A Distributed Analysis and
Monitoring Framework for the
Compact Muon Solenoid Experiment

and a Pedestrian Simulation

A thesis submitted for the degree of Doctor of Philosophy

by
Edward Karavakis

School of Engineering and Design
Brunel University
January 2010

Abstract

The design of a parallel and distributed computing system is a very complicated task. It
requires a detailed understanding of the design issues and of the theoretical and practical
aspects of their solutions. Firstly, this thesis discusses in detail the major concepts and
components required to make parallel and distributed computing a reality. A multi-
threaded and distributed framework capable of analysing the simulation data produced by
a pedestrian simulation software was developed. Secondly, this thesis discusses the origins
and fundamentals of Grid computing and the motivations for its use in High Energy
Physics. Access to the data produced by the Large Hadron Collider (LHC) has to be
provided for more than five thousand scientists all over the world. Users who run analysis
jobs on the Grid do not necessarily have expertise in Grid computing. Simple, user-
friendly and reliable monitoring of the analysis jobs is one of the key components of the
operations of the distributed analysis; reliable monitoring is one of the crucial components
of the Worldwide LHC Computing Grid for providing the functionality and performance
that is required by the LHC experiments. The CMS Dashboard Task Monitoring and the
CMS Dashboard Job Summary monitoring applications were developed to serve the needs

of the CMS community.

ii

Contents
1. INErOdUCHION...cuueiiueeieieitieieecnensnecsseessneessnesssesssnssssnsssnssssesssnssssesssassssasssnessssssassssssassssssans 1
1.1 Birth of COMPULING.....ccueiiiiieiiiiiiieiiieeie ettt et eeeteeeaeebeessaeebeessaeeseessseaeenns 2
1.2 Distributed and High Performance Computing...........cccceeevveeeriieenieeeiieeeeeeiiieeeennn 5
L3 INEETIIEL. ...ttt et et ettt e et e et eeaba e e s abeeeeabbeeeeeeeaa 6
1.3.1 WOrld Wide WED.......ooiiiiiiiiiiiiieeeeeeee et 7
1.3.2 WED SEIVICES. ...eeuiiiieiieiieciieieee ettt sttt sttt sttt et saee e e e neeas 8
1.4 THE GIT. ettt et ettt et e st e bt e sabeebeesbbeeeeans 9
1.5 @-SCICIICE. ..ttt ettt ettt et ettt e et e e bt e e ab e e bt e eabe e bt e enbeenbeeeabeeeennees 10
1.6 Computing for the LHC: The Worldwide LHC Computing Grid.........c.cccccevvuennneene. 11
L7 SUIMNIMATY ...ceiiiieiiiie ettt ettt e et e et e e et e e esbeeessaeesssaeeasseeeanseesnnseesnnnsneees 15
2. Parallel and Distributed COMPULING........ceiierivrnricrssrniecssssarecsssssssessssssssssssssssssssssssssses 17
2.1 INEEOAUCHION. ¢ttt ettt ettt et e et e bt e s e e e et e ebeeenseenees 17
2.2 TRICAAS. ...ttt ettt sttt ettt ettt et e et et e 18
2.3 FIynn's TaXONOMIY........ceeeiuieeriiieeeiieeeiieeeieeeeieeeeiteeeseteeesereeeeaeesaaeessneesnsaeesnneesannnns 20
2.4 Characteristics of a Parallel System...........ccccveieiiiiieiiiiniieciee e 22
241 COUPIING...iiiiiiieeieettee ettt ettt ettt et saee e 22
2.4.2 ParalleliSIM.....cc.eevuiiiiiieiiieieeieei ettt 22
2.4.3 CONCUITEIICY ...eeeeuvreeeuireeeiieeesteeestteeeseteeaeaeeassaeeasseeessseeansseessseessseessseesssssssneeesenn 23
2.4.4 GTanUIATILY......eeeeiiieeeiie ettt et e et e e eeestbeeeaaeeesaeeeeeeesssaneaaeeas 23
2.5 Performance Analysis of Parallel Programming............ccocceeieiiiiniiniienieniceeee, 24
2.6 Message Passing COmMMUNICATION.ccueeeuieruieeieeriieeiieriieeieesieeeieeeesinreeeenereeeeneneas 25
2.6.1 Message-Passing Systems versus Shared Memory Systems..............ccccuveeeee.. 26
2.6.2 Primitives for Distributed Communication...........cocueevueerieeneeniieeneenieesee e 26
2.6.3 Buffered versus Unbuffered Message Passing Primitives..........cccccceevueeennneenee. 29
2.6.4 The Message Passing Interface (MPI)........ccccocieiiiiiiiiiiiiiieeeeeee e, 30
2.6.5 MPIL and OPenMP...........cccuiiiiiiiieiieeieeiteee ettt et e e s 32
2.7 Parallel Programming CONSIIUCES.......c.ueervieeriieeiiieeriieeeeeeeveeeeeeeeeeeseeeeeeeeenenees 33
2.7.1 SYNCRIONISATION. c..cutiiiiiieiieiteett ettt sttt ettt st 33

2.7 2 CIIEICAL SECTIONS. ¢ eaeeeaaeseeeennaeeeas 33

2.7.3 SEMAPNOTES.....cuuvieeiiieciiieeiie et eeee et et eeseaeeeeaeeetaeesaeeessbaeessseeeeeesnnnseaaeens 34
2.7 4 LLOCKS. ettt et ettt et ettt e et e sate e e naeeas 34
2.7.5 BAITICT.c..eeutieieeitete ettt ettt ettt ettt ettt et et e st e eareeaa 35
2.8 Common Parallel Programming Problems............cccccceevviieiiiniiiiniiniieiee e 35
2.8.1 Number of Threads.c.coiiiiiiiiiiiiiee e 35
2.8.2 Parallel SIoOWAOWN......c..oiiiiiiieiiieiiee e 36
2.8.3 RACE CONAIIONS.euieiiiiiiriiiiieteeiterte ettt ettt st 36
2.8.4 DEAAIOCK. ...ttt et 36
N0 101 0 | o P SPPRRR 37
3. Grid COMPULING....eceiseessenssenssnnssrecssensssesssassssesssnssssssssassssssssssssassssassssssassssssassssssassssssnns 38
3.1 INEOAUCTION. ...ttt sttt ettt ettt et be e 38
3.2 ATCRITECTUTE. ...ttt et s 40
3201 FADIIC. ittt et ettt e e eee e 40
3.2.2 CONNECTIVILY.cuteruririteiieiieeit ettt ettt ettt ettt ettt ettt saee e satee e 41
3.2.3 RESOUICE.....ueiiiiiiiieiie ettt ettt et et ettt be e sareebeeeeas 41
3.2.4 COlLECTIVE. ...ttt ettt et sttt et et bee e eeenee 42

R I TN o) o) HTo7: 15 [0) s TSP UUPPUSRR 42
3.3 0pen Standards........coceeeueeiiiriinieee e 42
B3 L OGS A ettt sttt e 43
3.3, 2 WSRE ettt ettt et 43
3.4 Grid MIddIEWATre.........couiiiiiiiiiiee ettt s 44
3.4.1 GlODUS TOOIKIL.....eetieiiieiieie ettt et 44
34,2 COMNAOT ...ttt sttt ettt et sttt ettt s 48
B3 LICG ettt ettt ettt et 50
R d 5 1 USROS PSR 53
3.5 The CMS Computing MoOdel.........ccceevuiriiniiniiiiiiieieetee et 54
3.5.1 Data Management SYSteIM.........coouiririieriiieiiiieiieeeieee et e e e e e s eieeeeeeeeas 54
3.5.2 Workload Management SYSteM..........cccuevuririeeieeniieeieeieesieeeireeeeereeeeseraeeens 56
3.6 Monitoring with the Experiment Dashboard.............ccccccoeeiiiiiiiiiniiiieeeeeee, 58
3.6.1 Experiment Dashboard Framework..............ccocooeviiiiiiiniiiiiiiiccee e 60

3.6.2 Job Processing and the Experiment Dashboard Applications for Monitoring. .62
3.6.3 Experiment Dashboard Generic Job Monitoring Application.............c..cc.c....... 63
3.7 SUIMIMATYtiieiiiiieeeeitteeeetteeeeetteeeseatteeeesatbeeeesasssaeesasseeessassseeeesssseeesnnsseeesannnnnssnes 67

4. Multi-Threaded and Distributed Framework for Pedestrian Simulation 69
4.1 INEEOAUCTION. ...ttt ettt ettt et e st e e btesate e beeenseeseeenbeenaeans 70
4.2 Le@ION ANALYSEI......ieiiiiiieeiieeiieeieeite ettt ettt e et eesttesbe e bt e esbeessaeenbeeseeenbeensseeeenn 74

4.2.1 Maps and Value Ranges..........cccccueeviiiiiiiiiieiieeieecee et 75
4.2.2 Standard Maps.......c.eeeeuieeeiiie e ettt ettt e e e e et a e e e e e nnaaaeas 76
4.3 Multi-Threaded Legion ANalySer.........c.coviiiiieiiiiiiieiieeieeee et 78
T BN B B 1S3 4 FO O R PP RRUPPPR 79
4.3.2 IMPLemMENtAtION.ccotiiriiieiieiieeieeeie ettt et e tee e e esteeebeeteeenbeeeennaeeeensseeesnnnes 82
4.3.3 PerfOrmancCe........cc.ueeiuiiiiiiiiee ettt 87
4.4 Distributed Legion ANALYSET........c.ccoiiiiiiriiiiiieiie ettt et seeee e 90
4.4.1 Design and Implementation...........c.ceeeueeriieniienieeniieeie e e 90
4.4.2 PerfOrmancCe.cc.eoiuieiiiiiiienie ettt ettt et 92
L TN 11111 11 F2) oy 2SS 93

5. CMS Dashboard Task MONItOriNgG.......cccceerueersuensuenssnnssaensnessansssncsssesssnsssassssasssssssssaces 95
5.1 INEOAUCTION. ...ttt ettt ettt et e 95
BTN B T 4 FO TSP UPP PP 96

I B0 o) 1< o] 5 P UU PP 96
5.2.2 TUSE CASCS...eeeeuitieiiite ettt ettt ettt et et e et e et e et e s bt e st e e ettt e e e e e eaaa 97
5.2.3 REQUITCIMENLS.eeuviieiiieiieeieentieeieenteeeteesteesteeteessaeesaessseenseessnsseesansseeesnssseenns 97
5.2.4 ATCHITECTUTE. ...ttt ettt et sttt et st e eabeeeaeee 99
I IN §1010) (530 o211 2218 (o) 4 PSR 102
5.3.1 CMS Dashboard Database Schema..........cc.ccceciiriiiiiiniieiiiiieeiee e 104
5.3.2 SQL QUETICS. ...veieeurieeiiiieeeiiee ettt e et e et e e et eeereeeetaeeeeabeeeetseesbseeesseesaeeesarsseeeas 106
5.3.3 Gridsite AUthentiCatiON.eeuerieriieieetieie ettt 106
5.3.4 Advanced Graphical PIOtS..........ccccoeiiiiiiiiiiiiiecieecee e 108
5.3.5 User Interface and Monitoring Features...........cccoceeverienenieniiiinieenieeeeens 108
5.4 Experience of the CMS User Community with Task Monitoring 114
5.5 SUMMATY ...coiuiiiiiiie ettt ettt e st e et e e saaeeetbeeensaeessseesnsaeesnnsnneeeeeans 117

6. CMS Dashboard JOD SUMMATY.....cccovvvriicsissnnicssssnrecssssssnecssssssssssssssssssssssssssssssssssses 118
0.1 INErOAUCTION.eouiiiiiietie ettt sttt ettt e st e bt e et e eeeeenneeeas 118
0.2 DESIZN...c.uviiiieiiieeiie ettt ettt ettt et e st e e bt et e e beesateeab e e st e e beeeateenbeentteeenreeeennes 120

0.2.1 ODJECHIVES....eeiuiieiieeiiietieeie et e ete et e et e vt e steeebeessaeesbeessaeesssseeeennsseeeensseeesnsses 120

0.2.2 TUSE a8, . ettt e e e et e e e e e e e e e 120

6.2.3 REQUITEIMENES.eeeuviieeiiieeieiieeeieeeeitee ettt e eite e et e e steeesbeeesstaeessssssaaeeeeessnnnsneaeens 121

0.2.4 ATCRITECTULE.eetieeiiieiie ettt et e ettt e st e et esaae e st eeeennee 123

0.3 ITMPIEMENTATION. ...c..eieiieiiieiiieeiie ettt ettt et ete et e e e be e et e enbeessaeeennsaeeeneee 123
0.3 1 FAIEETS. .ttt sttt ettt e e ea 124

6.3.2 CMS Dashboard Database Schema..........cccccooieiiiiiiiiiiiiiieic e 126

6.3.3 SQL QUETIES.eeieeeiiieiieeee ettt ettt ettt e st e et e st e e beesaeeenbeeeneees 128

0.3.4 USEr INtETTACE.....c.eiiuiiiiiieiieieecee e 128

6.4 Experience of the CMS User Community with Job Summary.............cccceeruveenne. 136
0.5 SUMIMATYeiiiiiiiiieeeiiiiee et ee e et ee e ettt e e e sabaeeesstteeeeesnsaeeeesssseesesnssneesannsseeeeseesnnnn 137

A O10) 1T L1 (1) 1 OO TR 138
Acronyms 142
Appendix A. Task MoONItOring.......ceieveireiisncsseissnenseesssncsnnssacssecsssecsssssssssssssssesssssenes 146
AT USE C@SES. ettt ettt ettt e s e e st e e st e et e et eeens 146
A.2 Graphtool PatChes........cc.oiiiiiiiiiiiiicie e 152
A3 CIMS SUIVEY.c.ntiiiiiiieieete ittt ettt ettt ettt et sae et st e bt e b e e e 155
A4 USET MaAnUAL...c...oiiiiiiiiiiieee ettt et 161
A.5 Graphical OVErview PlOt..........cooiuiiiiiiieiiecieeceeee e 163
AL SQL QUETICS. ...eeneieeitieiie ettt ettt ettt et et et e et e et eesttesateesaeeeabeesseeenseesaeeenseeas 164
Appendix B. JOD SUMMATY...cciiinniiniiiinisnicssnicsssicsssicssssisssssssssssssssssssssssessssssssssssssnses 169
BT USE CASES....utiiiiiiiieeiieeieeete ettt ettt et st e s 169
B.2 SQL QUETICS.uuviiiieeiiiee ettt et e et e e et e e e e eata e e e e eaaeaeeeeanaeeeeeaeens 175
Appendix C. Legion ANAlYSer.......iieiieensrecsenisncnsenssnecssesssaesssesssssssassssscsssasssssssssssssses 182
C.1 Simulated Models for the Benchmarking of the Multi-threaded Analyser............ 182
C.2 Simulated Model for the Benchmarking of the Distributed Analyser................... 186
C.3 Work Division for Six S1ave NOdEs.......cccceeriiiiiiiieiiienieiiieseeieese e 187
C4 Sender COe......couiiiiieiieeiie ettt ettt ettt ettt e et e e bt e et e e e enneeeeenen 188
C.5 RECRIVET COUE.....ouiiiiiiiiiiiiiteieee ettt sttt et s 189

Bibliography...ueccccicinseicnsseicssnncssnicsssnsssssnssssanssssssssssssssssssssssssssasssssassssssssssssssssssssssnsssss 190

vi

List of Figures

Figure 1.1: Moore's Law: CPU Transistor Counts. From [13]......ccccceeiiieiiiiiiiiieiieeeeees 4
Figure 1.2: Projected Performance Graph. Data from: http://top500.01g........c.cccoervereencnne 6
Figure 1.3: Internet Host Count History. Data from:www.isc.org/solutions/survey/history. 7
Figure 1.4: Web Service Invocation. From [30]........ccoooiiieiiiiiiiiieiieeeeceecee e 8
Figure 1.5: The Large Hadron Collider. From [42]......cccoiiiiiieiiieeieeeeeeeeeeee e 12

Figure 1.6: The Four-Tiered Model as Proposed by the MONARC Project. From [57].. .14

Figure 2.1: A Multi-threaded Process where the client can issue calls to three servers

SIMUIEANEOUSTY..... ettt et e et e et e e ssbeeesnbeeesnseeesssaeeeeeennnnnnes 18
Figure 2.2: State Diagram for a User-level Thread.............cccooovveiiiiiiiiiiiiiiice e, 19
Figure 2.3: Flynn's TaXOnOmY.........cccriiriiiiniiniiiienieeeeeieeeee sttt 21
Figure 2.4: Send Primitives. (a) blocking; (b) non-blocking............ccccceeeviieiiiiieeniinrennnee. 29
Figure 2.5: (a) Unbuftfered and (b) buffered message passing.........ccceeeeveeevereeeeeeiscnnneneennn. 30

Figure 2.6: MPI Cluster. A well designed application can scale almost linearly with the

addition of more nodes allowing increases in accuracy and speed for scientific

applications. FIOm [78].....ccoii ittt ettt et e e e ee e eneaee s 31
Figure 2.7: The OpenMP Language EXtensions.........cccueevueerieiiiiiiieniieenienieeriieeeesiee e 32
Figure 3.1: The layered architecture of the Grid. From [32].....cccceeeviiieiiieeiiieeiieeiieee, 40
Figure 3.2: Globus Toolkit 4 Architecture. From [106]..........ccociiiiiiiieiiiieeiieeeieeeee, 45
Figure 3.3: Remote Execution by Condor-G on Globus resources. From [111]................. 50
Figure 3.4: Components of the R-GMA. From [115]......cccooiiiiiiiiiiiieeee 53
Figure 3.5: The CRAB Workflow Schema. From [59]........cccovviiiiiiiiiiiieiiiee e, 57
Figure 3.6: The Experiment Dashboard Framework Schema...........ccccocovviniinninnnnn 61
Figure 3.7: Publishing information using the MSGi.........cccoceviiiiniininiineneciceeeee, 66

Figure 4.1: a) Build a precise model of the space to be simulated and analysed based on a
set of key inputs, b) run and record step-by-step simulations of pedestrian movement
within the space defined in the Model Builder, c) set up and run a user-defined analysis

based On the SIMULATOT........cooii i, 72

Figure 4.2: Platform DeSI@N.......c..eeiiiiiiiiiieeiie ettt sve et e s e eaareee e e 75
Figure 4.3: Egress and Density Maps.......cccueeierieiiiienieeiiesie ettt et 76
Figure 4.4: Dusseldorf Arena Evacuation Map...........ccceeeieriieiiienieeniienieciieseee e 78
Figure 4.5: The major components of the Legion Analyser and their internal interactions.
... 80
Figure 4.6: The components of the Cell Accumulation & Identification classes and their
INEEINAL TNTETACTIONS. ... eeuteitetiete ettt ettt ettt sttt et et b et e e et e e et e e saeees 81
Figure 4.7: The Statistics and the Entity Map Managers..........cccccveevieeniiieeeeeeniiiieeee e 82
Figure 4.8: The sequence of actions that are performed in an off-line Legion analysis.....84
Figure 4.9: The sequence of actions that are performed in an on-line Legion analysis......85
Figure 4.10: Performance and Memory Benchmark..............c.cccooviiiiiiiiiiniiniieiiiee 89

Figure 4.11: The distributed implementation uses a Master/Slave organisation. Each Slave
node is responsible for calculating an assigned map. The Master node collects the results
and displays the results on the SCTEEN..........cccuiiiiiiiiiiiiieieee e 91
Figure 4.12: Time in seconds to analyse a simulation second. Each Slave node is a
processor. An additional processor is allocated to the Master node............cccceeeveeeureennnee. 93

Figure 5.1: The main use cases that the application is expected to implement in

conjunction with the CMS Dashboard system and with the CMS Physicist actors............ 97
Figure 5.2: Dashboard Framework............cccoocuiiiiiiiiiiiiieniieieee e 99
Figure 5.3: Web Application ATChiteCTUIE.ccuievuiiiiieiieeiieiee et eie e ereeseee e aaaeeens 100
Figure 5.4: The sequence of actions of the Web Application...........cccceeveveeecieeeesnnnnnnn. 100
Figure 5.5: Job Information Gathering..........c.cccoereierieririiinieneiieneeeeeeeceee e 102
Figure 5.6: The major components of the application............ccecceeveeierienciienienciienieeieenn 103

Figure 5.7: The relationship between the Action and the View python classes and their

generated OULPUL fI1ES.....coeuiiiiii e e et rree e e e e e anreaaeees 103
Figure 5.8: Client Request FIOWChart..........cocoiiiiiiiiiiiiiiiceccece e 104
Figure 5.9: The Entity Relationship Diagram...........ccccccoeviiiiiiiniiiiienieeiiee e 105
Figure 5.10: Sequence of Actions for the Authentication Mechanism.............cccceceeennnen.ns 107
Figure 5.11: Sequence of Actions for the Advanced Plot Generation............cccccceeuvnneee.. 108
Figure 5.12: The User INterface.........c.ccocveiieiiiiiniiiiiiiiencecceeeeeseee e 109
Figure 5.13: Detailed Job Information............cccceecueerieeiiienieiiieiecieeee e 110
Figure 5.14: Site Availability for the CIMS SiteS........cceeviieriiriiieiiieiieieeieeeeeee e 111

Figure 5.15: Detailed Resubmission Information............ccceeeeeeeveiieeiieeniieesiie e 111

Figure 5.16: Detailed Reason of Failure...........cccoeeoiiieiiiiiiiiiciecee e 112
Figure 5.17: Graphical Plots: a) Processed Events over Time, b) Terminated Jobs by Site,
c¢) Terminated Jobs over Time, d) Reason of Failure.............ccccoovvieviiiiiiiicciiccece 112
Figure 5.18: Efficiency Distributed by Site.........ccceevieviiieiiiiiieiiecieciecreeeeeee e 113
Figure 5.19: Consumed Time information for a selected task............ccccoevevieiiiiiiiniiennns 113
Figure 5.20: Job-level processing effiCIency.........ccceveereiiiniinieiienieniecesecee e 114
Figure 5.21: A selection of snapshots of the application.............ccceeevevvieniienieeniiireeen. 114
Figure 5.22: Daily Usage StatiStiCS.....ccuirivierieriiieiiieeieeieeeieeiteeseeeieesieeeesereeeeseneeeeeneeas 116
Figure 6.1: The main use cases that the application is expected to implement in
conjunction with the CMS User Community Actors and the Dashboard Actor................ 121
Figure 6.2: The major components of the application............cccccceeveiienieniiienieniiienieeieenn 124
Figure 6.3: Filters Request Flowchart..........ccccoooiiiiiiiiiiiiiccee e 125
Figure 6.4: All the available parameters of the application............ccccceeevvieiiieeecieennnee, 125
Figure 6.5: The Entity Relationship Diagram............ccoccoeviiiiiiiniiniieniiee e 127
Figure 6.6: The upper part of the User Interface...........ccooooveviieiiiniiiinieniieieciiee e 128
Figure 6.7: Exploring further down on the available information..............ccceceeviiennnens 129
Figure 6.8: The lower part of the User Interface...........cccccueeveiienciiiiniiiieie e, 129
Figure 6.9: Success Rate Calculation.............cocevieiiriiiniiniiiiniieccneceeeeeeee e 130
Figure 6.10: Waiting Time Per ACHIVItY........cccierieiiiieniieeiierie et 131
Figure 6.11: Overall Time Per User for the Analysis ACtVItY......c.ccccveeevierieeciienreeriennn. 132
Figure 6.12: Running Time Per Grid for the Analysis ACtiVity.......cccceevvveerieeerieeeeiiieen. 133
Figure 6.13: CPU Time Per Site for the Analysis ACtIVItY........ccceevervuinieneriienienieceieens 133
Figure 6.14: Job Wrapper Time Per Site for the Analysis ACtiVity........ccevoueerieerieernneens 134
Figure 6.15: Processing Efficiency Per Site (in %) for the Analysis Activity................... 135
Figure 6:16: The EXit Code SUMMATY........ccccuieiiiiieriiieeciie ettt e e eeaaeeee s 135

Figure 6.17: Daily Usage StatiStiCS........cotiririirieniiiienieeieeeeeie ettt 136

ix

List of Tables

Table 4.1: Small-sized model. Name: PM Peak. 350 Entities. Simulation time: 3 Hours.. 87
Table 4.2: Small-sized model. Name: UP Demo v3:1. 552 Entities. Simulation time: 1
HOUT ..ttt ettt ettt et e e st e e s eaneee 88
Table 4.3: Medium-sized model. Name: Gatwick Airport Station Re-development. 1200

ENEITIES. SIM TIMIE: 1 HOUL .o ieeeiieeee eanas 88
Table 4.4: Medium-sized model. Name: New WTC Model. 2500 entities. Simulation time:
1 HOUT @1NA 30 VIS, .. e e e e e e e e e e eaeaeeeeennn 88

Table 4.5: Large-sized model. Name: London Olympic Park 2012. 51000 entities.
SImulation timMe: 14 MINS.....cocuiiiiiiiiiiiee ettt st e e e s 88

Table 4.6: Large-sized model. Name: HOS Case3. 52000 entities. Simulation time: 19

Listings

Listing 4.1: The pseudo-code of the multi-threaded Analyser..........cccccoeeevviieeeeenciiniennennn. 83
Listing 4.2: The detection of the total number of processors or of the cores in a machine.86
Listing 4.3: The execution of a thread for every enabled map...........cccccoevverciiinieeninenennnn 86
Listing 4.4: The Initialisation of the MPL.........ccoooiiiiie 92
Listing 5.1: The configuration file for the database connection.............cccceevveeerveeennnnen. 106
Listing 5.2: Fetching the full list of the users on the system............ccoceverviniiiinicinieen, 107
Listing 5.3: Fetching only the USEr's JODS........coteviiiiiriiiiiiecieieeeseeee e 108
Listing 5.4: Retrieving the results in the XML format.........ccocccooiiiiiiiiniiinnie, 109
Listing 5.5: Reformatting the XIML output.........ccceeeiiiiiiiieiiiecieecee e 110
Listing 5.6: Retrieving the jobs of a task in the XML output........c.cceceverviiniininicnieennnn 110
Listing 5.7: Unix bash script to determine the total number of distinct daily users.......... 116
Listing 5.8: Unix Cron job scheduled to update the statistics daily........ccccceeeeenieeennneee. 116
Listing 6.1: Sorting Parameters...........ccveeeuiieiiiieeeiieeeieeeciee et sare e e e e e e eenaeeas 126
Listing 6.2: Retrieving the result in the XML format............ccccoocieniiiiniininiinicncnicnens 130
Listing 6.3: Reformatting the XML OULPUL........coviriiriiriiiiiieiieieeiereeesee e 131
Listing 6.4: Unix bash script to determine the total number of distinct daily users.......... 136

Listing 6.5:

Unix Cron job scheduled to update the statistics daily..........ccceveeeeeeennnnnnn... 137

xi

Acknowledgements

There are many people that contributed the financial, technical and moral support that
made this thesis possible. At Brunel I am grateful for the supervision and guidance that I
received from my supervisor, Prof. Akram Khan. The Engineering and Physical Sciences

Research Council (EPSRC) provided three years of funding for this research.

The majority of the work for this thesis was performed as part of the IT-GS MND group
at CERN. As such, I am extremely grateful to Julia Andreeva for allowing me to work in
the Experiment Dashboard group and for being a constant source of guidance and
inspiration. Julia provided much valuable support, supervision and punctuation. The rest
of the IT-GS MND group also deserve thanks for their help and humour over the years; in
particular Benjamin, Pablo, Ricardo, Gerhild and William. Of course, users were essential
to the success of the Task Monitoring and Job Summary applications. More than fifty LHC
physicists and Stefano Belforte provided valuable feedback throughout the years and

deserve special thanks.

The multi-threaded and distributed framework for pedestrian simulation analysis
discussed in Chapter 4 would not have been possible without the support of the developers

of the Legion pedestrian simulation software. Alex, Martin and James thank you.

I would also like to thank Irene for her endless love and support and my cousin, Eddie,
for his proofreading. Finally, I would like to dedicate this research work to my family for

their continuous love, support and guidance.

CHAPTER 1.

INTRODUCTION

The Large Hadron Collider (LHC) at CERN on the Franco-Swiss border will operate
at energies which have been out of reach from previous High Energy Physics (HEP)
experiments. Two beams of subatomic particles will travel in opposite directions inside
the circular accelerator, gaining energy at every lap. Physicists will then use the LHC to
recreate the conditions just after the Big Bang by colliding the two beams at very high
energy at each of four collision points. Teams of physicists from around the world will
analyse and examine the particles created in the collisions using a detector trying to find
evidence of new physics. There are many scientific, engineering and computational

challenges that must be overcome before any answers can be delivered.

Previous High Energy Physics experiments were able to satisfy their computational
needs by building a single computing centre close to the detector. This is no longer
realistic for the LHC since the LHC will produce approximately 15 Petabytes (15
million Gigabytes) of data annually for ten to fifteen years. The solution is Grid
computing which makes use of the infrastructure, expertise and facilities that exist at
computing centres around the world. Grid computing is making big contributions to
scientific research by helping scientists around the world to analyse and store massive

amounts of data.

The first pioneering steps in Grid computing were taken in the US. The term “Grid
computing” was first used by Grid pioneers lan Foster and Carl Kesselman, as a
metaphor for making computing power accessible in the similar way to electrical power.
The Worldwide LHC Computing Grid Project, led by CERN, uses resources contributed
by Grid projects around the globe. The Enabling Grids for E-sciencE project in Europe,
the Open Science Grid in the US, GridPP in the UK and the INFN Grid in Italy are

Introduction 2

some of the independent Grid projects that provide support for the computing needs of

many areas of research and contribute to the Worldwide LHC Computing Grid.

This thesis is divided into two parts; first it discusses the development of a parallel
and distributed framework for pedestrian simulation analysis. It then takes distributed
computing on a worldwide and global scale by discussing the development of
monitoring applications to be used to enable physicists working on the CMS
collaboration to monitor their distributed analysis using the Grid. First, as motivation, a
more detailed look will be taken at the evolution of computing in Section 1.1.
Distributed and High Performance Computing will be discussed in more detail in
Section 1.2. The birth of the Internet and its evolution will be discussed in Section 1.3.

The final sections are focused on the Grid and the Worldwide LHC Computing Grid.

1.1 Birth of Computing

Charles Babbage produced a prototype of the “difference engine” [1] by 1822, a
calculating machine which could do many long computations automatically that was
intended to be steam-powered; fully automatic, even to the printing of the resulting
tables; and commanded by a fixed instruction programme but in 1833, Babbage stopped
working on the difference engine and he never successfully built the machine. In 1890,
Herman Hollerith, the founder of IBM, developed a device which could automatically
read census information which had been punched onto a card and as a result, reading
errors were consequently greatly reduced, work flow was increased, and stacks of

punched cards could be used as an accessible memory store [2].

In 1936, the British mathematician Alan Turing wrote a paper [3] in which he
described a hypothetical device, a Turing machine, that formed the basis of
programmable computers. The Turing machine was designed to perform logical
operations and could read, write and erase symbols written on squares of an infinite
paper tape. This kind of machine came to be known as a “finite state machine” because
at each step in a computation, the machine's next action was matched against a finite
instruction list of possible states. Then, in 1941, Konrad Zuse [4] released the first
programmable computer designed to solve complex engineering equations. It was the

first machine to work on the binary system.

Introduction 3

In 1944, Howard Aiken finished the construction of a large automatic digital
computer based on standard IBM electromechanical parts. Aiken's machine, called the
Harvard Mark I [5] was the first fully automatic, general purpose electro-mechanical
computer and was capable of 5 operations a second. In 1945, mathematician John von
Neumann undertook a study [6] of computation that demonstrated that a computer could
have a simple, fixed structure, yet be able to execute any kind of computation given
properly programmed control without the need for any hardware modification. Von
Neumann contributed a new understanding of how practical fast computers should be
organised and built and these ideas, often referred to as the ‘“stored-programme
technique”, became fundamental for future generations of high-speed digital computers

and were universally adopted.

The Electrical Numerical Integrator and Computer (ENIAC) [7] was the first
machine to use more than 2,000 vacuum tubes and it was capable of 5000 operations a
second. Nonetheless, it had punched-card input and output. ENIAC is acknowledged to
be the first successful high-speed “Electronic Digital Computer” (EDC) and was
productively used from 1946 to 1955.

The Electronic Discrete Variable Automatic Computer (EDVAC) [5] was to be a vast
improvement upon ENIAC. Mauchly and Eckert's idea was to have the programme for
the computer stored inside the computer. EDVAC had more internal memory than any

other computing device to date.

In the late 1940s and 1950s, two devices would be invented which would improve
the computer field and cause the beginning of the computer revolution. The first of
these two devices was the transistor [8]. Invented in 1947 by William Shockley, John
Bardeen, and Walter Brattain of Bell Labs, the transistor was fated to oust the days of
vacuum tubes in computers, radios, and other electronics. Vacuum tubes were
inefficient, required a lot of room space, and needed to be replaced often. The transistor
promised to solve all of these problems but transistors had their problems too;
transistors needed to be soldered together. In 1958, Jack Kilby and Robert Noyce
manufactured the first integrated circuit. An integrated circuit (IC) [9, 10] is a small

electronic device made out of a semiconductor material. In addition to saving space, the

Introduction

4

speed of the machine was now increased since there was a diminished distance that the

electrons had to follow.

In 1971, Intel released the first microprocessor [11]. The microprocessor was a

specialised integrated circuit which was able to process four bits of data at a time. The

chip included its own arithmetic logic unit, but a sizeable portion of the chip was taken

up by the control circuits for organising the work, which left less room for the data-

handling circuitry. The MITS Altair 8800 [12] was the first commercial personal

computer in 1974. However it was not until the eighties that home computing began to

become desirable and affordable.

2,000,000,000 —
1,000,000,000 —

100,000,000 —
-
c

3 10,000,000 —
(]
—
o
o

@ 1,000,000 —
s

100,000 —

10,000 —

2,300 —

Dual-Core ttanium 2 @ Quad-Core ltanium Tukwila

FOWERE. @ 57200
8o \. ®RVTTD
anium 2 with 8ME cache @ ! P ’
LAl
GCore 2 Quad”™

ore 2 Duo
tanium 2 @ 7 BE
.

.
A KE

-
.

. ® Barton
Fi®

®ALam

.
el U
Curve shows ‘Moore’s Law': L
transistor count doubling R Al
avery two years 7 eks
- ® Peantium
456 @ #
P
T
P
.
336 @
266 @ J’J
-’;nm
-
L
. B 2080
4004 @ A 8008
1971 1980 2000 2008

Figure 1.1: Moore's Law: CPU Transistor Counts. From [13].

In 1965, Gordon Moore predicted that the number of transistors on a chip would

double every two years [14]. Figure 1.1 illustrates and confirms Moore’s famous law;

the density of transistors on a chip doubles every 24 months. Moore made his prediction

based on the empirical evidence that was available and has so far remained accurate.

However, even as performance increases, there will always be a set of problems with

requirements beyond those that can be satisfied by a single CPU chip.

Introduction 5

1.2 Distributed and High Performance Computing

The speed of light and heat limit the speed of a CPU chip. Furthermore, Lev Levitin
and Tommaso Toffoli devised an equation [15] which sets a fundamental limit for
quantum computing speeds; a perfect quantum computer can generate 10 quadrillion
more operations per second than fastest current CPUs. They estimate that the maximum
speed will be reached in approximately 75 years. A quantum computer is a device for
computation that makes direct use of quantum mechanical phenomena, such as
superposition and entanglement, to perform operations on data. When Moore’s Law can
no longer meet computational needs, the solution is to introduce some form of a
parallelism in the execution of a programme; multiple CPUs or computers can execute

and process different parts of a programme simultaneously.

High Performance Computing (HPC) uses supercomputers and computer clusters to
solve advanced and complex scientific computation problems. Today, computer systems
approaching the teraflops-region are counted as high performance computers. The TOP
500 [16] list ranks the world's 500 fastest high performance computers, as measured by
the HPL benchmark [17]. The projected performance graph can be seen in Figure 1.2; it
provides an important tool to track historical development and also to predict future

trends.

The development of these machines is driven by scientific computational problems
with demands that exceed the performance of a single computer; it would take too long
to compute and/or the problem may not fit into the memory or the storage of a single
computer. The problems can be divided into different tasks and processed

simultaneously across multiple processors or computers.

In a shared memory system, there is a common shared address space throughout the
system and the communication between the processors occurs using shared data and
control variables for synchronisation among the processors using a library such as the
OpenMP [18]. In a distributed memory system, there is no shared address space and all
the multicomputer systems communicate by passing messages between them using a
library such as the MPI [19]. When the tasks are completely independent and there is no

dependency between them, the performance benefit is significant.

Introduction 6

100FFlops
-2 #1
10 FFaps o- #500
-3 Sum
1 PFlops — #1 Trend
Line
100 TRops — #500 Trend
2005 Line
10 TFlaps DDFI — Sum Trend

DDDD Line

1 TFlops

100 GFRops Dcﬂﬂﬁnﬁﬂ

10 GFlops D;‘D':P
1 GFlops
B

1|:||:|MF|I:IFI3 LN L L L L L L L N N B B B I N B O N N I B

Performance

1953
1955
1957
1959
2001

2003
2005
2007
2009
2011

2013
2015
2017
20149

Figure 1.2: Projected Performance Graph. Data from: http://top500.org

1.3 Internet

The origins of the Internet reach back to the 1960s when the United States funded
research projects of its military agencies to build robust, fault-tolerant distributed
computer networks. This research spawned worldwide participation in the development
of new networking technologies and led to the commercialisation of an international
network in the mid 1990s, and resulted in the following popularisation of countless
applications in virtually every aspect of modern human life. As of 2009, an estimated
quarter of Earth's population uses the services of the Internet. The exponential growth of

the total number of the internet hosts can be seen in Figure 1.3.

The Internet has no centralised governance in either technological implementation or
policies for access and usage; each constituent network sets its own standards. Only the
overreaching definitions of the two principal name spaces in the Internet, the Internet
Protocol (IP) address space and the Domain Name System (DNS), are directed by the
Internet Corporation for Assigned Names and Numbers (ICANN) [20]. The technical
standardisation of the core protocols (IPv4 and IPv6) is an activity of the Internet

Engineering Task Force (IETF) [21].

Introduction 7

700000000
70000000
7000000
700000
70000
7000

700

70

1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008
1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009

Figure 1.3: Internet Host Count History. Data from:
http://www.isc.org/solutions/survey/history

As internet access became commonplace more advanced applications began to
emerge. Standards at every level such as TCP/IP, HTTP, HTML, SOAP and XML make
the internet a reality. Multiple independent networks can be combined to form a single,

global, fault tolerant network, over which applications can request and receive data.

1.3.1 World Wide Web

The World Wide Web (WWW) was developed at CERN as a new form of
communicating text and graphics across the Internet using the hypertext mark-up
language (HTML) [22] as a way to describe the attributes of the text and the placement
of the graphics. Using concepts from earlier hypertext systems, the World Wide Web
was invented [23] in 1989 by the English computer scientist Sir Tim Berners-Lee, now
the Director of the World Wide Web Consortium (W3C) [24], and later assisted by
Robert Cailliau, a Belgian computer scientist, while both were working at CERN in

Geneva, Switzerland.

Unlike predecessors such as HyperCard [25], the World Wide Web was non-

Introduction 8

proprietary, making it possible to develop servers and clients independently and to add
extensions without any licensing restrictions. On April 30, 1993, CERN announced [26]
that the World Wide Web would be free to anyone, with no fees due. Since it was first
introduced, the number of users has blossomed and the number of sites containing
information and searchable archives has been growing at an unprecedented rate. The
World Wide Web enabled the spread of information over the Internet through an easy-

to-use and flexible format.

1.3.2 Web Services

According to the W3C, a Web Service [27] is a software system designed to support
interoperable machine-to-machine interaction over a network. It has an interface that is
described in a machine-processable format such as the Web Services Description
Language (WSDL) [28]. Other systems interact with the Web Service in a manner
prescribed by its interface using messages, which are enclosed in a SOAP [28]
envelope. These messages are typically transferred using HTTP, and normally comprise

XML in conjunction with other Web-related standards.

Software applications written in various programming languages and running on
various platforms can use web services to exchange data over computer networks like
the Internet in a manner similar to inter-process communication on a single computer.
This interoperability is due to the use of open standards. The Organisation for the
Advancement of Structured Information Standards (OASIS) [29] and the W3C are the
committees responsible for the architecture and the standardisation of the Web Services.

A typical Web Service invocation can be seen in Figure 1.4.

Service
Broker
) upD!
WSDL WsDL
. = 1'_‘
soar | JiSENgs
Service Service
Reqguester Provider

Figure 1.4: Web Service Invocation. From [30].

Introduction 9

The architecture of the Web Services is divided into the following parts [31]:

» Service Processes: This part of the architecture generally involves more than one
Web Service. Discovery belongs in this part of the architecture since it allows to
locate one particular service within a collection of Web Services.

» Service Description: The most interesting feature of the Web Services is that
they are self-describing. Once a user has located a Web Service, he/she can ask it
to “describe itself” and tell the user what operations it supports and how to
invoke it. This is handled by the WSDL.

* Service Invocation: Invoking a Web Service involves passing messages between
the client and the server. The Simple Object Access Protocol (SOAP) specifies
how to format the client's requests to the server, and how the server should
format its responses.

* Transport: All these messages must be transmitted between the server and the
client. The protocol of choice for this part of the architecture is HTTP but in

theory any other transferring protocol can be used instead.

1.4 The Grid

The first pioneering steps in grid computing were taken in the US. The term “grid
computing” was first used in a book [32] by Grid pioneers Ian Foster and Carl
Kesselman, as a metaphor for making computing power accessible in the similar way as

electrical power.

Grid computing was first proposed as Metacomputing [33] in 1992, but it was not
until the Information Wide Area Year (I-WAY) [34] project in 1995 that it really began
to emerge by linking together US supercomputing centres, databases and visualisation
devices. The experience and software that was developed was later used as the basis for

the Globus project [35].

Ian Foster defines a Grid as “coordinated resource sharing and problem solving in
dynamic, multi-institutional virtual organisations” [36] and this statement defines what

distinguishes a Grid from other forms of distributed computing. A Grid is not a single

Introduction 10

cluster or within a single site or institution. A Grid can be categorised as a
Computational Grid, a Data Grid and an Access Grid [36]. This classification is based
on whether a scientific programme requires intensive computation or whether it needs to
handle and store a large amount of data or whether it requires a collaboration

environment for achieving a common goal.

A Computational Grid [32] supports high computation intensive scientific
applications by pooling large scale and distributed resources together. The aim of using
a Computational Grid is to solve big computation problems that can not be solved by
using a single computer or a cluster of computers and also, to reduce the total
computation time of these large scale scientific programmes. Weather forecasting [37]
and Earthquake simulation [38] are typical computation intensive applications on a
Computational Grid. A Data Grid [39] is a distributed data processing and management
centric infrastructure for data intensive scientific applications that is concerned with the
issues of data generation, management, storage and transmission in distributed data
resources. Finally, an Access Grid [40] is being used in a collaborative environment in
which Grid users all over the world are able to participate in a virtual world for
collaborated information integration and processing. Interactions are the core of an
Access Grid. A multimedia video conference system is a typical application of an

Access Grid.

1.5 e-Science

The “e-Science” term was created by John Taylor [41] in 1999 to describe
computationally intensive science that is carried out in highly distributed network
environments, or science that uses immense data sets that require Grid computing.
Examples of the kind of science include social simulations, particle physics, earth
sciences and bio-informatics. Particle physics has a particularly well developed e-
Science infrastructure due to their need for adequate computing facilities for the
analysis of results and storage of data originating from the CERN Large Hadron

Collider (LHC) [42].

Due to the complexity of the software and the backend infrastructural requirements,

e-Science projects usually involve large teams managed and developed by research

Introduction 11

laboratories, large universities or governments. The UK e-Science Programme provides
significant funding; the UK e-Science Programme began in 2001 as a coordinated
initiative involving all the Research Councils and the Department of Trade and Industry.
The e-Science Core Programme [43], managed by the Engineering and Physical
Sciences Research Council on behalf of the communities of all the Research Councils,
has supported the development of generic technologies, such as the middleware that is
needed to link up varying hardware resources across the Grid in a compatible way
allowing scientists to access these resources in a uniform and secure way from
anywhere in the world by turning the diverse and locally managed computing centres
into a single massive virtual resource. Each Research Council has funded its own e-
Science activities to develop techniques and demonstrate their use across a broad range

of research and applications.

1.6 Computing for the LHC: The Worldwide LHC Computing Grid

The Large Hadron Collider (LHC) at CERN on the Franco-Swiss border is the largest
scientific instrument on the planet. The LHC was built to help scientists to answer key
unresolved questions in fundamental physics. It consists of a 27 km ring of
superconducting magnets with a number of accelerating structures to boost the energy
of the particles along the way. Two beams of particles travel inside the accelerator, at
close to the speed of light with very high energies before colliding with one another.
The beams travel in opposite directions in separate beam pipes and they are guided
around the accelerator ring by a strong magnetic field, achieved using superconducting

electromagnets.

The six experiments at the LHC are all run by international collaborations, bringing
together scientists from institutes all over the world. Each experiment is distinct,
characterised by its unique particle detector. The two large experiments, the “A Toroidal
LHC ApparatuS” (ATLAS) [44] and the “Compact Muon Solenoid” (CMS) [45], are
based on general-purpose detectors to analyse the myriad of particles produced by the
collisions in the accelerator. They are designed to investigate the largest range of
physics possible. Two medium-size experiments, the “A Large lon Collider

Experiment” (ALICE) [46] and the “LHC-beauty” (LHCb) [47], have specialised

Introduction 12

detectors for analysing the LHC collisions in relation to specific phenomena. The
remaining two experiments, the “Total FElastic and Diffractive Cross Section
Measurement” (TOTEM) [48] and the “LHC-forward” (LHCY) [49], are much smaller
in size and often not mentioned at all. They are designed to focus on “forward
particles”; particles that just brush past each other as the beams collide, rather than

meeting head-on.

The ATLAS, CMS, ALICE and LHCb detectors are located around the ring of the
LHC as illustrated in Figure 1.5. The detectors used by the TOTEM experiment are
located near the CMS detector and those used by the LHCf are near the ATLAS

detector.

‘ = - =i
fﬁ"r ?EECTDRd-E y” Mf ’ﬁlﬁ, _POINT 6
o |,L
Al ﬁ
A N
SECTOR 67",

POINT 4

?_.. .

.--1"- B -3

i " SECTOR 34 - CM3 SECTCII-‘! 5&

| :)
i 4
¥ SECTOR 23 :-;-,‘L ||
|
i
};_5:1 i

=l el ¥

o G
POINT 2 [0 SPS g

SECTOR 78, 3"
o g [=

e
I'.'e-\r

SR % *fj?};.__rSEETGR 12

1 sﬁcmn B
— . T

— e LHCh
ATLAS

Figure 1.5: The Large Hadron Collider. From [42].

In late 2009, when the LHC restarts operations, it will produce approximately 15
Petabytes (15 million Gigabytes) of data annually for ten to fifteen years, which
thousands of scientists around the world will access and analyse. If the LHC data were
to be burned to a CD, a tower of CDs around 20 kilometres high would be created
within a year; twice as high as the Mount Everest. The Worldwide LHC Computing
Grid (WLCG) [50] anticipates running between 500,000 to 1,000,000 tasks per day and

Introduction 13

this number will increase as time goes on and as computing resources and new
technologies become ever more available across the world. It is no longer practical to
use only resources that are co-located with the experiment. Apart from the financial and
political implications of financing such infrastructure at a singe location, it also provides

a single, critical point of failure.

The mission of the WLCG project is to build and maintain a data storage and analysis
infrastructure for the entire High Energy Physics (HEP) community that will use the
LHC. The WLCG combines the computing resources of more than 170 computing
centres in 34 countries, aiming to harness the power of more than 100,000 CPUs to
process, analyse and store data produced from the LHC making it equally available to
all partners, regardless of their physical location in order to sift through data, looking

for new particles that can provide clues to the origins of our universe.

The computing centres providing resources for WLCG are embedded in different
operational Grid organisations, in particular the Enabling Grids for E-SciencE (EGEE)
[51] and the Open Science Grid (OSG) [52], but also several national and regional Grid
structures such as GridPP in the UK, INFN Grid in Italy and NorduGrid in the Nordic
region. Europe and Asia use the glLite middleware [53], developed by the EGEE and co-
funded by the European Commission, the Nordic Grids are based on the Advanced
Resource Connector (ARC) [54] software and the US contribution to the WLCG relies
on the Virtual Data Toolkit (VDT) [55] provided by the OSG middleware distribution.
All the middleware systems have been influenced by the Globus Toolkit and many core

components still originate from it.

The data from the LHC experiments will be distributed around the globe, according
to a four-tiered model as proposed by the MONARC project [56] as illustrated in Figure
1.6. A primary backup will be recorded on tape at CERN, the “Tier-0” centre of LCG.
After initial processing, this data will be distributed to a series of Tier-1 large computer
centres, through dedicated 10 gigabit per second connections, with sufficient storage
capacity and with 24/7 support for the Grid. The Tier-1 centres will make data available
to the Tier-2 centres, each consisting of one or several collaborating computing

facilities, which can store sufficient data and provide adequate computing power for

Introduction 14

specific analysis tasks. Individual scientists will access these facilities through the Tier-
3 computing resources, which can consist of local clusters in a University or a national

research centre.

By taking advantage of the hardware and personnel distributed throughout the
collaborations, it is possible to deliver enough aggregate computing power without
locating the resources at a single point. Of course, moving to a completely chaotic

distributed architecture introduces many additional problems and complexities.

Tier-2 centres

(about 130)

npar lier-1 centres
Nordic countries

Figure 1.6: The Four-Tiered Model as Proposed by the MONARC
Project. Tier-3's are smaller centres connected to Tier-2 sites. From
[57].

Reliable monitoring is an aspect of particular importance; it is a vital factor for the
overall improvement of the quality of the WLCG infrastructure. In addition, monitoring
of the computing activities of the communities using the WLCG infrastructure provides

the best estimation of its reliability and performance.

The distributed analysis on the WLCG infrastructure is currently one of the main
challenges of the LHC computing. Access to the LHC data has to be provided to more

Introduction 15

than five thousand scientists all over the world. Users who run analysis jobs on the Grid
do not necessarily have expertise in Grid computing. Simple, user-friendly, reliable
monitoring of the analysis jobs is one of the key components of the operations of the

distributed analysis.

1.7 Summary

This chapter sets the scene for the more detailed discussion to come. Parallel,
distributed computing and solving the computing challenges in the Large Hadron
Collider experiments, in particular the computing demands of the CMS experiment,
provide the main motivation for this thesis. A general introduction to the area was
provided outlining the birth of the computing and the computer revolution that took

place in the eighties.

The LHC experiments will produce huge volumes of data which require extensive
computing resources to store, transfer and analyse. The Grid is the solution chosen to
meet these computational requirements. Grid computing evolved as a key technology
enabling scientists in research and industry to solve challenging problems, master

complex heterogeneous environments and collaborate in unprecedented ways.

The Grid integrates distributed computing resources and data created through
simulations storing them in archive tapes or databases. Grid technology combines high
performance and high throughput computing, data intensive and on-demand computing
and collaborative computing through a set of service interfaces based on common

protocols.

The next chapter discusses in detail the main concepts and components required to
make parallel and distributed computing a reality, outlining the design issues and the
techniques to avoid non-intuitive behaviours. Chapter 3 identifies and discusses in detail
the major concepts and components that are required to make Grid computing a reality.
Chapter 4 describes the development of a multi-threaded and a distributed version of a
commercial pedestrian simulation software and presents benchmark results

demonstrating how the use of a multicomputer or of even a multi-core computer can

Introduction 16

greatly accelerate the speed of a pedestrian movement software. Chapter 5 discusses in
depth the CMS Dashboard Task Monitoring application focusing on the CMS analysis
of the user activities and Chapter 6 discusses the CMS Dashboard Job Summary
application that provides a more generic monitoring application to a wide variety of
users in the CMS collaboration. Chapters 2 and 4 are focused on the parallel and on the
distributed computing whilst Chapter 3, 5 and 6 are focused on the Grid computing.

Finally, Chapter 7 summarises this research work and discusses future directions.

Different parts of the research presented in this thesis have been published in [58],
[59], [60], [61], [62] and [63]. The first publication, [58], focuses on the design and the
implementation of the parallel and distributed version of the commercial pedestrian

simulation software presented in Chapter 4.

The second publication, [59], focuses on the Distributed Analysis demands in the
CMS experiment and on the CMS Computing Model in general as presented in Section
3.5. The third publication, [60], focuses on the Experiment Dashboard monitoring

system for the LHC experiments and its framework as presented in Section 3.6.

The remaining three publications, [61], [62] and [63] focus on the work presented in
Chapter 5 for the CMS Dashboard Task Monitoring application, and in Chapter 6 for the
CMS Dashboard Job Summary application.

17

CHAPTER 2.

PARALLEL AND DISTRIBUTED COMPUTING

A distributed computing system is a collection of computers that cooperate to solve a
problem that cannot be individually solved. The notion of a distributed computing
system as a useful and widely-used tool is already a reality due to the widespread

proliferation of the Internet and the emerging global village.

This chapter discusses the main concepts and design issues of parallel and distributed

computing.

2.1 Introduction

John von Neumann proposed in 1945 the creation of an Electronic Discrete Variable
Automatic Computer (EDVAC). In his paper [6], von Neumann suggested a stored-
programme model of computing known as the von Neumann architecture. In the von
Neumann architecture [64], a programme is a sequence of instructions stored
sequentially in the memory of the computer. The programme's instructions are executed

one after the other in a linear and single-threaded way.

The ideas presented by von Neumann were expanded due to the advancements in the
mainframe technology and the arrival of the time-sharing operating systems in the
1960s. These operating systems first introduced the concept of the concurrent
programme execution. A mainframe computer could be accessed simultaneously by
multiple users. The users submitted jobs for processing and the operating system
handled the details of allocating CPU time for each individual programme. This

concurrency existed at the process level.

Parallel and Distributed Computing 18

Only one programme would run at a time in the early days of personal computing.
User interaction occurred via text-based interfaces and the programmes followed the
standard model of instruction execution proposed by von Neumann. However, the
exponential growth in CPU and graphics performance, quickly led to more sophisticated
computing systems. This rapid growth increased the user expectations. Users expected
their computing platform to be quick and responsive and their applications to start up

quickly and handle background tasks with minimal disruption.

2.2 Threads

A thread is a discrete sequence of related instructions that is executed independently
of other instruction sequences [65]. Every programme has at least one thread, which is
the main thread, that initialises the programme and starts the executions of the first
instructions [66]. This main thread can then create no new threads and do everything by
itself or it can create other threads to perform various tasks. A thread is contained inside
a process as illustrated in Figure 2.1. Unlike different processes, multiple threads within

the same process can share resources such as the computer's memory.

SERVER 1 SERVER 2

CLIENT PROCESS

SERVER 3

Figure 2.1: A Multi-threaded Process where the client can issue calls to
three servers simultaneously.

Parallel and Distributed Computing 19

There are three layers for threading [65]:

» User/application threads. Threads created and destroyed in the application.
* Kernel threads. Used by the kernel of the Operating System (OS).

* Hardware threads. Used by each processor.

One programme thread passes from all the three levels. A programme thread is
implemented by the OS as a kernel-level thread and executed as a hardware thread. The

interfaces between these layers are handled automatically by the executing system.

As illustrated in Figure 2.2, every newly created thread starts in the “Ready” state,
when it is attempting to execute a task it is in the “Running” state and when the work is

done, it is either terminated or it returns back into the initial “Ready” state.

Cancelled

Interrupted at Thread level

» Running

Dispatched

N
Blockir;\g\

Complete * e
E Waiting

Figure 2.2: State Diagram for a User-level Thread.

Multi-threading on a single processor occurs by time-division multiplexing, thus, the
processor switches between different threads. The context switching happens frequently
enough that the user perceives that the threads are running at the same time. On the
other hand, threads on a multiprocessor or multi-core system will run at the same time,

with each processor or core running a particular thread.

Multi-threading occurs when multiple threads exist within the context of a single

process. These multiple threads share the resources of the process but are being

Parallel and Distributed Computing 20

executed independently. Multi-threaded programming allows a programme to operate
faster on computer systems with multiple CPUs, CPUs with multiple cores or on a
cluster of computers due to the fact that the threads of the programme naturally run in a
concurrent execution. In such case, the programmer needs to be careful to avoid race
conditions, and other non-intuitive behaviours. The improper use of threading can
degrade the performance of the programme as described in Section 2.8. In order for data
to be correctly manipulated, threads will often need to synchronise in time to process
the data in the correct order. Threads may also require atomic operations in order to
prevent common data from being simultaneously modified, or read while being

modified by another thread.

Another feature of having multiple threads in a single process is the ability for an
application to remain responsive to the user. In a single threaded programme, if the main
execution thread blocks on a big task, the entire application can appear to be non-
responsive to the user's input. It is possible for an application to remain responsive to
the user by moving background long running tasks to another thread that runs in parallel
with the main execution thread. Operating systems schedule threads in one of two ways

[65][66]:

1. Pre-emptive multi-threading allowing the operating system to determine when a
context switch should happen.
2. Cooperative multi-threading relying on the threads themselves to release control

once they are at a stopping point.

2.3 Flynn's Taxonomy

In 1966 Flynn produced a taxonomy [67] for computer architectures based on the
number of concurrent operations that the architecture can support. A hardware may
support a single instruction stream or multiple instruction streams working on a single

data stream or multiple data streams.

* Single instruction stream, single data stream (SISD). Are the traditional

processors which execute one instruction on one piece of data and they

Parallel and Distributed Computing 21

correspond to the conventional processing in the von Neumann architecture with
a single CPU, and a single memory unit connected by a system bus.

» Single instruction stream, multiple data stream (SIMD). Implements data level
parallelism where the same instruction operates on an array of data. Corresponds
to the processing by multiple homogeneous processors.

* Multiple instruction stream, single data stream (MISD). Corresponds to the
execution of different operations in parallel on the same data. According to
Flynn, an MISD computer is “a pipeline of multiple independently executing
functional units operating on a single stream of data, forwarding results from
one functional unit to the next” [68].

* Multiple instruction stream, multiple data stream (MIMD). Different CPUs can
simultaneously execute different instruction streams working on different data
streams. Multiprocessors and multicomputers fall into this category and this is
the mode of operation in distributed systems as well as in the vast majority of

parallel systems.

SISD MISD
SISD Instruction Pool MISD Instruction Pool
= =
A o
o o
A A
SIMD MIMD
SIMD Instruction Pool MIMD | Instruction Pool |
[e L
[L
£ : _mod L
o o
sl BRI
R AR RS TS

Figure 2.3: Flynn's Taxonomy.

Parallel and Distributed Computing 22

SISD, SIMD, MISD, and MIMD architectures are illustrated in Figure 2.3. Most
contemporary parallel and distributed computers fall into the MIMD category. The
MIMD architectures allow much flexibility in partitioning the code and the data to be

processed among the processors.

2.4 Characteristics of a Parallel System
A parallel system may be classified as belonging to one of the three following types
[69]:

1. A multiprocessor system. It is a parallel system in which the multiple processors
have direct access to a shared memory which forms a common address space.
They can be built out of commodity CPUs.

2. A multicomputer parallel system. It is a parallel system in which the memory of
the multiple processors may or may not form a shared address space. Each
processor has direct access to its own local memory. Without a shared address
space, the multiple processors interact with each other by passing messages.

3. Processor Arrays. This is a class of parallel computers that are physically co-
located, are very tightly coupled and have a common system clock but may not

share memory and communicate by passing data using messages.

2.4.1 Coupling

The degree of coupling can be measured [69] in terms of the interdependency and
binding and/or homogeneity among the modules. When the modules are tightly coupled,
a particular module might be harder to re-use or test because dependent modules must

also be included.

2.4.2 Parallelism
There are two types of parallelism in a programme [69]:
* Parallelism or speed up of a programme on a specific system. This is a measure
of the speed-up of a specific programme running on a given machine. It depends
on the number of processors and the allocation of the processing instructions to

the processors. It is expressed as the ratio of the time 7'(1) with a single

Parallel and Distributed Computing 23

processor, to the time 7' (n) with n processors.

* Parallelism within a parallel / distributed programme. This is an aggregate
measure of the time percentage that all the processors are executing CPU
instructions in contrast to waiting for any communication operations to
complete. The communication operations might involve either accessing a

memory block via shared memory or passing data via message-passing.

2.4.3 Concurrency

The concurrency in a distributed programme can be measured [70] by the ratio of the
number of local operations excluding the communication and the shared memory access
operations to the total number of operations including the communication operations via

message-passing or the access to the shared memory operations.

2.4.4 Granularity

Granularity is the ratio of the amount of computation in relation to the amount of
communication within a parallel programme. In a fine-grained parallelism, individual
tasks are relatively small in terms of execution time. On the other hand, in a coarse-
grained parallelism the data are communicated infrequently, after larger amounts of
computation. The finer the granularity, the greater the potential for parallelism and
hence the speed-up, but the greater the overheads of synchronisation and

communication [71].

The best balance between the communication and the computation load overhead
needs to be found for a programme to achieve the best parallel performance. In a fine-
grained granularity, the performance can suffer from the increased communication
overhead by frequently exchanging data via message-passing. On the other hand, in a
coarse-grained granularity, the performance can suffer from load imbalance; the system
workload will not be evenly distributed across all physical processors in the system.
Programmes with fine-grained parallelism are best suited for tightly coupled systems
including the SIMD and the MISD architectures, the tightly coupled MIMD
multiprocessors that have shared memory, and the loosely-coupled multi-computers

without shared memory that are physically located in the same room. Programmes with

Parallel and Distributed Computing 24

fine-grained parallelism running over loosely-coupled multiprocessors that are
physically remote experience a significant degrade of the overall throughput due to the

latency delay for the frequent communication over the network.

2.5 Performance Analysis of Parallel Programming

A large performance increase can be seen by subdividing different tasks and by
processing them simultaneously. When the tasks are completely independent, the
performance benefit is significant. The speed-up ratio characterises how much faster a
programme runs when parallelised by comparing the elapsed run time of the best

sequential algorithm to the elapsed run time of the programme running in parallel.

Time BestSequentianalAlgorithm

Speed —up (n,)=

TlmeParal/el[mplcmcntation (n,)

The Speed —up is defined in terms of the number of physical threads (n,) used in

the parallel implementation.

The theoretical limit on the performance benefit of increasing the total number of the
CPU cores can be determined using the Amdahl's Law [72], also known as Amdahl's
Argument, that examines the maximum theoretical performance benefit of a parallel

solution relative to the best case performance of a serial solution.

1
S+(1-S)/n

Speed —up =

The S is the time spent whilst executing the serial portion of the parallelised
version of the programme and 7 is the total number of the processor cores of the
system. The numerator assumes that the programme takes 1 unit of time to execute the

best sequential algorithm.

Setting n=o0 and assuming that the best sequential algorithm takes 1 unit of time
leads to the following equation to find the upper bound of an application with S time

spent in sequential code.

Parallel and Distributed Computing 25
Speed —u =L
P P=g

An alternative formulation for speed up referred to as “scaled speed-up” was

developed by E. Barsis and it is known as the Gustafson-Barsis's Law [73].
Scaled speed —up=N+(1—N)*s

Where N is the total number of CPU cores and s is the ratio of the time spent in

the sequential version of the programme versus the total execution time.

The Amdahl's Law and the Gustafson-Barsis's Law can overestimate the speed-up or
the scaled speed-up performance because they both ignore the parallel overhead term.
Karp and Flatt have proposed another metric, called the experimentally determined

serial fraction, which can provide valuable performance insights [74].

Given a parallel computation exhibiting speed up ¥ on p processors, where

p>1 , the experimentally determined serial fraction e is defined to be the Karp -

Flatt Metric:
1 1
o=t
1——
p

The less the value of the experimentally determined serial fraction e , the better the
parallelisation of the algorithm. By using the experimentally determined serial fraction,
we can determine whether the efficiency decrease is due to limited opportunities for

parallelism or increases in algorithmic overhead.

2.6 Message Passing Communication
In this section, the message passing communication technique will be discussed in
detail based on the messages used in a communication and the mechanisms used to send

and receive a message. A message is an accumulation of data consisting of a header and

Parallel and Distributed Computing 26

a body which can be managed by a process and delivered to its destination.

2.6.1 Message-Passing Systems versus Shared Memory Systems

Shared memory systems are those in which there is a common shared address space
throughout the system. The communication between the processors occurs using shared
data and control variables for synchronisation among the processors. In a shared
memory system, synchronisation can be achieved by using semaphores and locks that
were designed for shared memory uniprocessors and multiprocessors. All
multicomputer systems without a shared address communicate by passing messages. It
is considered easier to programme using shared memory than by passing messages
between the computers. It is possible to simulate a shared address space for a distributed

system with the Distributed Shared Memory (DSM) abstraction.

Emulation of the message-passing technique on a shared memory system

The shared address space can be partitioned into distinct parts, one part being
assigned to each processor. The “send” and “receive” operations can be implemented by
writing to and reading from the destination/sender processor’s address space. Finally,

synchronisation primitives are used to control the write and read operations.

Emulation of a shared memory space on a message-passing system

This type of emulation involves the use of “send” and “receive” operations for
“write” and “read” operations. Every shared location can be modelled as a separate
process. The “write” to a shared location operation is emulated by sending an update
message to the corresponding owner process and the “read” from a shared location
operation is emulated by sending a query message to the owner process. This type of
emulation is quite complicated as it requires “send” and “receive” operations to access
the memory of another processor. The latencies involved in the “read” and “write”
operations will be most probably high because these “read” and “write” operations are

implemented using a network communication underneath.

2.6.2 Primitives for Distributed Communication

The message “send” and the message “receive” communication primitives are

Parallel and Distributed Computing 27

denoted as “Send()” and “Receive()”. A “send” primitive has two parameters: the
destination and the buffer in the user space containing the data to be sent to the
destination. Likewise, a “receive” primitive has two parameters: the source from which
the data is to be received and the user buffer into which the data is to be received. There

are two ways of sending data when the “send” primitive is invoked [75]:

* The buffered option which is the default option that copies the data from the user
buffer to the kernel buffer and the data then gets copied from the kernel buffer
onto the network.

* The unbuffered option where the data gets copied directly from the user buffer

onto the network.

The “receive” primitive usually requires the buffered option because the data may
already have arrived when the primitive is invoked and needs to be stored in the kernel.
There are blocking / non-blocking and synchronous / asynchronous primitives for a

distributed communication between two machines [75]:

e Synchronous primitives. A “send” or a “receive” primitive is synchronous when
there is a handshake between both the “Send()” and “Receive()” operations. The
invoking machine first learns that the other corresponding “receive” primitive
has also been invoked and that the “receive” operation been completed and then
the processing for the “send” primitive completes. The processing for the
“receive” primitive completes when the sending data is copied into the
receiver’s user buffer.

* Asynchronous primitives. A “send” primitive is asynchronous when the control
returns back to the invoking process after the sending data has been copied out
of the user-specified buffer. There is no asynchronous “receive” primitive
defined.

* Blocking Primitives. A blocking primitive occurs when the control returns to the
invoking process after the processing for the primitive completes either in the
synchronous or the asynchronous mode.

* Non-Blocking Primitives. A non-blocking primitive occurs when the control

returns back to the invoking process immediately after the invocation. A non-

Parallel and Distributed Computing 28

blocking “send” occurs when the control returns to the process even before the
data is copied out of the user buffer. Likewise, a non-blocking “receive” occurs
when the control returns to the process even before the data may have arrived

from the sender.

From the programme's point of view, a synchronous “send” is easier to implement
and to use because of the handshake between the “send” and the “receive” primitives
but the truth is that a synchronous “send” lowers the overall efficiency within the
process and in fact, the “receive” may not get issued until much after the data arrives at
the destination, in which case the data arrived would have to be buffered in the system
buffer at the destination and not in the user buffer. At the same time, the sender would

remain blocked and non-responsive.

The non-blocking asynchronous “send” is quite useful when sending a large data
item over the network because it allows the sender to perform other instructions in
parallel with the completion of the “send” and hence, it avoids any potentially large
delays for the handshaking process. Likewise, the non-blocking synchronous “send”
also avoids any large delays caused by the handshaking process, particularly when the

receiver has not yet issued the “receive” call.

The non-blocking “receive” is useful when large amount of data is being received or
when the sender has not yet issued the “send” call. This is true because it allows the
process to execute other instructions in parallel with the completion of the “receive”. If
the data item has been received, it is stored in the kernel buffer and it may take a while
to copy it to the user-specified buffer. The hassle on the programmer increases for the
non-blocking calls because the programmer needs to keep track of the completion of
such operations in order to write to or read from the user buffers and this is the reason

why it is easier to use blocking primitives from the programmer's perspective.

The blocking and non-blocking send primitives can be seen in Figure 2.4. When
using a non-blocking “send”, the sending process is blocked only for the time period of
copying the message in the kernel buffer. Therefore, the block of code after the “send”

primitive can be executed before the message is actually sent. On the contrary, the

Parallel and Distributed Computing 29

sending process is blocked completely when using the blocking “send” primitive and
thus, the block of code after the “send” primitive is not executed until the sending
message has been completely sent. When using the blocking “receive”, the process
issued this primitive remains entirely blocked until the message arrives and is stored in

the buffer.

Client running Trap to kernel Client running

Process blocked Trap to kernel

send() — | — — — send() - - - -

T Client blocked | Message copied to
Client blocked | message being sent Kernel buffer

Client running

Client running Return from kernel
Process unblocked

\j \j

Time Time

(a) (b)
Figure 2.4: Send Primitives. (a) blocking; (b) non-blocking.

2.6.3 Buffered versus Unbuffered Message Passing Primitives
The messages are buffered between the time they are sent by a client and received by
a server in most message-based communication systems. There are two possible

outcomes when a send is executed and the buffer is full [75]:

* The “send” will delay until there is a space in the buffer for the message.

* The “send” will return to the client indicating that the message could not be sent

because the buffer was full.

The outcome on the receiving server is slightly different, the “receive” primitive
informs the OS about a buffer where the server needs to store the arrived message and
the problem appears when the “receive” primitive is issued after the message arrives.

One approach is to discard the entire message from the server's side and the client could

Parallel and Distributed Computing 30

time-out and re-submit the message. Another approach is to save the message in the OS
area for a limited time period and then the message will be copied to the invoking
server-space only when the “receive” primitive is invoked. Otherwise, the message will

be discarded.

Buffer

A

oS 0s os os | Buffer
A

(a) (b)
Figure 2.5: (a) Unbuftfered and (b) buffered message passing.

The unbuffered message where the message is discarded when the server buffer is
fully used can be seen in Figure 2.5 (a). The buffered message where the message is

buffered in the buffer of the OS for a limited time period can be seen in Figure 2.5 (b).

2.6.4 The Message Passing Interface (MPI)

The Message Passing Interface (MPI) is a standard for the communication between
the nodes running a parallel programme on a distributed memory system. MPI is a
library of routines that can be called from Fortran, C, C++, Java and Python
programmes. It is a widely used message-passing standard for parallel programming
and it is also the dominant model used in the high-performance scientific computing

[76] both in the academia and in the industry.

The MPI library supports both point-to-point and collective communication and
according to its founder, it "is a message-passing application programmer interface,
together with protocol and semantic specifications for how its features must behave in
any implementation" [19]. The goals of the MPI are high performance, scalability, and
portability.

MPI has Language Independent Specifications (LIS) for the function calls and

Parallel and Distributed Computing 31

language bindings. There are two versions of the standard that are currently available

[77]:

* The MPI-1 implementation which emphasises message passing and has a static
runtime environment.
* The MPI-2 implementation which includes some new features such as parallel

I/O and remote memory operations.

The MPI-1 model has no shared memory concept and MPI-2 has only a limited
distributed shared memory concept. MPI-1 programmes still work under MPI

implementations compliant with the MPI-2 standard.

MPI is the widely used message-passing library because it is both portable and fast.
It is portable because MPI has been implemented for almost every computer hardware
architecture and it is fast because each implementation is intensively optimised for the
hardware it runs on. MPI can be used in low latency networks for inter-node

communication using a computer cluster, as illustrated in Figure 2.6.

| MPI Cluster

Users submitting jobs

Figure 2.6: MPI Cluster. A well designed application can scale almost linearly
with the addition of more nodes allowing increases in accuracy and speed for
scientific applications. From [78].

Parallel and Distributed Computing 32

Shared memory programming models such as the Pthreads [79] and the OpenMP and
message-passing programming models such as the MPI and the Parallel Virtual
Machine (PVM) [80] can be both utilised and used together in scientific computing

programmes.

2.6.5 MPI and OpenMP

There is a lot of interest in how to appropriately utilise both the distributed and
shared-memory models due to the growth of the distributed shared-memory machines in
the scientific computing community [81]. The MPI library provides an efficient medium
for the parallel communication among a distributed collection of computers but no MPI
implementation takes advantage of the shared memory when it is available between

multiple processors.

The Open Multi Processing (OpenMP) was introduced to provide a shared-memory
parallelism in FORTRAN, C, C++ and Python programmes. It specifies a set of
environment variables, library routines and compiler directives to be used for

parallelisation in a shared memory environment as illustrated in Figure 2.7.

OpenMP Language Extensions

Parallel Runtime
Work Data s .
Control Sharing Environment Synchronisation Functions,
Structures Env. Vars.
Governs flow of | | Distributed work | |Scopes variables Coordinates Runtime

control in the thread execution environment

Programme

among threads

parallel directive

do/parallel do
and
section directives

shared and
private clauses

critical and
atomic directives
barrier directive

omp_set_num_threads()

omp_get_thread_num()

OMP_NUM_THREADS
OMP_SCHEDULE

Figure 2.7: The OpenMP Language Extensions.

OpenMP was designed to directly access the memory of the system with low latency

Parallel and Distributed Computing 33

and very fast shared memory locks. Some of the advantages of using the OpenMP

library instead of using simple threading software libraries are [82]:

* Itis intuitive and comparatively easy to introduce into a programme.
» [t is portable across different operating systems, architectures and compilers.

* The compiler is able to make architecture-specific optimisations.

MPI and OpenMP are both extensively used for parallelisation in scientific
computing [81]. In a distributed shared memory environment, MPI is used for the
“inter-node” communication between a distributed collection of computers and
OpenMP is used for the “intra-node” communication between a collection of processors

that share the same memory system.

2.7 Parallel Programming Constructs
This section describes the theory and practice of the parallel programming constructs

that focus on threading.

2.7.1 Synchronisation
Synchronisation is a mechanism used to manage and control the order of the
execution of a thread and it is also used to manage shared data. Synchronisation

resolves any conflict between the threads that might produce a misbehaviour [83].

2.7.2 Critical Sections

A section of a code block is called a Critical Section when shared dependency
variables reside and those shared variables have dependence between multiple threads
[83]. Only one thread is allowed to access a critical section at a time by using proper
synchronisation techniques. Critical Sections should be implemented in a way that
multiple threads execute mutually exclusive operations for Critical Sections avoiding

the simultaneous use of the Critical Sections.

Parallel and Distributed Computing 34

2.7.3 Semaphores
The Semaphores were introduced by Edsger Dijkstra in 1968 [84] and were the first

primitives to accomplish mutual exclusion of parallel process synchronisation. A
semaphore can be represented by an integer sem and can be bounded by two basic
atomic operations, P and J . These atomic operations are referred to as the
synchronisation primitives [83]. P represents the “delay” or “wait” and V

represents the “barrier removal” or “release” of a thread.

2.7.4 Locks
Locks and Semaphores are similar in concept except that when using the Locks, a
single thread can handle a lock at one instance. Two simple atomic operations get

performed on a lock [85]:

* “Acquire()” or “Lock()”: Atomically waits for the lock state to be unlocked by
another thread and sets the lock state to lock.
e “Release()” or “Unlock()”: Atomically changes the lock state from locked to

unlocked.

At most one thread can acquire a lock. A thread has to acquire a lock prior to the use
of a shared resource otherwise it waits until the lock becomes available. When a thread
wants to access a shared data item, it acquires the lock, then it performs the required

operations on the shared data item and finally, releases the lock for other threads to use.

An application can have different types of locks according to the constructs required
to accomplish the task. There are four different types of locks [85] and they are briefly

described below.

Mutexes

The mutex is a simple lock implementation and it is often the basis to describe locks
in general. A timer attribute can be also added with a mutex and if the timer expires
before a release operation, the mutex releases the locked code block to any other

running threads.

Parallel and Distributed Computing 35

Recursive Locks or Recursive Mutexes
Recursive Locks may be acquired several times by a thread that currently owns the
lock without causing the thread to deadlock. No other thread can acquire this type of

lock until the owner releases it once for each time it has acquired it.

Read / Write Locks
The Read / Write Locks are also known as multiple-read/single-write locks. This type
of lock allows simultaneous read-only access to multiple threads but limit the write

access to only one thread.

Spin Locks
Spin Locks are non-blocking locks owned by a thread. The waiting threads must poll
the state of a lock rather than get blocked. This type of lock is commonly used on

multiprocessor systems.

2.7.5 Barrier

The Barrier mechanism is a synchronisation method where a thread from an
operational set has to wait for all the other threads in that set to complete in order to be
able to proceed to the next code block. The Barrier mechanism guarantees that no thread

proceeds beyond an execution point until all threads have arrived at that point.

2.8 Common Parallel Programming Problems
This section describes the most common problems and their symptoms in parallel

and distributed programming.

2.8.1 Number of Threads

Having a large number of threads running simultaneously can seriously degrade the
performance of a parallel programme [86]. The partitioning of a fixed amount of work
among a large number of threads gives each thread too little work and thus, the
overhead of starting and terminating the threads increases. Also, having a large number

of concurrent threads results in an overhead from having to share fixed hardware

Parallel and Distributed Computing 36

resources.

The overhead of the initialisation and destruction process of having a large number of
threads for short lived tasks can be eliminated by using a thread pool [87]. A thread pool
is a collection of tasks which are serviced by the software threads in the pool. Each

software thread finishes a task before taking on another.

2.8.2 Parallel Slowdown

Parallel slowdown occurs when the parallelisation of a parallel computer programme
beyond a certain point causes the programme to run slower typically due to a
communications bottleneck [88]. As more processing nodes are added, each processing

node spends more and more time communicating than performing useful processing.

2.8.3 Race Conditions

Unsynchronised access to shared memory resources can introduce race conditions
[89]. A race condition occurs when the programme results depend non-deterministically
on the relative timings of two or more threads. Operations on shared states are critical
sections that must be atomic to avoid any collision between the threads sharing those
states. Race conditions are effectively avoided by adding a lock that protects the

invariant that might otherwise be violated by interleaved operations.

2.8.4 Deadlock

Deadlocks occur when a thread is blocked waiting on a resource of another thread
that will never become available [69]. A deadlock is often associated with the incorrect
use of locks but it can also happen any time a thread tries to acquire exclusive access to
two or more shared resources. Deadlock can occur only when the following four

conditions are met:

* Access to each resource is exclusive.
* A thread is allowed to hold one resource while requesting another.

* No thread is willing to relinquish a resource that it has acquired.

Parallel and Distributed Computing 37

* There is a number of threads trying to acquire resources and where each

resource is held by one thread and requested by another.

The most effective technique to avoid deadlocks is to replicate a resource that
requires exclusive access so that each thread will have its own private copy of the data
item. Hence, each thread will access its own copy without the need to lock it and if

necessary, the copies can be merged into a single shared copy at the end.

2.9 Summary

This chapter introduced the major concepts and components required to make
parallel and distributed computing a reality. The design of a distributed computing
system is a very complicated task. It requires a solid understanding of the design issues

and of the theoretical and practical aspects of their solutions.

Distributed Computing covers the area formerly known as Meta-computing and is
the pre-cursor to what we would currently call the Grid. The Grid is typically used to
solve problems that would traditionally have run on a single High Performance
Computer, but due to memory, storage and/or computational demands it is forced to

execute across multiple resources.

38

CHAPTER 3.

GRID COMPUTING

Computational Grids combine heterogeneous, distributed resources across
geographical and organisational boundaries. Grids may be formed to provide
computational power for CPU-intensive simulation, high-throughput computing for
analysing many small tasks or for data intensive tasks such as those required by the

LHC Experiments.

This chapter discusses in detail the main concepts and components that combined

make computational Grids possible.

3.1 Introduction
In 1998 Ian Foster and Carl Kesselman provided the first definition of what a Grid is:
“A computational grid is a hardware and software infrastructure that provides
dependable, consistent, pervasive, and inexpensive access to high-end computational

capabilities™ [32].

There have been many other attempts to define what a Grid is: “a grid is a software
framework providing layers of services to access and manage distributed hardware and
software resources” [90] or a “widely distributed network of high-performance
computers, stored data, instruments, and collaboration environments shared across

institutional boundaries” [91].

In 2001, Foster, Kesselman and Tuecke refined their definition of a Grid to
“coordinated resource sharing and problem solving in dynamic, multi-institutional

virtual organisations” [36]. The latter definition is the most commonly used today to

define a Grid.

Grid Computing 39

Foster later provided a three point check-list that could be used to understand what

can be identified as a Grid system. A Grid, according to Ian Foster [92]:

1. Coordinates resources that are not subject to centralised control
2. ...using standard, open, general purpose protocols and interfaces

3. ...to deliver non-trivial Quality of Service (QoS).

Without a single centralised point of control, networks of trust must be established.
Collaborations create Virtual Organisations (VOs) which span traditional organisations
and can be formed dynamically. Users and resources can then be authorised on the Grid

based on their membership of a particular VO.

All of the above are only possible through the adoption of standard, open and general
purpose protocols and interfaces otherwise it will be impossible for all the different
system components to interoperate. The wide range of hardware and software available
on a Grid means that the only hope for interoperability is that an application written for

one middleware platform can communicate in the same language as another.

The delivery of non-trivial Quality of Service (QoS) provides the motivation to
overcome all of these hurdles. As network speeds have increased, it has become feasible
to harness massive amounts of computing power across multiple domains utilising
resources that might otherwise be idle. Hence, we are considering how the components
that make up a Grid can be used in a coordinated way to deliver combined services,

which are appreciably greater than the sum of the individual components.

There are three main characteristics that distinguish a Grid from other common

distributed systems [93]:

* Heterogeneity: A multiplicity of Grid resources are heterogeneous and might
span numerous administrative domains across geographically distributed
distances.

* Scalability: A Grid is able to grow from few resources to a huge global

infrastructure.

Grid Computing 40

* Adaptability: With so many resources and services contributed by multiple
geographically distributed organisations, the probability of resource and service
failures is extremely high. The Grid applications and the resource managers
must dynamically adapt their behaviour to extract the maximum performance

from the available resources and services.

3.2 Architecture

The Grid is composed of multiple layers with higher layers making use of the
functionality provided by lower layers. This is also referred to as the “hourglass model”
[94], where the neck defines a limited number of key protocols, which can be used by a
large number of applications, to access a large number of resources. The key layers that
are required in a Grid are shown in Figure 3.1 and are discussed in the following

subsections.

APPLICATIONS

v

COLLECTIVE ~
Resources, Information, Data, Security

RESOURCE > MIDDLEWARE

CONNECTIVITY

Y

FABRIC
CPU, Network, Storage

Figure 3.1: The layered architecture of the Grid. From [32].

3.2.1 Fabric
The fabric layer comprises all the resources geographically distributed across the

world and accessible from anywhere on the Internet. These “resources” are logical

Grid Computing 41

entities such as a distributed file system, computer cluster, PCs or Workstations, storage
devices and databases. Hence, computational resources, high performance networks,
storage devices and scientific instruments all combine to form the underlying fabric
which forms a Grid. The fabric layer provides the resource specific implementations of

operations that will be required by the resource layer.

All the available resources on a Grid should implement introspection and resource
management mechanisms. The introspection mechanisms permit the discovery of their
structure, of their capabilities and of their state and the resource management

mechanisms provide control over the delivered quality of service.

3.2.2 Connectivity

The connectivity layer defines the core communication and authentication protocols
required for the Grid. The communication protocols enable the exchange of the data
between the resources of the fabric layer while the authentication protocols provide
secure mechanisms to identify the users and the resources. Thus, this layer binds the
fabric resources together by providing the core communication and the security
protocols to support the information exchange between the Grid resources in the fabric

layer.

In order to support transparent access to the resources, a single sign-on authentication
mechanism is required and without it, the users would have to verify their identity

before using every single resource on a Grid.

3.2.3 Resource

The role of the resource layer is to allow the user of a Grid to interact with the remote
resources and services. It defines the protocols for the secure negotiation, initiation,
monitoring and control of the sharing operations on the individual resources. The
resource protocol layers form the “neck” of the “hourglass model” architecture and thus,
should be limited to a small and focused set. Secure connections are established through

the connectivity layer to the resources in the fabric layer.

Grid Computing 42

There are two classes of protocols in the resource layer: the information and the
management protocols. The information protocols are used to obtain information from
a Grid regarding the state and the structure of a resource and the management protocols
are used to negotiate the access to a shared resource by specifying a set of resource

requirements such as the QoS.

3.2.4 Collective

The collective layer provides services that combine all of the resources, represented
by the resource layer, into a single global image. The collective layer provides protocols
and services associated with a collection of resources and it defines the protocols for

coordinating the utilisation of multiple resources.

3.2.5 Applications
The applications layer comprises the user applications that operate within the
environment of a Virtual Organisation. Developers can use the services offered at the

lower levels to compose applications that can take advantages of the resources within

the Grid.

The application layer includes the high-level user applications in a Grid. The
applications are able to utilise the implementations of protocols defined within each
lower layer by using the appropriate APIs provided by a Grid middleware. This layer is

the one that the users of a Grid interact with.

3.3 Open Standards

Open standards are essential to ensure the interoperability and the re-use of the
components in a Grid environment. The Open Grid Forum (OGF) [95] is leading the
global standardisation effort for the Grid computing and trying to accelerate the
adoption of the Grid computing worldwide. The OGF was formed in 2006 by a merge
of the Global Grid Forum (GGF) [96] and the Enterprise Grid Alliance [97].

Grid Computing 43

3.3.1 OGSA

The Open Grid Services Architecture (OGSA) [98] was the first Grid standard
proposed in 2002. The OGSA defines a set of standard protocols and interfaces for
managing the resources as part of a Service Orientated Architecture (SOA). The goal of
the OGSA is to standardise all the common services aiming to boost the interoperability

between the services by specifying a set of standard interfaces for these services.

The OGSA stretches the existing Web Services framework to provide additional
functionality required by a Grid Service, such as creation, destruction, discovery and
notification. A Grid service is “an extended web service that provides a set of well-

defined interfaces and that follows specific conventions” [98].

The Open Grid Services Infrastructure (OGSI) [99] defines a set of conventions and
extensions on the use of the Web Service Definition Language (WSDL) and the XML
Schema to enable stateful Grid services. The WSDL is used to describe the Web Service
interfaces and the XML Schema is used to complete those descriptions between a
service and a client. The OGSI was replaced by the Web Services Resource Framework

(WSRF) in 2004.

3.3.2 WSRF

In 2004, the standard was proposed by the Globus Alliance [100], IBM [101] and HP
[102] and was standardised by the Organisation for the Advancement of Structured
Information Standards (OASIS). The Web Services Resource Framework (WSRF) [103]
has been designed to solve the disadvantages of the OGSI specification [104]: it is too

large, it does not work well with the existing Web Services and it is too object-oriented.

The WSRF is concerned with the creation, addressing, inspection, and lifetime
management of the stateful resources. The WSRF retains most of the functionality of
the OGSI, but it is repackaged into six standards using existing Web Service standards.
The WSRF uses the WSDL version 1.1 for the interface definition and it explicitly
separates a stateless Web Service from a stateful Grid resource wrapped by a web
service. The resource or state information of an interaction is specified explicitly by the

client during an interaction.

Grid Computing 44

A normal Web Service is stateless; it contains no data between invocations. On the
other hand, a client of a stateful Grid service can communicate with the resource
services which allow data to be stored and retrieved. The composition of a stateful
resource and a Web service that participates in the implied resource pattern is termed a
WSResource. The framework describes the WS-Resource definition, and describes how
to make the properties of a WS-Resource accessible through a Web Service interface,

and how to manage it during the WS-Resource’s lifetime.

3.4 Grid Middleware

A Grid Middleware implementation can be seen as a layer between an application
programme and a network, managing all the interactions between different programmes
across heterogeneous computing platforms distributed around the world. It enables the
sharing of heterogeneous resources and it is installed and integrated into the existing
infrastructure of the involved Virtual Organisations, providing a special layer placed

among the heterogeneous infrastructure and the specific scientific programmes.

The Grid middleware provides users with seamless computing ability and uniform
access to the available resources in a heterogeneous Grid environment overcoming
several challenges inherited from the nature of the Grid as described in Section 3.1; the
heterogeneity in grid environments, the multiple administrative domains and autonomy

issues and the scalability issues.

Several Grid middleware systems have been developed as a result of various
academic research projects led by different organisations. These Grid middleware
systems provide a grid-computing infrastructure where users access computer resources
without knowing where these resources are coming from. Some of the most common

middleware implementations are discussed in this section.

3.4.1 Globus Toolkit
The Globus project, started in the late 1990s, originated from the I-WAY project
[105] in the United States. The Globus Toolkit (GT) has produced many of the

fundamental standards and components that underly many of the Grids today. Version 2

Grid Computing 45

of the toolkit, released in 2002, provides “non-Web Service” implementations of
features such as GridFTP, which still form the basis of many Grids today. GT version 3
includes OGSA-compliant services, called the Web Services (WS) components, and
many other services, programmes, utilities, which are non-OGSA services and are called

the pre-WS components, such as the function modules in GT2.

The version 4 of the toolkit, released in 2005, was the first implementation of OGSA
and WSRF compliant version for supporting the Web Services. It includes a complete
implementation of the WSRF standard and containers are provided for Java, Python and
C which implement all the standard requirements such as the security, discovery and
management. GT4 provides service components in common runtime components,
security, information management, execution management and data management. The
components of the GT4 can be seen in Figure 3.2 and the most important components

are described below.

Globus Toolkit® version 4 (GT4)

I Community
| scheduler
I Framework

P> -G;d- ey S
I Telecontrol | | WebMDS | ! Wp?f“(;zl:e
I Protocol |
e
| Workspace c
§ Management e WS Core
Grid +
Aesource Java
Trigger WS
Allocation & ug WS Core Components
Managemant
e
;auuma . Maﬂ::;?w& C Common Non-Ws
Allocation & | * Components
"-‘"*‘"“"Em : (os2) Libraries p
eXtensible
[a]
(XI0)

Execution Information Common
Management = Services Runtime

: Core GT Comgonent: public interfaces frozen between incremental releases; best effort suppon
I Contripution/Tech Preview: public interfaces may change between incremental releases

: Deprecated Component: not supported; will be dropped in a future release

Figure 3.2: Globus Toolkit 4 Architecture. From [106].

Grid Computing 46

Globus Resource Allocation and Management

Mechanisms to start and monitor jobs on remote machines are needed in order to be
able to run jobs on a Grid. By using the Globus Resource Allocation and Management
(GRAM), it is possible to submit, cancel and check the status of remote jobs. A GRAM

client is used to interact with the remote machines.

The remote machines run the server component of GRAM, also known as the
“Gatekeeper”, allowing the clients to connect. When a client is connected, GSI is used
for authentication and once a client is authenticated and authorised, the Grid user who
submitted the job is mapped to a local user, which runs a GRAM job manager managing
the given job. GRAM does not include any scheduling logic and therefore, it interacts
with a scheduling system such as Condor. The job manager runs while the job is active

and can be queried by the client regarding any changes in the status of the job.

GRAM also handles the staging of the files, which is the transfer of files to and from
the remote machine, using the Global Access to Secondary Storage (GASS). GASS is
designed to enable easy access to remote files possibly stored on the submitting

machine.

GridFTP

GridFTP is a secure, reliable and high performance data transfer protocol designed
for wide-area networks with a high bandwidth Grid environment. It is based on the File
Transfer Protocol (FTP) with extended functionality to offer features specifically
needed in a Grid environment. The Globus Security Infrastructure (GSI) is used to

secure both the control and the data channel of the FTP communication.

GridFTP supports parallel data transfers that involves splitting a given file into
chunks and transferring the chunks simultaneously from different servers that store the
same file. When only one copy of the data is available, parallel data transfer still has the
potential to offer increased performance because the individual data streams can be
routed individually. Reliable data transfers are also needed in a Grid environment and

therefore, GridFTP is able to restart and to resume the failed transfers.

Grid Computing 47

Replica Management

Multiple copies of the same data, called replicas, are stored in a Grid environment for
the sake of performance, robustness and scalability. The Replica Management manages
the data and it can select the best suited replicas for a given scenario. By using the
Replica Management, the users can create, delete and find the requested replicas and

they can also obtain information regarding the resources storing them.

The Replica Management uses the Replica Catalogue in order to store meta-data
information. The Replica Catalogue stores the association between logical file names
(LFN) and the physical file names (PFN) which are often stored as URLs that can be
used to access the files. This scheme allows the PFN to change without any
misbehaviour and also, the best replica is chosen during the runtime, thus, applications
are not bound to a specific instance of a data set. The Replica Catalogue also stores
information about the resource that stored the replica and this information is used by the
Replica Management to select the best suited replicas for a given scenario.
Unfortunately, the Replica Management system has many scalability issues due to its

non-distributed nature.

Grid Security Infrastructure

The Grid Security Infrastructure (GSI) is the most widely used component of the
Globus Toolkit. It provides the tools and the services for the authorisation and
authentication of the users using a “Public Key Infrastructure” (PKI). The users create a
short-lived proxy which is then used to authenticate with the resources. Organisation
policies normally limit the lifetime of the proxy to one day or even less. Since it is
unacceptable to enter a password every time a communication is initiated in a Grid
environment, GSI supports “single sign-on” authentication. With the single sign-on
feature, a user enters his password only once and then remains authenticated for all the
Grid elements. The MyProxy credential store provides a secure location to store long-

lived credentials which can then be retrieved by authorised services.

Monitoring and Discovery Service
The Monitoring and Discovery Service (MDS) is a system for publishing and

querying the status of resources and their configuration and it can be used with the

Grid Computing 48

GRAM service to create a scheduler for a Grid.

MDS consists of three major components: the “Grid Index Information Service”
(GIIS), the “Grid Resource Information Service” (GRIS) and the “Information
Providers” (IPs). IPs are the interfaces that receive information about a resource from
resource-specific monitoring systems. GIIS collects the information from several GRIS
enabled resources to allow searching through the information to find a suitable resource.
A GIIS can connect to another GIIS forming several levels of GIISs; a Grid could have

one GIIS per site and one global Grid-level GIIS.

MDS supports two schemas: the MDS Monitoring and Discovery Service core
schema containing basic information and the “Grid Laboratory Uniform Environment”
(GLUE) [107] schema, which is an effort between a lot of Grid projects to define the
information needed to represent the Grid resources. The information offered by MDS
about the resources could be the load status, the CPU, the disk, the memory and the

network information.

The Globus Alliance has announced the release of the Globus Toolkit 5 in late 2009
[108]. A major change will be the abandonment of GRAM4 in favour of an enhanced
version of GRAM?2, called GRAMS, which will solve scalability issues and add new
features. Also, the monitoring and discovery tasks currently performed by MDS will be

replaced by a Crux-based Integrated Information Services (IIS) [109].

3.4.2 Condor

The Condor project, developed at the University of Wisconsin-Madison, started in
late 1980s. It is a freely available project designed to encapsulate and run large
collections of distributed computing resources with the aim of giving scientists more
access to available computing power. Condor is a distributed batch computing system
and its main focus is on high-throughput computing (HTC) and on CPU harvesting

giving users the ability to run huge numbers of tasks over long periods of time [110].

Condor provides services for Job Queuing, Job Scheduling, Resource Monitoring and

Grid Computing 49

Resource Management. When the users want to submit a job, they have to specify their
requirements in a small file called a ClassAd and the Condor system will take care of
the rest. A typical Condor installation might exploit and use all the wasted computing

power in idle workstations.

Condor's architecture consists of three main components: the Agents, the
Matchmakers and the Resources. The core of the system is the Matchmaker. Users
specify their requirements using the “Classified Advertisement” (ClassAd) language and
submit them to the Agents that will find Resources suitable for the jobs via a
Matchmaker. ClassAds allow users to define custom attributes for resources and jobs
such as the memory and the CPU. On the other side, the Resources publish their
information to the Matchmaker and the Matchmaker then matches job requests with the
available Resources. Every community of Agents and Resources that is served by a
Matchmaker is known as a “pool”. Every single “pool” will typically be administered

by a different institution or organisation.

An important feature of Condor is that it saves the entire state of a programme with
checkpoints and in the event of a resource failure, the job will be migrated to another

available resource and it will be restarted from the saved checkpoint.

Condor-G is the combination of Condor and Globus Toolkit as illustrated in Figure
3.3. Condor is used for the local job management while Globus is used to perform the

secure inter-domain communication.

Condor-G contains a GASS server, used to transfer the executable, the standard input
(stdin), the standard output (stdout), and standard error (stderr) files to and from the
remote job execution site. Condor-G uses the GRAM protocol to contact the remote
Globus Gatekeeper to request that a new job manager should be started. GRAM is also
used to monitor the status of the job and it is also in charge to detect and handle any

potential resource crashes.

Grid Computing 50

Job Submission Machine | Job Execution Site

Cordor-G
\ Scheduer

f -

Site Job Scheduler
- (PES, Cordor, LEF, LeadLeveler, HOE =i

= =
==

|
Figure 3.3: Remote Execution by Condor-G on Globus resources. From [111].

343 LCG

The LHC Computing Grid (LCG) is a worldwide computational Grid targeted at
providing computational power and storage space for the requirements of the LHC
experiments. To achieve this, the LCG version 2 (LCG-2) takes its software components
from multiple middleware projects such as the Globus, the Condor and the European
DataGrid (EDG) [112] project. The LCG project is also closely related to the Enabling
Grids for E-SciencE (EGEE) project. The most important LCG-2 components [113] will

be described below.

Workload Management System

In order to submit jobs to the LCG-2, the users need to log in to a machine with a
User Interface (UI) installed that interacts with the Workload Management System
(WMS). When the jobs have been submitted, the Ul connects to the Resource Broker
(RB) and then, the RB handles the scheduling, the submission of the jobs to the remote

Grid Computing 51

machines, the transferring of the files and the logging. The RB, at first, uses the Globus
Security Infrastructure (GSI) to authenticate the Grid users and then it copies the input
sandbox, which is a collection of files stated by the user on the Ul required for the job,
to its local storage. The WMS uses the Matchmaker, the Information System (IS) and
the Replica Location System (RLS) from the Data Management System (DMS) to find
the best suited resources for a given job considering many requirements such as the

user's specified constraints and the queue lengths.

The Matchmaker works as the matchmaking mechanism of Condor and it also uses
the ClassAds files. Condor-G is used to submit the jobs to the best suited Computing
Element (CE) and along with the job, a monitoring job called the “Grid Monitor” is also
submitted. The CEs start the Gatekeeper, accepting incoming jobs from Condor-G, and
start a GRAM job manager. The Job Manager submits the job to a site-specific batch

system.

The Job Manager is only used to submit and to control the jobs but not to query
about their status. This task is performed by the Grid Monitor job submitted along with
the jobs and the reason for using the Grid Monitor and not the Job Manager to monitor
the status of the jobs, is performance; the Job Managers use a lot of resources on the CE
since the Gatekeeper starts a Job Manager for every job and these Job Managers run
until the jobs finish successfully or unsuccessfully. The Grid Monitor on the other hand
can monitor all the jobs from the same user on a CE and can be instructed to exit as
soon as jobs have been submitted to the batch system, resulting in a much smaller load

on the CE. The machines running the jobs are called the “Worker Nodes” (WNs).

Data Management System

The Data Management System (DMS) is composed of the Replica Location System
(RLS) and the Storage Elements (SEs). The RLS is queried to find and retrieve the data,
the meta-data and the information about the SE storing the data. The SEs are computers
with access to large amounts of data storage. A GridFTP server is running on every
single SE in order to make the storage available to the Grid users once they have the
PFN of the required data. The PFN is discovered by querying the RLS which contains
the correlations between the LFNs and the PFNs.

Grid Computing 52

The RLS system used in the LCG-2 is not the same as the one used in the Globus
Toolkit; the Globus Toolkit RLS was developed in collaboration with the EDG but their
paths divided and two versions of the RLS were implemented. LCG-2 uses the EDG
distributed version of the RLS.

Information System

The LCG-2 Information System (IS) is based on the Monitoring and Discovery
Service (MDS) system from the Globus Toolkit, using the GLUE schema to organise
the information. The IS is a modified version of the MDS system that deals with
scalability and robustness issues. The IS uses the information providers to provide
information to a GRIS, and the GRIS relays this information to a site level GIIS. There
is no regional or Grid-level GIIS in the IS because the overhead of the regional GIIS-
system was decreasing the overall performance and also, the Grid-level GIIS was
unstable when collecting information from many sites and being queried by many users

and RBs at the same time.

LCG-2 is using the Berkeley Database Information Index (BDII) to serve as the
Grid-level information service. The BDII consists of two LDAP-servers where one of
them contains a read-only database and the other, a write-only database. The BDII
executes queries from the users and the RBs on a read-only database whilst updates a

write-only database with information coming from the GIISes.

Another system being used for monitoring and information is the Relational Grid
Monitoring Architecture (R-GMA) [114]. The R-GMA makes all the monitoring
information appear like one large relational database that may be queried by the users
and by Grid applications to find the information required. As illustrated in Figure 3.4, it
consists of the Producers which register themselves with the Registry and publish the

information into R-GMA, and the Consumers which subscribe.

The Logging and Bookkeeping (LB) database service is updated by the WMS and the
CE as jobs progress through the system and the users can query the status of their jobs
via the WMS.

Grid Computing 53

‘ Producer }

%Of ¢ /
oy,
iy,
Transfer el
Data b Reglsn'y
‘\0.;\ P R4
-
O
Y M
‘ Consumer

Figure 3.4: Components of the R-GMA. From [115].

Authorisation and Authentication System

The Virtual Organisation Membership Service (VOMS) [116] is being used to
manage the membership information about a user's role and privileges within a VO.
When a proxy is created, a VOMS server is contacted and it returns a mini certificate
known as the “Attribute Certificate” (AC) which is then signed by the VO. The AC

contains the user's membership information and any associated roles within the VO.

3.4.4 gLite

The gLite middleware is based on the EDG and the LCG middleware
implementations. The convergence with the LCG-2 middleware was reached in May
2006 when gLite version 3.0 was released and became the official middleware for the
EGEE project and it is currently the default Grid middleware for the WLCG. The main
differences between the gLite 3.0 and the LCG-2 middleware implementations are

outlined below.

Workload Management System

In gLite 3.0, there is a Web Service to the glite WMS, known as the WMProxy, that
allows not only single job submissions but also collections of jobs submissions, known
as bulk submissions. This is, certainly, a much more efficient way compared to the

LCG-2 WMS's single job submissions.

Grid Computing 54

The gLite's RB uses information from the “Information Super Market” (ISM) to
match the requirements for a job with the resources. The CE can retrieve and store
information to the ISM. Condor-G is used for the job submission to a gLite CE and
Condor daemons are used to submit jobs via the Batch Local ASCII Helper (BLAH)
[117] abstraction layer. An alternative architecture is available. The Computing
Resource Execution And Management (CREAM) [118] service is a simple and

lightweight service for job management operation at the CE-level.

Data Management System

The most important difference between the gLite's and the LCG's data management
system is that the glite uses the File Transfer Service (FTS) [119]. The FTS is a low
level data movement service where a user can schedule asynchronous and reliable point-
to-point file replication from the source to the destination while participant sites can

control the network usage. The FTS manages the transfers using the GridFTP.

3.5 The CMS Computing Model

The CMS distributed computing and analysis model [120] is designed to serve,
process and store the large amount of data that will be generated when the CMS
detector starts taking data. The data will be distributed and processed over many
computing centres. A set of CMS-specific Workload and Data Management tools and
services have been deployed in order to enable the CMS distributed analysis. These

CMS-specific tools and services have been built on top of the existing Grid services

[59].

3.5.1 Data Management System

The CMS DMS provides the infrastructure to manage the large amounts of data
produced, processed and analysed in a distributed computing environment. Files are
grouped together into blocks of files to simplify bulk data management and transfer and
these file blocks are then grouped into datasets. A file block contains files that can be
processed and analysed together. The tracking of the location of the data is 'file block-
based' and the tracking information provides the name of the sites hosting the data but

not the physical location of the files nor the composition of the file blocks. In order to

Grid Computing 55

avoid scaling storage issues and to optimise the data transfer, the average file size is at
least 1GB and this is accomplished by merging smaller output files produced by
individual jobs into larger files. This section describes the CMS-specific DMS tools and

services.

Dataset Bookkeeping Service

The Dataset Bookkeeping Service (DBS) [121] catalogues the CMS-specific data
definitions, such as the algorithms and the configurations used to process the data, and it
provides the means to discover, describe and use the CMS events data. The DBS is used
in the analysis and production systems via a DBS API and the users can discover the

data via a Web Browser or a Command Line Interface tool (CLI).

The DBS is a multi-tier web application that supports many database systems such as
the ORACLE, the MySQL and the SQLite. A single instance Global DBS hosted at
CERN is used to describe CMS-wide data and many local DBSs are used to describe
data produced by the Monte Carlo production, physics groups or individual physicists.

Local Data Catalogue

A CMS-specific application is aware only of the logical files and relies on a local
catalogue service to gain access to the physical files. Every CMS site has a Trivial File
Catalogue installed that builds site-specific physical file paths consisting of the logical

file name and the access protocol.

Conditions Data

The conditions data describe the alignment and the calibration of the detector. CMS
uses a caching system for the conditions data, the Frontier [122], because these
conditions data are frequently accessed by many processing jobs worldwide. The
Frontier queries a central database located at CERN and then caches the results with the
help of the Squid proxy server [123] deployed at every CMS site. The CMS applications

then use an instance of a Squid proxy server to read the conditions data.

PhEDEXx
All the CMS data placement and transfer operations are performed by the Physics

Grid Computing 56

Experiment Data Export (PhEDEx) [124] system where distinct storage areas are
represented as a node and the links between the nodes define the transfer topology. The
transfer of the data occurs when a user requests a specific set of data to a node via a web
page and this operation has to be approved by the Data Manager of this node. The user
has to specify the destination node only; the optimal source node is determined
automatically by PhEDEXx that calculates the 'least-cost' path according to the available

file replicas, the recent transfer rate and the size of the queue over that link.

3.5.2 Workload Management System

The CMS-specific WMS is responsible for the user's processing requests, the
creation of the jobs that process the data, the submission of the jobs to a local or to a
distributed system, the monitoring of the jobs and the retrieval of their outputs. CMS,
uses two WMS tools; the Monte Carlo Production Agent (ProdAgent) [125] and the
CMS Remote Analysis Builder (CRAB) [126]. The ProdAgent is optimised to perform
the previously mentioned operations in a controlled environment whereas CRAB is

optimised for user analysis.

ProdAgent

The architecture of the Monte Carlo (MC) production system consists of the Request
System (ProdRequest) that acts as a front-end application for the user production
request submissions into the production system; the Production Manager
(ProdManager) that manages these user requests, performing accounting and allocating
work to a collection of Production Agents (ProdAgents). The Production Agents request
for work when resources are available and manage the job submissions and the

resubmissions.

CRAB

CRAB has been developed as a user-friendly application to handle the CMS data
analysis in a local or a distributed environment, hiding from the user the complexity of
the Grid and of the CMS services. CRAB is coded in Python and it provides plug-ins for
various Grid middleware implementations such as the gLite [127], the OSG [52] and the
ARC [54] used in the NorduGrid.

Grid Computing 57

The user can submit and manage jobs using either a direct CRAB client or an
intermediate CRAB Server. The CRAB Server automates the analysis workflow,
handling the errors and the resubmissions automatically. The functionalities that CRAB

provides, as illustrated in Figure 3.5, are:

« Data discovery and location. Queries the CMS-specific data catalogues, DBS
and PhEDEXx to find which data is needed and where they are located.

« Job preparation. Packs the code of the user and the environment and sends it to
the remote sites.

« Job splitting. Decides how to split the complete set of event collections among
several jobs, each of which will access a subset of the event collections in the
selected dataset, according to the requirements of the user.

« Job submission. Submits the jobs to the CMS sites.

« Job monitoring. Monitors the status of the submitted jobs by querying the Grid
services. A more elegant approach will be described in the next section.

* QOutput data handling. Copies the produced output to a remote site or, if the
output size is small, returns it to the user. Finally, it publishes the produced data

into a local DBS to be used by other physicists.

Data dicovery
Job flow CRAB Ul and location

dataset

—_—

Data flow

Info flow LFN, fileblocks
=

fileblocks

@-F\ & % ¥ StorageElements
RS N

0 b

’\0 - {

direct ™. Computing Tier2

\
‘Zl_bmwsewon}v Element

Data
publication

CRAB Server

Computing
Element

Storage
Element

WMS

\ remote Tier2)

Figure 3.5: The CRAB Workflow Schema. From [59].

Grid Computing 58

3.6 Monitoring with the Experiment Dashboard

The Worldwide LHC Computing Grid (WLCG) provides data storage and
computational resources to the High Energy Physics (HEP) community. Operating the
heterogeneous WLCG infrastructure, which integrates more than 140 computing centres

in 33 countries all over the world, is a complicated task.

Reliable monitoring is a necessary condition for the production quality of the
distributed infrastructure. Monitoring of the computing activities of the main
communities using this infrastructure in addition provides the best estimation of its

reliability and performance.

The importance of flexible monitoring tools focusing on the applications has been
demonstrated to be essential not only for “power-users” but also for individual users.
For the power users, a very important feature is to be able to monitor the resource
behaviour to detect the origin of failures and optimise their system. They also benefit
from the possibility to “measure” efficiency and evaluate the quality of service provided
by the infrastructure. Individual users are typically scientists using the Grid for analysis
data, verifying hypothesis on data sets they could not have available on other computing
platform. In this case, reliable monitoring is a guide to understand the progress of their

activity, identify and solve problems connected to their application.

This is essential to allow efficient user support by “empowering the users” in such a
way that only non-trivial issues are escalated to support teams, for example, jobs on
hold due to scheduled site maintenance can be identified as such and the user can decide

to wait or to resubmit.

In order to monitor the computing activities of the LHC experiments, several specific
monitoring systems were developed. Most of them are coupled with a specific Data
Management and a Workload Management System of the LHC Virtual Organisations
(VOs), for example with PhEDEx [124], Dirac [128], Panda [129] and AliEn [130]. In
addition, there was a generic monitoring framework developed for the LHC
experiments; the Experiment Dashboard. If the source of the monitoring data is not VO-

specific, the Experiment Dashboard monitoring applications can be shared by several

Grid Computing 59

VOs. Otherwise, the Experiment Dashboard offers experiment-specific monitoring

solutions for the scope of a single experiment.

The Experiment Dashboard system provides monitoring of the WLCG infrastructure
from the perspective of the LHC experiments and covers the complete range of their
computing activities. The goal of the project is to provide transparent monitoring of the
computing activities of the LHC VOs across several middleware platforms such as the

gLite, the OSG and the ARC.

Currently the Experiment Dashboard covers the full range of the LHC computing
activities: job processing, data transfer and site commissioning, and it is used by all the

four LHC experiments, in particular by the two largest ones, the ATLAS and the CMS.

The Experiment Dashboard provides monitoring to various categories of users:

e Computing teams of the LHC VOs.
* VO and WLCG management.
* Site administrators and VO support at the sites.

* Physicists running their analysis tasks on the EGEE infrastructure.

The Experiment Dashboard allows to estimate the quality of the infrastructure and to
detect any problems or inefficiencies. Furthermore, it provides the necessary
information to conclude whether the LHC computing tasks were accomplished. The
main computing activities of the LHC VOs are the data distribution, the job processing,

and the site commissioning. The Experiment Dashboard covers all these activities.

The Experiment Dashboard is intensively used by the LHC community. According to
the Dashboard Web Statistics web page [131], only for the CMS Dashboard, more than
2,500 unique visitors use it per month and approximately 30,000 pages are accessed

daily.

Grid Computing 60

3.6.1 Experiment Dashboard Framework

The structure of the Experiment Dashboard monitoring system consists of the
information collectors, the data repositories, normally implemented in ORACLE
database, and the user interfaces. The Experiment Dashboard uses multiple sources of

information such as [60]:

* Other monitoring systems, like the Imperial College Real Time Monitor
(ICRTM) [132] or the Service Availability Monitoring (SAM) [133].

» glite Grid services, such as the Logging and Bookkeeping service (LB) [134] or
CEMon [118].

* Experiment specific distributed services such as the ATLAS Data Management
services or distributed Production Agents for CMS.

* Experiment central databases such as the PANDA database for ATLAS.

* Experiment client tools for job submission, like Ganga [135] and CRAB.

* Jobs instrumented to report directly to the Experiment Dashboard.

Information can be transported from the data sources via various protocols. In most
cases, the Experiment Dashboard uses asynchronous communication between the source
and the data repository. For several years, in the absence of a messaging system as a
standard component of the glite middleware stack, the MonALISA [136] monitoring
system was successfully used as a messaging system for the Experiment Dashboard job
monitoring applications. Currently, the Experiment Dashboard is being instrumented to
use the Messaging System for the Grid (MSG) [137] for the communication with the

information sources.

A common framework providing components for the most usual tasks was
established to fulfil the needs of the dashboard applications being developed for all the
experiments. The schema of the Experiment Dashboard framework is presented in

Figure 3.6.

Grid Computing 61

= —_—
] [L¥e)
r E Data Storage o<
2 1y a]
=i and LI
5 8 aggregation 3 g
1]
2a ggreg oF achine

Readable
Format

DB Access
Layer (DAO)

T
E Dashboard

Agents

Figure 3.6: The Experiment Dashboard Framework Schema.

The Experiment Dashboard framework is implemented in the Python programming
language. The tasks performed on regular basis are implemented by the Dashboard
agents. The framework provides all the necessary tools to manage and monitor these
“agents”, each focusing on a specific subset of the required tasks, such as collection of

the input data or the computation of the daily statistics summaries.

To ensure a clear design and maintainability of the system, the definition of the actual
monitoring application database queries is decoupled from the internal implementation
of the data repository. Every monitoring application implemented within the Experiment
Dashboard framework comes with the implementation of one or more Data Access
Object (DAO), which represents the “data access interface”; a public set of methods for
the update and retrieval of information. Access to the database is done using a
connection pool to reduce the overhead of creating new connections, therefore the load

on the server is reduced and the performance is increased.

The Experiment Dashboard requests are handled by a system following the “Model-
View-Controller” (MVC) pattern. They are handled by the “controller” component,
launched by the apache 'mod python' extension, that associates the requested URLs
with the corresponding “actions”, executing them and returning the data in the format
requested by the client. All actions will process the request parameters and execute a set

of operations, which may involve accessing the database via the DAO layer. When a

Grid Computing 62

response is expected, the action will store it in a python object, which is then
transformed into the required format (HTML page, plain XML, CSV, image) by the
“view” components. Applying the view to the data is performed automatically by the

controller.

All the output data produced by the Experiment Dashboard can be retrieved in
HTML, so that it can be accessed by any browser. The framework of the Experiment
Dashboard also provides the functionality to retrieve information in XML (eXtensible
Markup Language), CSV (Comma Separated Values), JSON (JavaScript Object
Notation) or image formats. This flexibility allows the system to be used not only by the
users but also by other external, third party, applications. A set of command line tools is

also available.

The current web page frontends are based on XSL style sheet transformations over
the XML output of the HTTP requests. In addition, in some cases the interfaces follow
the AJAX model, triggering javascript issues both in debugging and browser support.
Recently, support for the Google Web Toolkit (GWT) [138] has been added to the
framework which gives many benefits both for the users and the developers such as

compiled code, easier support for all browsers and out of the box widgets.

All components are included in an automated build system based on the Python
distutils, with additional or customised commands enforcing strict development and
release procedures. In total, there are more than fifty modules in the framework, and
fifteen of them being common modules offering the functionality shared by all the

applications.

3.6.2 Job Processing and the Experiment Dashboard Applications for Monitoring
The LHC job processing activity is divided in two categories: processing raw data
and large-scale Monte-Carlo (MC) production, and user analysis. The main difference
between the mentioned categories is that the first one is a large scale, well-organised
activity, performed in a coordinated way by a group of experts, while the second one is

chaotic data processing by members of the distributed High Energy Physics community.

Grid Computing 63

Users running physics analysis do not necessarily have enough knowledge about the
Grid and profound expertise in computing in general. Clearly, for both categories of the
job processing, complete and reliable monitoring is a necessary condition for the

success of this activity.

The organisation of the Workload Management Systems (WMSs) of the LHC
experiments differs from one experiment to another. While in the case of ALICE and
LHCb the job processing is organised via a central queue, in the case of ATLAS and
CMS, the job submission process is distributed without any central point of control as in
ALICE or in LHCb. Therefore, the job monitoring task for ATLAS and CMS is much

more complicated and it is not necessarily coupled to a specific WMS.

The Experiment Dashboard provides several job monitoring solutions for various use
cases, namely the generic job monitoring applications, monitoring for ATLAS and CMS
production systems, and applications focused on the needs of the analysis users. The
generic job monitoring, which is provided for all LHC experiments, is described in
more detail in the next section. Since the distributed analysis is currently one of the
main challenges for the LHC computing, several new applications were built recently

on top of the generic job monitoring, mainly for monitoring of the analysis jobs.

3.6.3 Experiment Dashboard Generic Job Monitoring Application

The overall success of the job processing depends on the performance and the
stability of the Grid services involved in the job processing and on the experiment-
specific services and software. Currently, the LHC experiments are using several
different Grid middleware platforms and therefore a variety of Grid services. Regardless
of the middleware platform, access from the running jobs to the input data as well as
saving output files to the remote storage are currently the main reasons for the job

failures.

Stability and performance of the Grid services, such as the Storage Element (SE), the
Storage Resource Management (SRM) [139] and various transport protocols, are the

most critical issues for the quality of the data processing. Further on, the success of the

Grid Computing 64

user application depends also on the experiment-specific software distribution at the
site, the Data Management System of the experiment and the access to the alignment

and calibration data of the detector known as the “conditions data”.

These components can have a different implementation for each experiment and they
have a very strong impact on the overall success rate of the user jobs. The Dashboard
Generic Job Monitoring Application tracks the Grid status of the jobs and the status of
the jobs from the application point of view. For the Grid status of the jobs, the
Experiment Dashboard was relying on the Grid related systems as an information
source. In the past, the Relational Grid Monitoring Architecture (R-GMA) and the
Imperial College Real Time Monitor were used as information sources for the Grid job

status changes.

None of the mentioned systems provided complete and reliable data. The recent
development focused on improving this situation, as described later in this section. To
compensate the lack of information from the Grid-related sources, the job submission
tools of the ATLAS and CMS experiments were instrumented to report any job status
changes to the Experiment Dashboard system. Every time when the job submission
tools query the status of the jobs from the Grid services, the status is reported to the
Experiment Dashboard. The jobs themselves are instrumented for the runtime reporting
of their progress at the worker nodes. The information flow of the generic job

monitoring application is described in the next section.

Information Flow of the Generic Job Monitoring Application

Similar to the common Dashboard structure, the job monitoring system consists of
the central repository for the monitoring data (Oracle database), the collectors, and a
web server that renders the information in HTML, XML, CSV, or in an image format.

The main principles of the Dashboard job monitoring design are [60]:

* to enable non-intrusive monitoring; the monitoring process should not have any
negative impact on the job processing itself.
* to avoid direct queries to the information sources and to establish asynchronous

connections between the information sources and the data repository.

Grid Computing 65

When the development of the job monitoring application started, the gLite
middleware did not provide any messaging system, so the Experiment Dashboard was
using the MonALISA monitoring as a messaging system. The job submission tools of
the experiments and the jobs themselves are instrumented to report needed information
to the MonALISA server via the 'apmon' library, which uses the UDP protocol. Every
few minutes the Dashboard collectors query the MonALISA server and store job
monitoring data in the Dashboard Oracle database. The data related to the same job and

coming from several sources is correlated via a unique Grid identifier of the job.

Following the outcome of the work of the WLCG monitoring working groups, the
existing open source solutions for the messaging system were evaluated and as a result
of this evaluation, Apache [140] ActiveMQ [141] was proposed to be used for the
Messaging System for the Grids (MSG). Currently, the Dashboard job monitoring
application is instrumented to use the MSG in addition to the MonALISA messaging

system.

The job status information presented by the Experiment Dashboard is close to the
real-time status. The maximum latency is five minutes, which corresponds to the
interval between the sequential runs of the Dashboard collectors. Information stored in
the central job monitoring repository is being regularly aggregated in the summary
tables. The latest monitoring data is made available to the users. For the long term
statistics, data is being retrieved from the summary tables which keep aggregated data

with hourly and daily time bin granularity.

Instrumentation of the Grid Services for Publishing Job Status Information

As it was mentioned above, information about any job status changes provided by the
Grid-related sources is currently not complete and covers only a subset of jobs. This has
a bad impact on the trustworthiness of the Dashboard data. Though some job
submission tools are instrumented to report any job status changes at the point when
they query the Grid-related sources, this query is done from the user's side. For
example, when a user never requests the status of his jobs and the jobs are aborted, there
is no way for the Dashboard to be informed about the abortion of the jobs. As a result,

they can stay in “running” or “pending” status, unless being turned into the “terminated”

Grid Computing 66

status with “unknown” exit code by a so-called “time-out” Dashboard procedure.

To overcome this limitation, the ongoing development aims to instrument the Grid
services involved in the job processing to publish any job status changes to the MSG as
illustrated in Figure 3.7. The Dashboard collectors consume the information from the

MSG and store it in the central repository of the job monitoring data.

| —
r—

Figure 3.7: Publishing information using the MSG.

The advantages of using the MSG are numerous [62]:

* Common way of publishing information by various information sources.

 Common way of communicating between different components of the WLCG
infrastructure.

* Monitoring information is publicly available to all interested parties.

* Decreasing the load of the Grid Services caused by the regular pooling of

information regarding any job status changes.

When the jobs are submitted via the glLite Workload Management System (WMS),
the LB service keeps full track of the job processing. The LB provides the notification
mechanism which allows to subscribe to the job status changes events and to be notified
as soon as events matching the conditions specified by the user happen. A new
component was developed, the “LLB Harvester” [142], in order to register at several LB
servers and to maintain the active notification registration for each one. The output
module of the harvester formats the job status message according to the MSG schema

and publishes it to the MSG.

Currently, the LB does not keep track of the jobs submitted directly to the Computing
Resource Execution And Management (CREAM) Computing Element (CE). The

Grid Computing 67

CEMon service plays a role similar to the LB but only for jobs submitted to the
CREAM CE. A CEMon listener component is being developed in order to enable job
status changes publishing to the MSG. It subscribes to CEMon for notifications about
job status changes and publishes this information to the MSG.

Finally, jobs submitted with Condor-G do not use the WMS service and
correspondingly do not leave a trace in the LB. The job status changes publisher
component was developed in collaboration with the Condor and the Dashboard teams.
Condor developers have added a job logs parsing functionality to the Condor standard
libraries. The publisher of the job status changes reads new events from standard
Condor event logs, filters events in question, extracts essential attributes and publishes
them to the MSG. The publisher runs in the Condor scheduler as a Condor job. In this

case, Condor itself takes care of publishing job status changes.

3.7 Summary

This chapter introduced the major concepts and components that are required to
make Grid computing a reality. The concept of a computational Grid is the idea of
accessing vast quantities of computing power and data storage as easy as accessing
electricity from a power grid. This idea has not yet been turned into reality but in a
relatively short period of time the Grid has been developed and evolved, providing a

significant amount of computing power and data storage.

The major components that form a Grid were identified and discussed along with the
Grid standards and the most important Grid middleware implementations including the

Globus Toolkit, the Condor, the LCG and the gLite.

Finally, the Experiment Dashboard was presented as a reliable monitoring system to
monitor all the computing activities in the Worldwide LHC Computing Grid
infrastructure. The aim of the project is to provide transparent monitoring of the
computing activities of the LHC Virtual Organisations across several middleware

platforms such as the gLite, the OSG and the ARC.

Grid Computing 68

Chapter 5 discusses in depth the CMS Dashboard Task Monitoring application
focusing on the analysis of the user activities and Chapter 6 discusses the CMS
Dashboard Job Summary application that provides a more generic monitoring

application to a wide variety of High Energy Physics users.

69

CHAPTER 4.

MULTI-THREADED AND DISTRIBUTED FRAMEWORK FOR
PEDESTRIAN SIMULATION

Legion is the company behind the commercial pedestrian simulation software,
Legion Studio and its accompanying 3D visualisation software, Legion 3D [143]. Both
are used worldwide to optimise the design and operation of public spaces. Such spaces
typically include transport terminals; sport, entertainment and leisure venues; shopping
centres; commercial and public buildings; and venues for major international events

such as the Olympics.

Their global portfolio includes [144] key organisations in the fields of transport,
major events, sports, urban development and government. Legion software is used by
many of the leading rail and transit agencies and has been deployed for each Olympic
Games from Sydney 2000 right up to London 2012. Legion simulations are also used in
many urban developments around the world. Designers, planners, engineers and asset
managers have used Legion software and services to evaluate and optimise public

spaces in improving safety, efficiency and profitability.

Their customers benefit greatly from the fully validated analyses and visualisations
that the software produces [145]. These outputs are used to attain considerable
economic benefits for facilities and programmes. Additionally, Legion software and
services can improve the efficiency of projects; streamline the decision making process;

ensure security; improve risk management and enhance profitability.

Legion's patented simulation technology is the result of many years’ inter-
disciplinary research into pedestrian behaviour. The accuracy of the simulations has
been independently tested against real-world data resulting in endorsements by the

Crossrail, London Fire Brigade, London Underground and Santiago Metro.

Multi-Threaded and Distributed Framework for Pedestrian Simulation 70

The company has a keen interest in advancing its science and technology to maintain
its competitive edge. Industry trends suggest a continued move towards multiple CPU
personal computers. The development of a multi-threaded version of the Legion
simulation software is the only way to harness the power of commodity hardware. In
addition, distributed computing is an indispensable tool for tackling simulations of ever
increasing size and complexity. This research aims to produce state-of-the-art and

commercially desirable output.

This chapter describes the development of both a multi-threaded and a distributed
version of the software and presents benchmark results demonstrating how the use of a
multicomputer or of even a multi-core computer can greatly accelerate the speed of a
pedestrian movement software. The work was performed by the author and is published

in [58].

4.1 Introduction

The Legion Studio software suite [143] is a widely adopted, powerful and accurate
pedestrian simulation software. It comprises of three applications: the Model Builder,
the Simulator and the Analyser. In combination, these applications enable the user to
simulate pedestrian movement within a defined space, such as a railway station, sports
stadium, sports park, airport, tall building, piazza, transport hub, town centre or any

place that people assemble in or move through.

The software simulates the behaviour and movement of pedestrians footstep-by-
footstep' calculating how individuals interact with each other and with the physical
obstacles in their environment. The simulations employ a microscopic simulation model
[145], which treats space as a continuum, using spacial objects, such as entrances, exits
and escalators, to define space utilisation. The simulation navigates entities on the 'least-
effort' principle. Each entity chooses its next step in an effort to find the best

compromise between directness of path, speed and comfort.

The Model Builder can be used to create an accurate model of the space that we want

to simulate. The following actions can be performed in the Model Builder:

1 In a quantitatively verifiable manner.

Multi-Threaded and Distributed Framework for Pedestrian Simulation 71

* Import architectural drawings (CAD) that define the physical space.
* Specify the pedestrian demand imposed on the space.

* Designate areas where activities such as queuing or waiting occur.

* Account for different routes.

* Link operational data to the model.

* Export model files for use in the Simulator.

The Simulator can be used to run a simulation of how pedestrians move or circulate
within the space defined in the Model Builder. The following actions can be performed

in the Simulator:

* Import model files.
* Playback and view the simulation.
* Record appropriate parts of the simulation as a 'results file' (.res) to be analysed.

* Record all or appropriate parts of the simulation as a video file for presentations.

The Analyser can be used to run a series of analyses on the simulated space. The

following actions can be performed in the Analyser:

e Import results files and model files.

* Play back selected parts of a recorded simulation, or run a new simulation just
like in the Legion Simulator.

* Visualise key metrics in the form of maps.

* Run detailed analyses and display the results as time series, stacked bars or
histograms.

* Export the analysis session as graphs, results files, video, pictures or tables for

inclusion in presentations, reports and spreadsheets.

Multi-Threaded and Distributed Framework for Pedestrian Simulation 72

a) Model Builder b) Simulator o) Analyser

Figure 4.1: a) Build a precise model of the space to be simulated and analysed based
on a set of key inputs, b) run and record step-by-step simulations of pedestrian
movement within the space defined in the Model Builder, c) set up and run a user-
defined analysis based on the simulator.

Using Legion Studio, we can perform simulations on the design or operation of a
space and assess the impact of different physical designs or levels of pedestrian demand.
The impact of chance events can be studied, such as the impact of the closure of an exit
or the late arrival of a train, and we can also test different evacuation scenarios for speed
and safety. The latter can prove vital for compliance with increasingly rigid safety

regulations. Legion simulation solutions are well suited for various stages of projects:

* Capital Planning
During the strategic planning or capital planning process is where, economically,
the software, data and analysis can have the biggest impact by evaluating early
in the process where the clients need to spend money and where they don’t,
enabling the clients to maximise cost savings at the earliest stage.

* Design Phase
During the design phase for a facility design or refurbishment, a client can
minimise design iterations or alternatives by analysing and comparing potential
designs before too much time has been spent on the design options. This can
help shorten the overall design phase by efficiently removing options with data
and analysis. Additionally, by evaluating a design, a client can optimise the
design and avoid costly design changes downstream during the build out.

* Construction Phase
Construction in transit, aviation, stadiums or rail stations as part of an upgrade to

the infrastructure is a common occurrence. The agency wishes to maximise the

Multi-Threaded and Distributed Framework for Pedestrian Simulation 73

available space for construction and material staging while remaining open to
the public with minimal service interruptions. Maximising the speed of
construction while accommodating the pedestrian demand is a difficult
balancing act. By modelling the proposed construction phasing plan the guess
work is taken out of the process. Decisions regarding how much and where to
close can be made with facts on what the outcome will be of the different
construction staging and operations plans.
* Daily Operations and Operations Planning
Streamline daily operations by identifying more efficient designs or layouts
which can drive better pedestrian flow without the need for added personnel or
temporary barriers. A client can compare and analyse various operational
procedures and traffic demands to help a venue reach and maintain optimum
operational efficiencies. In the sports arena and special events situations,
simulations can help to identify improvements to pedestrian flow without
disrupting existing operations. In the train sector, Legion Software can be used
to manage various aspects of train operations which includes train car selection
and fit out as well as assessment of timetable efficiency and performance
optimisation. At any stage of operations a client can use Legion Simulation to
assess and optimise the train schedules and train car capacities.
* Safety and Security assessment

Every rail and metro station, football stadium and airport requires an annual
safety certificate. Commercial buildings need to test evacuation scenarios. Every
major event needs to establish evacuation and contingency plans. A client can
design, simulate and stress test safety measures in an efficient and timely
manner. A client can simulate alternative evacuation scenarios where the key
variables are modified so that the client can see all results and eliminate the
guess work. Safety and security plans can be designed based on clear assessment
of risk, calculated predictions thus removing a lot of the guess work and

lowering the overall risk associated with security or safety issues.

Multi-Threaded and Distributed Framework for Pedestrian Simulation 74

4.2 Legion Analyser
The Legion Analyser enables us to set up and run a series of rich, user-defined,

analyses on our simulation using two methods:

* On-line analysis — analysing while simulating (using an .ora file).

* Off-line analysis — analysing a recorded simulation (using a .res file).

Both methods give access to a wide range of metrics, such as density, speed, flow,
journey time and dissatisfaction, and a rich array of display methods and outputs
including maps, graphs, tables and raw data. In the Legion Analyser a user can import
data and model files, playback all or selected parts of the simulation, track individual
entities and visualise their walking paths over time, visualise key metrics in the form of
colour-coded maps, analyse any area of the model and display the results as time series,
stacked bars or histograms and finally, produce results files, video, pictures or data for

presentations, reports and spreadsheets.

The Legion Analyser creates an analysis (.ana) file as a template for storing the
settings of all the maps, graphs and analyses generated from an .ora file or the
simulation's .res file. In this way, many files using the same analysis template can be

analysed, which is a good way to compare different scenarios.

The Legion Analyser enables us to take the whole model, or a defined portion of it,

and ask certain questions. The four main objectives that Legion analyses relate to are:

* Feasibility studies.
* Design and construction as illustrated in Figure 4.2.
* Renovation.

* Operations.

The following is a sample of the types of questions we can ask and get an answer

using Legion analyses:

Multi-Threaded and Distributed Framework for Pedestrian Simulation 75

* Will the venue cope with projected demand?

* What are the density levels at bottleneck points such as the bottom of stairs,
main entrances or stadium vomitories?

* What is the average waiting time at facilities during peak periods?

* Can the venue be evacuated safely in the case of an incident?

* What is the interchange time distribution between lines A, B and C?

Original congestion

Congestion
eliminated

Figure 4.2: Platform Design.

Congestion
reduced

4.2.1 Maps and Value Ranges

Legion Analyser maps provide colour-coded representations of the simulation we are
analysing, enabling us to visualise key entity experience and crowd dynamic metrics
such as density and space utilisation. They are really good for obtaining an overview of
a scheme's performance and they can be applied to the whole of model or restrict them

to specific areas defined by Analysis Zones.
The colours displayed in a Legion map are linked to two types of range:
« Value ranges — essentially these are Levels of Service, such as those defined by

J. Fruin [146] or the US Highway Capacity Manual [147], used to rate

experience-metrics.

Multi-Threaded and Distributed Framework for Pedestrian Simulation 76

* Colour ranges — an ordered list of colours used to describe local conditions that

typically range from “excellent” (blue) to “bad” (red).

Colours within a map can represent the following:

* Occupancy — the number of Entities inside an area.

* Anything that can be used to measure Entity experience — examples include
speed achieved, density experienced and total distance covered by Entities inside
an area.

* Time — the duration inside an area for which a pre-set condition on occupancy or

on any Entity experience metric has been met.

The Legion Analyser provides several default maps, as illustrated in Figure 4.3, but

we can also create our own using default or custom value and colour ranges.

Edress map

Figure 4.3: Egress and Density Maps

4.2.2 Standard Maps

The following standard maps are available within the Analyser:

* Cumulative High Density
e Cumulative Max Density

* Cumulative Mean Density

Multi-Threaded and Distributed Framework for Pedestrian Simulation 77

e Cumulative Min Density
* Evacuation

* Space Utilisation

Descriptions of each map and their typical uses follow.

Cumulative High Density Map

This map shows how long various areas of a site have registered densities greater
than a specified limit. The range of colours represent time. The map is similar to a
“temperature” map: areas that have experienced high levels of density for a long time

appear red, those that have experienced shorter periods of density appear blue.

This map is best used for identifying “hot-spots” within a site such as areas where
high levels of density are sustained. It asks the questions “is this design creating
persistently uncomfortable crowd densities?”” and “should it be altered to alleviate these

problems?”’.

Cumulative Max/Mean/Min Density Map
These maps display the maximum, mean and minimum levels of density registered in
an area from the beginning of playback to the current moment. They are generally used

in combination with value ranges corresponding to widely used Levels of Service.

They are best used for measuring the performance of a site against predetermined
standards or imperatives such as “the average density within a unit of space must not

exceed Fruin's Level of Service x”.

Evacuation Map

Evacuation Maps represent the amount of time that has elapsed from the beginning
of playback to the most recent moment when an area was occupied. They are useful for
safety assessments such as a train on fire or a station on fire, and egress assessments
such as time to clear a stadium, as illustrated in Figure 4.4, or office building. They can
also be used for platform capacity assessments, to show how quickly platforms clear

following the arrival of a train.

Multi-Threaded and Distributed Framework for Pedestrian Simulation 78

Space Utilisation Map

The Space Utilisation Map reveals how much space within a site is being used. It
records the location of every step of each Entity over the duration of the simulation.
Heavily used areas are coloured red and lightly used areas are coloured blue. Areas of

the simulation that are not used at all remain white.

The colour range represents the amount of time a unit of space has been occupied
within the simulation. The default setting of this unit of space is 10x10cm. This map is
best used for illustrating which areas of a site are used the most and the least. It can
support questions such as “if this area is not being used regularly, could it be used for a

small kiosk or retail unit?”.

Initial simulation
revealed extensive
problems

Figure 4.4: Dusseldorf Arena Evacuation Map.

4.3 Multi-Threaded Legion Analyser
The following sections describe in depth the design, the implementation and the
benchmark results of the Multi-Threaded version of the Legion Analyser commercial

software.

Multi-Threaded and Distributed Framework for Pedestrian Simulation 79

4.3.1 Design
The following sections discuss the requirement that shaped the design of the multi-

threaded version of the Legion Analyser.

Objectives

The main objective for re-developing the Legion Analyser is to provide a faster,
maintainable release. Industry trends suggest a continued move towards multiple CPU
personal computers. The development of a multi-threaded version of the Legion
simulation analysis software is the only way to harness the power of commodity

hardware.

The main beneficiaries of this activity were the users who have come to rely on the
functionality that the Legion Analyser provides. The increased performance was a
benefit to them and to new users. In addition, one of the major considerations when
redesigning the Legion Analyser was to make maintenance and support easier for the

developers of Legion.

Architecture

The most important components of the Legion Analyser are shown in Figure 4.5. The
class CReSpaceMapManager is responsible for the list of the enabled maps, for their
metrics and for their implementation. The CCellStorageManager class is responsible for
the accumulation and for the identification of the data of the cells. The environment is
represented by a grid of cells and movement is modelled as cell switching. The storage
is a grid full of CCellStorageData class pointers. The CCellStorageData contains a
vector of CCellStorageDataltem, one item for each map. The major components of the
Cell Accumulation and Identification classes are being illustrated in Figure 4.6. These
classes are responsible for resolving the list of affected cells, stepped by the entities,
computing those affected cells and then accumulating them. The Statistics and the
Entity Map Manager classes are being illustrated in Figure 4.7. The Statistics Manager
is responsible for the statistics of the Legion Analyser, keeping a track of the running
time of the enabled analysis and of the statistical metrics. The Entity Map Manager is

responsible for handling and modifying the entity maps.

80

Multi-Threaded and Distributed Framework for Pedestrian Simulation

welGep uoyEIILaD;

| uogeinwnaoy |87 syl 0} 194y

AbBjensuoREINIIERI 18D

vieoo

ploA : (JElEgAIUIaWERIeS <<EniA=> +| |

ploa : {JeIegANUIsWRI {185 <<BNUIAS: + _

uonesnwayaabeueydeyyacedsayn _ _

e pwayaabeuepydepsordsayn _

ploa {e1sAuuan sy | sangue bessbeuepebeloigand [sebeuew)eleQ AU dewel 195 <<ORISq Y +

“zABajessuonen

a|gnop : {IelEgpeZELLIONIES) +

Gug| paubisu WwnogiEs +

adA jwayeieq : {Janeaubissy +

adAjwayeied : (JanEASBMUNIIY +
adAlwayeleq : {Jan|eApsZIELIONSIBINWNDDY +

I

SABAIENSUOREIRRUSRIZD] | JOIEIUIUSPYIET W -
AB91ESUOIENWUNDI YD | JOBNWNIW2a W -

dwpusgsbeuepydepeiedsay

ualjeIuss|dw W

Jdwjwayisbevepdepeoedsey] | vogejuaws|du W -_

Aaywayeieq : Aoy w -
adAjwsyeleq : ejep w -
Buoj : unos w -

i wayeiegabeio)sadd

s T EN N EN T B ER ey
Aopejwaypabeuepydeyatedsayd

[0S S0eUEf[depEeal] +

wayusbeuepydeyaseds sy

==UD)EusWa|dw] UEJqO=>

« Wayeiegafeiolg|ag) | (:00g : pajesiqisnrd ‘apopjuoRESL] [SpOpUOERID BASMWLAYEIE] WayelEgafrI0ga] I8U0D [Aay)WayBlE QIS0 -

swayeiegebelolsan : (oog : pajesiDisnrd ‘spopuoeals | apow pAaMwayeie: wayeiegebelolsa00 IsuoD | Ay wayRIEgeDiag +

poa : {)lojgnwnaoylasay +

ajgnop : (12nEAJOIEINWNIDYaS +
Buol paubisun : {JIUNOOIOIBINWNIDYIAG +
ploa : {3(qnop : aNjBAJSN[EAS]ENUNIDY +

3|qQnop : J0JENWNIIE W -
Buoj : JunoguonenWnoae™W -

epegabei0)sad)

+Ejegaieloigag) | (PEHOLOIA 8u0d | sod)ejeq2a0le0 +
<Blegabelogan (Buol paubisun : ol 'Buo) paubisun ; uwnjod)BlEgE0IES) +
plon : (Jsa0deal] +

e

“sdew yoes Joj way suo ‘wayejegabelos|aa)
10 J0j084A B UIBjU0D BlegabEI0S a0 aul Jsuod
sasseR BegabeinigianD o ny pub e s abeioys ayg

EHOLITA | XERPUOM W -

JSIIMOY © JETANOL T -

Buo : s oMoydew W -

Buoj : Jequnymoydew w -

Buo| : sy guwnjogdew w -

Guo| : Jaqunyuwnjodew w -

3|Qnop : J8HIOJDE Ul
Bug : Jo10B4U1

3qNop : I8HI0OEJUOISIAIJULINI0D W -
Buo| : JojoEJuoiSiAUWING0D W -

3
3

pioa : (Juepsay +

ploa : {;depouuagacedsgpn) 1su0d | siIsdeuE)ldEpa0oRdSALIpOpaIPUBH +
pioa : {depauusnssedsgpod 1suoa | sisAleue)deasedsalaag +
poa (depouuagacedsgpn] U0 | sisfeue)depeoedsppy +

JdepouiuanaoedsgpQ) @ depsaedsiusimna w -
Jabeuepyabeloigans : 1ebeuepabeloigaaw -

jErdey © sdeww -
|oog : pejsayannbarw -

Jabeuepy2brioi5)1222

Jabeuepdepaoedsayd

The major components of the Legion Analyser and their internal

Figure 4.5

Interactions.

81

Multi-Threaded and Distributed Framework for Pedestrian Simulation

oA {g1BISEIRgAUISaYD 18U0D | Apjus “pusbeuepdeAuugay s < sebeuep|a0) sa0peioal woIndWo D <<(ENHI A= + _

PP UIUOEIIIUSPIIED D _

_ FoA (SRS EIBOAUISSY D 18U0D | Apus puabeueyde ppAnugay s | Jabeuep|a0)s2 0 pRI0al wEINAWOT <<[BNHI A== + _

SIUINJUORUOZUCIEIIRUAPII2DD _

_ ploa : {91RISEIROAIIUTSaY D 15U0D ¢ Aus ‘susbeuepdepfuugey s sabeuepeo)sienpeloall valndwon <<jBNUA=> +_

[fouadnasgauczuoneayuspliiaad

poA (SIS EIEQANUISeY D 1suoD | Aue guabeuepdepfmuzey o © sebeuepan)s|aapaoal yaindiuo] <<l0BSy=> +
a|qnop © (18ZISe0USN Ul Q2U0ZIED +
gisre0:AbajensuoneILIUaPIRDD | (ISITSIF0peaN vIeD +
a|qnop © SZISBU0Z W -
ey AbajeguoEIy USRI DD | ISMISOpalia e W -
ABz1ESUORRIIUBD] 8D

ploa : (JSI20pai0al YN 0SaY <<lEnUiAe= + | |

pioA : (Jsi90PalRay AN oSy <<IBNUIA>> + | plod © (JSI20031084 waNOSEY <<BNHIA-> + | _ PioA : {)SISDPalaalYaA0SaY <<ENHIA=> +_ _

PloA : ()SI20Pal0a)Yan0SaY <<BNHIA=]

0| 2QIUNOHUOIEINLUNDOW]ISDD

SAOQYIUNOJUOHEINWINISY(I8D [UBS[UOIE|NINDOY]|SDD | | ¥EUONENURIOY|I9DD | |

LI UOIRINLUINDY|[3DD

£

PloA : (JSI20PaIa4 B A0S8Y <<IBNHIA=> + ploA : (JSI20PaaL YBA0SaY <<|ENHIA=> +
DIOA © (JSI90DA03LLYBIENUNIDY <<|BNLIA>> + DIOA © (JSI30PADBLYRIEMUNDDY <<|BNLIA>> +
LUNOJUONEINWNIO]8DD) pasegoulaAfialels uone|nwNa0y|8d
£y
ploa : (gier)ag:B2ie a5 UuoleoLiuap|IsD) | SI80)SIR0PaloaL ¥aA08aY <<J0RISgY s +

DIoA © (RIEISEIEQANUISIND 18003 | Ajua ‘gisiie0 AR NS UONEIUNUSRIIEDD | SIS2)SISIPaaL WRIBINWNID Y <<]IBNSqY>> +

wayelegabelolSIe0] | SNEAEEQUILTL -
wayejegafelolg|aq | anEARIBgHEW W -
SSEQEIEQIUNODIEIST | A8y UONEIYUSpIUBW W -
wayeegebelolsiann | AeyUalBILUSpEIER W -

A0z e.suoRe MUnooY |39

ion classes and

& Identificat

10n

The components of the Cell Accumulati

their internal interactions.

Figure 4.6

Multi-Threaded and Distributed Framework for Pedestrian Simulation 82

CRe StatisticManager
- m_requireRestart : bool
- m_statisticList ; StatisticList
- m_trackedEntities : CTrackedEntityList*
+ AddTimeAnalysis() : void
+ DeleteTimeAnalysis() . void
+ HandleModifyTimeAnalysis() ; void ;
+ Restart() : void =
+ SefTrackEntitiesContainer() ; void — Cﬂgsmtlstchanagerltem
- m_originalRDensityThreshold : COdbThreshold

- m_originalzpeedThreshold : COdbThreshold
- m_originallimeAnalysis . COdbTimeAnatysis
- m_pVectors : VECTOR3*

- m_stats | CDatastats®

- m_timeAnatysis : COdbTimeAnalysis®

+ HandleModify() : bool

+ SetFrameEntityDatal) . woid

- Initialize(} ; woid

7

CReEntityMapManager
- m_requireRestart : bool
- m_mapList : MapList
- m_currentEntityiap : COdbEntityCentricMap®

+ AddEntityMap() : void CReEntityMapManageritem
+ DeleteEntityMap() : void - m_bucketList : BucketList
+ HandleModifyEntityMap(} : void - m_entityMap : COdbEntityCentricMap*
+ Restart() : void + HandleModify(} : bool

+ SetFrameEntityData(} . void

Figure 4.7: The Statistics and the Entity Map Managers.

4.3.2 Implementation

An analysis session comprises of the following tasks:

* Advances the simulation time clock.
* Loads entity list from a ROOT [148] file.

* Calculates the maps by traversing a grid-like structure gathering information

from nearby entities’.
* Renders the maps and the entity movement.
* Computes analyses by traversing a list of analyses.

» Updates the graphs and saves any files that need saving.

The maps are the collection of objects that take care of accumulating various metrics

from the entities as they move across the usable space. They are responsible for:

2 The maps are generated from the entities by adding their contribution to the map.

Multi-Threaded and Distributed Framework for Pedestrian Simulation 83

* Internal abstract representation needed for generic rendering.
* Internal memory structure.
* Algorithms needed to identify the space that is stepped on.

* Algorithms needed to accumulate entity's metrics as they move.

The Multi-threaded Analyser creates a thread pool with a size equal to the total
number of the CPU cores or processors. The use of a thread pool is proved to be faster
than native threads since there is no thread creation and destruction overhead [86].
There is no essential dependency or communication between the parallel tasks since a
communication overhead reduces the speed up achievable by the programme. There are
no invalid pointers during the execution of the programme since iterators are invalidated
during the data insertions and the data removals. The use of Critical Sections to lock the
critical region of the OpenGL drawing procedure of the maps was faster than the use of
a simple mutex or of a recursive mutex. Listing 4.1 contains the pseudo-code of the

process.

1. Create a thread pool according to the number of the cores
2. For each simulation time step
a. Get the entity list
b. Traverse the entity list from the beginning to the end or vice versa
c¢. Lock the openGL drawing procedure
d. Wait for the other thread(s) to finish calculating the time step
e. Remove the lock and draw the maps on the screen

f- Advance to the next simulation time step

Listing 4.1: The pseudo-code of the multi-threaded Analyser.

The sequence of the actions performed in an off-line Legion analysis can be seen in
Figure 4.8 and the sequence of the actions performed in an on-line Legion analysis can

be seen in Figure 4.9.

The only difference between the on-line and the off-line analysis is that during the
on-line analysis, the Analyser communicates with the Simulator using the Simulation

Wrapper class.

84

Multi-Threaded and Distributed Framework for Pedestrian Simulation

' ! : {)smalpyaiepdn
| | ! (yssmuapayaeltaiepdn
m ' m L depjyseH xaep /0 21Epdn
_ ” m : x {upoayoog
: ! ; GESEEEEE
: : : : : paigeU 4
! ” : ' soew YB3 Jog
; ; ' [MQm_._EF_mEm:st
| h] _.r_n 0
! ' m : PSSR [T E=ETRC]
rd |] g {Jeegiugawelyieg
Rt | i 7 {)simswelbops HApdw3
.r.. 1 H
'] B [ETEERED]
m : paigeus 4
... : SAENRIF YIET J04
"

. ' (ewisgyieg

” T Dunepmdoisiee

| w4 L iendnuzsnngieg

| el e

m : Deenema DuneayDeg

Bl [iZ=TS

{JeyE u
Jeeafyugien T (J3WEl a0 A0 7
" s L

[N EN s e =]
TdEwW J2d Way aug

SIEISEETD

- BlBQ SOHSIElS|

J00vI0
Tdar500

The sequence of actions that are performed in an off-line Legion analysis.

Figure 4.8

85

Multi-Threaded and Distributed Framework for Pedestrian Simulation

! deyiysen iy Q/o 3epdn

(hsnfpuzueaundes

(isaiuIpeyarl eEpdr

| Osmanveiepdn

DEEQANISEWEI 185
! paigeuTH

sdew yae3 Jog

i}
i)

o (isndnuzuanndies

RESTEETE it

(upiyaayzeg

&

EEgfuuzswel s

(seiswelfolsiHAdLg

(esEEgED

PR0ELT 4

sonsEls Yoes Jog

{=epdn

e e e T T T T

(Jssequig

[T

(Jaun sqwiag

(uiepdoisies

o (isrdmuzuaungieg

"

[iSIU] 81 SousEp fue SuL

{Jsaueisupag

(upiyasydog

(Jupiyasuydog

[EME =N TR

(Odais L

[VEINE VI T3]
e Jad Wa) 300

SIESEETD

TEIEQ SONSIES

[T el
_ TONENETS 180 WaY 300 |

UIERRd0IST

ML AT

J00%33
TdEE00

The sequence of actions that are performed in an on-line Legion analysis.

Figure 4.9

Multi-Threaded and Distributed Framework for Pedestrian Simulation 86

The detection of the number of the processors or of the cores in a machine is being

illustrated in Listing 4.2.

/I CLASS CReSpaceMapManager
CReSpaceMapManager::CReSpaceMapManager()
: m_threadPool()

{
// Detect the number of processor in the machine, and set it as the default value for the processor property
SYSTEM_INFO systemInfo;
::GetSystemInfo(&systemInfo); // NOTE: the defaut pool is fifo
m_threadPool.size_controller().resize(systemInfo.dwNumberOfProcessors);

}

Listing 4.2: The detection of the total number of processors or of the cores in a

machine.

The execution of a thread for each enabled map is being illustrated in Listing 4.3.

void CReSpaceMapManager::DoCheckWin(void)
{
/I Get the entities from the entity manager
Legion::Simulator::IEntityPtr Vector & entities =
CLegnResEntityDataManagerBase::GetInstance()->GetCurrentEntityList();
MaplList::iterator iter(m_mapList.begin());
MaplList::iterator end(m_mapList.end());
while(iter !=end)
{
const COdbSpaceCentricMap* pSpaceMap = dynamic_cast<const COdbSpaceCentricMap*>((*iter)-
>GetMap());
// Only do calculations for enabled maps
if(pSpaceMap->IsEnabled())
{
CReSpaceMapManagerItem* pSpaceMapltem =
dynamic_cast<CReSpaceMapManagerItem*>(*iter);
ASSERT(pSpaceMapltem);
/I Check for the reset interval
int nResetInterval = pSpaceMap->GetResetInterval();
if (nResetInterval != COdbSpaceCentricMap::MapResetDisabled)
{
double timeStamp = ClegnResEntityDataManagerBase::GetInstance()-
>GetStopWatch().GetTime().GetTimeSecond();
double rIntervals = double(int(timeStamp / double(nResetInterval)));
// stopwatch keeps time-step interval in milliseconds
double timeTolerance = ClegnResEntityDataManagerBase::GetInstance()-
>GetStopWatch().GetTimeStepInterval() / 1000.0;
if(timeStamp - rIntervals*nResetInterval < timeTolerance)

{
}

ResetMap(pSpaceMap);

}

// Execute a thread
m_threadPool.schedule(SpaceMapTask(pSpaceMapltem, entities));
} ++iter; // increase the iterator of the map list

// Join the thread pool to wait for all the maps to finish the computation
if(!'m_threadPool.empty())
{

m_threadPool.wait();

}
} // End of DoCheckWin function
Listing 4.3: The execution of a thread for every enabled map.

Multi-Threaded and Distributed Framework for Pedestrian Simulation 87

4.3.3 Performance

The memory footprint of the programme has been reduced to the minimum with the
use of associative vectors instead of using maps of vectors. The associative vector is a
std::map look-alike that uses a sorted vector for storage and such a choice has the
advantage of fast binary searches but slow insertions and removals. Iterators are
invalidated during insertions and removals, which doesn’t happen with std::map’s node
based storage. The Associative Vector is faster than std::set/map in lookups and more
memory friendly, especially for small types, since normally a tree like structure imposes
an overhead of three pointers and an integer per node; without counting that memory

allocation for a vector has far less fragmentation when using std::allocator.

The memory management has been optimised by changing the structure of the
programme. As a result, a lot of unnecessary search procedures at every simulation time
step have been removed. The programme uses the same amount of memory as the
original single-threaded version in most of the models and in case that the programme
uses more memory, the increase is only between 3% to 6%. To benchmark our multi-
threaded implementation, six models with different levels of complexity and size have
been used on a 2 GHz of CPU dual-core system with 2 GB of memory. The increase in
the performance depends on the size and complexity of the model. All the models used

for the benchmarking are available in Appendix C.1.

In Table 4.1, we present a 55.43% increase in performance and a 3.16% increase in

memory usage is being illustrated using a small-sized model with 350 entities.

Metrics Original Multi-threaded
Total Time HH:MM:SS 00:39:45 00:17:43
Memory Usage in MB 190 196

Peak CPU Usage 50.00% 75.00%

Table 4.1: Small-sized model. Name: PM Peak. 350 Entities. Simulation time: 3 Hours.

In Table 4.2, the increase was 34.47% and with a 3.51% increase in memory usage

using our second small-sized model with 552 entities.

Multi-Threaded and Distributed Framework for Pedestrian Simulation 88

Metrics Original Multi-threaded
Total Time HH:MM:SS 00:07:50 00:05:08
Memory Usage in MB 114 118

Peak CPU Usage 50.00% 75.00%

Table 4.2: Small-sized model. Name: UP Demo v3:1. 552 Entities. Simulation time: 1

Hour.

In Table 4.3, an increase of 57.77% in the performance and a small decrease of

0.82% in memory usage is being presented using a medium-sized model with 1200

entities.
Metrics Original Multi-threaded
Total Time HH:MM:SS 00:22:32 00:09:31
Memory Usage in MB 245 243
Peak CPU Usage 50.00% 88.00%

Table 4.3: Medium-sized model. Name: Gatwick Airport Station Re-development. 1200

entities. Sim time: 1 Hour.

Likewise, in Table 4.4, an increase of 65.50% in performance and a 5.93% increase

in memory usage is being illustrated using a medium-sized model with 2500 entities.

Metrics Original Multi-threaded
Total Time HH:MM:SS 01:41:22 00:34:58
Memory Usage in MB 489 518

Peak CPU Usage 50.00% 85.00%

Table 4.4: Medium-sized model. Name: New WTC Model. 2500 entities. Simulation
time: 1 Hour and 30 Mins

In Table 4.5, an increase of 34.15% in performance can be seen in Table 3 together
with a 6.38% decrease in memory usage using a large-sized model with 51000 entities.
Likewise, in Table 4.6, an increase of 32.19% in performance and a decrease of 1.34%

in memory usage is being illustrated using a large-sized model with 52000 entities.

Metrics Original Multi-threaded
Total Time HH:MM:SS 02:16:25 01:29:50
Memory Usage in MB 940 880

Peak CPU Usage 50.00% 99.00%

Table 4.5: Large-sized model. Name: London Olympic Park 2012. 51000 entities.

Simulation time: 14 Mins.

Multi-Threaded and Distributed Framework for Pedestrian Simulation 89

Metrics Original Multi-threaded

Total Time HH:MM:SS 01:25:04 00:57:41

Memory Usage in MB 373 368

Peak CPU Usage 50.00% 98.00%
Table 4.6: Large-sized model. Name: HOS Case3. 52000 entities. Simulation time: 19
Mins.

The performance gained and the memory usage can be seen in Figure 4.10. The
performance increase ranges between 35% to 65.5% compared to the original single-
threaded Legion Analyser on a dual core system®. The programme uses approximately
the same amount of memory as the original single-threaded version; the memory

increase is only between -6.38% to 6%.

70.00%

60.00%

50.00%

B 1st Small-sized
40.00% B 2nd Small-sized
[0 1st Medium-sized
B 2nd Medium-sized
M 1st Large-sized
O 2nd Large-sized

30.00%

20.00%

Percentage

10.00%

0.00%

-10.00% /

Performance Memory

Figure 4.10: Performance and Memory Benchmark.

3 Using a dual core PC. 2GHz of CPU and 2GB of RAM.

Multi-Threaded and Distributed Framework for Pedestrian Simulation 90

4.4 Distributed Legion Analyser
The following sections describe the design, the implementation and the benchmark

results of the prototype distributed version of the Legion Analyser commercial software.

4.4.1 Design and Implementation
The following sections discuss the requirements that shaped the design of the

prototype distributed version of the Legion Analyser.

Objectives

The main objective for developing a distributed version of the commercial
programme is to provide a system capable of tackling simulations of ever increasing
size and complexity. This work aims to demonstrate how the use of a multicomputer can

greatly accelerate the speed of pedestrian movement software.

The main beneficiaries of this research work were the developers of Legion. The
demonstration of the increased performance was a benefit to them and to their

customers.

Architecture

In the early stages of the development of the distributed Analyser, the OpenMP
standard was considered but such an option was abandoned because OpenMP is limited
to be used in a shared-memory environment, i.e. a shared memory cluster [149]. Since
we wanted to use the Distributed version of the programme in a network using
workstations in a distributed-memory environment, the Message Passing Interface
(MP]) library was used to send messages between the nodes and across the network.
MPI is the most popular message-passing library standard for parallel programming
[82]. The MPICH2 implementation of the version 2.1 (MPI-2) of the standard was
chosen together with the Boost.MPI library, part of the Boost C++ library. The
Boost.MPI library provides a C++ friendly interface to the MPI standard that better

supports modern C++ development styles [150].

Multi-Threaded and Distributed Framework for Pedestrian Simulation 91

Slave Nodes

Enabled Maps
Cumulative High Density
Cumulative Max Density
Cumulative Mean Density

Cumulative Min Density
Evacuation
Space Utilisation

Figure 4.11: The distributed implementation uses a Master/Slave organisation. Each
Slave node is responsible for calculating an assigned map. The Master node collects the
results and displays the results on the screen.

The prototype version of the Distributed Legion Analyser consists of the Master node
and the Slave nodes as illustrated in Figure 4.11. The Master node is responsible for
collecting the results from the Slave nodes, drawing the results on the screen and
updating the statistics and the graphs. The Slave nodes are responsible for all the
calculations of the maps. The work is divided and evenly distributed between the Slave
nodes and a load balancing algorithm makes sure that no Slave node will be idle for a

long period of time.

All the nodes open a read-only model on the network and begin the Distributed
Analysis. The division of the work is done according to the total nodes registered and
the total maps enabled for the analysis session. Each node is registered and a list of all
the available nodes exists on the MPI COMM_WORLD. The map list and the entity list
is then fetched together with the list of the computers registered in the
MPI_COMM_WORLD. Hence, every node is aware of all the registered nodes taking

part in the analysis.

Each registered Slave node starts the calculation of the assigned maps and at every
simulation time step, it calculates the assigned maps, serialises the results, packs them

using MPI Pack(), sends them to the Master node using a non-blocking MPI ISend()

Multi-Threaded and Distributed Framework for Pedestrian Simulation 92

and waits for all the other Slave nodes to finish the calculation before advancing to the
next time step. The Master node collects the results using MPI IRecv(), unpacks the
packed data using MPI Unpack(), draws and displays the maps on the screen and
updates the graphs and the statistics. The C++ code listings available in Appendix C
illustrate the use of the MPI for the communication and the division of the work
between the nodes. Listing 4.4 illustrates the initialisation of the MPI communication

library.

/// Initialise MPI

MPI_Init(NULL, NULL);

// Boost. MPI code

mpi::environment env (NULL,NULL);
mpi::communicator world;

int mynode, totalnodes;

// Assign a rank to each available node

MPI Comm_rank(MPI_ COMM_WORLD, &mynode);
/I Get the total size of the available nodes

MPI Comm_size(MPI COMM_WORLD, &totalnodes);

Listing 4.4: The Initialisation of the MPI.

The work allocation and division can be seen in Appendix C.3. Most of the
communication between the Slave and the Master nodes can be seen in Appendix C.4

and Appendix C.5.

4.4.2 Performance

To benchmark our distributed implementation, we have used an evacuation case
study. The area is modelled after the London 2012 Olympic Park and we have populated
the model with 56500 entities. The model is available in Appendix C.2.

We have benchmarked our prototype distributed implementation on commodity
hardware connected by a gigabit Ethernet switch. Figure 4.12 illustrates the
performance of the distributed programme in terms of the time it takes in seconds to

analyse a simulation second as a function of the number of the Slave processors.

Multi-Threaded and Distributed Framework for Pedestrian Simulation 93

25

20

10 I ' l
0 /
1 2 3 4 5 6

Number of slave nodes

[6)]

Time in sec. to analyse a simulation sec.

Figure 4.12: Time in seconds to analyse a simulation second. Each Slave node is a
processor. An additional processor is allocated to the Master node.

The performance scales well as the number of the processors is increased. With one
Slave processor, the prototype system is able to analyse 56500 simulated pedestrians in
20.17 seconds. In 12.33 seconds with two Slave processors, in 9.02 seconds with three
Slave processors, in 6.68 seconds with four Slave processors and in 5.13 seconds with
five Slave processors. Finally, with six Slave processors the prototype system is able to

analyse 56500 simulated pedestrians in just 3.8 seconds.

4.5 Summary

We have faced many challenges and obstacles during this research project, mainly
due to the difficulty of understanding the existing code of the Legion Studio software
suite, a 6 GB code with more than 26000 C++ files but mostly due to the company's
Intellectual Property (IP) rights.

This chapter presented the requirements and implementation of the Legion Analyser
commercial programme. A framework capable of analysing the simulation data
produced by the commercial Legion Studio pedestrian simulation software has been

developed. The programme has been implemented as a multi-threaded and as a

Multi-Threaded and Distributed Framework for Pedestrian Simulation 94

distributed programme written in C++ with calls to the MPI library.

Benchmarking the programme on a dual-core PC and on a commodity cluster of high
performance PCs demonstrated the system's increase in performance compared to the
original single-threaded analyser. The performance increase for the multi-threaded
version ranges between 35% to 65.5% compared to the original single-threaded Legion
Analyser on a dual core 2GHz system. The performance of the distributed prototype
version of the programme scales well as the number of the processors is increased; with
six Slave processors the prototype system is able to analyse 56500 simulated

pedestrians in just 3.8 seconds.

95

CHAPTERSS.

CMS DASHBOARD TASK MONITORING

We are now in a phase change of the CMS experiment where people are turning more
intensely to physics analysis and away from construction. This brings a lot of
challenging issues with respect to monitoring of the user analysis. The physicists must
be able to monitor the execution status, application and grid-level messages of their

tasks that may run at any site within the CMS Virtual Organisation.

The CMS Dashboard Task Monitoring project provides this information towards
individual analysis users by collecting and exposing a user-centric set of information
regarding submitted tasks including reason of failure, distribution by site and over time,
consumed time and efficiency. The work was performed by the author and is published

in [59], [60], [61], [62] and [63].

5.1 Introduction

The Experiment Dashboard [60] is a monitoring system developed for the LHC
experiments in order to provide the view of the Grid infrastructure from the perspective
of the Virtual Organisation. The CMS Dashboard provides a reliable monitoring system
that enables the transparent view of the experiment activities across different
middleware implementations and combines the Grid monitoring data with information

that is specific to the experiment.

The scientists must be able to monitor the execution status, application and grid-level
messages of their tasks that may run at any site on the distributed WLCG infrastructure.
The existing CMS monitoring systems provide this type of information but they are not

focused on the user's perspective.

CMS Dashboard Task Monitoring 96

The CMS Dashboard Task Monitoring project addresses this gap by collecting and
exposing a user-centric set of information to the user regarding submitted tasks. It
provides a clear and precise view of the status of the task including job distribution by
sites and over time, reason of failure and advanced graphical plots giving a more usable
and attractive interface to the analysis and production user. The development was user-
driven with physicists invited to test the prototype in order to assemble further

requirements and identify weaknesses with the application.

This chapter discusses the development of the CMS Dashboard Task Monitoring that
was performed by the author. In the first section, the concept of the Experiment
Dashboard monitoring system and its framework will be described in detail. The next
sections provide an overview of the CMS Dashboard Task Monitoring application and

1ts features. The final section focuses on the known issues.

5.2 Design
The following sections discuss the requirements that shaped the design of the CMS
Dashboard Task Monitoring application.

5.2.1 Objectives

Most of the CMS analysis users interact with the Grid via the CMS Remote Analysis
Builder (CRAB). User analysis jobs can be submitted either directly to the WLCG
infrastructure or via the CRAB analysis server, which operates on behalf of the user. In
the first case, the support team does not have access to the log files of the user's job or

to the CRAB working directory, which keeps track of the task generation.

To understand the reason of the problem of a particular user’s task, the support team
needs a monitoring system capable of providing complete information about the task
processing. To serve the needs of the analysis community and of the analysis support
team, the CMS Dashboard Task Monitoring [61] application has been developed on top
of the CMS job monitoring repository.

CMS Dashboard Task Monitoring

5.2.2 Use Cases

97

A use case analysis was carried out based upon the feedback received by the CMS

physicist community. The main use cases are described in Appendix A.1 and illustrated

in Figure 5.1.

Physicist

CMS Dashboard Task Monitoring

Submitted Tasks

/ Task Meta-Info \

7 T

Detailed Jobs Info

Resubmission History

W

Error Diagnostics

—% 1
\ Consumed Time Info

[

Dashboard Data Repo

—
/,/7

Graphical Plots

Figure 5.1: The main use cases that the application is expected to
implement in conjunction with the CMS Dashboard system and with
the CMS Physicist actors.

With the major use cases established it is possible to extract the key requirements that

the application has to fulfil. The following points represent the baseline requirements

divided into principal areas.

5.2.3 Requirements

Assumptions

1. Users have a grid certificate.

2. Users are members of the CMS VO.

3. Users have submitted jobs to the Grid within one month.

CMS Dashboard Task Monitoring 98

User Interface

1.

2
3
4,
5
6

10.

I1.

12.

13.

14.

15.

16.

17.
18.

Users control the application via a web interface using a browser.

. The application will be focused on the CMS analysis user's perspective.

. Easy to understand how it works and how to navigate throughout the tool.

Compatible with all the recent browsers and operating systems.

Simple, clean and intuitive in layout containing no unnecessary information.

. All of the Grids and the job submission systems that CMS uses will be

supported.

The user will access a very detailed information of the job processing including
every single resubmission that he/she might have performed for each job
individually.

The application will offer task meta-information.

The application will offer consumed time information and processing efficiency.
Individual jobs within a task can be selected.

Fast with very low latency.

Update in 'real-time' from the worker nodes where the jobs are running.

The user will be able to bookmark his/her favourite tasks for later use or to share
them among his/her colleagues.

Offer a wide selection of advanced graphical plots that will visually assist the
user.

The application will be built on top of the CMS Dashboard Job Monitoring Data
Repository.

Exceptions should be caught by the application and informative error messages
will be provided to the users.

Verbose logging should be available to identify any problems.

Quick access to the application's manual, help and the meanings of the error exit

codes should be provided.

Developer's Requirements

1.

2
3.
4

Variable level of logging will be built in from the start.

. Logging will write to stdout and to a file to ease debugging.

Low coupling between the components is required.

. Minimum version of Python that is supported is determined by that installed on

CMS Dashboard Task Monitoring 99

Ixplus.cern.ch (currently 2.3).

5.2.4 Architecture
The CMS Dashboard Task Monitoring application is part of the Experiment

Dashboard system [60] which is widely used by the four LHC experiments. The
framework of the system consists of the following components, as illustrated in Figure

5.2:

=== Dashboard Framework

Information Sources

Messaging
System

Web Application Collectors

Data Access Layer (DAQ)

Figure 5.2: Dashboard Framework.

The Data Access Layer (DAO) is responsible for the management of the persistent
data stored in a Relational Database Management System (RDBMS). Each component
in this layer will provide query/update capabilities for a subset of the stored data. The
Web Application is responsible for the HTTP entry point to the available data. It
exposes the data to the users in different formats and inserts new records/updates
existing ones. It makes heavy use of the DAO. The Collectors layer listens to
messages/events coming from the Messaging Infrastructure and it quickly analyses the
data and passes it on to the DAO layer for storage. The Information Sources layer sits
closely to the services/applications being monitored and listens to interesting events.
Finally, the Messaging System is an external component used by the Dashboard to

communicate with the Information Sources.

The Controller is the main piece of the web application and is illustrated in Figure

CMS Dashboard Task Monitoring 100

5.3. It receives all client requests and decides what to do with them. For each client
request there should be a corresponding Action, which will normally involve some
interaction with the model of the application (some business logic that might involve

accessing or updating persistent data).

A client request might involve producing some output. This output is identified by its
mime/type and will have a View associated with it. The Action will put any data that it
collected/produced in a shared area, the ActionContext, so that it can later be taken by

the View to produce the output to the client.

Action M in
R aE GenericXSLTView

SVG Plot XSL
Action Context Templates GenericXMLView

GenericCSVView

Figure 5.3: Web Application Architecture.

All the relationships between client requests, Actions, Views and their associated
mime/types is defined in a single configuration file, the ActionMapping file. A widely
used format for data retrieval is HTML but information can also be retrieved in XML,
CSV or image formats allowing any third party application to use the system. The

sequence of actions of the Web Application are illustrated in Figure 5.4.

Web Application

< T

Controller Action

Generic Libraries
XSLT, XML, CSV,...

Action Mapping Action Context

Figure 5.4: The sequence of actions of the Web Application.

CMS Dashboard Task Monitoring 101

The Dashboard Task Monitoring application is built on top of the Dashboard Job
Monitoring system which uses multiple sources of information [151]. There are two

main architectural principles of the Dashboard Job Monitoring system:

1. Monitoring should not be intrusive to the information source. Thus, it does not
pool information from the primary monitoring sources on a regular basis to
avoid adding additional load on the services responsible for the job processing.

2. The Dashboard uses a message-oriented architecture. There is no synchronous
connection to the primary information producer. The job submission tools as
well as the jobs themselves are instrumented to report in real time important
events to the MonALISA servers. The Dashboard Collectors regularly consume
information published by the MonALISA servers. At the time when the
development of the Dashboard started in the summer of 2005, no messaging
system was provided as a standard component of the Grid Middleware stack.
The MonALISA system was selected to be used as a messaging system for the
Dashboard. Currently, the Dashboard development team is integrating the
Dashboard with the Messaging System for the Grid (MSG) [137].

The data collectors gather both Grid-related information as well as information
specific to the application which is run by the users as illustrated in Figure 5.5. The
Grid-related information is obtained in the XML format from the Logging and
Bookkeeping Database using the Imperial College Real Time Monitoring publisher
(ICRTM). The application-specific information is gathered throughout a job's lifetime
via the MonALISA monitoring system.

The job submission tools of the CMS experiment and the job wrappers generated by
these tools are instrumented to report meta-information about a user's tasks and the
progress of a user's job to the MonALISA server. The Dashboard then presents all this

information in a coherent way, as if all of it came from one source [152].

CMS Dashboard Task Monitoring 102

\F Monalisa IC RTM . -

Monalisa 1C RTM
Collector Collector

Analysis
User

Job Submission \ 4
Tool Ul
<<l I Task
7 ' Monitoring

Figure 5.5: Job Information Gathering.

5.3 Implementation

The Python language was chosen for the development of the CMS Dashboard Task
Monitoring due to the power, flexibility and speed of development that it offers. It is
also widely used within the High Energy Physics community. Apache 2.0.52 (as of
November 2009) was chosen to provide the client interface as it has a history of being
flexible, secure and performant. The dojo javascript toolkit was used to connect the web
interface with the database. Finally, the Graphtool [153] python library was used for the

creation of all the plots.

The major components that were identified in the requirements are illustrated in
Figure 5.6 and are discussed in more detail in the following sections. The client revolves
around the concept of a task which coordinates all of the actions required to satisfy the

user requirements.

The relation between the Action and the View python classes and their generated
output files is being illustrated in Figure 5.7. All the Action classes access the database
to collect the data and if a calculation in the results is needed, they forward the data to

the appropriate View class for the calculation and then the data is returned to the user in

CMS Dashboard Task Monitoring

103

the appropriate output format. There are also 40 Action and View python classes and 20

Output image files for the 20 available plots generated by the application. These python

classes are not shown in Figure 5.7 for clarity reasons.

Task Monitoring

Tasks Table

Task info

"

Plots Generation

Consumed Time Jobs Table
’7 Successful | |
Resubmissions = Failed | |
A
Pending |4
Running ||
Unknown

Figure 5.6: The major components of the application.

ACTION

I

Task Monitoring.py |

TasksTable.py

2

VIEW

]

TasksTablePyPlot.py

skjobs.py

Taskinfo.py

|

Resubmittedjobs.py |

OUTPUT

I

TaskMonitoring.xsl |

TasksTable.xsl

g

skjobs.xsl

Taskinfo.xsl

|

g

ubmittedjobs.xsl

I

ConsumedTime.py |

Any_Plot.py

Any_Plot2.py

P

I

[1
Any_PlotPyPlot.py I

[1]

Any_Plot2PyPlot.py I

ConsumedTime.xsl |

Any_Plot.png

Any_Plot2.png

P

Figure 5.7: The relationship between the Action and the View python classes and
their generated output files.

CMS Dashboard Task Monitoring 104

5.3.1 CMS Dashboard Database Schema

The CMS Dashboard Task Monitoring application is built on top of the CMS
Dashboard Job Processing Data Repository. To ensure a clear design and maintainability
of the application, the actual monitoring queries are decoupled from the internal

implementation of the data storage.

The CMS Dashboard Task Monitoring application comes with a Data Access Object
(DAO) implementation that represents the data access interface. Access to the database
is done using a connection pool to reduce the overhead of creating new connections and
therefore, the load on the server is reduced and the performance is increased. A
flowchart illustrating all the major paths for a client request is shown in Figure 5.8.

Info source 1 Info source 2 Information (HTML, XML, ...)

Web Server

Collector 1 Collector 2

) Request
Action

Data Access Object (DAQO)
CMS
Dashboard
Oracle
Database

Figure 5.8: Client Request Flowchart.

Figure 5.9 illustrates the entity relationship diagram between the most important
tables of the database used by the CMS Dashboard Task Monitoring application. The
job table contains information regarding the job itself such as the number of events to be
analysed, the task to which it belongs, the site at which the job is running and various
submission timestamps. The task table contains task-specific information such as the
task creation timestamp, the name of the task, the submission method used, the user that
has submitted this task, the input collection and the target Computing Element (CE).

The site table contains site-specific information such as the site name, the country that

CMS Dashboard Task Monitoring 105

the site belongs to, the Computing Elements of the site and the worker nodes of the site.

JoB TASK_JOB
P * [abld MUMBER (38) P * Taskjobld WUMBER (38)
* JabMonitarld VARCHARZ (256 BYTE) F * Taskid WUMBER (38
F * Taskjohld NUMBER (38) * EventRange WARCHARZ (128 BYTE!
F * Taskld NUMBER (28) * NoEwentsPerRun NUMEER (38)
Scheduler|obld VARCHARZ (256 BYTE) * Arguments WARCHARZ (512 BYTE!
* LocalBatchjobld VARCHARZ (256 BYTE)
\VOJobld VARCHAR? (256 BYTE) e oy
Hest|abld MUMBER (38)
* Rhbld NUMBER (38)
* EventRange VARCHAR2 (128 BYTE)
* SubNedelp MUMBER (38)
* LongCEld NUMBER (38) TASK
. Sh”;“” NUMBER [32) P * Taskld NUMBER. (38]
F ool o F * Userld NUMBER. (38)
- 138!) * TaskMonitarld WVARCHARZ (400 BYTE!
. g::::gi‘;;:;'ldd 52:2:::; :i; EEE:: * TaskCreatedTimeStamp TIMESTAMP
' ! * TaskTypeld HUMBER (38
* DhaardGridEndid VARCHAR2 (12 BYTE) . N‘?r:sggt:ps Ao Al
* DhoardStatusEnterTimeStamp TIMESTAMP * TaskStatusld WUMEER (38
* DboardFirstinfoTimeStamp TIMESTAMP - P
! JdIcareld HUMBER (38
:g'r’i;"sli':t;;t'"hT”"eSt"m" L'E‘:g;’:’::s.l * NEventsPerjob NUMBER (16)
* GridStatusReasanld NUMEER (38) N 2}2}2:;‘2?‘;‘” :3:252 ::::
* GridStatusTimeStamp TIMESTAMP " e
e ————, CTVEOER G * InputCollectionld NUMBER ':‘33:'
e e e |:gg:| * DefaultSchadulerld MUMBER ':’33:'
* GridEndStatusReasonld NUMBER (38) + Submissiontoclld e o
* GridEndStatusTimeStamp TIMESTAMP A rr
* GridFinishedTimeStamp TIMESTAMP :JTZ';:;‘;?E“'”QWWH c:;‘ciikk'-;fz’ss e
" JEX;E‘”“'E"?E”:“dT"“eS““"P L'E‘:g;’;"?gs.l * SubmissionType VARCHER? (30 BYTE)
obExecExitbade L * SubToalVerld NUMEER (38)
* |abExecExitReasonld NUMBER (28) ubTeelver
* |abExecExitTimeStamp TIMESTAMP
JobapplExitCode NUMEER (38) = PK_TASK
* |abApplExitReasonld MUMBER (28]
* CreatedTimeStamp TIMESTAMP
* SubmittedTimeStamp TIMESTAMP "
* ScheduledTimeStamp TIMESTAMP USERS
* StartedRunningTimeStamp TIMESTAMP o
P o* Userld HUMBER (38)
* FinishedTimeStamp TIMESTAMP ser : .
o e | TG B * UnizName WARCHAR2 (128 BYTE!
;) o # GridCertificataSubject VARCHARZ (256 BYTE)
* JobProcessingDetailsid NUMEBER (38) * vord CITERR
. ' (
. gﬂtiﬁ::s:gi’ﬂ'ms“mp L'E‘:g;’;"l‘.:l * GridName VARCHAR2 (128 BYTE)
o * Cartld HUMBER (15)
* UpdateStmtTimeStamp TIMESTAMP - Rel \d WUMEER (15
* TimeOutFlag MUMEER (&) o —
* DboardGridEndStatusReasonld MUMEER (28] = PK_USER
* ExaTime NUMBER (16,2)
* NEwPrac MUMBER (32)
* NEwReq MUMBER (32)
* WrapCPU MUMBER (16,2) STIORTECE
* WrapWC NUMBER (16,2} o e TnED
* [} | - e
. ;ﬁ;f;;"c :ﬂ:ggz ,112'51, * ShortCEName VARCHARZ (128 BYTE)
* [obType VARCHARZ (50 BYTE) P = S‘te'dl NUMBER (28]
StageOutSE VARCHAR2 (100 BYTE) LT Al NUMAERTE)
Memory NUMBER (32) s PK_SHORT_CE_MAME
PilotFlag NUMBER (5]
InputSE VARCHARZ (100 BYTE)
ParentPilotld MUMBER (32)
LatestBatchldFlag NUMEER i8)
LONG_CE
P * LongCEld NUMBER (38)
* LongCEName WARCHAR2 (128 BYTE
&= PK_OB F * shortCEld NUMBER (38)
F * CETypeld NUMBER (38)
o= PK_LONG_CE_NAME
Y
SITE
P * Sitald NUMBER (38)
* SiteName VARCHARZ (128 BYTE!
* Schedulerld NUMEER (38)
* DisplayMame VARCHARZ (25§ BYTE)
* SiteState VARCHARZ (12 BYTE)
:) CE_TYPE
* SiteUnigueld VARCHARZ (128 BYTE) — =
SitaWww VARCHARZ (256 BYTE) P * CETypeld ~ NUMBER (38) _
SiteEmail VARCHARZ (128 BYTE) * CEType WARCHAR2 (512 BYTE)
SiteLacation VARCHARZ (256 BYTE) = PE_CE TYPE
* InteractivelnterfaceFlag NUMBER (38)
* Country VARCHARZ (128 BYTE)
Tier FLOAT «
* SamName VARCHARZ (256 BYTE)
*VOName VARCHARZ (100 BYTE)
* GridMapSize NUMBER (3
* SiteDBId NUMBER (10)
* CRU NUMBER (16,2)
* LocalStore NUMBER (18,2}
* DiskStore NUMBER (16,2} NODE
* TapeStore NUMBER (16,2) P * Nodeld NUMBER (38)
* WanStore NUMEER (18, * Ip\alue VARCHARZ
* NationalBandwidth NUMBER (186, F * Siteld NUMEER. (38)
* OpnBandwidth NUMBER (16.2) 2= PK_NODE
* JabSlots NUMBER (16,2}
= PK_SITE_NAME

Figure 5.9: The Entity Relationship Diagram.

CMS Dashboard Task Monitoring 106

The connection to the database is defined in a single configuration file, the

dashboard-dao-oracle-job.cfg as illustrated in Listing 5.1.

ORACLE SPECIFIC CONFIGURATION

[oracle]

Home of the oracle libraries

oracle home = /var/www/tmp

Connection parameters

You can either specify a set of 'user', 'password', 'host', 'port', 'sid'
or set the full connection string in the 'connect string' property

user = <username>
password = <password>
host = <hostname>
port = <port>

sid = <sid>

connect_string =
(DESCRIPTION=(ADDRESS LIST=(ADDRESS=(PROTOCOL=TCP)
(HOST=<hostname>)(PORT=<port>)))(CONNECT DATA=(SID=<sid>)))
Pool configuration parameters
pool min_size =1
pool max_size =2
pool increment = 1
pool_mon_interval = 600
Listing 5.1: The configuration file for the database connection.

5.3.2 SQL Queries
The most important SQL database queries of the application can be seen in Appendix

A.6.

5.3.3 Gridsite Authentication

We have integrated the CMS Dashboard Task Monitoring with the Gridsite library
[154] to enable secure access to the information based on the X509 authentication.
GridSite was originally a web application developed for managing and formatting the
content of the GridPP website. Over the past three years it has grown into a set of
extensions to the Apache web server and a toolkit for Grid credentials, GACL access
control lists and http(s) protocol operations. The sequence of actions can be seen in

Figure 5.10.

CMS Dashboard Task Monitoring 107

Dashboard

Initiate secure connection

Check
Certificate

€ Request Certificate

Send Certificate
_rewm |

e
< | et |

Figure 5.10: Sequence of Actions for the Authentication Mechanism.

The authentication module was developed after some CMS users highlighted privacy
concerns regarding users being able to view and follow the tasks submitted by others.
Another reason was to personalise the available content shown to the user. When the
user logs in to the application, the information will be presented automatically by the
application and this information is focused on the user only and not to all the existing

CMS users.

The authentication module is optional and not used by default. Hence, everyone is an
administrator by default. When the module is enabled, the Grid Certificate must be
loaded in the user’s browser. If the client's Grid Certificate is loaded on the browser, we
check if the user's Distinguished Name (DN) matches any entries from the table
'ADMIN_USERS'. If it matches, the user is an administrator and we execute the

following query that fetches the full list of the users on the system.

userQuery = 'select distinct users."GridName" from users, task
where users."Userld" = task."Userld" and task."TaskCreatedTimeStamp" >
sysdate — 31 and task."TaskTypeld" in (select "TaskTypeld" from task type
where "Type" in (\'analysis\', \'JobRobot\")) order by users."GridName"'
Listing 5.2: Fetching the full list of the users on the system.

If there is no match between the user's DN and an entry from the table
'ADMIN_USERS', authentication is being used and the user is not an administrator. We

execute the following query so that the user will only see his own jobs.

CMS Dashboard Task Monitoring 108

userQuery = 'select distinct users."GridName" from users, task
where users."GridCertificateSubject" = :clientDNstring and users."Userld" =
task."Userld" and task."TaskCreatedTimeStamp" > sysdate — 31 and
task."TaskTypeld" in (select "TaskTypeld" from task type where "Type" in
(\'analysis\', \'JobRobot\"))'
Listing 5.3: Fetching only the user's jobs.

5.3.4 Advanced Graphical Plots
Graphical plots were developed to present to the physicist user a more usable and
attractive interface and to visually represent the data contained in an analysis operation.
The Graphtool python library was used to create the plots. The sequence of actions for
the generation of a graphical plot is illustrated in Figure 5.11.
Request Graphical Overview for
a specific task

> G

Recy
! -

Query

Generate and Show Plot

Figure 5.11: Sequence of Actions for the Advanced Plot Generation.

The python code for the generation of a simple graphical overview plot can be seen
in Appendix A.5. The library has been patched and extended to support custom
colouring of the legends by using the 'color_override' option. The patches are available
in the Appendix A.2. The application offers a wide-variety of graphical plots and these

plots will be presented in the next section.

5.3.5 User Interface and Monitoring Features

CMS Dashboard Task Monitoring provides monitoring functionality regardless of the
job submission method or the middleware flavour and it works transparently across
various Grid infrastructures which is the reason why it is so heavily used by many
analysis users [131][155]. It is easy to understand how it works and how to navigate
throughout the tool. It is clean and intuitive in layout and it contains no unnecessary

information as illustrated in Figure 5.12.

CMS Dashboard Task Monitoring 109

Select a User: StevenWon fd | Select a Time Range: Last2Days | Help User Support
TaskMonitorId Num of Jobs Pending i Suc ful Failed Unknown Consumed Time Plots
devildog_crab_0_090223_120307 i 28 1]] 28]] Time Info Plot Selection
devildog_crab_0_090223_135033 (i 28 0 0 28 0 0 Time Info Plot Selection
devildog_crab_0_090223_163942 i 28 o 0 28 0 0 Time Info Plot Selection
devildog_crab_0_090223_232701 i 519 0 4] 519 4] 4] Time Info Plot Selection
devildog_crab_0_090224_145357 i 463 136 107 216 4 0 Time Info Plot Selection
devildog_crab_0_090224_174411 i 46 1] 2 44]] Time Info Plot Selection
devildog_crab_0_090224_182507 (i 28 0 0 28 0 0 Time Info Plot Selection
devildog_crab_0_090224_191637 i 459 1] 1 458]] Time Info Plot Selection
devildog_crab_0_090224_215645 i 177 149 19 3 6 o Time Info Plot Selection
devildog_crab_0_090224_220347 i 459 0 0 459 0 0 Time Info Plot Selection
Sum Total 2235 285 129 1811 10 0
Graphical Representation
devildeg_crab_0_090223 163942 ZI ! ! ' ! ! E

devildog_crab_0_090224_145357

devildog_crab_0_090224_174411

devildog_crab_0_090223 120307

devildog_crab_0_090223 232701

devildog_crab_0_090224_215645 E:” -

devildog_crab_0_090224 182507

devildog_crab_0_090223_135033

devildog_crab_0_090224 191637

devildog_crab_0_090224 220347

121 Successful Pending Running m Failed Unknown

Figure 5.12: The User Interface.

A snapshot of the user interface can be seen in Figure 5.12. The user interface is
divided into three parts. On the first, upper, part of the interface, the user can choose
his/her identity from the “Select a User” field, select the time window to define the tasks
submitted during a given time range. The user should get a list with all of his/her tasks
submitted over the chosen time range on the second part of the interface. The graphical
representation of the table will be available on the third part of the interface. The “Help”
and “User Support” buttons, available on the upper right part of the interface, provide a
quick access to the user's manual and the meanings of the error exit codes. The user
manual is available in Appendix A.4. The user can also retrieve the result of this table in

the XML format by using the following command:

$ curl -H 'Accept: text/xml' 'http://dashb-cms-sam.cern.ch/dashboard/request.py/taskstablexml?
&typeofrequest=A&timerange=TIMERANGE&usergridname=USERNAME' > /tmp/action.xml

Listing 5.4: Retrieving the results in the XML format.

Where the USERNAME is the user's username and the TIMERANGE can be
lastDay, last2Days, last3Days, lastWeek, last2Weeks and lastMonth.

CMS Dashboard Task Monitoring 110

The XML output will be a bit hard to read because there is no newline break. The

output can be reformatted by using the 'xmllint' command:

$ xmllint --format /tmp/action.xml

Listing 5.5: Reformatting the XML output.

Clicking on the information link next to the name of the task provides meta-
information such as input dataset, version of the software used by the task and of the
submission tool and the task creation time. Clicking on the number of jobs
corresponding to a given status provides a detailed information of all the jobs of a

selected category as presented in Figure 5.13.

Idin Appl Grid . . o
SchedulerlobId Task Status Exit End Retries Site Submitted Started Finished
Code Status
wosmoasintoos ., BEERlo ome 1 meowm ARV 2000507 e
wosmoocwrnion e ome 1 s cmar DROY 2090507 20s0v0
No/OSIINEO 3 immlo ome 4 s NRSY DReY 2o
W/ o imlo ome 1 mescew NSV DRSS 200
NOSDOOCUIUN0 s (o ome 1 mewo S0V 1090507 wsow
WoS/UOLOMILE o cwcmmlo ome 1 mapnm ROV 090507 e
NoMULAIOES ; immlo ome 1 mescmw DR5V DEeY 20oo
NoI/DLOINE0 o ummlo ome 1 mocwm NRSY DReY 2000
WO/ o im0 ome 1 mscmwr NNSY BREY 20eo
NSIDOOLTIIIN0 o [swmmlo ome 1 rauswenss DRSY 1050507 105050

Figure 5.13: Detailed Job Information.
The user can also retrieve the result of this table in the XML format by using the

following command:

$ curl -H 'Accept: text/xml' 'http://dashb-cms-sam.cern.ch/dashboard/request.py/taskjobsxml?
&timerange=TIMERANGEs&what=all&taskmonid=TASKNAME' > /tmp/action.xml

Listing 5.6: Retrieving the jobs of a task in the XML output.

Where the TASKNAME is the name of the task, the TIMERANGE can be one of the
options mentioned previously and 'what' can be: 'all' for all the jobs, 'f' for the failed
ones, 'r' for the running ones, 'p' for the pending ones, 's' for the successful ones and 'u'
for the unknown jobs. The XML output will be a bit hard to read and it can be

reformatted by using the 'xmllint' command provided in Listing 5.5.

CMS Dashboard Task Monitoring 111

Clicking on any name on the 'Site' column opens the Site Status Board for the CMS
Sites [156], providing a 24-hour status availability of the selected site allowing to
identify any problematic site and blacklist it from resubmissions as illustrated in Figure

5.14.

Detailed Resubmission History 481&’. Availability
N f . [~ d [R T P SE T P Yol
TaskMonitarld];';‘; °" pending Running Successful Failed ofhknown Tf,":""“ Plots . E——
rshu_job_bprime_cWEwW_mz250-GEN-51M- - - Piot
RAW_v3_facalidb i 2an ° o 48 2 ° Time infe Salaction
Schedulerlobrd EventRange 23:'.““ g{‘a‘tuE:d Site Submitted Started Finished
https: figrid-IbD.desy.de 9000 IN]6- - e s - 2000-02-17 2009-02-16 2009-02-18
DPMEANT LESHIOAZA : MOTo0 BRI E“a . T T _Tamwan, oo oo, - s e
3 - ick an 2 site name ta see the status of the site far the last 24 howrs.
r:iaj;;tg:llesarggka!augm 2 unknown UNENDV III:\IIIJWII 16:15:00 LHIKTEWTT UNKTLwIT
https: fABDOS cnaf.infn it:0000 _ 2000.02-22 2000-02-23
JFanetxF ONRSQYHKCIFLICY 2 unknoan - CARCELED T2 _Taman 334842 e 17:54:22
https: AROG? cnafinf Jto000 PR 2009-02-23 2009-02-23 2009-02-24
. JBKEUQSENYVTHaZI0WA3Y E D Qone T2TW_TaiNan 50095 18:00:13 D2:02:42

Figure 5.14: Site Availability for the CMS Sites.

Also, clicking on the 'Retries’ column provides a detailed re-submission history of
every single job which can be very useful for debugging purposes. An example can be
seen in Figure 5.15; the job produced an output to the Storage Element (SE) but the
staging out finished with an error (exit code: 60307), thus, all following resubmissions
had no chance to succeed, since the file was already created on the SE (exit code:
60303). Before any further resubmission, the output file generated by the previous

attempt should be removed from the SE.

Num
TaskMonitorId of Pending Running Successful Failed Unknown $?n|:::umed Plots
Jobs
d\rpatteo_crab_Tan10_60_250_famos_u6w220 500 0 5 357 535 3 Time Info Plot)
i Selection
R Appl .
SchedulerJobId Idin Exit Grid End Site Submitted Started Finished
Task Status
Code
nttps://Ib006 .cnaf.infn.it: 9000 2009-05-06 2009-05-06 2009-05-06
/QEREC7 GPI7velFfgloiBPw L EEI U T3_UK_London_QMUL 5,53, 43 09:27:01 18:57:12
https://wms212.cern.ch:9000 2009-05-07 2009-05-07 2009-05-07
/yKNoSUBBG_mSiBvt_bnzVA K ! T Lone T2 UK _SGrid Bristol 5. 45,55 03:38:15 06:09:06

Figure 5.15: Detailed Resubmission Information

Currently, the strongest point of the application is the failure diagnostics for the
Application failures. It is extremely useful to get not only the exit-code of the failed job,
which sometimes can be misleading, but a detailed reason of failure as well, i.e. ‘Could
not save output file A on the storage element B’. The ideal goal would be to reach to a
point where a user shouldn’t have to open the log file and search for what went wrong
with the job. The user could get everything from the monitoring tool. An example can

be seen in Figure 5.16.

CMS Dashboard Task Monitoring 112

. Appl . -
Scheduler Jobld din pit Crpll & GEEED g Submitted Started Finished
Task Reason Status
Code
https:/1b008 cnafinfn.it9000 ‘Copy 2009-09-19 2009-09-20 2009-09-20

218 60307 Unknown T2_IT_Pisa

MWXAClwqOnp45-3MEOE [xdA SUCE... 23:58:54 00:31:11 01:30:48
https:/Ib001.cnafinfn.ita000 2009-08-20 2009-09-20 2009-09-20
/mX0paBwOMTT_UPK9pFtPXw 2l A lﬁ'e[:g-“*“' Unknown T2_IT_Pisa s.n4.00 02:16:13 02:28:51

file total_events_218.root already exist

Figure 5.16: Detailed Reason of Failure.

The application offers a wide variety of graphical plots that will visually assist the
user to understand the status of the task. These plots show the distribution by site of
successful, failed, running and pending jobs as well as for the processed events (Figure
5.17a) and they can help identify any problematic site and blacklist it from further
resubmissions (Figure 5.17b). They also demonstrate the terminated jobs in terms of
success or failure and over the time range that the task has been running (Figure 5.17c¢).
In the case of failure, the distribution by reason is demonstrated, whether it be Grid-

Aborted or Application-Failed jobs (Figure 5.17d).

442500 processed events out of 498576 in total. Terminated jobs by Site
1245 Mlnut§'§ from 2009-03-06 20:45 to 2009-03-07 17:31 UTC
T T T T T T

: : : : T2_FR_CCINZP3
30000

300,000 5o AT

250,000 8 i

PO] EOURN SO N B S S

150,000 T2IT_Legnars

100,000

N L L N L N N L L [Grid Abortedpuy Successtul
o100 03:00 05.:00 07:00 09:00 1100 13:00 15:00 17:.00

a)

Terminated jobs distributed over time
569 Minutes from 2009-02-08 18:52 to 2009-02-09 04:22 UTC
T T ! T T T

H L
100 2500

I T T T

200 U =
i BRI [

YN S O S 1000 O .
Loool- B g

LT S e S e e

1 Successtul 1 Application Failed I Srid Abortsd W File already exists on the SE-ExitCode:60303 (191) LI Failed to copy an output file to the SE-ExitCode:60307 (126)
Maximum: 2,733, Minimum: 0.00 , Average: 2,160 , Current: 2,733 [File OpenError-ExitCode-8020 (1) W cmsRun did not produce a validire adable job report at runtime

c) d)
Figure 5.17: Graphical Plots: a) Processed Events over Time, b) Terminated Jobs by
Site, ¢) Terminated Jobs over Time, d) Reason of Failure.

CMS Dashboard Task Monitoring 113

Various kinds of consumed time plots are available such as the distribution of CPU
and Wall Clock time spent for successful and failed jobs and the average efficiency
distributed by site as illustrated in Figure 5.18. These plots will help the user to see how
the CPU time per event and efficiency can vary depending on the site that the jobs are
running on. The user gets information regarding the time that has been consumed for a

specific task or a given job.

Average Efficiency Distributed By Site (in %)

Inl.infn.ik
T2_IT_Leanare
T2_PT_NCG_Lishon
T2_ES_IFCA
T2_FR_GRIF_IRFU
T2_RU_ITEF
T2_HU_Budapest
T2_DE_DESY
TZ_FR_GRIF_LLR
T2_IT_Pis
unknown
T2_RU_INR
T2_RU_JINR
T2_FR_IFHC
TO_CH_CERN
T3_FR_IFNL
T2_US_MIT
T2_CN_B=iling
T2_AU_IHEF
T2_IN_TIFR
T2_BE_IIHE
T2_us_ucso
T2_UK_SGrid_Briztol
T3_UK_Londaen_gHUL
T2_TR_METU
T2_RU_PNFI
T3_IT_Fadova
T2_US_Caltech
T2_aT_vienna
T2_RU_SINF
T2_FT_LIF_Listen
T2_PL_wWarsmw
T3_IT_Trieshe
T3_CO_Uniandes

1 Il
20 40 60

Figure 5.18: Efficiency Distributed by Site.

For any given task (Figure 5.19), the following information is available: the average
efficiency of the task, the total and the average CMSSW CPU and job wrapper Wall
Clock time usage and the average CPU time spent per event. The average efficiency per
task is calculated by the following formula:

Efficiency pertask =Y (WC Time! CPU Time)

Num
TaskMonitorId of Pending Running Successful Failed Unknown gii):.:umed Plots
Jobs
grace_crab_0_090208_201828 575 0 0 406 169 0 Time Info Flot
i Selection
Time Plots
Average CPU Average __ Total wall Clock . . . CPU Time Wall Clock Time
Time Per Event Efficiency T[gitsilngsge—dn?e Time E]Jségﬁutti'r%r; D'i\t‘,gﬁl‘gg}:kof Distributed by Distributed by
Distributed by Distributed by) Y Distributed by £) Site over Time Site over Time
site 2] site 2] Site site 2] time

Consumed Time in (HH:MM:SS) format

Total Total job Average CPU Time Average Average CMSSW Average job
CMSSW CPU wrapper Wall pPer E\rgent (in sec.) Efﬁciegnc CPU Time per wrapper Wall Clock
Time Clock Time : Y Job Time per Job

1 day, . A .

D 12 days, 11:53:15 0.0340613841924 23.96% 0:04:45 0:33:45

Figure 5.19: Consumed Time information for a selected task.

CMS Dashboard Task Monitoring 114

At the job-level the user gets information about the efficiency of every single job
separately as illustrated in Figure 5.20. The processing efficiency per job is calculated
by the following formula:

Efficiency per job=WC Timel CPU Time

q Appl Grid
SchedulerJobld iy Retries Exit End Events Site Submitted Started Finished Efficiency
Task
Code Status
B it: 2 - - 2 - - 2 - =
https://lbo01.cnaf.infn.it: 9000 1 1 Q Dane 1000 T2 UK_London Brunel 2009-06-03 2009-06-03 2009-056-03 35.25%

f146_55QdnCF3hgPFfyMPxQ 12:20:33 12:22:14 12:25:28

Figure 5.20: Job-level processing efficiency.

A selection of snapshots of the application can be seen in Figure 5.21.

Select a User: AdishPradeepvartak = Select a Time Range: LastWeek = | Help User Support

ddist COPt300_u3scr FailedJobs Back to all Tasks | This Task

Select a User: AdishPradeepvartak =l Select a Time Range: Last Week - Help User support e ————
o

“ |Failure Diagnostics for Grid and
application failures

SO — Distribution
. ———
click on
A
n

Average Efficiency Distri By Site (in %
Submitted Started Finished < Y I SEN 1)

nnnnnnnnn

Efficiency Distributed| ,
by Site -

o, T2_8R_UER)

L
S
Detailed Job Information|

et

Figure 5.21: A selection of snapshots of the‘application.

5.4 Experience of the CMS User Community with Task Monitoring

In the CMS Community, the CMS Remote Analysis Builder (CRAB) is used for the
job submission. CRAB is a Python programme simplifying the process of creation and
submission of CMS analysis jobs to the Grid environment. CRAB can be used in two

ways; as a standalone application and with a server.

CMS Dashboard Task Monitoring 115

The standalone mode is suited for small tasks and it submits the jobs directly to the
scheduler and these jobs are under the user's responsibility. In the server mode, suited
for larger tasks, the jobs are prepared locally and then passed on to a dedicated CRAB
Server which then interacts with the scheduler on behalf of the user and performs

additional services such as automatic resubmissions and output retrieval.

Rather often, CMS Dashboard Task Monitoring discovers previously undetected
problems with the CRAB Server or the Workload Management Systems (WMS). The
Dashboard reports a job as 'finished' when the job finishes on the worker node but the
job status updates by the Grid services can introduce some latency and they are quite
often delayed due to a component of the CRAB Server or due to problems of the WMS
or of the Logging and Bookkeeping system (LB). Thus, when the users see a big delay
in status updates in CRAB compared to the status shown in CMS Dashboard Task
Monitoring, they report the problem and after investigation either the CRAB Server is
fixed or the faulty WMS is blacklisted.

A user support campaign has been performed to bring awareness to the CMS User
Community for the CMS Dashboard Task Monitoring application, collect feedback,
assemble further requirements and identify weaknesses with the application. Two
hundred analysis users were contacted via e-mail. A very positive feedback response has
been received; the results of our user survey are available in Appendix A.3 along with

their feature requests.

According to our web statistics [131][155], more than one hundred distinct analysis
users are using CMS Dashboard Task Monitoring for their everyday work as illustrated
in Figure 5.22. The Dashboard Applications Usage Statistics programme was developed
by the author to count the daily total number of distinct users using a selected number of
CMS Dashboard applications. In order to count the distinct daily users, the daily

access_log file of the apache http web server was used.

CMS Dashboard Task Monitoring 116

Daily Application Usage Stats
230 Days from Week 13 of 2009 to Week 46 of 2009

50

8 A .|||||..|||||..|||||..|||||..nI||..|||||..|||||..|||||.I||||..““||.|||||..| L
Apr2009 May 2000 Jun 2009 Jul 2009 Aug 2009 Sep 2009 Oct 2009 Now 2009

W Task Monitoring || From CRAE to Task Monitoring

Maximum: 354,00, Minimum: 0.00 , Averages: 114.23 , Current: 72.00

Figure 5.22: Daily Usage Statistics.

The following bash script commands (Listing 5.7) were used in a python programme
to determine the date of the month and the total number of distinct daily users using

some selected applications according to the total number of unique visitor IPs.

Command to get the date of the month:

getDate = "zgrep +0 /var/log/httpd/access_log.1.gz | awk '{print $4}'| uniq | head -n 1| cut -¢ 2-13"

Commands for the usage of the following applications:

TaskMon = "zcat /var/log/httpd/access _log.1.gz | grep taskmonitoring | awk '{print $1}' | sort | uniq |wc -1"
TaskMonCRAB = "zcat /var/log/httpd/access_log.1.gz | grep taskmon.html | awk '{print $1}'| sort | uniq [wc -1"

Listing 5.7: Unix bash script to determine the total number of distinct daily users.

The “TaskMon” bash command counts the total number of distinct users using the
application and the “TaskMonCRAB” command counts the total number of distinct
CRAB users accessing the application directly from the CRAB status output. The
following unix cron command (Listing 5.8) was scheduled to run the programme daily

at 06:00am for the updating of the statistics.

0 6 * * * python /usr/share/dashboard-stats/dashb_stats.py 2>&1 >> /var/log/script_output.log

Listing 5.8: Unix Cron job scheduled to update the statistics daily.

CMS Dashboard Task Monitoring 117

The Graphtool library was used to create the graphical plot. The daily statistics
graphical plot is available in [155].

5.5 Summary

While the existing monitoring tools are coupled to a specific middleware, CMS
Dashboard Task Monitoring provides monitoring functionality regardless of the job
submission method or the middleware platform offering a complete and detailed view of
the user's tasks including failure diagnostics, processing efficiency and resubmission

history.

The monitoring tool has become very critical among the CMS users. According to
our web statistics [131][155], more than one hundred distinct analysis users are using it
for their everyday work. Close collaboration with several CMS users resulted in the tool

being focused on their exact monitoring needs.

http://lxarda18.cern.ch/usage.html

118

CHAPTER 6.

CMS DASHBOARD JOB SUMMARY

The CMS Dashboard Job Summary was the first job monitoring application to be
developed, based on a vision more than experience, therefore emphasis was put on
flexibility. The application provides a job-centric view aimed at understanding and

debugging what happens in real-time.

This chapter discusses the development of the CMS Dashboard Job Summary
application that was performed by the author and is published in [59] and [60].

6.1 Introduction

The CMS Virtual Organisation (VO) uses various fully distributed job submission
methods and execution backends. The CMS jobs are processed on several middleware
platforms such as the gLite, the ARC and the OSG. Up to 200,000 CMS jobs are
submitted daily to the Worldwide LHC Computing Grid (WLCGQG) infrastructure and this
number is steadily growing. These factors increase the complexity of the monitoring of

the user analysis activities within the CMS VO.

Distributed analysis on the WLCG infrastructure is currently one of the main
challenges of the LHC computing. Reliable monitoring is an aspect of particular
importance; it is a vital factor for the overall improvement of the quality of the CMS
VO infrastructure. Transparent access to the LHC data has to be provided for more than
five thousand scientists all over the world. Users who run analysis jobs on the Grid do
not necessarily have expertise in Grid computing. Currently, 100-150 distinct CMS
users submit their analysis jobs to the WLCG daily. The significant streamlining of
operations and the simplification of end-users’ interaction with the Grid are required for

effective organisation of the LHC wuser analysis. Simple, user-friendly, reliable

CMS Dashboard Job Summary 119

monitoring of the analysis jobs is one of the key components of the operations of the

distributed analysis.

The goal of the CMS Dashboard Job Summary is to follow the job processing of the
CMS experiment on the distributed infrastructure. The entry point of the application is
the number of the jobs submitted or terminated in a chosen time period categorised by

their activity such as the analysis, the production and the job robot (testing) jobs.

The CMS Dashboard Job Summary, also known as the “interactive interface”, allows
to explore further down on the available information, expanding the set of jobs by
various relevant properties such as the execution site, the grid gateway, the user, various
completion statuses, the grid workload management host, the activity type and the
dataset used, until all details stored in the Dashboard database about a chosen (set of)
job(s) can be accessed. The interface reports success/failure rates according to the
grid/site/application, and information on used wall clock and cpu time consumed by the

jobs.

Information related to the job processing can be aggregated and presented per user,
per site or Computing Element (CE), per resource broker, per application and per input

collection.

The application offers very flexible access to recent monitoring data and shows the
job processing at runtime. The interactive UI contains the distribution of active jobs and
jobs terminated during a selected time window by their status. Jobs can be sorted by
various attributes, for example, the type of activity (such as the production, analysis and
test), site or CE where they are being processed, job submission tool, input dataset,
software version and many others. The information is presented in a bar plot and in a
table. A user can navigate to a page with very detailed information about a particular
job, for example, the exit code and exit reason, important time stamps of processing the

job and the number of processed events.

The CMS Dashboard Job Summary was the very first monitoring application

developed in the Dashboard project. The motivation for this development, started at the

CMS Dashboard Job Summary 120

summer of 2005, was to show whether the Grid is operational, because at that period of
time people were rather pessimistic about the Grid, and to show what is the status of the
job processing in real time, detect any problems or inefficiencies, not necessarily with
the site, but for example with a particular dataset, or particular instance of RB, or

particular application version.

This is the reason why the application provides such a wide flexibility to the users; a
user can sort information by any of the job/task attributes. The application does not offer
long term statistics, since there is no pre-cooked information on the database. The
application is using raw database data and the database was tuned for better

performance with this high level of flexibility.

6.2 Design
The following sections discuss the requirements that shaped the design of the CMS

Dashboard Job Summary application.

6.2.1 Objectives

The main objectives for re-developing CMS Dashboard Job Summary is to provide a
more stable, maintainable release aimed at various CMS User Communities such as the
VO Management Team, the coordinators and participants of various CMS computing

projects such as the Analysis Support Team and CMS Site Administrators.

The main beneficiaries of this activity were the users who have come to rely on the
functionality that the application provides. The increased stability and performance was

a benefit to them and to new users.

6.2.2 Use Cases

A use case analysis was carried out based upon the feedback received by the CMS
physicist community. The main use cases are described in Appendix B.1 and illustrated

in Figure 6.1.

With the major use cases established it is possible to extract the key requirements that

CMS Dashboard Job Summary 121

the application has to fulfil. The following points represent the baseline requirements

divided into principal areas.

CMS Dashboard Job Surmmary

Users using the site
Error diagnostics
/ Datasets being Used\
Z . 7

Consumed Time Info

Waiting time
Dashboard Data Repo
x\\ Overall time ﬁ%
Job Wrapper time
Processing Efficiency

Figure 6.1: The main use cases that the application is expected to implement in
conjunction with the CMS User Community Actors and the Dashboard Actor.

CMS User Community

/

-/

6.2.3 Requirements
Assumptions
1. Users have a grid certificate.

2. Users are members of the CMS VO.

User Interface
1. Users control the application via a web interface using a browser.

2. Easy to understand how it works and how to navigate throughout the tool.

CMS Dashboard Job Summary 122

10.

I1.

12.

13.

14.

15.

16.
17.

Compatible with all the recent browsers and operating systems.

All of the Grids and the job submission systems that CMS uses will be
supported.

The user will access a very detailed information of the job processing including
every single resubmission that he/she might have performed for each job
individually.

The application will be connected to the CMS Dashboard Task Monitoring for
task-centric information.

The application will offer consumed time information and plots such as Waiting
Time, Running Time, Overall Time, CPU Time, Job Wrapper Time and
Processing Efficiency.

The user will be able to search for a specific job by entering its Grid Job ID
which is a unique identifier.

Update in 'real-time' from the worker nodes where the jobs are running.

The user will be able to bookmark his/her favourite tasks for later use or to share
them among his/her colleagues.

Offer a selection of advanced graphical plots that will visually assist the user.
The application will offer success rate calculation.

The user will be able to retrieve the results in the XML format as well as the
standard HTML, XSL format.

The application will be built on top of the CMS Dashboard Job Monitoring Data
Repository.

Exceptions should be caught by the application and informative error messages
will be provided to the users.

Verbose logging should be available to identify any problems.

Quick access to the application's manual, help, the FAQ and the meanings of the

error exit codes should be provided.

Developer's Requirements

1.

2
3.
4

Variable level of logging will be built in from the start.

. Logging will write to stdout and to a file to ease debugging.

Low coupling between the components is required.

. Minimum version of Python that is supported is determined by that installed on

CMS Dashboard Job Summary 123

Ixplus.cern.ch (currently 2.3).

6.2.4 Architecture

The CMS Dashboard Job Summary application is part of the Experiment Dashboard
system which is widely used by the four LHC experiments. The architecture does not
differ from the one of the CMS Dashboard Task Monitoring covered in depth in Section
524.

Job status is reported to Dashboard from several information sources. The main ones
are the CMS Job Submission systems such as CRAB and ProdAgent. The status
changes of the jobs can be triggered by reports sent from the user interface of the Job
Submission Systems, when the job status is checked, or reports from the jobs running
on the Worker Node (WN). The jobs running on the WN are instrumented to report
when they start running and when they finish. The exit status of the job is also reported
from the WN. As soon as the job is terminated at the WN, it is turned into “terminated”

status in the Dashboard.

6.3 Implementation

Python was chosen as the main development language for the CMS Dashboard Job
Summary for the reasons outlined in Section 5.3. Apache 2.0.52 (as of November 2009)
was chosen to provide the client interface as it has a history of being flexible, secure and
performant. PHP was chosen as the implementation language for the interactive plot,
due to its power and the availability of third party libraries. Javascript and AJAX were
used to connect the web interface with the database. Finally, the patched version of the
Graphtool python library was used for the creation of the consumed time and failure

diagnostics plots.

The relation between the Action and the View python classes and their generated
output files is illustrated in Figure 6.2. All the Action classes access the database to
collect the data and if a calculation in the results is needed, they forward the data to the
appropriate View class for the calculation and then the data is returned to the user in the
appropriate output format. The output format generated from the Generic Histogram

View classes is in XSL containing an image plot and a table with the requested results.

CMS Dashboard Job Summary 124

ACTION VIEW QUTPUT
1
JebSummary-phpplot.xs| |

:I;IMS"““"” L frt 1
|jobs ummary-table.xsl |
Filters. py

—1

I Filters.xsl
Fumspasesy]

FiltersUpdate.py

JobStatus.py JobStatus.xsl
:I;l —1
MsgSummary. py MsgSummary.xsl

—1

detailTaskView. py detailTaskView.xsl

1 1
detailView.py detailView.xsl
1 : 1 1
exitCodeSummary.py exitCodePie.py exitCodeSummary.xsl
1 — —
efficiency. py |
GenericHistogramXHTMLWViewPercentage.py Efficiency-table.xsl |
CPUUsage.py . —_— 1
. GenericHistogramXHTMLView.py Runningtime-table.xsl
—
ool T Oweralltime-table.xsl |
1
1
CPUTIime.
meo-py CPUTime-table.xsl |
jobWrapperTime.py I
JebWrappertime-table.xs| |
waitingTime.py T |Waitingtime-table.xsl

Figure 6.2: The major components of the application.

6.3.1 Filters
The filter classes contain the menu data and all of the sorting parameters. When the
user enters the application for the first time of a session, the Filters python class calls

the jobFilters function of the Data Access Object (DAO).

The jobFilters function contains the database queries to get the menu data for all the
available parameters of the menu. The DAO then executes the queries and the python
class puts the data in a shared area, the ActionContext as defined in Section 5.2.4, to be
picked up by the Filters.xsl output file. The flowchart of the Filters request is illustrated
in Figure 6.3.

CMS Dashboard Job Summary 125

Output Result in XSL

Filters.xsl Web Server

Action v

Filters. py

Data Access Object (DAQO)
JobFilters function

First time

Loading
-

CMS
Dashboard
Oracle

Database

Figure 6.3: Filters Request Flowchart.

The available filter parameters can be seen in Figure 6.4. The DAO JobFilters
function, executes 10 queries to get the results for the drop-down menu. The user can

also select to view only a selected job status by clicking on any of the check boxes.

| any user v |
| any site v |
| any ce v |
| any submissiantoal v |
| any application v|
| any rb v |
| any activity v|
| any grid v|
| any jobtype v|
| any tier v |
[unk) pend [run) term

[done [cane [abart L) g-unk
[suee [site-fail [app-fail

[all-fail 1 a-unk [donesuccess
O submitted

) terminated

fram UTC

[2009-11-10 12146135 |
to UTC

[2009-11-11 1214635 |

| sort by activity e |

| bars in the plot
submit |

Figure 6.4: All the available parameters of the application.

The application also offers 18 different sorting parameters. These parameters are

contained in a single python dictionary as illustrated in Listing 6.1.

CMS Dashboard Job Summary 126

menus| 1= : 1 4 ssiteh{ : 2

{ : 1l : 1l : 3 i b,
{ ey : i : b : b

{ : I : i : 3t Stier'y,

{ : b { : 3 { : i

Listing 6.1: Sorting Parameters.

6.3.2 CMS Dashboard Database Schema

The CMS Dashboard Job Summary application is built on top of the CMS Dashboard
Job Processing Data Repository. To ensure a clear design and maintainability of the
application, the actual monitoring queries are decoupled from the internal
implementation of the data storage. The application comes with a Data Access Object
(DAO) implementation that represents the data access interface. Access to the database
is done using a connection pool to reduce the overhead of creating new connections and

therefore, the load on the server is reduced and the performance is increased.

Figure 6.5 illustrates the entity relationship diagram between the most important
tables of the database used by the CMS Dashboard Job Summary application. The Job
table is the most important table and it contains information regarding the job itself such
as the number of events to be analysed, the task that it belongs to, the site that the job is
running at and various submission timestamps. The Primary Key (P) is the Jobld and
there are 5 Foreign Keys (F) connecting the Job table with the Site, the Task, the
Resource Broker (RB), the Short Computing Element (CE) and the Scheduler table.

The Task table contains task-specific information such as the task creation
timestamp, the name of the task, the submission method used, the user that has
submitted this task, the input collection and the target Computing Element (CE). The
Primary Key is the Taskld and there are 8 Foreign Keys connecting the table with the
User, the Task Type, the Application, the Input Collection, the Scheduler, the

Submission_Tool, the Submission IU and the Submission_Tool Ver table.

The Site table contains site-specific information such as the site name, the country
that the site belongs to, the Computing Elements of the site and the nodes of the site.
The Primary Key is the Siteld and the Foreign Key is the Schedulerld connecting the
table with the Scheduler table.

127

CMS Dashboard Job Summary
JOB RE
P * Jobld NUMBER (38) P * Rbid NUMEER (38)
* JobManitorld WARCHARZ (256 BYTE) — * Schedulerld NUMEER (38)
* Taskjobld NUMBER (38) * RbMame WVARCHARZ (256 BYTE)
F * Taskid MNUMBER (38) = PK_RB
Schedulerjobld WARCHARZ (256 BYTE) -
* LocalB atchjobld WARCHARZ (256 BYTE)
WOJebld VARCHARZ (256 BYTE)
N::ﬂ obld NUMBER ESS; SHORT_CE
F * Rbl NUMEER (22
P * ShortCEld NUMBER (28)
. E::zt:l:e'l':e :ﬁi‘cg"é’;ﬁzsgzs ERUE] % ShortCEName VARCHARZ (128 BYTE)
* LongCEld NUMBER (38) ? : S DTS (-
F * ShortCEld NUMBER (38) » TR RUOMEEH)
F * Steld MUMEER (28] = PK_SHORT_CE_NAME
* WNIp NUMBER (38)
* DhoardStatusld VARCHARZ (12 BYTE)
* Dboard|obEndld VARCHARZ (12 BYTE)
* DboardGridEndld VARCHAR2Z (12 BYTE)
* DboardStatusEnterTimeStamp TIMESTAMP
* DboardFirstinfoTimeStarnp TIMESTAMP SITE
* DboardLatestinfoTimeStamp TIMESTAMP P * Siteld NUMEER (38)
* Gridstatusld NUMBER (38 * SiteMarne WVARCHARZ (128 BYTE)
* GridStatusReasonld MUMEER (38) F * Schedulerld NUMEER (38)
* GridStatusTimeStarmp TIMESTAMP * DisplayMName WARCHARZ (256 BYTE)
* GridstatusSourceld NUMBER (38 * SiteState WARCHARZ (12 BYTE)
* GridEndstatusld NUMBER (38 * SiteUniqueld WARCHAR2 (128 BYTE)
* GridEndstatusReasonid NUMBER (38) SiteWww VARCHARZ (256 BYTE)
* GridEndstatusTimeStarmp TIMESTAMP SiteEmail WARCHAR2 (128 BYTE)
* GridFinishedTimeStamp TIMESTAMP SitelLocation WARCHARZ (256 BYTE)
* ExecutableFinishedTimeStamp ~ TIMESTAMP * InteractivelnterfaceFlag NUMEER (38)
JobExecExitCode NUMBER (38) * Country WVARCHARZ (128 BYTE)
* JobExecE xitReasonid NUMBER (38) Tier FLOAT
* |obExecE xitTimeStamp TIMESTAMP * SamNarne WARCHAR2 (256 BYTE)
JobApplE xitCode NUMBER (38) * VOName VARCHARZ (100 BYTE)
* |obApplE xitReasonld NUMBER (38) * GridMapSize NUMEER (38)
* CreatedTimeStamp TIMESTAMP 1 » * Sit=DEId NUMBER (10)
* SubmittedTimeStamp TIMESTAMP * CPU NUMEER (16,2)
* ScheduledTimeStamp TIMESTAMP * LocalStore NUMEER (16,2)
* StartedRunningTimeStarmp TIMESTAMP * DiskStore NUMEER (16,2)
* FinishedTimeStamp TIMESTAMP * TapeStare NUMEER (16,2)
F * Schedulerld MNUMBER (38) * WanStore NUMBER (16,2
* |obProcessingD etailsld MNUMBER (38) * NationalBandwidth NUMBER (16,2
* SubAttemptStartTimeStarmp TIMESTAMP * OprBandwidth NUMEER (16,2)
* SubAttermptCount NUMEER (€] * JobSlats NUMBER (16,2
* UpdateStrmtTimeStamp TIMESTAMP
* Time0 utFlag MUMBER (&)
* DhoardGridEndStatusReasonld NUMEER (28] G PK_SITE_MAME
* ExaTime MNUMBER (16,2)
* NEwProc NUMBER (32)
* NEwRaq NUMBER (32) '
* WrapCPU NUMBER (16,2) > SCHEDULER
* WrapWC NUMBER (16,2) »
% ExaCPU NUMBEER [16,3] P * Schedulerld MUMBER (28]
O GeE NUMBER (16.2) * SchedulerName _ VARCHARZ (512 BYTE)
* |obType WARCHARZ (50 BYTE) = PK_SCHEDULER
StageOutSE WARCHARZ (100 BYTE)
Mernary NUMBER (32
PilotFlag NUMEER (&)
INpUtSE WARCHARZ (100 BYTE)
ParentPilotid NUMBER (32 INPUT COLLECTION
LatestBatchidFlag NUMEER (8) =
P * InputCollectionid MUMBER (38)
* InputCollection VARCHARZ (512 BYTE)
* ReguestTimeStamp TIMESTAMP
* ProcessingStartedTimeStamp TIMESTAMP
* MergingStartedTimeStamp TIMESTAMP
= PK_|OB * FirstAnalysisAccessTimeStamp TIMESTAMP
TASK TYPE Tl # LatestAnalysisAccessTimeStamp TIMESTAMP
= * RequestedEvents MWUMEER. (38)
P * TaskTypald MUMBER (38) * ProcessedEvents MUMEER (38)
: Type VARCHAR2 (128 BYTE) * MergedEvents MUMBER {38
ValidityFlag ~ NUMBER (2) ProdmonD atasetid MUMEER (38)
* GenericType WARCHARZ (30 BYTE) * Status VARCHARZ (20 BYTE)
&= PK_TASKTYPE
@ PK_INPUTCOLLECTION
TASK
P % Taskld MUMBER (28]
F % Userld MUMBER (28]
* TaskMoniterld VARCHARZ (400 BYTE)
* TaskCrestedTimeStamp TIMESTAMP
F * TaskTypeld MUMBER (28) USERS
* NTaskSteps MUMBER (10) P % Userld MUMBER (38)
* TaskStatusld MUMBER (28] * UnixMame VARCHARZ (128 BYTE)
* JdiCareld MUMBER (28] * GridCertificateSubject VARCHARZ (256 BYTE)
* NEventsPerjob MUMBER (16) * vold MUMEER (28)
F * Applicationld MUMBER (38) * Griddame VARCHARZ (128 BYTE)
* ApplExecld MUMBER (38) » o Certld MUMEER (15)
F * InputCollectionld MUMBER (38) * Roleld MUMEER (15)
F * DefaultSchedulerid MUMBER (38)
F * SubmissionToolid MUMEBER (38 [GEAE
F * SubmissionUild MUMBER. (38)
* JobProcessingTypeld MUMBER. (38) SUBMISSION_TOOL_VER
* TargetCE WARCHARZ (256 BYTE) P * SubToolerld MNUMBER (28]
* SubmissionType WARCHARZ (30 BYTE) * SubToolersion WARCHARZ2 (256 BYTE)
F * SubTooherld MWUMEER. (38) &= PK_SUBTOOLVER
3 PK_TASK SUBMISSION_TOOL
L3 P * SubmissionToolld ~ MUMBER (38)
SUBMISSION_UI *_SubrnissionTool VARCHARZ (256 BYTE)
P * SubrmissionUlld MUMBER (38) = PK_SUBMISSIONTOOL
* SubmissionUl WVARCHAR2 (256 BYTE) »
* DisplayMName WVARCHAR2 (512 BYTE) APPLICATION
2 A TR P * Applicationid NUMBER (38)
* Applicationversion WARCHARZ (256 BYTE)
* Application WVARCHARZ (256 BYTE)
* alidityFlag NUMEER (2)
&= PK_APPLICATION

Figure 6.5: The Entity Relationship Diagram.

CMS Dashboard Job Summary 128

6.3.3 SQL Queries
The most important SQL database queries of the application can be seen in Appendix

B.2.

6.3.4 User Interface

The User Interface of the CMS Dashboard Job Summary is divided in two parts. The
graphical plot, the filters with their sorting parameters, the consumed time information
buttons and the search field to search for a specific job can be seen in the upper part of

the User Interface as illustrated in Figure 6.6.

HELP FAQ
Waiting time Running time overall time CPU time Job Wrapper time Efficiency

|Search a job using the GridJabld | search

| any user ~| jobs per activity

(aoyste |v] productiare |

[any ce > analysis | .|

[any submissiontool ~| jobrobat)

[any application ~] backiiiT T |

lanyrb |~ 10-express N

—_— t0-promptreco

‘ privateproduction ~ ‘ tD-a\caskim:
| any grid ~ | t0-merged]
‘ any jobtype ~ ‘ t0-repackf]
| any tier ~ | cleanupfT]

— = — — t0-mergepack:

unk L pend) run L term oep 2

- _ — — 0-skimming

ldone L cane L abort L) g-unk

= O O reprocessing

- suce 7_s\te—fawl - app-fail logcollect:

[allfail) acunk O

) all-fail ! a-unk | donesuccess privateproduction:

O submitted unknown

" terminated relval
fromute 10000 20000 30000 40000 50000 50000
[z009-11-1015:27:45 | number of jobs
to UTC
[z000-11-11 15:27:45 | [submitted app-succeeded application failed [l sitefailed [l aborted cancelled app-unknown pending running
| sort by submissientool ~|

[| bars in the plot

submit
Figure 6.6: The upper part of the User Interface.

By clicking on any category on the plot, a “sort-by” menu appears allowing the user

to explore further on the available information as illustrated in Figure 6.7.

CMS Dashboard Job Summary 129

sort by: Close
Overall time g.rld

site

ce

”-user

submissiontool

submissionui

activity
productiont application]
analysis rb]
jobrobot i&dataset |
t0-prormptrecof task
backfillfJIm submissiontype
t0-alcaskim{] submitted

t0-mergel] terminated

t0-expresst_| Jobtype
I |subtoolver

unknowngl] |7
cleanuptll tier
genactivity
t0-repack{] outputse
logcollect]

appexitcode

th-mergepack
Figure 6.7: Exploring further down on the
available information.

The table with all the available numerical data can be seen in the lower part of the
User Interface as illustrated in Figure 6.8. The table is categorised by the current status,
the grid exit status, the application exit status, the overall status and the number of

events processed and the CPU and Job Wrapper time.

=
T
]

E3

Grid% AppFail SiteFail AllFail ol App% Site% Overall% WrapCPL

activity Sub Pend Run Term Done Canc Unk Succ Unk NEvProc WrapWe
analysis 36013 1842 1666 32052 9497 341 7456 14758 5491 19130 7047 116 7163 5759 7276 9963 5167 300248372 29812795.1365409120
backfill 9171 55 167 8949 269 0 5183 3497 493 3623 133 0 133 5193 9646 100 4048

cleanup 1247 91 50 1106 789 0 88 229 8997 1063 O 0 0 43 100 100 96,11 0 0 0
jobrabot 24400 1194 124 23082 19122 O 3108 852 86,02 20966 7 15 22 2094 999 9994 9083 13452040 11577188.9418124141
logeollect 85 8 i 50 30 0 8 12 7895 36 11 0 11 3 766 100 72] 0
privateproduction 70 0 1 69 12 0 0 57 100 59 10 0 10 0 8551 100 85.51 0 0 0
production 60175 8065 15115 36995 8754 1 5968 22272 5946 33317 401 22 423 3260 9875 9994 90,04 0 0 0

relval 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 100 0 0 0 0
reprocessing 186 2 o 184 13 0 1m0 707 10 2z 0 2z 172 8333 100 543 0 0 0
t0-alcaskim 2179 0 o R 0 0 w0 375 1804 O 1804 0 1721 100 17.21 0 0 0
t0-express 5373 0 1 8372 0 [} [} 5372 0 5369 3 [} 3 a 99.94 100 99.94 0 0 0
t0-merge 2053 0 & 2047 0 [} [} 2047 0 2032 15 [} 15 a 99.27 100 99.27 0 0 0
t0-mergepack 928) a 928) [} [} 928 0 928) [} a a 100 100 100 0 0 0
t0-promptreco 4860 O 308 4552 O 0 0 4552 0 4544 8 0 8 [99,82 100 99,82 0 0 0 v
total: 17 148494 11257 17470 119312 38486 342 21982 58502 6365 93162 9473 148 2626 le524 9064 9988 To.42 313700412 41389984.0783533261

query took 2.84 seconds.

Figure 6.8: The lower part of the User Interface.

Bars are sorted by the number of jobs in a given category. Since labels of every
category can be rather long, it is difficult to find a given item in the table. The items in
the table by default are sorted in the alphabetic order but by clicking on the table header
of any selected column, the user can sort the items in the table by a value in a

corresponding column.

The table also offers success rate calculation as illustrated in Figure 6.9. The formula

to calculate the success rate follows:

CMS Dashboard Job Summary 130

Grid Success Rate (Grid%) = Done / (Done + Abort)

Application Success Rate (App%) = Success / (Success + Fail)

Overall Success Rate (Overall%) = (Success- (Success & Abort)) / (Terminated-
(GridUnknown & AppUnknown))

Site Success Rate (Site%) = 1 - ((SiteFailed + GridAborted) / (Terminated-
(GridUnknown & AppUnknown))

where

Done = reported as “Grid success” by the Grid information services.

Abort = reported as “Grid aborted” jobs by the Grid information services.
Success = application ran successfully.

Fail = application failed.

Terminated = reported as terminated (success or failure) by any of the

information sources (grid or application).

Grid% App% Site % Owverall¥a

93,71 96.08 99,97 78.96

100 100 100 100
0.4 40,77 100 40.67
100 100 100 100
100 100 100 100
04,57 92.53 100 70,37
7.3 52.17 100 2143
.99 93.79 100 11.22
29.54 5.36 100 5.33
83.12 93.15 100 88.31
gl.82 90.91 100 83.87
7.49 8z2.61 99.9 69,84
100 100 100 100

78.05 59.79 91.67 56.86
el.2i 73.08 29.65 59.59

Figure 6.9: Success Rate Calculation.

The user can also retrieve the result of the table in the XML format by using the

following command:

$ curl -H 'Accept: text/xml' http://dashb-cms-job.cern.ch/dashboard/request.py/jobsummary-

plot-or-table > /tmp/action.xml

Listing 6.2: Retrieving the result in the XML format.

CMS Dashboard Job Summary 131

The XML output will be a bit hard to read because there is no newline break. The

output file can be reformatted by using the 'xmllint' command:

$ xmllint --format /tmp/action.xml

Listing 6.3: Reformatting the XML output.

By clicking on any consumed time button, a new window appears with a graphical
plot and a table. The Waiting Time information can be seen in Figure 6.10. This
functionality offers a per job average waiting time and it is calculated by subtracting the
“Started_Running time” with the “Submission time” timestamps.

waiting time per activity

production |
reprocessing |
logcollect:
jobrobot |
analysis |
cleanup |
backfilk]
privateproduction:
t0-promptreco:
t0-alcaskim
t0-mergepack
t0-merge
relval
t0-skimming:
tl-repack
tl-express:

0.25 0.5 0.75 1 1.25 15 1.75 2
hours

activity

production 02:12:55
reprocessing 02:10:52
logcollect 01:35:38
jobrobot 00:56:15
analysis 00:52:33
cleanup 00:50:38
backfill 00:21:25

privateproduction 00:00:00
tO0-promptreco 00:00:00

t0-alcaskim 00:00:00
t0-mergepack 00:00:00
t0-merge 00:00:00
relval 00:00:00
t0-skimming 00:00:00
t0-repack 00:00:00
tO0-express 00:00:00
average 00:33:46

Figure 6.10: Waiting Time Per Activity.

The Overall Time information can be seen in Figure 6.11. This functionality offers
per job average overall time and it is calculated by subtracting the “Finished time” with

the “Submission time” timestamps. The timestamps are reported by the jobs themselves

CMS Dashboard Job Summary

and in case of a job resubmission, only the latest attempt is considered.

overall time per user

132

Fruboes/fruboes.

GiovanniPetruccianifgpetrucc

Tkolberg/tkolberg

MatthewChadwick/chadwick

Xenia Fave/xfave:

Ranjan/ranjan

HeikoGeenen/geenen:

Andrealucaroniflucaroni

Barfuss/barfuss.

AliakseiRaspiareza/rasp

MarceloGuerra)ordas/mguerra:

Alebihan/alebihan

RebecaGonzalezsSuarezirebeca

ChristoherPalmer/capalmer

RichardCarlGray/rcgray

PedroManuelFerreiraSilva/psilva

MatthewRudolph/mrudelph:

Dlopes/dlopes.

JochenOtt/fjott
2 4 g 10 12 14 16 18 20 22 24
hours

user

Fruboes/fruboes 1d 00:12:02
GiovanniPetrucciani/gpetrucc 14:33:19
Tkolberg/tkolberg 11:16:03
MatthewChadwick/chadwick 09:56:47
Xenig]Fave/fxfave 09:23:54
Ranjan/ranjan 08:36:21
HeikoGeenen/geenen 08:32:45
Andrealucaroniflucaroni 08:00:59
Barfuss/barfuss 07:23:44
AliakseiRaspiarezal/rasp 07:21:19
MarceloGuerraJordac/mguerra 07:12:00
Alebihan/alebihan 06:48:04
RebecaGonzalezSuarezirebeca 06:46:21

Figure 6.11: Overall Time Per User for the Analysis Activity.

The Running Time information can be seen in Figure 6.12. This functionality offers
per job average running time and it is calculated by subtracting the “Finished time” with
the “Started Running time” timestamps. The timestamps are reported by the jobs

themselves and in case of a job resubmission, only the latest attempt is considered.

CMS Dashboard Job Summary

running time per grid

133

LCG:

GLITECOLL

05G

GLITE;

SGE{ |
CAF
10
grid
LCG 01:04:36
GLITECOLL 00:42:09
0sG 00:31:18
GLITE 00:28:52
SGE 00:00:58
CAF 00:00:15
average 00:29:11

Figure 6.12: Running Time Per Grid for the Analysis Activity.

20 30 40 50
minutes

60

The CPU Time information can be seen in Figure 6.13. This functionality offers per

job average CPU time and it is calculated by the sum of the “CPUTime” field ordered

by a category, such as the site and the user. Currently, only jobs submitted using CRAB

report the “CPUTime” value.

T3_CO_Uniandes
gla.scotgrid.ac.uk
T2_PT_NCG_Lisbon
T2_KR_KNU
T2_RU_SINP
T2_UK_SGrid_Bristol
T2_US_MIT
T2_RU_PMPI
T2_RU_INR:
T2_RU_IHEP
T2_HU_Budapest
T2_PT_LIP Lisbon
T2_IN_TIFR:
T2_UK_London_Brunel
T3_IT_Trieste
ba.infn.it
T2_RU_JINR:
T2_UK_SGrid_RALPP
T2_CH_CSCS

site

cpu time per site

T3 _CO Uniandes
gla.scotgrid.ac.uk
T2 PT_NCG Lisbon
T2 KR _KNU

T2 RU_SINP

T2 UK SGrid Bristal
T2 _US_MIT

T2 RU_PNPI

T2 RU_INR

Figure 6.13: CPU Time Per Site for the Analysis Activity.

05

03:22:35
03:16:16
03:08:01
02:21:51
02:06:54
01:42:49
01:41:24
01:40:30
01:26:32

hours

CMS Dashboard Job Summary 134

The Job Wrapper Time information can be seen in Figure 6.14. This functionality
offers average per job Wall Clock time as reported by the job wrapper and it is
calculated by the sum of the “WCTime” field ordered by a category, such as the site and
the user. Currently, only jobs submitted using CRAB report the “WCTime” value.

jobwrapper time per site

T2_DE_DESY
T3_CO_Uniandes]
gla.scotgrid.ac.uk |

T2_PT_NCG_Lisbon
T2_KR_KNU
T2_U5_Florida]
T2_RU_SINP]
T2_AT Vienna]
T2 US_MIT |
T2_RU_PNPI |
T2_RU_JINR: |
T2_UK_SGrid_Bristol]
T2 IN_TIFR |
T2_PT_LIP_Lishon |
T2_RU_INR |
T2_RU_IHEP |
T2_UK_Londen_Brunel]
T2_CH_CSCS |
T2_HU_Budapest]
05 1 15 2 25 3 35 4 a5
hours

site

T2 DE DESY 04:50:29
T3 CO_Uniandes 03:49:35
gla.scotgrid.ac.uk 03:44:50
T2 PT NCG Lisbon 03:15:07

T2 KR KNU 02:56:51
T2_US_Florida 02:23:10
T2 RU_SINP 02:21:16
T2 AT Vienna 02:20:13
T2 US_MIT 02:10:34

Figure 6.14: Job Wrapper Time Per Site for the Analysis Activity.

The Processing Efficiency information can be seen in Figure 6.15. This functionality
offers average per job processing efficiency as reported by the job wrapper and it is
calculated by dividing the “CPUTime” with the “WCTime” ordered by a category, such
as the site and the user. Currently, only jobs submitted using CRAB report the
“CPUTime” and “WCTime” values.

CMS Dashboard Job Summary

efficiency per site

135

T2_UK_SGrid_Bristol

T2_PT_NCG_Lishon

gla.scotgrid.ac.uk

T1_US_FNAL

T2_RU_PNPI

T2_RU_INR:

ba.infn.it

T3_CO_Uniandes

T3_US_FIT

T3_US_FNALLPC

T2_KR_KNU

TZ_HU_Budapest

T2_US_MIT

T2_US_UCSD

T2_RU_IHEP

T2_RU_SINP

T2_US_Nebraska

T3_IT_Trieste

T2_UK_SGrid_RALPP

10

site

T2 UK SGrid_Bristol
T2_PT_NCG Lisbon
gla.scotgrid.ac.uk
T1 US FNAL

T2 RU PNPI

T2 RU_INR
ba.infn.it

T3 CO Uniandes
T3 US_FIT

T3 US FNALLPC
T2 KR_KNU

20

92.41%
81.85%
89.69%
86.73%
83.62%
83.22%
82.58%
81.89%
80.16%
80.1%

79.8%

30 40 50 60 0
percentage

a0 a0

Figure 6.15: Processing Efficiency Per Site (in %) for the Analysis Activity.

The Exit Code Summary can be seen in Figure 6.16. This page reports error

diagnostics by providing a table with numerical values and a graphical plot showing the

distribution of user, application and site failures.

APPLICATION EXIT CODE SUMMARY

In Percentage (Sum: 100)

application

=g

[=pplication (54)

side of problem
Most probably application problem 15
Most probably user problem 13
Total

8001
70000

user (46)

Figure 6:16: The Exit Code Summary.

-
tn

B B
[eu i (5]

number of jobs exitcode number of jobs

CMS Dashboard Job Summary 136

6.4 Experience of the CMS User Community with Job Summary

According to our web statistics [131][155], more than seventy distinct users are using
Job Summary for their everyday work as illustrated in Figure 6.17. The Dashboard
Applications Usage Statistics programme was developed by the author to count the
daily total number of distinct users using a selected number of CMS Dashboard

applications.

Daily Application Usage Stats
230 Days from Week 13 of 2009 to Week 46 of 2009

1 S S S | S -
LR T e P b s bl -
L S S N -

woofi oo 1} — e U] |1 ——

20 bRe g

&0

40

20

o
Apr 2009 May 2008 Jun 2009 Jul zoo9 Aug 2009 Sep 2009 Oct 2009 Now 2009

M Job Summary

Maximum: 180.00 , Minimum: 0.00 , Average: 72.66 , Current: 46.00

Figure 6.17: Daily Usage Statistics.

In order to count the distinct daily users, the daily access_log file of the apache http
web server was used. The following bash script commands were used in a python
programme to determine the date of the month and the total number of distinct daily
users using some selected applications according to the total number of unique visitor

IPs.

Command to get the date of the month:

getDate = "zgrep +0 /var/log/httpd/access_log.1.gz | awk '{print $4}'| uniq | head -n 1| cut -¢ 2-13"

Job Summary usage:

JobSum = "zcat /var/log/httpd/access_log.1.gz | grep jobsummary | awk '{print $1}' | sort | uniq |wc -1"

Listing 6.4: Unix bash script to determine the total number of distinct daily users.

The “JobSum” bash command counts the total number of distinct users using the
application. The following cron command was scheduled to run the programme daily at

06:00am for the updating of the statistics.

CMS Dashboard Job Summary 137

0 6 * * * python /usr/share/dashboard-stats/dashb_stats.py 2>&1 >> /var/log/script_output.log

Listing 6.5: Unix Cron job scheduled to update the statistics daily.

The Graphtool library was used to create the graphical plot of the programme. The
daily statistics plot is available in [155].

6.5 Summary

Currently a big variety of monitoring tools on the CMS Virtual Organisation provide
job monitoring functionality. Most of them are middleware-specific and are used in the
scope of a single middleware. CMS Dashboard Job Summary provides monitoring
functionality regardless of the job submission method or the middleware platform

offering a complete and detailed view of the Grid.

The CMS Dashboard Job Summary was the first monitoring application developed in
the Dashboard project. The motivation for this development, started at the summer of
2005, was to show whether the Grid is operational, because at that period of time people
were rather pessimistic about the Grid, and to show what is the status of the job
processing in real-time, detect any problems or inefficiencies, not necessarily with the
site, but for example with a particular dataset, or particular instance of RB, or particular
application version. This is the reason why the application provides such a wide
flexibility to the users; a user can sort information by any of the job / task attributes

recorded in the CMS Dashboard database.

The application offers an appropriate visualisation of the job processing data,
providing navigation from a global to a detailed view by taking into account the

requirements of the different categories of the users.

http://lxarda18.cern.ch/usage.html

138

CHAPTER 7.

CONCLUSION

The design of a parallel and distributed computing system is a very complicated task.
It requires a detailed understanding of the design issues and of the theoretical and
practical aspects of their solutions. A framework capable of analysing the simulation
data produced by the commercial Legion Studio pedestrian simulation software has
been developed. The programme has been implemented as a multi-threaded and as a
prototype distributed system written in C++ with calls to the MPI library. Benchmarking
the system on a dual-core PC and on a commodity cluster of high performance PCs
demonstrated the system's increase in performance compared to the original single-
threaded analyser. We presented a performance increase for the multi-threaded version
ranging between 35% to 65.5% compared to the original single-threaded Legion
Analyser on a dual core 2GHz system. The performance of the distributed prototype
version of the programme scales well as the number of the processors is increased; with
one Slave processor the prototype system is able to analyse 56500 simulated pedestrians
in 20.17 seconds, whereas with six Slave processors the prototype system analyses

56500 simulated pedestrians in just 3.8 seconds.

Distributed Computing covers the area formerly known as Meta-computing and is
the pre-cursor to the Grid. The Grid is typically used to solve problems that would
traditionally have run on a single High Performance Computer, but due to memory,

storage and/or computational demands it is forced to execute across multiple resources.

The mission of the Worldwide LHC Computing Grid (WLCG) project is to build and
maintain a data storage and analysis infrastructure for the entire High Energy Physics
(HEP) community that will use the LHC. The WLCG combines the computing

resources of more than 170 computing centres in 34 countries, aiming to harness the

Conclusion 139

power of more than 100,000 CPUs to process, analyse and store data produced from the
LHC. These data must be available to all the participating scientists, regardless of their
physical location in order to sift through data, looking for new particles that can
provid/e clues to the origins of our universe. The WLCG anticipates running between
500,000 to 1,000,000 tasks per day and this number will increase as time goes on and as
computing resources and new technologies become ever more available across the

world.

The distributed analysis on the WLCG infrastructure is currently one of the main
challenges of the LHC computing. Reliable monitoring is an aspect of particular
importance; it is a vital factor for the overall improvement of the quality of the WLCG
infrastructure. Transparent access to the LHC data has to be provided for more than five
thousand scientists all over the world. Users who run analysis jobs on the Grid do not

necessarily have expertise in Grid computing.

The CMS Virtual Organisation (VO) uses various fully distributed job submission
methods and execution backends. The CMS jobs are processed on several middleware
platforms such as the gLite, the ARC and the OSG. Up to 200,000 CMS jobs are
submitted daily to the Worldwide LHC Computing Grid (WLCGQG) infrastructure and this
number is steadily growing. These mentioned factors increase the complexity of the
monitoring of the user analysis activities within the CMS VO. Currently, 100-150
distinct CMS users submit their analysis jobs to the WLCG daily. Simple, user-friendly
and reliable monitoring of the analysis jobs is one of the key components of the

operations of the distributed analysis.

There has been a substantial progress in the development of applications for
monitoring the user analysis activities during the year of 2009. This work has been very
critical, since it contributes to the overall success of the LHC offline computing. The
behaviour of the analysis jobs is particularly difficult to predict, as it is a chaotic
activity carried out by users who do not have to be necessarily experienced in using the

Grid and locating problems themselves.

The scientists must be able to monitor the execution status, application and grid-level

Conclusion 140

messages of their tasks that may run at any site on the distributed WLCG infrastructure.
The existing CMS monitoring systems provide this type of information but they are
coupled to a specific middleware and are not focused on the user's perspective. The
CMS Dashboard Task Monitoring application addresses this gap by collecting and
exposing a user-centric set of information to the user regarding submitted tasks. It
provides a clear and precise view of the status of the task including job distribution by
sites and over time, reason of failure and advanced graphical plots giving a more usable
and attractive interface to the analysis and the production user. The development was
user-driven with physicists invited to test the prototype in order to assemble further

requirements and identify weaknesses with the application.

The CMS Dashboard Task Monitoring has become the most popular monitoring tool
among the CMS community; more than a hundred distinct analysis users are using it for
their everyday work. Close collaboration with several CMS users resulted in the tool

being focused on their exact monitoring needs.

The goal of the second monitoring application developed by the author, the CMS
Dashboard Job Summary, is to follow the job processing of the CMS experiment on the
distributed infrastructure. The entry point of the application is the number of the jobs
submitted or terminated in a chosen time period categorised by their activity such as the
analysis, the production and the job robot (testing) jobs. The CMS Dashboard Job
Summary application allows the possibility to explore further on the available
information, expanding the set of jobs by various relevant properties such as the
execution site, the grid gateway, the user, the completion status, the grid workload
management host, the activity type and the used dataset, until all details stored in the
Dashboard database regarding a chosen (set of) job(s) can be accessed. The application
offers success and failure rates according to the grid/site/application, information on
used wall clock and cpu time consumed by the jobs and the average processing

efficiency of the jobs.

The CMS Dashboard Job Summary application provides monitoring functionality
regardless of the job submission method or the middleware platform offering a complete

and detailed view of the Grid. The application provides a wide flexibility to the users; a

Conclusion 141

user can sort information by any of the job / task attributes recorded in the CMS
Dashboard database. It offers an appropriate visualisation of the job processing data,
providing navigation from a global to a detailed view and taking into account the

requirements of the different categories of the users.

Overall the CMS Dashboard Task Monitoring and Job Summary applications have
provided a robust, reliable and useful monitoring service to the CMS community over

the last two years as a result of a close collaboration with several CMS users.

ACRONYMS

Abbreviation
ALICE
AC
ARC
ATLAS
BDII
BLAH
CE
ClassAd
CLI
CMS
CRAB
CREAM
CSV
DAO
DBS
DMS
DSM
DN
DNS
EDC
EDG
EDVAC
EGEE
ENIAC
FTP
FTS
GACL

Full Notation

A Large Ion Collider Experiment

Attribute Certificate

Advanced Resource Connector

A Toroidal LHC Apparatus

Berkeley Database Information Index

Batch Local ASCII Helper

Computing Element

Classified Advertisement

Command Line Interface

Compact Muon Solenoid

CMS Remote Analysis Builder

Computing Resource Execution And Management
Comma Separated Values

Data Access Object

Dataset Bookkeeping Service

Data Management System

Distributed Shared Memory

Distinguished Name

Domain Name System

Electronic Digital Computer

European DataGrid

Electronic Discrete Variable Automatic Computer
Enabling Grids for E-SciencE

Electrical Numerical Integrator and Computer
File Transfer Protocol

File Transfer Service

Grid Access Control List

142

Acronyms

Abbreviation
GASS
GGF
GIIS
GLUE
GRAM
GRIS
GSI
GT
GWT
HEP
HPC
HTC
HTML
[-WAY
IC
ICANN
ICRTM
IETF
IIS

1P

IP

IPs

IS

ISM
JSON
LB
LFN
LHC
LHCb
LHCf
LIS
MC

Full Notation

Global Access to Secondary Storage
Global Grid Forum

Grid Index Information Service

Grid Laboratory Uniform Environment
Globus Resource Allocation and Management
Grid Resource Information Service
Globus Security Infrastructure

Globus Toolkit

Google Web Toolkit

High Energy Physics

High Performance Computing
High-Throughput Computing
Hypertext Mark-up Language
Information Wide Area Year

Integrated Circuit

Internet Corporation for Assigned Names and Numbers

Imperial College Real Time Monitor
Internet Engineering Task Force
Integrated Information Services
Intellectual Property

Internet Protocol

Information Providers

Information System

Information Super Market
JavaScript Object Notation

Logging and Bookkeeping

Logical File Names

Large Hadron Collider

LHC-beauty

LHC-forward

Language Independent Specifications

Monte-Carlo

143

Acronyms

MDS
Abbreviation
MIMD

MISD

MPI

MSG

MVC

OASIS

OGF
OGSA
OGSI
OpenMP
OS

OSG
PFN
PhEDEx
PKI
ProdAgent
PVM
QoS
R-GMA
RB
RDBMS
RLS
SAM

SE
SIMD
SISD
SOA
SOAP
SRM
TOTEM

144

Monitoring and Discovery Service

Full Notation

Multiple Instruction Stream, Multiple Data Stream
Multiple Instruction Stream, Single Data Stream
Message Passing Interface

Messaging System for the Grid
Model-View-Controller

Organisation for the Advancement of Structured Information
Standards

Open Grid Forum

Open Grid Services Architecture

Open Grid Services Infrastructure

Open Multi Processing

Operating System

Open Science Grid

Physical File Names

Physics Experiment Data Export

Public Key Infrastructure

Production Agent

Parallel Virtual Machine

Quality of Service

Relational Grid Monitoring Architecture
Resource Broker

Relational Database Management System
Replica Location System

Service Availability Monitoring

Storage Element

Single Instruction Stream, Multiple Data Stream
Single Instruction Stream, Single Data Stream
Service Orientated Architecture

Simple Object Access Protocol

Storage Resource Management

Total Elastic and Diffractive Cross Section Measurement

Acronyms

Ul
Abbreviation
VDT

VO

VOMS

W3C

WLCG

WMS

WSDL
WSRF
WWWwW
XSL
XML

145

User Interface

Full Notation

Virtual Data Toolkit

Virtual Organisation

Virtual Organisation Membership Service
World Wide Web Consortium
Worldwide LHC Computing Grid
Workload Management System
Worker Node

Web Services Description Language
Web Services Resource Framework
World Wide Web

Extensible Stylesheet Language
eXtensible Markup Language

146

APPENDIX A. TASK MONITORING

A.1 Use Cases

Use Case Submitted Tasks
Description |The User should be able to get a list with all of his submitted tasks
within a specified time period.
Actors Physicist, Dashboard Data Repository.
Assumptions 1. The User has a grid certificate.
2. The User is a member of the CMS VO.
3. The User has submitted jobs to the Grid within one month.
Steps 1. The User chooses his/her identity in the "Select a User" field.

The User selects the time window to define the tasks submitted
during a given time range.

The Results are obtained from the Dashboard Data Repository.
The User should get at the screen the list of all of his/her tasks

submitted over the chosen time range.

Appendix A. Task Monitoring 147

Use Case Task Meta-Information
Description | The User should be able to get a task's meta-information such as the
task's creation time, the submission tool, the target Computing Element
(CE) and the Input Collection used.
Actors Physicist, Dashboard Data Repository.
Assumptions 1. The User has a grid certificate.
2. The User is a member of the CMS VO.
3. The User has submitted jobs to the Grid within one month.
Steps 1. The User chooses his/her identity in the "Select a User" field.
2. The User selects the time window to define the tasks submitted
during a given time range.
3. The Results are obtained from the Dashboard Data Repository.
4. The User should get at the screen the list of all of his/her tasks
submitted over the chosen time range.
5. The User selects a task and clicks on the 'i' icon to view the
task's meta-information.
6. The Results are obtained from the Dashboard Data Repository

and presented on the screen.

Appendix A. Task Monitoring 148

Use Case Detailed Jobs Information
Description | The User should be able to view a detailed jobs information for a
selected task.
Actors Physicist, Dashboard Data Repository.
Assumptions 1. The User has a grid certificate.
2. The User is a member of the CMS VO.
3. The User has submitted jobs to the Grid within one month.
Steps 1. The User chooses his/her identity in the "Select a User" field.
2. The User selects the time window to define the tasks submitted
during a given time range.
The Results are obtained from the Dashboard Data Repository.
4. The User should get at the screen the list of all of his/her tasks
submitted over the chosen time range.
5. The User selects a task and clicks on the number of jobs
corresponding to a given status.
6. The Results are obtained from the Dashboard Data Repository.
7. The application provides a detailed information of all the jobs of

a selected category.

Appendix A. Task Monitoring 149

Use Case Resubmission History
Description | The User should be able to view a detailed resubmission history of a
selected job.
Actors Physicist, Dashboard Data Repository.
Assumptions 1. The User has a grid certificate.
2. The User is a member of the CMS VO.
3. The User has submitted jobs to the Grid within one month.
Steps 1. The User chooses his/her identity in the "Select a User" field.
2. The User selects the time window to define the tasks submitted
during a given time range.
3. The Results are obtained from the Dashboard Data Repository.
4. The User should get at the screen the list of all of his/her tasks
submitted over the chosen time range.
5. The User selects a task and clicks on the number of jobs
corresponding to a given status.
6. The Results are obtained from the Dashboard Data Repository
and presented on the screen.
7. The application provides a detailed information of all the jobs of
a selected category.
8. The User selects a specific job and clicks on the 'Resubmissions'
9. The Results are obtained from the Dashboard Data Repository

and presented on the screen.

Appendix A. Task Monitoring 150

Use Case Error Diagnostics
Description | The User should be able to access advanced error diagnostics to
understand the status of his/her task.
Actors Physicist, Dashboard Data Repository.
Assumptions 1. The User has a grid certificate.
2. The User is a member of the CMS VO.
3. The User has submitted jobs to the Grid within one month.
Steps 1. The User chooses his/her identity in the "Select a User" field.
2. The User selects the time window to define the tasks submitted
during a given time range.
The Results are obtained from the Dashboard Data Repository.
4. The User should get at the screen the list of all of his/her tasks
submitted over the chosen time range.
5. The User selects a task and clicks on the failed jobs.
6. The Results are obtained from the Dashboard Data Repository
and presented on the screen.
7. The application provides a detailed information of all the failed

jobs of the task including any error diagnostics, reasons of

failure and exit code numbers.

Appendix A. Task Monitoring 151

Use Case Consumed Time Information
Description | The User should be able to view the consumed time information for a
specific task.
Actors Physicist, Dashboard Data Repository.
Assumptions 1. The User has a grid certificate.
2. The User is a member of the CMS VO.
3. The User has submitted jobs to the Grid within one month.
Steps 1. The User chooses his/her identity in the "Select a User" field.
2. The User selects the time window to define the tasks submitted
during a given time range.
3. The Results are obtained from the Dashboard Data Repository.
4. The User should get at the screen the list of all of his/her tasks
submitted over the chosen time range.
5. The User selects a task and clicks on the consumed time
information.
6. The Results are obtained from the Dashboard Data Repository
and presented on the screen.
Use Case Graphical Plots
Description | The User should be able to access a wide-variety of advanced graphical
plots to visually assist him/her.
Actors Physicist, Dashboard Data Repository.
Assumptions 1. The User has a grid certificate.
2. The User is a member of the CMS VO.
3. The User has submitted jobs to the Grid within one month.
Steps 1. The User chooses his/her identity in the "Select a User" field.
2. The User selects the time window to define the tasks submitted
during a given time range.
3. The Results are obtained from the Dashboard Data Repository.
4. The User should get at the screen the list of all of his/her tasks
submitted over the chosen time range.
5. The User clicks on the 'Graphical Plots' menu and selects a
required plot.
6. The plot is generated and presented on the screen.

Appendix A. Task Monitoring 152

A.2 Graphtool Patches

Patched File: graph.py

Revision 1.14

Mon Jan 5 13:41:02 2009 UTC
Changes since 1.13: +15 -3 lines

Description: Applied patch from Edward Karavakis from the ARDA-Dashboard
team.

Available at: http://cmssw.cvs.cern.ch/cgi-

bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src¢/graphtool/graphs/graph

py?revision=1.14&view=markup

Diff to the previous version

revision 1.13, Wed Oct 8 17:24:37 2008 UTC revision 1.14, Mon Jan 5 13:41:02 2009 UTC

Line 384 Line 384

384 match an application’s specific color match an application's specific color scheme.
scheme.

ﬁ nmn nmn

386 size labels = len(labels) size_labels = len(labels)

387 self.color_override = .

= self.metadata.get('color_override', {})

388 try:

389 if self.color_override == {}:

390 raise Exception('going to the default')

391 colours = self.color_override

392 size_colors = len (colours)

393 retval =[]

394 for label in labels:

395 mycolour = colours[label]

396 retval.append(mycolour)

397 except:

398 hex_colors = self.hex_colors hex_colors = self.hex_colors

399 size_colors = len(hex_colors) size_colors = len(hex_colors)

400 retval = [hex_colors[i % size colors] for retval = [hex_colors[i % size_colors] for i in

— 1iinrange(size labels)] range(size labels)]

401

402 retval.reverse() retval.reverse()

403 return retval return retval

i~
(]
=

http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/graph.py?annotate=1.14#l404
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/graph.py?annotate=1.14#l403
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/graph.py?annotate=1.14#l402
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/graph.py?annotate=1.14#l401
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/graph.py?annotate=1.14#l400
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/graph.py?annotate=1.14#l399
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/graph.py?annotate=1.14#l398
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/graph.py?annotate=1.14#l397
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/graph.py?annotate=1.14#l396
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/graph.py?annotate=1.14#l395
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/graph.py?annotate=1.14#l394
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/graph.py?annotate=1.14#l393
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/graph.py?annotate=1.14#l392
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/graph.py?annotate=1.14#l391
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/graph.py?annotate=1.14#l390
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/graph.py?annotate=1.14#l389
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/graph.py?annotate=1.14#l388
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/graph.py?annotate=1.14#l387
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/graph.py?annotate=1.14#l386
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/graph.py?annotate=1.14#l385
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/graph.py?annotate=1.14#l384
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/graph.py?revision=1.14&view=markup
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/graph.py?revision=1.14&view=markup
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/graph.py?revision=1.14&view=markup

Appendix A. Task Monitoring 153

Patched File: common_graphs.py
Revision 1.16

Mon Jan 5 13:41:02 2009 UTC
Changes since 1.15: +24 -17 lines

Description: Applied patch from Edward Karavakis from the ARDA-Dashboard
team.

Available at:
http://cmssw.cvs.cern.ch/cgi-
bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src¢/graphtool/graphs/com

mon_graphs.py?revision=1.16&view=markup

Diff to the previous version.

revision 1.15, Wed Oct 8 17:24 2008 UTC revision 1.16, Mon Jan 5 13:41 2009 UTC
Line 1313 Line 1313
1313 texts =[] texts =[]
1314 slices =[] slices =[]
1315 autotexts =[] autotexts =[]
1316 color_override = self.color_override
1317 results = self.parsed data
1318 explogzr);frac’ label, expl in zip(x,labels, for frac, label, expl in zip(x,labels, explode):
1319 X, y = center X, y = center
1320 theta2 = thetal + frac theta2 = thetal + frac
1321 2*ma th.;%:??* (thetal +theta2) thetam = 2*math.pi*0.5%(thetal+theta2)
1322 x += expl*math.cos(thetam) x += expl*math.cos(thetam)
1323 y += expl*math.sin(thetam) y += expl*math.sin(thetam)
1324 if color_override == {}:
1325 w = Wedge((x,y), radius, w = Wedge((x,y), radius, 360.*thetal,
=== 360.*thetal, 360.*theta2, 360.*theta2,
1326 o 1en(0010rs)])facecolorfcolors[l facecolor=colors[i%len(colors)])
1327 else:
1328 mycolour = color_override[label]
1329 w = Wedge((x,y), radius, 360.*thetal,
— 360.*theta2,
1330 facecolor=mycolour)
1331 slices.append(w) slices.append(w)
1332 self.ax.add_patch(w) self.ax.add_patch(w)
1333 w.set_label(label) w.set_label(label)
Line 1355 Line 1361
1361 halign = 'center’ halign = 'center'
1362 else: else:
1363 halign = 'left' halign = "left'

if float(results[label]) / self.amt_sum >
1364 .
self.min_amount:

1365 t = self.ax.text(xt, yt, label, t = self.ax.text(xt, yt, label,
1366 size=self prefs['subtitle_size'], size=self.prefs['subtitle size'],
1367 horizontalalignment=halign,

http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/common_graphs.py?annotate=1.16#l1367
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/common_graphs.py?annotate=1.16#l1366
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/common_graphs.py?annotate=1.16#l1365
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/common_graphs.py?annotate=1.16#l1364
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/common_graphs.py?annotate=1.16#l1363
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/common_graphs.py?annotate=1.16#l1362
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/common_graphs.py?annotate=1.16#l1361
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/common_graphs.py?annotate=1.16#l1333
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/common_graphs.py?annotate=1.16#l1332
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/common_graphs.py?annotate=1.16#l1331
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/common_graphs.py?annotate=1.16#l1330
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/common_graphs.py?annotate=1.16#l1329
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/common_graphs.py?annotate=1.16#l1328
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/common_graphs.py?annotate=1.16#l1327
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/common_graphs.py?annotate=1.16#l1326
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/common_graphs.py?annotate=1.16#l1325
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/common_graphs.py?annotate=1.16#l1324
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/common_graphs.py?annotate=1.16#l1323
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/common_graphs.py?annotate=1.16#l1322
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/common_graphs.py?annotate=1.16#l1321
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/common_graphs.py?annotate=1.16#l1320
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/common_graphs.py?annotate=1.16#l1319
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/common_graphs.py?annotate=1.16#l1318
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/common_graphs.py?annotate=1.16#l1317
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/common_graphs.py?annotate=1.16#l1316
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/common_graphs.py?annotate=1.16#l1315
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/common_graphs.py?annotate=1.16#l1314
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/common_graphs.py?annotate=1.16#l1313
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/common_graphs.py?revision=1.16&view=markup
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/common_graphs.py?revision=1.16&view=markup
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/common_graphs.py?revision=1.16&view=markup

Appendix A. Task Monitoring

horizontalalignment=halign,

Line 1407
1413
1414 results = self.results
1415 parsed data = self.parsed data
1416
1417
column_units = getattr(self,
1418 'column_units',
self.metadata.get('column_units',"))
1419 column_units = column_units.strip()
Line 1447
1454 for label in local labels:
1455 orig_label = label[:label.rfind(" ")]
1456 val = float(results[orig_label])
if val / self.amt_sum >
self.min_amount:
1457 my labels.append(orig_label)
else:
my labels.append("")
1458
1459 def my_display(x):
1460 if x > 100*self.min_amount:
Line 1462
1466 explode = [.1 for i in amt]
1467
1468 self.colors.reverse()
1469
1470 self.wedges, text labels, percent =
— self.pie(amt, explode=explode,
1471 labels=my labels, shadow=True,
— colors=self.colors, autopct=my_display)
1472
1473
1474
1475
1476 def get coords(self):
1477 try:

154

Line 1413

results = self.results

parsed data = self.parsed data

self.color_override =
self.metadata.get('color_override', {})

column_units = getattr(self, 'column_units',
self. metadata.get('column_units',"))

column_units = column_units.strip()
Line 1454
for label in local labels:
orig_label = label[:1abel.rfind(" ")]
val = float(results[orig_label])

my labels.append(orig_label)

def my_display(x):
if x > 100*self.min_amount:
Line 1466
explode = [.1 for i in amt]

self.colors.reverse()
if self.color override == {}:
self.wedges, text labels, percent = self.pie(amt,
explode=explode,
labels=my labels, shadow=True,
colors=self.colors, autopct=my display)
else:
self.wedges, text_labels, percent = self.pie(amt,
explode=explode,
labels=my labels,
shadow=True, colors=self.color override.values(),
autopct=my_display)

def get coords(self):
try:

http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/common_graphs.py?annotate=1.16#l1477
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/common_graphs.py?annotate=1.16#l1476
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/common_graphs.py?annotate=1.16#l1475
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/common_graphs.py?annotate=1.16#l1474
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/common_graphs.py?annotate=1.16#l1473
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/common_graphs.py?annotate=1.16#l1472
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/common_graphs.py?annotate=1.16#l1471
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/common_graphs.py?annotate=1.16#l1470
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/common_graphs.py?annotate=1.16#l1469
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/common_graphs.py?annotate=1.16#l1468
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/common_graphs.py?annotate=1.16#l1467
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/common_graphs.py?annotate=1.16#l1466
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/common_graphs.py?annotate=1.16#l1460
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/common_graphs.py?annotate=1.16#l1459
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/common_graphs.py?annotate=1.16#l1458
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/common_graphs.py?annotate=1.16#l1457
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/common_graphs.py?annotate=1.16#l1456
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/common_graphs.py?annotate=1.16#l1455
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/common_graphs.py?annotate=1.16#l1454
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/common_graphs.py?annotate=1.16#l1419
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/common_graphs.py?annotate=1.16#l1418
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/common_graphs.py?annotate=1.16#l1417
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/common_graphs.py?annotate=1.16#l1416
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/common_graphs.py?annotate=1.16#l1415
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/common_graphs.py?annotate=1.16#l1414
http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/COMP/WEBTOOLS/Tools/GraphTool/src/graphtool/graphs/common_graphs.py?annotate=1.16#l1413

Appendix A. Task Monitoring 155

A.3 CMS Survey

Dashboard User List
FEEDBACK - 50 out of 201 replied

JasminKiefer
* Positive feedback: Liked the page layout and the clearness of information

presented - no unneeded info.

Sbologne
* Already using it.

Alkaloge

* A nice surprise, as he said, to see this monitoring application live and working!

ThomasEDanielson

* It's easy to navigate and provides some useful information regarding the jobs

that failed. Likes it a lot.

ChristophPaus
* He liked it, looks good. He liked the visual presentation. He will probably use it

from time to time though he does get along reasonably well with crab -status etc.

DanieleBenedetti

* He said it seems to be really cool. He will play with it and in case he has any

feedback he will let me now.

GavrilAdrianGiurgiu

* Thinks that the monitoring tool is great. The user is now investigating why most

of the jobs are failing.

Appendix A. Task Monitoring 156

JavierFernandezMenendez

* It looks perfect. It even updates in "real time".

DanielBloch

* This is extremely nice and useful.

JeremyAndrea

e It will be indeed very useful. Will have a look and let me know if there is any

feedback or any feature requests.

JoshBendavid

* Does not work because he is using a Custom executable not cmssw and

configured for local condor submission.

Schiefer

* Very helpful tool to monitor the progress of his grid activities.

XinShi
* It looks great. Pleased to see the plotting section with the different plots about

the jobs. Will investigate more in the near future.

Yuanchao
* He tried it and found it is quite useful that he doesn't have to run crab -status

every single time.

CarstenHof

* Awesome! That's a huge improvement! Congratulations to the team!

SandroFonsecaDeSouza

* Task Monitoring is working well but he thinks that maybe the delay in the
results of Jobs status between Task Monitoring and CRAB should be

investigated.

Appendix A. Task Monitoring 157

RebecaGonzalezSuarez

* Found it very useful. Nothing more to say, it just works fine.

Trommers OR TanjaRommerskirchen
* Looks helpful. Once she runs into more complicated cases (failures and etc) she

will give us feedback.

NikolaosRompotis
* He didn't know that there was a task monitoring tool for analysis. He finds it

very useful.

SilviaMaselli

* She finds it very useful. She will let me know if she finds any anomalies.

LotteWilke

* Thinks this tool is nice, The user did not know about it before. The user thinks it

is particularly nice to be able to see how many events were processed.

MalinaAureliaKirn

* That's a really excellent monitor, it has low latency and excellent plots with clear

labels. She is surprised that it even supports the condor scheduler.

YuriGotra
* It's a useful tool. There was an issue with a killed task; the CRAB developers

have been notified and it is now fixed.

Bdahmes
* This is a wonderful tool. Clicking through the page, all the information the user

wants is present.

PratimalJindal

* Itis really helpful.

Appendix A. Task Monitoring 158

Vandreev

* Very positive on it. It is very useful tool.

AndrewYork

* It looks very good. It is easy to understand and intuitive in layout. Contains all

the information he would like to know.

RobertaVolpe

* Sometimes she noticed that the task monitoring is more updated than crab report

SupreetPalSingh
* This is a really nice way to monitor the jobs submitted in GRID. Keep up the

good work.

PedroManuelFerreiraSilva

* Many thanks for drawing his attention to this new version of the Task

Monitoring. He finds it much more complete and user friendly.

Ceggel
* She only remembered the old version as it was last summer. Compared to that
experience the new version is an immense progress. It's so much faster. The
layout is very well done, making it easy to find and access the information

you're looking for. It's just great!

Meridian
* Quite useful and browsable, it really gives you the possibility to understand what

has happened.

Demattia
* Never used the application before. Seems very useful, especially the possibility
to have the failures shown by site. This will make it easier to spot problematic

sites and blacklist them. Also finds the graphical representation very good.

Appendix A. Task Monitoring 159

VardanKhachatryan

* There is interesting and useful information in this site

litvin
* He really likes the application, he gets statistics faster than crab -status. He

really appreciates the tool.

IvanReid

e Looks useful

LucaMartini

* He finds the application very useful. It is also more organised than before. The
possibility to watch each single job to check its status from a browser is great.
Task Monitoring is faster than crab -status: Task Monitoring says a job ends

many minutes before he can get it because crab still says job is running.

AlekoKhukhunaishvili

* It's much better and convenient than everything else he used before.

ThomasPeiffer

* This seems to be a very nice tool. No suggestions for improvement so far.

DilsonDeJesusDamiao

* He was using Task Monitoring. He likes the tool because he can see his jobs
'online', once the crab -status takes some time to return the real situation of the

job.

Christosl azaridis

* He had no idea this existed. It is very useful indeed!

GiuseppeCodispoti

* It looks pretty nice and quite fast!!!! He will use it regularly.

Appendix A. Task Monitoring 160

OliverGutsche

* Looks nice, some problems with crab on the US analysis sites, crab was notified
some time ago but it's not fixed. The issue will be fixed in the next version of

crab.

Letizialusito

* The new version is very useful. Easy to understand. She is now using Task

Monitoring more intensively.

Cardaci

* Really nice! Time range should be adjustable and to be able to select an interval

FreyaBlekman
* She killed a large part of these jobs but it wasn't shown up on dashboard. CRAB
Bug #47309 - Fixed.

EfeYazgan
* Very user-friendly and very well-designed. Finds whatever the user needs

without any problem.

FlorianBechtel

* Very helpful improvements indeed.

Slehti
* The user had a quick look, and it looked extremely useful. So far the user has

been using crab -status, but this graphical gives him all tasks at the same time.

AdamFEverett

* The tool is quite nice and very helpful.

Appendix A. Task Monitoring 161

A.4 User Manual

Usage

Choose your identity in the "Select a User" field, select the time window to define
the tasks submitted during a given time range, you should get at the screen the list of all

your tasks submitted over the time range you have chosen.

Adjusting the Timerange: Shows the Tasks created during the selected time range.
For example: If a task was created one week ago and it is still running, you have to
select the Last Week option (or a bigger time range value) to be able to view it. If you
select any smaller value than Last Week, the task will not appear. The page
automatically reloads and updates its records every 5 minutes. If you are using CRAB
server, please be aware that only jobs which had been already submitted to the GRID or

CAF are available in the task monitoring.

Navigation
Please avoid using the browser's back and forward buttons. Use the buttons provided

by the application.

Graphical Plots

1. Click on the plot to zoom in.
2. Click and Drag the plot to move and re-arrange its position.

3. Click again on the plot to zoom out.

Retrieve the data in XML

For retrieving your tasks in the XML format you should use the following comand:
$ curl -H 'Accept: text/xml' 'http://dashb-cms-
sam.cern.ch/dashboard/request.py/taskstablexml?
&typeofrequest=A&timerange=TIMERANGE&usergridname=USERNAME' >

/tmp/action.xml

where USERNAME is your username and TIMERANGE can be one of the
following:

lastDay, last2Days, last3Days, lastWeek, last2Weeks, lastMonth

Appendix A. Task Monitoring

162

For retrieving the detailed list of jobs for a specific task in the XML format you
should use the following comand:

$ curl -H 'Accept: text/xml'

'http://dashboard02.cern.ch/dashboard/request.py/taskjobsxml?

&timerange=TIMERANGEs&what=all&taskmonid=TASKNAME' > /tmp/action.xml

where TASKNAME is the name of the task, TIMERANGE can be one of the above
options and 'what' can be one of the following options:

'all' for all the jobs, 'f' for the failed ones, 'r' for the running ones, "' for the pending

ones, 's' for the successful ones and 'u' for the unknown jobs.

The XML output of the dashboard is a bit hard to read because there is no newline.
You can use xmllint to reformat the output:

$ xmllint --format /tmp/action.xml

Appendix A. Task Monitoring 163

A.5 Graphical Overview Plot

The following code is from the GraphicalOverviewPyPlot python class that creates a

simple graphical overview plot.

import os, time

from mod_python import util

from dashboard.common import log as logging

from dashboard.common import xmi

from dashboard.common.Config import Config

from dashboard.http.View import View

from graphtool.graphs.graph import Grapher

from graphtool.graphs.common_graphs import PieGraph

from dashboard.common.InternalException import InternalException

from dashboard.http.actions.job.argument_filtering import filter_job_arguments

class GraphicalOverviewPyPlot(View):

_logger =
logging.getLogger()
def __init__(self, attributes):
super(GraphicalOverviewPyPlot, self). __init__ (attributes)
def generate(self, actionCtx, request):
get the summaries

summaries = actionCtx.get()
parameters = filter_job_arguments(request.args)
data = { : summaries[0][0][1 :summaries[0][0]
[1,
: summaries[0][0][1, : summaries[0][0]
[1,
: summaries[0][0][1}
metadata = { : , { : ,
: , . . . },
10, :8}
pieJobs = PieGraph()
file = request
Return the plot to the request
self._logger.debug()

pieJobs(data, file, metadata)

Appendix A. Task Monitoring 164
A.6 SQL Queries

In this section, the most important SQL queries of the application will be presented.
The first SQL query fetches the list of all the available users that have submitted jobs

during the period of a month.

select distinct users."GridName" from users, task where users." Userld" =
task."Userld" and task."TaskCreatedTimeStamp" > sysdate — 31 and
task." TaskTypeld" in (select "TaskTypeld" from task type where "Type"
in ('analysis', 'JobRobot', 'AnaStep09')) order by users." GridName"

The second SQL query fetches all the submitted tasks of the user during a selected

period of time.

SELECT "Taskld" as taskid, '""TaskMonitorld" as taskmonid, "InputCollection"
as inputcollection, "TaskCreatedTimeStamp"',
MAX(decode(status,'P', jobsInState, 0)) AS pending,
MAX(decode(status,'R', jobsInState, 0)) AS running,
MAX(decode(status, 'S', jobsInState, 0)) AS success,
MAX(decode(status, 'F', jobsInState, 0)) AS failed,
MAX(decode(status,'U’', jobsInState, 0)) AS terminated,
sum(jobsInState) as numofjobs FROM (

SELECT "Taskld", "TaskMonitorld", "InputCollection',
"TaskCreatedTimeStamp"', status, COUNT(status) AS jobsInState
FROM (
SELECT JS."Taskld", TK." TaskMonitorId", "InputCollection",
"TaskCreatedTimeStamp", JS.status FROM (
SELECT "TaskId", "TaskMonitorld", "InputCollection",
"TaskCreatedTimeStamp'" FROM task T, input_collection
WHERE T."TaskCreatedTimeStamp" > :startDate AND
T."TaskTypeld" in (select "TaskTypeld" from task type where
"Type" in ('analysis', 'JobRobot', 'AnaStep09'))
AND T."Userld" IN (SELECT "Userld" FROM users WHERE

Appendix A. Task Monitoring 165

"GridName" = :gridName)
AND "INPUT_COLLECTION"."InputCollectionld" =

T."InputCollectionld"

) TK JOIN (SELECT '"Taskld", "EventRange", "Jobld",

"DboardFirstinfoTimeStamp"',
job_status(""DboardJobEndId"," DboardStatusld"," DboardGridEndId")
AS status, ROW_NUMBER() OVER (PARTITION BY '"TaskId",
"EventRange" ORDER BY "DboardFirstInfoTimeStamp' DESC) AS n

FROM job WHERE job."NextJoblId" is null AND job." Taskld" IN (

SELECT '"Taskld" FROM task T

WHERE T."TaskCreatedTimeStamp" > :startDate AND
T."TaskTypeld" in (select "TaskTypeld" from task type
where "Type" in ('analysis', 'JobRobot', 'AnaStep09')) AND T."Userld" IN

(SELECT "Userld" FROM users WHERE "GridName' = :gridName)

)) JS ON (JS."Taskld" = TK."Taskld") WHERE JS.n <=1) GROUP BY
"Taskld", "TaskMonitorId", "InputCollection",
"TaskCreatedTimeStamp'"', status) GROUP BY "TaskId",
"TaskMonitorId", "InputCollection', "TaskCreatedTimeStamp' ORDER
BY "TaskCreatedTimeStamp"

The third query fetches all the jobs of a selected task.

SELECT '"TaskJobld", "EventRange", "Site", "started", "finished",
"submitted", "resubmissions", '"SchedulerJobld", status, "GridEndId",
"GridEndReason", ""JobExecExitCode", "AppGenericStatusReasonValue"

FROM (

SELECT "TaskJobld", "EventRange", site."VOName'" as "Site",
job_status(''DboardJobEndId"," DboardStatusld"," DboardGridEndId"
) AS status, "SubmittedTimeStamp'' as "submitted",
"StartedRunningTimeStamp'' as "started",
"FinishedTimeStamp" as "finished", job_resubmission("" TaskJobId') as
"resubmissions", "SchedulerJobld", ROW_NUMBER() OVER
(PARTITION BY "TaskId", "EventRange" ORDER BY

Appendix A. Task Monitoring 166

"DboardFirstInfoTimeStamp' DESC) AS n,
"DboardGridEndId", "DboardGridEndId" as "GridEndId",
"JobExecExitCode", "AppGenericStatusReasonValue",
generic_status_reason.'" GenericStatusReasonValue' as "GridEndReason"
FROM job, long_ce, short_ce, site, generic_status_reason, grid_status_reason,
app_generic_status_reason
WHERE job."NextJobId" is null AND job."Taskld" =
(select "TaskId" from task where "TaskMonitorld" = :taskMonld) AND
job."LongCEId" =long_ce."LongCEId" and short_ce."ShortCEId" =
long_ce."ShortCEId" AND grid_status_reason." GridStatusReasonld" =
job."GridStatusReasonld" AND
grid_status reason.'GenericStatusReasonld" =
generic_status_reason.'" GenericStatusReasonld" AND
app_generic_status_reason." AppGenericErrorCode" =
nvl(job."JobExecExitCode'",-1) and site." Siteld" = job.'"Siteld" order by
TO_NUMBER("EventRange')

The fourth SQL query fetches task meta-information such as the task creation time,
the version of the application used, the number of events per job and the input collection

data.

select task." Taskld", task." TaskMonitorId", task." TaskCreatedTimeStamp",
task type."Type" as "TaskType', submission_tool ver."SubToolVersion",
application." Application", application.'" ApplicationVersion',
task."NEventsPerJob", appl_exec."Executable",
input_collection." InputCollection",
submission_tool." SubmissionTool", submission_ui." DisplayName'" as
"SubmissionUI", "SubmissionType", "TargetCE",
scheduler."SchedulerName" as "SchedulerName" from task, task_type,
task_status, submission_tool _ver, application, appl_exec, input_collection,
submission_tool, submission_ui, scheduler
where task." TaskMonitorIld" = :taskMonld
and task_type."TaskTypeld" = task." TaskTypeld"

Appendix A. Task Monitoring 167

and task."DefaultSchedulerId" = scheduler." SchedulerId"

and task_status.'" TaskStatusId" = task." TaskStatusId"

and application." Applicationld" = task." Applicationld"

and appl _exec." ApplExecld" = task." ApplExecld"

and input_collection.'" InputCollectionld" = task." InputCollectionld"
and submission_tool."SubmissionToolld" = task.'" SubmissionToolld"
and submission_ui." SubmissionUIId" = task."SubmissionUIId"

and submission_tool_ver."SubToolVerld" = task."SubToolVerld"

The fifth SQL query fetches all the resubmission history for a selected job.

select ""JobExecExitCode'" as "JobExitCode'",
app_generic_status_reason."' AppGenericStatusReasonValue" as
"JobExitReason", "DboardGridEndId" as "GridEndId",
"GenericStatusReasonValue'" as "GridEndReason",
"VOName" as "Site"," AppStatusReason", "SubmittedTimeStamp' as
"submitted", "StartedRunningTimeStamp" as "started",
"FinishedTimeStamp" as "finished", "EventRange", ""SchedulerJobld"
from (select "JobExecExitCode", '""DboardGridEndId",
"GenericStatusReasonValue', "VOName", '"Submitted TimeStamp"',
"StartedRunningTimeStamp", '"FinishedTimeStamp", ""EventRange",
"SchedulerJobld", replace(" AppStatusReason" \'\"\'\") as
""AppStatusReason" from job, long_ce, short _ce, site,
generic_status_reason, grid_status_reason, app_status_reason
where "TaskJoblId" = :taskJobld and job."LongCEId" =
long_ce."LongCEId" and short_ce."ShortCEId" =
long_ce."ShortCEId" and site."Siteld" = short_ce."Siteld"
and app_status_reason." AppStatusReasonld" =
job."JobExecExitReasonld" and
grid_status_reason." GridStatusReasonld'" = job." GridStatusReasonld"
and grid_status_reason.'" GenericStatusReasonld" =

generic_status_reason.'" GenericStatusReasonld'") all jobs

Appendix A. Task Monitoring 168

left join app generic_status reason on

app_generic_status_reason." AppGenericErrorCode" =

nvl(all_jobs."JobExecExitCode'", -1) order by "submitted"

The final SQL query presented fetches consumed time information for a specific
task. The consumed time information includes the Total CPU Time, Total Wall Clock
Time, the Average CPU Time Per Event, the Average Efficiency of a task, the Average
CPU Time Per Job and the Average Wall Clock Time Per Job.

select total_cpu, total wc, efficiency, cpu_per_event, (total_cpu/total_jobs) as
avgcpu, (total_wc/total_jobs) as avgwe from
(select sum("WrapCPU") as total_cpu, sum("WrapWC") as total _we,
ROUND(avg("WrapCPU"/"WrapWC")*100,2) as efficiency,
COALESCE(avg(("WrapCPU")/NULLIF("NEvProc",0)),0) as
cpu_per_event, count("EventRange') as total jobs from
task, job where task." TaskMonitorld" = :taskMonld AND
task." Taskld" = job." Taskld"
AND "WrapWC" >0 AND "WrapCPU" >0)

169

APPENDIX B. JOB SUMMARY

B.1 Use Cases

Use Case Users using a site

Description | The CMS Site Administrators need to monitor the usage of their site
and who is using it.

Actors Physicist, Dashboard Data Repository.

Assumptions The CMS Site Administrator of a specific site needs to monitoring who
1s using the site.

Steps 1. The CMS Site Administrator enters the Job Summary

application.

The Results are obtained from the Dashboard Data Repository.
The CMS Site Admin selects an activity from the menu such as
the analysis or the production activity.

The CMS Site Admin selects 'sort by site' from the menu.

The Results are obtained from the Dashboard Data Repository.
The CMS Site Admin selects the required site and selects 'sort
by user'.

The Results are obtained from the Dashboard Data Repository

and presented on the screen.

Appendix B. Job Summary 170

Use Case Jobs Running

Description | The CMS Site Administrators need to monitor the total jobs running on
their site or a CMS User wants to know the total number of jobs
running on a specific site or on the WLCG infrastructure.

Actors Physicist, Dashboard Data Repository.

Steps 1. The User enters the Job Summary application.

2. The Results are obtained from the Dashboard Data Repository
and presented on the screen.

3. The User can now sort by various attributes to get the total
number of the jobs running on a specific site, user, storage
element, activity and so on.

Use Case Success Rate

Description | The CMS Site Administrators need to monitor the success rate of the
jobs running on their site or a CMS User wants to know the success rate
of the jobs running on a specific site, storage element, activity or on the
WLCG infrastructure. The Grid, Application, Overall and Site Success
Rates are available.

Actors Physicist, Dashboard Data Repository.

Steps 1. The User enters the Job Summary application.

2. The Results are obtained from the Dashboard Data Repository
and the Success Rate is presented on the screen.

3. The User can now sort by various attributes to get the Grid,
Application, Overall and Site Success Rate of the jobs running

on a specific site, user, storage element, activity and so on.

Appendix B. Job Summary 171

2.
3.

Use Case Error Diagnostics
Description | The CMS User wants quick access to advanced error diagnostics to
understand the status of his/her jobs or task.
Actors Physicist, Dashboard Data Repository.
Steps 1. The User enters the Job Summary application.
2. The Results are obtained from the Dashboard Data Repository.
3. The User clicks on an error category from the numerical results
on the table.
4. The Results are obtained from the Dashboard Data Repository
and the error diagnostics are presented on the screen.
5. The User can now sort by various attributes to get the Grid
Aborted and Application failed jobs running on a specific site,
user, storage element, activity and so on.
Use Case Datasets being used.
Description | The CMS User wants to view the datasets being used on the CMS VO.
Actors Physicist, Dashboard Data Repository.
Steps 1. The User enters the Job Summary application.

The Results are obtained from the Dashboard Data Repository.
The Users selects 'sort by dataset' from the menu.

The Results are obtained from the Dashboard Data Repository
and presented on the screen.

The User can now sort by various attributes to get the datasets
running on a specific site, by a user, on a storage element, by an

activity and so on.

Appendix B. Job Summary 172

Use Case

Waiting Time

Description

The CMS Site Administrator needs to know the total waiting time of the
jobs running on their site or a CMS User needs to know the total
waiting time of his/her submitted jobs.

Actors

Physicist, Dashboard Data Repository.

Steps

l.
2.
3.

The User enters the Job Summary application.

The Results are obtained from the Dashboard Data Repository.
The Users clicks on the "Waiting Time' button.

The Results are obtained from the Dashboard Data Repository
and presented on the screen.

The User can now sort by various attributes to get the total
waiting time of the jobs running on a specific site, by a user, on

a storage element, by an activity and so on.

Use Case

Running Time

Description

The CMS Site Administrator needs to know the total running time of
the jobs running on their site or a CMS User needs to know the total
running time of his/her submitted jobs.

Actors

Physicist, Dashboard Data Repository.

Steps

1.
2.
3.

The User enters the Job Summary application.

The Results are obtained from the Dashboard Data Repository.
The Users clicks on the 'Running Time' button.

The Results are obtained from the Dashboard Data Repository
and presented on the screen.

The User can now sort by various attributes to get the total
running time of the jobs running on a specific site, by a user, on

a storage element, by an activity and so on.

Appendix B. Job Summary 173

Use Case Overall Time

Description | The CMS Site Administrator needs to know the overall time of the jobs
running on their site or a CMS User needs to know the overall time of
his/her submitted jobs.

Actors Physicist, Dashboard Data Repository.

Steps 1. The User enters the Job Summary application.

2. The Results are obtained from the Dashboard Data Repository.

3. The Users clicks on the 'Overall Time' button.

4. The Results are obtained from the Dashboard Data Repository
and presented on the screen.

5. The User can now sort by various attributes to get the overall
time of the jobs running on a specific site, by a user, on a storage
element, by an activity and so on.

Use Case CPU Time

Description | The CMS Site Administrator needs to know the total CPU time of the
jobs running on their site or a CMS User needs to know the total CPU
time of his/her submitted jobs.

Actors Physicist, Dashboard Data Repository.

Steps 1. The User enters the Job Summary application.

2. The Results are obtained from the Dashboard Data Repository.

3. The Users clicks on the 'CPU Time' button.

4. The Results are obtained from the Dashboard Data Repository
and presented on the screen.

5. The User can now sort by various attributes to get the overall

CPU time of the jobs running on a specific site, by a user, on a

storage element, by an activity and so on.

Appendix B. Job Summary 174

Use Case Job Wrapper Time

Description | The CMS Site Administrator needs to know the total job wrapper time
of the jobs running on their site or a CMS User needs to know the total
job wrapper time of his/her submitted jobs.

Actors Physicist, Dashboard Data Repository.

Steps 1. The User enters the Job Summary application.

2. The Results are obtained from the Dashboard Data Repository.

3. The Users clicks on the 'Job Wrapper Time' button.

4. The Results are obtained from the Dashboard Data Repository
and presented on the screen.

5. The User can now sort by various attributes to get the overall
job wrapper time of the jobs running on a specific site, by a user,
on a storage element, by an activity and so on.

Use Case Processing Efficiency

Description | The CMS Site Administrator needs to know the percentage of the
average processing efficiency of the jobs running on their site or a CMS
User needs to know the percentage of the average processing efficiency
of his/her submitted jobs.

Actors Physicist, Dashboard Data Repository.

Steps 1. The User enters the Job Summary application.

2. The Results are obtained from the Dashboard Data Repository.

3. The Users clicks on the "Processing Efficiency' button.

4. The Results are obtained from the Dashboard Data Repository
and presented on the screen.

5. The User can now sort by various attributes to get the average
processing efficiency of the jobs running on a specific site, by a

user, on a storage element, by an activity and so on.

Appendix B. Job Summary 175

B.2 SQL Queries

In this section, the most important SQL queries of the application will be presented.
The first set of SQL queries are responsible for fetching the list with the values of the

filters ordered by the name of the value for each category.

select distinct "GridName" as "user" from users order by "user"

" _

select distinct "VOName" as "site" from site where "InteractivelnterfaceFlag" = 0 order
by "site"

select distinct "ShortCEName" as "ce" from short ce order by "ce"

select distinct "SubmissionTool" as "submissiontool" from submission tool order by
"submissiontool"

select distinct "ApplicationVersion" as "application" from application order by

"application" :

select distinct "RbName" as "rb" from rb order by "rb"

select distinct "Type" as "activity" from task type order by "activity"

select distinct "SchedulerName" as "grid" from scheduler order by "grid"

select distinct "JobType" as "jobtype" from job_type order by "jobtype"

select distinct "Tier" as "tier" from site order by "tier"

The SQL queries for the consumed time information are variable and constantly
changing according to the selected set of the filters. The following query calculates the

overall time per site.

select "VOName" as "name", 24*60*60*avg(delay) as "value", 24*60*60*min(delay)
as "dmin", 24*60*60*max(delay) as "dmax", 24*60*60*sum(delay) as "total"
from (select (to date(to char("FinishedTimeStamp",'YYYY-MM-DD

HH24:MI:SS"),"YYYY-MM-DD HH24:MI:SS") -
to_date(to_char("DboardFirstInfoTimeStamp",'YYYY-MM-DD
HH24:MI:SS'),'YYYY- MM-DD HH24:MI:SS')) as delay,

site."VOName" as "VOName"
from job, task, site ,task type where ("DboardFirstinfoTimeStamp" <=
:bv_date2) and ("DboardFirstinfoTimeStamp" >= :bv _datel) and

Appendix B. Job Summary 176

(TASK."TaskTypeld" = task type."TaskTypeld" and task type."Type" =
:bv_activity) and ("FinishedTimeStamp" >= "DboardFirstInfoTimeStamp") and
("FinishedTimeStamp" I= '01-Jan-70 12.00.00 AM") and
("DboardFirstInfoTimeStamp" !="'01-Jan-70 12.00.00 AM")

and job."Siteld" = site."Siteld"

and (job."TaskId" = task."TaskId")

and ("DboardStatusId" in ('T"))

and job."TimeOutFlag"='0'") group by "VOName" order by "value" desc

The SQL query for the exit code summary calculation is variable according to the
selected set of filters. The following query calculates the exit code summary values for a

specific site.

'

with temp as (select "exitcode", count("exitcode") as "num", "URLToDoc" as "url",
"Comment" as "comment", "AppGenericStatusReasonValue" as "value",
"SiteUserFlag" as "flag"
from APP_ GENERIC STATUS REASON app,(
select Job."DboardStatusId", Job."JobExecExitCode" as "exitcode",
Job."DboardJobEndId", Task."Userld", site."Siteld",
Job."DboardFirstinfoTimeStamp",
site."Schedulerld", Task."Applicationld", Job."RbId", task type."Type",
task type."GenericType", Task."InputCollectionld",Task."TaskTypeld",
Task."SubmissionToolld", task."TaskId" as "TaskId" ,
submission tool ver."SubToolVersion" from job,task,site,
task type , submission tool ver where (task."TaskTypeld" =
task type."TaskTypeld") and (job."Siteld" = site."Siteld") and
(job."TaskId" = task."TaskId") and
("DboardFirstinfoTimeStamp" <= :bv_date2) and
("DboardFirstInfoTimeStamp" >= :bv_datel) and
(("DboardJobEndId"="F' and "DboardStatusId"="T")) and
(task type."Type" = :bv_activity) and (site."VOName" = :bv_site)
and (task."SubToolVerld" =

submission_tool ver."SubToolVerld")) ex

Appendix B. Job Summary 177

where (app."AppGenericErrorCode"=ex."exitcode")
group by "exitcode", "URLToDoc", "Comment",
"AppGenericStatusReasonValue",
"SiteUserFlag"
order by "SiteUserFlag" desc)
select * from ((select temp."flag", sum("num") as "sum n" from temp group by

temp."flag") sum_n left join temp on temp."flag"=sum _n."flag")order by sum n."flag"

The following SQL query fetches the data for the plot and the table. The SQL query

is not constant and it changes according to the selected set of filters.

with subjobs as (
select Job."DboardStatusld",
Job."DboardGridEndId", Job."DboardJobEndId", Task."Userld", Site."VOName",
Job."DboardFirstInfoTimeStamp", Task."DefaultSchedulerld" as "Schedulerld",
Task."Applicationld", Task."InputCollectionld", task."TaskTypeld",
Task."SubmissionToolld", Job."JobExecExitCode", "SiteUserFlag",

task."TaskId" as "TaskId", Job."Rbld", Job."ShortCEId", coalesce("NEvProc",0) as
"NEvProc", Task."SubmissionType",

coalesce("WrapCPU", 0) as "WrapCPU", coalesce("WrapWC", 0) as "WrapWC",

job."JobType", submission_tool ver."SubToolVersion" as "SubTool Version",

submission_ui."DisplayName" as "DisplayName",
site."Tier" as "Tier", task type."GenericType", task type."Type", Job."StageOutSE"
from job

left outer join app_generic_status reason on JOB."JobExecExitCode" =

APP_GENERIC _STATUS REASON."AppGenericErrorCode"
left outer join task on job."Taskld" = task."TaskId"
left outer join site on job."Siteld"=site."Siteld"
left outer join submission_tool ver on

task."SubTool Verld"=submission_tool_ver."SubTool Verld"

Appendix B. Job Summary 178

left outer join submission_ui on
task."SubmissionUIId"=submission_ui."SubmissionUIId"
left outer join task type on task type."TaskTypeld" = task."TaskTypeld"

where ("DboardFirstinfoTimeStamp" <= :bv_date2) and ("DboardFirstInfoTimeStamp"
>=:bv_datel)) select distinct(task type."Type") as "name" ,

"pending", "running", "unknown", "terminated",

"done", "cancelled", "aborted", "app-succeeded",

"applic-failed", "site-failed", "user-failed", "unk-failed",

"app-unknown", "site-calc-failed","unsuccess", "allunk","events", "cpu", "wc"

from

(

select T123.1id,

"pending", "running", "unknown", "terminated", "done", "cancelled", "aborted",
"app-succeeded",

"applic-failed", "site-failed", "site-calc-failed","user-failed", "unk-failed",
"app-unknown", coalesce(T4."unsuccess", 0) as "unsuccess",
coalesce(T4."allunk", 0) as "allunk","events", "cpu", "wc"

from

(

select T12.fid, "events", "cpu", "wc",

"pending", "running", "unknown", "terminated", coalesce("done", 0) as "done",
coalesce("cancelled", 0) as "cancelled", coalesce("aborted", 0) as "aborted",
coalesce("app-succeeded", 0) as "app-succeeded",

coalesce("applic-failed", 0) as "applic-failed",

coalesce("site-failed", 0) as "site-failed",

coalesce("user-failed", 0) as "user-failed",

coalesce("unk-failed", 0) as "unk-failed",

coalesce("site-calc-failed", 0) as "site-calc-failed",

Appendix B. Job Summary 179

coalesce("app-unknown",0) as "app-unknown"

from

(

nn

select T1.fid, "pending", "running", "unknown", "terminated", "done",
"cancelled", "aborted", coalesce(T2."events",0) as "events",
coalesce(T2."cpu",0) as "cpu", coalesce(T2."wc",0) as "wc"

from

(

select fid,

max(decode("DboardStatusId", 'P', count, 0)) as "pending",
max(decode("DboardStatusId", 'R', count, 0)) as "running",
max(decode("DboardStatusId", 'U', count, 0)) as "unknown",
max(decode("DboardStatusld", "T', count, 0)) as "terminated"

from (select count("DboardStatusld") as count, "TaskTypeld"as fid,
"DboardStatusIld" from subjobs

group by "TaskTypeld", "DboardStatusId")
group by fid

)T1

left outer join

(

select fid, sum("events") as "events", sum("cpu") as "cpu", sum("wc") as "wc",
max(decode("DboardGridEndId", 'D', count, 0)) as "done",
max(decode("DboardGridEndId", 'C', count, 0)) as "cancelled",
max(decode("DboardGridEndId", 'A’, count, 0)) as "aborted"

from (select count("DboardGridEndId") as count, "TaskTypeld"as fid,

sum("NEvProc") as "events", sum("WrapCPU") as "cpu", sum("WrapWC") as "wc" ,

"DboardGridEndId" from subjobs where subjobs."DboardStatusld" ="T"

group by "TaskTypeld", "DboardGridEndld")

Appendix B. Job Summary 180
group by fid
) T2
on T1.fid=T2.fid
) T12
left outer join

(

select all_jobs.fid as fid, "app-succeeded", "applic-failed", "site-failed", "user-failed", "unk-

nn

failed", "app-unknown", "site-calc-failed"
from (
select fid,
max(decode("DboardJobEndId", 'S', count, 0)) as "app-succeeded",

max(decode ("DboardJobEndId", 'F', decode("SiteUserFlag", 'application’, count, 0))) as
"applic-failed",

max(decode ("DboardJobEndId", 'F', decode("SiteUserFlag", 'site', count, 0))) as "site-failed",

max(decode ("DboardJobEndId", 'F', decode("SiteUserFlag", 'user', count, 0))) as "user-
failed",

max(decode ("DboardJobEndId", 'F', decode("SiteUserFlag", 'unknown', count, 0))) as "unk-
failed",

max(decode("DboardJobEndId", 'U', count, 0)) as "app-unknown"
from (select count("DboardJobEndId") as count, "TaskTypeld"as fid,

sum("NEvProc") as "events", sum("WrapCPU") as "cpu", sum("WrapWC") as "wc",

"DboardJobEndId", "SiteUserFlag" from subjobs where subjobs."DboardStatusld" ='T"
group by "TaskTypeld", "DboardJobEndId", "SiteUserFlag")
group by fid) all_jobs

left outer join (select fid, max(decode ("DboardJobEndId", 'F', decode("SiteUserFlag", 'site',

count, 0))) as "site-calc-failed"

from (select count("DboardJobEndld") as count, "TaskTypeld" as fid, "DboardJobEndId",
"SiteUserFlag"

from subjobs where subjobs."DboardStatusld"="T" and subjobs."DboardGridEndId" <>"'A'

Appendix B. Job Summary 181

group by "TaskTypeld", "DboardJobEndId", "SiteUserFlag") group by fid) calc_jobs
on all_jobs.fid = calc_jobs.fid

) T3

on T12.fid =T3.fid

) T123

left outer join

(

select unk.fid, "unsuccess", "allunk"

from ((select count("DboardJobEndId") as "unsuccess", "TaskTypeld" as fid,
"DboardJobEndId" from subjobs

where subjobs."DboardJobEndId" ="'S'
and (subjobs."DboardGridEndId" ="A'
or subjobs."DboardGridEndId" ='C") group by "TaskTypeld", "DboardJobEndId") suc

left outer join (select count("DboardJobEndId") as "allunk", "TaskTypeld" as fid from
subjobs

where subjobs."DboardJobEndId" ="'U’
and subjobs."DboardStatusld" = "U'
group by "TaskTypeld") unk
on suc.fid = unk.fid)

) T4

on T123.fid = T4.fid

)S

join task type on task type."TaskTypeld" = S.fid order by

"pending"+"running"+"unknown"+"terminated" desc

182

APPENDIX C. LEGION ANALYSER

C.1 Simulated Models for the Benchmarking of the Multi-threaded Analyser
Small-sized Models

Name: PM Peak. 350 Entities. Simulation time: 3 Hours.

[

iri iy
”-ll-ul]a'-"

0 ||

LT T O L

Ii’

- Simieit 80D 4 e e S

- P BN EE AT N VW R BN NN Er oWy -Ll O

Appendix C. Legion Analyser 183

Name: UP Demo v3:1. 552 Entities. Simulation time: 1 Hour.

Medium-sized Models

Name: Gatwick Airport Station Re-development. 1200 entities. Sim time: 1 Hour.

I—T—T—T—j—_——r_
il Al _
e E _D’T_J — %FJI_—J_;; rL—Jj:;JTT_E—‘
R =—= s B
T*T—T—T—T—M
B TN W) Y St T 0
= - = | /
——___L__T— — —— — — =~

Name: New WTC Model. 2500 entities. Simulation time: 1 Hour and 30 Mins

x
= DRIENTATION TIGHS

OIRECTIDMAL STGMS
xxxxxxxxxxxxxxxxxxxxx

sssss

- MAVES OIPECTORY
— SECURTTY RaTL

.

Appendix C. Legion Analyser 184
Large-sized Models

Name: LLondon Olympic Park 2012. 51000 entities. Simulation time: 14 Mins.

185

Appendix C. Legion Analyser

Name: HOS Case3. 52000 entities. Simulation time: 19 Mins.

_
_ I -) NI
= HT L || wressccrzon o

n [IMIERLECT 10K 1 -
| sy
BT

_I_u—] SHI MRS STATION
| s
[R H L
IMEPSELTICH 4 -5 _f’
——]
[
xxxxxxxxxx
L ! —
| || [Troe L
s L
P—— OLYWPIC STAOIUR
L
R
i
2%

|

.\.\V

Appendix C. Legion Analyser 186

C.2 Simulated Model for the Benchmarking of the Distributed Analyser

Name: London Olympic Park 2012. 56500 entities.

Appendix C. Legion Analyser
C.3 Work Division for Six Slave Nodes

The following code illustrates the division of the work for six Slave nodes.

/ll] Split the jobs according to the size of totalnodes

int start, workEnd;

int node1End, node2End, node3End, node4End, node5SEnd;
switch (mynode)

{

case 1: // 1st worker node

start = 1;

workEnd = mapSize * mynode / (totalnodes-1);

nodelEnd = workEnd;
advance(iter, workEnd);

break;
case 2: // 2nd worker node

nodelEnd = mapSize * (mynode-1) / (totalnodes-1);
start = nodelEnd+1;

workEnd = mapSize * mynode / (totalnodes-1);
break;
case 3: // 3rd worker node

node2End = mapSize * (mynode-1) / (totalnodes-1);
start = node2End+1;

workEnd = mapSize * mynode / (totalnodes-1);
break;
case 4: // 4th worker node

node3End = mapSize * (mynode-1) / (totalnodes-1);
start = node3End+1;

workEnd = mapSize * mynode / (totalnodes-1);
break;
case 5: // 5th worker node

node4End = mapSize * (mynode-1) / (totalnodes-1);
start = node4End+1;

workEnd = mapSize * mynode / (totalnodes-1);
break;
case 6: // 6th worker node

nodeSEnd = mapSize * (mynode-1) / (totalnodes-1);
start = nodeSEnd+1;

workEnd = mapSize * mynode / (totalnodes-1);
break;

default: // for Root (id=0) - just some debugging msg..
TRACE ("Hello from root'");
break;

}

187

Appendix C. Legion Analyser 188

C.4 Sender Code

Each Slave node calculates a map in a separate thread and then sends the results back

to the Master node as illustrated in the following code listing.

// IF we have 6 enabled maps & 1 master + 6 cluster nodes then every node will do

1 calculations for just one map otherwise work will be divided by totalnodes size.
if (mynode != 0) // workers - sender code

{

MapList::iterator
advance(iter, start);
MapList::iterator

iter(advance(m_mapList.begin(),start));
// Beginning of the allocated work for earch worker
end(m_mapList.begin()); // Actually it's the beginning...

advance(end, workEnd); // But now it's the end of the allocated work for each worker
while(iter !=end)

{

const COdbSpaceCentricMap* pSpaceMap = dynamic_cast<const

COdbSpaceCentricMap*>((*iter)->GetMap());
// Only do calculations for enabled maps

if(pSpaceMap->IsEnabled())

{

CReSpaceMapManagerItem* pSpaceMapltem =
dynamic_cast<CReSpaceMapManagerItem*>(*iter);

ASSERT(pSpaceMapltem);

/l Execute the thread

m_threadPool.schedule(SpaceMapTask(pSpaceMapltem, entities));
}

++iter;
}
/I Join the thread pool as to wait for all the maps to be finished computing
if(!m_threadPool.empty())
{
m_threadPool.wait();
3
/I Call the serialisation & MPI comm function
m_cellStorageManager->SerialiseMe();

}

Appendix C. Legion Analyser 189

C.5 Receiver Code

The Master node collects the results, unpacks them and calls the drawing function to

draw the results on the screen as illustrated in the following code listing.

else // root - Receiver code
{
/I Get the data, unpack them (if serialised), draw the results (call the draw function)
int wSlave;
/I ' Use a loop to get all the results from all the nodes (equal to totalnodes)
// then unpack them and call the drawing function
wSlave = totalnodes - 1; // wSlave is equal to the total no of nodes minuss the root node
if (world.rank()==0)
{
gather(world,legion_mapcalc,0);

}

190

BIBLIOGRAPHY

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

"Charles Babbage". The MacTutor History of Mathematics archive. School of
Mathematics and Statistics, University of St Andrews, Scotland. 1998.

http://www-history.mcs.st-and.ac.uk/Mathematicians/Babbage.html

B. Randell (ed.). The Origins of Digital Computers, Selected Papers, 3rd ed.
Springer-Verlag. 1982.

The Alan Turing Internet Scrapbook, Computable Numbers and the Turing
Machine, 1936. http://www.turing.org.uk/turing/scrapbook/machine.html

K. Zuse. The Computer — My Life. Berlin/Heidelberg: Springer-Verlag. ISBN 0-
387-56453-5. 1993.

M. V. Wilkes. Automatic Digital Computers. New York: John Wiley & Sons. pp.
305 pages. QA76.W5 1956.

N. Macrae. John von Neumann: The Scientific Genius Who Pioneered the Modern
Computer, Game Theory, Nuclear Deterrence, and Much More. Pantheon Press.

ISBN 0679413081. 1992.

H. Goldstine and A. Goldstine. The Electronic Numerical Integrator and Computer
(ENIAC), 1946. Reprinted in The Origins of Digital Computers: Selected Papers,
Springer-Verlag, New York, 1982, pp. 359-373.

W. Shockley. Electrons and Holes in Semiconductors, with Applications to

Transistor Electronics, Krieger: ISBN 0-88275-382-7. 1956.

Bibliography 191

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

IEEE Global History Network, Robert Noyce.
http://www.ieeeghn.org/wiki/index.php/Robert Noyce

A. Osborne. An Introduction to Microcomputers. Volume 1: Basic Concepts (2nd

ed.). Berkely, California: Osborne-McGraw Hill. ISBN 0-931988-34-9. 1980.

P. Mack. The Microcomputer Revolution. 2005.
http://www.clemson.edu/caah/history/FacultyPages/PamMack/lec122/micro.htm.

F. Mims. The Altair story; early days at MITS. Creative Computing (Creative
Computing) 10 (11): p. 17. 1984.
http://www.atarimagazines.com/creative/v10nl1/ 17_The Altair_story early d.php

Moore's Law — Wikipedia: The Free Encyclopedia.
http://en.wikipedia.org/wiki/Moore%27s law

Excerpts from A Conversation with Gordon Moore: Moore’s Law. Intel. 2005.
ftp://download.intel.com/museum/Moores_Law/Video-

Transcripts/Excepts A Conversation_with Gordon Moore.pdf

Lev B. Levitin and Tommaso Toffoli, Thermodynamic Cost of Reversible

Computing, Physical Review Letters, Volume 99, Issue 11, 2007.

Top 500 Supercomputing Sites. http://top500.org

HPL - A Portable Implementation of the High-Performance Linpack Benchmark
for Distributed-Memory Computers. http://www.netlib.org/benchmark/hpl/

L. Dagum and R. Menon. OpenMP: An Industry Standard API for Shared-
Memory Programming. Computational Science and Engineering, 5(1):46-55,

1998.

William Gropp, et al, High-Performance, Portable Implementation of the MPI

Bibliography 192

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Message Passing Interface Standard, Parallel Computing, Vol. 22, 6, 1996.

Internet Corporation for Assigned Names and Numbers (ICANN).

http://www.icann.org

The Internet Engineering Task Force (IETF). http://www.ietf.org

R. Fielding, J. Getty, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee.
Hypertext Transfer Protocol -- HTTP/1.1, RFC 2616, 1999.
http://www.ietf.org/rfc/rfc2616.txt

T. Berner-Lee and R. Cailliau. WorldWideWeb: Proposal for a HyperText
Project.. 1990. http://www.w3.org/Proposal.html

World Wide Web Consortium (W3C) http://www.w3.org

Apple Computer, Inc. HyperCard Script Language Guide: The HyperTalk
Language. Reading, MA: Addison-Wesley Publishing Company. p.181. 1988.

Ten Years Public Domain for the Original Web Software. http://tenyears-

www.web.cern.ch/tenyears-www/Welcome.html

World Wide Web Consortium, Web Services Activity. http://www.w3.0rg/2002/ws/

F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weerawarana.
Unraveling the Web Services Web: An introduction to SOAP, WSDL, UDDI.
IEEE Internet Computing, 6(2):86—93, March-April 2002.

Organisation for the Advancement of Structured Information Standards.

http://www.oasis-open.org/home/index.php

H. Voormann, Wikipedia — The Free Encyclopedia.
http://upload.wikimedia.org/wikipedia/commons/4/4a/Webservices.png

Bibliography 193

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

The Globus Toolkit 4 Programmer's Tutorial, Chapter 1.2: A Short Introduction to
Web Services. http://gdp.globus.org/gt4-tutorial/multiplehtml/ch01s02.html

I. Foster and C. Kesselman. Computational Grids, The Grid: Blueprint for a New
Computing Infrastructure. Morgan-Kaufman, 1998.

L. Smarr and C.E. Catlett. Metacomputing. Commun. ACM, 35(6):44-52, 1992.

T. DeFanti, I. Foster, M. E. Papka, R. Stevens, and T. Kuhfuss. Overview of the I-
WAY: Wide Area Visual Supercomputing. International Journal of
Supercomputing Applications, 10(2), 1996.

I. Foster. Globus Toolkit Version 4: Software for Service-Oriented Systems.

Journal of Computer Science and Technology, 21(4):513-520, 2006.

I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling

Scalable Virtual Organizations. International Journal of High Performance

Computing Applications, 15(3):200-222, 2001.

WestGrid Group. Western Canada Research Grid: WestGrid.

http: //www. westgrid.ca

Laura Pearlman, Carl Kesselman, et al. Distributed Hybrid Earthquake

Engineering Experiments: Experiences with a Ground-Shaking Grid Application.
In HPDC, pages 14-23,2004.

A. Chervenak, I. Foster, C. Kesselman, et. al. The Data Grid: Towards an
Architecture for the Distributed Management and Analysis of Large Scientific
Datasets. Journal of Network and Computer Applications, 23: 187-200,2001.

The AccessGrid Poject. http: //www-fp.mcs.anl.gov/fl/accessgrid

J. Taylor. Defining e-Science. http://www.nesc.ac.uk/nesc/define.html

Bibliography 194

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

LHC — The Large Hadron Collider. http://lhc.web.cern.ch/lhc/

e-Science Core Programme Report.

http://www.rcuk.ac.uk/escience/news/cpreport.htm

The ATLAS Experiment. http://atlas.web.cern.ch/Atlas/Collaboration/

The CMS Experiment. http://cms.web.cern.ch/cms/index.html

The ALICE Experiment. http://aliceinfo.cern.ch/Collaboration/index.html

The LHCb Experiment. http://lhcb.web.cern.ch/lhcb/

The TOTEM Experiment.
http://public.web.cern.ch/Public/en/LHC/TOTEM-en.html

The LHCT Experiment. http://public.web.cern.ch/public/en/LHC/LHCf-en.html
Worldwide LHC Computing Grid. http://lcg.web.cern.ch/LCG/

F. Gagliardi, B. Jones, F. Grey, M. Bgin, and M. Heikkurinen. Building an
infrastructure for scientific Grid computing: status and goals of the EGEE project.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and

Engineering Sciences, 363(1833):1729-1742, 2005.

R. Pordes et al. The Open Science Grid, Journal of Physics Conference Series, 78,
2007.

glLite Middleware. http://cern.ch/glite

M. Ellert, M. Grnager, A. Konstantinov, B. Knya, J. Lindemann, I. Livenson, J.L.

Nielsen, M. Niinimki, O. Smirnova, and A. Wnnenh. Advanced Resource

Connector Middleware for Lightweight Computational Grids. Future Generation

Bibliography 195

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

Computer Systems, 23:219-240, 2007.

Alain Roy et. al. Building and testing a production quality grid software
distribution for the Open Science Grid. Journal of Physics: Conference Series

180, 2009.

M. Campanella and L. Perini. The analysis model and the optimisation of
geographical distribution of computing resources:a strong connection.

http://monarc.web.cern.ch/MONARC/docs/monarc docs/1998-01.html

The Four-Tiered Model as Proposed by the MONARC Project.
http://images.iop.org/objects/physicsweb/world/21/11/34/PWlar2 _11-08.jpg

E. Karavakis and A. Khan. A Multi-threaded and Distributed Framework for
Pedestrian Simulation Analysis. 7" International Conference of Computational
Methods in Sciences and Engineering (ICCMSE), Rhodes, Greece, To be
published in American Institute of Physics, 2010.

A. Fanfani, A.Khan, E. Karavakis et al. Distributed Analysis in CMS. To be
published in Journal of Grid Computing, 2010.

J. Andreeva, E. Karavakis et al. Experiment Dashboard for Monitoring of the
Computing Activities of the LHC Experiments. To be published in Journal of Grid
Computing, 2010.

E. Karavakis, J. Andreeva, A. Khan, G. Maier and B. Gaidioz. CMS Dashboard
Task Monitoring: A User-Centric Monitoring View. 17" International Conference
on Computing in High Energy and Nuclear Physics (CHEP), Prague, Czech
Republic, To be published in /OP Publishing, 2010.

J. Andreeva, E. Karavakis et al. Job Monitoring on the WLCG Scope: Current
Status and New Strategy. 17" International Conference on Computing in High
Energy and Nuclear Physics (CHEP), Prague, Czech Republic, To be published in

http://images.iop.org/objects/physicsweb/world/21/11/34/PWlar2_11-08.jpg

Bibliography 196

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

1IOP Publishing, 2010.

E. Karavakis, J. Andreeva, G. Maier and A. Khan. CMS Dashboard for Monitoring
of the User Analysis Activities. 7" International Conference of Computational
Methods in Sciences and Engineering (ICCMSE) Symposium: Computing in
Experimental High Energy Physics, Rhodes, Greece, To be published in American
Institute of Physics, 2010.

C. Gordon Bell and Allen Newell. Computer Structures: Readings and
Examples, McGraw-Hill Book Company, New York. 1971.

Bill Lewis: Threads Primer: A Guide to Multithreaded Programming, Prentice
Hall. 1995.

Steve Kleiman, Devang Shah, Bart Smaalders: Programming With Threads,
SunSoft Press. 1996

M. Flynn. Some Computer Organizations and Their Effectiveness, /IEEE Trans.
Comput., Vol. C-21, pp. 948, 1972.

M. Flynn. Parallel Architectures, ACM Computing Surveys 28(1):67-70, 1996.

Ajay D. Kshemkalyani and Mukesh Singhal. Distributed Computing: Principles,
Algorithms, and Systems. Cambridge University Press, 2008.

R. Cleaveland and S. Smolka. Strategic Directions in Concurrency Research.

ACM Computing Surveys 28 (4): 607. 1996.
Free On-Line Dictionary of Computing: Granularity. http://foldoc.org/granularity
G. Amdahl. Validity of the Single Processor Approach to Achieving Large Scale

Computing Capabilities. AFIPS Joint Computer Conferences, Vol. 30, pages 483-
485, Thompson Books, 1967.

Bibliography 197

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

J. Gustafson. Re-evaluating Amdahl's Law. Communications of the ACM
31(5):532-533, 1988.

Karp, Alan H., and Horace P. Flatt. Measuring Parallel Processor Performance.

Communications of the ACM 33(5):539-543, 1990.

R. Cypher and E. Leu. The Semantics of Blocking and Non-blocking Send and
Receive Primitives. Proceedings of the 8th International Symposium on Parallel

Processing, 729-735, 1994.

Sayantan Sur, et al. High-performance and Scalable MPI over InfiniBand with
Reduced Memory Usage: An In-depth Performance Analysis, Proceedings of the
2006 ACM/IEEE conference on Supercomputing, 2006.

George Karniadakis, Robert Kirby II. Parallel Scientific Computing in C++ and
MPI: A Seamless Approach to Parallel Algorithms and their Implementation.
Cambridge University Press, 2003.

Computer Cluster Architectures, Ainkaboot Limited.

http://ainkaboot.co.uk/cluster-architecture.php

Blaise Barney. POSIX Threads Programming Tutorial. Lawrence Livermore

National Laboratory. https://computing.lInl.gov/tutorials/pthreads/

PVM: Parallel Virtual Machine. http://www.csm.ornl.gov/pvm/

Michael Quinn. Parallel Programming in C with MPI and OpenMP. McGraw-Hill
Science/Engineering/Math, 2003.

Ayon Basumallik, Seung-Jai Min, Rudolf Eigenmann. Programming Distributed
Memory Sytems Using OpenMP. Parallel and Distributed Processing
Symposium, International, pp. 207, 2007 IEEE International Parallel and
Distributed Processing Symposium, 2007.

Bibliography 198

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

Jean Bacon. Concurrent Systems - Operating Systems, Database and Distributed

Systems: An Integrated Approach. Addison-Wesley, 2003.

E. W. Dijkstra. The structure of the 'THE'-Multiprogramming System.
Communications of the ACM 11(5):341 — 346, 1968.

Weijia Jia, Wanlei Zhou. Distributed Network Systems: From Concepts to
Implementations. Springer, 2004.

Yibei Ling, Tracy Mullen and Xiaola Lin. Analysis of Optimal Thread Pool
Size. ACM SIGOPS Operating System Review Vol. 34, No. 2, 2000, pp. 42-55.

Noah Gift. Practical Threaded Programming with Python: Threading Usage

Patterns. http://www.ibm.com/developerworks/aix/library/au-threadingpython/

A. J. C. van Gemund. The Importance of Synchronization Structure in Parallel
Program Optimisation. In ICS ’'97: Proceedings of the 1lth international
conference on Supercomputing, pp. 164—-171. ACM, 1997.

Robert M. Fuhrer , Bill Lin , Steven M. Nowick. Algorithms for the Optimal State
Assignment of Asynchronous State Machines. In 1995 Conference on Advanced
Research in VLSI, 1995.

Glossary of CCAT Terms — Indiana University.

http://www.extreme.indiana.edu/ccat/glossary.html

Maozhen Li, Mark Barker. The Grid: Core Technologies. Wiley, 2005.

I. Foster. What is the grid? A three point Checklist. GRIDToday (Now: HPC in the
Cloud), July 2002. http://www.mcs.anl.gov/~itf/Articles/WhatIsTheGrid.pdf

M. Baker, R. Buyya and D. Laforenza. The Grid: International Efforts in Global
Computing. In Proceedings of the International Conference on Advances in

Infrastructure for Electronic Business, Science, and Education on the Internet,

Bibliography 199

[94]

[95]

[96]

[97]

[98]

[99]

Ttaly, 2000.

William E. Moen. Realizing the Information Future: The Internet and Beyond.

National Academy Press, Washington, DC, 1994

Open Grid Forum (OGF). http://www.ogf.org

Global Grid Forum (GGF). http://www.gridforum.org

M. Hatch. Enterprise Grid Alliance and Global Grid Forum Complete Merger to
Form Open Grid Forum. 2006
http://www.nesc.ac.uk/news/press_release/OGF Merger.pdf

I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The Physiology of the Grid: An
Open Grid Services Architecture for Distributed Systems Integration, 2002.
http://www.globus.org/research/papers/ogsa.pdf

S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, C. Kesselman, et al. Open
Grid Services Infrastructure (OGSI) Version 1.0. Global Grid Forum draft
recommendation, 2003.

http://www.globus.org/toolkit/draft-ggf-ogsi-gridservice-33 2003-06-27.pdf

[100]Globus Alliance. http://www.globus.org

[101] IBM. http://www.ibm.com

[102] Hewlett-Packard. http://www.hp.com

[103]Karl Czajkowski, Donald F Ferguson, lan Foster et al. The WS-Resource

Framework Version 1.0. http://www.globus.org/wsrf/specs/ws-wsrf.pdf

[104]Karl Czajkowski, Donald F Ferguson, Ian Foster et al. From OGSI to WS-

Resource Framework: Refactoring and Evolution. Version 1.1

Bibliography 200

http://globus.org/wsrf/specs/ogsi to wsrf 1.0.pdf

[105]T. DeFanti, I. Foster, M. E. Papka, R. Stevens, and T. Kuhfuss. Overview of the I-
WAY: Wide Area Visual Supercomputing. [International Journal of
Supercomputing Applications, 10(2), 1996.

[106] The Globus Toolkit 4 Programmer's Tutorial, Chapter 1.4: The Globus Toolkit 4.
http://gdp.globus.org/gt4-tutorial/multiplehtml/ch01s04.html

[107]GLUE Specification v. 2.0. http://www.ogf.org/documents/GFD.147.pdf

[108]Globus Toolkit. News About Globus. http://www.globus.org/news.html#161

[109] Tom Howe. Crux for GT Developers.
http://confluence.globus.org/display/whi/Crux+for+GT+Developers

[110]D. Thain, T. Tannenbaum, and M. Livny. Distributed Computing in Practice: The
Condor Experience. Concurrency and Computation: Practice and Experience,

17(2-4):323-356, 2005.

[111] Condor Version 7.4.2 Manual.

http://www.cs.wisc.edu/condor/manual/v7.4/5 Grid Computing.html

[112]P. Kunst. European DataGrid project: Status and Plans. Nuclear Instruments and
Methods in Physics Research A, (502):376-381, 2003.

[113]LHC Computing Grid LCG-2 Middleware Overview.
http://www.grid.org.tr/servisler/dokumanlar/LCG-mw.pdf

[114]R-GMA. http://www.r-gma.org

[115]R-GMA Documentation. http://www.r-gma.org/fivemins.html

http://www.r-gma.org/

Bibliography 201

[116]R. Alfieri, R. Cecchini, V. Ciaschini, L. dellrsquo, Agnello, A. Frohner, et al.
VOMS, an Authorization System for Virtual Organizations. /n Proceedings of the

1st European Across Grids Conference, 2003.

[117]C. Aiftimiei et al. Job Submission and Management through Web Services: The
Experience with the CREAM Service. Journal of Physics: Conference Series 119,

2008.

[118]C. Aiftimiei et al. Using CREAM and CEMON for Job Submission and
Management in the gLite Middleware. 17" International Conference on

Computing in High Energy and Nuclear Physics, Prague, Czech Republic, To be
published in IOP Publishing, 2010.

[119]G.A. Stewart, D. Cameron, G.A. Cowan, and G. McCance. Storage and Data
Management in EGEE. In ACSW °07: Proceedings of the fifth Australasian

symposium on ACSW frontiers, pages 69—77, Australia, 2007.

[120]C. Grandi, D. Stickland, L. Taylor et al. The CMS Computing Model, CERN-
LHCC-2004-035/G-083, 2004.

[121]A. Afaq et al. The CMS Dataset Bookkeeping Service, Journal of Physics
Conference Series, 119, 072001, 2008.

[122]Barry Blumenfeld, David Dykstra, Lee Lueking, Eric Wicklund. CMS

Conditions Data Access using FroNTier. International Conference on Computing

in High Energy and Nuclear Physics (CHEP’07), 2007.

[123]Squid Proxy, http://www.squid-cache.org

[124]R. Egeland et al. Data Transfer Infrastructure for CMS Data Taking, Proceedings
of Science, PoS (ACAT08)033, 2008.

[125]D. Evans et al. The CMS Monte Carlo Production System: Development and

Bibliography 202

Design, Nuclear Physics Proceedings Suppl. 177-178, 285-286, 2008.

[126]D. Spiga et al. The CMS Remote Analysis Builder (CRAB), / 4th Int. Conf. On
High Performance Computing, 2007.

[127]P. Andreetto et al. The glite Workload Management System. Journal of Physics
Conference Series, 119, 2008.

[128] A.Tsaregorodsev et al. Dirac: A Community Grid Solution, CHEP(O7 Conference
Proceedings, Victoria, Canada, 2007.

[129]P. Nilsson. PanDA System in ATLAS Experiment, ACAT 08 Conference, Italy,
2008.

[130]P. Saiz et al. AliEn - ALICE Environment on the GRID, Nuclear Instruments and
Methods in Physics Research, A502 (2003) 437-440, 2003.

[131]Experiment Dashboard Web Statistics web page.

http://Ixardal8.cern.ch/awstats/awstats.pl?config=Ixardal8.cern.ch
[132]Imperial College Real Time Monitoring. http://gridportal.hep.ph.ic.ac.uk/rtm/

[133]D. Collados et al. Evolution of SAM in an Enhanced Model for Monitoring
WLCG Services. 17" International Conference on Computing in High Energy and
Nuclear Physics, Prague, Czech Republic, To be published in IOP Publishing,
2010.

[134]LB. http://egee.cesnet.cz/cs/JRA1/LB/

[135]J). Moscicki et al. Ganga: A Tool for computational-task Management and Easy
Access to Grid Resources, Computer Physics Communication, Volume 180, Issue
11, November 2009, Pages 2303-2316, arXiv:0902.2685v2, 2009.
http://arxiv.org/pdf/0902.2685v2

Bibliography 203

[136]1. Legrand, H. Newman, C. Cirstoiu et al. MonALISA: an Agent Based, Dynamic
Service System to Monitor, Control and Optimize Grid Based Applications.
Proceedings of Computing for High Energy Physics, Switzerland, 2004.

[137]James Casey, Daniel Rodrigues, Ulrich Schwickerath, Ricardo Silva. Monitoring
the Efficiency of User Jobs, 17" International Conference on Computing in High
Energy and Nuclear Physics, Prague, Czech Republic, To be published in /IOP
Publishing, 2010.

[138]Google Web Toolkit. http://code.google.com/webtoolkit/

[139] A Shoshani, A Sim, J Gu. Storage Resource Managers: Middleware Components
for Grid Storage. NASA Conference Publication, 2002.

[140] Apache Web Server. http://apache.org

[141]Apache ActiveMQ. http://activemq.apache.org

[142]Janusz Martyniak, David Colling et al. A Real Time Monitoring of Grid Job
Executions. 17" International Conference on Computing in High Energy and
Nuclear Physics (CHEP), Prague, Czech Republic, To be published in IOP
Publishing, 2010.

[143]Legion Studio Software Suite. http://www.legion.com

[144]Legion Studio Case Studies. http://legion.com/case-studies

[145] J. L. Berrou, J. Beecham, P. Quaglia, M. A. Kagarlis, A. Gerodimos. Calibration
and Validation of the Legion Simulation Model using Empirical Data. Pedestrian

and Evacuation Dynamics, Springer Berlin Heidelberg, pp. 167-181, 2005.

[146]J. Fruin. Pedestrian and Planning Design. Metropolitan Association of Urban

Designers and Environmental Planners. 1971.

http://elevatorbooks.store.yahoo.net/pedplanandde.html
http://legion.com/case-studies
http://www.r-gma.org/
http://www.r-gma.org/
http://www.r-gma.org/
http://www.r-gma.org/
http://code.google.com/webtoolkit/

Bibliography 204

[147] Transportation Research Board. Highway Capacity Manual, Special Report
204 TRB, Washington D.C, US, 1985.

[148]F. Rademakers, R. Brun. ROOT: An Object-Oriented Data Analysis Framework.
Proceedings AIHENP'96 Workshop, Nucl. Inst. Meth. In Phys. Res. A389 pp. 81-
86, Lausanne, 1997. See also: http://root.cern.ch

[149]L. Dagum. Technical Report - OpenMP: A proposed industry standard API for
Shared Memory Programming, 1997.
http://www.openmp.org/mp-documents/paper/paper.ps

[150]P. Kambadur, D. Gregor, A. Lumsdaine, A. Dharurkar. Modernizing the C++
interface to MPI. Proceedings of the 13" European PVM/MPI Users' Group
Meeting, LNCS, pp. 266-274, Germany, Springer, 2006.

[151]). Andreeva et al. Experiment Dashboard: the monitoring system for the LHC
experiments. In GMW'07: Proceedings of the 2007 workshop on Grid monitoring,
ACM, 2007.

[152]P. Saiz et al. Grid Reliability. In CHEP'07: Proceedings of the 2007 International
Conference on Computing in High Energy and Nuclear Physics, Journal of
Physics: Conference Series 119, 2007.

[153]Graphtool Library. http://t2.unl.edu/documentation/graphtool/graphtool-overview

[154]A McNab, S. Kaushal. The GridSite Proxy Delegation Service. Grid Security
Workshop, Oxford, 2004. http://www.gridpp.ac.uk/papers/ AHM2006610.pdf

[155]Dashboard Application Usage Statistics. http://Ixardal8.cern.ch/usage.html

[156]Dashboard Site Status for the CMS Sites. http://dashb-ssb.cern.ch/ssb.html

http://195.194.110.249/papers/AHM2006610.pdf
http://195.194.110.249/papers/AHM2006610.pdf
http://195.194.110.249/papers/AHM2006610.pdf
http://www.openmp.org/

	Introduction
	1.1 Birth of Computing
	1.2 Distributed and High Performance Computing
	1.3 Internet
	1.3.1 World Wide Web
	1.3.2 Web Services

	1.4 The Grid
	1.5 e-Science
	1.6 Computing for the LHC: The Worldwide LHC Computing Grid
	1.7 Summary

	Parallel and Distributed Computing
	2.1 Introduction
	2.2 Threads
	2.3 Flynn's Taxonomy
	2.4 Characteristics of a Parallel System
	2.4.1 Coupling
	2.4.2 Parallelism
	2.4.3 Concurrency
	2.4.4 Granularity

	2.5 Performance Analysis of Parallel Programming
	2.6 Message Passing Communication
	2.6.1 Message-Passing Systems versus Shared Memory Systems
	2.6.2 Primitives for Distributed Communication
	2.6.3 Buffered versus Unbuffered Message Passing Primitives
	2.6.4 The Message Passing Interface (MPI)
	2.6.5 MPI and OpenMP

	2.7 Parallel Programming Constructs
	2.7.1 Synchronisation
	2.7.2 Critical Sections
	2.7.3 Semaphores
	2.7.4 Locks
	2.7.5 Barrier

	2.8 Common Parallel Programming Problems
	2.8.1 Number of Threads
	2.8.2 Parallel Slowdown
	2.8.3 Race Conditions
	2.8.4 Deadlock

	2.9 Summary

	Grid Computing
	3.1 Introduction
	3.2 Architecture
	3.2.1 Fabric
	3.2.2 Connectivity
	3.2.3 Resource
	3.2.4 Collective
	3.2.5 Applications

	3.3 Open Standards
	3.3.1 OGSA
	3.3.2 WSRF

	3.4 Grid Middleware
	3.4.1 Globus Toolkit
	3.4.2 Condor
	3.4.3 LCG
	3.4.4 gLite

	3.5 The CMS Computing Model
	3.5.1 Data Management System
	3.5.2 Workload Management System

	3.6 Monitoring with the Experiment Dashboard
	3.6.1 Experiment Dashboard Framework
	3.6.2 Job Processing and the Experiment Dashboard Applications for Monitoring
	3.6.3 Experiment Dashboard Generic Job Monitoring Application

	3.7 Summary

	Multi-Threaded and Distributed Framework for Pedestrian Simulation
	4.1 Introduction
	4.2 Legion Analyser
	4.2.1 Maps and Value Ranges
	4.2.2 Standard Maps

	4.3 Multi-Threaded Legion Analyser
	4.3.1 Design
	4.3.2 Implementation
	4.3.3 Performance

	4.4 Distributed Legion Analyser
	4.4.1 Design and Implementation
	4.4.2 Performance

	4.5 Summary

	CMS Dashboard Task Monitoring
	5.1 Introduction
	5.2 Design
	5.2.1 Objectives
	5.2.2 Use Cases
	5.2.3 Requirements
	5.2.4 Architecture

	5.3 Implementation
	5.3.1 CMS Dashboard Database Schema
	5.3.2 SQL Queries
	5.3.3 Gridsite Authentication
	5.3.4 Advanced Graphical Plots
	5.3.5 User Interface and Monitoring Features

	5.4 Experience of the CMS User Community with Task Monitoring
	5.5 Summary

	CMS Dashboard Job Summary
	6.1 Introduction
	6.2 Design
	6.2.1 Objectives
	6.2.2 Use Cases
	6.2.3 Requirements
	6.2.4 Architecture

	6.3 Implementation
	6.3.1 Filters
	6.3.2 CMS Dashboard Database Schema
	6.3.3 SQL Queries
	6.3.4 User Interface

	6.4 Experience of the CMS User Community with Job Summary
	6.5 Summary

	Conclusion
	Acronyms
	Appendix A. Task Monitoring
	A.1 Use Cases
	A.2 Graphtool Patches
	A.3 CMS Survey
	A.4 User Manual
	A.5 Graphical Overview Plot
	A.6 SQL Queries

	Appendix B. Job Summary
	B.1 Use Cases
	B.2 SQL Queries

	Appendix C. Legion Analyser
	C.1 Simulated Models for the Benchmarking of the Multi-threaded Analyser
	C.2 Simulated Model for the Benchmarking of the Distributed Analyser
	C.3 Work Division for Six Slave Nodes
	C.4 Sender Code
	C.5 Receiver Code

	Bibliography

