24 research outputs found

    Vulnerability of LTE to Hostile Interference

    Full text link
    LTE is well on its way to becoming the primary cellular standard, due to its performance and low cost. Over the next decade we will become dependent on LTE, which is why we must ensure it is secure and available when we need it. Unfortunately, like any wireless technology, disruption through radio jamming is possible. This paper investigates the extent to which LTE is vulnerable to intentional jamming, by analyzing the components of the LTE downlink and uplink signals. The LTE physical layer consists of several physical channels and signals, most of which are vital to the operation of the link. By taking into account the density of these physical channels and signals with respect to the entire frame, as well as the modulation and coding schemes involved, we come up with a series of vulnerability metrics in the form of jammer to signal ratios. The ``weakest links'' of the LTE signals are then identified, and used to establish the overall vulnerability of LTE to hostile interference.Comment: 4 pages, see below for citation. M. Lichtman, J. Reed, M. Norton, T. Clancy, "Vulnerability of LTE to Hostile Interference'', IEEE Global Conference on Signal and Information Processing (GlobalSIP), Dec 201

    Synchronization in wireless communications

    Get PDF
    The last decade has witnessed an immense increase of wireless communications services in order to keep pace with the ever increasing demand for higher data rates combined with higher mobility. To satisfy this demand for higher data rates, the throughput over the existing transmission media had to be increased. Several techniques were proposed to boost up the data rate: multicarrier systems to combat selective fading, ultra wide band (UWB) communications systems to share the spectrum with other users, MIMO transmissions to increase the capacity of wireless links, iteratively decodable codes (e.g., turbo codes and LDPC codes) to improve the quality of the link, cognitive radios, and so forth

    Esquemas de cooperação entre estações base para o LTE no sentido descendente

    Get PDF
    The explosive growth in wireless traffic and in the number of connected devices as smart phones or computers, are causing a dramatic increase in the levels of interference, which significantly degrades the capacity gains promised by the point-to-point multi input, multi output (MIMO) based techniques. Therefore, it is becoming increasingly clear that major new improvements in spectral efficiency of wireless networks will have to entail addressing intercell interference. So, there is a need for a new cellular architecture that can take these factors under consideration. It is in this context that LTE-Advanced arises. One of the most promising LTE-Advanced technology is Coordinated Multipoint (CoMP), which allows base stations to cooperate among them, in order to mitigate or eliminate the intercell interference and, by doing so, increase the system’s capacity. This thesis intends to study this concept, implementing some schemes that fall under the CoMP concept. In this thesis we consider a distributed precoded multicell approach, where the precoders are computed locally at each BS to mitigate the intercell interference. Two precoder are considered: distributed zero forcing (DZF) and distributed virtual signal-to-interference noise ratio (DVSINR) recently proposed. Then the system is further optimized by computing a power allocation algorithm over the subcarriers that minimizes the average bit error rate (BER). The considered algorithms are also evaluated under imperfect channel state information. A quantized version of the CSI associated to the different links between the BS and the UT is feedback from the UT to the BS. This information is then employed by the different BSs to perform the precoding design. A new DVSINR precoder explicitly designed under imperfect CSI is proposed. The proposed schemes were implemented considering the LTE specifications, and the results show that the considered precoders are efficiently to remove the interference even under imperfect CSI.O crescimento exponencial no tráfego de comunicações sem-fios e no número de dispositivos utilizados (smart phones, computadores portáteis, etc.) está a causar um aumento significativo nos níveis de interferência, que prejudicam significativamente os ganhos de capacidade assegurados pelas tecnologias baseadas em ligações ponto-a-ponto MIMO. Deste modo, torna-se cada vez mais necessário que os grandes aperfeiçoamentos na eficiência espectral de sistemas de comunicações sem-fios tenham em consideração a interferência entre células. De forma a tomar em consideração estes aspectos, uma nova arquitectura celular terá de ser desenvolvida. É assim, neste contexto, que surge o LTE-Advanced. Uma das tecnologias mais promissoras do LTE-Advanced é a Coordenação Multi-Ponto (CoMP), que permite que as estações base cooperem de modo a mitigar a interferência entre células e, deste modo, aumentar a capacidade do sistema. Esta dissertação pretende estudar este conceito, implementando para isso algumas técnicas que se enquadram no conceito do CoMP. Nesta dissertação iremos considerar a implementação de um sistema de pré-codificação em múltiplas células, em que os pré-codificadores são calculados em cada BS, de modo a mitigar a interferência entre células. São considerados dois pré-codificadores: Distributed Zero Forcing (DZF) e Distributed Virtual Signal-to-Interferance Noise Ratio (DVSINR), recentemente proposto. De seguida o sistema é optimizado com a introdução de algoritmos de alocação de potência entre as sub-portadoras com o objectivo de minimizar a taxa média de erros (BER). Os algoritmos considerados são também avaliados em situações em que a informação do estado do canal é imperfeita. Uma versão quantizada da CSI associada a cada uma das diferentes ligações entre as BS e os UT é assim enviada do UT para a BS. Esta informação é então utilizada para calcular os diferentes pré-codificadores em cada BS. Uma nova versão do pré-codificador DVSINR é proposta de modo a lidar com CSI imperfeito. Os esquemas propostos foram implementados considerandos especificações do LTE, e os resultados obtidos demonstram que os pré-codificadores removem de uma forma eficiente a interferência, mesmo em situações em que a CSI é imperfeita

    Formes d'ondes avancées et traitements itératifs pour les canaux non linéaires satellites

    Get PDF
    L'augmentation de l'efficacité spectrale des transmissions mono-porteuses sur un lien de diffusion par satellite est devenu un défi d'envergure afin de pallier la demande croissante en débits de transmission. Si des techniques émergentes de transmissions encouragent l'utilisation de modulations à ordre élevé telles que les modulations de phase et d'amplitude (APSK), certaines dégradations sont encourues lors du traitement à bord du satellite. En effet, en raison de l'utilisation d'amplificateurs de puissance ainsi que de filtres à mémoires, les modulations d'ordre élevé subissent des distorsions non-linéaires dues à la fluctuation de leur enveloppe, ce qui nécessite des traitements au sein de l'émetteur ou bien au sein du récepteur. Dans cette thèse, nous nous intéressons au traitement de l'interférence non-linéaire au sein du récepteur, avec une attention particulière aux égaliseurs itératifs qui améliorent les performances du système au prix d'une complexité élevée. A partir du modèle temporel des interférences non-linéaires induites par l'amplificateur de puissance, des algorithmes de réception optimaux et sous optimaux sont dérivés, et leurs performances comparées. Des égaliseurs à complexité réduite sont aussi étudiés dans le but d'atteindre un compromis performances-complexité satisfaisant. Ensuite, un modèle des non-linéarités est dérivé dans le domaine fréquentiel, et les égaliseurs correspondants sont présentés. Dans un second temps, nous analysons et dérivons des récepteurs itératifs pour l'interférence entre symboles non linéaire. L'objectif est d'optimiser les polynômes de distributions d'un code externe basé sur les codes de contrôle de parité à faible densité (LDPC) afin de coller au mieux à la sortie de l'égaliseur. Le récepteur ainsi optimisé atteint de meilleures performances comparé à un récepteur non optimisé pour le canal non-linéaire. Finalement, nous nous intéressons à une classe spécifique de techniques de transmissions mono-porteuse basée sur le multiplexage par division de fréquence (SC-OFDM) pour les liens satellites. L'avantage de ces formes d'ondes réside dans l'efficacité de leur égaliseur dans le domaine fréquentiel. Des formules analytiques de la densité spectrale de puissance et du rapport signal sur bruit et interférence sont dérivées et utilisées afin de prédire les performances du système. ABSTRACT : Increasing both the data rate and power efficiency of single carrier transmissions over broadcast satellite links has become a challenging issue to comply with the urging demand of higher transmission rates. If emerging transmission techniques encourage the use of high order modulations such as Amplitude and Phase Shift Keying (APSK) and Quadrature Amplitude Modulation (QAM), some channel impairments arise due to onboard satellite processing. Indeed, due to satellite transponder Power Amplifiers (PA) as well as transmission filters, high order modulations incur non linear distortions due to their high envelope fluctuations which require specific processing either at the transmitter or at the receiver. In this thesis, we investigate on non linear interference mitigation at the receiver with a special focus on iterative equalizers which dramatically enhance the performance at the cost of additional complexity. Based on the time domain model of the non linear interference induced by the PA, optimal and sub-optimal receiving algorithms are proposed and their performance compared. Low complexity implementations are also investigated for the sake of a better complexity-performance trade-off. Then, a non linear frequency domain model is derived and the corresponding frequency equalizers are investigated. In the second part, we analyse and design an iterative receiver for the non linear Inter Symbol Interference (ISI) channel. The objective is to optimize an outer Low Density Parity Check (LDPC) code distribution polynomials so as to best fit the inner equalizer Extrinsic information. The optimized receiver is shown to achieve better performance compared to a code only optimized for linear ISI channel. Finally, we investigate on a specific class of single carrier transmissions relying on Single Carrier Orthogonal Frequency Division Multiplexing (SCO-FDM) for satellite downlink. The advantage of such waveforms lies in their practical receiver implementation in the frequency domain. General analytical formulas of the power spectral density and signal to noise and interference ratio are derived and used to predict the bit error rate for frequency selective multiplexers

    Link level performance evaluation and link abstraction for LTE/LTE-advanced downlink

    Get PDF
    Els objectius principals d'aquesta tesis són l'avaluació del rendiment a nivell d'enllaç i l'estudi de l'abstracció de l'enllaç pel LTE/LTE-Advanced DL. S’ha desenvolupat un simulador del nivell d'enllaç E-UTRA DL basat en la tecnologia MIMO-OFDM. Es simulen els errors d'estimació de canal amb un model d'error de soroll additiu Gaussià anomenat CEEM. El resultat d'aquest simulador serveix per avaluar el rendiment a nivell d'enllaç del LTE/LTE-Advanced DL en diferents entorns . La idea bàsica dels mètodes d'abstracció de l'enllaç és mapejar el vector de SNRs de les subportadores a un valor escalar, l'anomenada ESNR, la qual és usada per a predir la BLER. Proposem un innovador mètode d'abstracció de l'enllaç que pot predir la BLER amb bona precisió en esvaïments multicamí i que inclouen els efectes de les retransmissions HARQ. El mètode proposat es basa amb l'estimació de la informació mútua entre els bits transmesos i els LLRs rebuts.The main objectives of this dissertation are the evaluation of the link level performance and the study of link abstraction for LTE/LTE-Advanced DL. An E-UTRA DL link level simulator has been developed based on MIMO-OFDM technology. We simulate channel estimation errors by a Gaussian additive noise error model called CEEM. The result of this simulator serves to evaluate the MIMO-OFDM LTE/LTE-Advanced DL link level performance in different environments. The basic idea of link abstraction methods is to map the vector of the subcarrier SNRs to a single scalar, the ESNR, which is then used to predict the BLER. We propose a novel link abstraction method that can predict the BLER with good accuracy in multipath fading and including the effects of HARQ retransmissions. The proposed method is based on estimating the mutual information between the transmitted bits and the received LLRs.Postprint (published version

    Semi-blind channel estimation for multiuser OFDM-IDMA systems.

    Get PDF
    M. Sc. Eng. University of KwaZulu-Natal, Durban 2014.Over the last decade, the data rate and spectral efficiency of wireless mobile communications have been significantly enhanced. OFDM technology has been used in the development of advanced systems such as 3GPP LTE and terrestrial digital TV broadcasting. In general, bits of information in mobile communication systems are conveyed through radio links to receivers. The radio channels in mobile radio systems are usually multipath fading channels, which cause inter-symbol interference (ISI) in the received signal. The ability to know the channel impulse response (CIR) and Channel State Information (CSI) helps to remove the ISI from the signal and make coherent detection of the transmitted signal at the receiver end of the system easy and simple. The information about CIR and CSI are primarily provided by channel estimation. This thesis is focused on the development of multiple access communication technique, Multicarrier Interleave Division Multiple Access (MC-IDMA) and the corresponding estimation of the system channel. It compares various efficient channel estimation algorithms. Channel estimation of OFDM-IDMA scheme is important because the emphasis from previous studies assumed the implementation of MC-IDMA in a perfect scenario, where Channel State Information (CSI) is known. MC-IDMA technique incorporates three key features that will be common to the next generation communication systems; multiple access capability, resistance to multipath fading and high bandwidth efficiency. OFDM is almost completely immune to multipath fading effects and IDMA has a recently proposed multiuser capability scheme which employs random interleavers as the only method for user separation. MC-IDMA combines the features of OFDM and IDMA to produce a system that is Inter Symbol Interference (ISI) free and has higher data rate capabilities for multiple users simultaneously. The interleaver property of IDMA is used by MC-IDMA as the only means by which users are separated at the receiver and also its entire bandwidth expansion is devoted to low rate Forward Error Correction (FEC). This provides additional coding gain which is not present in conventional Multicarrier Multiuser systems, (MC-MU) such as Code Division Multiple Access (CDMA), Multicarrier-Code Division Multiple Access (MC-CDMA) systems, and others. The effect of channel fading and both cross-cell and intra-cell Multiple Access Interference (MAI) in MC-IDMA is suppressed efficiently by its low-cost turbo-type Chip-by-Chip (CBC) multiuser detection algorithm. We present the basic principles of OFDM-IDMA transmitter and receiver. Comparative studies between Multiple Access Scheme such as Frequency Division Multiple Access (FDMA), Time Division Multiple Access (TDMA), CDMA and IDMA are carried out. A linear Minimum Mean Square Error (MMSE)-based estimation algorithm is adopted and implemented. This proposed algorithm is a non-data aided method that focuses on obtaining the CSI, remove ISI and reduce the complexity of the MMSE algorithm. However, to obtain a better and improved system performance, an improved MMSE algorithm and simplified MMSE using the structured correlation and reduced auto-covariance matrix are developed in this thesis and proposed for implementation of semi-blind channel estimation in OFDM-IDMA communication systems. The effectiveness of the adopted and proposed algorithms are implemented in a Rayleigh fading multipath channel with varying mobile speeds thus demonstrating the performance of the system in a practical scenario. Also, the implemented algorithms are compared to ascertain which of these algorithms offers a better and more efficient system performance, and with less complexity. The performance of the channel estimation algorithm is presented in terms of the mean square error (MSE) and bit error rate (BER) in both slow fading and fast fading multipath scenarios and the results are documented as well

    Peak to average power ratio reduction and error control in MIMO-OFDM HARQ System

    Get PDF
    Currently, multiple-input multiple-output orthogonal frequency division multiplexing (MIMOOFDM) systems underlie crucial wireless communication systems such as commercial 4G and 5G networks, tactical communication, and interoperable Public Safety communications. However, one drawback arising from OFDM modulation is its resulting high peak-to-average power ratio (PAPR). This problem increases with an increase in the number of transmit antennas. In this work, a new hybrid PAPR reduction technique is proposed for space-time block coding (STBC) MIMO-OFDM systems that combine the coding capabilities to PAPR reduction methods, while leveraging the new degree of freedom provided by the presence of multiple transmit chairs (MIMO). In the first part, we presented an extensive literature review of PAPR reduction techniques for OFDM and MIMO-OFDM systems. The work developed a PAPR reduction technique taxonomy, and analyzed the motivations for reducing the PAPR in current communication systems, emphasizing two important motivations such as power savings and coverage gain. In the tax onomy presented here, we include a new category, namely, hybrid techniques. Additionally, we drew a conclusion regarding the importance of hybrid PAPR reduction techniques. In the second part, we studied the effect of forward error correction (FEC) codes on the PAPR for the coded OFDM (COFDM) system. We simulated and compared the CCDF of the PAPR and its relationship with the autocorrelation of the COFDM signal before the inverse fast Fourier transform (IFFT) block. This allows to conclude on the main characteristics of the codes that generate high peaks in the COFDM signal, and therefore, the optimal parameters in order to reduce PAPR. We emphasize our study in FEC codes as linear block codes, and convolutional codes. Finally, we proposed a new hybrid PAPR reduction technique for an STBC MIMO-OFDM system, in which the convolutional code is optimized to avoid PAPR degradation, which also combines successive suboptimal cross-antenna rotation and inversion (SS-CARI) and iterative modified companding and filtering schemes. The new method permits to obtain a significant net gain for the system, i.e., considerable PAPR reduction, bit error rate (BER) gain as compared to the basic MIMO-OFDM system, low complexity, and reduced spectral splatter. The new hybrid technique was extensively evaluated by simulation, and the complementary cumulative distribution function (CCDF), the BER, and the power spectral density (PSD) were compared to the original STBC MIMO-OFDM signal

    Mehrdimensionale Kanalschätzung für MIMO-OFDM

    Get PDF
    DIGITAL wireless communication started in the 1990s with the wide-spread deployment of GSM. Since then, wireless systems evolved dramatically. Current wireless standards approach the goal of an omnipresent communication system, which fulfils the wish to communicate with anyone, anywhere at anytime. Nowadays, the acceptance of smartphones and/or tablets is huge and the mobile internet is the core application. Given the current growth, the estimated data traffic in wireless networks in 2020 might be 1000 times higher than that of 2010, exceeding 127 exabyte. Unfortunately, the available radio spectrum is scarce and hence, needs to be utilized efficiently. Key technologies, such as multiple-input multiple-output (MIMO), orthogonal frequency-division multiplexing (OFDM) as well as various MIMO precoding techniques increase the theoretically achievable channel capacity considerably and are used in the majority of wireless standards. On the one hand, MIMO-OFDM promises substantial diversity and/or capacity gains. On the other hand, the complexity of optimum maximum-likelihood detection grows exponentially and is thus, not sustainable. Additionally, the required signaling overhead increases with the number of antennas and thereby reduces the bandwidth efficiency. Iterative receivers which jointly carry out channel estimation and data detection are a potential enabler to reduce the pilot overhead and approach optimum capacity at often reduced complexity. In this thesis, a graph-based receiver is developed, which iteratively performs joint data detection and channel estimation. The proposed multi-dimensional factor graph introduces transfer nodes that exploit correlation of adjacent channel coefficients in an arbitrary number of dimensions (e.g. time, frequency, and space). This establishes a simple and flexible receiver structure that facilitates soft channel estimation and data detection in multi-dimensional dispersive channels, and supports arbitrary modulation and channel coding schemes. However, the factor graph exhibits suboptimal cycles. In order to reach the maximum performance, the message exchange schedule, the process of combining messages, and the initialization are adapted. Unlike conventional approaches, which merge nodes of the factor graph to avoid cycles, the proposed message combining methods mitigate the impairing effects of short cycles and retain a low computational complexity. Furthermore, a novel detection algorithm is presented, which combines tree-based MIMO detection with a Gaussian detector. The resulting detector, termed Gaussian tree search detection, integrates well within the factor graph framework and reduces further the overall complexity of the receiver. Additionally, particle swarm optimization (PSO) is investigated for the purpose of initial channel estimation. The bio-inspired algorithm is particularly interesting because of its fast convergence to a reasonable MSE and its versatile adaptation to a variety of optimization problems. It is especially suited for initialization since no a priori information is required. A cooperative approach to PSO is proposed for large-scale antenna implementations as well as a multi-objective PSO for time-varying frequency-selective channels. The performance of the multi-dimensional graph-based soft iterative receiver is evaluated by means of Monte Carlo simulations. The achieved results are compared to the performance of an iterative state-of-the-art receiver. It is shown that a similar or better performance is achieved at a lower complexity. An appealing feature of iterative semi-blind channel estimation is that the supported pilot spacings may exceed the limits given the by Nyquist-Shannon sampling theorem. In this thesis, a relation between pilot spacing and channel code is formulated. Depending on the chosen channel code and code rate, the maximum spacing approaches the proposed “coded sampling bound”.Die digitale drahtlose Kommunikation begann in den 1990er Jahren mit der zunehmenden Verbreitung von GSM. Seitdem haben sich Mobilfunksysteme drastisch weiterentwickelt. Aktuelle Mobilfunkstandards nähern sich dem Ziel eines omnipräsenten Kommunikationssystems an und erfüllen damit den Wunsch mit jedem Menschen zu jeder Zeit an jedem Ort kommunizieren zu können. Heutzutage ist die Akzeptanz von Smartphones und Tablets immens und das mobile Internet ist die zentrale Anwendung. Ausgehend von dem momentanen Wachstum wird das Datenaufkommen in Mobilfunk-Netzwerken im Jahr 2020, im Vergleich zum Jahr 2010, um den Faktor 1000 gestiegen sein und 100 Exabyte überschreiten. Unglücklicherweise ist die verfügbare Bandbreite beschränkt und muss daher effizient genutzt werden. Schlüsseltechnologien, wie z.B. Mehrantennensysteme (multiple-input multiple-output, MIMO), orthogonale Frequenzmultiplexverfahren (orthogonal frequency-division multiplexing, OFDM) sowie weitere MIMO Codierverfahren, vergrößern die theoretisch erreichbare Kanalkapazität und kommen bereits in der Mehrheit der Mobil-funkstandards zum Einsatz. Auf der einen Seite verspricht MIMO-OFDM erhebliche Diversitäts- und/oder Kapazitätsgewinne. Auf der anderen Seite steigt die Komplexität der optimalen Maximum-Likelihood Detektion exponientiell und ist infolgedessen nicht haltbar. Zusätzlich wächst der benötigte Mehraufwand für die Kanalschätzung mit der Anzahl der verwendeten Antennen und reduziert dadurch die Bandbreiteneffizienz. Iterative Empfänger, die Datendetektion und Kanalschätzung im Verbund ausführen, sind potentielle Wegbereiter um den Mehraufwand des Trainings zu reduzieren und sich gleichzeitig der maximalen Kapazität mit geringerem Aufwand anzunähern. Im Rahmen dieser Arbeit wird ein graphenbasierter Empfänger für iterative Datendetektion und Kanalschätzung entwickelt. Der vorgeschlagene multidimensionale Faktor Graph führt sogenannte Transferknoten ein, die die Korrelation benachbarter Kanalkoeffizienten in beliebigen Dimensionen, z.B. Zeit, Frequenz und Raum, ausnutzen. Hierdurch wird eine einfache und flexible Empfängerstruktur realisiert mit deren Hilfe weiche Kanalschätzung und Datendetektion in mehrdimensionalen, dispersiven Kanälen mit beliebiger Modulation und Codierung durchgeführt werden kann. Allerdings weist der Faktorgraph suboptimale Schleifen auf. Um die maximale Performance zu erreichen, wurde neben dem Ablauf des Nachrichtenaustausches und des Vorgangs zur Kombination von Nachrichten auch die Initialisierung speziell angepasst. Im Gegensatz zu herkömmlichen Methoden, bei denen mehrere Knoten zur Vermeidung von Schleifen zusammengefasst werden, verringern die vorgeschlagenen Methoden die leistungsmindernde Effekte von Schleifen, erhalten aber zugleich die geringe Komplexität des Empfängers. Zusätzlich wird ein neuartiger Detektionsalgorithmus vorgestellt, der baumbasierte Detektionsalgorithmen mit dem sogenannten Gauss-Detektor verknüpft. Der resultierende baumbasierte Gauss-Detektor (Gaussian tree search detector) lässt sich ideal in das graphenbasierte Framework einbinden und verringert weiter die Gesamtkomplexität des Empfängers. Zusätzlich wird Particle Swarm Optimization (PSO) zum Zweck der initialen Kanalschätzung untersucht. Der biologisch inspirierte Algorithmus ist insbesonders wegen seiner schnellen Konvergenz zu einem akzeptablen MSE und seiner vielseitigen Abstimmungsmöglichkeiten auf eine Vielzahl von Optimierungsproblemen interessant. Da PSO keine a priori Informationen benötigt, ist er speziell für die Initialisierung geeignet. Sowohl ein kooperativer Ansatz für PSO für Antennensysteme mit extrem vielen Antennen als auch ein multi-objective PSO für Kanäle, die in Zeit und Frequenz dispersiv sind, werden evaluiert. Die Leistungsfähigkeit des multidimensionalen graphenbasierten iterativen Empfängers wird mit Hilfe von Monte Carlo Simulationen untersucht. Die Simulationsergebnisse werden mit denen eines dem Stand der Technik entsprechenden Empfängers verglichen. Es wird gezeigt, dass ähnliche oder bessere Ergebnisse mit geringerem Aufwand erreicht werden. Eine weitere ansprechende Eigenschaft von iterativen semi-blinden Kanalschätzern ist, dass der mögliche Abstand von Trainingssymbolen die Grenzen des Nyquist-Shannon Abtasttheorem überschreiten kann. Im Rahmen dieser Arbeit wird eine Beziehung zwischen dem Trainingsabstand und dem Kanalcode formuliert. In Abhängigkeit des gewählten Kanalcodes und der Coderate folgt der maximale Trainingsabstand der vorgeschlagenen “coded sampling bound”

    Bandwidth Compressed Waveform and System Design for Wireless and Optical Communications: Theory and Practice

    Get PDF
    This thesis addresses theoretical and practical challenges of spectrally efficient frequency division multiplexing (SEFDM) systems in both wireless and optical domains. SEFDM improves spectral efficiency relative to the well-known orthogonal frequency division multiplexing (OFDM) by non-orthogonally multiplexing overlapped sub-carriers. However, the deliberate violation of orthogonality results in inter carrier interference (ICI) and associated detection complexity, thus posing many challenges to practical implementations. This thesis will present solutions for these issues. The thesis commences with the fundamentals by presenting the existing challenges of SEFDM, which are subsequently solved by proposed transceivers. An iterative detection (ID) detector iteratively removes self-created ICI. Following that, a hybrid ID together with fixed sphere decoding (FSD) shows an optimised performance/complexity trade-off. A complexity reduced Block-SEFDM can subdivide the signal detection into several blocks. Finally, a coded Turbo-SEFDM is proved to be an efficient technique that is compatible with the existing mobile standards. The thesis also reports the design and development of wireless and optical practical systems. In the optical domain, given the same spectral efficiency, a low-order modulation scheme is proved to have a better bit error rate (BER) performance when replacing a higher order one. In the wireless domain, an experimental testbed utilizing the LTE-Advanced carrier aggregation (CA) with SEFDM is operated in a realistic radio frequency (RF) environment. Experimental results show that 40% higher data rate can be achieved without extra spectrum occupation. Additionally, a new waveform, termed Nyquist-SEFDM, which compresses bandwidth and suppresses out-of-band power leakage is investigated. A 4th generation (4G) and 5th generation (5G) coexistence experiment is followed to verify its feasibility. Furthermore, a 60 GHz SEFDM testbed is designed and built in a point-to-point indoor fiber wireless experiment showing 67% data rate improvement compared to OFDM. Finally, to meet the requirements of future networks, two simplified SEFDM transceivers are designed together with application scenarios and experimental verifications
    corecore