
Master/Worker Parallel Discrete Event Simulation

A Thesis

Presented to

The Academic Faculty

by

Alfred J. Park

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy in the

College of Computing

Georgia Institute of Technology

May 2009

Copyright © 2008 by Alfred J. Park

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarly Materials And Research @ Georgia Tech

https://core.ac.uk/display/4724034?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Master/Worker Parallel Discrete Event Simulation

Approved by:

Dr. Richard Fujimoto, Advisor

Computational Science and Engineering

Division

Georgia Institute of Technology

 Dr. George Riley

School of Electrical and Computer

Engineering

Georgia Institute of Technology

Dr. David Bader

Computational Science and Engineering

Division

Georgia Institute of Technology

 Dr. Richard Vuduc

Computational Science and

Engineering Division

Georgia Institute of Technology

Dr. Kalyan Perumalla

Computational Sciences and Engineering

Division

Oak Ridge National Laboratory

 Date Approved: December 1, 2008

iii

ACKNOWLEDGEMENTS

First and foremost, this thesis would not have been possible without the support

and guidance from my advisor, Dr. Richard Fujimoto. It has truly been an honor and a

blessing to perform research under the supervision of one of the pioneers in the parallel

and distributed simulation field. I feel I have learned a great deal not only from his

advisement and expertise but also through the exposure to a variety of projects that I was

able to participate in. I am extremely grateful to have had the opportunity to study as one

of his students.

I would like to express my gratitude to Dr. George Riley and Dr. Kalyan

Perumalla who have been very supportive of my work. Dr. Riley has provided me with

unique challenges that allowed me to broaden my horizons from early work with Parallel

and Distributed NS-2 to collaborative work with GTRI. I was fortunate enough to work

with Dr. Perumalla at ORNL with the SensorNet Group, and for that I am extremely

grateful. I would like to also thank Dr. David Bader and Dr. Richard Vuduc for their

unique perspective and input to help better the quality of the thesis.

I would like to thank people who I was lucky enough to collaborate or interact

with: Dr. Adelinde Uhrmacher, Matthias Jeschke, Roland Ewald, Dr. Michael Hunter, Dr.

Andy Register, Dr. Dale Blair, and Dr. David Sherrill. I would like to also thank other

graduate students I interacted with: Steve Ferenci, Jen-Chih Huang, Yan Gu, Eric Liu,

Jagrut Dave, Daniele Gianni, Hao Wu, Mahesh Palekar, and Chris Thompson. I

appreciate all of the help and assistance given to me by Lometa Mitchell and Carolyn

Young.

iv

Finally, I would like to express my sincere gratitude to my parents and my brother

for their loving support through the years. Without them, this work would not have been

possible.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ...iii

LIST OF TABLES ...xi

LIST OF FIGURES...xii

SUMMARY ...xvi

1 INTRODUCTION... 1

1.1 Background ... 1

1.1.1 Parallel Discrete Event Simulation ... 4

1.1.1.1 Conservative Synchronization... 9

1.1.1.2 Optimistic Synchronization... 13

1.1.2 Embarrassingly Parallel Codes.. 19

1.1.3 Execution Platforms .. 23

1.1.3.1 Tightly Coupled Resources ... 23

1.1.3.2 Loosely Coupled Resources .. 24

1.1.3.3 Loosely Coupled Resources and Metacomputing................................. 25

1.1.4 The Master/Worker Paradigm... 28

1.2 Problem Statement and Research Challenges ... 30

1.2.1 Portability.. 32

1.2.2 Node Volatility.. 32

1.2.3 Fault Tolerance.. 33

1.2.4 Centralized Bottlenecks... 33

1.2.5 Bandwidth and Latency Concerns... 33

vi

1.2.6 Load Balancing ... 34

1.3 Research Contributions ... 35

1.4 Thesis Organization... 38

2 A WEB SERVICES APPROACH TO MASTER/WORKER PARALLEL

DISCRETE EVENT SIMULATION.. 40

2.1 The Case for Master/Worker PDES in a Universally Accessible Web Services

Framework .. 41

2.2 A Master/Worker Architecture for PDES based on Web Services................... 43

2.2.1 Conceptual Overview.. 43

2.2.2 Communication Framework.. 46

2.2.3 Master Service Design and Implementation ... 48

2.2.3.1 Logical Process Management.. 49

2.2.3.2 Conservative Time Management .. 50

2.2.3.3 Client Authentication and Metadata Information Management............ 53

2.2.4 Worker Design and Implementation ... 54

2.2.5 Additional Requirements for Master/Worker PDES................................. 55

2.3 Fault Tolerance for a Web Services Based Master/Worker PDES System 56

2.3.1 Resilience to Client Failure ... 56

2.3.2 Resilience to Server Failure .. 57

2.3.2.1 Checkpointing and Restoration ... 57

2.3.2.2 Replication .. 58

2.4 Metrics of Performance... 59

2.5 An Analytical Performance Model ... 61

vii

2.6 Performance Study .. 66

2.6.1 Microbenchmark Timings ... 67

2.6.2 PHOLD: Synthetic Workload ... 68

2.6.3 Execution on Shared Resources .. 69

2.6.4 Hybrid Shock Discrete Event Simulation ... 76

2.7 Conclusion... 78

3 A CONCURRENT, DISTRIBUTED APPROACH TO MASTER/WORKER

PARALLEL DISCRETE EVENT SIMULATION .. 80

3.1 Master/Worker PDES Issues and Limitations... 82

3.2 Addressing the Issues through a Concurrent, Scalable Design Solution 84

3.3 Desired Characteristics of Conservatively Synchronized Simulations in a

Master/Worker System.. 86

3.4 Aurora2: A Scalable, Distributed Architecture for Master/Worker PDES 88

3.4.1 Broker Service... 90

3.4.2 Proxy Service .. 91

3.4.3 State and Message Services... 93

3.4.4 Client ... 94

3.4.5 Simulation Packages ... 96

3.4.6 Work Unit Lifecycle.. 98

3.5 Distributed Back-End Fault Tolerance Subsystem ... 104

3.5.1 Broker and Proxy Interaction .. 105

3.5.2 Storage Service Replication .. 106

3.5.3 Client Failures ... 106

viii

3.5.4 Portable Fault Tolerance ... 107

3.5.5 Infrequent Checkpoint Intervals and Fossil Collection........................... 107

3.6 Performance Study .. 110

3.6.1 Synthetic Workload Analysis.. 111

3.6.2 Analysis of PDES Properties on Performance .. 114

3.6.3 Comparative Performance Study .. 118

3.6.4 Scalability Analysis... 121

3.7 Task Parallel Simulation Support.. 124

3.8 Conclusions ... 126

4 REDUCING INTRINSIC OVERHEADS IN CONSERVATIVELY

SYNCHRONIZED MASTER/WORKER PARALLEL DISCRETE EVENT

SIMULATION.. 129

4.1 Work Unit Caching ... 132

4.1.1 Locality.. 133

4.1.2 Coherence and Consistency .. 136

4.1.3 Eviction and Replacement Policy ... 138

4.1.4 Network Policy.. 141

4.2 State Updates... 142

4.2.1 Pipelined Updates.. 142

4.2.2 State Pre-Fetching ... 143

4.3 Message Updates... 144

4.4 Analytical Overhead and Performance Models .. 146

4.4.1 State Transfer .. 146

ix

4.4.2 Message Packing, Transfer and Binning... 147

4.4.3 Message Unpacking and Client Delivery.. 147

4.4.4 Deterministic Lease Overhead .. 148

4.4.5 Finalization Overhead ... 148

4.4.6 Total Deterministic Overhead ... 149

4.4.7 A Model for Master/Worker Parallel Runtime 150

4.5 Scheduling Policies ... 152

4.5.1 The Rub: Minimizing Overhead vs. Minimizing Deferred Wait 153

4.5.2 Maximum Cache Affinity (MCA) Scheduling.. 154

4.5.3 Minimum Idle Wait (MIW) Scheduling.. 155

4.5.4 Idle Wait Time Aware Cache Affinity (IWTACA) Scheduling 156

4.5.5 Weighted Fan-Out (WFO) Scheduling ... 156

4.5.6 Earliest End Time First (EETF) Scheduling ... 160

4.5.7 Weighted Fan-Out and Earliest End Time First Scheduling................... 162

4.6 Performance Study .. 162

4.6.1 Work Unit Granularity Selection .. 163

4.6.2 Work Unit Caching ... 167

4.6.3 State Updates... 170

4.6.4 Eviction and Replacement Policies ... 172

4.6.5 Message Updates... 174

4.6.6 Scheduling Policies ... 176

4.6.7 Combined Optimizations... 177

4.7 Conclusions ... 179

x

5 OPTIMISM AND MASTER/WORKER PARALLEL DISCRETE EVENT

SIMULATION.. 181

5.1 Rethinking Time Warp for Master/Worker PDES.. 182

5.2 Towards Optimizing Optimism in a Master/Worker PDES System............... 183

5.2.1 Client-side Caching ... 184

5.2.2 Time Windows and Zero Lookahead .. 185

5.2.3 Self-Induced Rollbacks ... 189

5.2.4 Adaptive State Saving ... 189

5.2.5 Unique Cancellation.. 190

5.2.6 Delivery Receipts and Causal Linkages.. 191

5.3 Rollback Protocols for Master/Worker PDES .. 194

5.3.1 Hard Rollback ... 196

5.3.2 Soft Rollback... 197

5.3.3 Rollback Detection and Back-End Protocols .. 199

5.4 Performance Study .. 200

5.4.1 Lookahead Effects... 201

5.4.2 Work Unit Granularity .. 202

5.4.3 Adaptive State Saving ... 206

5.5 Conclusions ... 207

6 CONCLUSIONS AND FUTURE DIRECTIONS.. 208

6.1 Conclusions ... 208

6.2 Future Directions... 210

REFERENCES.. 214

xi

LIST OF TABLES

Table 1: Corresponding Connectivity Matrix .. 51

Table 2: Example MinETS Snapshot ... 52

Table 3: Latency (ms) of Aurora Web Service Routines ... 67

Table 4: Data Transfer Time (ms) for Aurora Web Service Routines 67

Table 5: Total Average Overhead and Request Times (sec).. 75

Table 6: Weighted Fan-Out and Priority.. 158

Table 7: Arbitrary Leasing ... 159

Table 8: Weighted Fan-Out Priority Leasing... 159

Table 9. Additional Adaptive Time Window Components.. 187

Table 10: Performance of Adaptive State Saving .. 206

xii

LIST OF FIGURES

Figure 1: Discrete Simulation Types.. 3

Figure 2: Spatial Partitioning ... 6

Figure 3: Event Processing and Asynchronous Conservative Time Advancement 10

Figure 4: Handling a Straggler Message via Rollback... 14

Figure 5: Volunteer Computing Task Life Cycle... 26

Figure 6. General Master/Worker PDES Interaction Overview 44

Figure 7: Web Services Master Service: Aurora Server .. 48

Figure 8: Example 4 WU Connectivity Graph... 51

Figure 9: Aurora Client Design.. 54

Figure 10: Effect of Workload on Performance... 69

Figure 11: Example 4x4 Torus Queuing Network ... 70

Figure 12: Effect of Lookahead on Performance ... 72

Figure 13: Effect of Relative Workload on Performance .. 72

Figure 14: Effect of Absolute Workload on Performance ... 73

Figure 15: Effect of Work Unit Size on Performance.. 74

Figure 16: Effect of Ion Density on Performance .. 77

Figure 17: Overview of Logical Aurora2 Components ... 89

Figure 18: Components of the Proxy Service .. 91

Figure 19: Components of Storage Services .. 93

Figure 20: Components of the Client ... 95

Figure 21. Simulation Package Interaction .. 97

xiii

Figure 22: Example Work Unit Distribution.. 98

Figure 23: Work Unit Lifecycle ... 99

Figure 24. Client and Work Unit Lifecycle Interaction Diagram 100

Figure 25. Interaction in the Presence of a Client Failure.. 101

Figure 26: GFTT and Fossil Collection ... 108

Figure 27: Non-Pairwise GFTT Updates and Inconsistencies 109

Figure 28: Recovery in the Presence of a GFTT Update Failure................................... 109

Figure 29: Effect of Workload with 10KB of State ... 112

Figure 30: Effect of Workload with 1MB of State... 113

Figure 31: Effect of Workload with 10MB of State... 113

Figure 32: Effect of Lookahead (λ = 1).. 115

Figure 33: Effect of Lookahead (λ = 10).. 116

Figure 34: Effect of Absolute Workload (λ = 1, 50% local:remote job ratio, LA = 1s) 116

Figure 35: Effect of Relative Workload (λ = 1, LA = 1s).. 117

Figure 36: Computationally Intense Scenario Aurora Comparison 119

Figure 37: Computationally Sparse Scenario Speedup.. 120

Figure 38: Effect of Multi-threading on Overhead .. 122

Figure 39: Hybrid Shock Multi-server Performance.. 123

Figure 40: Task Parallel Replication Speedup ... 125

Figure 41: Validation of Results .. 126

Figure 42: Sample Four Work Unit Connectivity.. 134

Figure 43: Client Internal State .. 135

Figure 44: Example Lease Scenario for One Worker .. 139

xiv

Figure 45: Pipelined State Update.. 142

Figure 46: Tradeoff between Cache Affinity and Idle Wait Time................................. 153

Figure 47: Example Work Unit Connectivity .. 158

Figure 48: Example Time Window Comparison ... 161

Figure 49: Uniform Lookahead.. 164

Figure 50: Non-Uniform Lookahead.. 165

Figure 51: Hybrid Shock with Caching Disabled .. 166

Figure 52: Hybrid Shock with Caching Enabled ... 167

Figure 53: Work Unit Scaling, Cache Hit Ratio and Comparison with µsik 168

Figure 54: Effect of Caching on a Non-Uniform Torus Queuing Network 169

Figure 55: Hybrid Shock with Pipelined State Updates... 170

Figure 56: Insufficient Masking Time ... 171

Figure 57: Replacement Policies and Queuing Network Simulation............................. 172

Figure 58: Replacement Policies and Hybrid Shock Simulation 173

Figure 59: Queuing Network Variable Message Updates.. 174

Figure 60: Hybrid Shock Variable Message Updates .. 175

Figure 61: Scheduling Policy Performance under Hybrid Shock 176

Figure 62: Hybrid Shock Optimized Performance... 177

Figure 63: Computing Sub-Windows for Adaptive State Saves.................................... 190

Figure 64: Causality Linkages and Delivery Receipts ... 192

Figure 65: Message Delivery Cases ... 195

Figure 66: Effect of Lookahead on Rollback ... 201

Figure 67: Lookahead Effects on Execution .. 202

xv

Figure 68: Hybrid Shock Rollback Trends .. 203

Figure 69: Simulation Efficiency ... 204

xvi

SUMMARY

Recent advances in metacomputing such as volunteer and desktop grid computing

that aggregate loosely coupled resources have transformed the execution of certain

computational workloads that, in the past, were reserved for processing on dedicated

clusters. Parallel discrete event simulations have different requirements than programs

that can readily exploit loosely coupled resources such as embarrassingly parallel

codes. Consequently, parallel discrete event simulations are typically run on tightly

coupled machines providing the best opportunity for maximum speedup. However, these

facilities may not be readily available to many users.

The focus of this thesis explores the merging of these distinct computational

domains involving the execution of parallel discrete event simulation across loosely

coupled resources. A master/worker architecture for parallel discrete event simulation is

proposed providing robust executions under a dynamic set of services with system-level

support for fault tolerance, semi-automated client-directed load balancing, portability

across heterogeneous machines, and the ability to run codes on idle or time-sharing

clients without significant interaction by users. Results indicate that a master/worker

approach utilizing loosely coupled resources is a viable means for high throughput

parallel discrete event simulation by enhancing existing computational capacity or

providing alternate execution capability for less time-critical codes.

Research questions and challenges associated with issues and limitations with the

work distribution paradigm, targeted computational domain, performance metrics, and

the intended class of applications to be used in this context are analyzed and

xvii

discussed. A portable web services approach to master/worker parallel discrete event

simulation is proposed and evaluated. Optimizations to increase the efficiency of large-

scale simulation execution through distributed master service design and intrinsic

overhead reduction are proposed and evaluated. Finally, challenges for optimistic

parallel discrete event simulation such as rollbacks and message unsending with an

inherently different computation paradigm utilizing master services and time windows

are addressed and evaluated.

1

CHAPTER 1

1 INTRODUCTION

1.1 Background

Computer simulation is a means to model real-world systems and processes under

a controlled environment with access to variables that can modify results and outcomes

[1]. Simulation is a widely-used, invaluable tool for development, research and testing in

many scientific and engineering domains. For example, computer processor engineering

teams may utilize simulators to test effectiveness and efficiency of certain cache sizes,

associativity, eviction and replacement policies. By utilizing simulations, the cost and

burden of creating hardware prototypes in the early stages of development can be avoided.

Computer network simulations are often used to model protocol behavior and

performance of wired networks as well as development and testing of new wireless and

sensor network mechanisms. Simulations can be used to model virus, worm, and

distributed denial of service attacks to better understand large-scale behavior in order to

evaluate counter-measures and enable research of security protocols against these threats.

Simulations in the physical sciences provide tremendous benefits by enabling

what-if or virtual experiments in lieu of performing them physically in a laboratory. For

instance, biological simulations are becoming increasingly important and relevant with

the increased computational processing power available today. Simulations of protein

folding and misfolding behavior help scientists understand the origins of certain diseases

and possible approaches to cures. Recently, major natural disasters such as hurricanes

linked with climate change and global warming are placing an increasing importance on

environmental and atmospheric simulations. Simulations are used to estimate the number

2

of hurricanes expected during a season as well as forecasting hurricane trajectories to

provide early warning to initiate life-saving evacuations. These simulations in turn can

be used with other simulation models such as traffic simulators to help expedite

evacuation plans on a city or regional scale. Simulations are often used in the military as

a testing and evaluation alternative to live exercises as well as to help plan proper courses

of action. These simulations are invaluable as cost saving measures and also can aid

commanders with additional information so they can make the best possible decisions to

manage resources under their control.

Computer simulations can be generally divided into two categories: continuous

and discrete. As the name implies, continuous simulations correspond to models that

change continuously over time. These continuous simulations are often modeled

numerically as sets of differential equations providing precise calculation of state rate

changes with respect to time. Continuous simulations can be formulated for many

problems where the exact mathematical behavior of the system or behaviors of the

components that make up the system are known. For example, continuous simulation

models of digital circuits is possible as mathematical models for components such as

transistors and capacitors are precisely known. Due to the amount of computation

involved in continuous models, these simulations can exhibit poor performance when

modeling non-trivial problems; for example, digital circuits of complex computer

components that contain millions of transistors may be too computationally expensive to

perform.

Discrete simulations model physical systems by assuming changes in state occur

at distinct points in time. These discretized changes to the system state are ordered as

3

events, with each event assigned a timestamp. Events may be pre-generated such as

airline departure times in an airport simulation, or randomly generated such as packets

generated in a sensor network. These events, when processed, may change the state of

the system and generate new events to be processed later. Discrete models can be further

categorized by how they advance in time, either time-stepped or event-stepped.

Discrete simulations where advancement in simulation time is through fixed time

intervals are referred to as time-stepped simulations as shown in Figure 1. State variables

are computed, if necessary, during each fixed time-step interval.

Figure 1: Discrete Simulation Types

Sometimes no state variables need to be updated during time steps; an alternate

method to discrete simulation time advancement is event-stepped execution. Discrete

simulations that are event-stepped eliminate the need for fixed intervals by allowing

simulations to perform jumps in time advancing from one event to the next in the event

queue in time stamped order (TSO). Unprocessed events are stored in a data structure

called the event queue, and are removed in non-decreasing timestamp order for

processing. In addition to the event queue, a collection of variables are defined that

Time-
Stepped

Event-
Stepped

Simulation
Time

4

represent the state of the system being modeled. Discrete event simulations implement a

clock representing the current simulation time. Simulation time is a time scale that

represents time in the system being modeled. In general, simulation time advances

independent of wall clock time. A discrete event simulation with a simulation time clock

value of n indicates that all events with a timestamp prior to time n have been processed.

Moreover, state variables that may have been modified as the result of processing events

have been updated.

This thesis is primarily concerned with discrete event models and in particular,

parallel discrete event simulations which are described next.

1.1.1 Parallel Discrete Event Simulation

 A simulation is an approximation of reality. Deficiencies in model fidelity, scale

or perhaps even insulation of the model from external factors (e.g., simulation models

that do not take into account interaction effects from other sources, for example a sensor

network simulator measuring environmental conditions without an accurate

environmental simulator and model [2]) can prevent simulation results from matching

reality. These limitations sometimes result from a lack of understanding and

consequently insufficient detail in the model. Often approximations are made to trade-off

between accuracy and computational requirements. For instance, a network simulation

executing on a single machine is limited by the amount of memory available for storing

relevant data such as routing tables; either the scale of the simulation is limited or less

accurate techniques are used to save computation time or space. Parallel and distributed

simulation addresses these limitations by allowing the model to be spread across many

5

processors. This can enable enhanced model fidelity, larger model scale, integration with

other simulators and/or reduced execution time.

A discrete event simulation that is partitioned and executes across more than one

processor is referred to as a parallel discrete event simulation (PDES). PDES enables the

execution of simulations such as computer network models that exceed the capability of a

single machine. In addition, PDES is also used to speed up the execution of a sequential

execution. Larger and faster network simulations allow computer network researchers to

examine wide-area end-to-end performance and behavior across very large networks

containing millions of simulated nodes [3]. Traffic simulations whether they are used to

model vehicular ground traffic, rail systems, or air traffic are widely used for planning,

management, and what-if simulation of emergency scenarios. Similarly, PDES has been

applied to biological and environmental simulations and military wargaming. PDES

extends of the applicability of sequential discrete event simulation to allow larger-scale

models, higher fidelity and faster return of results than would otherwise be possible.

In order to execute a discrete event model across many processors as a PDES, the

model must be partitioned into segments. A priori spatial partitioning of the model is

often used where the problem is decomposed into logical processes (LPs) where each LP

represents some fraction of the entire model. Suppose the model of interest is an air

traffic control PDES simulation covering the entire United States of America. A sample

spatial partitioning scheme is shown in Figure 2 where the NW portion of the USA is

mapped to LP 1, NE portion to LP 2, SW portion to LP 3, and the SE portion to LP 4.

6

Figure 2: Spatial Partitioning

Communication between LPs occurs through message passing. Inter-LP events

that originate from a source LP that differs from the destination LP are sent as messages

that have associated simulation timestamps for when they should be processed. For this

example, aircraft may pass between any LP, thus, messages can be sent between any LP.

Since messages can be sent from and received by any LP in the system, this model

exhibits a fully-connected LP topology. LP topologies are dependent upon the problem

and the partitioning the modeler chooses if performed manually. If, in the entire model

across all LPs, no aircraft moved between LPs, then there would be no messages

exchanged between LPs. Each LP could run unrestricted and process all events to

simulate the entire desired simulation time period as there would be no interaction

between LPs. However, most non-trivial PDES models will often generate events as

Logical Process 1

Logical Process 2

Logical Process 3

Logical Process 4

7

messages which cross inter-LP boundaries. For example, in this air traffic control

scenario, an aircraft departing from Atlanta, Georgia destined for Seattle, Washington

must cross one or more LP boundaries. This can be represented as a departure event in

LP 4 with an arrival timestamp sometime later at LP 1. Different airline routes may have

the aircraft passing through LP 2 on its way to LP 1, which may model the event first

“arriving” in LP 2’s airspace, followed by a later departure and entry into LP 1’s airspace.

Thus, a new problem is introduced where the distributed simulation must now

synchronize LPs so that these events can be correctly processed without a causality

violation.

Out-of-order event execution must be prevented to ensure correct execution. This

synchronization problem in PDES calls for time management schemes which operate on

a principle called the Local Causality Constraint (LCC). The LCC states that each LP

must process events in non-decreasing TSO. The preservation of LCC guarantees that a

PDES execution will produce the exact same results as a sequential execution with the

assumption that simultaneous events are processed in the same order for both parallel and

serial versions.

From the previous example of an aircraft departing from Atlanta, Georgia at time

T and destined for Seattle, Washington at time T + 5, the PDES must prevent events in

LP 1 from processing events after T + 5 before the receipt of the arrival event. If events

are processed after T + 5, the simulation time of LP 1 will be in the future while a

message notifying that an aircraft will be arriving is in the simulated past. Adhering to

the LCC through a synchronization protocol would prevent LP 1 from executing events

which are too far into the future and are unsafe for processing. The class of

8

synchronization algorithms that prevent LCC violations are collectively referred to as

conservative time management. Mechanisms which allow violations of the LCC to occur

but perform operations to correct causality errors are known as optimistic time

management. Each of these synchronization schemes will be discussed in detail later.

All PDES simulations must incorporate synchronization techniques to reproducibly

execute a discrete event simulation across many processors to free the simulation from

limitations of a serial execution providing benefits mentioned earlier.

As with most parallel computations, the proportion of the program that can be

parallelized must be relatively large relative to the portion that is inherently serial.

1
()

(1)s s

f N
T T N

=
+ −

 (1.1)

Amdahl’s law is expressed in equation (1.1). Here, f(N) represents the maximum

speedup that can be achieved using N processors. TS denotes the fraction of the

computation that is inherently sequential. Even with an arbitrarily large number of

processors, the speedup can be no larger than the inverse of the portion of the program

that is inherently sequential. This suggests that even with small amounts of serial

computation, the overall speedup that can be achieved from parallelization can be

severely limited. Thus one requirement for PDES codes to achieve effective

parallelization is the fraction of the code that is inherently serial must be small.

A second requirement concerns the amount of computation that takes place

between interprocessor communications. Discrete event simulations that exhibit low a

high computation to communication ratio, i.e., a large amount of computation between

communications, are well-suited for parallelization. Fine-grained simulations are those

9

that only process a small number of events before communicating with another processor.

The computation to communication ratio can be increased by mapping many LPs that

communicate amongst themselves to the same processor. This thesis is targeted toward

coarse-grained PDES simulations with a substantial amount of computation between

communications. One element of the research described in this thesis is to quantify this

aspect.

1.1.1.1 Conservative Synchronization

Conservative synchronization protocols are the class of mechanisms that do not

allow any violations in ordered event execution to occur. Thus all events are processed in

TSO, within each LP. Out-of-order execution of events must be avoided in order to

preserve the LCC. Conservative synchronization mechanisms in PDES rely on a value

called lookahead. Lookahead is defined as the minimum time value that must be added

to an event relative to the current simulation time of the LP when the event is generated.

For example, assume that an air traffic PDES simulation contains two LPs. LP A

represents the airport in Atlanta, while LP B represents an airport in Seattle. Air travel

between the two airports requires a minimum amount of time dependent upon the

maximum velocity of an aircraft. Suppose that it takes a minimum of 5 hours for an

airplane to fly from Atlanta to Seattle. This means that no matter what the circumstances,

an airplane departing from Atlanta at simulation time T cannot arrive before T + 5. This

value of 5 hours is the minimum amount of time into the future that the departure event

can schedule an arrival event for the Seattle LP. This minimum amount of time is

lookahead. This guarantee increases the amount of concurrent execution that can occur

in a PDES execution.

10

Virtually all conservative mechanisms use lookahead values to calculate a value

known as the Lower Bound Time Stamp (LBTS) that is for synchronization purposes.

LBTSi is defined as the smallest timestamp of any event can be delivered to LPi in the

future among adjacent LPs, i.e., those LPs that are able to send events to LPi. These

LBTSi values are used to synchronize the simulation so that no LP is able to process an

event if it is possible a smaller time stamped event might later arrive. A sample

asynchronous conservative time management scheme utilizing LBTS values is illustrated

in Figure 3.

Figure 3: Event Processing and Asynchronous Conservative Time Advancement

In Figure 3, the orange boxes denote events while the green boxes contain the LP

simulation time and calculated LBTS values. At the beginning of the simulation, both

LPs advance to the first available event in their local event queues. Here LP 1 has an

event at time 0.68. This event is processed since it is the smallest time stamped event in

the system and LP 2 cannot send an event with a smaller timestamp. Once processed, LP

1 calculates an LBTS1 value of 0.8 that is obtained by adding the current simulation time

C3 � S1
TS = 0.68

S1 � C3
TS = 0.77

SimTime 0.77
LBTS = 0.89

Logical
Process 1

Logical
Process 2

LP 1 LBTS 0.8

SimTime 0.68
LBTS = 0.8

S4 � C2
TS = 1.38

LP 1 LBTS 1.03

SimTime 1.12
LBTS = 1.24

C2 � S4
TS = 1.12

LP 1 LBTS 1.24

Simulation
Time

LP 2 LBTS 0.89 LP 2 LBTS 1.15

11

0.68 to the lookahead value of 0.12. LP 2 can advance to this time and is able to process

the event with timestamp 0.77. LBTS2 is now computed to be 0.89. When LP 1 attempts

to process the event with timestamp 1.12 it cannot proceed because LBTS2 is 0.89. Thus

LP 1 must block at this simulation time until a later time guarantee. Next, LP 2 attempts

to process the event at 1.38. This event is not safe to process yet because LBTS1 is 1.03.

LP 1 is now able to process the event with timestamp 1.12, because the smallest

timestamp event that can later be received in now 1.15.

Of particular interest with regard to the work presented here are synchronous

conservative synchronization methods involving simulation time windows. One such

method is the algorithm used in the Yet Another Windowing Network Simulator

(YAWNS) [4] and similarly the time bucket synchronization mechanism used in the

Synchronous Parallel Environment for Emulation and Discrete Event Simulation

(SPEEDES) framework [5]. The minimum time stamped message among all LPs is

found along with its associated lookahead value. The window of simulation time

available for execution is simply the current simulation time of the LP and this calculated

global minimum time stamped message plus the lookahead value. Any events falling

within this window can be safely processed.

Several other conservative protocols have been proposed. Null messages [6, 7] is

an asynchronous “local” synchronization scheme where “null” messages from a LP are

sent to all neighboring processes indicating a lower bounds on any future message that

may be sent. These guarantees are used by LPs to safely process events. The null

messages are also used to avoid deadlock situations that can arise when a cycle of LPs

forms where each LP is waiting for the next LP in the cycle. A simulation that exhibits

12

small lookahead values can often cause poor performance because an excessive number

of null messages can be generated.

In contrast to null messages that actively avoid deadlocks, deadlock detection and

recovery [8, 9] is another asynchronous conservative synchronization scheme that allows

deadlocks to occur but mechanisms are used to detect and break deadlocks to keep the

simulation advancing forward. The concept of diffusing computations can be used where

the receipt of a message triggers computation and the possible generation of new

messages. A tree data structure is used to detect deadlock. The recovery phase involves

identifying events that are safe to process and preserve the LCC. These LPs are signaled

to process safe events and the computation resumes until the next deadlock. The process

of deadlock-detection-recovery is repeated until the simulation completes.

There exist synchronous synchronization methods that utilize barrier algorithms

[10]. Transient messages (e.g., messages which are delayed in the network) must be

taken into account when using barrier synchronization methods to avoid incorrect

execution. A solution to the transient message problem with barrier algorithms is to use

send and receive message counters. After a global barrier for synchronization, the system

can examine the aggregate total between the send and receive counters. If they are

equivalent, then no transient messages exist and guarantees can be made. Centralized

barriers using controller processes are simple to implement but scale poorly as the

number of processors increase. Other barrier mechanisms such as the butterfly barrier

reduce the amount of messages required for synchronization over centralized schemes.

Distance between objects [11] is a mechanism to determine the minimum

“distance” between LPs that may not be adjacent but can affect each other through a path

13

of links from one LP to another. By calculating the minimum LBTS values of all

possible LPs that can affect the LP for whom the LBTS value is being computed, the

simulation can potentially process more events simultaneously than a conservative

synchronization mechanism that only takes into account directly adjacent LPs.

Bounded lag [12] uses the distance between objects idea but differentiates

between LPs that can affect the LP for which the LBTS value is being computed and

those which cannot. Events which fall outside of the current simulation time plus a time

window need not be checked and are never processed during the current execution

window. More precisely this means that if the lookahead between LP A to LP B exceeds

the time window, then events generated from LP A to LP B need not be checked for

synchronization purposes. This reduces the amount inter-processor communication for

synchronization. A problem, as with many schemes that employ time windows, is the

question of how to set the window size.

1.1.1.2 Optimistic Synchronization

Optimistic synchronization algorithms relax the requirements for strictly adhering

to the LCC [13]. Rather, incorrect executions can occur where events may be delivered

in the simulated past of an LP (referred to as a straggler message). Time Warp is the most

well-known optimistic synchronization algorithm. In Time Warp, a straggler message is

a message sent from a source LP to a destination LP where the receive timestamp is less

than the current simulation time of the destination LP. Additional mechanisms are

required to detect, correct, and restart the execution. When an event is delivered in the

past of a logical process, a rollback phase is initiated where the state of the logical

process is restored to a simulation time preceding that of the straggler message. Messages

14

sent by rolled back computations are “unsent” using anti-messages. This process is

shown in Figure 4.

Figure 4: Handling a Straggler Message via Rollback

Under an optimistic execution, an LP may encounter events in the event queue

that fall in the LP’s simulated past. Suppose the event at time 0.77 in LP 2 generates an

event for LP 1 at 0.95, but LP 1 has already processed an event at time 1.12. This

straggler message triggers a rollback in LP 1. First, the state of the LP is restored to that

that existed at simulation time 0.95. If no state at the exact rollback time exists, the most

C3 � S1
TS = 0.68

S1 � C3
TS = 0.77

SimTime 0.77

Logical
Process 1

Logical
Process 2

SimTime 0.68
C3 � S1
TS = 0.95 SimTime 1.12

C2 � S4
TS = 1.12

Wall Clock
Time

Rollback Execution

S4 � C2
TS = 1.33

C3 � S1
TS = 0.68

S1 � C3
TS = 0.77

SimTime 0.77

Logical
Process 1

Logical
Process 2

SimTime 0.68 C3 � S1
TS = 0.95

SimTime 1.12

C2 � S4
TS = 1.12

S4 � C2
TS = 1.33

Restart
Restore

State

Anti-Message
S4 � C2
TS = 1.33

Unsend
Message

Wall Clock
Time

15

recent state prior to the rollback time is used. In the latter scenario, coast forwarding is

enabled, where recomputation of the simulation occurs until the rollback time is reached.

Coast forwarding is a mechanism to ensure correct recovery after a rollback if no state

exists at the rollback time. During the coast forwarding phase, both positive and anti-

message sending is disabled to prevent duplicate messages from being generated. Once

the rollback time is reached, coast forwarding is disabled and normal recovery is resumed.

Since the processed event at time 1.12 at LP 1 also sent an event to LP 2, this message

must be unsent. An anti-message is generated and sent to LP 2. When LP 2 receives this

anti-message, it annihilates the “positive” message in the event queue. In the case where

the positive message has already been processed, a rollback must be performed to remove

the erroneous event computation. This is known as a secondary rollback. After all anti-

messages have been sent, the simulation is then restarted from the rollback point,

processing the new message at 0.95.

As optimistic simulations progress forward, more and more memory is consumed

for state saving and anti-messages. If memory is not released, the simulation may run out

of memory and fail to complete. Not all memory can be freed readily, and the issue of

what memory is safe to release along with committing irrevocable actions such as I/O is

solved through the global control mechanism. The Global Virtual Time (GVT) value is

similar to the LBTS value used in conservative synchronizations. It is a system-wide

minimum timestamp of any future rollback that can occur. GVT is defined as the

minimum timestamp among all unprocessed messages in the system, including partially

processed messages and anti-messages. Computation of the GVT value allows saved

state and unsent anti-messages to be safely released as the simulation proceeds. GVT

16

computations are usually computed asynchronously, e.g., using Samadi’s [14] or

Mattern’s [15] algorithm.

There has been much work detailing optimizations to state saving, as this can be a

major source of overhead. Copy state saving is the most basic mechanism. This method

simply makes a copy of all of the current state variables of an LP before an event is

processed. This can lead to high memory consumption and overhead in fine-grained

executions. Infrequent state saving is a technique to only save state prior to every nth

event [16]. If a rollback occurs and no proper state can be found, coast forwarding as

described earlier is used to re-compute the proper state before restarting the simulation at

the rollback time. Incremental state saving is a mechanism to store only state variables

that have been modified since the last save [17-19]. Simulations that exhibit only a small

subset of variables that are modified from event to event can benefit from memory

savings and overhead using incremental state saving. Simulations that modify most of

the state variables during event processing are better suited for copy state saving

techniques that are not burdened by saving memory addresses of variables that have been

modified.

A well-known problem with optimistic protocols is the need to limit the amount

of rolled back computation. One approach is to provide a bound on how far into the

future each LP can process events. Optimism control schemes operate on the premise

that by preventing LPs from executing too far into the future (e.g., further away from

GVT), the probability of errant computations and invalid messages generated will be less,

thus reducing the number of rollbacks. By limiting optimism, the number of incorrect

computations can be potentially reduced. The Moving Time Window (MTW) protocol

17

sets execution limits on how far into the future an LP may progress by defining a time

window, and preventing LPs from executing beyond the upper edge of the window [20].

The window length is usually specified by the modeler or adaptively tuned as the

simulation runs; this window amount is added to the current GVT value to give the total

available amount of simulation time given to an LP to process. There are several issues

with this approach. The first concerns how to set the size of the window. The stochastic

processes determining event generation in some simulations can be unpredictable.

Secondly, even with an optimal window size, there is no restriction within the actual

window to prevent incorrect event computation and thus rollbacks, although restricted

through limited execution via windowing, may still occur.

Another scheme for optimism control is SRADS [21] and the Breathing Time

Buckets (BTB) protocol [5]. Any message that is generated is not immediately sent, but

rather buffered locally. Next, the minimum of all the receive timestamps recorded by all

LPs is computed, known as the event horizon. Each LP will process events with

timestamps less than their local event horizon. The global event horizon representing the

minimum event horizon value across all local event horizons is computed. Once this

value has been computed and made known to all LPs, buffered messages that have a send

timestamp earlier than the global event horizon can be sent. These messages are

guaranteed not to rollback, and the GVT value can be set to the computed global event

horizon time. The SRADS and BTB protocols are considered risk-free optimistic

approaches in that they eliminate the need for anti-messages and thus avoid secondary

rollbacks, i.e., rollbacks caused by anti-messages. The problem with this approach is that

it may be overly conservative and the number of events that can be processed within each

18

execution cycle may be insufficient to provide enough concurrent computation for

significant speedup. Breathing Time Warp (BTW) [22] attempts to combine BTB and

Time Warp by allowing events close to GVT to be executed under a Time Warp protocol

while events that are far away from GVT execute under the BTB protocol. A problem

with this approach is effectively determining the proper time boundaries for when the

Time Warp phase should end and the BTB phase should begin for each execution cycle.

The main optimistic processes described such as rollback, recovery, and anti-

messages along with other issues such as handling program errors were implemented in

the Time Warp Operating System (TWOS) [13]. Other optimizations to the original

Time Warp mechanism have been proposed. Direct message cancellation [23, 24]

exploits shared memory architectures by using pointers to implement anti-messages. One

of the issues with Time Warp is the possibility the simulation may run out of memory due

to saving stating and anti-messages. The pruneback protocol [25] provides a means to

reclaim memory by selectively pruning copy save state vectors. Cancelback [26, 27] is a

technique proposed using message sendback [13] as a means to reclaim memory by

returning messages back to their sender. Artificial rollback [28] is another technique to

reclaim memory similar to cancelback, but instead utilizes the rollback protocol to

reclaim memory. An alternate non-reactive strategy to address memory issues with Time

Warp is to pro-actively attempt to prevent memory exhaustion through blocking [29].

Systems employing this strategy only provide blocks of memory in cycles between fossil

collections adaptively allocating memory based on predictions on memory usage. If the

allocated memory is exhausted by the LP, the LP blocks until memory is reclaimed.

These memory reclamation techniques can be considered as optimism control

19

mechanisms as they limit how far a LP can process indirectly through memory recovery.

Other mechanisms have been proposed that directly limit optimism through other means

such as probabilistic adaptive direct optimism control [30] that analyzes message arrival

histories of the simulation to adaptively set the synchronization method to a blocking-

based conservative mechanism or an optimistic Time Warp protocol. Reverse

computation [31] is an approach to avoid overheads associated with state saving. When a

rollback occurs, instead of restoring a known valid saved state, the PDES program

processes the inverse code from the current simulation time back to the rollback time.

Once the program has run “backwards” to the rollback time, the correct simulation state

has been restored without the overhead of state saving and can begin forward simulation

progress.

1.1.2 Embarrassingly Parallel Codes

In contrast to PDES, many parallel and distributed programs involve problems

that fall into the embarrassingly parallel (EP) class of computational codes. EP programs

are typically classified by their lack of dependency between partitions of work (e.g., non-

existent interprocess communication) and trivial partitioning of the problem into parts.

Given sufficient resources, these programs offer nearly linear speedups because of these

advantages.

1lim ()
s

N
f N T

−

→∞
= (1.2)

When an unlimited number of processors are available, Amdahl’s law can be

expressed as the inverse of the non-parallelizable portion of a parallel and distributed

program as shown in equation (1.2). EP codes typically have non-existent interprocess or

20

inter-partition communication thus the value of TS is close to zero yielding very large

values for f(N).

An example EP application is a simulation based on the Monte Carlo method. A

simple Monte Carlo method utilizes random numbers generated from probability

distributions that closely resembles existing data that are processed through a

mathematical model. Results are then aggregated to produce a final answer. For instance,

the following Monte Carlo problem attempts to estimate π given the volume of a specific

sphere with a radius of 2 centered at the origin:

2 2 2 4x y z+ + = (1.3)

A computer program can generate uniformly random values for x, y, and z. These three

random values can be evaluated using equation (1.3). If the three-dimensional point falls

within the sphere space, the result of the Monte Carlo trial is considered a “hit.”

()

3

3

4

3

r
hits

valid trialsr r

π
≈

×
 (1.4)

6 #

hits

valid trials
π

×
≈ (1.5)

Equation (1.4) represents the proportional relationship between known equations of the

volume of a sphere and the volume of cube to the Monte Carlo hits and Monte Carlo

trials that fall within the volume of cube. Solving for π yields equation (1.5).

Monte Carlo methods such as these hit-and-miss scenarios are embarrassingly

parallel as trials can be computed independently using any number of threads or

processors without the need for synchronization. To produce an answer, all that is

required is an aggregation of results at the end and the evaluation of equation (1.5). Lack

21

of dependency and communication during computation allow EP codes such as Monte

Carlo simulations to be highly scalable and massively distributed in nature.

Task parallelism involves programs that are run in parallel to produce multiple

replications or achieve large speedups over sequential executions that are repeated one

after another. At the most fundamental level, these codes can be classified as an EP style

of work distribution and computation. Task parallelism can be fine- or coarse-grained.

Fine-grained task parallelism consists of distributing a portion of the program to other

available processors such as parallelizing the execution of data-independent for-loops in

programs like that of a matrix multiplication problem. Several libraries exist to ease

implementation on the programming language level such as OpenMP [32],

Microsoft’s .Net Task Parallel Library (TPL) [33] and the MATLAB Parallel Computing

Toolbox [34]. Coarse-grained task parallel programs are those where large portions or

complete programs are tasked to processors independently. For instance, in modeling

hurricane predictions, a set of variables that affect hurricane trajectory are tested. For

each set of modifications to environmental variables, tasks can be created and run

independently on separate machines. This allows the gathering of different trajectory

data in parallel without having to run each task one after the other. The limiting factors

to this approach are the amount of computational resources available and per-node

memory and disk capacities. The following is a brief survey of notable and popular

wide-area coarse-grained task parallel executions and simulations.

The Great Internet Mersenne Prime Search (GIMPS) is the earliest known wide-

area coarse-grained task parallel execution project delivered over the Internet [35]. This

project attempts to discover large Mersenne prime numbers (2
n

- 1). Since these numbers

22

are very large and grow exponentially, these tasks are computational intense but can be

run independently from other users. Distributed.net is similar to GIMPS, but with

different goals [36]. Distributed.net is known for distributing RSA Securities key

cracking challenges in which the entire key space is searched using brute force methods.

The key space can be trivially partitioned with non-existent data dependencies.

SETI@home (Search for Extra-Terrestrial Intelligence) is an extremely popular task

parallel execution that has been widely distributed, and is widely regarded as the first

wide-area computational effort to gain traction in the general public [37]. This project

partitions radio telescope data into frequency-independent portions that can be leased to

individual volunteers and run with high concurrency as there is no need for

synchronization among each partition.

Folding@home is a popular task parallel simulator dedicated to modeling and

simulation of protein folding and discovering issues when proteins do not fold correctly

leading to diseases [38]. The humanitarian effort of the project has garnered widespread

appeal while being as easily accessible as task parallel executions. This effort has

become so popular that ports of the software have been made to run on stream processors

including graphics cards and home entertainment consoles such as the Sony

PlayStation®3 [39]. The World Community Grid is a meta project performing

simulations on a variety of humanitarian-focused programs such as human proteome

folding and identifying potential drug candidates with the FightAIDS@home project [40].

ClimatePrediction.net distributes different climate simulation models to clients to predict

future climate patterns and changes [41].

23

EP codes, with the distinguishing characteristic of no interprocess communication

and messaging are performed on a range of different distributed computing

infrastructures. In contrast, PDES programs are most often exclusively performed on

computational resources that are tightly coupled for maximum performance. The

following section details various execution platforms used for both PDES and EP codes.

1.1.3 Execution Platforms

As mentioned previously, the usual goals for parallelizing a simulation involve

increasing model fidelity, integration of multiple simulators, and/or execution runtime

reduction. In order to achieve these goals, PDES simulations are typically run on high

performance computing (HPC) systems while recent wide-area coarse-grained task

parallel simulations utilize resources afforded by the distributed nature of the Internet.

Both of these distinct, yet related distributed computing paradigms are described next.

1.1.3.1 Tightly Coupled Resources

Cluster computing is the cornerstone of traditional high performance parallel and

distributed computing infrastructures. Typical low-cost cluster computing systems are

commercial off the shelf (COTS) machines with multiple processors or single package

multi-core processors. Networking these systems together using low cost gigabit

Ethernet provides good bandwidth and relatively low latencies for parallel and distributed

simulation. These COTS clusters provide a balance between total cost and performance

and are widely deployed.

Tightly coupled cluster computing systems trade low cost for higher performance

than their COTS counterparts. These systems include faster and perhaps specialized

24

processors and large bandwidth, ultra-low latency switching fabrics from Infiniband,

Quadrics, and Myrinet for example. Fine-grained PDES simulations can benefit greatly

from these types of HPC systems that can reduce the latency in synchronization such as

conservative barrier mechanisms and optimistic GVT calculations in addition to enabling

faster messaging rates.

The very high end of HPC platforms involves supercomputing infrastructures.

Some supercomputing facilities are simply constructed by scaling tightly coupled cluster

computing systems, while others are custom designed from the ground up to include

specialized processors, interconnects, and software including middleware tools and

operating systems such as the IBM BlueGene system [42]. It is no surprise that these

systems offer the highest potential performance and scalability for PDES codes [43].

Novel techniques have been applied for codes that are applicable to stream processors

such as those found on general purpose graphics processing units (GPGPU) that are able

to provide supercomputing-like performance with only a handful of graphics cards [44-

46].

1.1.3.2 Loosely Coupled Resources

Grid computing through web services involves linking together various resources

from different organizations and institutions to form a metacomputing platform [47].

These resources can be clusters, supercomputers, and even desktop computers [48]. The

Globus Toolkit provides a standard set of services to create these kinds of systems [49].

There has been work in federating distributed simulations utilizing the High Level

Architecture (HLA) over grids with IDSim [50] and SOHR [51-53]. Other related works

include web-based simulation [54, 55], the Extensible Modeling and Simulation

25

Framework (XMSF) for web services [56], object request broker (ORB) based

frameworks [57, 58], and a framework for Time Warp on grids [59].

Both PDES and task parallel codes are well-suited to run on traditional tightly

coupled HPC infrastructures. There may not be as much need for coarse-grained task

parallel executions and simulations for high bandwidth and low latency interconnects,

however, fast processors and large memory pools are not a detriment to task parallelism.

A practical limitation of HPC infrastructures concerns their availability.

Although grid systems alleviate some of the availability problem, access and restricted

execution still exist. Allocated time on these systems is limited and is generally as not

widely accessible as the loosely coupled metacomputing infrastructures described next.

1.1.3.3 Loosely Coupled Resources and Metacomputing

Recent advances in Internet-scale distributed computing have transformed the

scope of certain computational work loads that, in the past, were reserved for large super-

computing facilities and clusters of high-powered, dedicated machines. These wide-area

distributed computing infrastructures are commonly referred to as public resource or

volunteer computing platforms. Machines from all over the world form a virtual single

super-resource offering computational capacity at the discretion of the user. Figure 5

illustrates a typical program lifecycle run on a volunteer computing framework.

26

Figure 5: Volunteer Computing Task Life Cycle

Users may direct computations to only occur when their computers are idle (e.g.,

when the screensaver is active) or perhaps users may direct the client to perform

computation at all times using one or more of the processing cores available on their

system. Many of these projects have been discussed as task parallel executions or

simulators such as distributed.net, SETI@home, Folding@home, World Community

Grid, SZTAKI [60], and ClimatePrediction.net. Many of these task parallel volunteer

computing projects are enabled by the Berkeley Open Infrastructure for Network

Computing (BOINC) middleware software [61]. Other software solutions for volunteer

computing include XtremeWeb [62], Unicorn [63], InteGrade [64], Harmony [65],

DIRAC [66], and Xgrid [67]. These volunteer computing systems have offered very high

computational throughput, rivaling even the fastest supercomputers [68]. BOINC-

enabled projects have a combined throughput typically exceeding 1 petaflop [69] while

2. Program split
into tasks

1. Program submission

3. Clients
request work

4. Clients return
completed work

5. Results are
collected

6. Results are retrieved
and viewed

27

the Folding@home is the fastest distributed computing resource in the world exceeding 4

petaflops and over 350,000 active CPUs [70] mainly due to the large pool of stream

processors including GPUs and the Sony PlayStation®3.

The emergence of grid and web services has allowed organizations and businesses

to pool computational resources together to service workloads using existing

infrastructure and machines that may not have originally been designated for providing

processor cycles for these workloads such as desktop machines and laptops. Desktop

grid computing is similar to the public resource computing paradigm with processor

scavenging and utilizing idle-cycles, however, the scale, level of trust and implied

security are different [71, 72]. These desktop grids provide cost savings for organizations

by enhancing computational capacity for additional workloads or accommodating larger

workloads not possible with the current employed infrastructure. These systems are

typically on an institutional or organizational scale with implicit trust. In contrast to

volunteer computing systems with wide-area applicability in both system compatibility

and deployment, organizational desktop grids provide relatively higher speed

interconnects and accompanying bandwidth for computational tasks. These desktop grids

follow the same tradition of processor scavenging like volunteer computing projects but

provide additional benefits such as reduced or eliminated need to replicate work for

validation to counter Byzantine failures such as intentionally corrupt and falsified returns

of results. With volunteer computing, results must always be verified and checked for

accuracy to protect against be misbehaving clients, either unintentionally through

hardware faults or intentionally through result falsification for expedited credit. In

desktop grid infrastructures, varying levels of assumptions can be made about the quality

28

of results that are returned as there may be a higher level of trust and maintenance of

hardware and the users of the systems. This type of computing potential has been widely

researched, the most notable middleware tools and services are Parallel Virtual Machine

(PVM) [73] and Condor [74]. Other frameworks include Entropia [75], and a

master/worker variant of Condor named Condor-MW [76]. Task parallel simulation

replication work on a network of non-dedicated resources with varying workloads is

described in [77].

Both wide-area volunteer computing and desktop grids have certain disadvantages

such as limits on types of applications that can be deployed. These infrastructures are

almost exclusively tailored for task parallel simulations and executions and due to the

public nature of most of these projects, simulations with sensitive data cannot be

deployed. However, for the particular workloads for which these infrastructures are

intended, they perform well if properly managed [78].

1.1.4 The Master/Worker Paradigm

Many of the loosely coupled distributed computing infrastructures borrow

concepts from the master/worker paradigm. In this style of work distribution, the master

oversees execution by assigning tasks to the worker pool. In public resource computing,

atomic sets of work distributed to workers or clients are referred to as work units that

contain partitions of simulation or perhaps an entire simulation replication. The

master/worker paradigm imposes a restriction on communication, where no worker-to-

worker communication may take place. The only valid communication links are between

the master and the worker. In many volunteer computing infrastructures, communication

is unidirectional as well, where service requests are only initiated by the client or worker

29

(e.g., “pull” mechanisms). This reduces complications and issues with firewalls as well

as clearly delineating the master as a service and the workers as clients. Some

master/worker task parallel simulations and executions take advantage of result

compaction and simplification where the size of the input does not necessarily correspond

to the output and amount of data that must be transmitted back to the master.

There are several inherent advantages a master/worker system offers due to the

paradigm itself [76]. First, there is no burden on the user to schedule work or determine

how to match work to clients. This is done by the master service; thus reducing

complexity of the software that must be written. Second, client volatility is relatively

easily addressed, as workers can be removed and added to the pool with much less hassle

than a structured distributed infrastructure. Related to this point, fault-tolerance is more

easily adapted for as programs for master/worker do not depend on the number of

workers in the pool and the worker pool is expected to fluctuate over the course of

execution. Moreover, if a worker fails to complete the assigned computation, it can

simply be re-assigned to a different worker in the pool. Although a master/worker

paradigm is subject to centralized points of failure, since the state of the entire workload

exist on the master, simple checkpointing mechanisms can be implemented for failure

recovery. Finally, load balancing is done on the worker end. In volunteer computing

systems, if a worker becomes busy due to the user workload for other tasks, the worker

can simply disengage from the distributed computation without fear of stalling or

stopping the entire program.

30

1.2 Problem Statement and Research Challenges

Wide-area task parallel simulations and executions are predominately performed

on loosely coupled computing infrastructures managed by software systems such as grid

and metacomputing middleware. The advantages of these platforms are partly derived

from the EP-style of computation and also follow from the advantages of the

master/worker paradigm. PDES codes, however, have mainly been relegated to execute

on traditional tightly coupled distributed computing infrastructures. Although these HPC

systems offer the highest performance, there can be issues with deployment and readily

available access.

The allure of harvesting computing cycles afforded by these metacomputing

systems and desktop grids in particular for PDES computations is intriguing. The

master/worker paradigm as described in the previous section offers capabilities such as

reducing the burden on the users to run simulations, user-directed load balancing, system-

level fault tolerance, heterogeneous machine support, the ability to share computing

resources, and dynamic resource allocation and de-allocation, e.g., to add or remove

processors during an execution. Paramount to all these advantages is the ability to utilize

idle processor cycles that would otherwise be wasted.

PDES computations, however, are constrained further than typical task parallel

applications due to LP and state management, time synchronization and message passing.

By utilizing a master/worker driven metacomputing paradigm and addressing the special

requirements of PDES codes, additional computational throughput capacity can be

attained while retaining all of the associated benefits of a master/worker approach. The

cost of this flexibility is overall performance. It is clear that PDES performance under a

31

master/worker metacomputing environment will never match that of a customized

execution on a tightly-coupled HPC system. Such a performance gap exists between

master/worker and conventional PDES systems on HPC platforms due to overheads

inherent to the master/worker-style of work distribution. Under a master/worker PDES

system, the state of each work unit must be stored on a master service for consistency and

fault tolerance purposes. If a client with a work unit containing a portion of the

simulation fails, the entire simulation will fail if the master service has no record of the

last valid states. Therefore, each work unit lease incurs additional overhead not found in

traditional PDES systems for checking out and checking in state variables that are part of

the leased work unit to the worker. Moreover, messages cannot be directly sent in a

master/worker system. Messages generated must be buffered on a master service

temporarily before the proper work unit can download them when necessary. This

indirect delivery of messages introduces additional overhead and message latency and

degrading overall performance of the simulation. Finally, since the worker pool is

heterogeneous all data exchanged must be serialized before transmission over the

network. Additionally, this data must be de-serialized on the worker before it can be

used. This data packing and unpacking introduces additional overhead typically not

found in traditional PDES systems.

Although a performance reduction from conventional PDES systems is expected,

a software infrastructure that provides additional computing throughput allows for other

advantages such as more resilient and robust executions. Challenges for creating such an

infrastructure are described next.

32

1.2.1 Portability

Most conventional HPC systems feature complete vertical homogeneity from the

hardware to the operating system. Thus software on traditional distributed computing

platforms seldom have to deal with portability issues. However, in public resource and

desktop grid computing infrastructures, a variety of hardware architectures and operating

systems must be accounted for in order to take full advantage of the available processing

power in the worker pool. For task parallel simulations, this involves compiling the

application for the target platform and encoding results in a platform-independent text or

binary format. For PDES, the issue becomes more complex as the program code must be

compiled for each possible target platform along with simulation state and messages that

must be packed in agreed protocols or in a platform-independent fashion.

1.2.2 Node Volatility

Under volunteer and desktop grid computing platforms, it is expected that clients

may drop from the worker pool. Measures are directly incorporated to deal with clients

that cannot return results on time, fail to receive or send data, or provide incorrect results.

However, the failure of one leased work unit is not detrimental to the overall progress of

the entire project for typical volunteer projects. On the other hand, a failed partition

under PDES can result in complete failure of the application. In traditional PDES, it is

uncommon for a simulation to cope with node failure outside of a system that performs

periodic checkpointing with a restart mechanism. PDES, under a volatile master/worker

system, must consider volatility when partitions upon which other partiions depend are

leased to a client that may fail. Controls must be implemented to ensure forward progress

33

in the presence of failed clients that never return a result or are too slow or may incur

errors during updates.

1.2.3 Fault Tolerance

Related to node volatility is the issue of fault tolerance. As described earlier,

under master/worker systems, fault tolerance is much easier to accomplish as failed

workers are not systematically detrimental to the ongoing execution. However, a failure

on the master service end can result in a complete execution shutdown due to a single

point of failure. Additional fault tolerance protocols on the master portion must be

considered when addressing PDES on these unreliable metacomputing frameworks as not

only simulation metadata control information is stored under finite resources, but also

simulation state information and messages.

1.2.4 Centralized Bottlenecks

In a typical modern PDES system, there are no centralized bottlenecks as time

synchronization can be done asynchronously and in a decentralized fashion with regard to

both conservative and optimistic mechanisms. Under a master/worker paradigm, by

nature, there exists a master that exhibits some form of a centralized bottleneck. For

PDES this is especially problematic, as the amount of data that must be moved is much

larger than those found in traditional task parallel applications.

1.2.5 Bandwidth and Latency Concerns

With a large amount of data that is transmitted over the course of a PDES,

bandwidth and latency becomes a concern when operating under a desktop grid

infrastructure. New protocols and policies must be devised for both conservative and

34

optimistic synchronization to reduce congestion, preserve useful computation and avail

work unit locality on the workers to the distributed simulation.

1.2.6 Load Balancing

Load balancing in traditional PDES is a difficult problem and is not commonly

found in most monolithic PDES codes and even many run-time infrastructures. Systems

that do have load balancing capabilities often use pre-computation or sequential runtime

data first to determine event and computational density in order to partition and allocate

resources effectively during a distributed run [79]. Dynamic load balancing schemes are

most often specialized for their application domain and may not be portable across all

PDES codes [80], while generic dynamic load balancing schemes do not support dynamic

resources and heterogeneity among nodes [81, 82]. In contrast to traditional PDES, load

balancing in PDES under a master/worker system must be generic enough to support all

PDES codes applicable to this paradigm as well as support dynamic resources along with

non-homogeneous workers. Load balancing with respect to master/worker systems can

be split into two parts. First, the clients themselves are load balanced through a

combination of the master matching available work to idle clients including matching

software requirements with the available hardware along with clients themselves

disengaging from the execution if they are no longer available for computation. Secondly,

load balancing can be applied on the master side as well, where state and message storage

for LPs can be migrated between high and low load servers. Additionally, new resources

whether they are master services or workers can be immediately integrated into the

running simulation.

35

1.3 Research Contributions

The research contributions addressing the issues and challenges facing integration of non-

traditional execution platforms, the master/worker paradigm, and PDES are as follows:

• Master/worker architecture for PDES. I have developed an architecture to

address the challenges and issues facing implementation and execution of PDES

codes across loosely coupled distributing computing infrastructures such as

volunteer computing and desktop grid systems. This architecture delivers fully

reproducible results in a metacomputing environment through the development of

portable, scalable, load-balanced, fault-tolerant, idle-cycle capturing services and

protocols. I have proposed a set of fault-tolerance protocols for the master

services to provide robust execution in the presence of failures. Additionally, I

have developed extensions to the master/worker framework to allow an integrated

and insulated execution environment for simultaneous PDES and task parallel

simulations. The mechanisms developed allow any number of PDES simulations

and replications to be run concurrently with task parallel simulations.

• Analysis of Portability Approaches and Impact on Performance. I have

analyzed different approaches to portability from web services to highly portable

libraries, showing their strengths and weaknesses with regard to architecture

independence and performance as it applies to a master/worker PDES architecture.

I have addressed scalability concerns under a master/worker PDES architecture by

developing protocols to distribute the set of services under the master portion of

the paradigm allowing dynamic allocation of storage resources as needed. An

empirical study comparing a monolithic universally portable system to a slightly

36

less portable distributed architecture was performed and presented with

quantitative differences between the two approaches. I have shown significant

speedup by reducing excessive artificial overhead from a widely accessible web

service approach and providing simulation capability for large-scale PDES

through the use of distributed master services without large sacrifices in

portability.

• Performance evaluation of a master/worker PDES system. Utilizing both

synthetic workloads and real world applications, I have performed various

empirical studies on master/worker PDES systems. I have characterized and

evaluated key PDES properties such as lookahead, granularity, and computation

to communication ratio for a master/worker environment. Understanding these

characteristics can better classify which PDES applications are best suited for a

master/worker execution. Moreover, for master/worker systems I have developed

underscore the need for a more relevant metric by comparing and contrasting the

amount of processor time spent in actual PDES computation versus overhead

times associated with the master/worker environment. The proposed metrics

provide a breakdown of each major component, and a profile indicating what

portion of the total processor time dedicated to executing simulation application

code as opposed to overhead. These metrics provide more useful and relevant

information than traditional speedup metrics typically found in PDES

performance studies, and are applied to different performance tests under a

master/worker PDES system. The results from these empirical studies show and

validate the impact of key PDES properties on overall performance. The viability

37

of a PDES system under a shared loosely coupled computing resource is

demonstrated. Most importantly, the performance studies show PDES codes that

are the most conducive to a master/worker execution leading to a clear

classification of expected performance (e.g., excessive overhead or acceptable

overhead) according to inherent model characteristics.

• Conservative execution optimizations. In order to reduce the amount of

intrinsic overheads involved in a master/worker PDES computation, I have

proposed several optimizations that have been applied and evaluated to the

master/worker PDES architecture. First, the design of a caching mechanism for

storing recent simulation states on the workers along with various eviction

policies is discussed and incorporated. Second, scheduling policies for work units

are described where lookahead and other time information along with runtime

statistics are exploited to better prioritize partitions of work to clients. Third, a

mechanism for overlapping communication with computation is proposed to

efficiently pipeline simulation state updates. Similarly, a variety of techniques for

masking communication costs associated with messages is designed and

evaluated. Finally, a protocol for pro-active message updating is described.

Together, I have shown that these optimizations significantly reduce the

performance gap between master/worker and traditional PDES systems using

synthetic workloads and a real-world application.

• Optimistic execution mechanisms. Optimism on a master/worker paradigm

across volatile computing platforms presents new challenges. Due to the

centralized nature of metadata, state and messages, traditional Time Warp

38

concepts must be adapted to fit this paradigm. I have developed new techniques

to allow optimistic executions to be performed under this metacomputing

paradigm. Master/worker PDES operates on the principle of leasing execution

windows for workers to process, so methods must be developed on determining

the proper length of these windows even under pure stochastic simulations with

no lookahead defined a priori. I have proposed two new rollback mechanisms to

effectively deal with window-based leases and messages delivered via proxy.

Issues such as delayed rollbacks due to no peer-to-peer connectivity, unique

message identification across distributed master services and causality linkages

are analyzed. These protocols handle rollbacks on the master services, as well as

preserving the maximum amount of work already completed. Additionally,

adaptive tuning of time window lengths and adaptive state saving mechanisms are

proposed and evaluated.

1.4 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 presents a

portable approach to master/worker PDES through web services. A scalable and

concurrent approach to master/worker PDES and task parallel simulation with specific

focus on desktop grid architectures is discussed in chapter 3. This is followed by the

design and evaluation of optimization techniques to reduce intrinsic overheads in

conservatively synchronized master/worker PDES in chapter 4. Chapter 5 details new

approaches to Time Warp given a master/worker infrastructure for parallel simulations.

39

Chapter 6 provides a summary of the work presented in this thesis along with possible

future directions of master/worker PDES systems.

40

CHAPTER 2

2 A WEB SERVICES APPROACH TO MASTER/WORKER

PARALLEL DISCRETE EVENT SIMULATION

In a wide-area metacomputing distributed computing infrastructure such as public

resource computing, the pool of available resources in the form of workers is not

guaranteed to be homogeneous. It is expected that there will be a variety of workers used

to form the resource pool including machines ranging from laptops to high performance

computing platforms. Each of these clients may have a varying system architecture and

operating system complicating application deployment and data transfers. Providing for

cross-platform compatibility is a challenge with the variety of resources that can partake

in a distributed computing project. One approach is to employ nearly complete

architecture and language independence through the use of web services.

Web services are a set of principles encompassing system design, component

interaction and communication protocols for interoperable exchange of information over

a network. These services are called web services because the network used for this type

of software is commonly the Internet along with the use of pre-existing protocols driving

the World Wide Web. Web services can offer functionality similar to traditional Remote

Procedure Call (RPC) client-server interaction [83], but are often used to create larger

systems under a Service-Oriented Architecture (SOA).

Through the use of open standards and open source implementations, web

services provide accessible interoperability and a set of standards for building client-

41

server applications. The SOAP protocol is typically used as the underlying messaging

framework to send XML-encoded messages between the server and clients. SOAP is the

preferred method for encapsulating data for transmission across the network under web

services due to its application and language independence, allowing for ease of

implementation and incorporation into applications utilizing web services. The Web

Services Description Language (WSDL) describes the services provided by the server for

the clients. SOAP messages are often sent using the Hypertext Transfer Protocol (HTTP).

The advantage of using HTTP is that service requests can be provided through security

measures such as firewalls, since HTTP access is usually unrestricted.

2.1 The Case for Master/Worker PDES in a Universally Accessible Web Services

Framework

The ability to provide a simulation framework that is openly accessible regardless

of the programming language, operating system, or underlying machine architecture

allows a simulation application developer to create applications that can be essentially

run anywhere with network access [84].

With large-scale simulations requiring extreme amounts of computing power via

supercomputers or grids, preparing a simulation to run across a massive number of

processors is both time consuming and potentially expensive if computation time is

leased. In most conventional PDES executions, if a node fails, the entire simulation will

fail with no means to salvage the execution unless a checkpoint/recovery system is

implemented. A master/worker system allows a level of robustness for parallel and

distributed simulations for dealing with node failure as well as distributing simulation

42

load across the available client pool without having to explicit implement a checkpointing

system, as node dynamics is implicitly understood under a master/worker execution.

In addition to the ability to cope with node failures, a major feature of these non-

traditional distributed computing infrastructures spread across shared machines is the

ability to run simulations in the “background.” Machines running as workers can also be

processing other jobs. This enables simulations to run on unreserved and potentially

volatile machines, while contributing to the overall distributed simulation computation.

With the accelerated acceptance of multi-core desktop and laptop machines in recent

years, running computations on a free core may not significantly impede on a user’s

interactivity with their foreground processes while allowing these background

computations to run at nearly full speed in a transparent fashion.

Although a master/worker system permits flexibility with regard to simulation

execution on different platforms, load balancing and fault tolerance, the framework is not

suitable for every type of simulation. This style of execution is best suited for

applications where a significant amount of computation can be handed to a client for

execution. This is most likely to occur in large-scale simulations with a high degree of

parallelism. As is true for traditional PDES executions, tightly coupled simulations with

much global communication may not be well suited for a master/worker distribution of

work. Similarly, distributed simulations with a low amount of parallelism or where only

a small amount of computation can be done before the LPs passed to a client must block

are also better suited for conventional or perhaps sequential execution. An important

contribution of this research is to quantify these concepts to determine the range of

applications where the master/worker paradigm is well suited.

43

2.2 A Master/Worker Architecture for PDES based on Web Services

The emergence of web services has allowed applications to exploit open

standards-based interoperable communications over the Internet. A master/worker

metacomputing framework, Aurora, extends these principles to PDES through the use of

web services [85]. While conventional web services have emphasized interoperability

over performance, the Aurora system was built with high performance as a priority while

providing uncompromised levels of interoperability on the language and machine

architecture levels. The Aurora system itself was constructed with extensibility in mind

as different pieces of the system are modular and can be replaced without a significant

amount of change to the codebase and API.

2.2.1 Conceptual Overview

The Aurora system applies a PDES execution to the master/worker paradigm

while leveraging the advantages of web services. Following standard accepted practices,

the parallel simulation program is assumed to consist of a collection of LPs that

communicate exclusively by exchanging time stamped messages. LPs, with associated

data structures, as discussed below, are clustered into work units. A work unit is the

atomic unit transmitted between the server and clients. In a master/worker paradigm, the

master controls the global available work pool and manages the overhead associated with

each work unit. Worker threads or processes perform the necessary computation on these

work units and return results to the master. This cycle continues until all of the work

units are exhausted or some other terminating condition is met. For example, suppose a

simulation consists of two work units that can communicate with each other via links

44

with symmetric lookaheads of 0.5 time units. Figure 6 illustrates two clients interacting

with the master service under this simulation scenario.

Figure 6. General Master/Worker PDES Interaction Overview

Work
Unit 0
[0, 0.5)

Work
Unit 1
[0, 0.5)

Client A

Client B

Lease Phase

Client A

Client B

Process events from 0 to 0.5
independently from other
clients and without master

service interaction

Application
Computation

Phase

Client A

Client B

Finalization
(Results Return)

Phase

Wall Clock Time

Work
Unit 0

TS=0.5

Work
Unit 1

TS=0.5

45

Each client (or worker) contacts the maser service requesting work, valid work

units are leased to clients during the lease phase. For this example, work unit 0 and 1

with specific lengths of simulation time or time windows are provided for the clients.

Under conservative synchronization, these time window lengths would be guaranteed to

not induce causality errors. Simulation data associated with this time window such as

state vectors and input messages are downloaded by the clients. In the next phase, each

client runs independently of every other client in the system including the master service

where the application code of the simulation is executed for the time interval given.

Once the application computation completes, then the final work unit states and any

messages generated are sent back to the master service during the finalization phase.

In traditional conservative PDES, the simulator must ensure that events are

processed in strict time stamp order to avoid violating the LCC. Consequently,

synchronization algorithms are used to calculate guarantees such as LBTS to regulate

which events are safe to process. In optimistic PDES, the simulator may allow violations

of the LCC to occur but must recover from such errors. The design of the web services

version of Aurora is built around a centralized conservative synchronization approach for

the ease of initial development.

In addition to providing time management services, the Aurora system bridges the

concept of work units and LPs. LPs generate messages for other LPs that may be local to

it (i.e., residing within the same work unit) or destined for remote LPs residing in other

work units. This is a major departure from other systems in the area of loosely coupled

distributed computing infrastructures. In massively distributed computing projects such

as SETI@home, portions of work sent to client machines do not require communication

46

between leased units of work due to the EP style of computation. The Aurora system

keeps track of messages that are generated from source work units and correctly

distributes them to destination work units.

The Aurora system also includes an authentication and metadata module to keep

track of work units. Work units are designated as available or leased. An available work

unit means that there are no clients currently performing computation on that work unit

and is ready to be released to the next client request. Work units are marked as leased

when the server releases it to a client. If a client is issued a work unit, a global unique

key is assigned along with the work unit. This allows work units to be issued more than

once for fault tolerance purposes, or in the case of abundant heterogeneous client

machines, to issue the same work unit to multiple machines with the hope of receiving

results more quickly if the relative execution speed among the different machines cannot

be predicted, e.g., due to contention from other users. The authentication and metadata

module is also crucial for allowing optimistic synchronization.

2.2.2 Communication Framework

The default communication mechanism used in Aurora is based on SOAP,

providing maximal support for interoperability among heterogeneous computing

platforms. The Aurora system, however, is designed to support different communication

mechanisms. When used on a tightly coupled parallel computer, communications based

on MPI may be used. Alternatively, sockets can be used in homogeneous networked

environments. The communications interface is a thin layer that is invoked when the

client and server agree on a specialized transfer protocol other than the default SOAP

transport during the handshaking phase of client initialization. Specialized

47

communications may improve simulation performance in certain situations where SOAP-

encoding and XML-parsing can be bypassed when an alternative messaging mechanism

is available. The Aurora system based on web services uses SOAP exclusively for

communication.

One of the perceived disadvantages to developing a PDES framework under web

services is low performance [86]. Due to the inherent nature of transmitting XML-

encoded data, an optimized PDES engine should outperform any simulation framework

based on web services. The gSOAP toolkit [87] is a mature, active, open source web

services toolkit designed with performance as well as language and machine architecture

interoperability as priorities. gSOAP is intended for applications in C/C++ but can be

bridged to languages such as Fortran and Java with JNI. gSOAP supports many industry-

standard web services protocols including SOAP 1.1/1.2, WSDL 1.1, and UDDI v2.

The gSOAP toolkit has shown low-latency and high performance by utilizing

various techniques including streaming XML parsing, Base64/DIME encoding, HTTP

chunking, HTTP compression, and HTTP Keep-Alive. gSOAP coupled with these

techniques has been shown to outperform Java RMI for binary-encoded matrices with

latencies under seven milliseconds and as low as one millisecond [88]. gSOAP also

exhibits good end-to-end performance in sending arrays of different primitives and low

serialization and deserialization times [89]. Since the Aurora system is intended to be

application-independent, it is oblivious to the actual data contained in state vectors and

messages sent between LPs. Consequently, the performance of binary transmission is

critical. gSOAP exhibits relatively low overhead for encoding and decoding binary data

in small messages.

48

2.2.3 Master Service Design and Implementation

The control and management algorithms of the system that work together to form

the master are components of the Aurora server. This service contains the actual web

services routines and three major modules for time management, work unit and logical

process bookkeeping, and client authentication and metadata information management.

Figure 7 shows the interaction between the web services routines and the various

modules within the Aurora server. Some calls are exposed to the application developer to

initialize the Aurora system with values for a particular simulation. Configuration

parameters include the maximum number of logical processes that can be leased as a

work unit and initial logical process state and lookahead values. The server-side

application is lightweight as no actual simulation computation is performed on the server.

Figure 7: Web Services Master Service: Aurora Server

The Aurora server architecture includes a module to support fault tolerant

execution. This module allows the re-release of LPs if certain criteria defined within the

Application Interface - Server

Service Routines

Time Management Module

Logical Process Management Module

Client Authentication and Metadata
Information Management Module

Communications
Interface

49

module are met; mechanisms to manage duplicate results are also included. Also, other

modules can be replaced or extended. For example, the client authentication and

metadata information manager can be expanded with the WS-Security module recently

added to the gSOAP toolkit.

2.2.3.1 Logical Process Management

The logical process manager keeps track of application defined LPs. The

simulation application may aggregate many LPs into a single Aurora work unit. An

Aurora work unit is instantiated by the server-side application containing the initial state

of the LPs. Each work unit stored in the Aurora server includes one or more state vectors

containing simulation variables, an event list, and an input and output message buffer

associated with that work unit. Due to the application-independent nature of a

metacomputing master/worker system, the LP state vector is stored as a contiguous block

of memory that is packed and unpacked by externally defined procedures. The message

buffer for each work unit consists of a table of messages destined for the LP that have

been received from other LPs. The event list contains locally scheduled messages. Each

message is wrapped in a data structure providing information such as the message

timestamp, destination, and size of the packed message.

A work unit includes an LP or collection of LPs with associated buffers and

metadata such as the LBTS value that is transmitted to a client as an atomic unit. When a

work unit is executed and successfully returned to the server by the client, the LP

manager first updates the state vector of the LPs contained in the work unit stored in the

server. After this completes, the server performs a process known as binning. The

messages packed in the output buffer from the returned work unit are scanned and placed

50

into the correct input buffers of the destination work units. During this process, the LP

manager re-organizes the input buffer of the returned work unit, freeing memory for any

message buffers that can be released.

Upon the successful update of a work unit with a new state vector and shuffling of

messages to the proper buffers, the Aurora LP manager calculates the minimum

timestamp over all input messages for the updated work unit. The server then performs

an LBTS time management computation before the success status code is returned to the

client. The forced LBTS update after each completed work unit guarantees that the

server can lease the maximum amount of work to future leased work units.

2.2.3.2 Conservative Time Management

The web services based Aurora time management system provides support for

conservative synchronization. Because time management computations are performed at

the server, a simple, centralized algorithm for computing an LBTS-like value of future

messages that may be received by an LP is sufficient; distributed algorithms would be

required for servers utilizing multiple processors. In Figure 7, the interaction between the

time management module and the logical process module denotes the synchronization

calculations each time a work unit is returned to the server after a client completes its

execution.

Under conventional PDES systems, time management can occur using any

number of algorithms such as distributed reductions, null messages, deadlock detection

and recovery mechanisms, etc. Master/worker systems offer a distinct advantage due to

the centralized nature of the master services. The master service will always have the

most up-to-date simulation time information along with timestamps of any messages that

51

have been generated. This allows a direct centralized time management approach under

conservative synchronization.

Figure 8: Example 4 WU Connectivity Graph

Table 1: Corresponding Connectivity Matrix

 0 1 2 3

0 1.0 -1 0.7

1 -1 0.8 0.1

2 0.5 0.9 -1

3 0.4 -1 0.3

Through information provided a priori to the master services such as lookahead

and connectivity between work units, a global view can be created for throttling the

simulation and adhering to the LCC. Figure 8 shows an example connectivity graph

illustrating message paths between four work units within the simulation. The master

service is able to create a lookahead connectivity matrix where lookaheads are stored as

shown in Table 1 with positive values representing lookahead and negative values denote

no connection. This information is used to create Minimum Emittable Time Stamp

(MinETS) tables during each work unit lease to provide simulation execution windows.

0 1

2 3

1.0

0.5 0.1

0.3

0.9

0.8

0.4

0.7

52

The MinETS computation is similar to LBTS computations. Traditional LBTS

computations are simply the smallest possible timestamp that a logical process can

receive in the future. In a master/worker PDES system with centralized time

management control, incoming time information is required over all possible input

channels to a work unit, however, instead of minimum time stamped messages, the stored

simulation time or current execution window end time is used.

()mini j ji
j

MinETS S LA
∀

= + (2.1)

Equation (2.1) defines MinETS at work unit i, where the minimum emittable time

stamp of all input channels to work unit i are computed by adding the current simulation

time (S) to the lookahead (LA) between work units j and i. This MinETS value at work

unit i is used as the end time or safe processing bound for a lease execution time window.

Table 2: Example MinETS Snapshot

 0 1 2 3

Simulation Time 0.4 0.9 0.3 0.7

MinETS @ WU 0 -1 0.8 1.1

MinETS @ WU 1 1.4 1.2 -1

MinETS @ WU 2 -1 1.7 1.0

MinETS @ WU 3 1.1 1.0 -1

Workers can execute up to the temporary end time provided with a guarantee that

there will be no other incoming messages during this time window that would cause

incorrect execution requiring a rollback recovery mechanism. For example, the master

service would have a MinETS snapshot similar to data shown in Table 2. From this table,

execution time windows can be created. Work Unit 0 is at simulation time 0.4 with

53

minimum emittable timestamps of 0.8 and 1.1 from work units 2 and 3, respectively.

Taking the minimum of these entries gives a lower bound of 0.8 allowing the master to

initiate a lease for work unit 0 from time 0.4 to 0.8 as no messages can be delivered to

work unit 0 within this time. This centralized approach to time management simplifies

conservative synchronization eliminating the need for mechanisms requiring messages

and updates.

There is potential for increased performance through an optimistic

synchronization algorithm. Due to the inherent nature of a master/worker system, LPs

can be leased at will to any client that is available for execution. Furthermore, the results

returned by any client do not have to be used. Depending upon how results are cached on

the server to accompany an optimistic time management system, error recovery can

simply restore state from a known correct state instead of using a rollback recovery

system. The focus under this web services based master/worker system is on a

conservative execution.

2.2.3.3 Client Authentication and Metadata Information Management

The Aurora server will assign a work unit to any client that meets the proper

requirements set forth by the simulation application. A leased work unit must be uniquely

keyed and marked appropriately as clients may be returning and requesting work units at

any time during the lifetime of the server. Other metadata such as references to output

buffers constructed for the leased time window for a particular work unit must be stored

in case of a work unit re-release in order to properly manage memory upon the return of a

completed work unit.

54

2.2.4 Worker Design and Implementation

The workers in the master/worker paradigm are implemented by Aurora clients.

Each Aurora client pulls the necessary work unit information from the server through

web service requests, executes the simulation implemented by the application developer,

and uploads state vector and output message buffers back to the master Aurora service

upon completing execution according to the specified time management scheme. A

conservative execution will process all events within a work unit with timestamp less

than the LBTS value computed for the work unit.

Figure 9: Aurora Client Design

Figure 9 shows the interaction and data flow between different function calls and

certain key data structures within the Aurora client. After initialization, the Aurora client

performs a series of web service requests to the server. During the handshake phase, the

client requests an available work unit from the Aurora server as well as possible

communication modes in addition to the default gSOAP transport. Once the client

Request WorkUnit()
Request State()
Request InputMsgs()

Application Interface - Client

main()

Communications
Interface

Run App()

Run Simulation()

SendMsg()

Return Results()

Export WorkUnit()

Import WorkUnit

Msg
Buffer

Export WorkUnit

55

receives work unit availability confirmation from the server, the state vector and all of the

incoming messages for the leased execution time window are downloaded from the

Aurora server. Once this information has been received from the Aurora server, the

client can operate autonomously from the master.

The incoming messages for the work unit are queued automatically for retrieval

by the client in timestamp order. The state vector is uploaded to the application (data

moving between the Aurora client and the actual simulation application are shown by

dashed arrows in Figure 9), and the Aurora client invokes the application simulation loop.

During the simulation, the application may generate messages that are destined for LPs

residing in other work units. The Aurora client provides a message send interface where

all messages that exceed the LBTS time of the work unit are buffered for upload to the

server when the simulation completes. After the simulation completes, control is

returned back to the Aurora client and the final state vector is imported back into the

Aurora client. The state vector must be correctly packed for proper Base64 encoding and

transmission to the Aurora server. Once the state is finalized, the state vector and output

messages are packaged and sent to the server.

2.2.5 Additional Requirements for Master/Worker PDES

Under a master/worker PDES system, the simulation modeler must specify a

lookahead connectivity table as described previously. This is required for the system to

determine work unit to work unit connectivity to create guarantees and simulation time

windows. Additionally, the modeler must partition the problem into work units. Each

work unit may consist of a single LP or multiple LPs aggregated together. Currently this

is a manual process and specific care must be taken to ensure that each work unit is

56

“large enough” or computationally significant to ensure enough processor time is spent in

application code compared to overheads. The impact of work unit granularity is

quantitatively evaluated in performance evaluation sections. Finally, the modeler must

implement serialization and deserialization routines to ensure that data structures and

messages generated by the simulation application are portable across different machine

architectures and operating systems. Under the web services framework, much of this is

automatically done through XML encoding and WSDL definitions, however, care must

be taken with custom messages generated to ensure cross-platform compatibility. These

limitations and issues are explored further in chapter 3.

2.3 Fault Tolerance for a Web Services Based Master/Worker PDES System

The Aurora system provides a transparent fault tolerance system for simulations

that exploits the inherent state and message saving that is necessary in a master/worker

paradigm. By leveraging this mechanism, most of the support and modifications are only

needed on the back-end services. The two major approaches used in the Aurora system

for fault tolerance are replication and checkpointing.

2.3.1 Resilience to Client Failure

Due to the assumption that clients are not guaranteed to return a result, one of the

requirements of creating a simulation package definition is to specify a deadline. These

deadlines are essentially wallclock runtime limits for any leased work unit for that

particular simulation. If the back-end services do not receive a work unit return within

this time limit, it is assumed that the client has failed whether this is due to the client

crashing or the computation exceeding the stated wallclock time limit. If a work unit

57

return is not received by the deadline, this work unit is re-issued to another client. If the

client attempts to return the work unit after their deadline period, the results are simply

ignored and discarded.

A total reliance on deadlines for client failure and recovery can lead to less than

optimal performance in certain situations due to long wait times and possible lease

failures due to the unavailability of work units. A simple solution to this problem is to

utilize a heart-beat mechanism where the client periodically provides a progress report to

the back-end at application-defined time intervals. This option may be detrimental to

performance in situations where the amount of computation per work unit lease is low

and the addition of more service requests can degrade back-end responsiveness.

2.3.2 Resilience to Server Failure

Server failure is a more difficult problem to address than client failure due to the

back-end possessing the simulation state and possible transient nature of the system at the

time of failure. The approach used in the web services based master/worker PDES

system is described in the following sections.

2.3.2.1 Checkpointing and Restoration

The internal metadata and states must be saved in case of a server side crash.

There are two logical times at which this can be done: the checkpoint after each work unit

return or the checkpoint after a LBTS advance. Checkpointing after each work unit

return can incur high overhead due to frequent checkpointing but has the advantage of

being able to store the latest computational results. The latter has the advantage of lower

58

overhead at the cost of possibly sacrificing recent computational results. Checkpoint on

LBTS advance was implemented in the web services based Aurora system.

In addition to work unit and message state checkpoints, metadata has to be stored

as well. Information such as key tables and time information are serialized and written to

a hard store such as a common file on disk. Recovery from a failure is handled by

reading this information from the file, and re-populating metadata tables and saved state.

2.3.2.2 Replication

To augment the robustness of the Aurora system to handle runtime failures,

replication is used where the Aurora server was mirrored to different machines. One

server was designated as the primary server, while the other servers were secondary

servers forming a cyclic ring based on a specified sequence. Clients are also given this

information on the availability of servers. If the primary server is unresponsive, the

clients will attempt to contact the next server in the ring. If a secondary server receives a

work unit request, it broadcasts a vote to the other servers in the ring for promotion as the

primary server. If during this phase the primary server did not actually crash and

provided a delayed vote return, perhaps due to a network issue, the secondary server that

issued the vote will assume the primary server has crashed. The newly designated

primary server will then periodically send messages to the previous primary server

indicating leadership change in cases where the primary server did not actually crash but

is experiencing slowdown issues.

The new primary server will use the common checkpoint store to populate

metadata and state upon promotion. Once the simulation state has been restored,

execution can continue and work units can be leased. Since the simulation has a

59

possibility of rollback, work units that may be returning that are out-of-sync are simply

discarded. In the web services based Aurora fault tolerance system, no transient server

failure is assumed on the client side, thus once the client assumes the server has crashed,

it will no longer try to contact it in the future.

2.4 Metrics of Performance

Traditional performance metrics such as speedup do not fully capture the benefits

of utilizing a master/worker desktop grid based simulation system. It is understood that

PDES codes on a master/worker infrastructure will likely never be as fast as tightly-

coupled cluster systems which will always provide the maximum potential performance

with minimal overheads.

For PDES master/worker desktop grids, we attempt to measure throughput by

contrasting the total processor time divided into four major components:

1. Deferred time: no available work units (idle wait time)

2. Work unit setup time: the time required for lease acknowledgement, work unit

state vector and message download and unpacking

3. Application runtime: actual PDES code execution time

4. Work unit finalization time: the time required for work unit state vector and

message serialization and upload and consistency convergence

The first portion of processor time is the deferred wait time, or idle wait time of

the client. It is possible for a client to request work when no work is available. Time

spent spinning in the work unit request loop can be classified as overhead time. This is a

non-deterministic value where a variety of factors can contribute to this such as

60

heterogeneity of computing resource (i.e., a pool of slower machines), network

congestion, or service overloading as a result of improperly anticipating the load of the

simulation. This value can be minimized, although never eliminated as work unit

request-acknowledgement is necessary, if the proper partitioning of the model is

performed, a correct choice for work unit scheduling (e.g., which work unit to schedule

and where to schedule it) along with the proper resource allocation for back-end services.

The second portion of processor time is the work unit setup time, which is another

component of overhead. After the master service approves a work unit lease to a client,

the client must contact and download the proper state and messages from storage services

on the back-end system. Once downloaded, the client must then unpack the simulation

state vectors and messages that may consume a significant portion of processor time if

numerous state vectors or messages exist. Scaling the back-end services appropriately

for the size of the PDES code can reduce this time, but is also restricted by the bandwidth

available between the client and storage services.

The application runtime component provides a quantitative metric of how much

processor time is spent performing application code rather than various overheads within

the master/worker system. The proportion of time spent in this phase compared to

overheads provides a clear picture of the efficiency in running an application under a

system such as Aurora.

The final component of characterizing processing time is the application wrap-up

and finalization phase. This includes the time spent re-packaging all state vectors,

messages, and sending all data back to the back-end services once the consistency

convergence is approved by the back-end system. The current Aurora system attempts to

61

parallelize this phase by simultaneously packing state and messages. Much like the

second component (work unit setup time), this overhead can be minimized but not

eliminated through properly instantiating an adequate number of back-end services with

sufficient accompanying bandwidth.

By dividing the processor time into four distinct components, we can more

appropriately measure the amount of total time that is being utilized by the actual

simulation computation compared to the time due to overhead either inherent to the

design of the master/worker paradigm or implementation.

Although runtime reduction is desirable for PDES codes, benefits such as off

loading less time-critical simulations to idle machines, run replication support, or

providing application insulation in an integrated distributed simulation can offer benefits

other than strict speedups. These metrics allow the measurement of pure application

runtime with respect to the total runtime, providing a clearer picture of the overall work

performed in the context of total processor time.

2.5 An Analytical Performance Model

As mentioned in the previous section, in a traditional PDES execution

performance can be classified by metrics such as speedup relative to a sequential

implementation. Because Aurora is a high-throughput computing system and may

execute on non-dedicated hardware, speedup is not the most appropriate metric. The

efficiency of the simulation given the master/worker infrastructure where client machines

are able to contribute a certain amount of processor time to perform simulation

computations can quantify how well a simulation is executed across the available

62

resource pool. The fraction of time used performing application computations as

opposed to overhead computation or wasted through idle processor cycles is the basis

behind the efficiency a PDES application can achieve across this type of infrastructure.

Using the metrics as presented in the previous section, we can create an analytical model

for performance for a monolithic metacomputing master/worker PDES system under web

services.

The first major parameter that negatively affects efficiency of a simulation is

overhead. Overhead in the Aurora system arises primarily from the time required to

transfer work units between the client and server machines; the amount of simulation

computation performed by a client once it receives a work unit also greatly impact

efficiency. These factors, in turn, are affected by three principle parameters:

1. State vector size

2. Number of input messages (messages sent from server to client) and aggregate

input message size

3. Number of output messages (messages sent from client to server) and aggregate

output message size

These three characteristics directly affect the overhead of shipping the work unit

from the server to the client and back. In the current implementation, the state, input

messages, and output messages are encoded in Base64 then sent using a SOAP message.

The larger each of these parameters becomes, the more overhead that is incurred for each

work unit release and return. The number of input messages is included due to the

processing time required on the server to construct the correct input buffer for the work

unit being released to the client, excluding any messages that cannot be executed in the

63

current processing cycle because they are too far into the simulated future. Processing

time is also required on the client side to process the packed block of memory containing

input messages and queue the messages for the simulation application. The number of

output messages is included as the client must construct a suitable packed block of

memory for Base64 encoding. The server must also process the output buffer from the

completed work unit and bin the messages to the appropriate destination LPs.

Overhead can be calculated as:

s i o i
o

rate rate

S S S N
T

T B

+ +
= + (2.2)

where Ss is the average sum input and output state vector size, Si is the average input

buffer size, So is the average output buffer size, Trate is estimated transfer rate for the

selected communication mode, Ni is the average number of input messages, and Brate is

the estimated server message processing rate for binning output messages into the correct

input buffer. This equation measures the time to transmit messages and message

processing time overhead.

We can now construct a model for approximating that time a simulation

application runs under a conservatively synchronized Aurora system. Lookahead is a

simulation characteristic that can affect the efficiency of a simulation tremendously. If

the lookahead is too small, client concurrency will be reduced whereby instead of doing

useful work, there will be increased shuffling of state and message buffers between the

client and the server. In a centralized conservative time management system, the

lookahead plus either current simulation time or the minimum of input message times

determines the LBTS value. For each work unit released to a client, the client may only

execute from the current simulation time up to the LBTS value.

64

The partitioning of the simulation’s LPs into work units also plays a large role in

the efficiency of an Aurora simulation. If the number of available work units is smaller

than the number of available clients, clients will become idle waiting for work units to

become available instead of doing useful work. A balance must be struck, however,

when partitioning a model. If the work units contain too few LPs then the amount of

work for that portion of the simulation may become trivial compared to the overhead of

leasing the LP to a client. Conversely, if the work units are “too large” then the amount

of state that must be transferred upon the completion of a work unit may be prohibitively

large, and the number of available work units may be too small relative to the number of

client machines.

With the addition of lookahead and work unit partitioning, we can build a model

for total average application run time (Ta):

a wuT Nρµ= (2.3)

where ρ is the average event processing rate (e.g., wall clock seconds per event), µ is the

average leased event density (e.g., number of events per leased execution window), and

Nwu is the number of work units in the system. Equation (2.3) approximates the time in

seconds a work unit spends performing the actual simulation computation.

The final component for total run time is request or idle time. This is the time an

Aurora client spends waiting in a loop for the server to respond with a work unit available

for the client. A conservative synchronization algorithm based on global LBTS values is

assumed. This requires at least twice the number of work units as there are clients so that

no client waits for an available work unit given that all clients have the same processing

65

speeds. This is due to the LBTS value not increasing until the last work unit for the

current LBTS is successfully returned. Total request time can be formulated as follows:

wuN

C
α = (2.4)

wu

S
N

L
λ

 
=  

 
 (2.5)

() if 1

otherwise

0

a wu

r

T C N
T

αλ ≤ −
= 


 (2.6)

where α determines work unit to client (C) ratio in equation (2.4). This provides a

quantifiable value whether clients must block for a work unit to become available. Next,

the number of total lease windows, λ, for the entire simulation must is calculated through

equation (2.5) where S denotes the total simulation time and L is the lookahead. In non-

uniform lookahead simulations, the λ value would be the sum of all per work unit lease

windows over the entire system. Finally, the model for total average request time (Tr)

can be constructed where the average application work unit run time is multiplied by the

total number of lease windows and the difference between the available client pool and

number of work units. Assuming no other server overheads, there should be near zero

request time when there are enough work units (e.g., α > 1). One contributor to overhead

which is not captured is the deferred wait time. Although equation (2.5) partially

captures deferred wait due to work unit unavailability, there are additional non-

deterministic factors which are not accounted for. Additionally, equation (2.6) holds only

if the amount of computation performed per work unit is relatively equivalent.

Using equations (2.2), (2.3), and (2.6), we can construct an efficiency rating, E:

66

a

a o r

T
E

T T T
=

+ +
 (2.7)

The efficiency rating gives an approximation of how well the Aurora system is utilizing

the available client pool given all clients have the same processor speeds, for actual

simulation computation and progress. A higher efficiency rating represents a properly

partitioned simulation with relatively good computation to communication ratio and

computationally intense work unit leases. This efficiency rating can be directly measured

from performance data as the percentage of processor time spent in application code and

is referred to as simply percentage application processor time in performance results.

2.6 Performance Study

The Aurora system provides a simulation infrastructure for applications to be

deployed over a wide array of clients using different languages and machine architectures

through the use of web services. Although interoperability is an important feature, the

Aurora system attempts to deliver high performance services, consistent with

interoperability goals. The web services based Aurora system was built using gSOAP

2.7.6c, compiled using gcc 3.4.3 with the -O2 optimization flag. The Aurora server was

run in standalone mode. Machines designated as Xeon consist of two 2.8GHz Intel Xeon

processors while Pentium III machines consist of eight 550MHz Intel Pentium III

processors. Both machine types have 4GB memory using RedHat Linux connected with

Fast Ethernet. The Xeon and Pentium III machines do not reside on the same LAN.

67

2.6.1 Microbenchmark Timings

The overhead for each web service method invocation (i.e., request-response pair)

should be kept as small as possible. Because a master/worker PDES system requires

work unit state and message buffers to be transferred between clients and server,

transmitting binary data and the associated data transformations must be completed as

efficiently as possible, even for large transmissions.

Table 3: Latency (ms) of Aurora Web Service Routines

 Messages with null (0 KB) payload

Request WorkUnit 0.563

Request State 0.535

Request InputMsgs 0.528

Return Results 0.613

Table 4: Data Transfer Time (ms) for Aurora Web Service Routines

 1 KB 100 KB 1 MB 10 MB 100 MB

Request

State
0.772 14.196 129.451 1282.182 12814.652

Request

InputMsgs
0.765 14.319 132.055 1308.921 13201.016

Return

Results
0.939 26.679 262.503 2642.011 26638.825

Table 3 shows the total time in milliseconds to invoke a web service routine using

null message sizes for Request State, Request InputMsgs, and Return Results using Xeon

machines. Without the extra payload of state vector or message data, these timings show

the minimum amount of overhead incurred per web service call. It can be seen that each

68

web service method exhibits under one millisecond latency when performed within a

LAN environment.

XML and Base64 encoding of binary data is another source of overhead. As the

size of binary data transformed for transmission over the network increases, so does the

amount of overall time required for the web service method invocation. Table 4 shows

the amount of time required for each web service call as the amount of data is increased.

Return Results includes both state vector and output buffer transmission. Although

gSOAP contains optimized Base64 routines and streaming XML techniques, the data

transfer tests exhibit somewhat mediocre performance. The XML overheads prohibit

maximum speed transfers, utilizing only approximately 60% of the available bandwidth

throughout the variable payload size tests.

2.6.2 PHOLD: Synthetic Workload

The PHOLD application [90] was used to evaluate the performance of simulations

running on the Aurora system using controlled workloads. The amount of computation

performed by each execution of a work unit and the amount of state and message data

transferred between clients and server were varied. In the following tests, a linear

PHOLD model was used where generated messages are sent to an LP’s immediate left

and right neighbors. PHOLD was configured with 20 LPs, 500 KB of state, and

lookahead of 1.0 seconds. The simulation was run over ten Xeon client machines with

each client requesting 20 total work units.

69

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1.0 5.0 10.0

Synthetic Workload (seconds)

A
p

p
li
c

a
ti

o
n

 P
ro

c
e

s
s

o
r

T
im

e

10 KB 100 KB 1 MB

Figure 10: Effect of Workload on Performance

Figure 10 shows the fraction of processor time at the client devoted to performing

computation for the actual simulation for each work unit leased to a client. The amount

of data represented in each bar maps to the amount of message data transferred one-way

in addition to the 500KB of state. The total amount of message data transferred per cycle

would be two times the amount shown because messages must be downloaded from and

uploaded to the server. As expected, as the synthetic workload per work unit is increased,

the relative amount of time spent in overheads decreases. These results indicate that

simulations should have a non-trivial amount of computation in order to achieve

simulation application processor utilization that exceeds combined overheads.

2.6.3 Execution on Shared Resources

One of the goals of the Aurora system is to have the ability to run simulations in

the “background” on hardware of varying speeds and architectures that are shared with

other users. Coupled with the fault tolerance features being developed, the Aurora

system, in principle, allows a simulation to in principle run virtually anywhere while

70

tolerating node failure and automatically balancing workload among the available

processors. For example, the Aurora server can be on a dedicated machine while the

client machines are run from idle desktop machines or unreserved public computing

clusters.

Figure 11: Example 4x4 Torus Queuing Network

A queuing network is used for this evaluation. The servers in the network are

connected in a torus as shown in Figure 11. The dashed boxes designate the aggregated

servers (subnet) mapped to a single work unit where each client would simulate a 2x2

torus network section. The links internal to each subnet can be different speeds

compared to the links that connect subnets together.

The first experiments vary the delay on links between work units, thus varying the

lookahead. The queuing network is configured as a 250,000 server 500x500 closed torus

network partitioned into 625 20x20 torus subnets which can be leased as work units. The

internal links within each work unit are set at a delay of 10 microseconds. The job

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

71

generator creates 10,000 local jobs with random server destinations that exist within the

work unit and an additional 10,000 remote jobs with random server destinations that are

external to the work unit. Jobs reaching their destination server are assigned a new

random destination according to their previous local or remote designation to keep the

relative amount of local and remote jobs consistent. The service time for jobs is

exponentially distributed with a mean of 5 microseconds. Generated and subsequent

processed jobs that have timestamps greater than the leased window end time are not be

processed during the current lease. These messages would be packed into the output

buffer and sent back to the server for future execution.

There are a total of 78 clients, consisting of 14 Xeon processors and 64 Pentium

III processors. The machines are unreserved and some are heavily loaded (e.g., 80-100%

load). No special nice priorities are given to the Aurora clients. The Aurora server was

run from a dedicated Xeon machine.

 For the following figures, the overhead time includes state vector and input

(server to client) or output (client to server) buffer data transmission and other various

overheads such as server-side message binning and client-side input message queuing.

The request or idle time is the amount of time the client spends in the

handshaking/authorization/work unit request loop. If no work unit is available, the client

sleeps for 1 second and tries again in order to avoid flooding the server with work unit

requests. All times are averages across all clients.

72

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1000 100 10

Lookahead (microseconds)

P
ro

c
e
s
s
o

r
T

im
e

Application Overhead Request

Figure 12: Effect of Lookahead on Performance

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

50% 75% 90%

Local Job Ratio

P
ro

c
e

s
s

o
r

T
im

e

Application Overhead Request

Figure 13: Effect of Relative Workload on Performance

The first scenario involves varying the delay on links between work units, thus

varying the lookahead. Figure 12 shows the processor time used for running the

simulation, overhead time, and request time. As lookahead decreases the number of

73

messages that can be processed during the work unit lease decreases although the number

of messages generated per work unit lease remains constant. Consequently, more

messages will exceed the leased simulation end time thereby increasing the number of

output messages that must be buffered and sent to the server.

The next test modifies the percentage of jobs destined for servers local to the

work unit. The delay between work units is held constant at 100 microseconds. As the

relative number of jobs destined for local servers increase, the amount of processor time

dedicated to the actual computation increases as well. Figure 13 shows increased

computation at the clients resulting in less data transmission thereby reducing server load

and overhead time.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10000 20000 40000

Initial Jobs Generated per Work Unit

P
ro

c
e
s
s
o

r
T

im
e

Application Overhead Request

Figure 14: Effect of Absolute Workload on Performance

Figure 14 illustrates the impact of modifying the absolute workload per work unit.

The delay between work units is kept constant at 100 microseconds with 50% local and

50% remote jobs. Efficiency remains relatively constant as the number of jobs in the

74

system increases. Although the raw overhead and request times increase for each case,

the application run time increases as well due to the increased workload from doubling

the number of jobs in the system. These experimental results suggest a proportional

increase in each of the three areas contributing to the total execution time. It would be

expected that this trend would hold constant until bandwidth or memory becomes an

issue.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10x10 20x20 50x50

Work Unit Size

P
ro

c
e
s
s
o

r
T

im
e

Application Overhead Request

Figure 15: Effect of Work Unit Size on Performance

The final test evaluates the impact of varying the number of partitions of the torus

network. The link delay between work units is 100 microseconds across all tests. The

number of jobs generated is set at 10,000 local and remote server destinations. The torus

network is partitioned into toroidal subnets of size 10x10 (2500 work units), 20x20 (625

work units), and 50x50 (100 work units).

75

As partition sizes increase, the number of local links a remote job must traverse

increases significantly. Since the internal links between servers are 10 microseconds, a

remote job may potentially traverse up to approximately 9 times within a work unit

before either the LBTS limit is reached or the job reaches the partition boundary. Figure

15 shows that as the job route length to reach a partition boundary increases as partition

size increases, the amount of local computation for larger partition sizes increases.

The large percentage of overhead and request times for the 10x10 subnet case can

be attributed to relatively little computation performed at the clients compared to the time

taken to transfer data. There is more server contention for smaller partition sizes as the

work unit return rate is higher for smaller partition sizes increasing server load, thus, the

decreasing Overhead Time as the partition sizes increase as shown in Table 5. Increased

server load contributes to increased request time as this monolithic web services based

master/worker PDES system is not multi-threaded or distributed.

Table 5: Total Average Overhead and Request Times (sec)

 10x10 20x20 50x50

Overhead Time 1036.396 32.710 14.474

Request Time 1528.394 30.055 210.766

The 20x20 subnet case shows a reduced percentage of overhead and request times

compared to the 10x10 case as there is more computation performed at the clients. The

50x50 subnet size does not follow a decreasing Request Time trend. Due to the

conservative synchronization method used in the current implementation of Aurora, there

must be approximately twice the number of work units as there are clients. Under

76

conservative synchronization, the simulation application must be partitioned to

accommodate enough work units for the anticipated number of clients to avoid the

increased Request Time shown in the 50x50 case.

2.6.4 Hybrid Shock Discrete Event Simulation

For this test, a particle physics simulation was used. This simulation models

shockwave propagation using electromagnetic hybrid algorithms with fluid electrons and

kinetic ions [91]. The simulation space is partitioned into cells, each containing an

initial number of ions. Ions move from one cell to another in accordance with the

electromagnetic forces acting upon it. This simulation relies on a lookahead (LA)

parameter. In addition to its usual meaning, the LA parameter provides a means to avoid

retracting previously scheduled events. Specifically, the time at which a particle is

expected to move from one cell to another, i.e., its “move time” is estimated, but the

move event is not scheduled unless it has a timestamp in the interval [current time + LA,

current time + 2*LA]. Move times that are far into the future may need to be recomputed

later in the simulation because of subsequent changes in the electromagnetic forces.

Acceptable LA times were determined experimentally, with smaller values increasing

accuracy, but at the cost of reduced parallel performance. This simulation generates three

types of events: an ion move event when aforementioned conditions are met, an update

notification event when a field update occurs, and a schedule next ion movement event

for processing ions. This simulation aggregates cells into work units which can be leased

to clients. For this performance test, there were 20 LPs of 100 cells each, where ten Xeon

clients were used. The lookahead is kept constant at 0.11 for these tests. The amount of

77

state is non-trivial as each cell and ion requires 180 and 140 bytes of memory

respectively to save.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

200 400 800 1600

Initial Ion Density

P
ro

c
e
s
s
o

r
T

im
e

Application Overhead Request

Figure 16: Effect of Ion Density on Performance

The cell width is held constant while the number of initial ions was varied from

200 to 1600 per cell. Figure 16 shows that if event computation per cell is sparse, the

relative amount of processor time dedicated for simulation progress is low. Request and

overhead times accounted for a large percentage of the total overhead as the single-

threaded, single-process server must block for large amounts of incoming and outgoing

state. Even with the limitations in the web services based Aurora server implementation,

performance of this real-world application illustrates that Aurora can be an acceptable

platform for PDES; however, the master/worker paradigm is not suitable for all

applications, such as simulations with low concurrency.

78

2.7 Conclusion

The web services based Aurora system provides a new approach for PDES by

utilizing the master/worker paradigm and leveraging the interoperability of open

standards. The Aurora system delivers an application-independent simulation framework

that can be run using various languages and on a variety of different hardware

architectures delivering adequate performance under a variety of conditions. The Aurora

system is extensible, and can be expanded to enhance performance, load balancing, and

security. We demonstrated Aurora’s strength with running simulations in the

“background.” The Aurora system affords simulation application developers the ability

to create and run simulations without having to worry about client failures, varying

machine architectures, processor speeds, and load on unreserved machines.

The performance study shows that even under a web services framework, a

master/worker PDES system can provide a portable platform for certain PDES

applications. We have shown that conservatively synchronized PDES codes that exhibit

good lookahead with computationally intense work units can attain high efficiency

ratings (relative amount of processor time spent in application code). A torus queuing

network with the proper amount of work units available in the worker pool with favorable

parameters typically exceed 50% application processor time. Although utilizing only half

of the processor time is most likely less efficient than a comparable conventional PDES

system, these resources that compose the worker pool are either work sharing or idle, in

which case the cycles would have been wasted if not utilized by this system. Under non-

synthetic workloads, the Hybrid Shock application showed high efficiency with a large

amount of interacting ions per cell or high ion densities. These results enforce the idea

79

that master/worker PDES systems are most conducive to computationally intense

simulations.

A metacomputing master/worker PDES system is not suitable for every

simulation. Fine-grained simulations that do not exhibit good concurrency and lookahead

are better suited for conventional PDES executions. There are limitations specific to a

monolithic design around web services, such as performance degradation due to XML

overheads, a non-distributed centralized architecture, and prohibitive infrastructure for

running multiple concurrent simulations under a single master instance with compile-time

bindings to specific application code.

Although web services provide a platform for complete language independence

through widely portable standards, the aforementioned issues can prove to be problematic

with general acceptance of such a vastly different framework for PDES than traditional

systems. An alternate approach to master/worker PDES is to utilize highly portable

libraries with language specific bindings, but sacrifice little in platform portability. In

addition, such a system will offer higher throughput and performance by eliminating

overhead culprits such as XML. A distributed approach to master/worker PDES will

allow a scalable system, allowing concurrent large-scale PDES codes to be run

simultaneously without the restrictions of a singular application-bound master service.

80

CHAPTER 3

3 A CONCURRENT, DISTRIBUTED APPROACH TO

MASTER/WORKER PARALLEL DISCRETE EVENT SIMULATION

The master/worker system based on web services to deliver high throughput

PDES performance using a computational infrastructure is vastly different from the

paradigm typically used for PDES codes. Although the feasibility of certain PDES

applications on this master/worker infrastructure was examined, large-scale simulations

suffered performance penalties inherent in the architecture. This was a major issue as

often the decision to parallelize a discrete event simulation is to gain speedup over a

serial implementation. Therefore, an alternate approach to system design was explored,

where a small sacrifice in portability is exchanged for significant design changes to

improve the performance of large scale simulations. While performance under the first

system was acceptable for test cases exhibiting good lookahead and computationally

intense work units, the single server design coupled with large-scale simulations would

undoubtedly incur too much overhead thus diminishing throughput gains achieved by

capturing cycles on idle desktops.

From the performance data exploring a web services based approach, some

conclusions and observations can be drawn:

1. Although a master/worker system by design requires a master server, the master

service behaved in three distinct ways: metadata management, state vector storage,

message processing. The necessity of strictly adhering to a centralized master

81

server is not required. Although multiple servers were used for fault tolerance,

these additional servers were intended exclusively for fault recovery through

replication and not to enhance performance.

2. The performance of a widely portable master/worker PDES system is severely

degraded under a web services framework due to XML-associated encoding and

processing overheads. Although some performance loss was expected, the

amount of data that is transferred between workers and the master service is not

typical for traditional web services use and thus exacerbate overheads. State

vectors and messages tend to be large which is problematic with XML encoding.

3. The absence of thread-level concurrency has tremendous effects on serializing the

computation on both the master and workers. It is apparent that multi-threading is

not an optional component, but is required throughout the entire system for high

performance.

4. A master/worker PDES system based on web services can be cumbersome to use

due to per-application stub generation and application-specific WSDL definitions

on both the server and the client. Although this can be partially avoided using a

more generic approach to service design, it is still necessary to devise an alternate

method to provide support for both concurrent and replicated simulations.

With these limitations to the first generation Aurora system, it was apparent that

significant changes to the core architecture were needed to accommodate large-scale

simulations with a larger worker pool. The single server design of the first generation

Aurora system could be modified to accommodate extra load by multi-threading and/or

82

expanding the Aurora server-side services, however, the web services base hindered the

ultimate driving design goal of scalable high performance PDES execution. This revision

of the system architecture allowed for the elimination of key overheads as well as

broadening support for PDES codes.

The conclusions drawn from experiences with a web services based

master/worker PDES offer a concrete assessment of system behavior and shortcomings

with regard to performance. The next section explores more master/worker PDES

limitations in detail to provide an overview of issues with this style of computation to

help better formulate alternate approaches for a more balanced and higher performing

master/worker PDES infrastructure.

3.1 Master/Worker PDES Issues and Limitations

Although nearly all PDES applications can be adapted for a master/worker

paradigm, there are certain issues and limitations. First, all work units are subject to

migration due to the dynamic nature of the client worker pool. Consequently, the system

must store simulation state such that restoration of state vectors at a later time is possible.

True transparency in state saving with minimal impact to the application programmer is

accomplished by saving the contents of the program’s stack, file handles, shared library

code, etc. as done in Condor [74]. This, however, limits the re-execution of the work unit

to clients with matching operating systems. This presents problems for master/worker

PDES on two levels. First, a pool may contain only a limited number of nodes of similar

architecture for which a work unit was assigned. If these nodes suddenly are no longer

available, the simulation will be blocked, with no means to rollback the simulation to a

83

previous state because once a work unit is returned to the master, guarantees about

advancing simulation times can be made. Second, adhering to true architecture and

operating system independence allows public resource computing infrastructures to

provide the widest flexibility in client worker pools. As a result, master/worker systems

are limited to architecture and operating system agnostic packing and serialization

protocols. This results in routines that are directed by the application programmer using

methods and functions provided by the simulation engine API.

Similar to the issue of state vector migration, all messages generated must be

serialized in an architecture and operating system independent manner, as a message

generated on one client may be destined for a work unit that may be hosted on a

dissimilar machine. This is unavoidable overhead incurred for every generated message.

PDES codes that generate excessive numbers of messages may be less suitable for a

master/worker PDES system due to the additional memory requirements of message

buffering and increased processor time consumed for processing.

Finally, in contrast to traditional peer-to-peer PDES systems, master/worker

systems must store simulation data in a centralized fashion. Although the master is

logically centralized, it does not mean it must adhere to a centralized design physically.

Distribution of functionality across multiple machines can lead to better load distribution.

Moreover, these machines must be high performance with accompanying large

bandwidth links for the amount of incoming and outgoing aggregate data. Master

services that store state or message data must have fast memory subsystems with large

memory pools for storing packed state vectors and buffering messages generated by work

units.

84

The work presented in this chapter attempts to address problems and issues

arising from a web services based approach along with limitations described above. Not

all limitations can be eliminated, but some performance can be recovered by identifying

areas that are prone to degrading into serial execution and eliminating unnecessary

overheads introduced by outside sources such as XML.

3.2 Addressing the Issues through a Concurrent, Scalable Design Solution

The Aurora2 architecture is a departure from the first generation design based on

web services in the following important areas: distribution of the master server into

multiple functionally different multi-threaded services, a less overhead-prone

communication middleware, and concurrent simulation and simulation replication

support (i.e., performing a PDES execution multiple times for data and output, not for

fault tolerance).

The area that received the greatest performance improvement was the change

from a single master server design to multiple functionally different multi-threaded

servers that could be dynamically allocated. As discussed earlier, although the master is

required to handle all logistics with simulation metadata, state vector storage, and

message storage and forwarding, all of these tasks can largely be performed

independently of each other. Moreover, the two main contributors to overhead from

work units come from state vector storage and message buffers whose overhead is

proportional to the amount of state and emitted messages. The functionality of the master

service was separated into a lightweight master controller, a work unit storage service,

and a message storage service that collectively comprise the master back-end services.

85

This allows dynamic deployment of back-end services tailored for a particular simulation

or for large-scale simulations in general although logically, the master service functions

as a single entity. Additionally, the client software was re-designed to be multi-threaded.

It was not entirely apparent that multi-threading the client was necessary during the

design of first web services based master/worker PDES system. However, it was

observed through simulations that exhibited large states or generated a large number of

messages, that the inability to concurrently package and send these updates over the

network significantly serialized the computation, reducing the benefits of a

master/worker approach to PDES.

The web services communication framework in the first generation Aurora system

was replaced with a traditional sockets-based framework allowing for higher performance

data transfers that account for a non-trivial portion of the overall overhead. Serialization

of data to a compact binary format offers improved throughput rates and reduced

processor load while processing messages.

One of the important uses of a high throughput simulation system is to not only

run a distributed simulation across many processors efficiently but also to create

replicated runs of large-scale simulations. The elimination of compile-time bindings and

strict web services compliance allows for the support for simultaneous simulations using

only one set of master services.

To further define the space for which these issues and accompanying solutions

exist, PDES application properties for which a master/worker system employing

conservative time management are targeted for are characterized concretely next.

86

3.3 Desired Characteristics of Conservatively Synchronized Simulations in a

Master/Worker System

Tightly-coupled cluster and supercomputing systems will always offer maximal

speedup for PDES codes. The master/worker PDES infrastructure allows an alternative

method for expanding processing capabilities of a site through the re-use of existing

infrastructure and idle workstations. Although almost all PDES codes could in principle

run on a master/worker system, the limitations of the infrastructure can outweigh the

benefits.

Conservatively synchronized PDES codes exhibiting the following properties can

benefit the most from a master/worker infrastructure:

1. Favorable lookahead and predictability

2. Computationally intense work units

3. Favorable computation to communication ratio

4. Compact state vectors with low memory footprints

The main weaknesses in a master/worker PDES system are the potentially lower

bandwidth links between workers and the master services along with indirect messaging

and buffering on the master. In order to mitigate these disadvantages, the PDES

application should exhibit the aforementioned qualities.

Lookahead, or predictability of a simulation, must be favorable to allow sufficient

computation to occur during the work unit lease. Smaller lookaheads relative to the

available simulation time for computation per work unit lease increases synchronization

costs and work unit return rate, decreasing the concurrency of the system and increasing

the overall time spent in overheads.

87

Moreover, favorable lookaheads may result in significant portions of simulation

time to be leased as work units, however, if the actual PDES application itself performs

few computations during the work unit lease the amount of time spent in actual real work

for forward progress will be overshadowed by the synchronization and work unit lease

and return costs. PDES codes in a master/worker system must be computationally

intense in order to take advantage of the available processing power in the worker pool

without overwhelming overheads. Computationally intense workloads are codes that

encompass non-trivial computations requiring many processor cycles to achieve a desired

result. For instance, a simple Monte Carlo simulation may consume significantly less

processor time than PDE solvers employing FFTs. This property is important for

sustaining concurrency within master/worker PDES system.

As with all distributed computing programs a favorable computation to

communication ratio (e.g., relative wall clock time spent in application computation

versus communication) is necessary to allow speedup over sequential implementations.

Communication time includes all time spent in lease and update protocols between the

master and workers including retrieving lease information, state vector data and input

messages. Additionally, this includes time to update state vectors and any output

messages that are generated. The time spent during these operations is considered

overhead because they are not part of the processor time dedicated to forward simulation

progress (e.g., wall clock time spent in application code). Even with generous lookahead

and computationally intense work units, if the amount of data that must be shifted

between the master service and clients is large due to the state vector or message data

(e.g., number of messages generated or a large average payload per message), this will

88

lead to excessive consumption of bandwidth and increased transmission time ultimately

decreasing the parallel efficiency of the simulation.

Similarly, a simulation with compact state is the best match for master/worker

PDES because it avoids consuming large amounts of processor time and communication

bandwidth for state synchronization updates and state leases to available workers. State

vectors must be unpacked at the beginning of a lease to a client after retrieval and packed

and updated after the lease ends to a client.

These application properties are crucial for providing efficient execution in a

master/worker PDES architecture and the veracity of these desired properties will be

quantified in the performance study.

3.4 Aurora2: A Scalable, Distributed Architecture for Master/Worker PDES

Aurora2 is an approach, through the adherence to master/worker design principles,

to provide a distributed system across loosely coupled machines of varying operating

systems and architectures providing computational capacity and throughput for large-

scale parallel and distributed simulations. This approach is a departure from the previous

web services based design with enhanced scalability, application insulation, and

concurrent simulation support.

89

Figure 17: Overview of Logical Aurora2 Components

The Aurora2 system can be logically divided into three parts: master back-end

services that include state, message, proxy, and broker services, simulation packages, and

the client pool that provides computational power, as shown in Figure 17. For

master/worker PDES systems, we assume that the services and clients exist on the same

side of a firewall or that steps are taken to allow communications to such services that

span a firewall such as open ports or SSH tunneling. The work unit pull-based system

State Service Message Service

Proxy Service

Broker / Watchdog
Services

Simulation
Package

Client Pool

B
a
c
k
-e

n
d

 S
y

s
te

m

U
s
e
rs

90

does not require clients to act as servers. Thus client requests are unidirectional in nature

(e.g., client to server only).

Although complete independence from architecture and language binding is

sacrificed because of the removal of the web services base, this approach remains highly

portable due to the foundation library used as the underlying framework for all Aurora2

services. The Portable Components (POCO) for C++ library is freely available, open

source solution providing standardized abstractions for network-centric applications [92].

POCO provides clean and portable interfaces filesystems, networking, threads, etc. As

Aurora2 is built upon this library, the architecture can be compiled on any operating

system that can compile POCO, which encompasses most modern operating systems

including, but not limited to: Windows, Linux, Mac OS X, Solaris, HP-UX, Tru64,

OpenVMS, and embedded systems such as Windows CE and QNX Neutrino.

3.4.1 Broker Service

The broker service acts as resource directory for all services and clients within the

system. The broker service provides information such as the current master proxy host

address or unique key identifiers to host addresses for work unit state and message

services to the clients. The broker performs automatic heartbeats to the proxy service and

election of new proxies should the master proxy crash. This information is then queried

by clients or other back-end services after a connection timeout to the proxy service that

has crashed or is no longer reachable on the network. Optional watchdog services can

provide restart and monitoring functionality for other back-end components including the

broker.

91

3.4.2 Proxy Service

The proxy service is the central core controller and is regarded as the logical

master in the master/worker paradigm. Internally, major metadata portions are contained

within managers as shown in Figure 18. The proxy contains metadata for all simulation

packages and oversees the other two back-end components: the state server and message

server. Incoming connections are accepted by the connection manager thread that

services the network. Valid connections are then passed to a thread in the generic worker

thread pool that is loaded with data specific to the request and then is serviced by

invoking applicable methods in one of the metadata managers: simulation package

manager, work unit server manager, message server manager, or client manager.

Figure 18: Components of the Proxy Service

Connection
Manager
Thread

Generic Worker
Thread Pool

Simulation Package Manager

Time Management Manager

Work Unit Metadata Manager

Work Unit Server Manager

UUID, IP, Port, Status,
State TS

Message Server Manager

UUID, IP, Port, Status,
MinTSO

Client Manager

UUID, IP, Port, Mode,
Active

 Fault Tolerance Manager

92

The simulation package manager contains the work unit metadata manager and

the time management module. Information pertaining specifically to the simulation work

units such as simulation times, consistency of state vectors, and reverse lookup tables to

work unit state and message stores are contained in the work unit metadata. The time

management manager is instanced within the simulation package manager that controls

global simulated time. This manager contains aforementioned methods to compute safe

processing bounds.

The time management manager can include a mixture of conservative (blocking)

or optimistic (rollback-based) schemes. The time management mechanism can be chosen

at runtime by the simulation package definition. Multiple different time management

schemes can be used for separate simulations all running on the same back-end instance.

The current version of Aurora2 includes a centralized conservative time management

mechanism with an identical algorithm implementation as discussed previously. If the

system were to allow multiple proxies through a front-end load balancer, distributed time

management would need to be addressed.

The client manager stores information about the client such as IP address, global

unique client keys, and any outstanding work unit leases. The other two managers inside

the proxy service handle metadata for the ephemeral data stores involving work units.

The work unit server manager oversees work unit server instances storing information

such as server IP address, port number, memory allocation, and listing of simulation

packages the server is hosting. The message server manager stores similar information

but is instead dedicated to handling message server specific metadata.

93

3.4.3 State and Message Services

Due to PDES applications inherently belonging to a different class of problems

typically associated with distributed computing programs on volunteer computing and

desktop grid architectures, it is necessary to add two additional storage services. State

vectors are modified as the work unit advances in simulation time. Unlike typical EP

classes of problems, the simulation time must be limited so that a work unit does not pass

an upper safe processing bound (e.g., MinETS) to preserve the LCC. When the

simulation time reaches this end time limit, the final state vectors and any messages

generated during the simulated time must be stored for a future work unit lease to another

client.

Figure 19: Components of Storage Services

The state and message services provide a distributed storage system for collecting

pertinent states. Due to the possibility of a high volume of clients that may upload large

state vectors and messages, these services must be designed for high performance.

Following a similar design as the proxy service, these state services are multi-threaded

Connection
Manager
Thread

Generic Worker
Thread Pool

Fault Tolerance
Manager

Work Unit Manager

Designation, Host
Addresses, etc.

Work Unit State
Vectors or TSO

Message Queues

94

and any number of them can be instanced for improved scalability as shown in Figure 19.

Depending upon the functionality of the service, the work unit manager stores either state

vectors or a TSO message queue. State vectors are stored as application-defined

contiguous blocks of memory that are packed and unpacked by simulation-specific

routines overwritten by the Aurora2 clients. Similarly, packaged messages are stored in

their respective destination LP TSO message queue.

3.4.4 Client

The back-end services provide the necessary infrastructure to run PDES

applications in a distributed fashion over loosely coupled resources. However, the clients

perform the actual simulation computation. After communicating with the proxy service,

these clients contact the proper back-end state services to download simulation state and

associated messages per work unit lease. Computation is done locally and independent of

other clients. Once the designated client simulation period is processed, the final state

and messages are uploaded to the work unit state and message state servers. This process

can repeat for a specified number of times, until the simulation end time is reached, or if

interrupted by a user.

95

Figure 20: Components of the Client

The Aurora2 client is multi-threaded to allow unimpeded execution of the

simulation application code while master/worker-specific tasks can run concurrently as

illustrated in Figure 20. The auxiliary worker thread can perform background processing

tasks such as message state server location lookups while the simulation is running.

The auxiliary thread is particularly important with regard to inter-LP messaging.

When a message is generated during traditional PDES executions, the message is usually

immediately sent to the recipient LP. In a master/worker metacomputing environment,

connectivity between clients is not assumed; therefore generated messages are buffered at

the client in the TSO output message queues. TSO message queues are priority queues

where the order of messages is determined by timestamp and secondary tie-breaking

fields of the message. These TSO message queues are arranged in increasing timestamp

order. Due to the distributed nature of the message state service, lookups must be

performed to ascertain the location of destination LPs (work units). This information is

Signal
Handler
Thread

Mersenne Twister PRNG
Manager

Auxiliary
Worker
Thread

Simulation
Application

Thread

TSO Incoming
Message Queue

TSO Output
Message Queues

Message State Server
Lookup Tables

96

gathered into the message state server lookup tables which are necessary for the work

unit finalization task that runs after the simulation computation completes.

In order to ensure repeatable executions, the client contains a random number

generator manager. The Aurora2 clients utilize the Mersenne Twister pseudo-random

number generator [93]. Interfaces are automatically provided by the Aurora2 client for

the PDES application to pull random numbers from uniform and normal distributions and

can be seeded by the application as needed. Multiple parallel pseudo-random number

generator streams are also supported by the client and can be automatically saved along

with that of the default generator. This master/worker PDES system will generate

identical results regardless of the type of time management selected if the same random

number generator and seeds are chosen between runs.

3.4.5 Simulation Packages

With the addition of concurrent simulation support in Aurora2, a specification

was needed to create a simulation instance on the back-end services. The simulation

package definition accomplishes this by providing initial metadata about the distributed

simulation such as the number of work units, a lookahead connectivity graph, simulation

begin and end times, and deadlines in wall clock time for each work unit lease. In

addition to these initial runtime parameters the simulation package definition may upload

any initial work unit states. After the simulation package definition is uploaded to the

proxy service, the necessary metadata tables and allocation of resources is done prior to

client execution such as the distribution of work unit storage load. Initial work unit

distribution, dynamic load balancing, and memory distribution and re-distribution

97

techniques are possibilities for efficiently distributing back-end load and are discussed

further in chapter 6.

Figure 21. Simulation Package Interaction

Figure 21 illustrates the procedure for registering a simulation package with the

back-end master services. After the simulation package definition is uploaded to the

proxy service, the necessary metadata tables and allocation of resources is performed

prior to client execution such as the distribution of work unit storage load. For example,

Figure 22 illustrates uploading the simulation package definition to the proxy service

Registration
confirmation

Determine work unit
to server mapping

Register work units

Allocate memory
and acknowledge

Upload initial work unit state

Address query return

Query work unit state
service address

Register SimPkg

Simulation
Package

Proxy
Service

State / Message
Services

98

(step 1) where the simulation contains fifty total work units with an anticipated memory

requirement of two MB per work unit in both state vector and message storage. The

proxy service will then query its internal tables for available work unit and message state

servers. 25 work units are allocated to each in steps 2 and 3 to work unit state servers 1

and 2 respectively. For message state storage, 37 work units are allocated in step 4 and

the remaining 13 are allocated in step 5.

Figure 22: Example Work Unit Distribution

After the simulation package is registered with the proxy service, the simulation

package can be specified to optionally upload initial work unit states if necessary. This

involves querying the proxy service for the state service host addresses that the

simulation package uses to directly contact and upload state.

3.4.6 Work Unit Lifecycle

The Aurora2 client performs a series of steps to download pertinent metadata, un-

packaging of various data, simulation execution, re-packaging of state variables and

messages, and finally uploading results back to the proper back-end services. These steps

5

4

2

3

1

Proxy Service

Work Unit State Server 1
[Avail Mem = 50MB]

Message State Server 1
[Avail Mem = 75MB]

Simulation

Package Definition

(50 WUs, 2MB per
WU)

Work Unit State Server 2
[Avail Mem = 100MB]

Message State Server 2
[Avail Mem = 75MB]

99

can be characterized as the master/worker PDES work unit lifecycle. The lifecycle is

comprised of three major steps, excluding the one-time initialization phase. This

initialization phase includes thread initialization, signal handler setup, communications

manager handshaking, and command-line parsing. The three major cyclic steps for a

master/worker PDES client are: unit request and download, simulation application

computation, and work unit finalization and upload. The client may fail at any point

during these steps. A work unit that is not returned within its wallclock deadline lease

period due to client failure is rolled back and leased to a different client. These steps are

similar to conventional volunteer computing lifecycles. However, additional PDES

requirements modify the details significantly. A general overview of the work unit

lifecycle is presented in Figure 23 with an in-depth interaction diagram shown in Figure

24.

Figure 23: Work Unit Lifecycle

Simulation
Application-

Specific Methods

PackState()

UnpackState()

Run()

Work Unit Setup

Request
Metadata

Request State

Request
Messages

Finalization

Pack Self

Collate and
Upload Packed

Data

Consistency
Convergence

100

Figure 24. Client and Work Unit Lifecycle Interaction Diagram

Poll for convergence

Convergence authorized

Download metadata
and simulation code

Request work

Consistency
convergence reached

Acknowledge receipt of
state and messages

Upload work unit state and message simultaneously

Consistency
convergence request

Check if runnable
work units exist

Download work unit state and messages simultaneously

Register

Client
Proxy

Service
State / Message

Services

Load simulation
code

Deserialize state
and messages,
populate input

message queue

Run application
code

Serialize state
and messages

Synchronize
work units Reset client

C
Y
C
L
E

101

Figure 25. Interaction in the Presence of a Client Failure

The work unit request and download phase is comprised of five steps. The first

step is to contact the proxy and receive a client key authorization. Client keys are unique

Download metadata
and simulation code

Request work

Check if runnable
work units exist

Download work unit state and messages simultaneously

Register

Client
Proxy

Service
State / Message

Services

Load simulation
code

Deserialize state
and messages,
populate input

message queue

Run application
code

Time out work unit
(deadline passed),

lease revoked, clear
all lease information

between leased
work unit and client

C
Y
C
L
E

Convergence denied,
lease revoked

Consistency
convergence request

Failure: e.g., user
disengage or

network
disconnect

Reset client

102

identifiers issued to the clients and are used by the client to identify itself in future

communications. Once a unique client key is issued, the second step is for the client to

perform a work unit request where the proxy may or may not lease a work unit to the

requesting client. If a work unit is available to be leased, associated metadata about the

work unit is downloaded from the proxy service. This third step also includes creating

any necessary internal data structures to host the pending work unit. In the fourth step,

the client contacts the designated work unit state server for the packed state vectors from

information received in step three. Concurrently, the client contacts the appropriate

message state server and downloads messages destined for LPs contained in this work

unit. The fifth step sends the downloaded state vectors to the application-defined

UnpackState() method to initialize the LPs with the proper state variables. Likewise,

the messages downloaded in the previous step are unpacked and populated in the

incoming TSO message queue.

After the work unit setup has completed, the application-defined simulation

execution method Run() is invoked and the simulation runs for the entirety of the

simulation execution window as specified by the request phase of the work unit setup.

The final work unit phase is initiated when the simulation computation reaches the end

time.

Work unit finalization and upload consists of six steps. The first step calls the

application-defined PackState() for packaging the final state into a contiguous area

of memory for upload to the work unit state server. In the second step, the client

packages any remaining unprocessed messages in the incoming TSO message queue that

may have been generated through self-message sends. These messages are generated

103

during the simulation execution from any LP within the work unit to destination LPs

residing in that same work unit. In the third step, the client initiates a consistency

convergence to the proxy service. Consistency convergence is a protocol that defines a

set of required updates from the back-end storage services acknowledging receipt of new

messages that have been generated during the client lease execution along with updated

state vectors. The consistency convergence also locks down the work unit so that it will

not be leased again or updated in multiple lease scenarios. This allows an atomic work

unit commit, preventing inconsistent updates of work unit and message states. The fourth

step involves the client initiating an outgoing message collation process where future

messages destined for work units that reside on the same physical message state server

are packed together. This process leverages the data gathered by background message

state server lookups performed by the auxiliary thread during the simulation computation.

This reduces the frequency of smaller message updates and allows the client to update

groups of messages in large blocks. After this process completes, the fifth step includes

uploading the final state and packed messages in step two to their respective servers. The

sixth and final step is a verification of consistency convergence from the proxy that the

process was completed successfully without errors on the back-end services. During

steps four and five, the state and message state servers send messages to the proxy

specifying updates to their respective states. The proxy acknowledges these messages

and keeps track of the consistency convergence process with the final result of the update

returned to the client in the final step of the finalization process.

As shown in Figure 25, client failures (e.g., temporary network disconnects or

user disengages from the simulation) are detected by the proxy when it does not receive a

104

work unit finalization request before its wall clock deadline. These work units are reset

by the proxy service and re-leased to other clients. Communications problems, such as a

broken socket will cause the proxy to invalidate the lease to that particular client. User-

based interrupts are handled through signal handlers and client unregistration requests, if

required, are sent to the back-end system. If clients fault due to an application bug, the

client must be restarted by the user, however, the proxy treats such crashes the same as

ephemeral errors with work unit lease timeouts and lease revocations.

3.5 Distributed Back-End Fault Tolerance Subsystem

In contrast to the monolithic web services based master/worker PDES fault

tolerance system, a variety of new issues must be addressed that pertain to a distributed

back-end infrastructure present in Aurora2. The goal of this fault tolerance system is to

provide transparent recovery from failure given sufficient backup resources have been

allocated. In order to precisely map the range of failures covered by the fault tolerance

subsystem, assumptions about the operating environment and nature of failures are

presented. First, the Aurora2 system is targeted towards a trusted desktop grid

infrastructure where it is assumed that workers provide results in good-faith and there is

no intentional malicious behavior by the client worker pool. Thus, the fault tolerance

system does not handle Byzantine failures and computational faults where clients provide

intentionally incorrect results. Second, there are sufficient resources allocated for

replication. Third, watchdog processes are employed. The level of sophistication used

by the watchdog is relatively unimportant, with a simple shell script with process

monitoring and restart capability is the minimum requirement. A minimum of one

105

watchdog process on the broker service is required, however, additional watchdog

processes on other back-end services can provide for continual, long-term monitoring and

restart capability. Finally, proper measures are taken to accommodate communication to

back-end services through firewalls if necessary.

3.5.1 Broker and Proxy Interaction

The broker service, in addition to the role as a directory and locator service, acts

as a controller over all proxy services. At startup, proxy services register themselves with

the broker service. The broker service maintains a proxy list where it designates one

proxy as the master proxy and all other proxies as slaves for replication. If the broker

crashes, the watchdog service restarts the broker service. Proxy services will periodically

monitor the broker host address for a live service. If the broker has no record of the

proxy service, the proxy will re-register itself with the broker service. The broker acts as

a multicast router for fault tolerance updates. The master proxy will periodically upload

metadata tables containing client and simulation package information to the broker. The

broker will then propagate this fault tolerance update to slave proxies for replication.

This reduces the bandwidth requirements for fault tolerance updates on the master proxy

that must continually service requests from active simulations. If the broker detects a

failed master proxy via periodic heartbeats, it will promote an up-to-date slave proxy as

the new master proxy service. In the case of network congestion preventing a heartbeat

response and there exist two master proxies, the broker will forcefully demote a master

proxy to slave status.

106

3.5.2 Storage Service Replication

The state and message storage services are replicated for fault tolerance. A

storage service may be designated as primary or backup by the user instantiating the

service. However, when a storage service registers with the proxy service, a preferred

backup service may be designated as the primary service if too few primary resources

exist. The primary storage service will periodically serialize simulation data and transmit

them to registered backup resources when triggered by the master proxy service. The

master proxy continually monitors primary state and message servers via heartbeat

mechanisms. If the proxy detects that a primary resource has failed, a promotion

message is sent to an up-to-date backup service. All old metadata linking the failed

primary service such as unique identifiers and host addresses are replaced with the newly

promoted service. Clients will automatically re-query the master proxy service for the

new host address when contact with the failed primary storage service is unsuccessful.

3.5.3 Client Failures

There are no special data structures or mechanisms for client failures, as it is

expected that the client pool is volatile in a master/worker system. Client leases that are

not returned within the specified wall clock lease window are considered to have failed

and the lease is invalidated. The computation is then subsequently leased to an available

idle client worker. Clients which appeared to have failed, but are simply lagging behind

due to insufficient processor speed or memory are treated the same as a failed client and

the work unit return is refused, and the lease is retracted.

107

3.5.4 Portable Fault Tolerance

Any class instantiated by a service or class data that cannot be properly

reconstructed at service creation or is critical for a service restart must implement

Serialize and Deserialize routines. POCO routines are used to encapsulate data and store

proper byte-ordering information. Hierarchical serialization and deserialization is

employed for all back-end services. For instance, the proxy service contains various

managers. During a fault tolerance update on the master proxy service, the Serialize

method is called on itself, then each manager’s Serialize method is invoked, which in turn

may execute Serialize methods for objects that may exist within each manager. Data

serialization is run using a dedicated timed thread which removes fault tolerance updates

from largely interfering with a running simulation outside of common data locks. Data

can be saved to a backing store such as local disk as an optional runtime configurable

parameter.

3.5.5 Infrequent Checkpoint Intervals and Fossil Collection

Due to the radically different applications a master/worker PDES system must

support than typical distributed task parallel applications that may only return a few

(simplified) results over time, Aurora2 cannot provide fault tolerance on a per-change

basis; otherwise the cost for fault tolerance would be overwhelming. If a failure occurs,

the proxy may rollback the simulation to a known system-wide consistent state. However,

snapshots of simulations cannot be stored indefinitely and eventually back-end services

will exhaust all available memory. Similar to optimistic synchronization fossil collection

mechanisms, a technique based on global control is used to reclaim memory for fault

tolerance purposes.

108

Figure 26: GFTT and Fossil Collection

The Global Fault Tolerance Time or GFTT is simply the GVT of the simulation

at the fault tolerance snapshot time. A pair of these values determines which old fault

tolerance data can be safely discarded, and is guaranteed not to cause active simulations

to fail due to missing state or message data as illustrated in Figure 26. Upon successful

propagation of the master proxy fault tolerance data to slave proxies, a GFTT update

message is generated for all state and message services. This GFTT update will force a

fault tolerance update to occur on the receiving service. Any messages with a send time

less than the first GFTT can be safely reclaimed. As for states, if there exists a state entry

at the GFTT time, this state must be preserved, or if a state does not exist at the first

GFTT time, the first state with a timestamp less than the first GFTT must be saved. All

other previous state entries can be safely discarded. A pair of GFTT values must be used

to avoid GFTT inconsistencies that are a possibility that the simulation can be in an non-

recoverable state if a failure occurs during a GFTT update.

GFTT1 GFTT2

Simulation
Time

109

Figure 27: Non-Pairwise GFTT Updates and Inconsistencies

Figure 28: Recovery in the Presence of a GFTT Update Failure

Suppose only a single GFTT value was used for fault tolerance and fossil

collection purposes. If a failure occurred during a GFTT update, but some services

already reclaimed old state and messages, then the system could be potentially in an

inconsistent state where backup services for the failed primary have not received new

GFTT1

GFTT0 GFTT2

Simulation
Time

GFTT1

GFTT0 GFTT2

Simulation
Time Primary GFTT update failure:

no updates received

Primary State
Service 1

Backup State
Service 2

Inconsistent
State

GFTT1

GFTT0 GFTT2

Simulation
Time

GFTT1

GFTT0 GFTT2

Simulation
Time Primary GFTT update failure:

no updates received

Primary State
Service 1

Backup State
Service 2

110

state updates as shown in Figure 27. Without a forward state to jump to, nor a previous

state to restore, the system could not recover from the failure and would have to be

restarted.

By utilizing a pair of GFTT values, a state will always be available for restoration.

This pair-wise system prevents any saved state from being reclaimed between the latest

GFTT and previous GFTT values as depicted in Figure 28. Although GFTT update #2

failed to propagate to the backup state service from the primary, consistency between

state service 1 and backup service 2 is maintained, allowing the master proxy to rollback

the simulation to the state just prior to the GFTT update #1. This pair-wise GFTT

protocol prevents inconsistencies where no available states are available for simulation

restoration after a failure, resulting in a simulation restart.

3.6 Performance Study

A performance study was performed to evaluate various application

characteristics for viability under a master/worker PDES system in a loosely coupled

computing environment. This study provides empirical data to validate the proposed

desirable properties of conservatively synchronized applications using the previously

discussed performance metrics that divide processor time into relevant computation and

overhead components. In addition, scalability of the system is demonstrated through the

ability to deploy any number of back-end services to meet the demands of different

workloads even in the presence of PDES performance-unfriendly codes.

The Aurora2 system was compiled using gcc 4.1.2 with -O2 optimization flag.

Nodes designated as Xeon consist of dual processor Intel Xeon CPUs ranging from

111

2.8GHz to 3.06GHz with SMT (Hyperthreading) enabled and 1-2GB of memory. Nodes

designated as Pentium-III consist of 8-way Pentium-III 550MHz CPUs with 4GB of

memory. All machines use a GNU/Linux 2.6 series kernel and interconnected with Fast

Ethernet. Although the Aurora2 system is able to utilize non-dedicated machines, for this

performance study it was necessary to isolate these machines from external factors such

as variable user load to obtain benchmark data without perturbations.

Compared to the previous performance study under a web services framework,

the overhead is divided into more precise measurements. For the figures below, deferred

refers to the amount of wallclock time in seconds a client spends waiting for a valid work

unit lease from the master. Import indicates to the amount of time the client spends

downloading work unit metadata, work unit state vectors, messages and the associated

time spent in the application-dependent de-serialization routine. Finalize is the time to

perform the logical inverse of import where the work unit state and messages are

serialized and consistency convergence is achieved on the back-end services for the

returning work unit. Application denotes the time spent executing application-dependent

simulation code.

3.6.1 Synthetic Workload Analysis

To provide a broad overview of system performance, a simple synthetic

benchmark was used where LPs (or work units, as this simulation maps a single LP to a

single work unit) are arranged and connected in a circular fashion, where messages are

sent to the immediate left or right of a work unit. This simulation contained 20 work

units with uniform lookahead connectivity. This workload minimizes simultaneous

activity on the back-end system by performing the simulation with only one Xeon client

112

in a sequential fashion. This exposes pure performance metrics for evaluating the

interplay between absolute workload and overhead of state maintenance.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.5 1.0 2.0 5.0

Synthetic Workload (sec)

P
ro

c
e

s
s

o
r

T
im

e
Application Deferred Import/Setup Finalize/Export

Figure 29: Effect of Workload with 10KB of State

This application mimics a packing/serialization routine associated with cross-

platform master/worker systems that is determined by the amount of data transferred.

Thus, as shown in Figure 29, the finalization/export phase is significantly longer than the

import/setup phase. As expected, with very little state overhead, even with a low amount

of computation per lease, the processor time dedicated to the application is approximately

50% or higher.

113

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.5 1.0 2.0 5.0

Synthetic Workload (sec)

P
ro

c
e

s
s

o
r

T
im

e

Application Deferred Import/Setup Finalize/Export

Figure 30: Effect of Workload with 1MB of State

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.5 1.0 2.0 5.0

Synthetic Workload (sec)

P
ro

c
e

s
s

o
r

T
im

e

Application Deferred Import/Setup Finalize/Export

Figure 31: Effect of Workload with 10MB of State

More complex PDES codes may have larger state vectors for each lease. Figure

30 attempts to characterize applications that require larger states. As expected, the

114

amount of relative processor time for the application decreases as the import/setup and

finalize/export phases consume more time.

Figure 31 illustrates applications with even larger amounts of state per work unit

lease. The computational workloads should exceed one second per lease in order to gain

significant amount of application runtime over the cost of shuffling state vector data and

associated deserializing/serializing penalties.

3.6.2 Analysis of PDES Properties on Performance

To evaluate key parameters in PDES codes, a torus queuing network simulation is

used. The queuing servers can be aggregated into subnets that are mapped to a single

work unit. The queuing network is configured as a 25,600 server 160x160 closed torus

network partitioned into 64 20x20 torus subnets that can be leased as work units. The

internal links within each work unit are set at a delay of 1 millisecond. The job generator

creates local jobs with random server destinations that exist within the work unit and

additional remote jobs with random server destinations that are external to the work unit.

Jobs reaching their destination server are assigned a new random destination according to

their previous local or remote designation to keep the relative amount of local and remote

jobs consistent. Job service times are exponential distributed with a varying rate

parameter (in seconds), λ, depending upon the test performed. All queuing network

performance tests were run on 20 clients over 10 Xeon nodes.

115

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10ms 100ms 1000ms

Lookahead

P
ro

c
e

s
s

o
r

T
im

e

Application Deferred Import/Setup Finalize/Export

Figure 32: Effect of Lookahead (λ = 1)

To evaluate the impact of lookahead on performance, the relative ratio of 50%

local and 50% remote jobs generated remained constant for each lookahead test. Similar

to conservative PDES codes in general, there is a strong relationship between lookahead

and the amount of processor time dedicated to the application as shown in Figure 32.

The rate parameter of this simulation is 1 which leads to a high probability of event

timestamps exceeding the leased time window.

116

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10ms 100ms 1000ms

Lookahead

P
ro

c
e

s
s

o
r

T
im

e

Application Deferred Import/Setup Finalize/Export

Figure 33: Effect of Lookahead (λ = 10)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

5000 10000 15000 20000

Total Jobs Generated per WU

P
ro

c
e

s
s

o
r

T
im

e

Application Deferred Import/Setup Finalize/Export

Figure 34: Effect of Absolute Workload (λ = 1, 50% local:remote job ratio, LA = 1s)

In Figure 33, the rate parameter is modified to generate timestamps with a higher

probability within the leased execution window, the effect of lookahead is greatly

117

pronounced as more events can be processed before state and messages must be returned

and synchronized with the back-end system.

Figure 34 shows the effect of total number of initial jobs generated per work unit

lease, which are kept in the system due to the closed nature the queuing network. Similar

to changing the rate parameter in the lookahead tests, as the number of jobs increases, the

application processor time increases as the number of effective processable events within

the system per work unit lease rises. However, generating too many events leads to

bottlenecks in other areas such as serialization/deserialization times during setup and

finalization along with increased bandwidth usage.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

7500:2500 5000:5000 2500:7500

Remote:Local Jobs Generated per WU

P
ro

c
e

s
s

o
r

T
im

e

Application Deferred Import/Setup Finalize/Export

Figure 35: Effect of Relative Workload (λ = 1, LA = 1s)

In contrast to absolute workload, if the amount of work generated on the initial

work unit lease remains constant but the amount of work that remains internal to the

work unit is increased in comparison to remote jobs that inevitably cross work unit

118

boundaries and thus invoking inter-work unit message sends incur more communication

costs. This diverts processor time away from application time as show in Figure 35.

The empirical data gathered from this performance study quantify our expectation

that favorable lookahead, computationally intense work units, low communication costs

compared to computation, and compact state and message sizes lead to desirable PDES

application properties that tend to operate effectively on a master/worker PDES work

distribution system.

3.6.3 Comparative Performance Study

In order to validate the scalability of this new architecture, the performance of the

Aurora2 system was evaluated comparing the first generation Aurora system based on

web services. Two main applications were utilized in this study that includes a torus

queuing network and an existing physics simulation modeling a one-dimensional hybrid

shock using the piston method. The original Aurora system was compiled with gSOAP

2.7.6c. In the figures that follow, the XwYm indicates X work unit state servers and Y

message state servers used in Aurora2 multi-server tests.

In these torus queuing network simulations, servers can be aggregated into

subnets as LPs that can then be mapped to individual work units. The first test examines

the system performance of computationally intense work units where the number of

servers within each work unit is high and the lookahead is favorable. This

computationally intense scenario is configured as a 250,000 server 500x500 closed torus

network with 625 partitions as available work units of 25x25 torus subnets. The internal

links between servers within each work unit have a delay of 10 microseconds while

delays between servers spanning work units have a delay of 1 millisecond. There are

119

20,000 initial jobs generated with 50% of the jobs destined for servers within each work

unit and 50% destined for servers external to the work unit. Job service times were

exponentially distributed with a mean of 5 microseconds. The following tests were

performed with 42 clients consisting of 2 Pentium-III nodes and 13 Xeon nodes.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Aurora1 Aurora2 (1w1m)

P
ro

c
e
s
s
o

r
T

im
e

Application Deferred Import/Setup Finalize/Export

Figure 36: Computationally Intense Scenario Aurora Comparison

Figure 36 shows the contribution of each portion of the work unit lifecycle to

overall processor time usage. The first generation Aurora system shows 68.6% of the

time spent doing useful computation while 31.4% of CPU time is spent in overhead or

waiting for a valid work unit lease. The Aurora2 case with one work unit server and one

message state server shows approximately 94.9% of the processor time dedicated towards

the application and only 5.1% for overhead. This particular simulation exhibited high

concurrency and relatively large amount of time spent in simulation computation per

work unit lease. Moreover, the amount of message state shifted per work unit lease

120

averaged approximately 60MB. Two improvements in the Aurora2 system are shown

here. First, the XML encoding and processing overhead for large transfers increases the

import and finalize times for the web services based Aurora system. Second, the

optimized Aurora2 back-end services with multi-threading allows concurrent service

requests while potentially large memory copies are being processed.

0.5

1

1.5

2

2.5

3

3.5

4

Aurora1 Aurora2

(1w1m)

Aurora2

(1w2m)

Aurora2

(1w3m)

Aurora2

(1w4m)

Aurora2

(1w5m)

Aurora2

(1w6m)

S
p

e
e
d

u
p

Figure 37: Computationally Sparse Scenario Speedup

The next test modifies the torus queuing network simulation parameters to

unfavorable conditions with low concurrency even for traditional PDES systems. This

computationally sparse scenario consists of a 150x150 closed torus queuing network

containing 22,500 servers partitioned into 225 10x10 subnets which can be leased as

work units. The external work unit to work unit delay has been reduced by an order of

magnitude over the coarse scenario to 0.1 milliseconds. All other parameters remain the

121

same. This test was run over 64 clients consisting of 4 Pentium-III nodes and 16 Xeon

nodes.

This computationally sparse scenario exhibits lower concurrency in the model

due to the reduction in lookahead compared to the computationally intense model. There

is a steady reduction in overhead as an increasing number of messaging servers are added

to the back-end system. Due to the negligible amount of state vectors in this simulation,

it is suitable to only add message state servers instead of a mixture of both storage

services. At the sixth messaging server added, 28.1% of total processor time is recovered

from overhead over the first generation Aurora system. In terms of perceived

performance gain, e.g. wallclock runtime reduction, Figure 37 shows this more clearly.

The Aurora2 back-end system with a single work unit server and message server is

49.6% faster than the web services based Aurora counterpart. In the final test including

six message state servers a speedup of 3.65 over Aurora1 is achieved in this low

concurrency scenario.

3.6.4 Scalability Analysis

To evaluate the potential for execution of large-scale simulations under a

master/worker system, a particle physics simulation was chosen with characteristics

conducive for traditional PDES systems. This allows a true scalability stress test of a

master/worker PDES implementation taxing all available bandwidth and processing

power of the back-end services. For this scalability analysis, the hybrid shock simulation

is employed again. To test the effect of multi-threading in the Aurora2 system the back-

end was configured with one work unit state server and message state server along with

the proxy service. The threads were then varied for the test case with the following

122

parameters for the hybrid shock simulation: 4000 cells with 100 initial ions per cell, 0.11

lookahead, and a cell width of 0.00025. The simulation was partitioned into 200 work

units. The XpYwZm notation represents X proxy threads, Y work unit state server threads,

and Z message state server threads in the multi-threading tests.

100

150

200

250

300

350

1p 1w

1m

2p 1w

1m

1p 2w

1m

1p 1w

2m

1p 2w

2m

2p 2w

2m

3p 3w

3m

4p 4w

4m

5p 5w

5m

Threads

A
v

e
ra

g
e

 O
v

e
rh

e
a

d
 T

im
e

 (
s

e
c

)

Figure 38: Effect of Multi-threading on Overhead

Figure 38 illustrates the trend of decreasing average total overhead time per client

across 64 clients (4 Pentium-III nodes, 13 Xeon nodes) for this high overhead, low

concurrency simulation. The ability of the Aurora2 back-end to process requests

concurrently is advantageous in reducing average overhead time per client particularly in

the areas of work unit import and work unit finalization.

123

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2s

1m

4s

1m

3s

1m

1s

1m

3s

2m

2s

2m

1s

2m

1s

4m

1s

3m

3s

3m

4s

3m

2s

3m

3s

4m

Storage Services

P
ro

c
e

s
s

o
r

T
im

e

Application Deferred Import/Setup Finalize/Export

Figure 39: Hybrid Shock Multi-server Performance

The final test case involves a large-scale Hybrid Shock model that contains both

large amounts of state vector and large amounts of messages being shifted each work unit

cycle. The configuration for this Hybrid Shock model increase the number of cells to

10,000 and 800 initial ions per cell. The other parameters remain the same. This

simulation was run over 64 clients on 32 Xeon nodes.

Steady performance improvement is shown in Figure 39. Although adding just

message state servers produces great initial gains, the performance levels off after the

third message state server if the work unit state server is restricted to only one instance.

The addition of similar numbers of work unit and message state servers allows for the

best scaling improved performance. Application CPU time improves from 14.6% to

49.3% in the 3w4m case.

124

Performance is slightly degraded when adding more work unit servers initially

over message state servers. This is due to the phenomena that as the work unit state

server request latency declines, the request rate into the message state server increases

reducing the responsiveness of that service further. This implies that the initial

bottleneck is not the state server but the message state service for this particular

simulation application, and further proven that the addition of one message state server

improves performance more than two, three, or four work unit servers.

3.7 Task Parallel Simulation Support

The Aurora2 system was enhanced to allow task parallel simulations to run

simultaneously with PDES simulations providing an insulated and integrated

environment for mixed-mode parallel simulations across public resource computing

infrastructures and desktop grids. Aurora2 allows serial simulators (e.g., executables) to

be run in a parallel fashion utilizing the worker pool to perform many replications at once.

Aurora2 also gives fine-grained control over simulations to allow complex operations

that can break apart trials and distribute them across clients. The following is a case

study on performance for an actively deployed simulation suite.

The Georgia Tech Research Institute Ballistic Missile Defense (BMD)

Benchmark is a PC-based Monte-Carlo simulation tool for the development and

performance benchmarking of missile-defense multi-target multi-sensor algorithms (e.g.,

track fusion, data association, general C2BMC techniques). Uses for this tool include

development and assessment of C2BMC sensor network algorithms and algorithm

specification for code development. The BMD Benchmark also provides for real-time

125

testing, pre-mission test event planning, real-time metrics, and post-mission data analysis.

The BMD Benchmark software is a single-threaded discrete event simulation consisting

of approximately 1800 MATLAB files.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

4 6 8

Monte Carlo Trials

W
a
ll

 C
lo

c
k
 T

im
e
 (

s
e
c
)

0

1

2

3

4

5

6

7

S
p

e
e
d

u
p

Serial Aurora Speedup

Figure 40: Task Parallel Replication Speedup

The Aurora2 system digests the input file and if set as a distributed run, will

create equivalent work units to the number of monte carlo trials plus an additional work

unit for an output combining phase. Using the sample scenario files provided with the

BMD Benchmark, a speedup test was performed varying the number of Monte Carlo

Trials. For the Aurora-based distributed run, the number of Monte Carlo Trials

corresponds to the number of clients used to execute the simulation as each trial was

distributed to one worker. As shown in Figure 40, respectable speedup is achieved by

distributing the Monte Carlo Trials to available clients with a 6 fold speedup on 8

workers.

126

Figure 41: Validation of Results

Resultant data between a sequential run and an Aurora-distributed run are shown

in Figure 41 that shows identical plotter data. Other metrics data such as position error

and covariance produced identical results validating that the Aurora-distributed run

produces the exact same data as a serial run.

3.8 Conclusions

The Aurora2 architecture has made significant strides in improving performance

for large-scale PDES applications on a master/worker paradigm. We demonstrated that

the distributed back-end system with a multi-threaded proxy, work unit state, and

message state services can reduce overhead time and improve request latency. The

ability to instance multiple storage services across many machines enhances the

scalability of the Aurora2 back-end system. The improvements to the client by

127

separating auxiliary Aurora-specific tasks and the computation thread reduce overhead

times.

The first generation Aurora system provided a unique approach to PDES

execution through a web services communication middleware. However, this prototype

system suffered shortcomings in providing services for large-scale PDES programs. The

Aurora2 system offers a more robust application independent framework that builds upon

the principles of the first generation Aurora system delivering scalable higher

performance. This improved architecture allows large-scale PDES applications to take

advantage of the master/worker style of parallel workload distribution and execution

across desktop grids and public resource computing infrastructures.

Moreover, enhancements were made to the Aurora2 system to incorporate an

insulated and integrated environment for task parallel simulations. This interface allows

even fine grained control to allow distribution of replications to the worker pool in a

mixed-mode execution environment simultaneously supporting both PDES and task

parallel executions while providing features such as automatic cleanup phases and final

output file recombination.

Although significant improvements to the master/worker PDES architecture were

implemented, there are still areas where improvements are needed. The overhead-prone

areas of state vector transfer and message updating can be further optimized to reduce the

performance gap of master/worker PDES to traditional PDES systems. Moreover, work

units can be scheduled in a more optimal fashion to reduce the total amount of leases

required to complete the simulation as well as reduce deferred wait times. Optimization

128

approaches and associated issues they intend to solve and create themselves are explored

in the next chapter.

129

CHAPTER 4

4 REDUCING INTRINSIC OVERHEADS IN CONSERVATIVELY

SYNCHRONIZED MASTER/WORKER PARALLEL DISCRETE

EVENT SIMULATION

Today, applications for public resource computing and desktop grid

infrastructures are largely limited to embarrassingly parallel codes. These codes

inherently scale well over many machines due to the lack of interprocess communications

and synchronization. With PDES, synchrony between partitions of work is necessary for

correct execution. This requirement creates a plethora of issues, where the major impact

is the reduction of parallel performance due to system overheads such as transmission of

state vectors and indirect message sending.

Although a master/worker approach under loosely coupled distributed computing

infrastructures such as desktop grids provides potential benefits such as dynamic

simulation execution, fault tolerance, and semi-automated load balancing, these

advantages do not come without a cost. In exchange for these benefits, a master/worker

system must pay with performance overhead where every work unit lease incurs

overhead from lease setup to state vector and message download along with increased

storage costs and work unit finalization overhead where the work unit state must be re-

packaged and sent for storage on a non-volatile destination.

In order to reduce these intrinsic overheads, the problem is attacked using a

simple process. How can a master/worker PDES system mimic a traditional monolithic

130

system? Two areas can be readily identified as overhead prone: state transmission and

blocking time on both the lease and finalization phase along with messaging overhead.

The solution approach to these issues is to amortize the cost of state vector transmission

and message passing overhead. Moreover, scheduling work units in a non-first-come

first-serve basis but rather identifying which work units may lie on the critical path of the

entire simulation may provide overall better performance. The focus of the work

presented in this chapter is to reduce the overheads inherent in a master/worker system by

examining possible solution approaches and associated trade-offs and issues with each.

As previously mentioned, in order to close the performance gap between

master/worker and traditional PDES our approach entails mimicking traditional protocols.

Conventional PDES systems are often fully connected where all nodes can pass messages

between each other. Moreover, under conservative synchronization there is no need to

save state, assuming no fault tolerance mechanisms are provided. It is clear that a

master/worker system will not be able to match the performance of a traditional

monolithic system; however, the difference in performance can be reduced with

expedited message delivery and reduced communication for state vector transmission.

We propose to reduce the intrinsic overheads under the master/worker PDES

paradigm utilizing four techniques:

1. Work unit caching

2. Pipelined state updating

3. Pro-active message sending

4. Scheduling policies exploiting PDES properties

131

These techniques allow a master/worker PDES system to behave more like a traditional

system, although not identically due to the volatility of the worker pool and the inability

to directly send messages between clients (communications occurs via the master).

Within each of these approaches lies trade-offs that must be carefully examined. For

example, a blind caching technique where cache hits are maximized for work unit leasing

can lead to increased deferred wait times if the system attempts to block for a cache hit.

Work unit caching provides a reduction in the amount of state transferred between

the state storage services and clients which have valid cached data. This can prove to be

beneficial if the system can utilize the cache available at the client sites and maintain a

relatively high cache hit ratio. Issues that must be addressed are maintaining cache

coherence and consistency as work units can migrate between clients alongside a

replacement and eviction policy.

In conjunction with the caching mechanism, an appropriate state updating

mechanism must be in place to allow cached copies of state on the client to be reconciled

with the back-end storage services. Without a state update protocol to the backing store,

a client failure can lead to an irrecoverable state forcing the simulation to restart. An

efficient state updating mechanism is also needed to allow the work units to be migrated

between clients through the back-end system.

Although the reduction of state vector transmission is a major component to

overcoming the overhead barrier, simulations that exhibit high interprocess messaging

relative to state vector size will not exhibit significant performance gains through a

caching mechanism alone. A pro-active approach to message sending where messages

132

are collated and sent in groups before the work unit reaches the end time of the lease

window allows overlapping communication with computation.

Finally, enhanced scheduling policies that exploit PDES properties such as

lookahead and time window information can prove beneficial for increasing concurrency

in the system. Arbitrary work unit leasing can lead to longer simulation runtimes through

shorter and more frequent leasing or increased deferred waiting times due to blocking.

References to the Aurora system refer to the second version of Aurora or the

Aurora2 implementation as discussed in chapter 3 from this point forward.

4.1 Work Unit Caching

When considering a caching mechanism for a master/worker PDES system, a

variety of issues must be addressed. While there are related issues shared among

distributed shared memory and proxy caching systems, special attention must be paid to

issues specific to master/worker PDES systems. There are four principles in caching

systems where issues must be addressed:

1. Locality

2. Coherence and Consistency

3. Eviction and Replacement Policy

4. Network Policy

Differentiating concepts that apply to master/worker PDES systems when coupled with

these traditional caching principles will be discussed highlighting the importance of new

mechanisms which exploit PDES-specific properties such as connectivity, predictability,

and time stamps.

133

The granularity of a cache block is considered the packed state vectors of the

work unit. This data is cached on the worker with a work unit identifier and timestamp

tags. Because the space for cached data is limited, a replacement policy and eviction

mechanism is required. In a master/worker PDES system, only a single writer is assumed

where there may be a single reader (SRSW) or multiple readers (MRSW).

4.1.1 Locality

Locality is usually separated into two different categories under traditional

caching mechanisms: spatial and temporal locality. References that may be nearby to a

recently referenced datum or instruction is referred to as spatial locality while the

probability of referencing the same datum or instruction at some point in the future is

referred to as temporal locality. In PDES, both locality types can be exploited. Locality

of reference for PDES codes can be separated into two different types for both temporal

and spatial variants:

1. State vector locality

2. Output message locality

Temporal locality is an important principle in any caching system and is fully exploitable

in master/worker PDES systems. Since workers (i.e., clients) execute available work

units as directed by the master service they may perform computation over a wide range

of work units available in the system. An obvious optimization exploiting temporal

locality is to store finalized state vectors (e.g., the state upon reaching the end of the

leased execution window) locally at the client in addition to updating the state on the

back-end service. Future leases can be directed to clients that have valid state vector

caches. This will reduce overall transmission overhead and conserve bandwidth.

134

Figure 42: Sample Four Work Unit Connectivity

In the following discussion a simple four work unit connectivity graph as shown

in Figure 42 will be used for illustrative purposes. Here we assume that work units

communicate to each other through time stamped messages and are only processed in

increasing timestamp order when it is safe to do so, preserving the local causality

constraint. As depicted, message paths are directed and work units may only send

messages directly to those to which they are connected. Therefore, work unit 0 cannot

directly communicate with work unit 3, nor can work unit 1 communicate directly with

work unit 2 and vice versa.

In contrast to state vector caching, a specialized form of temporal caching

utilizing message semantics can be deployed for master/worker PDES systems. For

codes that generate many messages within a possible future execution time window it

may be beneficial to cache such messages locally. For example, if work unit 0 sends

5000 messages to work unit 1 for which 4000 messages fall within work unit 1’s current

simulation time plus the input lookahead from work unit 0, then it may be beneficial to

cache these messages for a directed “future cache hit” of a work unit 1 lease to the

current client which completed execution of work unit 0.

WU
0

WU
1

WU
2

WU
3

135

Although temporal locality is important for any caching system, PDES codes can

exploit spatial locality in a much more predictable fashion than traditional systems such

as CPU or web caching systems where there only exists a probability of a cache hit. In a

master/worker PDES system, a cache hit exploiting spatial locality can be directed and

guaranteed as application-specific information such as connectivity graphs are exposed to

the underlying master services.

Figure 43: Client Internal State

Figure 43 depicts a sample internal state of a worker client, where a state vector

history is stored in most recently used order (from left to right) and the current output

messages. As shown in the figure, the last work unit processed was work unit 0 with

messages generated for work unit 0, 1 and 2.

For the following case, assume that work unit 0 is currently being processed by

the client and that the previous execution of work unit 1 has left a valid cached state

vector data. Since it is known that work unit 1 is directly connected to work unit 0, the

system can exploit this fact and cache output messages to work unit 1 that are generated

by work unit 0. By employing a reservation system, the master services can generate

“extended” cache hits which not only include state vector data but also message data.

This reduces the number of messages that must be downloaded by the client.

0
1

2

3

Output Messages State Vector History

0

2 3

1 0

136

For the next case, suppose that state vectors for a particular PDES code are large,

thus incurring significant transmission time. Instead of simply assigning leases according

to whatever work unit is available, the aforementioned reservation system coupled with a

pre-fetch mechanism can be employed. Assume work unit 0 and work unit 1 are

concurrently leased and work unit 2 is blocked in an idle state and cannot proceed until

work unit 0 completes and returns data back to the master services. In this case, the

master can exploit spatial locality by reserving work unit 2’s future lease for the client

currently executing work unit 0. While the client is executing work unit 0, work unit 2’s

state vector data is pre-fetched and updated from the back-end service. Since

connectivity between work unit 0 and 2 is known a priori, any output messages generated

by work unit 0 to work unit 2 can be cached alongside the pre-fetched and updated work

unit 2 state. Upon completion of work unit 0, all pertinent state and some of the

messages are already local to the client providing a large cost savings in overhead and

bandwidth.

Temporal or spatial locality may vary widely between simulation models and

special consideration must be given to favoring a certain locality of reference over

another. In a PDES system, a priori knowledge of connectivity and predictability within

the model can be fully exploited to maintain a high cache hit ratio.

4.1.2 Coherence and Consistency

Cache coherence and consistency in typical caching systems such as distributed

shared memory are varied ranging from snoopy to directory-based. In a master/worker

PDES system, a directory-based coherence system is the most similar, however,

employing a traditional directory-based coherence protocol will not work under a

137

master/worker PDES system. Since two-way connections between workers and the

master services cannot be assumed due to firewall issues (discussed in chapters 2 and 3),

control messages cannot be reliably forwarded from the master to workers. In a “worker

pull-based” system all communication is initiated from the clients only. Thus a hybrid

directory-update coherence mechanism with a timestamp-based consistency protocol is

proposed.

In master/worker PDES systems, work unit leases are directed by the master

service. Although workers request work to be completed, they cannot request a specific

work unit. Thus all requests are initiated on the master, where all caching information is

stored with global knowledge of the entire system. Consequently there is a trade-off

where cache hits can be directed to a certain extent, but state updates must always be

written-through to the “backing store” (e.g., back-end state service). In a conventional

directory-based coherence scheme, requests may be forwarded from home nodes to

caches that contain valid data. In master/worker systems, this is not possible due to the

strict restriction that clients may not communicate with each other.

Since true bi-directional communication (e.g., master-initiated as well as worker-

initiated) cannot be assumed, coherence in master/worker PDES systems can only be

maintained by piggybacking updates on control messages as dictated by established

protocols for work unit request, lease, and updates. New cached states or evicted states

with timestamp data can be transmitted to the master service to update the centrally held

cache directory. Similarly, cache invalidations, update, and pre-fetch commands can be

piggybacked on control message acknowledgements from the master service to the

clients.

138

In a master/worker PDES system, leases always involve a read and a write, where

the state vector data is read and fetched from the backing store and updated state is

written upon completion of the lease. Thus, a singular read or write cannot happen for a

work unit state and instead it is more accurate to consider states to be checked-out,

modified, and checked-in by workers. Consequently, when state is updated and checked-

in by workers upon completion, the master service can simply invalidate entries in the

directory for which other workers hold cached data. When affected workers contact the

master service, invalidated cache entry data can be piggybacked on messages back to the

workers.

In a PDES system, global limits can be computed such as LBTS and GVT.

Conventional uses for these values are to provide incoming message guarantees for safe

execution and fossil collection. The meaning of these values can be extended to the

cache consistency mechanism to include automatically invalidating cached output

messages since these messages are not associated with a granular cached state.

4.1.3 Eviction and Replacement Policy

Some discrete event simulation models are large and the reason to parallelize such

models is the ability to distribute the model on many processors due to memory

constraints. With a caching system, available memory is a concern. Cached entries

cannot persist on the worker forever and a method for selecting which entries to evict and

replace can have a tremendous impact on cache hit ratio.

Traditional caching systems such as those employed in distributed shared memory

utilize Least Recently Used (LRU) or variations of that policy. For master/worker PDES

systems, LRU is not the best approach. As simulation time progresses away from the

139

stored cached state, there is a higher probability that the cached entry will be used in the

future. This is due to the mechanism that governs leases to workers.

Figure 44: Example Lease Scenario for One Worker

As a sample scenario, consider the same work unit topology as shown in Figure

42 under a master/worker system with a single worker for the sake of simplicity. The

lookahead between each work unit is 1 time unit and thus execution windows are 1 time

unit in length as shown in Figure 44. The master progressively leases each work unit to

the client as depicted. If the client is has limited memory resources and must evict a

cache block, under an LRU scheme, work unit 0 would be the chosen block for eviction

and replacement. However, this would result in a cache miss on the subsequent lease

after the worker completes computation on work unit 3. A Most Recently Used (MRU)

scheme would instead evict work unit 2 cached state and would leave work unit 0,

resulting in a cache hit.

However, simple schemes such as MRU do not fully exploit the information

available to the system. The master service holds a list of work units that are available

Wall Clock Time

WU 0

WU 1

WU 2

WU 3

0 1

0 1

0 1

0 1

1 2

1 2

140

for immediate lease. This list can be used to determine which cache blocks should be

preserved if possible. Work units that do not exist on this list can be evicted with

minimal impact on the cache hit ratio. The predictable nature of discrete event

simulations with lookahead permits this specialized form of eviction and replacement

policy.

In addition to random, LRU, and MRU strategies that are well-known eviction

and replacement policies, two additional policies are proposed that take advantage of

simulation specific information. Earliest simulation time first (ESF) and earliest

simulation time last (ESL) are two policies that prioritize cache block evictions based on

the time windows. The end simulation time of the window is the timestamp that is used

to define the ordering of the cache blocks. The premise of these two policies is based on

the probability of a work unit becoming advanceable (or runnable) in the near future.

Advanceable (or runnable) is defined as a work unit that is available to be leased under a

conservative synchronization system where the next lease window end time is greater

than the begin time (or current simulation time). An ESF policy would evict work units

with the smallest simulation time while an ESL policy would evict work units with the

largest simulation time. Thus, the ESF policy operates on the principle that work units

with the earliest simulation time are most likely out-of-date and have already been leased

to another client for processing. The ESL policy assumes the opposite, where work units

with earlier simulation times have a higher probability of becoming advanceable in the

near future and attempts to preserve those cache blocks.

141

4.1.4 Network Policy

In public-resource computing systems, bandwidth is a concern as workers may

not have high capacity links to the master services. In a caching system, attention must

be paid to properly allocate available bandwidth. Latency between request to application

computation and latency from computation completion to work unit return are also

concerns for minimizing overhead and increasing parallel efficiency.

When cached states are invalidated and must be updated, additional bandwidth

must be allocated. Since schemes that push data from the backing store to the workers

are forbidden in a master/worker system other methods must be used. One alternative is

to allow clients to periodically poll the storage service once an invalidation message

arrives from the master service. If spare bandwidth is available to the storage service,

updated state can be piggybacked on the acknowledgment message to the worker. Pre-

fetching mechanisms using a polling service may be further complicated. A cache miss

can occur if not enough bandwidth is available after a pre-fetch command from the

master service arrives and an update is not processed before a new lease is issued.

With global knowledge of work unit leases to workers, bandwidth can be

prioritized to minimize latency. For instance, if the system is waiting on a few work units

to return for forward progress in simulation time, it may be more beneficial to prioritize

the work unit completion and return to the master services than allow cache updates to

occur if no spare bandwidth capacity is available. A cache miss may be more favorable

than that of delaying the entire system due to delayed work unit returns.

142

4.2 State Updates

4.2.1 Pipelined Updates

In a typical master/worker PDES system, state is packaged at the end of each

work unit lease cycle and an update is sent to the master back-end service for consistency.

Synchronous state updates increase the amount of overhead per lease cycle as the client

must perform this operation outside of simulation computation. The basic premise on

optimizing this operation is to allow state updates to be pipelined in conjunction with

state caching. Instead of transmitting the state update synchronously, the state is updated

in asynchronously during the next deferred wait cycle or during the next simulation

application computation.

Figure 45: Pipelined State Update

Application
Computation Phase

5 2 1 4 3 7 6

Client A

Work Unit 1
Window: [0, 0.1)

State Vector:

WU 1, TS

Output

Messages

Client A

Work Unit 8
Window: [0.3, 0.5)

State Vector:

WU 1, TS 0.1

Finalization
Phase

Next Work
Unit Lease

State Vector:

WU 8, TS 0.3

Input

Messages

Client A

Work Unit 8
Window: [0.3, 0.5)

State Vector:

WU 1, TS 0.1

State Vector:

WU 8, TS 0.3

Input /

Output

Messages

Wall
Clock
Time

Steps

143

The pipelined state update process is shown in Figure 45. Once client A

completes processing the lease window of [0, 0.1) it begins the finalization phase. After

the client is authorized to begin the update process, client A sends a lightweight update

message to the proxy informing it that a pipelined state update will be performed in step 1.

Output messages are uploaded normally in step 2. For the next work unit lease cycle,

client A is leased work unit 8 with a window of [0.3, 0.5) in step 3. Steps 4 and 5 involve

downloading input messages and the proper state vectors for the time window,

respectively. During the application computation phase, client A performs a state update

for the previous lease of work unit 1 updating the state to the appropriate back-end state

server in step 6. The state service then sends a control message to the proxy service

indicating that the state update was successful and consistency is reached in step 7.

If significant amount of application computation time (e.g., computationally

intense work units) exists, then a pipelined state updating system offers tremendous

advantages by masking the state update overhead over processing the simulation code.

Applications that do not exhibit computationally intense work units that can provide

adequate overlapping time will not exhibit performance increases through a pipelined

state updating mechanism.

4.2.2 State Pre-Fetching

For simulations that exhibit favorable computation to communication ratios, state

pre-fetching is an option to further enhance performance by populating the local cache

with up-to-date blocks. In addition to pipelining state updates, if spare time is available

during the application computation phase additional state vectors can be downloaded.

144

During the work unit lease, a set of pre-fetch candidates are piggybacked on the lease

control message. Work units that are not advanceable (or non-runnable) are selected as

pre-fetch targets. Non-runnable work units are guaranteed not to be immediately leased

so there is a greater probability that the pre-fetched work unit state will not be wasted due

to the work unit being leased in the near future while the current lease is being processed.

4.3 Message Updates

Under conventional master/worker systems, especially those employed in a wide-

area infrastructure, data transmission usually only occurs during the work unit lease and

return. Under local-area infrastructures such as desktop grids, network bandwidth may

be higher with more reliable connectivity. Fully buffering messages may not be

necessary under these settings and a more aggressive approach to message sending may

provide performance improvements.

Three different message updating schemes were defined under the Aurora

master/worker implementation: static, aggressive, adaptive. All policies implement a

message buffer that temporarily stores generated messages. A static policy will push

messages to the back-end message storage service when the message buffer limit is

reached. The current Aurora implementation uses a 16KB static buffer limit; once the

accumulated message size reaches this limit, all messages in the buffer are collated by

message service and sent in bulk to the proper server. Any remaining messages at the

end of the application computation phase that remain in the buffer are sent during the

finalization phase. An aggressive policy attempts to send messages as soon as they are

generated. In the case of simulations that send a large number of messages, a message

145

update may be in progress and instead of immediately sending, the message may be

buffered and sent with the next message generated. The adaptive policy utilizes run-time

statistics and attempts to provide an adaptive limit on when to push messages to the

message service. The policy gauges the number of messages generated along with the

application computation wall clock times observed in the past. If the current message

generation rate matches or exceeds the past observed average message output, an attempt

is made to send messages stored in the current buffer. The premise of this policy is to

adaptively tune the output rate in hopes that the messages pro-actively sent are not sent

too aggressively but are sent in intervals sufficiently frequently so that most of the

message sends are masked by the application computation phase.

nm

L
ϕ

α
= (4.1)

The overall average message generation rate per lease cycle (φ) is calculated

through equation (4.1). n denotes the total number of messages generated in all previous

leases seen by the client, m is the average message size, α is the total application

computation time in all previous leases, and L is the number of previous lease cycles.

Thus φ provides a message generation throughput rate, or more precisely the number of

message bytes generated per second of application wall clock time per lease.

i i
i

i

n m
υ

α
= (4.2)

The current work unit lease message generation rate is captured by υ in equation

(4.2) where i denotes the current lease cycle number. If υi >= φ for the current lease i, the

current message generation rate matches or exceeds the average message generation rates

and messages are pushed to the back-end message storage service. Additional message

146

buffer size checks using the metric total message size transferred per lease can force a

flush of messages if the messaging rate falls below φ for prolonged periods. This

prevents the message buffer from growing too large without triggering the messaging

limit. If no previous runtime statistics are available, this policy falls back to the static

policy until sufficient statistical data (e.g., more than 1 lease cycle with non-zero average

statistical data such as runtime, and the number and amount of messages generated) has

been gathered.

4.4 Analytical Overhead and Performance Models

Detailed performance models are necessary to formulate scheduling policies that

are compatible with a master/worker PDES caching mechanism. The models presented

here expand on those presented in chapter 2, with more detail for each overhead

component.

4.4.1 State Transfer

State vector transmission time is an important component of overhead. This cost

is incurred twice in a master/worker system per lease cycle. The first time is when the

state is downloaded from the back-end storage service to the client. The state is

unpacked at the client invoking application-defined deserialization routines. When the

client reaches the end time of the simulation lease window, the final state vectors are

packaged via serialization routines and sent to the back-end state service for long-term

storage and consistency.

147

()1 1 1
s b c xσ − − −= + + (4.3)

The time to propagate state information (σ) from the client to the back-end

services or vice versa is mainly dependent upon two variables: state size (s) and available

bandwidth (b). Associated overheads dependent upon state size such as memory copy

throughput (c) are a secondary factor in the total time for a state update. x denotes either

state serialization or deserialization time depending upon if the state is being packed for

update or unpacked for a lease to update state vectors at the client respectively.

4.4.2 Message Packing, Transfer and Binning

Under a master/worker PDES system, all generated messages must be packed and

buffered before they are sent to the back-end service. Once messages are received by the

back-end message storage service, the binning process delivers each message to the

proper input queue of the destination work unit.

()1 1 1

p nm b y iµ − − −= + + (4.4)

Message transfer time to the back-end services (µp) is primarily determined by the

number of messages (n), average message size (m) and the bandwidth available (b). The

other variables include message serialization time (y) and time required to bin messages

(i).

4.4.3 Message Unpacking and Client Delivery

Message delivery to the client incurs overhead captured in equation (4.5). Once a

lease is given to a client, it contacts the appropriate message server and downloads all

messages within the lease execution window.

148

()1 1

u
nm b yµ − −= + (4.5)

The time required to transfer messages to the client for a lease (µu) is similar to message

packing and return except for the absence of binning time and y denotes message

deserialization time required to unpack messages on the client site.

4.4.4 Deterministic Lease Overhead

Each work unit lease incurs overhead, of which a portion is deterministic and a

portion is non-deterministic. The non-deterministic portion is referred to as the deferred

wait time where a client will enter a sleep state waiting for the next available work unit.

There are a variety of reasons for this to occur including the number of workers

exceeding the available work unit pool or some work units containing disproportionate

amount of work. Equation (4.6) represents the deterministic portion of the lease

overhead.

()max ,d ul σ µ= (4.6)

Total deterministic lease overhead (l) can be calculated by taking the maximum of the

time to download and unpack the state along with the time to deliver messages to the

client and deserialize them. A maximum function is applied as these two independent

operations are performed simultaneously by the client in two separate threads.

4.4.5 Finalization Overhead

Finalization overhead, in contrast to lease overhead, is completely deterministic.

After the client completes the application simulation by reaching the end time of the lease

window, the finalization phase begins. Finalization consists of performing the logical

149

inverse of a work unit lease: packaging state vectors through serialization methods and

uploading both state vectors and messages to the back-end services.

()max ,u pf σ µ= (4.7)

Again a maximum function is applied as the state update and message upload are

performed simultaneously.

4.4.6 Total Deterministic Overhead

Total deterministic overhead as observed by the client per work unit lease can be

expressed as the sum of the lease and finalization times as shown in equation (4.8).

o l f= + (4.8)

()max , max(,)
d u u p

o σ µ σ µ= + (4.9)

Equation (4.9) is the expanded form of equation (4.8) clearly illustrating that overhead is

dictated and is proportional to either state vector or aggregate message size. Thus,

simulations that exhibit large state vectors will require optimizations for state transfer and

storage. Simulations that send large numbers of messages will require optimized

mechanisms to expedite delivery of messages. Moreover, the reduction of overhead

through these techniques must be applied concurrently as the reduction of one overhead

component can make that overhead time fall below the overhead of the other component.

Applying complimentary techniques provides a more optimal reduction in overhead for

the entire system.

150

4.4.7 A Model for Master/Worker Parallel Runtime

The previous equations apply to a per-lease cycle basis. There are multiple lease

cycles in any non-trivial simulation consisting of more than one work unit with message

passing. The total lease cycle time (T) can be computed as:

T oα= + (4.10)

The total time is simply the processor time due to application computation (α) for the

lease and the deterministic overhead time (o). To compute the total runtime, an

additional component is needed, the number of lease cycles (L):

All WU

0i i

endtime
L

MinETS=

≈ ∑ (4.11)

The number of total lease cycles required to complete a simulation can be estimated by

summing the number of time intervals (e.g., simulation endtime divided by the number of

minimum emittable time stamp bounds) for each work unit in the system. This provides

an upper bound (largest number of lease cycles). In an actual simulation, however, the

number of lease cycles is dependent upon the work unit lease order. Thus L is

represented as an approximation in equation (4.11). A work unit dependent upon another

work unit may have already been processed allowing a larger time window than the

minimal window. The total time required then simply becomes the product of T and L:

TLω = (4.12)

The total sequential runtime (ω) is equivalent to running the simulation with a single

client, as there would be no idle cycles present in the system. Work would always be

available without delay immediately after a work unit is finalized and returned to the

back-end services.

151

At best, only an estimation of total time can be given for parallelizing the

simulation across many clients. Moreover, assumptions about the simulation

environment must be made clear.

1. The number of clients available in the system must exceed the number of

runnable work units in the system at all times.

2. Processor speeds and available bandwidth to each client are similar. While they

do not have to be the same across every client, a large difference such as a dial-up

link versus a gigabit Ethernet link would introduce inconsistencies into the model.

3. Each processor must be fully dedicated to the worker client.

The total parallelized run time (Ψ) can be expressed as:

()
L

T d
C

Ψ ≈ + (4.13)

This equation introduces deferred wait (d) overhead time and the number of clients in the

system (C). Deferred wait refers to the amount of time a client is spent idling for a valid

work unit to be leased to it. Deferred wait is a non-deterministic variable dependent upon

PDES application characteristics such as lookahead and event granularity and non-PDES

related effects such as processor speed, the number of available clients, and available

bandwidth. Not all work unit leases are equal, as the amount of computation time may

vary, the event generation and processing time may greatly vary along with the amount of

state and messages that must be synchronized with the back-end services. The uneven

processing between leases provides a non-exact estimation on total runtime.

In order to minimize the total parallel runtime, the total time per lease must be

reduced, T + d. The reduction of one variable may affect the other as there may be a

trade-off in certain PDES simulation models. For instance, attempting to minimize o

152

(which is a component of T) may directly impact the deferred wait time, d. The reduction

of T requires the reduction of overhead components l and f. As shown in equation 4.7,

these values are directly determined by the amount of state or aggregate amount of

messages generated per lease cycle. Techniques such as caching may reduce l and f but

can adversely affect d. For example, attempts to maximize cache hit ratios can lead to

increased deferred wait time as the system may block and wait for clients with valid

cache lines that are busy.

4.5 Scheduling Policies

Implementation of a caching system in a master/worker PDES system involves

two separate sub-systems that must interoperate to provide effective mechanisms to

reduce overheads consisting of state shuffling and delay times due to idle wait cycles.

The first portion resides on the master side of the system where the scheduling and work

unit reservation mechanisms must determine the best tradeoff between cache hit ratio and

minimizing client latency and idle wait cycles for work unit leases. The second portion

resides on the worker side where proper eviction and replacement strategies must be in

place to maximize cache hit ratios when insufficient memory is available to cache fresh

state vector blocks.

In a master/worker PDES system without a caching system, work units are

scheduled on a first-come first-served basis where the operating principle is to minimize

idle cycle wait time on clients. If a work unit is available, the work unit is matched to an

idle client and immediately leased. In a master/worker PDES system that incorporates

caches, the scheduling mechanism for releasing work units to clients must be reworked to

153

provide a balanced approach between leasing to clients that have valid cache lines and

minimizing client idle cycle time.

4.5.1 The Rub: Minimizing Overhead vs. Minimizing Deferred Wait

A scheduling mechanism for a master/worker PDES caching system can be

characterized as providing the best mix between work unit cache affinity and idle cycle

wait time as shown in Figure 46. There exists a tradeoff between attempting to maintain

maximal cache affinity and optimizing around the highest possible cache hit ratios over

client idle cycle times.

Figure 46: Tradeoff between Cache Affinity and Idle Wait Time

In a master/worker PDES system, a client may be actively processing a work unit

but may also have the only valid cache line for a work unit that is ready to be processed

immediately. A mechanism that preserves maximum cache affinity would reserve such a

work unit for the currently busy client adversely affecting the idle wait cycle time of

other available clients. On the other hand, a system which aims for minimizing idle cycle

wait times of clients can potentially increase cache misses, incurring higher bandwidth

and overhead costs.

Maximal
Cache Affinity

Minimal Idle
Wait Time

Increased Cache
Hit Ratio, Potential
Increased Blocking

Reduced Deferred
Time, Decreased
Cache Hit Ratio

154

A system that acknowledges that a balance between maintaining affinity when

possible but considers that potential idle wait times can also reduce overall throughput of

the system will provide a more optimal solution than a system at either extreme. Since

PDES applications are varied in scope, determining where to place the “slider” in Figure

46 is impossible to determine a priori. Instead a system that gathers statistics and

analyzes them at run time to fine tune the scheduling mechanism dynamically using

minimal input from the simulation modeler is the most flexible approach. The following

sections detail proposed scheduling policies based on a caching system for master/worker

PDES. Scheduling policy equations compute a scheduling priority value, Φ, which is

used by the back-end proxy service to order work units in increasing order, where highest

work unit Φ values are scheduled to the requesting client.

4.5.2 Maximum Cache Affinity (MCA) Scheduling

This scheduling policy attempts to maintain the maximum affinity for valid

caches at the clients. Assuming a sufficient number of clients are available for the

number of work units in the system, the scheduler will simply match idle work units with

clients that have valid cache entries, preferring idle clients over those that are busy.

However, a reservation will still be made even if the client is busy.

Although this scheduling policy can maintain maximal cache hit ratios (given

enough clients in the system), reserving a work unit onto an already busy client while

other clients are idle leads to increased deferred wait time where clients are essentially

blocked from processing available work. A PDES code that exhibits very large states for

which there is insufficient available bandwidth, the tradeoff in increased blocking and

wait time may be worth the exchange for a cache hit.

155

The scheduling priority of a work unit (Φ) can be characterized as a function of

the runnable status of work units and other prioritizing factors such as valid cache lines.

C
 if 1

W
ρχΦ = ≥ (4.14)

C
 if 1

W
ρ χΦ = + < (4.15)

Equations (4.14) and (4.15) prioritize work units based on its runnable status (ρ), whether

the work unit can advance ρ = 1 or cannot advance ρ = 0 and if there is a valid cached

state at the requesting client (χ). C denotes the number of clients while W specifies the

number of total work units in the system. Exceptions to these equations are made during

the initial lease phases when all cache lines are invalid. Equation (4.14) ensures that if

enough clients exist in the system with valid cache lines, such work units are leased to

matching client caches. Equation (4.15) prioritizes runnable work units to clients with

valid cache states when not enough clients exist in the system.

4.5.3 Minimum Idle Wait (MIW) Scheduling

A scheduling policy that attempts to minimize client idle wait times does so at the

expense of potential cache hits on valid cache entries on busy clients. The premise

behind this scheduling policy is to always ensure that available work units are run on any

available client, regardless of a valid cache line on a busy client. If idle clients contain

valid cache states, these clients are matched first over idle clients that would invoke

cache misses. If the PDES application exhibits small overheads in transmission time due

to state vector updating, this policy may provide the largest benefit as the value of a

cache hit is significantly reduced over a reserved work unit for a busy client.

156

()1ρχ βΦ = − (4.16)

Equation (4.16) prioritizes work unit leases based on an additional conditional of the busy

status (β) of the client holding the valid cache line where a busy state is β = 1.

4.5.4 Idle Wait Time Aware Cache Affinity (IWTACA) Scheduling

In a balanced approach, the scheduling policy dynamically attempts to prioritize

cache affinity but is aware that prolonged idle client wait times can negatively impact the

throughput rate of the system. This mechanism employs runtime statistics to track

application time and state vector sizes and associated transmission times. Given these

statistics, the master service can determine if it is worthwhile to reserve a work unit for a

client which has valid cached data but is busy over leasing the work unit to an idle client

which would invoke a cache miss.

σχ αβ
ρ

α σ

 
Φ = − 

 
 (4.17)

A balanced approach to work unit leases involves analyzing run time statistics such as

average application runtime (α) and average state transmission time (σ). In equation

(4.17), the presence of a valid cache line is modified by the ratio between state

transmission time and application time, while this ratio is inverted and applied to the busy

status of a client with a valid cache state. These values are summed together to give a

prioritizing number for a possible work unit lease.

4.5.5 Weighted Fan-Out (WFO) Scheduling

A master/worker PDES system can leverage key properties from the application

to provide improved scheduling priorities on work units. Although an idle wait time

157

aware cache affinity priority system can dynamically adjust work unit scheduling at run

time, it is only limited to separating work units into runnable and non-runnable states. By

utilizing PDES domain-specific properties such as connectivity graphs and lookahead,

the scheduler can maximize work unit activity while attempting to ensure high cache hit

ratios. We introduce a variable that measures the “impact” of a work unit by counting the

number of output links and the lookahead values. This value, ηi, is the weighted fan-out

value for work unit i:

0

1
i

j

j

η

λ
Λ

=

Λ
= +

∑

(4.18)

In equation (4.18), Λ represents the number of output links from work unit i to other

connected work units and λj is the lookahead of link j at work unit i. The number of

output links is divided by the total lookahead over these links to provide a weighted fan

out value. Smaller lookahead values decrease the minimum emittable timestamp

(MinETS) values used in window calculations, thus is reflected as an inverse relationship

making η larger for smaller values of lookahead.

Equation (4.17) can be modified to incorporate the weighted fan-out metric in the

scheduling priority value:

σχ αβ
ρη

α σ

 
Φ = − 

 
 (4.19)

Larger weighted fan-out values increase the scheduling priority of the work unit as

desired. Equation (4.19) provides the scheduler with lookahead and connectivity

information to possibly schedule work units which may lie in the critical path of the

simulation.

158

Figure 47: Example Work Unit Connectivity

Figure 47 shows a sample connectivity layout for a sample simulation (e.g., a

network simulation) where the delays between links represent the lookahead values.

Messages flow from left to right in this simulation, thus work units 2, 3, and 4 cannot

arbitrarily proceed into the future and are restrained by forward progress of work unit 0

and 1 dictated by LBTS and LCC principles. A scheduler that does not prioritize based

on PDES specific properties such as lookahead and connectivity may lease work units in

a non-optimal fashion. A lookahead and connectivity aware scheduler, in addition to

optimizing for cache affinity and minimizing idle wait cycles, attempts to provide the

maximum amount of concurrent work and largest time windows for clients.

Table 6: Weighted Fan-Out and Priority

Work Unit η Relative Priority (0 = highest)

0 6.0 1

1 7.667 0

2 3.222 4

3 3.5 3

4 3.867 2

0.1

0.3

0.3

0.3 0.4

0.5

0.2

0.1

WU
0

WU
1

WU
2

WU
3

WU
4

159

Table 7: Arbitrary Leasing

Work Unit Sim Time Lease 1 Lease 2 Next Advance

0 0.1 HOLD HOLD 0.5

1 0.3 HOLD 0.4 NA

2 0.1 HOLD 0.2 NA

3 0.3 0.6 HOLD 0.7

4 0.3 0.5 HOLD 0.6

Table 8: Weighted Fan-Out Priority Leasing

Work Unit Sim Time Lease 1 Lease 2 Next Advance

0 0.1 0.4 HOLD 0.8

1 0.3 0.4 HOLD 0.7

2 0.1 HOLD HOLD 0.5

3 0.3 HOLD 0.6 NA

4 0.3 HOLD 0.5 NA

In this example simulation, assume that there are two clients available for

processing work units. Table 6 shows the calculated weighted fan-out and relative

priority ranking between work units where 0 is the highest and 4 is the lowest. For

simplicity, the caching, busy status, and runtime statistics portion of equation 4.19 are

ignored.

Table 7 shows an arbitrary lease scenario. Assume the first round of initial leases

for all work units have been processed. In the next phase, the clients are assigned work

units 3 and 4 to advance forward in simulation time, while work units 0, 1, and 2 are held

back. The second round of leases, work units 1 and 2 are released to the clients for

160

processing while work units 0, 3, and 4 are held. For the next round of processing, work

unit 0, 3, and 4 have valid processable time windows (NA denotes not advanceable).

Table 8 shows a leasing scheme in which the scheduler is aware of lookahead and

connectivity and attempts to optimize using this information. In the first lease round,

work units 0 and 1 are processed first followed by work units 0 and 2 in the second set of

leases. In the next round of processing, work units 1, 2, 3, and 4 are all available for

processing giving the system more concurrency with less idle wait time for clients.

A weighted fan-out scheduling policy exploiting lookahead and connectivity

graphs avails more simulated time for leasing and the progress of the simulation is further

than an arbitrary scenario. In the arbitrary lease scenario, the next advance window

lengths for work unit 0, 3, and 4 are 0.4, 0.1, and 0.1 respectively combining for a total of

0.6 time units of processable concurrent simulation time. With a scheduler taking into

consideration lookahead and connectivity, work units 0, 1, and 2 have execution window

lengths of 0.4, 0.3, and 0.4 respectively combining for a total of 1.1 time units of

processable concurrent simulation time. Additionally, at the next advance time, the

simulation will be further ahead for the weighted fan-out priority: 0.8, 0.7, 0.5, 0.6, and

0.5 compared to the arbitrary lease scenario of 0.5, 0.4, 0.2, 0.7, and 0.6 for work units 0

through 4.

4.5.6 Earliest End Time First (EETF) Scheduling

In Time Warp systems, Lowest Timestamp First (LTF) schemes are often used to

schedule events that are the least likely to be rolled back and create messages that must

be unsent. Time information similar to scheduling based on the minimum TSO event can

be utilized in an optimized cache-aware scheduling scheme. A conservative execution

161

that acknowledges earliest end time of a time window can reduce the amount of blocking

in the system. Unfortunately, LTF schemes do not directly apply in conservatively

synchronized master/worker systems as the atomic unit to determine what can or cannot

be run along with the run length is not a singular event, but is instead a time window.

Figure 48: Example Time Window Comparison

Figure 48 shows a possible scenario where the earliest timestamped event does

not necessarily coincide with the earliest end time of a time window in the system. Work

units that depend upon work unit 1 advancing may block for extended periods of time if

such advanceable work units are not prioritized. The guarantee for any other work unit

which has work unit 1 as an input connection can only be the end time of the time

window, thus the amount of blocking in the system can be minimized by ensuring such

work units are leased first.

 if 0i
i

E

E

δ
τ δ

−
= > (4.20)

σχ αβ
ρτ

α σ

 
Φ = − 

 
 (4.21)

WU 0

WU 1

= Earliest Event

Simulation Time

162

In equation (4.20), τ defines the relative fraction of simulation time remaining for work

unit i. δ represents the minimum emittable time stamp for all input links (e.g., the

effective simulation end time for the next lease window) to work unit i and E denotes the

simulation end time. Larger τ values represent work units with earlier simulation end

times. This value is incorporated into the IWTACA priority scheme which adaptively re-

orders work unit priority for scheduling based on window end time information yielding

equation (4.21).

4.5.7 Weighted Fan-Out and Earliest End Time First Scheduling

The weighted fan-out and earliest end time first (WFO+EETF) scheduling policy

attempts to utilize all available information available including runtime statistics, valid

cache block availability, client busy status, along with PDES-specific information such as

lookahead, connectivity, and lease windows.

σχ αβ
ρητ

α σ

 
Φ = − 

 
 (4.22)

Equation (4.22) represents work unit to client priority for a WFO+EETF scheme where

the IWTACA policy is augmented with the weighted fan-out (η) and earliest end time

first (τ) values.

4.6 Performance Study

An empirical study was performed to assess the proposed techniques for overhead

reduction in a master/worker PDES system. For these tests, the queuing network and

hybrid shock codes were used as in previous experiments. The only change was the

queuing network simulation was modified to allow variable (non-uniform) lookaheads

163

between work units. To provide a comparison point against a traditional parallel

simulation system, some tests for the hybrid shock application were compared against a

native version under µsik [94]. µsik is a parallel and distributed simulation framework

accommodating a wide variety of optimistically- or conservatively-synchronized

applications through a micro-kernel approach. µsik utilizes the libSynk [95] library for

distributed time management which has shown to be highly scalable across many

applications. In comparison tests, we measure end-to-end performance: the total wall

clock time from the beginning of the simulation to the end of the simulation. For fair

comparisons, µsik was not run with shared memory enabled; inter-processor

communication used TCP transport.

The following experiments were performed on a set of nodes containing dual

3.2GHz Intel Xeon processors with 6GB of memory per node. Each node was running a

RedHat GNU/Linux 2.6.9 64-bit kernel. Nodes were connected through Fast Ethernet

links. All software was compiled using gcc 3.4.6 and using the -O3 optimization flag.

POCO version 1.3.2 was used for Aurora tests.

4.6.1 Work Unit Granularity Selection

Determining how many work units are in the system given an anticipated worker

pool size is important for delivering the best possible performance without introducing

artificial overheads and constraints. Therefore, before any performance tests examining

the proposed mechanisms are performed, the correct work unit granularity size must be

selected to ensure that sufficient work exists for the worker pool. The following tests

scale simulations by varying the work unit size. For the torus queuing network

simulation, the number of nodes is fixed, but the amount of total computation increases as

164

the work unit count increases as jobs are generated on a per work unit basis. For the

hybrid shock scenarios, the entire problem size is fixed, thus as the number of work units

increases, the amount of computation per work unit decreases.

The first test is a queuing network simulation with uniform lookahead between

work units. The torus network is configured as 1.44 million nodes as a 1200x1200 grid.

Lookahead between work units is set at 0.1 seconds with internal lookahead within each

work unit between nodes set at 0.0001 seconds. A small lookahead was chosen to ensure

that enough computation and event processing was performed during each work unit

lease. 100,000 jobs are generated within each work unit and 20,000 jobs are generated

for nodes external to the work unit. The mean job service time is 0.2 seconds. Caching is

enabled for these tests with the default MIW scheduling policy. These torus queuing

network simulations are run across 32 processors and 4 state and message servers are

instantiated on the back-end system.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

36 64 100 144

Work Units

P
ro

c
e

s
s

o
r

T
im

e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

G
lo

b
a

l
E

v
e

n
t

R
a

te

(M
il
li
o

n
s

)

Application Deferred Import/Setup

Export/Finalize Global Event Rate

Figure 49: Uniform Lookahead

165

The striking result from the uniform lookahead test shown in Figure 49 is the

amount of deferred wait time incurred when 36 work units compose the worker pool.

Deferred wait time is nearly eliminated when the worker pool is twice the number of

workers in the system. This suggests that merely having a worker pool that matches the

anticipated number of workers is insufficient leading to blocking time for some clients.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

36 64 100 144

Work Units

P
ro

c
e

s
s

o
r

T
im

e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

G
lo

b
a

l
E

v
e

n
t

R
a

te

(M
il
li
o

n
s

)

Application Deferred Import/Setup

Export/Finalize Global Event Rate

Figure 50: Non-Uniform Lookahead

The non-uniform lookahead test randomly varies the amount of lookahead upon

creation of the network. The inter-work unit lookahead values vary from 0.05 to 0.1

seconds. Lookaheads within each work unit vary from 0.0001 to 0.01 seconds. As

shown in Figure 50, lower overall performance is observed due to less concurrency in the

system due to variable and smaller execution time windows. Similar to the uniform

lookahead case, at least twice the number of work units as workers is needed to nearly

eliminate deferred wait time due to an insufficient amount of available work.

166

To test simulations that do not increase the amount of overall computation in the

system as the partitions are increased, the hybrid shock simulation is used. This

simulation of 1.2 million ions exhibits a uniform lookahead of 0.11 time units between

partitions with simulation parameters of 1200 cells, 1000 initial ions per cell, and a cell

width of 0.00025. This simulation is run across 8 processors with 4 state and message

back-end services. Work units are scheduled with the default MIW policy.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

8 12 16 20 40 80

Work Units

P
ro

c
e

s
s

o
r

T
im

e

29

31

33

35

37

39

41

43

G
lo

b
a

l
E

v
e

n
t

R
a

te

(T
h

o
u

s
a

n
d

s
)

Application Deferred Import/Setup

Export/Finalize Global Event Rate

Figure 51: Hybrid Shock with Caching Disabled

Figure 51 shows similar trends to those exhibited by the queuing network.

Simply matching the number of work units with the number of clients introduces

artificial deferred wait time overheads. By increasing the number of work units to at least

150% of the anticipated worker pool reduces deferred wait times to a negligible level.

167

4.6.2 Work Unit Caching

The performance impact of enabling client-side caching is evaluated by

comparing baseline scenarios which have no optimizations. The following test is exactly

the same scenario as shown in Figure 51, except caching is enabled.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

8 12 16 20 40 80

Work Units

P
ro

c
e

s
s

o
r

T
im

e

29

31

33

35

37

39

41

43

G
lo

b
a

l
E

v
e

n
t

R
a

te

(T
h

o
u

s
a

n
d

s
)

Application Deferred Import/Setup

Export/Finalize Global Event Rate

Figure 52: Hybrid Shock with Caching Enabled

With caching enabled, the amount of import and setup time is decreased, leading

to higher throughput and increased global event rate as shown in Figure 52. Again, these

results suggest that there should be at least 150% the number of work units as there are

clients in the worker pool even under a cached system.

To compare against typical traditional PDES system performance, this 8

processor run is compared against a µsik run with the same parameters simulating 1.2

million ions. In order to provide an even comparison of Aurora with µsik, the end-to-end

time to complete the simulation performance metric is used. In other words, the total

wall clock time from the time the simulation starts to when the simulation completes (e.g.,

168

the last node or client finishes computation). Percentage of µsik performance denotes

the proportional amount of time that Aurora takes in comparison to µsik. In the

following Figure 53, µsik ran the simulation in 119.044 seconds. Utilizing 8 work units,

the baseline (caching disabled) Aurora run took 228.698 seconds, or 52.05% of µsik

performance.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

8 12 16 20 40 80

Work Units

%
 o

f
µ

s
ik

 P
e

rf
o

rm
a

n
c

e

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

C
a

c
h

e
 H

it
 R

a
ti

o

Baseline Caching Enabled Cache Hit Ratio

Figure 53: Work Unit Scaling, Cache Hit Ratio and Comparison with µsik

Under a MIW scheduling policy, the more work units that are available in the

system, the higher the likelihood of a valid cache block existing on a client that can

immediately be matched during a work unit request. The 40 work unit partitions

exhibited the best performance for this scenario under Aurora, where 60.52% of the µsik

performance was obtained for the caching disabled run and 66.83% of the µsik

performance was obtained for the caching enabled run. It is important to note, that this is

a small scale test where these results only capture the client-side caching optimization as

169

all other optimizations such as state pipelined updating, pro-active message updates, and

other scheduling policies were disabled.

To test larger simulations sizes across more processors the non-uniform torus

queuing network was utilized simulating 2.25 million nodes on a 1500x1500 grid. This

simulation was partitioned into 100 work units of 150x150 sub-networks with variable

inter-work unit lookahead between 0.05 and 0.1 seconds, internal work unit lookahead

between 0.0001 and 0.001 seconds, and a mean service time of 0.1 seconds. 150,000

local packets and 45,000 remote packets were generated. This simulation was run across

32 worker processors with 6 state and message services.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Baseline Caching Enabled

P
ro

c
e

s
s

o
r

T
im

e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

G
lo

b
a

l
E

v
e

n
t

R
a

te
 (

M
il
li
o

n
s

)

Application Deferred Import/Setup

Export/Finalize Global Event Rate

Figure 54: Effect of Caching on a Non-Uniform Torus Queuing Network

With the default MIW scheduling policy, this simulation with caching enabled

exhibited a cache hit ratio of 66.42%. As shown in Figure 54, performance is

dramatically improved by allowing clients to cache work units. The end-to-end

performance of the baseline run was 543.73 seconds, while the caching enabled run took

170

328.19 seconds exhibiting a cache hit ratio of 66.42% and a speedup of 1.66. The cache-

enabled run bypassed 2970 MB of state downloads across all clients (92.81 MB per

client) resulting in a bandwidth savings of 69.85%.

4.6.3 State Updates

Enabling a caching protocol provides overhead reduction during the import/setup

phase by allowing the client to bypass state downloads when a valid cache block is

detected. However, to ensure consistency between the clients and the back-end services

the state must be synchronized with the state storage service so that other clients may

download the state if the current worker fails or disengages from the simulation. By

employing a pipelined state updating mechanism that overlaps communication costs with

application computation time, the export and finalization phase can be expedited.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Baseline Caching Enabled Pipelined State

Updates

P
ro

c
e

s
s

o
r

T
im

e

0

20

40

60

80

100

120

G
lo

b
a

l
E

v
e

n
t

R
a

te
 (

T
h

o
u

s
a

n
d

s
)

Application Deferred Import/Setup

Export/Finalize Global Event Rate

Figure 55: Hybrid Shock with Pipelined State Updates

Figure 55 shows performance trends of a 32 client hybrid shock run containing 3.2

million ions over 3200 cells partitioned as 80 work units. With caching enabled, the

171

simulation exhibits a cache hit ratio of 67%, a bandwidth savings of 67% (2870.7 MB of

state downloads bypassed) and a speedup of 1.31 over the baseline run. The pipelined

state updates test showed a cache hit ratio of 67.75%, a bandwidth savings of 67.76%

(2902.9 MB of state downloads bypassed) and a speedup of 1.54 compared to the

baseline run. The pipelined state update mechanism reduced export/finalize time from

the base cache-enabled run from 83.64 seconds to 63.85 seconds on average across all

clients.

Pipelined state updates may not offer performance improvements in all cases. In

certain cases, minimal performance gains or performance degradation can result if not

enough application computation time exists given the size of the state.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Baseline Caching Enabled Pipelined State

Updates

P
ro

c
e

s
s

o
r

T
im

e

85

90

95

100

105

110

115

120

G
lo

b
a

l
E

v
e

n
t

R
a

te
 (

T
h

o
u

s
a

n
d

s
)

Application Deferred Import/Setup

Export/Finalize Global Event Rate

Figure 56: Insufficient Masking Time

Figure 56 shows a 70 client (processor) run utilizing a 160 work unit pool for a

hybrid shock simulation with identical parameters as the previous test. In contrast to the

previous 32 client run, this test has significantly less computation per work unit, thus

172

resulting in less masking time for pipelined state updates. The pipelined state updates

increase the deferred wait time in the system as state updates are delayed from when

work units are checked back-in. Clients may also block for additional time during a work

unit request phase if a state update is in progress after a lease is approved. The state

update must complete before the work unit begins on the client, further increasing the

deferred wait time as shown in Figure 56.

4.6.4 Eviction and Replacement Policies

Clients may encounter memory pressure forcing eviction and replacement of pre-

existing cached states stored in the state history vector. The following tests examine

proposed replacement policies. The first benchmark uses the torus queuing network

distributed across 32 clients, with all simulation parameters maintained from the previous

experiments.

0

10

20

30

40

50

60

70

80

90

100

Unlimited Random LRU MRU ESF ESL

S
ta

te
 B

y
p

a
s
s
e
d

 (
M

B
)

o
r

E
v
ic

ti
o

n

C
o

u
n

t

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

%
 C

a
c
h

e
 U

ti
li

z
a
ti

o
n

 o
r

H
it

 R
a
ti

o

State Bypassed Evictions % Utilization % Hit

Figure 57: Replacement Policies and Queuing Network Simulation

173

Figure 57 shows the results from a queuing network test where each client is only

allocated 10 MB of total cache space. Each work unit packed state is approximately 2.15

MB, thus each client cache can only hold approximately 4 to 5 states. None of the

proposed replacement policies show gains over a random replacement policy suggesting

that replacement policies need assistance from the proxy service on which cache blocks

to evict.

0

5

10

15

20

25

30

35

Unlimited Random LRU MRU ESF ESL

S
ta

te
 B

y
p

a
s
s
e
d

 (
M

B
)

o
r

E
v
ic

ti
o

n
 C

o
u

n
t

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

%
 C

a
c
h

e
 U

ti
li
z
a
ti

o
n

 o
r

H
it

 R
a
ti

o

State Bypassed (MB) Evictions % Utilization % Hit

Figure 58: Replacement Policies and Hybrid Shock Simulation

For the 70 client hybrid shock test, Figure 58 shows higher performance for the ESF and

ESL replacement strategies over LRU and MRU but still fall below the performance of

the random replacement policy. Similar to the torus queuing network results, a different

approach to eviction and replacement is needed in master/worker PDES. Specifically, a

protocol is needed where the client can either query the proxy service on work units that

may be runnable in the immediate future or piggybacking this information on control

messages of other requests or acknowledgements.

174

4.6.5 Message Updates

Allowing clients to update messages in smaller chunks as the simulation generates

them during the application computation phase can potentially lead to smaller

export/finalization times. All performance tests have state pipeline updating disabled to

only test the effect of pro-active message mechanisms. The first test examines the non-

uniform queuing network using the same parameters as the previous 32 client runs.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Baseline Caching

Enabled

Static Aggressive Adaptive

P
ro

c
e

s
s

o
r

T
im

e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

G
lo

b
a

l
E

v
e

n
t

R
a

te
 (

M
il
li
o

n
s

)

Application Deferred Import/Setup

Export/Finalize Global Event Rate

Figure 59: Queuing Network Variable Message Updates

Figure 59 shows performance trends with different message updating schemes. Between

the three mechanisms, the aggressive approach performs the worst. However,

interestingly, all three schemes are outperformed by a fully buffered approach where all

messages are buffered and sent during the finalization phase. Observed data shows more

than 34 million inter-work unit messages were generated and each work unit generating

approximately 1.07 million messages. The reason for the slowdown with the pro-active

message sending approaches point to the message services bogged down in constant

175

updates reducing the responsiveness of other requests such as message check-outs by

other clients.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Baseline Caching

Enabled

Static Aggressive Adaptive

P
ro

c
e

s
s

o
r

T
im

e

0

20

40

60

80

100

120

140

G
lo

b
a

l
E

v
e

n
t

R
a

te
 (

T
h

o
u

s
a

n
d

s
)

Application Deferred Import/Setup

Export/Finalize Global Event Rate

Figure 60: Hybrid Shock Variable Message Updates

The next performance test involves a 70 client hybrid shock run with the same

parameters for a 3.2 million ion simulation as previous tests. In contrast to the queuing

network run, this simulation generated 12.1 million fewer inter-work unit messages

across all clients contributing to less pressure on the message services. This is reflected

in Figure 60 where the performance of the adaptive message update algorithm shows

improvement over the standard fully buffered method exhibiting a slight gain of 5.5% in

the global event rate. The aggressive scheme performs the worst, providing more

empirical evidence that overly pro-active message update schemes can prove to be a

detriment to performance by increasing the load on the back-end message services and

increasing latency of other requests.

176

4.6.6 Scheduling Policies

The following test examines proposed scheduling policies under a

computationally intense hybrid shock simulation. The hybrid shock simulation is

configured as 7.5 million ions arranged as 5000 cells and 1500 initial ions per cell. Other

simulation parameters remain the same and the program is distributed across a pool of 32

clients. Caching is enabled with unlimited cache size and other optimizations disabled.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

MIW MCA IWTACA EETF WFO+EETF

Scheduling Policy

P
ro

c
e

s
s

o
r

T
im

e

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

C
a

c
h

e
 H

it
 R

a
ti

o

Application Deferred Import/Setup

Export/Finalize % Cache Hits

Figure 61: Scheduling Policy Performance under Hybrid Shock

Performance of each scheduling scheme is shown in Figure 61. The MCA policy

exhibits the highest cache hit ratio at 99.3% along with the highest bandwidth savings

avoiding 9962.12 MB of state downloads across all clients. However, the MCA scheme

exchanges a high cache hit ratio with increased deferred wait times. The cost of this high

cache hit ratio degrades the performance of the simulation such that this policy exhibits

the worst global event rate out of all scheduling schemes at 72,616.1 events per second.

177

The WFO+EETF scheme provides the highest performance slightly edging out the MIW

scheme at 123,051.8 global events per second.

4.6.7 Combined Optimizations

Individually, some overhead reduction techniques have shown to provide large

boosts to performance while others have provided minimal gains or in some cases

degraded performance. To better understand the impact of all overhead reduction

techniques functioning in concert, the hybrid shock application is run Aurora and

compared against µsik. The following hybrid shock scenario is configured as 7.5 million

ions arranged in 5000 cells with 1500 initial ions per cell. There are 6 state and message

back-end services. The number of Aurora clients matches the number of processors of

the µsik run it is compared against. For example, the 8 Aurora client test represents a

comparsion against a µsik run across 8 processors.

0%

10%

20%

30%

40%

50%

60%

70%

80%

8 16 32

Clients

%
 o

f
µ

s
ik

 P
e

rf
o

rm
a

n
c

e

Baseline Optimized

Figure 62: Hybrid Shock Optimized Performance

178

For this test, enabled overhead reduction techniques include client-side caching

with “unlimited” cache space, pipelined state updates, aggressive message updates, and

employing the WFO+EETF scheduling policy. Figure 62 shows the performance delta of

Aurora under unoptimized baseline and fully optimized conditions. As the simulation

scales with increasing numbers of clients, the unoptimized Aurora run performance gap

widens from 55.28% of µsik at 8 workers to 44.59% of µsik at 32 workers. Interestingly,

for the optimized Aurora runs, the performance gap shrinks as the number of clients is

increased from 65.68% of µsik at 8 workers to 71.71% of µsik at 32 workers. At 32

clients, the overhead reduction techniques have recovered 27.12% of µsik performance.

With the flexibility and additional robustness that master/worker PDES brings to

loosely coupled distributed computing infrastructures, the performance price is less than

30% for this hybrid shock simulation compared to a traditional simulation framework

such as µsik. The Hybrid Shock application tested exhibits fairly large state vector

imports and exports along with a sizable number of messages generated. Under PDES

codes more conducive to the master/worker paradigm, the difference in performance

from traditional PDES systems would be far less, providing even more incentive for

utilizing a master/worker architecture. A master/worker PDES system offers the

potential to capture idle-cycles of desktops and laptops that would otherwise be wasted.

Given such a small performance gap now possible through these optimizations, a

master/worker PDES system is a viable alternative to conventional systems while

providing semi-automated load balancing, integrated fault tolerance, and portable

simulations across heterogeneous machine architectures.

179

4.7 Conclusions

The barrier to acceptance of alternative PDES systems such as a master/worker

system harnessing loosely coupled resources is the perception of low performance.

Indeed, a master/worker PDES system with no optimizations can perform badly under

certain simulation scenarios such as codes that exhibit large state vectors or those that

generate large numbers of messages relative to the amount of computation that is

performed. However, with certain optimizations that attempt to shift master/worker

behavior to mimic traditional PDES systems, the performance gap can be reduced

significantly.

Four overhead reduction techniques were presented and evaluated. First, arguably

the most important optimization is work unit caching. The ability to store state vectors in

a state history for future use avoiding download time, bandwidth consumption, and

blocking time can provide large reductions in deferred wait and import/setup times.

Second, a protocol for delaying the update of states through a pipelined updating

mechanism allows work unit returns to be processed without blocking on large state

updates. Other work units that are blocking due to a work unit dependency may be

leased quickly with a faster consistency convergence on the work unit that has to be

checked back in before the dependent work unit is leased. However, simulations that are

not computationally intense may not provide enough masking time for pipelined state

updates. Additionally, eviction and replacement policies must be in place for clients that

are under memory pressure and must evict cache blocks for new states. Experimental

data indicates that further investigation is required, specifically a protocol that provides

the client with assistance in choosing the correct state to evict for replacement. Third,

180

protocols for pro-active message updating were proposed. Instead of buffering all

messages until the finalization and export phase of a client, messages are sent during the

application computation phase. Finally, scheduling policies were proposed that act on

certain information such as valid cache lines, lookahead and connectivity information,

and runtime statistics.

With these optimizations working together, the performance gap between

master/worker PDES and traditional PDES was reduced significantly. Under a real-

world simulation application, the performance difference was reduced to 29.29% of a

high performance traditional simulation framework, µsik. While it is understood that a

loosely coupled master/worker system will not provide the absolute fastest performance,

we have shown that with proper overhead reduction techniques the performance of

master/worker PDES systems is acceptable given the other advantages a master/worker

PDES system offers.

181

CHAPTER 5

5 OPTIMISM AND MASTER/WORKER PARALLEL DISCRETE

EVENT SIMULATION

Optimistic synchronization is attractive in this paradigm because it allows greater

flexibility and concurrency for workers who can process events beyond those that are

guaranteed to be safe for execution. This can improve the performance of simulations

that are overly conservative by reducing the amount of master/worker communication.

Further, due to the inherent volatility of workers in public resource computing and

desktop grid environments, one must assume computations may be lost due to worker

failure, network disconnects, or simply suspension of the process in order to complete

other higher priority work at the client site. A system that can utilize optimistic execution

can exploit this fact by allowing the lease of computations (e.g., an atomic unit of work

released by the master service to a worker) that may potentially be overly optimistic and

discard any returned results that are later rolled back. Moreover, it is well known that no

single synchronization mechanism yields the best performance across all parallel discrete

event simulation applications [1]. In particular, it is widely recognized that PDES codes

that exhibit very small lookahead as well as those applications where the lookahead

cannot be determined a priori are generally poorly suited for conservative

synchronization techniques, suggesting the use of optimistic synchronization. However,

traditional approaches to optimistic execution are no longer appropriate, and must be

modified to be effectively applied to use in master/worker systems [96].

182

5.1 Rethinking Time Warp for Master/Worker PDES

A key consideration in the master/worker paradigm is client/server

communication. This must be taken into consideration in all aspects of the optimistic

execution. For example, in a conventional Time Warp system, a throttling mechanism is

required to avoid spending an excessive amount of processor time on computations that

will be later rolled back as well as to avoid potentially time consuming rollback

operations; the cost of being overly conservative is largely idle processor time. In a

master/worker system, pausing a computation may result in additional client/server

communication because LPs may be returned to the server once they have been

suspended. This cost associated with overly conservative execution must be factored into

the throttling mechanism.

Further, direct client-to-client communication is not allowed, necessitating careful

design of the messaging and rollback mechanisms. A straightforward implementation of

the master/worker paradigm, as described earlier, can lead to excessive delays in handling

straggler messages. The LP generating the straggler must first be returned to the server,

and the LP receiving the straggler must also be returned to the server before the straggler

message and subsequent rollback can be processed. These delays can lead to increased

amounts of rolled back computation. The standard master/worker paradigm must be

modified to address this issue. Further, traditional Time Warp mechanisms such as

handling straggler messages and message cancellation through anti-messages, direct

cancellation, or some other means do not directly translate into an optimistic

master/worker system.

183

Transmitting LPs and their associate state and message histories between clients

and servers can be problematic because of the large amount of data that must be sent. The

overheads associated with such transmissions must be considered in developing a suitable

state saving strategy.

In public-resource computing infrastructures such as desktop grids, client

volatility is a paramount concern. Under this system, no assumptions can be made that a

work unit lease will ever result in a valid return due to possible machine suspension,

reboots, crashes, or general network connectivity disconnects. This behavior is a primary

motivating factor for employing a master/worker paradigm and further underscores the

need to revise conventional techniques for optimistic PDES.

PDES master/worker systems can take advantage of the inherent centralized

control in a master/worker paradigm greatly simplifying global control tasks such as

calculating GVT. As message servers process incoming data and bin them to the

appropriate output queue, the minimum time stamped message per work unit is kept track

of and updated to the master service. The master uses these values to calculate the global

minimum time stamped message in the entire simulation. This value is then used to

calculate the GVT of the system. Additionally, proactive fossil collection is possible as

GVT values are updated on every work unit lease to a client.

5.2 Towards Optimizing Optimism in a Master/Worker PDES System

Implementation of an efficient optimistic PDES system in the master/worker

paradigm requires addressing a variety of new issues. The following sections detail

184

concepts, protocols, and mechanisms specifically supporting optimistic PDES codes in a

master/worker framework.

5.2.1 Client-side Caching

The state of an LP/work unit in an optimistic system will become very large

because of the need to maintain state and message history information. Transmitting this

information back and forth between client and server will be very time consuming and

expensive in terms of computing and communication resources.

To address this issue, client-side caching can be used by storing recent states on

the client instead of notifying and updating the state service every time the state of the

work unit is changed. The client stores modified states for recovery purposes in a state

history. The current GVT value is piggybacked on any rollback notification or successful

work unit completion. The GVT value is used during garbage collection to prune the

state history queue. State history is also reduced after a rollback notification for any

states exceeding the rollback time. While client-side caching is useful for conservative

master/worker PDES, it is particularly crucial in optimistic systems.

An update policy is required to specify when the server is updated with changes in

the client cache, analogous to the write-back policy used in traditional cache memory

systems. Its importance is to balance the amount of updates to the state server to avoid

using an excessive amount of network bandwidth, but still maintain enough state to

prevent large coast forwards for fault recovery in the case of client failures. In the

current Aurora implementation, the frequency of state updates can be tuned through

configuration parameters.

185

In general, a replacement policy is needed to determine which work units are

evicted from the cache when additional space is needed for a new work unit. An

alternative approach is to statically allocate memory resources in the client, and enforce a

policy never to accept new work units unless the memory resources are already available

in the client. This latter approach is used in the current implementation for optimistic

synchronization.

5.2.2 Time Windows and Zero Lookahead

All optimistic systems require a throttling mechanism to limit the amount of

optimistic execution. Failing to do so can lead to instabilities and an excessive amount of

rolled back computation. This is also true in master/worker systems; however, the

throttling mechanism in master/worker systems takes on an additional meaning. The

work unit may be returned to the master when the LPs contained within the unit are

suspended. While the cost of overly restricting optimistic execution in traditional Time

Warp systems only results in lost concurrency and in extreme cases idle processors, in a

master/worker system it may result in additional communication and performance

degradations. This suggests that it may be advantageous to allow greater levels of

optimism in master/worker systems compared to traditional optimistic PDES systems.

The Aurora system allows work units to execute past safe execution limits but not

arbitrarily far into the simulated future. Time windows are used to constrain execution

but in a more relaxed fashion than a conservative implementation. These execution

windows are necessary to provide points to check-in progress of a work unit to the back-

end system so that recovery from faults and client crashes are possible. A separate time

window is defined for each work unit, in contrast to the global time windows used in [97].

186

In general, it may be advantageous to set the time windows to a larger value than that

which would be used in a traditional Time Warp system in scenarios where the number of

available clients far exceeds the number of work units that are available.

One of the advantages of supporting optimistic simulations is the ability to

execute PDES codes with zero or near zero lookahead. However, this poses a significant

challenge when the execution mechanism is based upon time windows of some calculated

length. Without lookahead, there is no reliable metric to determine execution boundaries

except for the specified simulation begin and end times.

In general, zero lookahead simulations pose a problem for Time Warp in that they

can lead to scenarios of unending rollbacks. This topic has been treated in the literature

[98], and techniques to avoid these problems have been developed, e.g., by extending the

precision of timestamp values so no two events have identical timestamps. Here, we

assume such techniques are utilized and do not treat this topic further.

One approach to the time window problem is to adaptively tune window lengths

as the execution progresses forward. Similar techniques have been proposed in

conventional Time Warp systems. Using a rollback history for each work unit, the proxy

can modify the leased execution window to either increase optimism if there are very few

rollbacks occurring or to reduce optimism if the windows are too large [99].

The first implemented mechanism is to dynamically adapt time windows during

the lease phase of the work unit. For zero lookahead simulations, the initial lease

windows are based on the throttling parameter specified by the simulation package. After

this initial lease window, the Aurora optimistic time management system performs

dynamic window adaptation to tune the lease windows as the simulation progresses.

187

Instead of using static time windows calculated from GVT and the simulation end time,

the time management system takes into consideration the recent rollback histories,

average past time window lease lengths, and standard deviations of rollbacks. Depending

upon the throttling aggressiveness chosen, the time management system will adaptively

reduce the window if the standard deviation of the recent rollbacks exceeds a threshold

value. Conversely, if there have been relatively no rollbacks from the histories, the

system will adaptively grow the windows according to the throttling choice. The

adaptive mechanism calculates time windows as follows. First the recent rollback

average delta (ρ) is calculated which computes the absolute difference between recent

rollback times to the total average rollback history. Non-negative ρ values denote that

rollbacks are occurring or the rollback lengths may be increasing. Negative ρ values

mean that rollbacks are not occurring or the rollback lengths may be decreasing. Next the

coefficient of variation on rollback (υ) is calculated which is the rollback standard

deviation divided by the rollback mean (µ). Other components to the time window

calculation are computed as shown in Table 9.

Table 9. Additional Adaptive Time Window Components

 Lookahead-Based No Lookahead

Begin Time (β) Previous window end time GVT

Optimistic Window

(ω)

MinETS + tunable slice of input

LA to WU

Tunable slice of total

simulation time

()
()

 if 0

 otherwise

β ω µυ ρ
τ

β ω ωυ

+ − ≥
= 

+ +
 (5.1)

188

The time window (τ) is calculated by summing the components as shown in

equation (5.1). If the recent rollback average delta shows rollbacks occurring or

increasing, the algorithm attempts to reduce the window size by some percentage of the

rollback mean and coefficient of variation. If no rollbacks are occurring or rollback

lengths are decreasing, the algorithm attempts increase the window size or keep the

window size the same if the coefficient variation is near zero. Additional throttling

components can be added to tune the time window adaptation to more aggressively or

conservatively change time window lengths as the simulation executes.

The second mechanism is to reactively change the length of the time window

when a work unit completes and begins its finalization phase with the proxy. Instead of

authorizing the work unit to immediately begin the update phase, the proxy will perform

a rollback history lookup and calculate a rollback average for the returning work unit. If

the work unit window exceeds recent time window lengths calculated from rollback

averages, the proxy will send a prune message to both the client and message server that

is hosting the client’s messages. This prune message contains an earlier end time than

what was leased to the client for that iteration. The client will prune any messages sent

exceeding the new time window end time and restore the proper state for that time as well.

The message server will adjust the current lease times for the work unit to prepare for

message delivery. This active pruning mechanism can reduce the number of potential

rollbacks if the proxy determines that the current optimism of a work unit exceeds that of

the previous calculated time window.

189

5.2.3 Self-Induced Rollbacks

There is a special case for rollbacks that must be considered in a master/worker

PDES system. When a client finalizes a work unit, there is a possibility of rolling back

its own execution. During the binning of messages from a work unit, a message may

cause a rollback on another work unit which may cancel a message that was sent to the

finalizing work unit which has been processed. This causes the returning work unit to

perform a rollback on itself. If the client rolls back and returns messages that it already

returned during the first finalization, there is a possibility of duplicate messages. The

solution to this problem is to mask messages which have been already updated to the

message server.

5.2.4 Adaptive State Saving

While adaptive state saving has been utilized on other Time Warp systems,

existing approaches must be modified for use in master/worker systems mainly due to the

approach of leasing execution windows to clients instead of in a traditional Time Warp

system where nodes process events without defined check-out and check-in times. After

a work unit lease, the client operates autonomously from the back-end system until the

simulation reaches the given end time of the execution window. A rollback control

message may be received during the execution or during the finalization phase when data

is transmitted to the back-end services. A history of the past rollback times are recorded

by the client. From these values, mean and standard deviation values can be calculated

based on the most recent rollback times. These values can be used to filter state saves as

shown Figure 63.

190

Figure 63: Computing Sub-Windows for Adaptive State Saves

From the calculated rollback average, the speculative execution sub-window

shown as B in Figure 63 can be created. Within this window, state is saved regularly as

there is an increased probability of a rollback occurring within this phase. There are two

outlying sub-windows, A and C. The prior sub-window is referred to as the forward

execution phase and the latter being the unreliable execution phase. The amount of state

saving can be adaptively reduced during these windows. For the forward execution phase,

state can be saved sparingly and then with increasing regularity as simulation time

approaches the speculative execution phase. For the unreliable execution phase, the

opposite is performed, as the simulation time moves away from the speculative execution

phase, state is saved less frequently.

5.2.5 Unique Cancellation

Unlike conventional optimistic techniques, master/worker systems such as Aurora

can detect rollbacks at the message server and correct errors on the server-side instead of

at the workers or clients. When a rollback occurs, messages sent after the rollback time

must be cancelled to correct errant execution. Conventional optimistic simulators often

utilize anti-messages or direct cancellation through pointers. As discussed earlier, Aurora

C B A

��

µ
σ σ

191

exploits server-based message storage in the master/worker paradigm. Instead of

generating anti-messages for each message that must be cancelled, Aurora utilizes

delivery receipts and causal linkage information together with a 128-bit Universally

Unique Identifier (UUID) of each message to uniquely cancel messages eliminating the

need for any network overhead induced by anti-message generation if the message that

must be cancelled resides on the same message server as the message causing the

rollback. UUIDs are a method to uniquely identify data across network resources and

can be generated without any centralized control. Additionally, UUIDs have an

extremely low occurrence of collisions or probability that a same UUID will be generated

over the course of the simulation program.

Using UUIDs for message cancellation is also important when the message

service is distributed across multiple machines. If a rollback occurs on one message

service, but the message does not reside on that server, the message service will perform

a bulk unique cancellation where all cancellations are packed together by message service

key and host address and sent as a single message. The receiving message server

unpacks the bulk unique cancellation message and will then cancel messages locally.

Note that this process may cause secondary rollbacks which are handled by the message

service in a similar manner.

5.2.6 Delivery Receipts and Causal Linkages

In traditional Time Warp systems, if a message is received in the past, messages

that were generated after the straggler message must be cancelled through some means

such as anti-messages. In a master/worker system, the storage service for messages only

needs two important pieces of information within each encoded message: the destination

192

work unit and timestamp of delivery. Upon finalization of a work unit, the message

service would digest incoming messages and bin them into input queues of their

respective work unit. For optimistic synchronization, however, this information is

insufficient. Additional fields are required in each message sent by the PDES application

that is then wrapped as an Aurora message. The simulation time at which the message

was generated was incorporated to provide the necessary information for rollbacks and

message cancellation. Moreover, each message is tagged with a UUID for identification

of each message for cancellation purposes.

Figure 64: Causality Linkages and Delivery Receipts

When a message is generated by an LP, two additional objects are automatically

created by the Aurora client. If a message is sent by the application and is generated due

to an event being pulled from the input message queue and processed on the client, then a

pointer (causal link) to the new message is created. These causal linkages are recorded

UUID 0
TS 1.1
C=NIL

DST 0
ST 0.1
UUID 0

WU 0

WU 1

DST 0
ST 0.2
UUID 1

DST 1
ST 1.2
UUID 2

UUID 2
TS 1.8
C=NIL

UUID 1
TS 1.2
C=UUID 2

193

by the client linking a parent message with any children messages through the use of

UUIDs.

The second object generated upon message send is the delivery receipt of the

message. This specifically fulfills the need for delivery information in each message for

the corresponding message server that only referenced destination work units and

delivery timestamps, clearly insufficient for rollback and cancellation purposes. Since

the client only works on one work unit at a time, any generated message is bound to the

leased work unit and these delivery receipts can be returned to the same message service

handling the input queue. Delivery receipts are sorted by the message server in

increasing send timestamp order. When a rollback is detected, the message server simply

references the delivery receipts and can identify messages that need to be cancelled

without the inefficiencies of traversing priorities queues of each input queue.

In Figure 64 if a rollback were to occur on work unit 1 at time 0.15, the message service

would look for delivery receipts with send times (ST) greater than or equal to 0.15. The

second delivery receipt in the work unit 1 queue satisfies this requirement so it performs

a lookup on the destination queue and associated message. When this message is

cancelled, it also looks for any messages generated that were caused by that message.

Since this message caused (C) the generation of a message with UUID of 2 to be

delivered to work unit 1, this message is cancelled along with the message with UUID of

1.

194

5.3 Rollback Protocols for Master/Worker PDES

The master/worker paradigm calls for new types of rollback mechanisms to

maximally conserve work and to minimize communication overheads. As in traditional

Time Warp systems, rollbacks occur when a message is received in an LP’s past.

However, in the master/worker paradigm, messages that cause rollbacks can be detected

at the server once the work unit is returned instead of at the client where events are

processed. The LP being rolled back may be contained in a work unit that is being leased

to another client. Thus, begs the question of where straggler messages should be detected

and where the message unsending mechanism should occur.

 The advantage of implementing the rollback mechanism on the client is that

mechanisms are well understood and straightforward as this route is most similar to

existing Time Warp rollback protocols. Anti-messages are generated for each message

sent and state histories are stored via some protocol such as copy state saving. The

foremost problem with this approach is the increased network usage in a system where

bandwidth is a premium commodity. Anti-messages must be propagated from the client

to the back-end message service and then back out to the client. Clearly, this increases

the inefficiency of the simulation. Additionally, more bookkeeping and new protocols

must be devised to handle a client that fails or disengages during the middle of processing

a straggler message and generating anti-messages.

In contrast to client-side straggler detection and recovery, a server-side approach

may alleviate performance issues, especially bandwidth usage. During the binning

process, the message service can check for straggler messages. If rollbacks are needed,

the proxy service is notified and messages are cancelled immediately on the server side.

195

Clients are notified if their windows must be rolled back, but they only perform state

vector recovery and input message queue fix up. No anti-messages are necessary in this

approach. Ultimately, this approach is more efficient considering the necessity of

keeping network activity to a minimum. Consequently, this approach calls for a different

rollback mechanism, as described next.

Figure 65: Message Delivery Cases

We introduce two types of rollback mechanisms specifically tailored for a

master/worker paradigm and distribution of work using leased time windows. The type

of rollback triggered is determined by the timestamp of a straggler message and is

depicted in Figure 65.

If all messages are delivered after the leased execution window end time, then no

rollback actions are necessary. If messages are delivered within the leased execution

time window, then a rollback is triggered but the severity of the rollback is limited. If the

proxy determines that the rollback time induces a “partial rollback,” then this type of

rollback is referred to as a soft rollback. A message that is delivered before the beginning

Execution
Window Begin

Time

Execution
Window End

Time

Always
Induces Hard

Rollback

Always Safe

Delivery

Rollback Type
Determined by

Proxy

196

of the leased execution time window causes the proxy to direct the client to perform what

is known as a hard rollback. Additionally, this condition can be triggered if a message is

delivered within the execution window but the client has already completed finalization

of the work unit.

5.3.1 Hard Rollback

A hard rollback is a rollback where the client cannot retain any previous

computation and must restart its computation to a new simulation begin time set forth by

the proxy. The client may be notified at anytime of a hard rollback, even during the

simulation computation. The client can pre-empt the application runtime through the

simulation loop control and restart the client with the new simulation parameters. A hard

rollback uses a similar procedure as that given to a fresh work unit lease; the only

difference is restoration of previous state information and the possibility of a coast-

forward.

Once new lease parameters have been downloaded, the client will restore the most

recent valid state from its internal state history. Any states that have been stored after

this point can be safely discarded as they are no longer valid. The coast forward

execution is similar to that in traditional Time Warp systems. In particular, during the

coast forward phase message sending must be turned off. The client will contact the

message server for messages with delivery timestamps falling inside the new execution

time window. These messages will be inserted into the internal message queue. After

these corrective measures have been processed, the client can proceed normally.

One of the features of Aurora is the ability of the application programmer to

utilize the internal Aurora message queue as an event queue for the PDES application. In

197

this case, it is possible to perform “self-sends” where messages being generated by an LP

are destined for itself. These messages must be properly re-inserted and re-processed

during a hard rollback coast forward. Aurora automatically tags any self-sent messages

and restores them, if necessary, to the input message queue for reprocessing if the

delivery timestamp and message send time are greater than the specified rollback time.

5.3.2 Soft Rollback

Master/worker PDES systems could function properly using only the hard

rollback mechanism alone. However, this would be inefficient as potentially good

computation would be discarded for “partial rollbacks.” Since messages can be delivered

within a leased execution window, it is unnecessary to completely discard all

computation a client has performed.

In contrast to the hard rollback mechanism, the soft rollback system allows the

client to preserve the maximum amount of computation performed before the rollback

notification is received. Once the soft rollback notification is received, the client will

immediately set an internal flag that a potential soft rollback is about to occur. Before the

client performs any further actions, a message cancellation list along with any associated

new messages is downloaded from the message server. It is important to note that

messages that have already been downloaded during the initial work unit lease are not

downloaded again and that only new incoming messages are downloaded in bulk by the

client.

If the client was pre-empted during application execution, it will check the current

simulation time against the rollback time. If the rollback time occurs in the future, the

client performs a soft rollback intercept. Instead of performing an actual rollback, the

198

client simply takes the new messages and inserts them into the input message queue.

Any cancellations are processed as well. Once this task completes, the client is then

resumed. This best case scenario preserves all useful computation.

If the rollback time is before the current client simulation time or the soft rollback

notification happens during the finalization phase, a partial rollback must be performed.

The proxy does not lease a new execution window. Instead, the window is renewed for

the soft rollback. The client will compare the rollback time against the state history and

will select the most recent history with a timestamp less than or equal to the rollback time.

Similar to the hard rollback scenario, any states after this time may be safely discarded.

The first task during the soft rollback recovery phase on the client is to scan the

message output queues for messages which were generated after the rollback time. These

messages are pruned from the message queues and enqueued on the garbage collector

memory list. Similarly, any causal linkage information or delivery receipts are erased.

Next, the client will scan the original list of downloaded messages and re-insert any

messages into the internal input queue which have a delivery timestamp after the rollback

time and are not on the message cancellation list. Finally, the list of new messages

associated with the soft rollback are inserted into the input message queue.

Utilizing this soft rollback mechanism allows full exploitation of any computation

that has already occurred without rolling back the entire time window. The soft rollback

is a new concept that was introduced to address issues arising in the master/worker

paradigm.

199

5.3.3 Rollback Detection and Back-End Protocols

During the binning procedure for matching incoming message to their respective

destination input queues, the message server will compare the delivery timestamp to that

of the leased execution window. The message server will only make one distinction:

whether or not the message will cause any kind of rollback. The message service does not

need to differentiate between the two as the actual distinction will be determined at the

proxy where the most up-to-date information on each work unit resides.

Messages that have a timestamp less than the last lease execution end time are

tagged as potential soft rollback messages. These soft rollback messages are simply

references to the actual message being placed into the input queues to avoid memory

copy overheads. In addition to cataloguing these potential soft rollback messages, a

mapping of rollback times to work units are also generated during the message binning

process. The proxy need only be updated to the smallest rollback time per work unit.

Once all messages have been delivered “virtually,” then the cancellation phase

begins. For each rollback time catalogued for a work unit, delivery receipt send times are

compared against that of the rollback time. If the send time exceeds that of the rollback

time, then a cancellation must be generated for the sent message. The message service

checks each cancelled message for causal linkages. If the message has causal links to

child messages, then those messages must be cancelled as well. If the destination work

unit queue exists on the same server, then the message service will perform a unique

cancellation internally as detailed earlier. Messages that need to be cancelled that do not

reside on the same message server are collated into a singular bulk unique cancellation

message that is sent to the proper message server hosting the destination work unit.

200

After the message service finishes the rollback-cancellation procedure, the proxy

is notified of the message server convergence. The proxy will then scan all rollback

times and determine which rollbacks are soft or hard rollbacks. If a client must roll back

and the time falls in between the leased execution window but the client is inactive, then

a hard rollback notification is sent. In the case the client is active, a soft rollback

notification is sent.

5.4 Performance Study

Like traditional time warp systems, performance of master/worker PDES systems

depends largely upon the application. These systems perform well with models

partitioned into work units that are computationally intense per lease with good

computation to communication ratio. The purpose of this performance study is to show

the impact of certain application characteristics on the Aurora system.

The Aurora system was compiled with gcc 4.1.2. Clients designated as Xeon-A

are SMP machines with two Intel Xeon 3.2GHz processors and 6GB of memory. Each

Xeon-A node runs RedHat Linux with a 64-bit GNU/Linux 2.6.9 kernel. Clients

designated as Xeon-B are SMP machines with Intel Xeon 3.06GHz processors and 2GB

of memory. Xeon-B nodes run RedHat Linux with a 32-bit GNU/Linux 2.6.18 kernel.

Nodes are connected through Fast Ethernet links. To minimize external factors, only one

instance of each Aurora back-end service was used and no optimizations from chapter 4

were enabled. The MIW default scheduling policy was used for all tests.

201

5.4.1 Lookahead Effects

For this test, the particle-in-cell hybrid shock discrete event simulation was used.

The hybrid shock model was configured as 20 total cells, 400 initial ions per cell (IIPC),

and a cell width of 0.00025. The simulation was partitioned into 10 work units over 10

Xeon-B clients.

0

20

40

60

80

100

120

140

160

Soft Rollbacks Hard Rollbacks Coast Forw ards

O
c
c
u

rr
e
n

c
e
s

LA = 0.055 LA = 0.11

Figure 66: Effect of Lookahead on Rollback

In this test, the lookahead is set to a value of 0.11 and to half that value of 0.055.

The maximum lookahead value that produced acceptable results was approximately 0.15.

Figure 66 shows that smaller lookahead values lead to increased rollbacks in both the soft

and hard rollback category. Similarly, the number of times the client must coast forward

during a rollback is directly proportional to the number of rollbacks that occur. The

current Aurora system does not have an upstream protocol to notify the back-end services

that a message may potentially cause rollbacks on other work units as this would require

a strict requirement of nodes to be connected for the entirety of the simulation, violating

202

one of the assumptions of client volatility. The time management system may also

attempt to grow the execution window to further exploit any concurrency available to the

model.

0

0.01

0.02
0.03

0.04

0.05

0.06
0.07

0.08

0.09

0.1
0.11

0.12

0.13

Time Rolled Back Coast Forw ard Time Execution Window

Averages over all Clients

S
im

u
la

ti
o

n
 S

e
c
o

n
d

s
LA = 0.055 LA = 0.11

Figure 67: Lookahead Effects on Execution

With larger lookaheads, however, the simulation re-computation cost per rollback

increases as shown in Figure 67. The amount of simulation time that must be rolled back

and the coast forward time are both larger than that in the smaller lookahead model. The

time management system also attempts to grow the execution window to further exploit

any concurrency available to the model with execution window size gains of 8.3% and

6.9% for lookahead of 0.055 and 0.11, respectively.

5.4.2 Work Unit Granularity

The amount of useful computation given to each work unit lease is an important

factor in determining performance. The hybrid shock simulation contains relatively large

203

amounts of state and messages and thus is not a particularly favorable simulation for

master/worker PDES. However, the ability to scale the amount of computation per work

unit lease allows for a good test case for work unit granularity. In this test, the hybrid

shock parameters are the same from the previous scenario, except lookahead is kept

constant at 0.11 and instead the IIPC parameter is modified. 10 clients on Xeon-B nodes

were used.

0

20

40

60

80

100

120

140

160

Soft Rollbacks Hard Rollbacks Coast Forw ards

O
c
c
u

rr
e
n

c
e
s

100 IIPC 200 IIPC 400 IIPC (LA 0.055) 400 IIPC (LA 0.11) 600 IIPC

Figure 68: Hybrid Shock Rollback Trends

Figure 68 shows decreasing trends for both the number of rollbacks and coast

forwards for the hybrid shock model as the relative amount of ions per work unit

increases with the exception of the halved lookahead at 400 IIPC. As the amount of time

spent in application code increases, the overall work unit return rate and possible rollback

triggers decreases. Increasing the amount of work per work unit effectively constrains

the simulation from advancing too quickly into the future lowering the amount of

204

overheads associated with rollback as clients spend more time in application code rather

than attempting to advance further into the future with potential invalid computation.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

400 IIPC (H) 600 IIPC (H) LA = 0.001 (Q) LA = 0.01 (Q)

P
ro

c
e
s
s
o

r
T

im
e

Application Deferred Setup/Import Finalize/Export

Figure 69: Simulation Efficiency

To test larger models in addition to hybrid shock, a closed torus queuing network

simulation was used. This simulation model contains a 36x36 grid of queuing servers

partitioned into 81 4x4 sub-grids for work units to lease. 1000 messages are generated

with destinations local to the work unit and 1000 messages with remote destinations. The

lookahead between work units is set at 0.01, and the service time is exponentially

distributed with a mean of 5.0 time units. The queuing network simulation was run

across 81 Xeon-A clients.

Figure 69 shows the amount of processor time dedicated to each phase of the

client execution for the hybrid shock model (H) and the queuing network model (Q).

205

Application denotes processor time dedicated to actual simulation application

computations, deferred refers to time spent by the client waiting for a renewed lease,

setup/import time refers to the time spent in downloading lease metadata and input

messages, and finalize/export is the amount of time spent in packing up generated

messages and completing consistency convergence for the work unit return on the back-

end.

For the hybrid shock simulation, the low amount of processor time dedicated to

application code is due to the lack of ion interaction and memory limits of each client

node. As the computational load increases per work unit, the relative amount of deferred

wait overhead decreases as less stress is placed on the back-end services. The

finalization phase consumes the most processor time as this includes overheads from

triggering rollbacks since a work unit cannot proceed to a new lease until the consistency

on the work unit has been validated by the back-end system and all new potential

rollbacks have been acknowledged. Work is ongoing to improve performance by

lowering communication and state saving overheads.

Increasing the lookahead in the queuing network model increases the work unit

granularity as more events can be processed within a given lease window. Processor time

spent in application code increases from 57.6% to 82.0% when increasing lookahead

from 0.001 to 0.01. A non-linear increase in application processor time is due to the

optimistic time management system finding additional concurrency in the 0.001

lookahead scenario; lease windows were on average 670% that of 0.001 lookahead

permitting clients to run further into the future allowing events to be processed that may

be safe from causality violations.

206

5.4.3 Adaptive State Saving

For analysis of the adaptive state saving mechanism, the hybrid shock simulation

was utilized. The parameters for this model were 800 total cells, 100 initial ions per cell,

lookahead of 0.11, and a cell width of 0.00025. The simulations were partitioned into 40

work units over 40 Xeon-A clients.

Table 10: Performance of Adaptive State Saving

 Disabled Enabled Difference

Average State History

Size (MB)
535.58 402.90 -24.77%

Average State Save

Time (wall sec)
5.46 4.11 -24.71%

Average Number of

State Saves
10182.55 7936.57 -22.06%

Average Total Coast

Forwards
10.50 11.62 +10.71%

Average Coast

Forward Time (sim

sec)

0.000470 0.000496 +5.71%

Average Client

Runtime (wall sec)
62.642 61.893 -1.20%

Table 10 shows the benefits of enabling the adaptive state saving mechanism in

Aurora. The amount of state and correspondingly the amount of processor time dedicated

to state saving is reduced by approximately 25%. This can prove to be a significant gain

for large scale models that must use optimistic synchronization allowing a greater portion

of the memory available on the machine to be dedicated to the simulation instead of

bookkeeping tasks concerning saved state. Over 2000 state saves are avoided at the cost

of approximately 1 additional coast forward averaged across all clients. The additional

207

coast forward time is negligible compared to the savings gained from state save time and

reduction in the total runtime.

Although these results are promising for adaptive state saving, further test

scenarios are needed, especially those that examine zero lookahead applications as well

as the tradeoff between increased coast forward probability and re-computation time for

different PDES applications against more aggressive or relaxed state filtering algorithms.

5.5 Conclusions

Implementation of an optimistic time management system in Aurora enables

execution of more PDES codes on public-resource computing infrastructures. Important

properties such as small or zero lookahead are now supported in the Aurora framework.

Given sufficient resources, the Aurora system can execute optimistically without regard

for the output of any particular client as the results of an incorrectly computed work unit

can be simply discarded.

Aurora exploits inherent advantages through the master/worker design, such as

implementing straggler message detection and rollbacks on the back-end services without

interaction from the clients. This reduces network bandwidth requirements and coupled

with the unique cancellation mechanism provides direct cancellation of messages on

work units hosted on the same service and bulk cancellation otherwise. Development of

an optimistic master/worker system has led to the design of techniques such as soft

rollbacks as well as addressing unique challenges to master/worker PDES in a loosely

coupled distributed computing infrastructure.

208

CHAPTER 6

6 CONCLUSIONS AND FUTURE DIRECTIONS

6.1 Conclusions

This thesis has investigated research issues regarding the fusion of PDES and

master/worker systems across metacomputing environments. Master/worker

infrastructures offer many inherent advantages such as system-level support for fault

tolerance, semi-automated load balancing with true fine-grained client control,

heterogeneous machine architecture and operating system support, and the ability to

capture idle-cycles across a wide variety of resources that would otherwise be wasted.

However, these benefits are not free. The cost is heavy impacts on overall system

performance due to data transmission of state vectors and messages between workers and

the master service on every work unit lease. These and other issues must be addressed to

effectively bring a wide range of PDES codes into a true volatile metacomputing

environment across a master/worker system. The primary contribution of this thesis is to

explore these issues. Research contributions of this thesis are summarized as follows.

We have shown the viability of a widely portable approach to master/worker

PDES through the use of web services. Such an approach gives maximum flexibility

with regard to programming language agnostic implementations and true machine

portability through web services standards such as XML, WSDL, and SOAP. We

showed that certain PDES applications can perform well under this approach. However,

we observed that large-scale PDES codes that contained large amounts of state vectors

and messages performed poorly, exacerbated by the additional overheads introduced by

209

requirements imposed from web services such as XML encoding of all transmitted data.

PDES applications that exhibit behavior such as large message sizes and traffic are not

conducive to of the types of programs for which web services are targeted. Consequently,

observation of performance data and consideration of limitations and issues surrounding

master/worker PDES such as state and message serialization lead to a concurrent and

distributed approach to master/worker PDES. Distribution of the master server into

functionally different services combined with a slightly less portable communications

framework using sockets and efficient binary message formats lead to a scalable

architecture allowing dynamic back-end system scaling and support for large-scale PDES

codes. We showed that by reducing the serializing effects (e.g., sequential operations

such as import and export of data) of a strict master/worker system leads to significant

reduction of overheads.

While the aforementioned optimizations provided significant performance and

scalability gains with regard to the master/worker system architecture, true overhead

reduction by way of reducing intrinsic overheads was addressed through optimization

techniques to allow master/worker PDES codes to behave like traditional PDES

applications. We showed through the use of work unit caching, pipelined state updates,

pro-active message updating, and work unit scheduling policies exploiting PDES

properties that the performance gap between master/worker and traditional systems can

be closed significantly. Although it is understood that master/worker systems most likely

will not reach the same performance potential offered by conventional systems, the

robust execution abilities of a master/worker system offset and exceed what is offered

through typical monolithic PDES frameworks.

210

This thesis addressed an important issue regarding what PDES applications are

most suitable to this master/worker style of computation. We have characterized PDES

codes based on their properties such as lookahead, granularity, computation to

communication ratio, and size of exported data such state vectors and aggregate message

sizes. These statements were verified through performance data showing that

computationally intense PDES applications tend to perform best under master/worker

with high efficiency ratings. Moreover, we introduce metrics more suitable for

measuring performance of master/worker PDES such as overhead component breakdown

and application processor time, that are more appropriate in the context of computational

throughput rather than pure speedup that is traditionally used.

Finally, this thesis presents an approach to optimism on master/worker PDES. A

case is made for new techniques that are developed to specifically address the unique

challenges that are presented because of a master/worker system. Novel mechanisms

such as hard and soft rollbacks, delivery receipts, and bulk unique cancellation combined

with optimizations to existing techniques tailored for master/worker time window based

execution such as adaptive state saving and adaptive time windows have addressed many

of the research issues facing optimistic execution across master/worker PDES.

6.2 Future Directions

The fusion of an unconventional execution platform with PDES that has a rich

history of research presents an extensive amount of additional opportunities for

expanding what has been explored through the work presented in this thesis. The

following are possible future directions with regard to master/worker PDES:

211

• Adaptive work unit morphing. A large factor impacting the performance of

master/worker PDES systems is the granularity of the work unit. A work unit that

is too small may not contain enough computation to merit the amount of metadata

and state vector overhead that must be shipped back and forth between the server

and client. A work unit that is too large may spend an excessive amount of time

in transfer if the bandwidth is insufficient or may suffer from slow simulation

progression if clients in the worker pool have insufficient memory to support the

work unit size. Instead of placing the burden on the simulation modeler and

developer, only the smallest work unit should be specified that can be equivalent

to traditional logical processes in parallel simulations. The system will then,

dynamically at run-time, perform “teaming” operations where work units are

dynamically combined on the fly and shipped in the system as “super work units.”

This provides several benefits outside of reducing modeler complexity including:

reduced communication overheads, direct work unit to work unit message sends

within a super work unit, and automatic granularity tuning in response to the

amount of bandwidth and processing power available in the system. Moreover,

algorithms must be designed to evaluate decision points on when to break these

“super work units” back into smaller pieces under situations such as network

congestion or a change occurs to the composition of the worker pool.

• Bandwidth congestion monitoring and network policy. Issues dealing with

bandwidth congestion and an enforceable network policy have not fully been

explored. This can provide large benefits to adaptive protocols such as state and

message updates. Sending additional data over the network when a link is already

212

congested may have overall negative impact on performance, increasing deferred

wait and overhead times of other workers.

• In-depth failure analysis and recovery protocol optimizations. Additional

studies where clients and back-end services are forcefully removed from a

running simulation would provide more quantitative data on the performance of a

master/worker PDES system under failure scenarios. Observed data and results

from these tests can drive enhanced protocol design or new algorithms for

minimizing performance degradation under these circumstances.

• Integrated simulations with High Level Architecture (HLA) and the Test and

Training Enabling Architecture (TENA). Aurora provides an environment for

simultaneous mixed-mode execution of parallel simulations, but currently there

are no facilities for integrated inter-simulator communication. A master/worker

paradigm can provide a tremendous amount of computational power and large-

scale simulations spanning multiple functionally different applications can reap

large gains from increased model fidelity or speedup. There are many issues that

must be addressed such as distributed time management, inter-simulator

messaging, and secure application insulation. Providing HLA or TENA support

can increase the relevance of these master/worker simulation systems through

enhancing compatibility of the Aurora system with a large existing simulation

software base. There is an area of rich research where additional issues must be

addressed such as integration of HLA time management and the absence of

TENA time management along with object attribute propagation and publish-

subscribe semantics.

213

• Optimistic synchronization enhancements. Optimistic master/worker

simulations can be further enhanced by allowing multiple leases of each work unit

with varying end times if the worker pool is sufficiently large. This allows

“tiered” speculative execution where the best lease with the least amount of

incorrect computation is committed. Additionally, an early rollback notification

system can be implemented where message generation on a client notifies the

proxy and can potentially stop incorrect computations thus reducing the

problematic delay in messages inherent to master/worker. An adaptive

finalization mechanism can be used to expand or prune-back the simulation

execution window based on new information received after the lease was given to

the client to reduce potential rollbacks or increase optimism over the original

lease.

• Improvement to eviction and replacement policies used in caching. An

eviction and replacement policy that includes active feedback from the master

service can potentially increase cache hit ratio by targeting specific cache blocks

that are known to have no effect on the system in the future, rather than using

completely probabilistic eviction strategies.

• Back-end load balancing. Initial work unit distribution can be enhanced by

measuring activity of each storage service in addition to memory load. This can

help network congestion and services which are experiencing high processor load.

Additionally, new protocols can be devised to perform dynamic runtime load

balancing where state vectors and messages are migrated from high-load to low-

load servers as simulations are running.

214

REFERENCES

[1] R. M. Fujimoto, Parallel and Distribution Simulation Systems. New York: John

Wiley & Sons, Inc., 1999.

[2] A. Park, K. Perumalla, V. Protopopescu, M. Shankar, F. De-Nap, and B. Gorman,

"On Evaluation Needs of Real-Life Sensor Network Deployments," in

Proceedings of the 2nd European Modeling and Simulation Symposium,

Barcelona, Spain, 2006.

[3] R. M. Fujimoto, K. Perumalla, A. Park, H. Wu, M. H. Ammar, and G. F. Riley,

"Large-scale network simulation: how big? how fast?," in Modeling, Analysis and

Simulation of Computer Telecommunications Systems, 2003. MASCOTS 2003.

11th IEEE/ACM International Symposium on, 2003, pp. 116-123.

[4] D. M. Nicol, "The cost of conservative synchronization in parallel discrete event

simulations," J. ACM, vol. 40, pp. 304-333, 1993.

[5] J. S. Steinman, "SPEEDES: A multiple-synchronization environment for parallel

discrete-event simulation," International Journal in Computer Simulation, vol. 2,

pp. 251-286, 1992.

[6] K. M. Chandy and J. Misra, "Distributed Simulation: A Case Study in Design and

Verification of Distributed Programs," Software Engineering, IEEE Transactions

on, vol. SE-5, pp. 440-452, 1979.

[7] R. E. Bryant, "Simulation of Packet Communication Architecture Computer

Systems," Massachusetts Institute of Technology1977.

[8] K. M. Chandy and J. Misra, "Asynchronous distributed simulation via a sequence

of parallel computations," Commun. ACM, vol. 24, pp. 198-206, 1981.

[9] E. W. Dijkstra and C. S. Scholten, "Termination Detection for Diffusing

Computations," Information Processing Letters, vol. 11, pp. 1-4, 1980.

215

[10] D. M. Nicol, "Non-commital barrier synchronization," Parallel Computing, p.

549, 1995.

[11] R. Ayani, "A Parallel Simulation Scheme Based on the Distance Between

Objects," in Proceedings of the SCS Multiconference on Distributed Simulation,

1989, pp. 113-118.

[12] B. D. Lubachevsky, "Efficient distributed event-driven simulations of multiple-

loop networks," Communicatons of the ACM, vol. 32, pp. 111-123, 1989.

[13] D. R. Jefferson, "Virtual Time," ACM Trans. Program. Lang. Syst., vol. 7, pp.

404-425, 1985.

[14] B. Samadi, "Distributed simulation, algorithms and performance analysis (load

balancing, distributed processing)," University of California, Los Angeles, 1985,

p. 240.

[15] F. Mattern, "Efficient algorithms for distributed snapshots and global virtual time

approximation," J. Parallel Distrib. Comput., vol. 18, pp. 423-434, 1993.

[16] Y.-B. Lin, B. R. Preiss, W. M. Loucks, and E. D. Lazowska, "Selecting the

checkpoint interval in time warp simulation," SIGSIM Simulation Digest, vol. 23,

pp. 3-10, 1993.

[17] R. Rönngren, M. Liljenstam, R. Ayani, and J. Montagnat, "Transparent

incremental state saving in time warp parallel discrete event simulation," SIGSIM

Simulation Digest, vol. 26, pp. 70-77, 1996.

[18] D. West and K. Panesar, "Automatic incremental state saving," SIGSIM

Simulation Digest, vol. 26, pp. 78-85, 1996.

[19] J. S. Steinman, "Incremental state saving in SPEEDES using C++," in

Proceedings of the 25th conference on Winter simulation Los Angeles, California,

United States: ACM, 1993.

[20] L. M. Sokol, D. P. Briscoe, and A. P. Wieland, "MTW: A strategy for scheduling

discrete simulation events for concurrent simulation," in Society for Computer

Simulation, 1988, pp. 34-42.

216

[21] P. M. Dickens and P. F. Reynolds, "SRADS with local rollback," in In

Proceedings of the SCS Multiconference on Distributed Simulation, 1990, pp.

161--164.

[22] J. S. Steinman, "Breathing Time Warp," SIGSIM Simulation Digest, vol. 23, pp.

109-118, 1993.

[23] R. M. Fujimoto, "Time warp on a shared memory multiprocessor," Transactions

of the Society for Computer Simulation International, vol. 6, pp. 211-239, 1989.

[24] S. Das, R. Fujimoto, K. Panesar, D. Allison, and M. Hybinette, "GTW: a time

warp system for shared memory multiprocessors," in Proceedings of the 26th

conference on Winter simulation Orlando, Florida, United States: Society for

Computer Simulation International, 1994.

[25] B. R. Preiss and W. M. Loucks, "Memory management techniques for Time Warp

on a distributed memory machine," SIGSIM Simulation Digest, vol. 25, pp. 30-39,

1995.

[26] D. Jefferson, "Virtual time II: storage management in conservative and optimistic

systems," in Proceedings of the ninth annual ACM symposium on Principles of

distributed computing Quebec City, Quebec, Canada: ACM, 1990.

[27] S. R. Das and R. M. Fujimoto, "Adaptive memory management and optimism

control in time warp," ACM Transactions on Modeling and Computer Simulation,

vol. 7, pp. 239-271, 1997.

[28] Y.-B. Lin and B. R. Preiss, "Optimal memory management for time warp parallel

simulation," ACM Transactions on Modeling and Computer Simulation, vol. 1, pp.

283-307, 1991.

[29] K. S. Panesar and R. M. Fujimoto, "Adaptive flow control in time warp," SIGSIM

Simulation Digest, vol. 27, pp. 108-115, 1997.

[30] A. Ferscha, "Probabilistic Adaptive Direct Optimism Control in Time Warp," in

Proceedings of the ninth workshop on Parallel and distributed simulation Lake

Placid, New York, United States: IEEE Computer Society, 1995.

217

[31] C. D. Carothers, K. S. Perumalla, and R. M. Fujimoto, "Efficient optimistic

parallel simulations using reverse computation," ACM Transactions on Modeling

and Computer Simulation, vol. 9, pp. 224-253, 1999.

[32] "OpenMP," http://openmp.org/.

[33] "Optimize Managed Code For Multi-Core Machines,"

http://msdn.microsoft.com/en-us/magazine/cc163340.aspx.

[34] "MATLAB Parallel Computing Toolbox,"

http://www.mathworks.com/products/parallel-computing/.

[35] "The Great Internet Mersenne Prime Search," http://www.mersenne.org/.

[36] "distributed.net: General-Purpose Distributed Computing," http://distributed.net/.

[37] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer,

"SETI@home: an experiment in public-resource computing," Commun. ACM, vol.

45, pp. 56-61, 2002.

[38] M. R. Shirts and V. S. Pande, "Screen Savers of the World, Unite!," Science, vol.

290, pp. 1903-1904, 2000.

[39] "Folding@home for Playstation 3," http://www.scei.co.jp/folding/en/.

[40] "World Community Grid," http://www.worldcommunitygrid.org/.

[41] "ClimatePrediction.net: Experiments in Climate Forecasting,"

http://climateprediction.net.

[42] K. Davis, A. Hoisie, G. Johnson, D. J. Kerbyson, M. Lang, S. Pakin, and F.

Petrini, "A Performance and Scalability Analysis of the BlueGene/L

Architecture," in Proceedings of the 2004 ACM/IEEE conference on

Supercomputing: IEEE Computer Society, 2004.

[43] K. S. Perumalla, "Scaling time warp-based discrete event execution to 10
4

processors on a Blue Gene supercomputer," in Proceedings of the 4th

international conference on Computing frontiers Ischia, Italy: ACM, 2007.

218

[44] D. Luebke, M. Harris, J. Krüger, T. Purcell, N. Govindaraju, I. Buck, C. Woolley,

and A. Lefohn, "GPGPU: general purpose computation on graphics hardware," in

ACM SIGGRAPH 2004 Course Notes Los Angeles, CA: ACM, 2004.

[45] E. Elsen, M. Houston, V. Vishal, E. Darve, P. Hanrahan, and V. Pande, "N-Body

simulation on GPUs," in Proceedings of the 2006 ACM/IEEE conference on

Supercomputing Tampa, Florida: ACM, 2006.

[46] K. S. Perumalla, "Discrete-event Execution Alternatives on General Purpose

Graphical Processing Units (GPGPUs)," in Proceedings of the 20th Workshop on

Principles of Advanced and Distributed Simulation: IEEE Computer Society,

2006.

[47] I. Foster, C. Kesselman, and S. Tuecke, "The Anatomy of the Grid: Enabling

Scalable Virtual Organizations," International Journal of High Performance

Computing Applications, vol. 15, pp. 200-222, 2001.

[48] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke, "Condor-G: A

Computation Management Agent for Multi-Institutional Grids," Cluster

Computing, vol. 5, pp. 237-246, 2002.

[49] I. Foster, "Globus Toolkit Version 4: Software for Service-Oriented Systems," in

IFIP International Conference on Network and Parallel Computing, 2005, pp. 2-

13.

[50] J. B. Fitzgibbons, R. M. Fujimoto, D. Fellig, S. D. Kleban, and A. J. Scholand,

"IDSim: an extensible framework for Interoperable Distributed Simulation," in

Proceedings of the IEEE International Conference on Web Services, San Diego,

CA, 2004, pp. 532-539.

[51] K. Pan, S. J. Turner, C. Wentong, and L. Zengxiang, "A Service Oriented HLA

RTI on the Grid," in Web Services, 2007. ICWS 2007. IEEE International

Conference on, 2007, pp. 984-992.

[52] Y. Xie, Y. M. Teo, W. Cai, and S. J. Turner, "Servicing Provisioning for HLA-

Based Distributed Simulation on the Grid," in Proceedings of the 19th Workshop

on Principles of Advanced and Distributed Simulation Monterey, CA: IEEE

Computer Society, 2005.

219

[53] W. Cai, S. J. Turner, and H. Zhao, "A load management system for running HLA-

based distributed simulations over the grid," in Proceedings of the Sixth IEEE

International Workshop on Distributed Simulation and Real-Time Applications,

Fort Worth, TX, 2002, pp. 7-14.

[54] S. W. Reichenthal, "Re-introducing web-based simulation," in Proceedings of the

34th conference on Winter simulation: exploring new frontiers San Diego,

California: Winter Simulation Conference, 2002.

[55] Y. Huang, X. Xiang, and G. Madey, "A Self Manageable Infrastructure for

Supporting Web-based Simulations," in Proceedings of the 37th annual

symposium on Simulation Arlington, VA: IEEE Computer Society, 2004.

[56] J. M. Pullen, R. Brunton, D. Brutzman, D. Drake, M. Hieb, K. L. Morse, and A.

Tolk, "Using Web services to integrate heterogeneous simulations in a grid

environment," Future Gener. Comput. Syst., vol. 21, pp. 97-106, 2005.

[57] A. Cholkar and P. Koopman, "A widely deployable Web-based network

simulation framework using CORBA IDL-based APIs," in Proceedings of the

31st conference on Winter simulation: Simulation---a bridge to the future -

Volume 2 Phoenix, Arizona, United States: ACM Press, 1999.

[58] A. D’Ambrogio and D. Gianni, "Using CORBA to Enhance HLA Interoperability

in Distributed and Web-Based Simulation," in Computer and Information

Sciences, 2004, pp. 696-705.

[59] K. A. Iskra, G. D. V. Albada, and P. M. A. Sloot, "Toward Grid-Aware Time

Warp," Simulation, vol. 81, pp. 293-306, 2005.

[60] Z. Balaton, G. Gombas, P. Kacsuk, A. Kornafeld, J. Kovacs, A. C. Marosi, G.

Vida, N. Podhorszki, and T. Kiss, "SZTAKI Desktop Grid: a Modular and

Scalable Way of Building Large Computing Grids," in Parallel and Distributed

Processing Symposium, 2007. IPDPS 2007. IEEE International, 2007, pp. 1-8.

[61] D. P. Anderson, "BOINC: a system for public-resource computing and storage,"

in Proceedings of the Fifth IEEE/ACM International Workshop on Grid

Computing, Pittsburgh, PA, 2004, pp. 4-10.

[62] G. Fedak, C. Germain, V. Neri, and F. Cappello, "XtremWeb: a generic global

computing system," in Proceedings of the first IEEE/ACM International

220

Symposium on Cluster Computing and the Grid, Brisbane, Qld., 2001, pp. 582-

587.

[63] T. M. Ong, T. M. Lim, B. S. Lee, and C. K. Yeo, "Unicorn: voluntary computing

over Internet," SIGOPS Oper. Syst. Rev., vol. 36, pp. 36-51, 2002.

[64] A. Goldchleger, F. Kon, A. Goldman, M. Finger, and G. C. Bezerra, "InteGrade:

object-oriented Grid middleware leveraging the idle computing power of desktop

machines," Concurr. Comput. : Pract. Exper., vol. 16, pp. 449-459, 2004.

[65] V. K. Naik, S. Sivasubramanian, D. Bantz, and S. Krishnan, "Harmony: a desktop

grid for delivering enterprise computations," 2003, pp. 25-33.

[66] A. Tsaregorodtsev, V. Garonne, and I. Stokes-Rees, "DIRAC: a scalable

lightweight architecture for high throughput computing," in Proceedings of the

Fifth IEEE/ACM International Workshop on Grid Computing, 2004, pp. 19-25.

[67] D. Kramer and M. MacInnis, "Utilization of a Local Grid of Mac OS X-Based

Computers using Xgrid," in Proceedings of the 13th IEEE International

Symposium on High Performance Distributed Computing: IEEE Computer

Society, 2004.

[68] D. P. Anderson and G. Fedak, "The Computational and Storage Potential of

Volunteer Computing," in Cluster Computing and the Grid (CCGrid), Singapore,

2006, pp. 73-80.

[69] "BOINC: Berkeley Open Infrastructure for Network Computing,"

http://boinc.berkeley.edu/.

[70] "Folding@home," http://folding.stanford.edu/.

[71] A. Acharya, G. Edjlali, and J. Saltz, "The utility of exploiting idle workstations

for parallel computation," ACM SIGMETRICS Performance Evaluation Review,

vol. 25, pp. 225-234, 1997.

[72] D. Kondo, M. Taufer, C. L. Brooks, H. Casanova, and A. A. Chien,

"Characterizing and evaluating desktop grids: an empirical study," in Proceedings

of the 18th International Parallel and Distributed Processing Symposium, Santa

Fe, New Mexico, 2004, p. 26.

221

[73] V. S. Sunderam, "PVM: a framework for parallel distributed computing,"

Concurrency: Pract. Exper., vol. 2, pp. 315-339, 1990.

[74] M. J. Litzkow, M. Livny, and M. W. Mutka, "Condor - A hunter of idle

workstations," in Proceedings of the 8th International Conference on Distributed

Computing Systems, San Jose, CA, 1988, pp. 104-111.

[75] A. Chien, B. Calder, S. Elbert, and K. Bhatia, "Entropia: architecture and

performance of an enterprise desktop grid system," Journal of Parallel and

Distributed Computing, vol. 63, pp. 597-610, 2003.

[76] J.-P. Goux, J. Linderoth, and M. Yoder, "Metacomputing and the Master-Worker

Paradigm," Mathematics and Computer Science Division, Argonne National

Laboratory ANL/MCS-P792-0200, February 2000.

[77] Y.-B. Lin, "Parallel independent replicated simulation on a network of

workstations," in Proceedings of the eighth workshop on Parallel and distributed

simulation Edinburgh, Scotland, United Kingdom: ACM Press, 1994.

[78] D. Kondo, A. A. Chien, and H. Casanova, "Resource Management for Rapid

Application Turnaround on Enterprise Desktop Grids," in Proceedings of the

2004 ACM/IEEE conference on Supercomputing: IEEE Computer Society, 2004.

[79] L. F. Wilson and D. M. Nicol, "Experiments in automated load balancing,"

SIGSIM Simulation Digest, vol. 26, pp. 4-11, 1996.

[80] E. Deelman and B. K. Szymanski, "Dynamic load balancing in parallel discrete

event simulation for spatially explicit problems," SIGSIM Simulation Digest, vol.

28, pp. 46-53, 1998.

[81] A. Boukerche and S. K. Das, "Dynamic load balancing strategies for conservative

parallel simulations," SIGSIM Simulation Digest, vol. 27, pp. 20-28, 1997.

[82] P. Peschlow, T. Honecker, and P. Martini, "A Flexible Dynamic Partitioning

Algorithm for Optimistic Distributed Simulation," in Proceedings of the 21st

International Workshop on Principles of Advanced and Distributed Simulation:

IEEE Computer Society, 2007.

222

[83] B. N. Bershad, T. E. Anderson, E. D. Lazowska, and H. M. Levy, "Lightweight

remote procedure call," ACM Transactions on Computer Systems, vol. 8, pp. 37-

55, 1990.

[84] S. Chandrasekaran, G. Silver, J. A. Miller, J. Cardoso, and A. P. Sheth, "Web

service technologies and their synergy with simulation," in Proceedings of the

34th conference on Winter simulation: exploring new frontiers San Diego,

California: Winter Simulation Conference, 2002.

[85] A. Park and R. M. Fujimoto, "Aurora: An Approach to High Throughput Parallel

Simulation," in Proceedings of the 20th Workshop on Principles of Advanced and

Distributed Simulation: IEEE Computer Society, 2006.

[86] K. Chiu, M. Govindaraju, and R. Bramley, "Investigating the Limits of SOAP

Performance for Scientific Computing," in Proceedings of the 11 th IEEE

International Symposium on High Performance Distributed Computing: IEEE

Computer Society, 2002.

[87] R. A. van Engelen and K. A. Gallivan, "The gSOAP toolkit for Web services and

peer-to-peer computing networks," in Proceedings of the 2nd IEEE/ACM

International Symposium on Cluster Computing and the Grid, Berlin, Germany,

2002, pp. 117-124.

[88] R. A. van Engelen, "Pushing the SOAP Envelope with Web Services for

Scientific Computing," in Proceedings of the International Conference on Web

Services, Las Vegas, Nevada, 2003.

[89] M. Govindaraju, A. Slominski, K. Chiu, P. Liu, R. van Engelen, and M. J. Lewis,

"Toward characterizing the performance of SOAP toolkits," in Proceedings of the

fifth IEEE/ACM International Workshop on Grid Computing, Pittsburgh, PA,

2004, pp. 365-372.

[90] R. M. Fujimoto, "Performance of Time Warp under synthetic workloads," in

Proceedings of the SCS Multiconference on Distributed Simulation, 1990, pp. 23-

28.

[91] K. Perumalla, R. Fujimoto, and H. Karimabadi, "Scalable Simulation of

Electromagnetic Hybrid Codes," in International Conference on Computational

Science, University of Reading, UK, 2006, p. 8.

223

[92] "Portable Components (POCO) for C++," http://pocoproject.org/poco/info/.

[93] M. Makoto and N. Takuji, "Mersenne twister: a 623-dimensionally

equidistributed uniform pseudo-random number generator," ACM Trans. Model.

Comput. Simul., vol. 8, pp. 3-30, 1998.

[94] K. S. Perumalla, "µsik: A Micro-Kernel for Parallel/Distributed Simulation

Systems," in Proceedings of the 19th Workshop on Principles of Advanced and

Distributed Simulation: IEEE Computer Society, 2005.

[95] K. S. Perumalla, A. Park, R. M. Fujimoto, and G. F. Riley, "Scalable RTI-Based

Parallel Simulation of Networks," in Proceedings of the seventeenth workshop on

Parallel and distributed simulation: IEEE Computer Society, 2003.

[96] A. Park and R. Fujimoto, "Optimistic Parallel Simulation over Public Resource-

Computing Infrastructures and Desktop Grids," in 12th IEEE International

Symposium on Distributed Simulation and Real Time Applications, Vancouver,

BC, Canada, 2008.

[97] L. M. Sokol and B. K. Stucky, "MTW: Experimental Results for a Constrained

Optimistic Scheduling Paradigm," in Proceedings of the SCS Multiconference on

Distributed Simulation. vol. 22, 1990, pp. 169-173.

[98] V. Jha and R. Bagrodia, "Simultaneous events and lookahead in simulation

protocols," ACM Transactions on Modeling and Computer Simulation, vol. 10, pp.

241-267, 2000.

[99] M. Jeschke, A. Park, R. Ewald, R. Fujimoto, and A. M. Uhrmacher, "Parallel and

Distributed Spatial Simulation of Chemical Reactions," in Proceedings of the

22nd Workshop on Principles of Advanced and Distributed Simulation Rome,

Italy: IEEE Computer Society, 2008.

