from real applications, 

we also implemented a DAG generator that can generate various formats of weighted 

pseudo-application DAGs. The following input parameters were used to create a 

DAG. 

• Type of DAG: Unlike other DAG generators [7, 111], our DAG generator can 

generate different formats of DAGs. Currently, we support fully random, level, 

and choke formats. In a random DAG, each task can be connected to any task 

on a higher level (to ensure that the graph is acyclic). In a level DAG, a task 

can only connect to tasks on the level immediately above. In a choke DAG, 
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there is one level (the choke point) that has only one task; it connects to all 

the tasks on the levels above and below it. Tasks in other levels are connected 

randomly and uniformly distributed as in the random graph. 

• Total number of tasks in the DAG, A. 

• Shape parameter, a: a represents the ratio of the DAG height (i.e. number of 

levels) to the width (i.e. maximum number of tasks in a level). The height and 

the width of the DAG are generated using the method described by Topcuoglu, 

Hariri, and Wu [111], which takes a and A as parameters. 

• Out degree of a task, n : Each task's out degree is randomly generated from a 

uniform distribution with mean value rj. 

3.3.2 Cost Model 

Given a DAG, whether from a real application or automatically generated, we gener

ate base costs for the tasks and edges using three parameters. 

• The lower and upper bound of the data size, e, 0: The data size attached to each 

edge in a generated DAG is randomly generated from a uniform distribution 

between the lower and upper bound. In level graphs, all edges between two 

adjacent levels have identical data size; in random and choke graphs, we generate 

costs for every edge independently. 

• Communication-Computation Ratio (CCR). We set this ratio defined in Sec

tion 2.2.1 as a parameter and combine it with the total data size and average 

bandwidth in the resource pool to compute the average computation cost for a 

task: 
total file size/avg bandwidth 

AvgC ompC ost = - 77777;— 
number oj tasks x CCR 

• Range: The task computation costs for generated DAGs are independently 

randomly generated from a uniform distribution from AvgCompCost x (1 — 
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range) to AvgCompCost x (1 + range). For EMAN and Montage DAGs, we use 

uniform costs for each level, reflecting the behavior of the actual applications. 

This gives us a base cost for every task, which will be modified by the Grid model. 

3.3.3 Grid Model 

Our resource model is based on a tool that generates populations of representative 

compute clusters, as described by Kee, Casanova, and Chien [54]. This tool uses 

empirical statistical models of cluster characteristics (e.g., number of processors, pro

cessor clock rate) obtained from a survey of 114 real-world clusters. Using this tool 

we generated a resource pool that contains over 18,000 processors grouped in 500 

clusters, which we refer to as the universal environment. We also semi-manually 

generated two smaller resource sub-pools. They both have roughly 300 processors, 

but one groups them into 20 clusters while the other has only 4 clusters. We will 

later refer the resource pool with 20 clusters as the many-cluster environment and 

the other as the big-cluster environment. Given the resource model, we computed the 

computational cost matrix Mp[z][j] by scaling the base cost for DAG task i by the 

clock rate of processor j . 

Our network model is based on a tool that generates end-to-end latency matrices 

according to the actual latency data collected over the Internet [126]. Following 

the experimental results of Yang et al. [119] and Denis et al. [29] we assigned the 

bandwidth based on the latency. Low-latency links had high bandwidth, consistent 

with the data in Bo et al. [126]. Given the latency and bandwidth of each network 

link, it was a simple matter to compute the communication cost matrix Mn. 

The costs we generated are static, although actual Grids can have dynamic costs 

due to variances in load. However, we claim that the static data helps us focus 

on performance of the algorithms and factors out the uncertainties of resource and 

network behavior. We will explore the effects of dynamic costs on the algorithms in 

Chapter 5. 
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3.3.4 Experimental Setup 

We used our DAG generator to produce DAGs with the following parameters: 

• Type = {random, level, choke} 

• A = {300, 1000, 3000} 

• a = {0.5, 1.0, 5.0} 

• TJ ={1.0, 2.0, 5.0} 

We generated 5 random DAGs for each possible parameter combination. In addition, 

we used 30 EMAN DAGs and 30 Montage DAGs. For all of these DAGs, we applied 

our cost model with the following parameters: 

• (e,<j6) = { (20,1000),(100,1000),(500,1000)} 

• CCR = {0.1, 1.0, 10} 

• Range ={0.15, 0.4, 0.85} 

With three Grids and four scheduling algorithms, we collected about 120,000 schedules 

and their associated makespans. 

3.4 Results 

We will use SLR described in Section 2.3.1 to measure the schedule quality since 

the size of the DAGs in the experiment varies greatly. Over the entire set of DAGs, 

Grids and schedulers, SLRs range from 0.06 to 88. (The range of makespans is even 

greater.) Moreover, the algorithm that produces the best schedule (low SLR) for any 

individual DAG varies with no obvious pattern. Once the results are aggregated, 

however, a somewhat clearer picture emerges. 



44 

3.4.1 Results Analysis 

Figure 3.2 shows the range of SLRs for each scheduling method on all DAGs for the 

universal resource set. The top and bottom of the white boxes are the 75th and 

25th percentile SLRs for each scheduler, while the top and bottom of the black lines 

are the 90th and 10th percentile. It is clear that all the methods have many high-
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Figure 3.2 : Aggregate behavior of scheduling methods 

SLR outliers, but that the bulk of the results from the HEFT, HHS, and Greedy 

LHBS methods are comparable. The included table shows the average results for 
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each method. Despite the high variance of data, the differences between the means 

are statistically significant at levels far less than p = 0.001 (according to paired t-

tests). Even the 1% difference between HEFT and HHS has a statistical significance 

of p = 6 x 10~6, although that difference may not be noticeable in practice. The 

last two lines of the table show how often each method returned the best and worst 

result for the same DAG among the four algorithms we tested. The percentages 

add up to more than 100% due to ties; HEFT and HHS often computed equivalent 

schedules, particularly for choke DAGs. This would lead us to believe that HEFT 

and HHS produce better schedules than level-based methods on average. However, 

we did not observe the clear advantages of HHS over HEFT reported by Sakellariou 

and Zhao [94]. 

The difference in behavior was not, however, consistent across types of DAGs, 

as shown by Figure 3.3. In particular, all of the methods produced good schedules 

for EMAN. Most of the differences are statistically significant (the exceptions are 

HEFT and HHS results for level and EMAN DAGs), but many are too small to be 

important in practice. Nor was the difference between methods true of all resource 

sets, as Figure 3.4 shows for random DAGs. We can clearly see that the LHBS 

algorithms perform much worse in the larger resource pool. The differences in the 

figures are all statistically significant except for the two LHBS algorithms in the big-

cluster resource set. However, many are likely smaller than the uncertainties in our 

simulation. 

After examining some of the schedules, we hypothesized that most of the differ

ences were due to LHBS methods emphasizing parallelism over communication costs. 

One scenario is that LHBS might assign some DAG tasks to clusters that have a 

earlier start time in order to to achieve a shorter makespan in one level. If these 

tasks require input from two or more clusters, the estimated communication costs 

might be equivalent for that level. At the next level, however, having the tasks on 

different clusters might require additional inter-cluster communications. This see-
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nario would obviously have more impact when a DAG required more point-to-point 

communication. (All-to-all communication, as in EMAN, does not necessarily suffer, 
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Figure 3.5 : Results for varying communication-computation ratios (CCR) 

because the inter-cluster communication is almost always required.) This may have a 

smaller impact on HEFT and, to a lesser extent, HHS because tasks with high future 

communications requirements could be scheduled earlier with higher rank, when the 

resources nearby (i.e. processors within the same cluster) may have not yet been 

allocated. 

To test this, we examined the sensitivity of the algorithms to various DAG at

tributes. Figure 3.5 shows the average SLR for low-communication (CCR=0.1) , 

medium-communication (CCR=1), and high-communication (CCR=10) DAGs. We 

can see that the performance difference among algorithms is very sensitive to CCR. 

We think it is because high communication costs affect the performance of LHBS 

the most as expected. Wide DAGs should also show the effect, since there are more 

opportunities for inappropriate parallel assignment. Figure 3.6 shows this for wide 

(a = 5), square (a = 1), and narrow (a = 0.5) DAGs. Figures 3.5 and 3.6 consider 

only the random, level and choke graph types. 
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Figure 3.6 : Results for varying shapes (a) 

It may be less apparent why our hypothesized parallelism/communication trade

off affects the large universal environment much more than the others. The connection 

is in the characteristics of the resource pools. As we will see in Chapter 4, our 

algorithms typically select processors from clusters with the fastest nodes. Table 3.1 

lists the number of nodes and their speed in the four highest-GHz clusters in each 

of the three Grid environments. Clearly, the per-node speeds of these clusters in the 

universal resource environment are closer than in the other environments. At the 

same time, the top cluster in the universal environment is larger than in the others. 

Therefore, a relatively narrow DAG (e.g. width=40) can be run entirely on a single, 

fast cluster in the universal environment. Running the same DAG on the many-

cluster or big-cluster environment must either use a slower cluster (e.g. the second 

cluster in the big-cluster environment) or multiple clusters (e.g. all four displayed 

clusters in the many-cluster environment). Figure 3.7 illustrates this effect. When 
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the DAG's width is less than the number of nodes of the fastest cluster or is larger 

than all the nodes in the fastest four clusters, the difference between algorithms are 

much smaller than when the DAG's width is in between. In other words, when the 

choices between clusters are obvious, all the algorithms perform relatively the same, 

while when the choices are tough, different algorithms can perform very differently. 

The above observations suggest that we could improve the quality of schedules for 
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Grid environments by choosing the clusters on which to run more intelligently. 

3.4.2 Effective ACP 

To investigate further, we introduce the notion of effective aggregated computing power 

(EACP) and apply it within the two-level scheduling approach in Chapter 4. In short, 

our two-level scheduler performs a very fast selection phase to select a suitable subset 

resource from the large resource base represented by the real Grid. It then performs a 

more complex scheduling step, such as LBHS, to map the application to nodes within 

the chosen subset of the total resources. Chapter 4 will describe our approach in 

detail. 

We define Aggregated Computing Power (ACP) for a cluster A as 

ACP {cluster A) = \^ computing power of node B 
B<EA 

We use the node's clock rate as an approximation of the computing power, although 

we could use more sophisticated performance models [105] as well. ACP represents 

the peak computing power of a cluster, but this may not all be usable on a particular 

DAG. For example, consider running 20 independent tasks on two clusters. Cluster A 

consists of 100 processors running at 1GHz, while cluster B consists of 30 processors 

running at 2 GHz. Our unit of comparison is one processor running at one GHz. 

Although A apparently has a higher ACP (100 units vs. 60 units), the DAG can 

utilize at most 20 processors in either cluster. Therefore, we introduce the notion 

of effectiveness which only aggregates the computing power up to the width of the 

DAG. 

EACP(clusterA, job J) = ACP(subclusterE) 

where sub-cluster E has just enough nodes to run job J with the maximum parallelism 

possible. In our example, cluster B has 40 effective ACP units while cluster A has 20. 

Within the two-level scheduling algorithm described above, the selection phase 

chooses nodes from clusters with the highest effective ACP for the given DAG. After 
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Figure 3.8 : Comparing EACP version with the standard version 

this selection, we apply the HEFT, LHBS and HHS algorithms to the smaller uni

verse of resources. Below we will refer to this as the Effective ACP version or simply 

the EACP version of each standard algorithm. Figure 3.8 and 3.9 show how the 

EACP versions of HEFT and Heuristic LHBS compared to the corresponding stan

dard algorithms under the universal resource environment the three generated classes 

of DAGs. The EACP versions of the other algorithms exhibited very similar results. 

The leftmost set of bars of Figure 3.8 represents DAGs that have low communication 

cost (CCR =0.1). In this case, the EACP version algorithms do not have a large ad

vantage over the standard HEFT or the heuristic LBHS scheduling algorithms. The 

middle set represents DAGs that have medium communication cost (CCR =1.0) and 

the rightmost set represents the most communication intensive DAGs (CCR =10). 

We thought that the standard methods would be more likely to make bad trade-offs 

between parallelism and communication in these cases. The results confirm our be

liefs. The EACP versions of HEFT and Heuristic LHBS outperformed their standard 

versions by factors of 2 to 20 in aggregate. Both EACP algorithms performed better 
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Figure 3.9 : Comparing EACP version with the standard version 

than any standard algorithm. 

Similarly, Figure 3.9 shows that the EACP version algorithms have much better 

performance than the standard algorithms when the DAG is wide (a = 5.0) and 

is similar to standard versions for other cases. Taken together, Figures 3.8 and 3.9 

show that 2-level selection based on effective ACP can vastly reduce the inter-cluster 

communication cost when communication is significant. In addition, the EACP ver

sion algorithms are more scalable in very large Grid environments since the complex 

scheduling algorithms are only applied to a subset of the universal resources. Chap

ter 4 will quantify the scalability achieved by this two level decoupled approach that 

separates the resource selection and scheduling. 

However, the results may vary depending on the Grid used. For example, Fig

ure 3.10 shows the results of similar experiments using the big cluster environment 

shows that the EACP version of HEFT can perform 10 to 20% worse than the stan

dard HEFT algorithm . We can explain this from the entries of Table 3.1. In the 

big-cluster grid, the highest ACP cluster (the third) has relatively slow processors, 
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Figure 3.10 : Comparing EACP version with the standard version 

so the fastest two clusters are likely to have the highest EACP for all but the largest 

DAGs. However, it happens that the network connection between these two clusters 

is slow in our experimental setting. Thus, selection based on EACP actually increases 

communication costs because it puts data movement on a slow link. More work is 

clearly needed to take effects like this into account. 

3.5 Conclusions 

In this chapter, we compared the performance of several algorithms that represent al

ternative major approaches to scheduling on three different Grid environments. Our 

experiments show that the list-based, and hybrid, scheduling algorithms are effec

tive in a Grid environment, outperforming level-based scheduling methods on many 

combinations of environments and DAGs. The experiments also show how different 

factors in a Grid computing environment affect the performance of the scheduling 

algorithms. The most critical question for scheduling in the Grid environment is 

whether to assign a task to a cluster different from its parents: performance of the 
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algorithms is highly sensitive to this question. Finally, the experiments demonstrate 

that using effective aggregate computing power (EACP) in the selection phase of a 

two-level algorithm, then scheduling to the resulting virtual grid with a standard al

gorithm, can produce significantly improved schedules over the standard version of 

the same algorithm. 
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Chapter 4 

Decoupled Resource Selection and Scheduling 

This chapter presents our work on producing good schedules in a scalable manner in 

a Grid environment with hundreds of thousands of computing nodes. In this chapter, 

we are going to focus on the scheduler's speed which is the time to compute the 

schedule instead of the quality of the schedule which is the time for the application 

that follows the schedule to finish. The key idea is to decouple resource selection and 

scheduling so that we only schedule the workflow application on a subset of the total 

available resources. Furthermore, our results show that it is possible to achieve similar 

or even better performance than the traditional approach that combines selection and 

scheduling by selecting the resource subsets judiciously. 

4.1 Introduction 

In this chapter, we focus on one potential problem that may keep us from achieving 

good performance for a Grid application: the scalability of application scheduling. 

One distinguishing feature of grid platforms is the large number of individual re

sources, with the largest systems containing tens or even hundreds of thousands of 

resources [18]. This volume of resources raises scalability issues, especially in resource 

discovery and resource monitoring. In this chapter we specifically address the scala

bility of the scheduling algorithm itself: how can one compute an efficient application 

schedule in a short amount of time while considering a large number of potential 

resources? 

We observe that although the resource environment may contain large numbers 

of resources, all of which are mostly likely taken into consideration when computing 
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a schedule, typically only a small subset of these resources is used for running the ap

plication. In essence, most scheduling heuristics perform implicit resource selection: 

the set of resources used by the application emerges from the computation of the 

schedule. In this work, we improve the scalability of the scheduling process by per

forming explicit resource selection. In contrast to the traditional one-step approach, 

which considers all available resources when scheduling, we use a decoupled approach, 

which selects the resources for consideration first and then schedules the application 

on these resources. 

We use the Virtual Grid (VG) abstraction introduced in Section 2.1.2 and by 

Kee et al. [55]. A VG provides a high-level, hierarchical abstraction of the resource 

collection that is needed and used by an application. A user creates a VG specification, 

written in the Virtual Grid Description Language (vgDL), and passes it to the Virtual 

Grid Execution System (vgES). The vgES performs fast resource selection in grid 

environments with hundreds of thousands of resources, returning a set of selected 

physical resources on which one can schedule the application. The set of selected 

resources is typically many orders of magnitude smaller than the whole universe of 

resources, and the running time of a scheduling algorithm over this smaller subset of 

resources is also orders of magnitude shorter. 

While decoupling resource selection from scheduling in large-scale systems as de

scribed above clearly improves scalability of the scheduler itself, a key question is: 

what is the impact of decoupled resource selection and scheduling on the quality of 

the resulting schedule? In this chapter we study decoupled resource selection and 

scheduling in the context of workflow applications in large-scale highly heterogeneous 

grid environments and make three contributions: 

1. We demonstrate how the VG abstraction can be leveraged to decouple resource 

selection and application scheduling in a generic way (i.e., our approach is in 

principle applicable to any scheduling algorithm and any grid application). 

2. One key issue in our decoupled approach is that of choosing an appropriate re-
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source selection methodology. We discuss and provide a quantitative evaluation 

of several factors that affect the construction of an appropriate VG specification. 

3. Using simulations of representative workflow applications on representative grid 

environments, we quantify the trade-off between scalability and schedule quality 

for our decoupled approach, demonstrating that it achieves schedule quality 

comparable to that achieved by one step approaches, at dramatically higher 

scalability. 

This chapter is organized as follows. Section 4.2 presents our decoupled resource 

selection and scheduling idea. It also discusses our resource selection strategy in 

detail, by introducing the Virtual Grid concept, the specific scheduling and selection 

methodologies used and the application context in which we evaluate it. Experimental 

evaluation and results are presented in Section 4.3. Section 4.4 discusses related work. 

Section 4.5 concludes the chapter with a summary of contributions and perspectives 

on future work. 

4.2 Decoupled Application Scheduling in Grid Environments 

4.2.1 Virtual Grid and Resource Selection 

As we described in the introduction, our proposed solution to address the scheduler's 

scalability problem is to decouple resource selection from application scheduling. In 

the first phase, we perform explicit resource selection. In the second phase, we perform 

scheduling within the selected resources rather than on the whole resource universe. 

The key point here is that a decoupled approach makes it possible to compute sched

ules faster, by several orders of magnitude, making application scheduling scalable to 

large-scale platforms. In fact, this decoupling may make it possible to run expensive 

scheduling algorithms on the explicitly selected resources. 

We claim that using a system such as vgES (see Section 4.2.1) to perform ex

plicit resource selection makes it possible to achieve schedules that are comparable in 
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quality to the ones obtained when letting the scheduling algorithms perform implicit 

resource selection over the whole resource universe, at dramatically higher scalability. 

Although our decoupled approach is generic, in this chapter we discuss and evaluate 

it in the context of workflow applications, as seen in Section 4.2.4. 

A fundamental challenge for grid applications is to describe and obtain appropri

ate resources to enable efficient, high performance execution. This is challenging from 

many standpoints, including the definition of an appropriate abstraction to describe 

resource needs, the difficulty of finding appropriate resources quickly in an environ

ment with many thousands of resources, and interacting with diverse, autonomous 

resource managers that implement their own resource management and access poli

cies. As noted in the introduction, the VGrADS project [55] approaches this by 

allowing the user to specify its resource needs using a high-level language, vgDL [22], 

which our execution system, vgES [55], uses to find and allocate appropriate resources 

for the application, returning a VG abstraction, which is really an active entity (i.e., 

runtime object). By contrast with traditional low-level resource description and se

lection systems [9, 5] that focus on individual, quantitative resource characteristics, 

the VG provides a high-level, hierarchical abstraction of the resource collection that 

is needed by an application. The application can then use the VG to find specific in

formation about the allocated physical resources, to deploy application components, 

and to modify or evolve the resource collection. 

We refer the reader to previous research by Kee et al. [55, 22] for details regarding 

the vgES system and we only describe here features of vgDL that are relevant for 

this work. The vgDL language uses high-level resource abstractions that correspond 

to what grid application programmers typically use to organize their applications 

portably across many different resource environments. VgDL was designed based on 

a detailed study of half a dozen real-world applications. This showed that in order 

to design for performance (and to manage complexity) portably, application develop

ers typically use three simple resource abstractions to aggregate individual resources. 
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Consequently, vgDL contains three resource aggregates, distinguished based on ho

mogeneity and network connectivity: (i) LooseBag — a collection of heterogeneous 

resources with no guarantee of good connectivity; (ii) TightBag — a collection of 

heterogeneous resources with good connectivity; (hi) Cluster — a well-connected set 

of homogeneous resources. Each aggregate specifies a range for its size (i.e., number 

of resources). The user can specify constraints on attributes of individual resources 

within the aggregate (e.g., clock rate, processor architecture, memory, etc.), or con

straints on aggregate attributes (e.g., total aggregate memory, total aggregate disk 

space). Aggregates can be nested (e.g., a LooseBag of Clusters) to arbitrary depth. 

With these resource aggregate abstractions, an application can structure the speci

fication of its resource environment in a top-down fashion and decorate components 

with constraints when needed or desired. In addition to constraints, applications 

can also express resource preference by using a scalar rank function: a user-defined 

expression of basic arithmetic operators, resource attribute and resource aggregate 

attribute values that define a scalar value that represents the quality of that resource 

set for the application's request. 

The Virtual Grid Execution System (vgES) uses efficient search techniques based 

on resource classification in a relational database. Table indices and other sophisti

cated database optimization techniques make the search highly scalable in environ

ments with large number of resources. For instance, Figure 4.1 shows that it takes 

no more than 5 seconds for the vgES system to process one million resources for 

various queries on a Pentium4 3.2 Ghz processor. The different lines in the figure 

represent different types of query with L, T, C meaning LooseBag, TightBag and 

Cluster respectively and the number denoting the size of the requested VG. We will 

see in Section 4.3 that the ability to perform such resource selection in a few seconds 

is key for improving the scalability of application scheduling on large-scale platforms. 

Given that vgDL makes it possible to specify high-level, qualitative resource re

quirements and that vgES can perform fast resource selection in large-scale resource 



60 

4.30 

4.09 

3S0 

| ISO 

* 

§ 2.CJ 

1X10 

on 

o.co 

Figure 4.1 : Time to complete vgDL queries with vgES. 

environments, the VGrADS project provides an ideal foundation for decoupling re

source selection from application scheduling. 

4.2.2 Scheduling Algorithms 

While our decoupling approach is applicable to any scheduling algorithm, we chose 

to apply it to a specific workflow-scheduling algorithm to evaluate our approach. 

We use a greedy level-based (LHBS) workflow scheduling scheme as described in 

Section 2.3.3. The computational complexity of our greedy scheduling scheme is 

0(vp) in which v denotes the number of jobs and p denotes the number of resources. 

There are two reasons why we use the greedy LHBS in our experiments. First, it 

has the best scalability among all the heuristics we tested in Chapter 3. As we 

will see in Section 4.3, even the greedy LHBS takes several hours to finish on the 

largest experiment setting, a heuristic LHBS will take an order of magnitude more 

time. Secondly, although the greedy LHBS does not produce the best schedule, its 

schedule quality is very similar to the list based heuristic HEFT and performs better 

than the more expensive heuristic LHBS in our previous experiments. Note that 

while Chapter 3 tests various scheduling heuristics' performance (schedule quality), 

10K IODIC 1M 
D& Size 
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this chapter focuses on how to make the scheduler scalable (time to compute the 

schedule), which is mostly orthogonal to the choice of the scheduling algorithm itself 

since our approach can be applied generically to any scheduling heuristics. 

4.2.3 Selection Methodology 

Now that we have picked a scheduling algorithm, we must decide on a resource selec

tion strategy. Resource selection must be done according to the application's needs 

and we consider three classes for three different types of such needs: 

1. Class 1: A set of resources that have high computing power but not neces

sarily good network connection between them, as needed by a computationally 

intensive application. 

2. Class 2: A set of resources that are connected with high bandwidth and low 

latency but do not necessarily have high computing power, as needed by a 

communication intensive application. 

3. Class 3: A set of resources that have relatively balanced computing power and 

connectivity, as needed by a balanced application that is neither compute- nor 

communication-intensive. 

It is relatively straightforward to generate selection criteria for class 1: simply 

select the resources with the fastest processors. However, we need the help of the 

vgDL specifications and of the vgES system to select the resources that meet the 

requirement of class 2 and 3. The key concept here is the TightBag. Recall from 

Section 4.2.1. that a TightBag is a collection of heterogeneous nodes with good 

connectivity. It matches the requirement of class 2 perfectly. For class 3 we will use 

vgDL to specify a hierarchy of aggregates. The idea is to aggregate several TightBags 

into a single LooseBag so that we can get both high computation power and high 

connectivity. 
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The above classes provide bases for performing resource selection following three 

broad characterizations of an application's resource needs. For each such application 

we perform resource selection according to the three above classes. We expect that 

class 1 will be best for applications with low CCRs (described in Section 2.2.1), and 

that class 2 will be best for applications with high CCRs. We will verify that the 

CCR value of the application provides good guidance for selecting the appropriate 

resource selection method. 

The final key element for resource selection is the specification of a bound on 

the number of required resources. One could ask for as many (potential) resources 

as there are resources in the whole universe of resources. This will not lead to any 

scalability improvement over a traditional application scheduling approach that per

forms implicit resource selection. Instead, as a simple heuristic, we request as many 

resources as the maximum width of the DAG representing the application's workflow. 

The intuition behind this choice is that this is the maximum number of resources that 

can be used by the application at a given time. Any additional resource would stay 

idle for the entire application execution. 

4.2.4 Case-Study: Workflow Applications 

We explore our approach of decoupled resource selection and scheduling in the context 

of two real workflow applications, EMAN [66] and Montage [10]. These applications 

fall into the general class of workflow applications. We described our two target 

applications in Section 2.2.2. We use different versions (with different numbers of 

tasks) of the EMAN refinement workflow DAG in our experiments. The largest 

EMAN DAG has a maximum parallelism of over 300. Similar to the EMAN workflow, 

we use different versions of Montage for our experiments and with the largest DAG 

has a maximum parallelism of over 300. 
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4.3 Experimental Evaluation 

4.3.1 Methodology 

Simulation Environment 

In order to perform repeatable experiments on a large-scale resource environment we 

resort to simulation. Our simulated environment consists of three key components: 

the resource model, the network model, and the application model. 

We use a similar resource model to the one in Chapter 3 and we generate a resource 

pool that contains over 36,000 hosts, which we call the resource universe. Our network 

model is also similar to the one we used in Chapter 3. We generated end-to-end 

latencies between compute clusters according to a truncated normal distribution. We 

set the mean of this distribution to 100ms, conforming to the results in Morris et 

al. [74], and we bounded the latencies from 1 to 200ms. For the network bandwidths, 

we set the connection within a cluster as lOOOMb/s and the interconnection between 

clusters range from 10Mb to lOOMb/s. These numbers are primarily based on results 

by Yang and Denis and their collaborators [119, 29]. Furthermore, we ensured that 

the higher the latency the lower the bandwidth. 

Our application model comes directly from the real-world applications described in 

Section 4.2.4. For each application we generate DAGs that follow the same structure 

as those of the applications, but we vary their CCR and their widths. When simu

lating application execution, the execution times of the tasks on resources come from 

the DAG task weights and the performance models described in Mandal et al. [69], 

and the data transfer times come from the DAG edge weights and the latencies and 

bandwidth in our network model. 

Since this is a simulated environment, we must make some assumptions that may 

not hold for real resources. We assume that we have an accurate performance model 

for tasks for both scheduling and computing the simulated makespan. (In fact, we 

have such models for EMAN and Montage.) We argue that since both the one-step 
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and the decoupled scheduler use the same performance model, this does not bias the 

comparison. We assume that the network performance is stable and predictable. This 

assumption eliminates the random error that may be introduced by the network fluc

tuation. We have found it to be the case for our experiments with EMAN, although 

other applications may see more variation. We assume that the resources are avail

able immediately, and will remain available for the duration of the application. We 

assume that we already obtained all the resource information before the start of the 

experiment. We have these assumptions so that we can compare the performance of 

these scheduling algorithms on a level playground. Once again, we believe that these 

assumptions do not bias our comparison between the two scheduling approaches. We 

will address the scheduling issues caused by the dynamic and unreliable nature of a 

multi-cluster Grid in Chapter 5 and Chapter 6. 

Experimental Setup 

We first generate forty EMAN and Montage DAGs with five different CCRs and eight 

different widths. We use the greedy scheduling algorithm described in Section 4.2.2 

to schedule these DAGs on the simulated resources. For each DAG, we first run the 

scheduling algorithm on the whole resource universe, which we refer to as the one-step 

approach, and record the running time of the scheduler. We then run the scheduling 

algorithm on smaller subsets of resources explicitly selected using the methodologies 

in Section 4.2.3. The running time for this decoupled approach is measured as the sum 

of the time for selection and time to compute the schedule. In both cases we record 

the (simulated) makespan of the application. To run our experiments, we used the 

Rice Terascale Cluster which is composed of Intel 900 MHz Itanium2 machines [113]. 

In order to determine how resource selection affects scheduler performance, we 

selected 10%, 7%, 3%, 1% and 0.3% of the "best" resources, corresponding to the 

resource selection methods for class 1 in Section 4.2.3. We will later refer this as the 

simple selection approach. We also performed selections based on vgDL specifications. 
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Figure 4.2 : vgDL for class 2 type of resource abstraction 

To satisfy the requirements of class 2, we generated the vgDL description shown in 

Figure 4.2, requesting one TightBag of OPTERON and ITANIUM nodes. The "[l:n]" 

means there are at most "n" nodes in the TightBag; we set n as the maximum DAG 

width. We will later refer to this selection methodology as the one TightBag approach. 

Similarly, we generated the vgDL description shown in Figure 4.3 for class 3. Since 

we want to group as many nodes into a TightBag as possible, we set the size of the 

TightBag as 500 which is large enough to run the biggest DAG in our experiment. In 

our experiments, we set "m" as 3 and 5 and we will later refer to them as the Three 

TightBag approach and Five TightBag approach respectively. Later we will also refer 

to the three TightBag approach as the LooseBag approach since we use this for most 

of the DAGs belonging to class 3. 

Finally we refer to the implicit resource selection approach used by the one-step 

approach as the Universe approach. 

4.3.2 R e s u l t s 

Figure 4.4 shows that the one-step scheduler's total running time which includes the 

resource selection time and the scheduling time is linear in the number of resources 

considered. Figures 4.5 and 4.6 further breaks down the number and shows the 

average scheduler running time of the one-step and decoupled approaches for EMAN 

and Montage. We can see tha t the time used in the decoupled approaches is only a 

small fraction of the time used in the one-step approach, since the number of selected 
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Figure 4.4 : Average Scheduling+Selection Time for Different Sizes of Resources 

resources is much less than the full grid. This confirms our hypothesis of better 

scalability of the decoupled approach. 

Figures 4.7, 4.8, and 4.9 show the combined makespan (yellow) and scheduling 

(blue) time for a range of simulations. In all charts, the total turnaround time for 

the application is the overall height of the bar. For the "Simple Selection", "One 

Tightbag", and "LooseBag" bars, we used the scheduling time for the case in Fig

ures 4.5 and 4.6 that selects the least resources more than the maximum width of 
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Figure 4.6 : Average Scheduling+Selection Time for Montage DAGs 

the DAG. For example, for a test DAG of width 518, the Simple bar uses the "1012 

Best" scheduling time, the TightBag bar uses "One TightBag", and the LooseBag 

bar uses "Three TightBags" since three TightBags most likely to hold just enough 

resources for the DAG (as compared to Five TightBags). All results are averages over 

a collection of EMAN and Montage DAGs. 

Figure 4.7 shows results for computation-intensive DAGs belonging to class 1. 

We observe that all the decoupled approaches have much better turnaround time 
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compared to the one-step approach. Among decoupled approaches, the one TightBag 

approach performs the worst since it does not provide enough computing power. The 

simple selection approach performs the best with makespan only 2% worse than the 

one-step approach. This confirms our hypothesis that simple selection is very suitable 

for these applications. 
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Figure 4.7 : Average MakeSpan and Scheduling Time for DAGs with CCR=0.1 

Figure 4.8 shows results for communication-intensive DAGs belonging to class 2. 

We observe that all decoupled approaches have lower turnaround time than the one-

step approach. The one TightBag approach has the best performance and outper

forms the one-step approach by almost 66%. The main reason for this result is that 

all selected resources are closely connected, which avoids greedily choosing nodes with 

poor connectivity. A better scheduling heuristic for the Universe case might reduce 

its makespan, but at the cost of even higher scheduling time. This confirms our hy

pothesis that pre-selecting a TightBag is appropriate and efficient for scheduling this 

class of applications. 

Figure 4.9 shows results for DAGs with relatively balanced communication and 

computation requirements, such as those in class 3. In all cases, the decoupled ap-
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proaches have lower turnaround times than the one-step approach due to their lower 

scheduling times, with gains of up to 50%. Also as we expected, the Simple approach 
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Figure 4.9 : Average MakeSpan and Scheduling Time for DAGs with CCR=0.5,1,2 
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performs relatively better as the CCR gets below one (i.e. more computation-intensive 

code) and the TightBag approach performs relatively better as the CCR gets above 

one. Unexpectedly however, the LooseBag approach does not show a clear advantage. 

Here are two possible reasons 

1. The simple selection may implicitly select nodes that are close since fast nodes 

are more likely found in a few clusters than scattered around the grid. 

2. The bandwidth between the TightBags within the LooseBag we choose may 

happen to be very low. 

If reason 1 is true, we can further simplify our VGDL requests, while if reason 2 is 

the case, we may have to devise more complex queries. 

In summary, our experiments confirm our hypothesized advantages for decou

pled scheduling over the one-step approach. They also confirm our hypotheses of 

best scheduling methods for computation and communication-intensive applications. 

However, they do not match our expectations for balanced applications. 

4.4 Related Work 

Current grid workflow management systems use simple approaches as we described 

in Section 2.3.3. However, even those simple scheduling approaches (other than the 

random or round-robin approach) has the same time complexity as the greedy LHBS 

algorithm we used in our experiment. Therefore, they may also face the same sched

uler scalability issues. Mandal et al. [69] and Blythe et al. [11] have developed level-

based scheduling algorithms to schedule workflow applications onto a multi-cluster 

Grid as we described in Section 2.3.3. A key limitation of their approach however is 

that it is not scalable to large numbers of resources as it takes into account all the 

resources during scheduling. 
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4.5 Conclusions 

In this chapter, we presented a decoupled mechanism that leverages the concept 

of a Virtual Grid to schedule workflow applications onto large-scale grid environ

ments. Our approach improves scalability when compared to traditional schedul

ing approaches as schedules can be computed dramatically faster. Furthermore, 

our experimental results show that even when the decoupled approach increases the 

makespan slightly, the difference is more than made up by the reduced scheduling 

time. Therefore, our proposed approach can dramatically decrease workflow applica

tions' turn-around-time. 
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Chapter 5 

Hybrid Scheduling Mechanisms 

In this chapter, we present our work on a hybrid scheduling mechanism that dy

namically executes a top-down static scheduling algorithm using real-time feedback 

from the execution monitor. The motivation behind this mechanism is that, although 

static algorithms can achieve good schedule performance when the resources are static, 

Grid resources are dynamic. Changes to Grid resources can dramatically affect the 

application's performance in ways that a static schedule cannot account for. Our 

experimental results show that our hybrid rescheduling approach achieves the best 

performance among all the scheduling approaches we implemented on both exclusive 

resources and those with dynamic external loads. 

5.1 Introduction 

In Chapter 3 and Chapter 4 we examined the quality and performance of several 

scheduling heuristics for workflow applications in a multi-cluster Grid environment. 

Like most of the previous studies, we assumed that the task execution time and 

data transfer time were known beforehand. However, a real-world multi-cluster Grid 

environment is usually dynamic and unpredictable at least in three aspects: batch 

queue wait time, performance of individual processors (particularly the shared disk 

read/write speed) and network bandwidth. Therefore, it is difficult in general to accu

rately estimate the execution time for each task of the DAG and the communication 

time between them. To avoid this problem, many Grid projects use either dynamic 

dispatching mechanisms based on matchmaking [3, 72, 87] or application dependent 

scheduling [89]. 
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We argue that we can still harness the better theoretical performance of static 

scheduling by integrating the scheduler with the application execution system. We 

propose a hybrid approach in which we first statically select the appropriate resources 

based on each resource's effective aggregated computing power as we proposed in 

Chapter 3, then dynamically schedule each task onto the selected resources based 

on the task's updated performance model and the execution monitor readings. Each 

task is launched with an execution monitor that can adjust the performance model 

parameters of the resources where the task is mapped. If the environment changes, 

the execution system and scheduler may re-select appropriate resources and re-map 

subsequent tasks according to the feedbacks from the monitors. In order to make 

our runtime decision efficient and scalable, our scheduler maps each task to a cluster, 

leaving the individual compute node assignment to the local resource manager. This 

is much more efficient because the number of clusters is usually at least an order of 

magnitude smaller than the total number of processors in those clusters. Furthermore, 

since a correct decision on when to trigger a reschedule is not always easy to make, 

we propose a two phase rescheduling mechanism that can mitigate the effect of a 

bad decision. The two phase decoupled approach further improves the scalability of 

the scheduler as shown in Chapter 4. The objective of our scheduling algorithm is to 

output a schedule for the workflow application such that the application's turn-around 

time, is minimized. 

The rest of the chapter is organized as follows.Section 5.2 describe in detail our 

hybrid scheduling mechanism. Section 5.3 presents our Grid test-bed environment, 

the application DAGs we use and our experimental design. Section 5.4 presents our 

results and compares them with other approaches. Section 5.5 discusses the related 

works that address the dynamic nature of the Grid. Section 5.6 concludes the chapter 

with a summary of contributions. 
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5.2 Cluster based Hybrid Scheduling 

The dynamic nature of a real-world Grid environment requires support in the schedul

ing system for detecting and responding to changing resources. In short, some form of 

dynamic rescheduling is needed to ensure the performance of applications. We have 

developed the framework shown in Figure 5.1 to provide this support, and to enable 

comparisons of our work to previous dynamic and static scheduling methods. 

p. s 

Performance 
Model 

Network 
Model 

ftefem mapping 

Submit script for each sub-task 

Cluster A 

ClusterB 

ClusterC 

Figure 5.1 : The system design 

As the figure shows, our framework consists of three major components: the 

monitor, the scheduler, and the application manager. The scheduler is responsible for 

resource selection and mapping the DAG to the resources. The monitor is responsible 

for monitoring the status messages generated by the Grid-run time middleware. The 

application manager is responsible for working with the scheduler and monitor to 

execute a workflow application on a multi-cluster Grid. In the following sections, 

we further describes how these three components work to implement our new hybrid 
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scheduling method. We will also note how previous static and dynamic schedulers 

can be implemented in this framework. 

5.2.1 Scheduler 

Section 2.3 describes the basic concepts of workflow application scheduling. We 

present the techniques we choose or propose in our cluster based hybrid re-scheduling 

mechanism. 

Static Schedule Method: 

We use a list-based scheduling algorithm since Chapter 3 showed that they generally 

perform well in a static Grid environment. Our algorithm is a modification of the 

popular HEFT [111] algorithm. Instead of the ranku used in HEFT, we simply use 

the earliest finish time (EFT) as the rank which means we favor the task that can 

finish first. 

We assume that all clusters are controlled by local batch queues (as is the case of 

our test Grid). In the resource mapping phase, we choose the batch queue resource 

that can finish the task the earliest. Although we only select the batch queue instead 

of the individual processor, we have a low-cost way to keep track of the earliest start 

time for the queue by maintaining all the compute nodes' earliest start time in a heap 

data structure. 

Resource Selection 

We presented in the effective aggregate computing power (EACP) concept in Chap

ter 3 and used it to improve the makespan of the scheduling. The effective aggregate 

computing power is used to estimate the computer power of a cluster for an individual 

DAG. In this chapter, we extend this approach by taking into account the network 

model and make a finer estimation. The pseudo-code for our resource selection pro

cedure is given in Figure 5.2 and Figure 5.3. 
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Algorithm: estimateTime(Resource cluster) 

double time [2] 

double dtime, ctime, ltime,fileSize 

for each level L in the dag 

ltime <— the longest task running time of jobs in L 

fileSize <— the total file output size of all the jobs in L 

if (L.width() > cluster.size) 

time[0] <— time[0] + ltime * L.width / cluster.size; 

timefl] <— time[l] + ltime + fileSize / cluster.bandwidth() 

else 

time[0] <— time[0] + ltime 

time[l] <— time[l] + ltime 

return time 

Figure 5.2 : The DAG ACP estimation procedure 

Figure 5.2 shows our algorithm to estimate the computing power of a batch queue 

resource. The resource computing power consists of two running times. time[Q] 

estimates the execution time, including the queue wait time and the running time, if 

the DAG is mapped to only this resource. £ime[l] estimates time when other resources 

come into play. We denote the running time for the first case as the exclusive time 

and the second as the collaborative time and we define the computing power of 

a resource as the lesser of the two. We estimate the running time for the DAG 

level by level for each resource. For all the tasks in one level, we find the longest 

task running time and denote it as its level time. We also sum the output file sizes 

from this level's tasks. If the queue has enough processors to execute all the tasks 

in this level simultaneously, we add the level time to both the exclusive time and 

the collaborative time. Otherwise, we compute the additional computing time by 
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Algorithm: ResourceSelect ( DAG dag, Queue[] res ) 

Map <Queue, double[]> queueTimePairJist 

for each queue in res 

queueTimePairJist.add( dag.estimateTime(queue)) 

sort queueTimePairJist 

Queue best *— queueTimePairJist.first() 

List<Queue> selectedResource 

selectedResource. add (best) 

count <— best.size() 

est_acp <— best.getClusterTime () 

while (count < dag.width() ) 

resourceTimePairJist.removeFirst() 

secJ)est <— resourceTimePairJist.first() 

new_acp <— min(selectedResource.getEACP(), secJ)est.getCollaborateTime()) 

if ( new_acp < est_acp) 

selectedResource. add(secJ)est) 

est_acp <— new_acp 

else 

break 

count + = selectedResource. size () 

return selectedResource 

Figure 5.3 : The selection procedure 

assuming the additional jobs would wait until the first batch of jobs finishes and add 

that to the level time in the exclusive time. We compute the communication time by 

dividing the task's total output file size by the queue's average bandwidth connecting 
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to its neighbors and add that to the level time in the collaborative time. 

Figure 5.3 illustrates our resource selection algorithm based on the estimated 

exclusive and collaborative time for each cluster. We first sort the resources by their 

computing power and then apply a greedy algorithm. We pick the resource with the 

most computing power (shortest time) and then try to put more resources into the 

pool until the number of processors in the pool is more than the DAG's width. For 

each new resource in the pool, we estimate the new aggregate computing power as 

the lesser of the new queue's collaborative time and the existing pool's computing 

power. We stop the procedure if adding a new resource actually decreases the pool's 

aggregate computing power (increases the execution time). 

Rescheduling 

After we statically select the batch queue resources, we apply the scheduling algo

rithm dynamically, meaning we compute the mapping for a task at run-time when its 

predecessors have finished. There are two reasons we choose a dynamic over a static 

mapping. First, only the dynamic mapping can take advantage of updates to the per

formance model. The scheduler consults the performance model constantly during 

dynamic scheduling but only when rescheduling is necessary during static scheduling. 

Second, the dynamic mapping incurs less overhead if rescheduling is needed. Because 

static scheduling maps all the unexecuted tasks to a resource, many task mappings are 

no longer useful if rescheduling happens. Furthermore, in many cases, a task stages 

out the files to the resource where its successors run but if a reschedule happens, the 

file transfer might be wasted. 

In our hybrid scheduling mechanism, rescheduling happens in the form of resource 

re-selection. When the application manager decides it is necessary to do a reschedule, 

the scheduler does another resource selection based on the current performance model. 

We will present the formula on which a reschedule decision is based in Section 5.2.3. 

Furthermore, instead of just using the newly selected resources, we combine these 
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two resource pools to be our new resource pool. The rule to combine the selected 

resources with the existing ones can be expressed in the following formula 

{ Res sei, Ressei C Res old 

(5.1) 
Ressei U Res0id, Otherwise 

where Resnew is the new resource pool while the Ressei is the selected resource pool 

and Res0id is the existing resource pool. The intuition is that in the first case, the 

additional old resources would decrease the computing power of the resource pool 

based on the algorithm in Figure 5.3; otherwise they would have been selected. In the 

second case, we leave the decision of migrating the rest of the DAG to the scheduling 

algorithm instead of forcing the migration. Therefore, when a reschedule is triggered, 

the rest of the DAG would either be confined to a subset of the existing resources or 

gradually migrate to the new resources depending on the scheduler's decision on the 

trade off between better computing performance and more communication time. This 

two phase approach avoids the potential penalty of extra communication cost since 

the scheduler would avoid the new resources if the extra communication cost is too 

high. Furthermore, we can see that our two phase rescheduling approach also avoids 

the potential performance penalty when resource selections become a cycle. In this 

case, the application would be migrated back and forth between several resources if we 

used the traditional one phase rescheduling. It would be a much smoother transition 

in our two phase approach because our intermediate resource pool always includes 

the previous resources. 
5.2.2 Monitor Component 

The monitor component adjusts the performance model constantly so that it can 

reflect the observed performance of the underlying resources. There are three sub

components in the monitor component which monitor the batch queue wait time, the 

network bandwidth and the disk write speed, respectively. All three monitors use the 
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status notification (callback) system of the Globus middleware layer [4]. The batch 

queue wait time monitor records the time when a task enters the batch queue and 

the time when the task gets to run. It then calculates the new batch queue wait time 

and updates the batch queue wait time linearly 

Waitnew = Wait0id x 0.7 + Waitobserved x 0.3 

The reason we choose a fading memory model is that we want to smooth out possible 

system performance fluctuations. The coefficients are heuristic and can be tuned, but 

our experience shows that incorporating roughly one third of the new time into the 

overall wait time does a good job tracking the actual performance. We acknowledge 

that a more sophisticated model could do a better job but this is not the main focus 

of our research. The network bandwidth monitor records the observed transfer time 

and then computes the new transfer time according to the same linear model. It 

then divides the transfered file size by the transfer time to get the new network 

bandwidth. Similarly, the disk write speed monitor records the computing time of 

a task and calculates the new disk writing time. Although different resources may 

have different performance models our monitor will update the coefficient in them 

according to the latest time calculated. We will discuss the performance models we 

used in our experiments in detail in Section 5.3.2. 

5.2.3 Application Manager 

The application manager makes sure the workflow application is executed on the Grid 

resources correctly and on time. Figure 5.4 shows how it works. When a DAG that 

represents a workflow application arrives, the application manager first invokes the 

scheduler to select the resources and then collects the tasks that are ready to run. 

Once a task finishes, the application manager checks to see if this task is the exit task 

(each DAG has a unique dummy exit task) and all the tasks in the DAG are finished. 

Otherwise, it checks if a reschedule should be triggered. If so, it invokes the resource 
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selection again. Finally, it schedules and submits all the successors that are available 

to run. 

Schedule and Submit " l ^ O y n a m i ; schedule! 
the sub-task j 

Figure 5.4 : The application manager 

The reschedule trigger takes two parameters from the user, the tolerance level T 

and the monitor window size WS. The reschedule trigger calculates the actual to 

estimated performance ratio and signals a reschedule when the average ratio in the 

most recent WS task exceeds the tolerance level 

where the current task is the nth task that finishes. Note that we do not trigger 

a reschedule if the actual performance is better than we estimated. It is generally 

very difficult to find an optimal parameter pair to always make the right decision. 

Section 5.4 will demonstrate that the two-phase approach we described in Section 5.2.1 

is fairly robust even if a poor decision is made 
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5.3 Experimental Methodology 

In order to study how well our rescheduling strategies perform in a Grid environ

ment, we implemented the schedule algorithm and two-step approach described in 

Section 5.2. We will refer to this as the hybrid rescheduling approach. Besides 

that, we implemented three other strategies. The static approach uses the usual 

static mechanism with a resource selection phase but never triggers a reschedule. The 

static rescheduling approach computes a new static schedule with the updated 

performance models when rescheduling is triggered. This approach does not per

form resource selection and is similar to the techniques used in Yu et al. [125]. The 

dynamic approach simply dispatches a task to the resource that has the earliest 

estimated finish time without taking into account the file staging time or the updated 

performance model. This approach is very similar to Condor's approach [72]. The 

rest of this section will further introduce our experimental environment. 

5.3.1 Workflow Applications 

We use DAGs taken from two real Grid applications, EMAN [66] and Montage [10] 

described in Section 2.2.2. In the Montage DAGs, the tasks in the same level have 

different execution times while the execution time is the same for EMAN DAGs. In 

addition, we used two well-known parallel algorithms that have been widely used 

in workflow scheduling research: Fast Fourier Transform (FFT) and Gaussian elim

ination; both are also described in Section 2.2.2. All paths in the FFT DAG are 

theoretical critical paths since all tasks in the same level have the same performance 

model and all dependencies are from one level to the next. However the real critical 

path depends on the application mapping. In contrast, there is a unique critical path 

in the Gaussian DAG that goes through the pivot steps. 
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5.3.2 Performance Model 

Since we are only interested in the running time of the application instead of the 

real output, we chose to represent all four workflow applications using DAGs that 

consist of the same configurable tasks. We pre-installed the task executable on all the 

resources in our Grid test-bed. Each executable takes three parameters: the number 

of iterations it, the output file size size and the output file location. Since different 

resources have different capacities, the real time it takes the same configured sub-tsk 

to run on different resources are different. However, we use a linear performance 

model for all the resources with different parameters. Our performance model is 

T = C + Con x it + CoSize x size 

where C is a constant representing the execute overhead (such as cache build-up) and 

Cou is the coefficient related to the computing iterations (the major computation of 

each task is a loop) and Cosize is the coefficient related to the disk read and write 

amount. 

The run time of a task also depends on the batch queue wait time and the network 

bandwidth. As we stated earlier, these two coefficients along with the Cosize are 

dynamic and hard to predict. Therefore, we only set the initial values for each 

resource while the monitor system adjusts them during the DAG's execution. We 

obtain those initial values by running different configurations of the task executable 

on each resources many times. We list their values for each resources in the Figure 5.5. 

5.3.3 Grid Model 

Our multi-cluster Grid environment has four clusters: the Ada and RTC clusters 

at Rice university, the Eldorado cluster at University of Houston and the Lonestar 

cluster at the University of Texas at Austin. Since Ada, RTC and Eldorado were 

heavily used, in order to finish our DAGs within reasonable time we reserved the 

batch queues on them. The majority of our DAGs used the three clusters that we 
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reserved. Figure 5.5 shows the configuration of our Grid test-bed and the coefficients 

Nodes 

CPU Type 

CPU Speed 

C 

Coit 

*-' Osize 

Wait Time 

Ada 

8 

Opteron 

2.2 GHz 

4.5 

37.8 

0.13 

30 

RTC 

16 

Itanium 

0.9 GHz 

6.5 

52.1 

0.25 

60 

Eldorado 

16 

Itanium 

0.9 GHz 

31.5 

50.72 

0.43 

60 

Lonestar 

64 

Xeon 

2.6 GHz 

4.5 

26.8 

0.31 

1800 

Figure 5.5 : The Cluster Configuration and Performance Model 

of our performance model. The unit for wait time is seconds. 

5.3.4 Experimental Setup 

We generated four cases for each type of DAG and applied four scheduling mechanisms 

on each case. In addition, we have four batches of experiments run with different 

execution environments. Two of them have a Grid environment with no loads on 

the reserved batch queues. The difference between them is the reschedule trigger 

parameters T and WS. The first batch of experiments uses T = 0.2 and WS = 3 

while the second batch uses T = 0.3 and WS = 5. Later we will refer to the first 

batch of experiments as the aggressive batch since they are more likely to reschedule 

and the second batch as the conservative batch. The third batch of experiments use 

the aggressive batch's reschedule trigger parameters but we submitted a periodic load 

of 8 jobs onto the Ada batch queue. We will later refer to this batch as the queue 

loaded batch. The last batch of experiments uses the same reschedule parameters but 

we introduced an artificial disk write load on the Ada cluster. We will later refer 
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to this batch as the disk loaded batch. We ran the four scheduling mechanisms for 

one DAG consecutively to minimize the impact of the dynamic environment on the 

results. 

Since the turn-around time varies widely among DAGs, we use Schedule Length 

Ratio (SLR) that we defined in Chapter 2. Intuitively, a small SLR is indicative of 

a better schedule than a large SLR and a SLR greater than 1 means the real turn

around time is longer than the static estimated finish time. With four batches of 

experiments, sixteen DAGs and four scheduling mechanisms, we have a total of 256 

DAG executions. It took us about three months to collect all the schedules and their 

turn-around time. We used more than 6000 cpu hours since half of our runs did not 

finish because of various hardware and software failures. 

5.4 Results 

We now present our experimental results. Over the entire set of SLR numbers, the 

hybrid rescheduling approach outperformed the other three by as much as 45 percent. 

Figure 5.6 shows the overall results for each approach with batch queue reservations. 

The height of the bar indicates the mean SLR while the line segment shows one 

standard deviation. We can see that all approaches have a mean SLR value over 

1 which means the average turn-around time is more than the makespan computed 

by the static scheduler. This confirms our hypothesis that predicting execution time 

accurately is difficult. For our experiment, the main reason why most SLR numbers 

are greater than 1 is that our initial performance model does not take into account 

the disk and network contention. Thus, the network bandwidth and disk write speed 

are lower when multiple tasks are mapped to the same batch queue resource. We 

will further analyze the results from different experiment settings in the rest of this 

section. 

Figure 5.7 presents the results of the aggressive batch of experiment runs. Fig

ure 5.8 presents the results of the conservative batch of experiments run. The differ-



86 

Overall Performance Results 
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Figure 5.6 : Aggregate Results 

ence between these two batches are the rescheduling trigger parameters. In both cases, 

the difference of means between the hybrid rescheduling and the dynamic scheduling, 

and between the hybrid rescheduling and the static rescheduling are statistically sig

nificant with over 95% confidence level and alpha set as 0.05. The hybrid rescheduling 

also outperforms the static approach on average, but the difference is not statistically 

significant. These results echo our findings in Chapter 3 that the static approach 

works well in a more stable environment. 

In Figures 5.7 and 5.8 we can also see that the performance of static rescheduling 

is most sensitive to the rescheduling policies. While it is obvious that the static 

and the dynamic approaches are little affected by the rescheduling since they don't 

do rescheduling at all, it is interesting to see the hybrid rescheduling approach is 

virtually not affected either. The reason is that the reschedule is done in two phases 

as we described in section 5.2.1. The resource selector first selects a suitable resource 

and then the scheduler can gradually move some tasks to the new resources or leave 

them where they were depends on the estimated communication costs. Thus, the 

reschedule decision plays a less important role in our execution time since the real 
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Results of Aggressive Batch Run 
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Figure 5.7 : Results of Aggressive Rescheduling Batch 

Results of Conservative Batch Run 
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Figure 5.8 : Results of Conservative Rescheduling Batch 

migration decision is made by the scheduler. In addition, the resource selector in 

our hybrid rescheduling mechanisms provides a global view of the DAG and could 

correct the reschedule trigger mistakes by selecting the correct resources. However, 

this is not the case in the static rescheduling approach. We know that it is usually 
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Results of Queue Load Batch Run 
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Figure 5.9 : Results of Artificial Batch Queue Loads Batch 

difficult to find a good set of rescheduling trigger parameters, threshold and window 

size, that works well for all system performance changes. In our case, it appears that 

the reschedule trigger in the aggressive batch is more effective than the trigger in the 

conservative batch for the experimental system since the static reschedule performs 

30% slower in the conservative batch. However, the aggressive batch's trigger may 

not work well on other resources. Without a resource selection phase, the entire 

rest of the DAG will be remapped whenever a reschedule is triggered. Therefore, a 

bad reschedule decision can negatively affect the overall performance of a workflow 

application significantly. 

Figure 5.9 presents the results of the queue loaded batch. In this experiments, we 

submit a periodic load of queue jobs onto the Ada batch queue which is the fastest 

among the clusters we use. We can see that the external batch queue loads affect the 

static and dynamic approaches the most while the hybrid rescheduling approach again 

outperforms the others. The paired t-test shows that all the differences of mean value 

between the hybrid rescheduling and other approaches are statistically significant. 

This shows that our hybrid rescheduling approach can maintain a certain level of 
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performance when the underlying resources performance unexpectedly deteriorate. 
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Figure 5.10 : Results of Artificial Disk Write Loads Batch 

Figure 5.10 shows the results of the disk loaded batch. In this case, the extra disk 

write loads' effect not as dramatic because the tasks are not I/O bound. However, 

the static rescheduling approach suffers most because it assigns tasks to multiple 

clusters without the resource selection phase. This caused a lot of communication 

overhead when it tried to migrate the DAG when it detected the performance of Ada 

deteriorating. This experimental result also confirms that our hybrid rescheduling 

approach is effective in an unpredictable environment. 

5.5 Related Work 

As we mentioned in section 7.1, the traditional scheduling does not take into account 

that a real Grid environment is dynamic. Some efforts have been made to address 

these new complexities. 

Condor [72] and DAGMan [82] provide checkpoint and migration when a resource 

is no longer available. However, Condor does not consult a performance model or the 
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network model. The mapping decision is solely based on finding the resource that 

matches the individual task's needs. 

Sakellariou and Zhao [95] propose a low-cost rescheduling scheme which only starts 

rescheduling when the delay in a task would create a longer critical path (delay> slack 

of a successor). Their work shows improvements over the original static scheduling 

algorithms in a simulated environment. However, there is a chicken and egg dilemma 

in their approach that the slack of each sub-task can not be calculated precisely if 

the prediction of the job compute time and communication cost are not accurate. 

Rahman et. al. [67] propose a scheduling algorithm that would compute the 

critical path dynamically and schedule the task on the critical path first. Their work 

shows that the dynamic critical path algorithm can generate a better schedule by 

up to 20% in simulated environments. However, similar to Sakellariou's approach, 

the absolute latest start time (ALST) of a sub-task can not be calculated precisely 

without the assumption of known computation and communication cost. 

Yu et. al. [125] propose an adaptive rescheduling schema that takes advantage of 

additional resources during execution. Their work also shows improvement over static 

algorithms of up to 20% when new resources become available during the execution. 

However, this has limited usefulness in our multi-cluster Grid environment since the 

total number of resources is usually far greater than a single DAG's needs. This work 

is also done in a simulated environment. 

Contract-based rescheduling was implemented in the GrADS project [26] on a 

real-world testbed. Vadhiyar et. al. [114] proposed a performance oriented migration 

framework that takes into account both the load changes and the remaining execution 

times of the subtasks. However, this framework is only designed for a single iterative 

MPI job. 

Our work is closest to the GrADS project [26] but we extend it to handle workflow 

applications which, we argue, are significantly more complex and difficult to scale. 

In addition, most scheduling algorithms mentioned above assign each task to an 
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individual processor while we assign a task to a cluster or batch queue. Furthermore, 

we propose a new rescheduling mechanism and test our approaches on a real-world 

multi-cluster Grid. 

5.6 Conclusions 

The major contributions of this chapter are: (1) we propose a light-weight hybrid 

scheduling mechanism that works with local batch queue resource managers; (2) we 

propose a two-step rescheduling decision approach that mitigates the effect of a bad 

rescheduling decision; and (3) evaluate the performance of our approach in a real-

world multi-cluster Grid and confirm that it performs well. Our experiments show 

that the static scheduling approach works reasonably well in a relatively predicable 

environment but the performance predictions are usually over-optimistic. 

Furthermore, our hybrid scheduling mechanism performs better by correcting the 

prediction based on the runtime feedbacks. Our experiments also show that the run

time rescheduling policy is critical to the performance of the rescheduling approaches. 

However, if the application does not know the reason of the performance deteriora

tion, it is very difficult to general policy to work well on all resources. We apply a two 

step approach to this problem so that we can take a relatively aggressive rescheduling 

policy while leaving the real migration decision to the scheduler. Our experiments 

show that this approach works better than the single step approach, such as the static 

rescheduling mechanism we implemented, in most cases. 
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Chapter 6 

Fault Tolerance and Recovery for Workflow 
Applications 

In this chapter, we present our work that combines fault tolerance mechanisms such 

as over-provisioning and checkpoint-recovery approaches with existing workflow ap

plication scheduling algorithms. We analyze our approach's impact on the workflow 

application's performance, reliability and resource usage under different reliability 

models, failure prediction accuracies and application types. 

6.1 Introduction 

Recent developments in grid infrastructure technologies make it possible to execute 

large and distributed applications [10, 38, 17] on it. Many of these applications 

fall in the category of workflow applications we described in Section 2.2. At the 

same time, the recent growth in size and complexity of the grid infrastructure makes 

it susceptible to failures at all system levels - power supply, computing hardware, 

network, operating system, grid middleware, etc. For example, the study in Iosup et 

al. [50] shows that the mean time between failures (MTBF) on Grid5000 [44] is only 

around 12 minutes. Hence, not only is managing and scheduling workflow applications 

a hard problem studied in detail [69, 127, 122], challenges in providing reliability to 

workflow executions also arise because of the unreliable nature of the underlying 

hardware and software. 

To address the reliability challenges, existing grid systems resort to fault toler

ance and recovery mechanisms [80] such as checkpoint-recovery and over-provisioning. 

Checkpoint-recovery techniques make it possible for the workflow to resume execution 
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from the last checkpoint instead of restarting from the beginning, should a failure oc

cur. Over-provisioning [53] techniques replicate a task on more than one resource to 

increase the probability of successful execution. Although these techniques address 

the reliability challenges to some extent, to the best of our knowledge, no large-

scale study has been done on how effective they are when coupled with workflow 

management and scheduling. In this chapter, we study the performance, cost and 

effectiveness of different fault tolerance mechanisms when combined with different 

scheduling techniques. 

The main contributions of this chapter are: 

• We propose and implement several scheduling and fault tolerance mechanism 

combinations. 

• We evaluate the reliability, performance and cost of different mechanisms with 

a large scale reliability and resource model and provide a quantified model for 

the three-way trade-offs. 

• We evaluate the effect of resource reliability and the accuracy of the failure 

prediction on the reliability, performance and cost of each mechanism 

The rest of the chapter is organized as follows. Section 6.2 presents the details 

of the combined fault tolerance and scheduling techniques that we proposed and 

implemented. Section 6.3 describes our experimental design. Section 6.4 presents our 

results and evaluation. Section 6.5 presents related work and section 6.6 concludes 

the chapter with a summary of our contributions. 

6.2 Scheduling with Fault Tolerance 

Fault tolerance and recovery techniques used to mitigate the effects of workflow fail

ures in grid systems fall in two major categories: (a) checkpoint-recovery and (b) 

over-provisioning/replication. In this section, we describe how we integrated these 
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fault tolerance and recovery techniques during scheduling and execution phases. First, 

we briefly describe the two scheduling algorithms and the traditional fault tolerance 

techniques used in this study. 

6.2.1 Scheduling and Fault Tolerance Techniques 

We will use two scheduling heuristics in our study. The first one is a list based algo

rithm called HEFT [111]. Our work in Chapter 3 has shown that it performs well in 

a multi-cluster grid environment. The second is a duplication based algorithm called 

DSH that was first proposed by Kruatrachue et al. [61]. Please refer to Section 2.3.2 

for more details of both algorithms. 

Checkpoint-recovery techniques are widely used for applications that run for a 

long time. The basic idea is that a usually combined effort of the application and 

the support system stores the intermediate state of the application periodically on 

a reliable storage system. The stored state of an application is usually called a 

"checkpoint". If the application or the resource crashes during the execution of the 

application, one can restart the application from the latest checkpoint instead of 

wasting the entire work. Checkpoint-recovery is very effective for recovering from 

application failures but it can not prevent the failures. 

Over-provisioning is a more proactive techniques that duplicates an application 

onto multiple resources. In case one or more copies of the application or the re

sources fail, one can still get the result as long as at least one copy finishes. Even 

though checkpoint-recovery and over-provisioning are two different approaches, they 

can also complement each other because checkpoint-recovery techniques are applied 

mostly during workflow execution, while over-provisioning is applied mostly during 

the scheduling/planning phase. However, it is not trivial to combine them with the 

traditional workflow scheduling algorithms. 
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6.2.2 Scheduling Algorithms with Over-provisioning 

Since the HEFT and DSH scheduling algorithms themselves do not take into account 

any fault tolerance, we integrated the over-provisioning technique with the vanilla 

HEFT and DSH scheduling algorithms to develop a fault-tolerant scheduling scheme. 

Fault Tolerance Using Over-provisioning 

We use over-provisioining/replication as the primary mechanism for fault tolerance 

when scheduling workflow tasks onto resources. In the most general case, each work

flow task has performance constraints (expressed through performance models and 

deadlines) and reliability constraints (expressed through an user designated success 

probability). We will show the exact constraints we used in our experiment in the 

next section. Our goal is to find the smallest set of resources to replicate the given 

workflow task to satisfy these constraints. 

Kandaswamy et al. [53] described an effective algorithm to find the smallest subset 

of resources that satisfies these constraints for an individual task. In the cases when 

it is not possible to satisfy both the success probability and deadline constraints, the 

task over-provisioning algorithm returns all possible resource combinations tagged 

with the success probabilities for each resource set solution, so that a best-effort 

replicated set of resources can be chosen. 

The task over-provisioning algorithm that determines the set of resource the tasks 

should be replicated on uses (a) performance models for the estimation of computa

tion time on a resource for the workflow task, (b) network latency, bandwidth and 

intermediate data sizes for the estimation of data transfer times and (c) reliability 

models (based on Weibull distribution) of resources for the estimation of resource 

failure probabilities. Let the application deadline be d, the required success probabil

ity be x and [ 1 . . . M] be the set of available resources. The algorithm defines hTi to 

be the expected completion time for a task on resource ri: which is obtained by ag

gregating performance models and data-transfer time estimates. The algorithm also 
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defines mTi to be the probability that the task fails on resource rj, which is obtained 

using the reliability model as described in section 6.3.1. 

The problem is to find a subset, P = {r\,r2, • • .rm} of [ 1 . . . M] such that the 

following holds true: 

• 1 — mri x mr2 • • x mrm > x 

• \P\ is minimum 

• max(hn, hr2,- • hrm) < d 

The algorithm finds the degree and resources for over-provisioning by carefully enu

merating a selected portion of the subsets of [1..M] and returning the smallest subset 

of resources that satisfies all the conditions [53]. 

Integrating Fault Tolerance with HEFT/DSH 

The over-provisioning we described above works well for an individual task but it 

is not designed for workflow applications. Figure 6.1 describes the algorithm that 

we use to integrate the task over-provisioning algorithm with HEFT. First, we sort 

the tasks in the DAG by upward ranks. Then, we assign each task to the resource 

that has the earliest finish time. After a task is assigned, we check its predecessor 

task. If all successor tasks of the predecessor have been assigned to a resource, 

we invoke the task over-provisioning algorithm(TOP) to find a set of resources on 

which the predecessor should be replicated so that its deadline and success probability 

constraints are satisfied. We only invoke TOP to duplicate a task after all its successor 

tasks have been assigned because it takes into consideration the communication time 

when it computes the degree of duplication. We set the deadline as 30% more than 

the task's finish time without duplication and the probability constraint as 0.95. We 

assign the predecessor task to the resources in the set. If there is no resource set 

that can statistically guarantee a success probability of 0.95, the over-provisioning 

algorithm returns a set of resource sets and the corresponding success probabilities. 
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HEFT-Dup(DAG dag, Resource res, PerfModel pM) 

Task[] tasks = dag.sortTask(res) 

for each task t in the tasks 

£.mapResource(res, pM) 

t. assigned = TRUE 

for each pTask in t's parent Task 

Vector dupRes; 

if ( pTask.allChildrenAssignedQ = = True ) 

dupRes = TOP.getDupRes(pTasfc, res, pM) 

if (dupRes.isEmptyQ ) 

dupRes = TOP.getAllDup(pTas£;, res, pM) 

dupRes = dupRes. selectMostReliableQ 

for each resource r in dupRes 

if ( pTask is not assigned to r already ) 

assign pTask to r 

if (pTask replicated to LIMIT resources) 

break 

end 

end 

end 

Figure 6.1 : HEFT with Over-provisioning 

In this case, we pick the resource set with the highest reliability. We assign the 

predecessor to those resources in addition to the original one if it is not included in 

the replication resource set. We also limit the total number of resources on which 

one task can be replicated. In case the total number of resources is more than the 
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limit, we keep the resource that HEFT assigns this task to and select the subset of 

resources TOP returns that has the best reliabilities. We will discuss in section 6.4 

how this limit affects the outcome. 

Similarly, we integrate the DSH scheduling algorithm with over-provisioning to get 

the DSH with over-provisioning algorithm. The only difference is that we duplicate 

the predecessor for the performance purpose first and then invoke the TOP for better 

reliability. 

6.2.3 Scheduling Algorithms with Checkpoint-recovery 

To mitigate the effect of failures during execution time, we use checkpoint and resub

mission of workflow steps. We chose to implement a light-weight checkpoint strategy 

that saves only the current location of the intermediate data as opposed to a heavy

weight checkpoint strategy that saves the data on a separate system [80]. We made 

this choice because the performance of the heavy-weight checkpoint mechanism re

lies heavily on the reliability and performance of the backup system. This could 

lead to a chicken and egg problem since the backup system's reliability also relies on 

over-provisioning. Hence, we decided to focus on light-weight checkpointing. 

Since a workflow application consists of multiple tasks, it is natural to do a light

weight checkpoint when each task finishes. If a task fails to finish due to resource 

unavailability, we restart it on the most reliable resource that is available based on the 

reliability prediction. However, since we only implement light-weight checkpointing, 

it is possible that some of the resources on which the predecessor tasks were running 

are also not available. In this case, we restart those predecessors on new resources. 

However, this approach has a potential to cause infinite loops if a task fails repeatedly 

while its predecessors always finish after restart. Therefore, we put a limit on the 

number of times a task can restart. In our study, the limit is set to three, since our 

initial experiments showed that a higher limit did not provide better reliability and 

used more resources. 



99 

Since checkpoint and recovery happen during execution time, we can apply them 

to the over-provisioning version of HEFT and DSH directly. So, we have the following 

combined versions - (a) HEFT with over-provisioning and checkpoint-recovery and (b) 

DSH with over-provisioning and checkpoint-recovery. We will refer to the combined 

versions as over-provisioning with checkpoint version of HEFT and DSH. 

6.2.4 Whole DAG Over-provisioning and Migration 

The fault tolerance strategy described in section 6.2.2 is task based, which means 

that it only guarantees the statistical success probability of an individual task, not 

the entire DAG. For a workflow application with N tasks, with each task having a 

success probability of Sj, the success probability of the entire workflow is 

N 

SuccProboverau = Y\ Si 

i=i 

The DAG success probability can be very low when N is large. For example, the suc

cess probability of a 100-task workflow application where each task has a 99% success 

probability is only 36.6%. Therefore, in addition to the task based fault tolerance 

strategy, we also propose a whole DAG over-provisioning (WDO) mechanism that 

replicates the whole DAG onto multiple resources. 

Figure 6.2 describes the algorithm that we use for whole DAG over-provisioning. 

We first estimate the makespan of the entire DAG for each resource using the exclusive 

time estimation method developed in Section 5.2.1. We then compute the failure 

probability of the entire DAG according to each resource's reliability model. After 

we sort the resources by their failure rate in descending order, we apply a greedy 

approach that assigns a DAG to the resources with the highest reliabilities until the 

aggregated success probability is over 0.95. The aggregate success probability is 
M 

SuccProboveraU = 1 - Y\ fi 
i=i 

where fi is the failure probability of resource i and M is the number of resources. 



100 

DAG-Dup(DAG dag, Cluster res, PerfModel pM) 

TreeSet<Entry<Cluster, Double>> relSort 

float time, failProb 

for each resource r in res 

t = dag.getEstimateTime(r, pM) 

failProb = r.reliabilityModel.getFailProb(t) 

reliability Sort. put (r, failProb) 

end 

Sort resources in relSort by the reliability 

for each resource r in relSort 

calculate the aggregate success prob. 

if overall success prob < 0.95 

assign dag to r 

if ( dag replicated to LIMIT resources) 

break 

else 

break 

end 

Figure 6.2 : Whole DAG Over-provisioning 

We can also combine the whole DAG over-provisioning algorithm with the checkpoint-

recovery mechanism, which happens during the execution time. Therefore, we have 

10 different scheduling and fault tolerance mechanism combinations in total. We 

will apply these in our workflow management system and analyze their reliability, 

performance and resources usages. 
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6.3 Experimental Methodology 

To study how these fault tolerance and scheduling strategies perform in a multi-

cluster grid environment, we implemented a prototype workflow management system 

that schedules and executes a workflow application on a simulated multi-cluster grid 

based on our previous work described in Chapter 3 and Chapter 4. We use this 

system to schedule and execute workflow applications with different fault tolerance 

and scheduling techniques. In this section, we will first discuss the resource reliability 

models we use. Then, we present our experimental design which includes (a) the 

chosen resource configurations, (b) the workflow applications, (c) performance models 

used and (d) the number of experiments. 

6.3.1 Resource Reliability Model 

Recent studies [91, 50, 98, 75] show that the mean time between failures (MTBF) on 

modern high performance clusters is best modeled by a Weibull distribution [117]. 

However, the shape and scale parameters are different for each study. Nurmi et al. [75] 

and Schroeder et al. [98] report that the shape parameter is less than 1, which means 

that the hazard rates (the frequency a system or component fails) decrease with 

time. In contrast, Iosup et al. [50] report that the shape parameter is greater than 

1, which indicates an increasing hazard rate over time. Hence, we wanted to explore 

both regions for the shape parameter in our study and created two sets of reliability 

configurations - one set with shape parameter ranging between 0.5 and 0.9 according 

to Schroeder et al. [98] and the other set with shape parameter ranging between 10 

and 13 according to Iosup et al. [50]. For a given range of shape parameter, we 

generated three reliability models based on three mean values of the scale parameter 

- three days (for shaky), one week (for normal) and three weeks (for stable). Note 

that the expected value (the MTBF in our case) of a random variable that follows a 

Weibull distribution with a shape parameter k and scale parameter A is Ar(l + | ) . 

So, with two ranges of shape parameters, we explore 6 different reliability models 
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in this study. The resource failures are randomly generated following the Weibull 

distributions in the reliability model. Figure 6.3 presents the six different Weibull 

parameters in our experimental setup. 

WeiBull distribution 

[losup] 

[ Nurmi] 
[Schroeder] 

shape (k) 

scale (A) 

shape (k) 

scale (A) 

Shaky 

11.3-12.8 

28-64 hour 

0.61-0.90 

28-64 hour 

Normal 

11.3-12.8 

84-192 hour 

0.61-0.90 

84-192 hour 

Stable 

11.3-12.8 

250-650 hour 

0.61-0.90 

250-650 hour 

Figure 6.3 : Weibull Parameters in Our Experiment 

6.3.2 Experimental Setup 

We use a multi-cluster simulated grid environment with nine clusters that have the 

same processor configuration as nine sites in the TeraGrid [107]. Correspondingly, 

there is a Weibull distribution for each cluster with a pair of shape and scale param

eter. Although the scale and shape parameters are different for each cluster, they are 

within the range of one of the six models listed in Figure 6.3. For example, in a shaky 

model with large shape parameters, the nine clusters have their own distinguished 

shape parameters between 11.3 and 12.8 and scale parameters between 28 and 64 

hours. 

Similar to our approaches in Chapter 3 and Chapter 4, we generated three types of 

DAGs corresponding to three different parallel applications and algorithms - Montage, 

Fast Fourier Transform and Gaussian elimination that we described in Section 2.2.1. 

We also generated two types of DAGs that represent common parallel programming 

models - fork-join and level. For each type of DAG, we generated over 100 DAGs 
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with configurations differing in the total number of tasks, the average size of the task, 

and the computation to communication ratio. We use historical performance models 

generated from the performance data we collected in Chapter 5. The estimated 

running time of those DAGs on the clusters we use, based on the performance data 

and without duplication, range from a few hours to a month. The success probabilities 

of those DAGs range from almost zero to almost one based on the estimation we used 

in whole DAG over-provisioning (WDO) algorithm. 

In total, we used 635 different DAGs and 6 different reliability models. Since the 

failures are randomly generated, we ran each DAG and reliability model combination 

10 times. For each run, we used all 10 different scheduling and fault tolerance mecha

nism combinations so that each approach sees the same resource failures. In addition, 

we ran 3 batches of experiments allowing the number of times a task was duplicated 

or restarted from checkpoints to vary as we described in section 6.2. Therefore, we 

collected over 1 million different executions' results for each batch of experiments so 

we have 4 million data points in total. We will discuss the experiments and results 

in the following section. 

6.4 Results 

We present our experimental results for the algorithms we described in section 6.2. 

We have two basic scheduling algorithms, HEFT and DSH. We denote the over-

provisioning versions of them with an "_0" at the end and the checkpoint-restart 

version with a "_C" at the end. An "_OC" in the end means both fault tolerance 

mechanisms are applied. In addition, we have the duplication based whole DAG over-

provisioning (WDO) algorithm and its checkpoint-restart version "W_C". Figure 6.4 

shows the overall percentage of workflow applications that successfully finished after 

using one of the ten scheduling and fault tolerance technique combinations. From 

the graph, we observe that the over-provisioning mechanism can increase the DAG 

success probability by around 25% while light-weight checkpoint-restart can increase 
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Figure 6.4 : Overall Success Probability 
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Figure 6.5 : Overall Standard Length Ratio (SLR) 

the success probability by around 12%. 

Figure 6.5 shows the workflow performance for each approach. We compare the 

Schedule Length Ratios (SLRs), described in Chapter 2, of the methods rather than 

raw makespan to ensure a level playing field. In general, both high-reliability meth

ods and low-reliability methods will complete small DAGs, which can run before 
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Figure 6.6 : Overall Cpu Time Usage 

the MTBF becomes a significant factor. However, more reliable methods complete 

longer-running DAGs while other methods do not. Therefore, averaging run times of 

completed executions would clearly favor less-reliable methods, without giving insight 

into any overhead of either method. Normalizing the results using SLR avoids this 

bias. Lower SLR indicates better performance. We can see that over-provisioning 

only increases the SLR by at most 5% while checkpoint-restart increases SLR by at 

most 6%. 

The relatively small performance penalty is because the makespan for the schedule 

with over-provisioning is the same as that of the original schedule unless the original 

resource assigned by the scheduler is down. In that case, the penalty is just the 

completion time difference between the next fastest resource and the fastest one. 

Also, we see that the duplication based scheduling (DSH) has a 10% advantage over 

HEFT and produces the best schedules (i.e. lowest SLRs) among all algorithms. 

Thus, some over-provisioning decision could also make the DAG run faster in the 

same fashion. Whole DAG over-provisioning also performs better than HEFT. This 

is because WDO almost eliminates all the communication time unless there are task 
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Figure 6.7 : Success Probability with Different Reliability Models 

failures since each task's parent is already assigned to the same resource. 

Figure 6.6 shows the resource usage for each approach in terms of total CPU hours 

used. However, since each approach finishes a different number of DAGs, we divided 

the total usage into three parts in order to further analyze the result. "Used" resource 

time denotes the total CPU hours consumed by the completed tasks in the DAGs that 

successfully finished. The "wasted" resource time is the total CPU hours consumed by 

the completed tasks in the DAGs that failed to finish. The "failed" resource time is the 

total CPU hours consumed by the failed tasks no matter whether the DAG finished or 

not. The solid stacked bar in figure 6.6 thus shows the aggregated CPU hours that all 

workflows used including all three usage types. We can see that over-provisioning uses 

around 2.5 times more resources than HEFT while checkpoint restart uses 1.5 times 

more resources than HEFT (and similarly for DSH). Besides that, we also calculated 

the total CPU hour that failed DAGs would need to complete successfully, if there 

were no more resource failures. We call this the "potential" resource usage and plot 

it as a transparent bar on top of the solid bar. We can see that since HEFT and 

DSH have a lower completion rate, the "potential" resource usage is higher relative 

to the amount used. Whole DAG over-provisioning (WDO) uses 20% more resources 
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than HEFT with over-provisioning but since it completes more DAGs, it would use 

just 10% more resources than HEFT with over-provisioning (or about 5% more than 

DSH with over-provisioning) taking into account the "potential" resources to finish 

all the DAGs. 

Figure 6.7 illustrates how resource reliability affects the overall success probability 

of workflow applications with our approaches. Scale parameters affect the DAGs' suc

cess probability more than the shape parameters, we categorize our reliability models 

into three groups corresponding to the reliability characteristics of the resource. The 

results show that, using HEFT only, the average success probability of workflows 

is 32% when they are executed on the most unreliable resources, referred to as the 

shaky resources. The average success probability of workflows using HEFT only is 

83% when they are executed on the most reliable resources, referred to as the stable 

resources (similarly for DSH). We refer to the third group as the normal resources, 

where reliability is somewhere between the two. We can see that the more fault 

tolerant techniques we use, the less is the dependence of the workflow application's 

success probability on the underlying resource reliability. The success probability of 

HEFT on the stable resources is over 150% more than that on the shaky resources. 

The algorithms with over-provisioning alone has a better success probability on sta

ble than on shaky by about 80%. Meanwhile, the whole DAG over-provisioning 

with checkpoint-restart has only about 20% difference in success rate. Also, the 

less reliable the resource is, the more impact the fault tolerance techniques have on 

the success probability. The scheduling algorithms with over-provisioning improves 

the reliability average by over 50% than their base algorithms on shaky resources, 

while only by 10% on stable resources. Similarly, the scheduling algorithms with 

checkpoint-recovery improves their performance over the base algorithms by 17% on 

shaky resources but have almost the same success probabilities on stable resources. 

Finally, we notice that the whole DAG over-provisioning (WDO) and whole DAG 

over-provisioning with checkpoint-recovery (W_C) provides the best success probabil-
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Figure 6.9 : Expected Resource Usage with Different Reliability Models 

ity on all resource types. 

Figures 6.8 and 6.9 show the expected resource usage for each approach overall 

and under different reliability models. We use the expected value instead of the ac

tual value because algorithms using no or fewer fault tolerance techniques complete 
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Figure 6.10 : Performance with Different Reliability Models 

a smaller number of DAGs. Figure 6.8 illustrates the idea. To better compare their 

total resource usage, we incorporate the success rate of the approach to normalize 

the resource usage. We view the repeated run of a DAG as a Bernoulli process in a 

sense that it resembles a scientist tries to complete her DAGs on unreliable resources 

using any of our schedulers. If one run fails, she simply retries it until it succeeds. 

This is a Bernoulli process if the trials are independent. We know that the expected 

number of trials before one sees a success is 1/p where p is the success probability for 

an individual trial. We then calculate the expected resource usage for algorithm algo 

as the cpu-houraigo x 1/p. That is the expected resource one approach uses to get a 

successful execution. From Figure 6.8 we can see that the over-provisioning versions 

of the scheduling algorithms use about twice the expected resources of their base 

algorithms while the checkpoint-recovery versions use around 20% more. Figure 6.9 

shows that the over-provisioning versions of the algorithms have about 100% more 

expected resource usage than the vanilla scheduling algorithm on shaky resources, 

while they use 50% more on stable resources. We notice that WDO uses less to-
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Figure 6.11 : Fast Fourier Transform Performance 

tal expected resources than all over-provisioning and checkpoint-recovery combined 

approaches while providing higher reliability. We also measured the performance in 

terms of SLR under different reliability models, shown in Figure 6.10. The reliability 

does not affect the performance much. Each approach's SLR differences on different 

reliability models are within 10% and the difference between different approaches is 

similar to the data in figure 6.5. 

We grouped data for DAGs that represent different types of applications. Most 

of the data representing a single type of application are similar to the overall graphs. 

However, certain applications showed some distinct features . For example, Fig

ure 6.11 shows the Fast Fourier Transform(FFT) application's performance. The 

WDO technique has an almost 50% improvement over the other methods. We be

lieve that is because it eliminates all the potential communication costs that occur 

in the expensive message exchange phase of FFT while DSH would not duplicate the 

whole DAG because it would delay the start time of those tasks. 

Since failure probability prediction is hard, we tested the robustness of our fault 

tolerance approaches with respect to failure prediction accuracies. Figure 6.12 shows 
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Figure 6.12 : Success Probability with Different Failure Prediction Accuracies 

Figure 6.13 : Performance with Different Failure Prediction Accuracies 

the workflow application execution success probabilities with different failure predic

tion accuracies. The accurate prediction is the failure probability that we get from the 

Weibull distribution's cumulative distribution function. For the optimistic prediction, 

we multiply the accurate failure probability by a random number evenly distributed 

between 0 and 1. Therefore, the expected failure probability is half of the accurate 
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Figure 6.14 : Resource Usage with Different Failure Prediction Accuracies 

one. For the pessimistic prediction, we divide the accurate failure probability by a 

random number evenly distributed between 0 and 1 thus make it higher and we cap 

the pessimistic prediction under 1. From Figure 6.12 we can see that although the 

accurate prediction always leads to best success probabilities, all the fault tolerance 

mechanisms are pretty robust under inaccurate failure predictions. Figure 6.13 shows 

that the approaches' performance is minimally affected by the failure probability 

prediction. 

Figure 6.14 shows the expected resource usages under accurate, optimistic and 

pessimistic failure probability predictions, analogous to Figure 6.8. We see that the 

pessimistic prediction can lead to increases of as much as 20% in resource usages over 

optimistic prediction. It is because the over-provisioning algorithms over-replicate 

applications onto more resources than necessary under pessimistic prediction. Since 

optimistic prediction does not lead to significantly lower success probability, but does 

cause less duplication, its expected resource usage is even better than with accurate 

prediction. This suggests that it is better to err on the side of optimism in estimating 

failure probabilities, at least from the resource usage point of view. 

We believe that one reason why our over-provisioning mechanisms does not use 
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Figure 6.16 : Resource Usage with Different Replication Limits 

too many resources under pessimistic failure predictions is that we have a limit set 

for how many resources each task can be over-provisioned. The default value is set 

to 3. Thus, even if the failure prediction is too pessimistic, we will not over-provision 

too much. To show the effect of the resource limit, we also used 5 and 10 as the 
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limit. Figure 6.15 shows that it does not affect the application success probability 

does not affect more than 5%. The performance differences between different levels of 

replication are also within 5% of each other. However, Figure 6.16 shows that it does 

affect the expected resource usage. We can see that the replication limit 10 batch 

uses almost 100% more resources than the replication limit 3 batch while providing 

only less than 3% more success probability. 

Overall, our experiments evaluate the three way trade-off between reliability, per

formance and resources usage in a large-scale simulated environment. We believe 

this can be a useful reference for future workflow application developers to balance 

between these three aspects. 

6.5 Related Work 

Workflow application scheduling on grids [69, 122, 127] is an active area of research. 

Workflow scheduling has largely focused on heuristic techniques using performance 

models to qualitatively select resources and map tasks to the resources that have good 

performance [57]. Few scheduling algorithms take into account reliability of the grid 

resources. 

One of the most widely implemented fault-tolerance techniques on computational 

Grid is simple retry [80] which means the application is resubmitted on a resource in 

case of a failure. In many workflow management frameworks [72, 46], the remaining 

portion of the workflow is resubmitted in case of a failure. 

Hwang et al. [49] present a failure detection service (based on notifications) and 

a flexible framework for handling Grid failures. Therefore, we assume that a failure 

could be detected relatively shortly after it occurs in our work. Budatiet al. [15] 

present a reliability-aware system which uses a resource's prior performance and be

havior to get better performance and reliability on large-scale donation-based dis

tributed infrastructures. However, their system mainly targets P2P solving systems. 

Limaye et al. [63] have developed a checkpoint/restart mechanism that places check-
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points based on system reliability. We could incorporate their work to increase our 

checkpoint-recovery's statistic success rate. Dongarra et al. [32] use the product of 

failure rate and unitary instruction execution time to guide the scheduling of inde

pendent tasks onto heterogeneous clusters. Their work could also be used to increase 

the base line algorithm's reliability in our system. 

6.6 Conclusions 

This chapter presents workflow scheduling and execution mechanisms that incorporate 

a balanced approach toward reliability and performance which is not very sensitive 

to the underlying resource reliability prediction. It also presents a new algorithm 

that replicates the whole DAG (WDO) onto several clusters which provides the best 

reliability. Prom the experiments, we observe that the fault tolerance techniques are 

effective. They can increase the reliability of workflow executions by as much as 200% 

and do not affect performance by more than 10%. Also, we presented a quantitative 

model for the three-way trade offs between the reliability, performance and resource 

usage. We believe it could be valuable to system architectures who want to design a 

fault tolerance / high availability system. 
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Chapter 7 

Batch Queue Resource Scheduling for Workflow 
Applications 

In this chapter, we present our work on reducing the resource provisioning overhead for 

the workflow application running on batch queue controlled resources. Our approach 

groups a workflow application into several aggregations and uses the batch queue 

to acquire resources for each aggregation, overlapping queue wait time of one with 

the execution of others. We implemented a prototype of this technique and the 

experimental results show that our approach can eliminate as much as 70% of the wait 

time over more traditional techniques that request resources for individual workflow 

tasks or that acquire all the resources for the whole workflow at once. 

7.1 Introduction 

In this Chapter, we will focus on a special but very important case in the second 

step of our decoupled scheduling approach that schedules a workflow onto an individ

ual cluster to achieve the best turn-around-time. Clusters (parallel computers with 

high-speed interconnects and shared file systems) have become the most common 

high-performance computing platform. With the emergence of super clusters that 

often have more than 100k cores in one cluster [18], a single cluster now can usually 

provide enough resources for a workflow application to run in maximum parallelism. 

Therefore, it is more and more likely that the resource selector in the decoupled 

scheduling approach we used in Chapters 3, 4 and 5 will select a single cluster as a 

TightBag that provides both the high computation power and tight connections. The 

whole DAG over-provision (WDO) mechanism we proposed in Chapter 6 also dupli-
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cates an entire workflow application onto a single cluster. We therefore consider this 

special case (i.e. executing a workflow on a single cluster), and attempt to minimize 

the turnaround time in that environment. 

Workflow execution systems can get access to a cluster either locally, through col

laborative Grid organizations such as TeraGrid [107], or through national supercom-

puting centers like TACC [108]. In any case, these clusters are shared and usually 

managed by a local resource management system that has its own resource shar

ing methodology and policy. Among them, commercial or open source batch queue 

scheduling software [79, 25, 65] is the most popular resource management system. 

Section 7.2 gives more details on the background of both workflow applications and 

batch schedulers. 

The main goals of a site using batch queues are usually to achieve high throughput 

and maximize the system utilization. Consequently, many production resources have 

long queue wait times due to the high utilization levels. In addition, although it is 

not unusual for a single cluster to have several thousand processors, a single user 

usually can only obtain a small portion of the total available resources (without 

special arrangements). This creates performance problems for large scale workflow 

applications because each sub-task in the workflow could experience long delays in 

the job queue before it runs. The queue wait time overhead is sometimes much more 

than the workflow applications runtime [101]. Alternately, one could submit an entire 

workflow as a single batch queue job. However, this might cause an even longer wait 

for a larger resource pool to become available at once. 

Our work seeks to reduce workflow turnaround time by intelligently using batch 

queues. We accomplish this by aggregating workflow tasks together and submitting 

them as a single job into the queue. Section 7.3 describes our method in greater 

detail. This approach can greatly reduce the number of jobs a workflow execution 

system submits to the batch queue. By overlapping some tasks' wait times with 

others executions, we further shorten the batch queue wait times for the workflow 
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applications. As we will see in Section 7.4, our scheduling reduces the queue wait 

time overhead without requiring special system privileges and using only user-level 

mechanisms. We conclude our presentation with a discussion of related work in 

Section 7.5 and our conclusions and future work in Section 7.6. 

7.2 Background 

7.2.1 Batch Queues 

Batch queues have become the most popular resource management method on com

putational clusters. A batch queue system is normally a combination of a parallel-

aware resource management system (which determines "where" a job runs) and a 

policy based job scheduling engine (which determines "when" a job runs). We are 

mostly interested in the job scheduler component, treating the individual processors 

as homogeneous. To illustrate how this scheduler works, we describe the widely-used 

open-source Maui batch queue scheduler [51, 12]. The experiments in Section 7.4 are 

based on simulations of this scheduler. 

The Maui scheduler, like many batch queue schedulers, is essentially a policy 

based reservation system. The key idea is to calculate a priority for each job in the 

queue based on aspects of the job and the policy of the queue system. The priority of 

each batch queue job is determined by job properties, such as the requested resource 

requirements (number of processors and total time), its owner's credentials, and the 

time it has waited in the queue. These properties are combined in a formula with 

weights configured by the system administrator. For example, to favor large jobs, a 

site would choose a high (and positive) weight for the resource requirements. 

When a batch queue event happens, i.e a job finishes, a new job is submitted, etc, 

the Maui scheduler calculates all jobs' priorities and starts all the highest-priority 

jobs that it can run immediately. It then makes a reservation in the future for the 

next highest priority job according to the already running jobs' requested finish time 

to ensure it will start to run as soon as possible. Given that reservation, a backfill 
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mechanism attempts to find jobs that can start immediately and finish before the 

reservation time. Once a job begins execution, it runs to completion or until it 

exhausts its requested resources. 

Maui, like some other schedulers [73, 79, 25], can provide advance reservation ser

vices at a user level. This allows the user to request a specific number of resources for 

a given period of time, effectively gaining a set of dedicated resources and eliminating 

the queue wait time. However, advance reservation is not available at all sites, usu

ally involves system administrator assistance, and always requires notice beforehand. 

Furthermore, Snell et al. [102] showed that advance reservation can decrease the sys

tem utilization and has the potential to introduce deadlocks. We therefore assume 

advance reservation is not available in this chapter. 

One advanced feature of Maui that we do use is the start time estimation func

tionality. A user can invoke the showstart command to get the estimated start time 

of a job in the queue or a new job (specified with number of processors and dura

tion) to be submitted. This can be done by computing the job's priority, building 

(or querying) the queue's future schedule, and determining when the job would run. 

Note that, because new high-priority jobs could be submitted before the queried job 

runs, the estimate may not be exact. However, it is a useful piece of information to 

use in scheduling. 

7.2.2 Workflow Application Execution 

Executing a workflow is conceptually simple. Whenever a task is ready to execute (i.e. 

all its predecessors have completed), it can be scheduled for execution. However, doing 

this naively in a batch queue environment could potentially create long waits for every 

task to begin. Nevertheless, this is common practice. There are two general ways [52] 

(other than advanced reservations) to reduce this batch queue overhead. One way 

is to aggregate the workflow tasks into larger groups [101]. This would reduce the 

total number of job submissions needed to complete the workflow thus may leads to 
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less overall batch queue wait time. However, larger jobs may need to wait for longer 

in the batch queue for all the resources it requested to be freed. Therefore, it is 

essential to have an intelligent way to aggregate the workflow so that the total batch 

queue wait time can be reduced. The other method is to use virtual reservation 

technology [56, 78, 42, 116]. This provisioning technique enables users to create a 

personal dedicated resource pool in a space-shared computing environment. Although 

there are various implementations, the key idea is to submit a big placeholder job 

into the space shared resource site. When the placeholder job gets to run, it usually 

installs and runs a user-level resource manager on its assigned computing nodes. 

The user-level resource manager (in our case, the workflow execution system) then 

can schedule jobs onto the those computing nodes without going through the site's 

resource manager again. Our work draws inspiration from the virtual reservation 

implementation, but attempts to choose a more propitious size for the placeholder 

job. 

Figure 7.1 : Workflow Application Aggregation 



121 

7.3 Workflow Application Aggregating 

Our workflow aggregating technique groups the workflow tasks into larger units. Fig

ure 7.1 shows an example. The left side of the figure is the original DAG that repre

sents a workflow application. The right side of the figure is an aggregated version of 

the same DAG in which we group all the tasks in the same level into one aggregation. 

Our goal is to choose an aggregation that will reduce the total batch queue wait time. 

The main idea behind our approach is that we can aggregate the workflow by level 

and submit a placeholder job for the later levels before their predecessors finish. In 

this way, we can overlap the running time of the predecessor level with the wait time 

of the successor levels. 

Figure 7.2 : Workflow Application Cluster by Level 

Figure 7.2 illustrates this idea. Placeholder jobs are represented by rectangles that 

contain one or more levels of tasks. The yellow rectangles represent the wait time 

of the placeholder job in the queue. The left portion of the figure shows a grouping 

of the workflow DAG in Figure 7.1 into a single placeholder job. We can see that 

it may need a long wait time before it can start. The middle of Figure 7.2 shows 

a grouping of the same workflow DAG into two aggregations and submitting them 
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in turn. A placeholder job is submitted into the queue as soon as its predecessor 

placeholder job starts. It asks for enough resources for the tasks it holds to run in 

full parallelism. The wait time seen by the users for the later task is the dark yellow 

area marked "real wait time". We can see that it is less than the queue wait time 

for the second aggregation because of the overlap with task l's execution. Ideally, if 

the first placeholder job gets to run immediately and the later jobs' wait times do 

not exceed their predecessor's run times, the queue wait time for the entire workflow 

application is eliminated, as shown on right side of Figure 7.2. However, this perfect 

overlap cannot be guaranteed. Furthermore, if the wait time for a placeholder job 

is less than its predecessor's run time, it must pad its requested time to honor its 

dependences. In turn, this will affect the wait time of the placeholder job. Balancing 

these effects requires heuristic scheduling. 

Our algorithm consists of two interrelated parts: an application manager shown in 

Figure 7.3, and a "peeling" procedure shown in Figure 7.4. The application manager 

is responsible for launching the workflow application and monitoring its progress. In 

general, it chooses partial DAGs and submits placeholder jobs to the batch queue 

system. Individual workflow tasks execute in the placeholder jobs when those jobs 

come to the front of the queue, with the application manager enforcing their depen

dences. The peeling procedure selects the partial DAGs to minimize the exposed 

waiting time. We now consider the parts in turn. 

Figure 7.3 shows the application manager. After selecting and submitting the 

initial partial DAG (lines 1-5), the manager becomes an event-driven system. The 

primary events that it responds to are: 

• A placeholder job starts to run (lines 8-16). The manger first starts all the 

workflow tasks associated with the job whose predecessor tasks have finished. 

Then it invokes the peeling procedure to form the next placeholder job and 

submit it to the queue. 

• A placeholder job finishes running (lines 17-25). Normally, no processing is 
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needed. However, if the placeholder is terminated before all its tasks complete 

(e.g. because some predecessors were delayed in the batch queue), the manager 

must clean up. It cancels any placeholders that have not started, since some 

of their predecessors may be delayed. It also calls the peeling procedure to 

reschedule the unfinished DAG tasks (both interrupted tasks and those not yet 

run) and submits the new placeholder job into the queue. 

• A DAG task finishes (lines 26-32). The manger starts all the successor tasks 

whose placeholder job is already running. One subtlety in the application man

ager is tha t the successors of a DAG task may be in the same placeholder or 

Algorithm:runDAG (DAG dag, int sub_time) 

1 task[] partiaLdag <— levelize(dag); 

2 int count <— 0; 

3 Placeholder job <— peelLevel(partial_dag, sub_time, 0); 

4 job. name <— count; 

5 submit job; 

6 while ( dag is not finished) 

7 listen to batch queue and task events; 

8 if (placeholder job_n starts to run at time t) 

9 for all (task in job_n.getTasks()) 

10 if (all task predecessors have finished) 

11 start task; 

12 earJinTime <— job_n.runTime; 

13 partiaLdag <— levelize(dag.unmappedTasks()); 

14 job <— peelLevel(partiaLdag, t, earJinTime ); 

15 job. name < h+count; 

16 submit job; 
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Algorithm:runDAG (DAG dag, int sub_time) 

17 else if ( placeholder job_n finishes running at time t) 

18 if ( job_n has unfinished tasks) 

19 partiaLdag <— levelize(job_n.unfinishedTasks()); 

20 for all ( pending placeholder job job_m ) 

21 cancel job_m; 

22 add job_m.tasks() to partiaLdag ; 

23 Placeholder jobResub <— peelLevel(partial_dag, t, 0); 

24 map all tasks in the partiaLdag to jobResub; 

25 submit jobResub; 

26 else if ( task dagTask finishes running at time t) 

27 delete the dagTask from its placeholder job 

28 for all (dagTask's successor task chd.task) 

29 if (chd_task's associated placeholder job is running) 

30 start chd_task; 

31 if (dagTask's placehold Job has no more tasks to run) 

32 stop dagTask's placehold Job 

Figure 7.3 : The DAG Application Manager 

a different one. In the latter case, the manager must handle the possibility 

that a placeholder starts without any runnable tasks (lines 28-30). If all of a 

placeholder's tasks are finished, the manger finishes the job to free the batch 

queue resource. 

We choose to submit a new placeholder job only after its predecessor begins running. 

There are several reasons for this design. In our experience with real queues, we 

discovered that multiple outstanding jobs in the queue interfered with each other. In 

turn, this often caused the wait time for already-submitted jobs to lengthen, which 
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Algorithm: peelLevel(levelized DAG, int sub_time, int ear_time) 

1 int runTime_all, waitTime_all; 

2 int peel_runTime[2], peel_waitTIme[2]; 

3 runTime_all +- est_runTime(DAG); 

4 waitTime_all <— est_waitTime(runTime_all, DAG.width,sub-time); 

5 peel_runTime[0] <- runTime_all; 

6 peel_waitTIme[0] <- waitTime_all; 

7 int level = groupLevel(DAG,sub_time, ear.time, 

8 peeLrunTime, peeLwaitTIme); 

9 if ( level = = DAG.height) 

10 if (runTime_all * 2 < waitTime_all) 

11 return the whole remaining DAG in a batch queue job 

12 else 

13 return submit the remaining DAG in individual mode 

14 else 

15 group levels to a partiaLdag; 

16 map each dag job to the batch queue job; 

17 return the partiaLdag in a placeholder job; 

Figure 7.4 : The DAG Peeling Procedure 

both added overhead and invalidated our existing schedules. In addition, it is possible 

that the execution order of the two placeholder jobs gets reversed which leads to 

even greater schedule overhead. Therefore, we did not have a good estimate of the 

later placeholder's start time. Although our current design misses the potential of 

overlapping two placeholder jobs wait times with each other or with running jobs, we 

can calculate the earliest start time of all the remaining tasks. This is one key to the 

aggregate decision procedure described in Figure 7.5. 
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Figures 7.4 shows the peeling procedure used by the application manager. We 

refer to this process as "peeling" because it successively peels levels of the DAG off 

of the unfinished work list. First (lines 1-6), the main peelLevel function estimates 

the wait time to submit the entire DAG as a single placeholder job. It then invokes 

the groupLevel function (lines 7-8 and Figure 7.5) to search for a better alternative. 

If groupLevel does not improve the wait time (lines 10-13), the peeling procedure 

chooses to submit the DAG either as a single placeholder job or as one job per task. 

The decision depends on whether the total wait time as a single job is twice the total 

run time of the DAG. The intuition for this is that individual submission can take 

advantage of the free resources or the backfill window. When the one giant placeholder 

job's wait time is twice as long as the run time, the individual submission has a better 

chance to finish earlier. This is a heuristic parameter chosen empirically. Otherwise, 

we use the partial DAG returned by groupLevel. The expected job start estimation 

we used is a best effort approach like the showstart command in Maui. However, 

our experience shows it is a reliable indicator of the wait time with one experiment 

showing the average estimated wait time is within 5% of the average actual wait time 

although the variance is high. 

Figure 7.5 shows the key groupLevel procedure. Although the logic is somewhat 

complex, in essence we perform a greedy search for an aggregation of DAG that 

has enough granularity to hide later wait times and is wait-effective. We define 

the wait effectiveness of a job as the ratio between its wait time and its running 

time; a smaller ratio is better. The intuition behind this is that we want a job to 

either wait less or finish more tasks. However, we do not search for the globally best 

wait-effectiveness. This is because, once we group several layers of the DAG into a 

wait-effective aggregation, any later jobs' wait time can be overlapped with run time 

of this aggregation. Continually adding levels onto the current aggregation forfeits 

this benefit for the following levels. 

Here is some more detailed explanation of our algorithm. After some initialization 
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in lines 1-6, the main loop in lines 8-37 repeatedly moves one DAG level from the 

remaining work to the next placeholder job until the aggregation is less wait-effective 

than the previous round. For each candidate job, lines 9-18 adjust the placeholder's 

Algorithm: groupLevel (levelized DAG,int sub_time, int ear_sTime, 

int peel_runTime[2], int peel_waitTIme[2] ) 

1 int real_runTime[2]; 

2 int runTime_all, waitTime_all,leeway; 

3 runTime_all <— peel_runTime[0]; 

4 waitTime_all +— peel_waitTIme[0]; 

5 real_runTime[0] <— peel_runTime[0]; 

6 partiaLdag <— level one of DAG; 

7 boolean giant <— true; 

8 while partiaLdag ! = DAG 

9 peel_runTime[l] <— est_runTime(partial_dag) 

10 real_runTime[l] *— peel_runTime[l]; 

11 do 

12 peel_runTime[l] <— peel_runTime[l]+ leeway/2; 

13 peeLwaitTimefl] <— 

14 est_waitTime(peel_runTime[l], DAG.width,sub_time); 

15 leeway<— ear _sTime + real_runTime[l] - peel_waitTIme[l]; 

16 while leeway > 10 mins 

17 if (leeway > 0) 

18 peel_runTime[l] <— peel_runTime[l] + leeway; 

19 int reaLWaitTime <— peeLwaitTimefl] - ear_sTime; 

20 if ( reaLWaitTime < 0) 

21 reaLWaitTime <— peeLwaitTimefl]; 
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Algorithm: groupLevel (levelized DAG, int sub_time, int ear_sTime, 

22 if (giant) 

23 if (real.WaitTime > real_runTime[l]) 

24 add one level to partiaLdag; 

25 continue 

26 giant <— false; 

27 if (peel_waitTime[lj - ear_sTime > 0 ) 

28 if ( peeLwaitTimefl] / real_runTime[l] 

29 > peel_waitTime[0] / real_runTime[0] ) 

30 break; 

31 if ( peeLwaitTime[l] / real_runTime[l] 

32 > waitTime_all /runTime_all ) 

33 break; 

34 peel_waitTime[0] <- peeLwaitTimefl] 

35 peel_runTime[0] <- peel_runTime[l] 

36 real_runTime[0] <- real_runTime[l] 

37 add one level to partiaLdag; 

38 if (giant) 

39 return DAG.height; 

40 else 

41 return partial_dag.height-l; 

Figure 7.5 : The Peel Level decision Procedure 

requested time to allow the workflow tasks to complete. As the left side of Figure 7.6 

shows, this is sometimes necessary because the (estimated) queue wait time is less 

than the time to complete the current job, creating what we term the leeway. A 

simple iteration adds the leeway to the job request until it is insignificant. (Of course, 

if the wait time is more than the time to execute predecessors, then no adjustment 
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Figure 7.6 : Workflow Application Level Decision 

is needed, as in the right side of Figure 7.6.) The loop then operates in one of two 

modes based on whether a good aggregation has been identified. If no aggregation has 

been selected, more levels are added until the real run time is significant enough to 

create overlap for the next aggregation(lines 19-25). Once this happens, the current 

candidate is marked as a viable aggregation. From then on, levels are added only 

while the wait-effectiveness of the aggregation continues to improve (lines 27-37). 

7.4 Experiments 

7.4.1 Experimental Methodology 

To test the performance of our algorithm, we developed a prototype batch queue sys

tem simulator that implements the core algorithms of the Maui batch queue sched

uler described in [51]. The input of the system is a batch queue log obtained from 

a production high performance computing cluster and a batch queue policy configu

ration file. The log contains the pseudo user id, submission time, start time, finish 

time, requested number of resources and time, and finish time for each job. I use 
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the job's submission time and the request information to compute the priority. Our 

system simulates the batch queue execution step by step based on the input. We 

also implemented the job start time estimation function (the showstart command). 

The estimation is based on the batch queue policy and all the existing queued and 

running jobs' maximum requested time. It does not forecast any future job submis

sions. Therefore, it is a best effort estimation within the knowledge of a batch queue 

scheduler. 

We implemented the methods of Section 7.3 to submit placeholder jobs to this 

simulator. We also implemented the runtime algorithm depicted in Figure 7.3, using 

events generated by our simulator to drive the workflow management. We also im

plemented two other ways to execute a workflow application on a batch queue based 

resources. The first is a straightforward way to submit each individual task to the 

batch queue when it is available to run, which we will refer to as the individual sub

mission method. The second is to submit a giant placeholder job that requests enough 

resources for the entire DAG to finish, which we will refer to as the giant submission 

method. We compare our algorithm, which we will refer to as the hybrid submission 

method, to the individual and giant method by simulating a DAG submission into 

the queue using different methods with exactly the same experimental configuration. 

7.4.2 Experimental Setting 

We generated DAG configurations for five workflow applications - EMAN, Montage, 

BLAST, FFT, and Gaussian Elimination described in Section 2.2.2. For each appli

cation, we used a similar approach as in our previous Chapters to generate 25 config

urations for different data sizes. The total number of tasks in a workflow ranges from 

dozens to thousands, maximum parallelism ranges from 5 to 256, and total running 

time ranges from several hours to a week. 

We gathered batch queue logs from four production high performance computing 

sites with different capacities and batch queue management systems. Figure 7.7 lists 
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Cluster 

Lonestar 

Ada 

LeMieux 

RTC 

Star 

Institution 

Texas Adv. Computing Center 

Rice University 

Pittsburgh SuperComp. Center 

Rice University 

University of Arkansas 

Batch 

LSF 

Maui 

Custom 

Maui 

Moab 

Length 

12 Mon. 

12 Mon. 

12 Mon. 

12 Mon. 

10 Mon. 

Figure 7.7 : The Clusters 

the five clusters we studied at those sites. From each log, we collected all the jobs that 

terminated (either finished or reached the requested time limit) and their requested 

number of processors, requested running time, submission time and user id (used only 

for the user fair share computation). We also obtained the start time and finish time 

of each job to compute the actual job run time. Since most sites don't publish the 

details of their queuing policy and it can change from day to day, we generated three 

policies that favored large jobs (FL), small jobs (FS) or jobs that stay in the queue 

the longest (FCFS). These policies are derived from real site policies which all have 

a cap value on the resource component of the priority. For example, the FL policy 

does not assign a higher priory for a large job beyond a certain size. Each policy has 

a queue wait time component which does not have a cap value to avoid starvation. 

The FCFS policy has a particularly large weight on the wait time component. 

Figure 7.8 shows our experimental settings. Since the batch queue loads and 

number of jobs in the queue fluctuate widely, the results of our algorithms depend 

highly on the time we simulate the submission. Therefore, we run each experimental 

configuration combination starting at 100 random times during the batch queue log's 

available time and report the mean results. In total, we ran over 700,000 experiments. 
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Algorithms = {individual, giant, hybrid} 

Workflow Application = {EMAN, Montage, BLAST, FFT, Gaussian} 

DAG = { 25 for each workflow application} 

Batch Queue Logs = {Lonestar, Ada, LeMieux, RTC, Star} 

Batch Queue Policies = {FL, FS, FCFS} 

Figure 7.8 : The Experiment Settings 

7.4.3 Result Analysis 

Figure 7.9 shows the average wait time of all workflow applications on five clusters. 

The wait time is defined as the 

1 1Tfl&wan 1 lfTl&turn_aroun(i-time -* ^f^^DAG 

where Time DAG is the time to run the DAG on the cluster with exclusive access. 

All but one of the differences between averages are statistically significant on a two-

tailed paired t-test with p-value set at 0.05. We can see that our hybrid scheduling 

and submission method consistently has the least average wait time among the three 

execution methods. The single exception is on cluster Ada with queuing policy that 

favors large jobs, and that is the only statistical tie. In addition, our results indicate 

that, although the batch queue policy determines each job's priority, it does not 

affect our qualitative results significantly. However, the average wait time from each 

cluster varies greatly. For example, the average application wait time on the Lonestar 

cluster is only a fraction of the other four clusters. Furthermore, while the individual 

submission method waits significantly more time on the Ada and LeMieux clusters 

than the giant method, it waits much less time than the giant method on the RTC 

and Star clusters. 
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Cluster 

Lonestar 

Ada 

LeMieux 

RTC 

Star 

Cluster Size 

5000 core 

520 Core 

2048 Core 

270 Core 

1200 Core 

Mean Jobs 

per Day 

932 

1342 

251 

108 

108 

Mean Job 

Width 

26.18 core 
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Figure 7.10 : Cluster Configuration and Batch queue Job Characteristic 

Since we ran the same set of experiments on each cluster, we hypothesized that the 

differences in the outcomes were the results of each cluster's unique combination of its 

configuration and usage pattern. Therefore, we further analyzed the characteristics 

of each cluster's batch queue jobs. We calculated averages for the number of jobs 

submitted each day, requested number of processors, actual time a job runs, requested 

CPU hours a job requests, the actual load and the requested load of the system over 

the duration of each log file. The actual load is calculated by dividing the total CPU 

hours used by the cluster's maximum capacity and the requested load is calculated by 

using the total CPU hours requested. Figure 7.10 presents each cluster's configuration 

and our calculations. The results clearly show each cluster has its own unique usage 

pattern, and we can use this to explain the variance in our experiment results. For 

example, Lonestar cluster has the largest computing capacity among the five clusters. 

This explains why the average wait time of workflow application on Lonestar is much 

less than on the other clusters since the it's much easier for Lonestar to fulfill the 

resource demand of the same workflow application than other clusters. The batch 

queue usage pattern can also affect the execution results in more subtle ways. 

Figure 7.10 shows that the Ada cluster users tend to submit small jobs both in 

terms of processors and CPU hours. However, Ada's actual load is not particularly 
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light and it has a large number of jobs submission each day. This explains why 

the giant method is more effective on Ada than the individual method when the 

queue policy favors large jobs (see Figure 7.9). It is because the giant placeholder 

job would usually be the job with the highest priority in the queue and thus could 

start early. On the other hand, the individual job submission is less effective not only 

because the queue policy favors large jobs but also, since most jobs in the queue are 

small jobs, there are fewer opportunities to schedule an individual job by backfilling. 

However, Figure 7.9(c) does not show a very clear picture of why the giant method 

still performs relatively well when the policy favors small jobs (although the difference 

is much less). Figure 7.11 depicts more clearly the effect of the queue policy on the 

outcome for each method. We calculated the average of the relative wait time In 

Figure 7.11 by dividing each application's wait time by its running time before we 

computed the mean. In this way, we give each workflow's wait time an equal weight in 

the final result. Now, we can see that giant method actually performs worse when the 

queue policy favors small jobs in terms of relative wait time. Nevertheless, our hybrid 

method performs the best in terms of relative wait time under all three queue policies 

since it uses feedback from the batch queue scheduler. Combined with the results 

in Figure 7.9(c), we see that the giant method works relatively better for the bigger 

DAGs while the individual method works relatively better for the smaller DAGs. 

We can also deduce from Figure 7.10 that the users of the Star cluster request 

long run times but not as many processors. In addition, we notice that the average 

requested load on Star is almost five times more than the actual load, the highest 

among all clusters we tested. This means the Star users tend to request many more 

CPU hours than they actually use. This can partially explain why the individual 

submission method works well on Star since the system reserves resources for the next 

highest priority job based on the running jobs' requested time. When a job finishes 

early, it creates a backfill window, so Star would have many backfill opportunities 

based on its usage pattern. Small jobs, as generated by the individual method, are 
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Figure 7.11 : The Effect of Queue Policy on Ada 

more likely to be able to use these backfill slots. However, this does not explain why 

the giant method works better under a queue policy that favors small jobs on Star 

cluster. 

We computed the average resource usage for our workflow applications on the 

clusters with FS queue policy. The resource usage for a workflow application is the 

sum of the actual running times for all placeholder jobs submitted into the queue. 

We gather this information by record the actual start, finish time and the number of 

processors each placeholder job requested. The wait time is not included. Figure 7.12 

shows that the giant submission method uses almost three times more resources than 

the individual method while our hybrid submission method uses 10-20% less than the 

giant method. In both the hybrid and giant method, the additional CPU usage is 

mainly due to resources allocated to the placeholder according to the level with the 

maximum parallelism but not used on the other levels. On the Star cluster, we can see 

that the average giant placeholder job uses less than 600 CPU hours while Figure 7.10 

shows the average job on Star requests over 1000 CPU hours. This means the giant 
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jobs are actually small compared to other jobs' requests (although, again referring to 

Figure 7.10, not their actual run time). This explains why all the execution methods 

work better under the queue policy that favors small jobs on the Star cluster. At 

same time, we can see that the idle processor overhead for both the giant and hybrid 

methods can be substantial. Despite the large job size and inaccurate job request on 

the Star cluster, our hybrid method again has the lowest mean wait time. 

Figure 7.10 also explains the giant method's ineffectiveness on the small RTC clus

ter. When virtual reservations in the giant method request more than 128 processors 

(which about 30% of the total workflows do), it takes more than half the cluster. 

Even when the queue policy favors large jobs, such a job cannot run until almost 

all of the already running jobs on RTC finish. Figure 7.13 presents the average wait 

time of the workflows that require less (small DAG) or more (large DAG) than 128 

processors on the RTC cluster. It shows the giant method indeed suffers the most 

when a single workflow application requires too much of the entire cluster. The same 

would be true for placeholders generated by the hybrid method, but the estimated 
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wait times prevent our scheduler from generating such pathologies. As a result, the 

hybrid method submits nearly all the big DAGs in individual mode on Ada, perform

ing competitively with the individual method and handily beating the giant method. 

On small DAGs, the hybrid method finds appropriate-sized placeholder jobs, and is 

able to outperform both other policies. 

Figure 7.10 shows why the hybrid method performs the best on the LeMieux 

cluster. We can see that the LeMieux cluster's ratio of requested load to actual load 

is the lowest, which means that users do a good job in estimating their jobs' running 

time. That greatly improves the accuracy of the batch queue start time estimation 

and in turn reduces the opportunities for individual jobs to be backfilled. In short, 

the individual method has no leverage to schedule its small tasks. On the other end 

of the spectrum, the accurate wait time estimation helps the hybrid method avoid 

submitting large requests that would endure long waits, as the giant method is prone 

to do. As a result, we see a better advantage for the the hybrid method on LeMieux 

than any other cluster. Furthermore, LeMieux also has the highest actual load and 
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Figure 7.14 : Results on All Clusters With FL Policy 

its jobs request the most processors which makes it hard for the giant method to get 

the highest priority and get to run quickly. Our hybrid execution method is more 

effective since we can choose the best granularity of the cluster so that they can get 

to run early and overlap the wait time with the previous cluster. 

The type of workflow application can also affect the performance of the execution 

methods. Figure 7.14 shows the average wait time of the five workflows we tested 

averaged across all the clusters under the FL policy. While the giant method is best 

for Gaussian elimination, it is worst for the other four applications. The difference 

lies in the application configuration as shown in Section 2.2.2. The Gaussian elimi

nation workflow has the most levels relative to the number of tasks among our test 

cases. EMAN and Montage both have a constant number of levels, and FFT grows 

logarithmically to a total of level 20 in our test while the longest Gaussian DAG has 

over 100 levels. Since the tasks in the individual submission method have to wait for 

the previous level to finish before they can be submitted into the queue, there are 

more stalls for the Gaussian workflow than other applications. Another reason is the 
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maximum parallelism for a Gaussian placeholder is 55 while other applications have 

up to 256 in our experimental settings. As we saw in Figure 7.13, the giant method 

performs better than the individual method when a DAG's maximum parallelism is 

small relative to the cluster. The giant method results on RTC cluster alone increase 

the average wait time for all the applications but the Gaussian workflow. Again, we 

see that our hybrid algorithm consistently has the least wait time for any workflow 

applications we tested. 

7.5 Related Work 

Brevik et al. [14] provided upper bound prediction of the queue wait time for an 

individual job. They used a binomial model and historical traces of job wait times in 

the queue to produce a prediction for a user specified quantile at a given confidence 

level without knowing the exact queuing policy of the resource. We use the estimate 

provided by the system itself, but in principle we could use any predictor. 

There are several techniques for a user to reserve resources in a batch queue system 

without using the system's advanced reservation function. Condor glide-in [42] is 

used to create condor [82] pools in a remote resource. Nurmi et al. [78] implemented 

probabilistic based reservations for batch-scheduled resources. The basic idea is to 

use their wait time prediction [14] to choose when to submit a job so that it runs 

at a given time. Walker et al. [116] developed an infrastructure that submits and 

manages job proxies across several clusters. A user can create a virtual login session 

that would in turn submit the user's jobs through a proxy manager to a remote 

computing cluster. Kee et al. [56] developed a virtual grid system that allows a user 

to specify a number of resource reservations. Our work is inspired by these techniques 

to get a personal cluster from a batch queue controlled resource for each aggregation 

of tasks in the workflow application. 

Limited research has been done on scheduling a workflow application on a batch 

queue controlled resources. Nurmi et al. [76] took into account the queue wait time 
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when each individual task in a workflow application is scheduled. Singh et al. [101] 

demonstrated the effectiveness of aggregating a workflow application using the Mon

tage [10] application. Our approach builds on top of their ideas by dynamically 

choosing the aggregation for the workflow, whereas they use static mappings. 

7.6 Conclusions and Future Work 

In this chapter, we presented an algorithm that creates aggregations from a workflow 

application and submits them when the previous aggregation begins to run in the 

batch queue. The aggregation's granularity is computed to minimize the total wait 

time experienced by the workflow by overlapping most of the wait time and running 

time between the aggregations. By using system-provided estimates of the current 

queue wait time, we were able to substantially improve turn-around-time over the 

standard strategies of submitting many small jobs or a single large job. The results 

that we collected from running over half a million experiments using logs from five 

production HPC resources showed that our hybrid execution method consistently 

results in less overall wait time in the batch queue. We were able to accomplish this 

without any inside knowledge of the site policies, software/hardware configurations 

or usage patterns. 

Not every batch queue resource management softwares provides the earliest job 

start time estimation, so in the future we would like to integrate this feature into 

open source systems. Moreover, we believe that providing support for workflow DAGs 

directly in the batch queue software would be a valuable service to users, particularly 

when coupled with intelligent scheduling techniques such as those we have presented. 
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Chapter 8 

Conclusion 

The objective of this dissertation is to develop new techniques to automate the process 

of running workflow applications on heterogeneous, distributed Grid systems and 

achieve good performance and reliability. To achieve this objective, the research 

leading to this dissertation resulted in designing and implementing novel approaches 

to schedule workflow applications. 

8.1 Contributions 

The primary contributions of this dissertation include: 

• In Chapter 3, we investigated the performance of the scheduling algorithms 

in multi-cluster Grid environments. We are the first to compare the perfor

mance of two major classes of scheduling algorithms and to investigate the 

reason why some do not perform as expected. We also introduced the effective 

aggregated computing power (EACP) concept and showed it could drastically 

enhance scheduling algorithms' performance for applications that involve heavy 

communications. 

• In Chapter 4, we studied the scalability of the scheduling algorithms and found 

that scalability of traditional scheduling algorithms could be a problem in a large 

Grid environment. We developed a generic approach to address this problem. 

We further verified that it improved the scalability of scheduling algorithms 

while achieving comparable performance. 

• In Chapter 5, we measured how the resource performance unpredictability of a 
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Grid environment affects the scheduling algorithms. Based on our observations, 

we developed an application execution framework with performance feedbacks 

to address this issue and showed that combining the dynamic and static schedul

ing techniques can lead to good workflow application performance in a dynamic 

and unpredictable computing environment 

• In Chapter 6, we modeled the reliability of large multi-cluster Grid systems 

and also the success probability of a workflow application running on such re

sources. We incorporated traditional fault tolerance techniques into workflow 

application scheduling heuristics and demonstrated how effective they are. We 

also estimated the additional resource usage. 

• In Chapter 7, we proposed a novel DAG aggregation algorithm that can reduce 

the resource provisioning overhead for a workflow application on a batch queue 

controlled resource. The algorithm reduces the overall wait time by aggregating 

a DAG into several components and submitting each component into the batch 

queue so that its wait time is overlapped with its parent component's run time. 

8.2 Future Work 

The strategies and techniques developed in this dissertation are not only steps toward 

making Grid programming easier and efficient, they also can lead to future researches 

on various related platforms. Here are three closely related areas where we see good 

potential for us to explore many interesting ideas. 

Workflow application manger. Although our dissertation developed new and 

effective techniques to help run a workflow application on a large distributed Grid 

environment, it would be great to put all the work together and build an open source 

workflow application manager. The application manager would incorporate all the 

techniques we developed in this dissertation into some existing workflow execution 

engines, such as Pegasus [89], and provide the performance and reliability we demon-
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strated in our prototype implementations. The application manager would also be a 

valuable infrastructure on which we conduct future research experiments. It would be 

very helpful if the high performance computing (HPC) community would embrace our 

work and use the application manager to execute large scale workflows on production 

resources. This would help us identify the weakness of our work in a real production 

environment and not only motivate our future researches but also verify our results. 

Parallel computing. Most scheduling algorithms for workflow applications are 

derived from traditional instruction or thread/process scheduling algorithms. The 

latest trend towards multi-core in the commodity hardware domain makes it possible 

to apply our findings to the future many-core based parallel computing infrastruc

tures. It is because the model of multi-threaded (multi-process) computation in a 

run-time system can be modeled as a directed acyclic graph(DAG), they are essen

tially workflow applications at a lower level (finer grained). 

Furthermore, as a single processor gets more and more cores, it can no longer 

keep a flat connection between cores. In addition, with the development of GPGPU 

(General Purpose computation on Graphics Processing Units) and Cell processors, 

the cores are no long homogenous in a single chip. These features make a multi-core 

processor machine resemble a multi-cluster Grid environment because not only the 

processing speeds of the heterogenous cores are different but the communication times 

between the cores are also not the same. Therefore, workflow scheduling is essential 

to enhance the performance of shared memory programs, such as those written in 

openMP [27], on a multi-core processor. Scheduling is also very important for parallel 

programs written in partitioned global address space (PGAS) such as Chapel [19], 

X10 [21],and Co-Array Fortran [33]. This is because in a partitioned global address 

space the program usually makes asynchronized calls, either implicitly or explicitly, 

that require communication between a pair of processors. Different communication 

patterns can greatly affect the program performance thus a good scheduling algorithm 

is essential to minimize unnecessary communications between processors in different 
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partitions which would be more costly than within a partition. For the similar reason, 

languages that target both shared memory and distributed memory architectures like 

High Performance Fortran [64] and Habanero [85] could also use workflow scheduling 

to enhance the program performance. 

Compared with Grid workflow application scheduling, the multi-thread/process 

scheduling environment usually has less and fewer resource performance fluctuations 

which makes performance prediction very difficult. Therefore, to some extent, multi-

thread/process scheduling is actually less challenging than Grid workflow application 

scheduling and it could determine the performance of the application more. We 

believe our dissertation experience can be applied to the parallel computing domain 

and improve the performance of future multi-core based parallel computing. 

Cloud computing Another major development in the high performance domain 

recently is the emergence of cloud computing. Although there is no exact definition 

of cloud computing, most cloud computing infrastructure, with the help of virtu-

alization techniques, enable users to create customized computing environments on 

demand. In general, there are three types of cloud computing. The first one is public 

cloud computing. A public cloud is maintained by an off-site third-party provider. 

It provides some sort of computing power (either hardware or software) in a flexible 

lease term and bills the user based on resource usage. Amazon EC2 [36] and Google 

App Engine [37] are two of the more influential cloud computing services with the 

former providing cloud infrastructure (hardware) and the later providing platform 

(software). The second type of cloud computing is private cloud computing. It es

sentially emulates public cloud computing on private networks since many companies 

hesitate to move their critical services off-site. The third type of cloud computing is 

a hybrid cloud that is a mix of a public cloud and a private cloud. 

Although the virtualization techniques make the resources appear homogenous, 

the underlying resources are still distributed. Thus, we think cloud computing is 

another platform on which we can adept our techniques to run workflow applications. 
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For example, a public cloud computing site usually charges users by usage, we can ex

tend our scheduling algorithms to provide a balanced approach towards performance 

and cost for the user. However, there are some differences between a traditional Grid 

and a cloud that affect the effectiveness of our approaches on a cloud. For example, 

a public cloud usually abstracts away the network topology or configuration under

neath it. This makes the fine grained style of scheduling in our dissertation work 

not applicable directly although we can measure the or monitor the bandwidths and 

latencies between each node pairs. However, most of our work can be applied directly 

on private clouds. 

8.3 Conclusions 

In this thesis, we investigated an important class of workflow application scheduling 

problem and explored the potential of Grid computing. Although Grid computing, 

like many other once promising disruptive technologies, does not live up to the high 

expectation we originally projected, the research work that we did nevertheless help 

advance the state-of-the-art of high performance computing in general. These efforts 

not only help us gain in-depth knowledge of the large scale distributed computing 

but also teach us lessons that we could use to avoid set-backs in our future endeavor. 

In the end, just like Albert Einstein said, "if we knew what it was we were doing, it 

would not be called research, would it?" 
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