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1. Introduction  

The ubiquitous Internet as well as the availability of powerful computers and high-speed 

network technologies as low-cost commodity components are changing the way computing 

is carried out. It becomes more feasible to use widely distributed computers for solving 

large-scale problems, which cannot often be effectively dealt without using a single existing 

powerful supercomputer. In terms of computations and data requirements, these problems 

are often resource intensive due to their size and complexity. They may also involve the use 

of a variety of heterogeneous resources that are not usually available in a single location. 

This led to the emergence of what is known as Grid computing. Grid computing enables 

sharing of heterogeneous distributed resources across different administrative and 

geographical boundaries [3]. By sharing these distributed resources, many complex 

distributed tasks can be performed in a cost effective way. The way the resources are 

allocated to tasks holds a pivotal importance for achieving satisfactory system performance 

[4]. To perform efficiently, the resource allocation algorithm has to take into account many 

factors, such as, the system and workload conditions, type of the task to be performed and 

the requirements of the end user.  

To devise more efficient allocation algorithms, it may be useful to classify the given tasks 
into predefined types based on similarities in their predicted resource needs or workflows. 
This classification of tasks into various types provides the possibility to customize the 
allocation algorithm according to a particular group of similar tasks. This chapter presents 
an effective resource management middleware developed for a type of resource-intensive 
tasks classified as Processable Bulk Data Transfer (PBDT) tasks. The common trait among 
PBDT tasks is the transfer of a very large amount of data which has to be processed in some 
way before it can be delivered from a source node to a set of designated sink nodes (Ahmad, 
I & Majumdar, S. , 2008). Typically, these tasks can be broken down into parallel sub-tasks, 
called jobs. Various multimedia and High Energy Physics (HEP) applications can be 
classified as PBDT tasks. The processing operation involved in these tasks may be as simple 
as applying a compression algorithm to a raw video file in a multimedia application; or, as 
complex as isolating information about particles pertaining to certain wavelengths in High 
Energy Physics (HEP) experimentations [22][25]. Performing PBDT tasks requires both 
computing power and large bandwidths for data transmission. To perform such resource-
intensive tasks, in recent years, research has been conducted in devising effective resource 
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management middleware which has led to the creation of various efficient technologies. In 
order to provide a satisfactory performance, these systems must optimize the overall 
execution time (or makespan) of the resource-intensive tasks. This requires efficient 
allocation of the resources for the sub-tasks (called jobs in this paper) of the PBDT tasks at 
the individual machines of the network of nodes.  

The problem of optimally scheduling these sub-tasks is a well-known NP complete problem 

[12]. To tackle it, various heuristics-based algorithms that can generate near-optimal 

solutions to optimization problems in polynomial times are devised. In this chapter a Bi-

level Grid Resource Management System abbreviated as BiLeG is presented, in which the 

decision-making module is divided into two separate sub-modules. The upper level 

decision-making module is called the Task & Resource Pool Selector (TRPS). It selects a task 

from the given bag-of-tasks for which resources are to be assigned and chooses a partition of 

resources available for this chosen task (called the resource-pool of this task) which is 

typically a subset of all the resources available. The lower level decision-making module is 

called the Resource Allocator (RA), which uses an assignment algorithm to decide how the 

resources(from the chosen resource-pool) are allocated to the jobs, in a given task. Various 

algorithms can be used at RA whereas various policies can be deployed at TRPS. A 

particular combination of a TRPS policy and a RA scheduling algorithm deployed at a time 

is called an allocation-plan which determines the resource allocation for each task in the 

given bag-of-tasks. The following notation is used in this paper to write an allocation-plan: 

TRPS Policy, RA-Algorithm>. Investigating the choice of the most appropriate allocation-

plan under a specific set of workload and system conditions is the focus of this chapter. 

The main contributions of this paper are summarized. 

1. It proposes the ATSRA algorithm and two extensions based on constraints relaxation 
technique. 
Based on simulation, it analyses the performance of the proposed algorithms for 
different number of available Grid nodes. 

2. The experimental results capture the trade-off between accuracy in resource allocation 
and scheduling overhead both of which affect the overall system performance. The 
chapter discusses under which circumstances the proposed original algorithm or its 
extensions should be used. 

The rest of the paper is organized as follows. In Section 2, different approaches to resource 

allocation of tasks on Grids are presented. In Section 3, PBDT tasks are described. In Section 

4, the problem being solved is defined and an overview of the proposed system is presented. 

In Section 5 policies are described. In Section 6, the concept of Architectural Templates is 

described. In Section 7, a Linear Programming (LP) based algorithm and its extensions are 

described that can be used to perform PBDT tasks. In Section 8, experimental results are 

presented. Finally, in Section 9, the chapter is concluded. 

2. Approaches to resource allocation of tasks on grids 

Different researchers have taken various approaches to resource allocation of Tasks on 

Grids. The approaches to allocate resources in Grids can be divided into three broad 

categories.  
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1. Traditional Schedulers and Resource Brokers  
2. Policy based Resource Allocation  
3. Workflow based Resource Allocation  

Each of these approaches is discussed in a following subsection. 

2.1 Traditional schedulers and resource brokers 

One of the traditional approaches is to use a Grid resource broker which selects suitable 
resources by interacting with various middleware services. Venugopal describes such a Grid 
resource broker that discovers computational and data resources running diverse 
middleware through distributed discovery services [12]. However, any mechanism for 
breaking a given task into parallel jobs for processing, is not present. 

YarKhan and Dongarra [22] have also performed scheduling experiments in a Grid 
environment using simulated annealing. To evaluate the schedules generated by the 
simulated annealing algorithm they use a Performance Model, a function specifically 
created to predict the execution time of the program. Generating such a Performance Model 
requires detailed analysis of the program to be scheduled. 

Another effort worth mentioning is Grid Application Development Software (GrADS) 
Project [2]. At the heart of the GrADS architecture is an enhanced execution environment 
which continually adapts the application to changes in the Grid resources, with the goal of 
maintaining overall performance at the highest possible level. A number of resource 
allocation algorithms can be used at GrADS to schedule a given bag-of-tasks in Grid 
environments. Due to the NP-complete nature of the resource allocation problem the 
majority of proposed solutions are heuristic algorithms [14] [18] [20]. 

2.2 Policy based resource allocation 

For resource allocation in Grids, some researchers have also proposed policy based resource 
allocation techniques. Sander et al. [12] propose a policy based architecture for QoS 
configuration for systems that comprise different administrative domains in a Grid. They 
focus on making decisions when users attempt to make reservations for network bandwidth 
across several administrative network domains that are controlled by a bandwidth broker. 
The bandwidth broker acts as an allocator and establishes an end-to-end signalling process 
that chooses the most efficient path based on the available bandwidth. The work presented 
in [13] is concerned with data transmission costs only; whereas the research presented in 
this research needs to consider both computation and communication costs associated with 
the PBDT tasks. Verma. et al. [19] has also proposed a technique in which resource 
allocation is performed based on a predefined policy. But in this research, the resource 
allocation is not based on any performance measure. 

2.3 Workflow based resource allocation 

Many recent efforts have focused on scheduling of workflows in Grids. [16] presents a QoS-
based workflow management system and a scheduling algorithm that match workflow 
applications with resources using event condition action rules. Pandey and Buyya have 
worked on scheduling scientific workflows using various approaches in the context of their 
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GridBus workflow management effort [11] [23]. [23] has developed an architecture to 
specify and to schedule workflows under resource allocation constraints. Also, many of the 
data Grid projects that support distributed processing of remote data have proposed 
workflow scheduling [11] [21]. 

3. Processable Bulk Data Transfer (PBDT) tasks 

PBDT tasks require bulk transfer of processed data. Such data transfers are typical in 

multimedia systems and HEP experiments. For example in [1], 650MB of data was 

transferred on an average from a source to a set of sink nodes. High communication and 

computing times in PBDT tasks effectively amortizes the overhead of the LP-based 

algorithm used for optimization of the system performance. A PBDT task is characterized by 

the following three characteristics. 

1. The task involves large data transfer that has to be processed in some way before it can 
be used at the sink nodes. The large amount of data involved in the PBDT differentiates 
it from the compute intensive tasks where data usually consists of is only the 
parameters of the remote functions invoked. This implies that the data communication 
costs cannot be ignored while scheduling a PBDT task. 

2. Cost of data processing is proportional to the length of the raw data file. 
3. The unprocessed raw file is such that it can be either processed as a whole or be divided 

into multiple partitions. If divided into partitions, each partition can be processed 
independently. The resultant processed partitions can later be combined to generate the 
required processed file. Consider a source file F, of size L. F can be partitioned into k 
disjoint partitions, with data sizes of {L1, L2…. Lk}, such that 

 L = ∑ L辿谷辿退怠  (1) 

Then for a PBDT task, the length of the required processed file is given by 

 							L~ = ∑ 綱L辿谷辿退怠  (2) 

where εi is a processing factor which is the ratio of the size of the processed partition and 
that of the original partition. 

PBDT tasks are increasingly becoming important. They are used in various multimedia, 
high-energy physics and medical applications. The following section explains two of the 
practical examples of PBDT tasks. 

3.1 Particle physics data grids 

Particle Physics Data Grids (PPDG) is a colloboratory project concerned with providing 

next-generation infrastructure for high-energy and nuclear physics experiments. One of the 

important requirements of PPDG is to deal with the enormous amount of data that is 

created during high-energy physics experiments that must be analyzed by large groups of 

specialists. Data storage, replication, job scheduling, resource management and security 

components of the Grid must be integrated for use by the physics collaborators. Processing 

these tasks require huge computing capabilities and fast communication capabilities. Grid 

computing is used for processing PPDG tasks that can be classified as a PBDT task.  
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3.2 Multimedia encoding 

Multimedia encoding is required for applying a specific codec to a video [27]. Conventional 
methods use a single system for the conversion. The compression of the raw captured video 
data into an MPEG-1 or MPEG-2 data stream can take an enormous amount of time, which 
increases with higher quality conversions. Depending on the quality level of the video 
capture, the data required for a typical one hour tape can create over 10 GB of video data, 
which needs to be compressed to approximately 650 MB to fit on a VideoCD. The 
compression stage is CPU intensive, since it matches all parts of adjacent video frames 
looking for similar sub-pictures, and then creates an MPEG data stream encoding the 
frames. At higher quality levels, more data is initially captured and enhanced algorithms, 
which consume more time, are used. The compression process can take a day or more, 
depending on the quality level and the speed of the system being used. For commercial 
DVD quality, conversions are typically done by a service company that has developed 
higher quality conversion algorithms which may take considerable amount of time to 
execute. Grid technology is ideal for improving the process of video conversion. 

4. Overall system architecture 

In this research we have focused on the problem of allocating resources for a given bag of 
PBDT tasks. The bag-of-tasks consists of a set of independent PBDT tasks all of which must 
be executed successfully. The Grid system consists of n nodes. Collectively, these n nodes 
are represented by a set Δ. Each individual PBDT task in the given bag-of-tasks may be 
divided into a number of sub-tasks called jobs which can be executed in parallel, 
independent of each other. As discussed, PBDT tasks are resource-intensive tasks that use a 
large amount of computing resources and communication bandwidth. Usually, if a node 
starts processing a PBDT task, pre-emption of this task is counter-productive as it wastes the 
effort of transferring the raw-data file to the concerned node. Also, due to excessive demand 
of computing power, a node is assumed to handle the processing of only one PBDT task at a 
time. In this research we have made the following two assumptions regarding the running 
of constituent jobs of a task on Grid nodes.  

1. Once a job starts executing on a Grid node, it cannot be pre-empted. 
2. Only one job can be executed on a Grid node at a time. 

For the cost analysis of the purposed architecture, we have measured cost by the time (in 
seconds) spent in performing a particular communication or computation job. We have 
chosen one megabyte as a unit of data. When a particular node i accesses data in node j, the 
communication cost of transporting a data unit from node i to node j is designated by d(i,j). 
It is assumed that the communication costs are metrics, meaning that they are non-negative, 
represented by Cpm which is the cost of processing a unit of data. Set of all the nodes in the 
system is represented by Δ. To represent the computing costs, a vector of |Δ| dimensions 
denoted by [Cp] is used which holds the values of the computing costs of all the nodes in the 
system. A matrix [Cc] of dimensions |Δ| x |Δ| denotes the values of the communication 
costs between all the nodes in the system. The objective of this research is to assign 
resources to tasks in such a manner that the total cost in executing the given bag-of-tasks is 
minimized; where the total cost is defined as the total time spent by a task at all the 
resources it has used during its execution. Total cost indicates the total resource usage for 
executing a task and hence the minimization of the total cost is a system objective. 
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The BiLeG resource management system consists of two decision-making modules; a lower 

level decision-making module called Resource Allocator (RA) and a higher level decision-

making module called Task Resource Pool Selector (TRPS). TRPS selects a task Ti from the 

given bag of PBDT tasks and allocates it a resource-pool which is a subset of all resources 

available. A resource-pool of a particular task Ti is represented by ち辿, where	ち辿 ⊆ つ. RA 

allocates resources for a particular task Ti chosen from its associated resource-pool ち辿. 
Each PBDT task consists of an unprocessed raw-data file, information about the processing 

operation that is required to be performed on the raw-data file and a set of sink nodes where 

the processed file is to be delivered. The source node groups the submitted tasks into a bag-

of-tsks (Fig. 1, Step-1) and initiates the processing by sending “initiate” signal to the TRPS 

Fig. 1 , Step-2). TRPS determines how many Grid resources are reserved (Fig. 1 , Step-3) by 

interacting with the Grid Computing Environment. This set of reserved nodes is represented 

by つ. TRPS determines a resource-pool Ґi for each of the tasks Ti. Not all the Grid nodes 

reserved are available or visible to an individual task Ti in the bag-of-tasks, T. Typically, 

each task has a different resource-pool selected by TRPS according to the TRPS policy used. 

For an individual task, using all the resources of the resource-pool may not be the best 

option for its most efficient execution. A TRPS resource selection policy is deployed at TRPS 

and determines the way in which TRPS chooses a resource-pool for each individual task. 

The policy uses the existing system state and resource availability in making its decision. 

 

Fig. 1. BiLeG Architecture 

From the resource-pool Ґi allocated by TRPS to Ti, the lower level decision-making module 

(RA) chooses a set of resources that are used to perform Ti. This set of resources is denoted 

by ωi. For different systems, different resource allocation algorithm may be best suited at 

RA. The remaining set of resources (Ґi - ωi) are returned to TRPS. Based on the resources 

chosen by the algorithm, RA divides a particular task into various jobs. RA specifies the 
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details of the jobs in a file which is called the workflow of a Task, Ti. BiLeG architecture 

includes a software component called workflow engine which is designed to execute all the 

constituent jobs of a Task. The workflow engine is implemented as service and is 

responsible for running all the constituent jobs associated with a particular Task.  

A combination of a TRPS policy and an RA algorithm is called an Allocation Plan(AP) and is 
represented by AP{<Policy>,<Algorithm>}. This paper explores the factors that determine 
the choice of the most efficient allocation plan for a given bag-of-tasks. 

Note that the visibility of RA for a particular task is limited to its resource-pool. RA is 
myopic in nature and is not concerned with the overall system performance optimization. 
The objective of RA is to optimize the performance for a particular task only. TRPS is 
concerned with global system performance and has the responsibility to choose an 
appropriate resource-pool for each of the tasks and pass it on to RA. RA assigns a set of 
resources from the resource-pool passed to it by TRPS. 

It can be observed that In the BiLeG architecture, by dividing the overall system into two 
independent decision-making modules and by assigning both decision-making modules 
separate responsibilities; we divide the problem of scheduling the tasks in the given bag-of-
tasks into three different sub-problems: 

1. Determination of the task execution order at TRPS 
2. Selection of resource-pool  
3. Resource allocation for each constituent job in the given bag-of-tasks at RA. 

These three sub-problems may be solved by three independent algorithms. The division into 
three independent sub-problems makes the architecture customizable. It also provides finer-
grade control over the resource allocation for the given bag-of-tasks and helps improving 
the stated optimization objective. 

5. TRPS resoruce selection policy 

A TRPS resource selection policy is used at the upper decision making module to select the 
resource-pool for each task. It can be either static or dynamic in nature. A TRPS policy is said 
to be static if mapping between tasks and their corresponding resource-pools is established 
before the system starts executing tasks and it is dynamic if these mappings are established 
during runtime according to the current availability of the resources. Two static TRPS 
policies considered in this paper are presented in this section. Dynamic TRPS polices are 
discussed available in [6].  

5.1 Static Resource-Pool--Single Partition (SRPSP) policy 

In SRPSP, the TRPS algorithm has two phases, a mapping phase and an execution phase.  

The mapping phase (Fig. 2) is performed before the execution of the first task. Each task in T 
has a given resource-pool Δ. Thus, for each task 	劇沈香劇 and Ґi= Δ. In Mapping phase, a mapping 
between each task and the most appropriate set of resources it needs, is determined. To create 
this mapping, TRPS iteratively calls the algorithm at RA for each task in T.  

In the Execution Phase, the first task in set T is executed first. TRPS iterates through all the 
tasks in T and chooses the next task for which the complete set of resources needed is 
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available. All the tasks, for which each resource allocated by RA is available start executing. 
All the tasks, for which all the resources allocated by Resource Allocator  are not yet 
available, wait in a queue. Once a task is complete, it is removed from T. The resources 
released by task are now added to the free resource set and the queue of waiting tasks is 
checked again to see whether the resource demand of any of these tasks can be satisfied. If 
all the resources of a particular are now available it starts execution and the next task in the 
waiting queues is checked and so on. The resources released by the task are now added to 
the resource set. The queue of waiting tasked is checked again in a First-In-First-Out (FIFO) 
order to see whether the resource demand of any of the tasks can be satisfied. When T={}, it 
means that all tasks have been assigned resources.  

 

Fig. 2. Mapping Phase of Static Resource Pool Policies 

5.2 Static Resource-Pool-Single Partition with Backfilling (SRPSP+BF) policy 

SRPSP+BF is an improvement of SRPSP. A drawback of SRPSP is that the performance of the 
system may deteriorate due to two factors. First, there is the contention for resources, as 
each task has to wait until the complete set of resources it has been assigned to during the 
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mapping phase becomes available. Second, there is the presence of unused resources that 
are not utilized at all; as it is possible that some resources may not become a part of 
mapping of any task. Thus, at a particular instance there may be resources that are available 
but are not being utilized while tasks are waiting in a queue (as the complete resource-pools 
associated with the tasks waiting in the queue are not available.)  

The mapping phase of SRPSP+BF is similar to SRPSP. In the execution phase, SRPSP+BF starts just 

like SRPSP. Once all the tasks for which the resources are available have started to execute, 

the SRPSP+BF tries to take advantage of the unused resource set by combining them into a 

single resource-pool. This resource-pool is given to the first task that is waiting in the queue 

and is it is passed to the Resource Allocator for the resource assignment. This process is 

called called backfilling. Backfilling is repeated till there is no unused resource in the system.  

6. Architectural templates for RA 

This section presents the concept of Architectural Templates that are used by the resource 

allocation algorithm deployed at the RA. In addition to deciding on how to decompose a 

task into its constituent jobs, an Architectural Template divides the available resources into 

different entities and assigns each of them a specialized role. We have identified the 

following five roles that can be assigned to the entities: 

1. Source: A single Grid node where the raw data file of Ti is located. 
2. Sink: A set of Grid nodes where the processed file is to be delivered. 
3. Compute-Farm: A set of Grid nodes dedicated to process the raw data file in parallel. 
4. Data-Farm: A set of Grid nodes used for replicating the data. 
5. Egress Node: A node where files are combined after being processed at the compute-

farm. 

Note that a particular node may be part of a different entity at different times. For example a 

resource may be best utilized in a compute-farm  for processing a particular job  at one time, 

thus being a part of the compute-farm entity. But the same node may be used more 

effectively in a data-farm for processing a job in another task at another time; thus being a 

part of a data-farm entity. For each type of a task a set of appropriate templates is given as 

an input to the Resource Allocator. In this paper we have assumed the same set of templates 

described later can be used for every task in the bag-of-tasks. Thus, an Architectural 

Template specifies the structure of the suggested functional domains in which available 

resources are to be divided. This section briefly discusses a set of templates suitable for 

PBDT tasks.  

6.1 2-Tier Architectural Templates 

In 2-Tier Templates only the source and the sink nodes are used for both processing and 
data transfer. There are two different types of 2 tier Templates: 2-Tier-a  and 2-Tier-b. In a 2-
Tier-a Template, the source node is used for data processing. Fig. 3 (a) shows the process, if 
2-Tier-a architecture is used in a system. TRPS co-ordinates with the Task RA (1) and gives it 
a PBDT task and a resource pool (which is the set of all available nodes for this task). Task 
RA sends an acknowledgment signal back to TRPS (2). The Task Workflow Engine, 
deployed at Lower Level, L1, signals the source node to start the processing of data at the 
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source node (31). The raw data file is processed at source node (32), and is delivered to each 
of the sink nodes (331 to 33k). After the transfer of processed data is completed, each of the k 
sink nodes sends an acknowledgment to the Task Workflow Engine to indicate that the 
processed file have reached the sink nodes(shown by (41) to (4k)). Once all the k sink nodes 
have sent completion signals to RA, RA sends the signal to TRPS to indicate that the task has 
been completed (5). 

2-Tier-b Architectural Template is similar to 2-Tier-a (shown in Fig. 3 (b)). The important 

difference is that instead of using the source node, the data processing job is done at each of 

the sink nodes (331 to 33k in Fig. 3 (b)).  

 

(a) 

 

(b) 

Fig. 3. (a) 2-Tier-a Architecture (b) 2-Tier-b Architecture 

6.2 4-tier Architectural templates 

In a 4-tier Architectural Template, the resource pool of the given task (representing the set of 

available resources for the given task selected by TRPS) is grouped in two domains a 

compute-farm and a data-farm. Both a compute-farm and a data-farm have a specific role 

(see Fig. 4). The role the compute-farm is to process the data. Once all the data is processed, 
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it is combined at the Egress node. The role of the data-farm is to replicate this processed data 

at chosen nodes to optimize its transfer to the sink nodes. Initially, TRPS co-ordinates with 

the RA and gives it a PBDT task and a corresponding resource pool (1). After running the 

resource allocation algorithm, RA generates the workflow of the given task Ti which 

indicates that which of the nodes from the provided resource pool will be used. RA returns 

ώi  back to TRPS indicating which of the resources are  planned to be used for the execution 

of task Ti (2). The Task Workflow Engine initiates the process (3). Once processing of the 

data is completed at the compute-farm nodes, these partitions are transferred to a special 

node called Egress Node where they are combined to produce the required processed file. 

The Egress Node sends a signal to the Task Workflow Engine (4) to indicate the completion 

of this stage.  

The responsibility of the Egress node is to make sure that all the partitions of the raw data 
file associated with Ti have been successfully processed. Even if a small portion of data gets 
missing or corrupted due to any unforeseen error, the resultant processed file formed by the 
combination of the constituent processed files may be become invalid. In practical 
environments catching such error at earlier stage is often desirable as the Task Workflow 
Engine can re-initiate the processing of faulty data partition only. If Egress node is not 
present, the system is not able to catch such errors at early stages and in case of an error in 
the processing of one of the partitions, the resultant processed file becomes invalid. In this 
case the only way to recover is to restart the whole process again from the scratch which 
would be considerable wastage of both time and resources. 

From Egress, this processed data is transferred to the data nodes chosen by the algorithm in 
the workflow. From there it is delivered to each of the k sink nodes. Once the processed data 
is delivered to all sink nodes, Task Workflow Engine is notified (51 to 5k) which, in turn, 
notifies the TRPS (6) to indicate the completion of the task. Note that in compute-farm 
partitions of raw data files are transferred. But in data-farm complete processed files (not 
partitions) are transferred and replicated. 3-tier Architectural Template (having a compute-
farm, but no data-farm or Egress node) is not discussed in this paper. If data-farm is not 
required, 3-tier Architectural Template can be used instead of a 4-tier Template. 

7. RA Algorithms 

In this section ATSRA algorithms are described which enable RA to assign resources to Ti 
within the resource pool, Ґi, allocated to it by TRPS. ATSRA algorithms are based on Linear 
Programming which is a popular technique for solving optimization problems [12][13]. It 
models an optimization problem as a set of linear expressions composed of input 
parameters and output parameters. The LP solver starts by creating a problem instance of 
the model by assigning values to the input parameters[16][17]. The problem instance is then 
subjected to an objective function, which is also required to be a linear expression. The 
values of the output variables, which collectively represent the optimal solution, are 
determined for the best value of the objective function. Based on this approach three 
algorithms are presented in this section which can be deployed at RA. Each of the ATSRA 
algorithms has the following two stages. 

Stage-1: Selection of the most appropriate Architectural Template, ATi for Ti. 

Stage-2: Allocation of the resources for ATi  (if not done in stage 1.)  
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7.1 ATSRAorg algorithm 

A summary of the ATSRAorg algorithm is presented. The algorithm is explained in more 
detail in the following section. 

 

Fig. 4. 4-Tier Architecture 

Summary of ATSRAorg algorithm

1 initialize
2 calculate cost2-Tier-a and cost2-Tier-b

3 costmin = min(cost2-Tier-a, cost2-Tier-b)

4 calcuate cost4-Tier

5 If   cost4-Tier < costmin

6     costmin=cost4-tier

7 choose Architectural Template associated with costmin

8 Allocate resources for Architectural Template associated   with costmin

First, cost associated with each of the Architectural Templates is calculated and the template 
having the minimum amount of total cost is chosen. The Architectural Template Selection 
phase starts with calculating the costs associated with the simplest of the templates. For 
PBDT tasks described in this paper, it starts with the 2-tier architectures. 

If L is the size of the raw data file in MB,  券鎚追頂 is the source node, n坦辿樽谷套 	is	the	i担竪		sink	node, ξ 
is the processing factor associated with the given task Ti, Cpsrc is the CPU processing cost per 
data unit at the source node, then total cost of performing the given PBDT task using 2-Tier-
a architecture is 

 cost2-Tier-a = L { ∑ 行穴岫券鎚追頂 , 券鎚沈津賃日岻賃沈退怠  + Cpsrc } (3) 

If Cp託辿樽谷島 is the cost of processing per data unit at the kth sink node then the total cost of 

performing a PBDT task using a 2-Tier-b architecture is given by 

 cost2-Tier-b=L[∑ {d岫券鎚追頂 , sink谷岻 + ξCp託辿樽谷島 	}]谷辿退怠  (4) 

www.intechopen.com



 
Resource Management for Data Intensive Tasks on Grids 61 

For 4-tier cost calculations, the cost function is formulated as a mixed integer/linear 

programming (MILP) problem which is an LP problem with the additional restriction that 

certain variables must take integer values. MILP problems are generally h0arder to solve 

than LP problems [11]. If nsrc is the source node, n坦辿樽谷宕 is the jth sink node, negress is the egress 

node and p is the number of partitions of the raw data file (as mentioned in its metadata);  

then for 4-tier Architectural Templates, the cost can be formulated as: 

 cost4-tier=minL 崛 ∑ 	怠丹 {系喧珍 +津珍退怠 穴盤券鎚追頂 , 券珍匪 + 綱穴盤券珍 , 券勅直追勅鎚鎚匪}捲沈+	綱 ∑ 穴盤券勅直追勅鎚鎚 , 券沈匪検沈津沈退怠 + 綱 ∑ ∑ 穴 岾券沈 , n坦辿樽谷宕峇拳沈珍賃珍退怠津沈退怠 崑 (5) 

where xi is a binary variable which is 1 if a particular node ni is assigned to compute-farm 

and is 0 otherwise. Similarly yi is a node assignment binary variable for the data-farm. It is 1, 

if a node is used for replication in the data-farm and is 0 otherwise. Variable wij is the 

fraction of the processed file that a sink gets from a particular node in data-farm. Note that 

we are considering PBDTfixed-par task with equal partitions, and each of these partitions at 

compute-farm has a length of L/p. 

The feasibility of a particular assignment is determined by the following constraints. 

1. ∑ 拳沈珍 = な																					∀	倹 = な	建剣	倦津沈退怠   

2. ∑ 捲沈 = 喧																				津沈退怠   

3. xi  є {0,1} 
4. yi  є {0,1} 
5. 拳沈珍 判 検沈 																																	i є	ち, j є S 

6. 拳沈珍 半 ど																																		i є	ち, j є S 

The first constraint specifies that the sum of all parts of the files being transferred from the 
data-farm to a particular sink node should add up to form the full length of the file. The 
second constraint specifies that the number of nodes used in the compute-farm should be 
equal to the number of partitions of the raw data file of the given task. The third and the 
fourth constraints ensure that both xi and yi are binary variables. The fifth constraint makes 
sure that the solution proposed by the algorithm has a non-zero value of wij, if and only if 
yi>0. For example, consider a certain node n3 and for a particular sink node s7. w37 (that 
represents the portion of the total processed file that s7 gets from n3) should only have a non-
zero value if y3=1 (that is y3 is being used as a node in data-farm). The last constraint 
prevents negative values for 拳沈珍 . 

 Let				系喧珍~ = 系喧珍 + 穴盤券鎚追頂 , 券珍匪 + 綱穴盤券珍 , 券勅直追勅鎚鎚匪 (6) 

Then 	系喧珍~represents the total cost of sending a unit data to a node in compute-farm, 

processing it and sending it to the egress node. From Equation (5) and Equation (6) 

 

 cost4-tier=minL 峙怠丹∑ 系喧珍~捲沈 + 綱 ∑ 穴盤券勅直追勅鎚鎚 , 券沈匪検沈津沈退怠 + 	綱 ∑ ∑ 穴盤券沈 , 鯨件券倦珍匪拳沈珍賃珍退怠津沈退怠津珍退怠 峩 (7) 

The input of the ATSRA algorithms are the computing cost vector [Cp] and the 
communication cost matrix [Cc. The output is the solution matrix which represents the values 
of solution variables, i.e. 
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xi, yi 							∀	件 = な	to n 
wij 											∀	件 = な	to n,  j=1 to k 

It is important to note that there is nothing that prevents a node to be part of both compute-
farm and data-farm. For example if the solution matrix has x3=1 and y3=1 and then n3 is 
used both in data-farms and compute-farms.  Once the costs calculated with all the 
Architectural Templates are calculated, the minimum of them is chosen. If costmin= cost4-tier , 
then resources are allocated according the values of the variables in solution matrix. 

7.2 ATSRASSR algorithm 

For small number of nodes, ATSRAorg algorithm performs well. But as the number of nodes 

increases the time taken by the algorithm to run becomes considerable. ATSRASSR is 

proposed to improve performance for large number of nodes. It is based on finding a lower 

bound for the cost minimization problem formulated in Equation (7). The basic idea is to 

replace a “difficult” minimization problem by a simpler minimization problem whose 

optimal value is at least as small as cost4-tier. 

For the “relaxed” problem to have this property, there are two possibilities. 

1. Enlarge the set of feasible solutions so that one optimizes. If the set of feasible solutions 
is represented by P, then it means to find  鶏嫗  such that  鶏 ⊆ 鶏嫗. 

OR 
2. Replace the minimum objective function of Equation (7) by a function that has the same 

or a smaller value everywhere. 

For the ATSRASSR, we have chosen the first approach. We formulate a new optimization 
problem called the relaxation of the original problem, using the same objective function but 
a larger feasible region 鶏嫗 that includes P as a subset. Because 鶏嫗 contains P, any solution 
which belongs to P, also belongs to 鶏嫗 as well. This relaxed cost is denoted by cost4-tier-relaxed.. 

Tenlarge the set of feasible solutions, constraint relaxation technique is used. In ATSRASSR, 
the constraint relaxation technique is used at the Architectural Template selection stage 
only. Once an Architectural Template has been chosen, exact LP formulation is used for 
resource allocation. It is thus named as ATSRA Single Stage Relaxation (SSR) or ATSRASSR, 
as the constraint relaxation is applied only to first stage of the algorithm.  

 

Summary of ATSRA SSR algorithm 

1 initialize 
2 calculate cost2-Tier-a and cost2-Tier-b

3 costmin = min(cost2-Tier-a, cost2-Tier-b) 

4 calcuate cost4-Tier-relaxed 

5 If cost4-Tier-relaxed < costmin  <  

6      goto step 9

7 else  
        calculate cost4-Tier 
8 cost min= min(cost4-Tier,costmin) 
9 choose Architectural Template associated     with costmin 

10 Allocate resources for Architectural  Template associated   with costmin 
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The ATSRASSR starts by calculating the costs associated with 2- tier Architectural Templates 
2a and 2b, using Equations (3) and (4). The minimum of these two is called as costmin. For 4-
tier Architectural Templates, instead of calculating exact cost4-tier, cost4-tier-relaxed is calculated. 
For constraint relaxation, the fifth constraint (i.e. 拳沈珍 判 検沈岻 is dropped.  

7.3 ATSRABSR algorithm 

In ATSRABSR algorithm we apply relaxation of the constraints at both Architectural 
Template Selection and resource allocation stages. 

A summary of ATSRABSR is as follows: 

 

Summary of ATSRABSR algorithm 

1 initialize 
2 calculate cost2-Tier-a and cost2-Tier-b

3 costmin = min(cost2-Tier-a, cost2-Tier-b) 

4 calcuate cost4-Tier-relaxed 

5 If cost4-Tier-relaxed < costmin    

6    costmin=cost4-tier-relaxed

7 choose Architectural Template associated with costmin

8 Allocate resources for Architectural Template associated with costmin  

The important thing to note is that in ATSRABSR, the constraint relaxation technique is used 
at both the Architectural Template selection stage and the relaxed solution matrix  is used 
for actual resource allocation. For relaxation, constraints 3 and 4 are replaced by 				ぬ	嫗						ど 判 捲沈 判 な 				ね	嫗						ど 判 検沈 判 な	
Note that the constraint relaxed in ATSRASSR produces an invalid solution matrix. By 

dropping fifth constraint (i.e. 拳沈珍 判 検沈 ), the variable wij can be assigned a non-zero value 

even if the corresponding data-farm node yi is not assigned. Thus the resultant solution 

matrix cannot be used in resource allocation. But in ATSRASSR, we are using this relaxation 

only for the selection of Architectural Template and if 4-tier is chosen then the exact LP 

formulation is used for actual resource allocation. For ATSRABSR, we have chosen such 

constraints for relaxation that do not produce an invalid solution matrix. Thus the same 

resultant solution matrix is used for resources allocation as well. 

Note that as we move from ATSRAorg to ATSRASSR and then to ATSRABSR, following are 
some of the considerations. 

1. Time complexity of algorithm is reduced. 
2. Imprecision in Resource Allocation increases.  

The decrease in algorithm running time is the benefit of using this relaxation 

8. Results experimental 

This paper uses the following performance metrics. 
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Makespan total (tms-total): The time in seconds required for completing all the tasks in the 
given bag-of-tasks, T. 

Makespan non-scheduling (tms-nonSch): The time in seconds required for completing all the 
tasks in T, excluding the time taken by scheduling algorithm. 

Scheduling algorithm running time (tsch): Total time in seconds taken by the scheduling 
algorithm to schedule all the given resources. 

Total cost (tcost). Sum of the time in seconds for which all the resources are utilized in 
performing the bag-of-tasks T. 

To analyze the performance of the proposed RA algorithms, a simulation based 

investigation is performed. Various performance metrics described earlier were captured at 

the end of each simulation. Each experiment was repeated enough number of times to 

produce a confidence interval of ±5% for each performance metric at a confidence level of 

95%. The workload chosen for these experiments is a bag-of-tasks consisting of 32 PBDTfixed-

par tasks. Each of these tasks models the encoding of a raw multimedia file which is to be 

processed and delivered to a set of sink nodes. The choice of the raw data file is based on a 

typical animation movie described in [2]. The size of the raw data files of each of the tasks in 

the given bag-of-tasks is an important workload parameter. A detailed study of the 

characteristics of similar real-world tasks was carried out. The true representative 

probability distribution of the sizes of the raw or unprocessed data files used in similar tasks 

has been a subject of discussion over the years in the research community. Researchers seem 

to be split over characterizing it either with a Pareto or with Log-normal distribution. After 

careful analysis the Pareto distribution seems to be a better representative of PBDT 

multimedia workloads and is thus used. Another important parameter for the workload is 

the value of p, which is the number of partitions in which raw data files can be divided. This 

value is included in the metadata of each of the raw data file of the given tasks. The value of 

p depends on the structure of the raw data file and the type of processing required for it. For 

example, if a raw data file of multimedia animation contains 20 sub-sequences, each of 

which has to be processed as a single partition, then this task has a p of 20. The number of 

partitions (referred to as sub-sequences in the description of the movie rendering project 

presented in [1]) for each raw file varies from 1 to 30. We have used a uniform distribution 

[1-30] for modeling the number of partitions in each raw multimedia file. The mean of the 

raw data files is fixed at 650MB.  

For performance analysis of the proposed algorithms total number of nodes of the Grid system 

is increased. Number of Grid nodes is directly related to the time-complexity of the deployed 

algorithm. All other parameters related to workload and system conditions are kept constant.  

Fig. 5 shows the performance of three RA algorithms (ATSRAorg, ATSRASSR and ATSRABSR) 
with SRPsp deployed at the TRSP. Fig. 5(a) shows the time taken by each of the algorithm to 
run. It can be that for small number of nodes, there is not much difference in the scheduling 
time taken be these three algorithms. The time taken by the ATSRAorg algorithm rises 
sharply as number of nodes is increased more than 32. It can be observed that for ATSRABSR, 
tsch does not rise sharply. Fig. 6(b) shows the value of Makespan non-scheduling (tms-nonSch) 
for each of the proposed algorithms as the number of nodes is increased. It is clear that 
ATSRAorg has the lowest value of tms-nonSch for all values of n. This is expected as by using all 
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Fig. 5. Performance with SRPsp chosen at TRPS (a) Scheduling Algorithm Running time (b) 
Makespan non-Scheduling time (c) Makespan Total (d) Total Cost 

constraints associated with the LP formulation, we are allocating the resource with the 

highest precision and it this allocation is expected to be efficient. As constraint relaxation is 

applied at stage one of the algorithms in ATSRASSR, tms-nonSch increases. It further increases 

for ATSRABSR in which constraint relaxation is applied at both stage of the algorithm. Fig. 

6(d) shows the total cost (tcost) for each of the three algorithms. ATSRAorg has the lowest tcost 

as we are allocating the resources with highest precision. This is followed by ATSRASSR and 

ATSRABSR. The overall makespan time, tms-total shown in Fig. 5(c) includes both the 

scheduling time and the execution time for the bag-of-tasks. It captures the tradeoff between 

tms-noSch and tsch presented in Fig. 5(b) and 5(a) respectively. For a very small number of 

nodes the scheduling overhead for the ATSRAorg is small and tms-nonsch is the lowest and as a 

result the best tms-total is achieved. For a large number of nodes, the scheduling overhead for 

ATSRAorg is very high and the benefit of using a better resource allocation is offset by the 

overhead and its performance deteriorates. ATSRABSR that exhibits the smallest scheduling 

overhead for a large number of nodes (see Fig. 5(a)) demonstrates the best tms-total (see Fig. 
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5(c)). It is interesting to see that ATSRASSR produces the best tms-total for a range of 

intermediate values of the number of Grid nodes. The accuracy of resource allocation for 

ATSRASSR lies between that achieved with ATSRAorg and ATSRABSR. For a small number of 

nodes, tsch of ATSRASSR is comparable to that of ATSRAorg; whereas the tms-nonSch achieved by 

ATSRASSR is inferior to that achieved by ATSRAorg. Thus if the number of nodes is small, 

ATSRASSR is inferior to that of ATSRAorg. 

For a large number of nodes, although ATSRASSR gives rise to a lower scheduling overhead 

than ATSRABSR, the advantage is offset by the much lower execution time produced by 

ATSRABSR. The net effect is that tms-total achieved by ATSRASSR is inferior to that of ATSRABSR 

for a large number of nodes.  

Fig. 6 shows the performance of ATSRA algorithms when    SRPsp +BF is deployed at TRPS. 

As in the case of Fig. 5(c) the best tms-total  is achieved by ATSRABSR for larger numbers of 

nodes; whereas ATSRAorg demonstrates the best performance for a lower number of nodes. 

ATSRASSR demsonstrates a slightly higher tms-total   than ATSRAorg when the number of Grid 

nodes is small. Although the total makespan achieved by it is better than ATSRAorg at higher 

number of nodes, it is higher than that achieved by ATSRABSR. The relative performances of 

the three algorithms captured in Fig. 6(a) , Fig. 6(b) and Fig. 6(d) are the same as those 

displayed in Fig. 5(a), Fig. 5(b) and Fig. 5(d) respectively. ATSRAorg demonstrates the best in 

tms-nonSch and tcost followed by ATSRASSR and ATSRABSR; whereas the smallest scheduling 

overhead is achieved with ATSRABSR and ATSRAorg demonstrates the highest scheduling 

overhead. The rationale for such a behavior has been provided in the discussion presented 

earlier for Fig. 5(a) Fig. 5(b) and Fig. 5(d). Note that although the shapes of the graphs in Fig. 

5(a) and Fig. 6(a) are similar, the value of tsh for a given number of nodes in Fig 6(a) is higher 

than the value of tsh for the same number of nodes in Fig. 5(a). This is because in SRPsp +BF 

backfilling is used which increases scheduling overheads. While the relative performance of 

ATSRAorg, ATSRASSR and ATSRABSR remains almost the same, this additional scheduling 

overhead has shifted the graphs upwards in Fig. 6(a) as compared to Fig. 5(a). 

For ATSRAorg and ATSRASSR algorithms and any given number of nodes, the tms-nonSch  

achieved with SRPsp +BF is observed to be smaller than that achieved  SRPsp (see Fig. 5 (b) 

and Fig. 6(b). This demonstrates the effectiveness of using backfilling that can increase the 

concurrency of task execution. Except for the case in which the number of Grid nodes is 128, 

a similar behavior is observed with ATSRABSR.  

Comparing tms-total achieved with SRPsp (Fig. 5(c)) and  SRPsp +BF (Fig. 6(c)), we observe that 

for any given ATSRA algorithm, the total makespan  achieved by SRPsp +BF is superior to 

that achieved by SRPsp when the number of nodes is small. For higher number of nodes, 

SRPsp +BF demonstrates an inferior performance. This becauseat smaller number of nodes 

concurrent execution of tasks may be severely limited with SRPsp because many tasks may 

not be able to get all their resources at the same time. With the use of backfilling this 

problem is alleviated as RA is run for each waiting task with the set of unused resources as 

the resource pool. However, this problem with task concurrency is not that severe at higher 

number of nodes. Thus, SRPsp +BF that re-runs RA multiple times and incurs a higher 

scheduling overhead demonstrates an inferior performance as the potential performance 

benefit due to backfilling is offset by the overhead.  
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Fig. 6. Performance with SRPsp+BF chosen at TRPS (a) Scheduling Algorithm Running time 
(b) Makespan non-Scheduling time (c) Makespan Total (d) Total Cost 

9. Summary and conclusion 

In this chapter, by using BiLeG an allocation-plan is devised which reflects the overall 
resource allocation strategy comprising two parts; a policy used at the higher decision 
making module, TRPS, which has the responsibility to select a resource-pool for each of the 
tasks; and a resource allocation algorithm used at the lower decision making module, RA, 
which actually assigns resources from the resource-pool selected by TRPS for a particular 
PBDT task. Three RA algorithms and six TRPS policies have been proposed in this chapter 
forming different allocation-plans. The suitability of various allocation-plans under different 
sets of system and workload parameters has been explored. 

Detailed study of the various trade-offs, implicit in the use of different allocation-plans, is 
the focal points of this chapter. The most suitable allocation-plan not only depends on 
various workload and system parameters, it also depends on the user requirements and the 
hardware available. It can be seen that from the performance perspective various trade-offs 
exist among different allocation-plans and understanding these trade-offs in depth is the 
focus of the experiments conducted in this chapter.  
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For the choice of an appropriate allocation-plan, two of the important considerations that 
came out of these experimental results are the size of the Grid and the performance metric 
chosen for optimization. Generally, from the results obtained from the experiments 
conducted in chapter, it can be concluded that if an allocation-plan tries to minimize one of 
the performance metrics, it tends to yield higher values of the other performance metrics. 
For example, <SRPsp,ATSRAorg> always gives the lowest value of tcost but it also yields one 
of the highest values for tms-WOH , especially for a large number of nodes. At RA, the trade-
offs associated with reducing the accuracy of the ATSRA algorithm by relaxing some of the 
constraints in the LP formulation have been studied. The combination of the proposed RA 
algorithms and TRPS policies gives rise to various allocation-plans. These allocation-plans 
can be used under a wide variety of system and workload parameters to maximize the use 
of available resources according to a pre-determined optimization objective. 

Although the research summarized in this chapter has focused primarily on the Grid systems, 
the proposed BiLeG architecture can also be used in a Cloud Computing environment. Cloud 
Computing environments are often classified as public and private Cloud environments [3]. 
The private Cloud environment is better suited for the BiLeG architecture; as a private Cloud 
environment uses a dedicated computing infrastructure that provides hosted services to a 
limited number of users behind a firewall  and can, thus, more easily incorporate mechanisms 
to accurately predict the computing and communication costs. 

The algorithms presented in this chapter are based on a dedicated resource environment. To 
adapt the BiLeG architecture to shared environments, more research is required. For 
example, in order to use it in a shared resource environment, mechanisms to accurately 
predict the unit communication and processing times are needed to be incorporated in the 
BiLeG architecture. Also, in a shared environment, investigating the impact of various types 
of communication models, such as many-to-one and one-to-many forms, an important 
direction for the future research. 
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Grid and gave it a primary position on their research and development agenda. The Grid evolved from tackling

data and compute-intensive problems, to addressing global-scale scientific projects, connecting businesses

across the supply chain, and becoming a World Wide Grid integrated in our daily routine activities. This book

tells the story of great potential, continued strength, and widespread international penetration of Grid

computing. It overviews latest advances in the field and traces the evolution of selected Grid applications. The

book highlights the international widespread coverage and unveils the future potential of the Grid.
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