14 research outputs found

    Coordinating push and pull flows in a lost sales stochastic supply chain

    Get PDF

    Integration and coordination in after-sales service logistics

    Get PDF
    Maintenance and after-sales service logistics are important disciplines that have received considerable attention both in practice and in the scientific literature. This attention is related to the often high investments and revenues associated with capital-intensive assets in technically advanced business environments. Different maintenance services such as inspections and preventive maintenance activities are executed with the goal to maximize the availability of these expensive assets. However, unavoidable failures may still happen, which means that, in addition to preventive maintenance and services, repair actions (corrective maintenance) are necessary. Spare parts, service engineers and tools are typically the main resources for executing the repair actions and their availability has a major impact on overall system downtime. In this dissertation, we analyze a multi-resource after-sales service supply chain consisting of a service provider and an emergency supplier. The service provider is contractually responsible for the timely repair of some randomly failing capital intensive assets. To execute a repair, the service provider needs both service engineers and spare parts to replace the malfunctioning parts. In case of spare parts stock out, the service provider can either wait for the regular replenishment of parts or decide to hand over the entire repair call to an emergency supplier. For the latter case, a contract between the service provider and the emergency supplier is necessary to specify the compensation. In the first part of this dissertation, we focus on the optimal integrated planning of spare parts and engineers, considering an asset availability constraint. We evaluate the system performance using Markov chain analysis and queueing models, and employ different optimization algorithms to jointly determine the optimal capacity of the resources. This integrated planning results in considerable cost savings compared to the separate planning of spare parts and engineers. In the second part, we investigate the best contract the supplier can offer to the service provider. Furthermore, we propose different coordinated contracts to achieve optimal revenues for both partners in this after-sales service supply chain, under both full and asymmetric information scenarios. Cooperative games, the dominance of one party over the other (Stackelberg game), and information sharing aspects are the tools included in the second part of this dissertation

    Integrated planning of spare parts and service engineers with partial backlogging

    Get PDF
    In this paper, we consider the integrated planning of resources in a service maintenance logistics system in which spare parts supply and service engineers deployment are considered simultaneously. The objective is to determine close-to-optimal stock levels as well as the number of service engineers that minimize the total average costs under a maximum total average waiting time constraint. When a failure occurs, a spare part and a service engineer are requested for the repair call. In case of a stock-out at spare parts inventory, the repair call will be satisfied entirely via an emergency channel with a fast replenishment time but at a high cost. However, if the requested spare part is in stock, the backlogging policy is followed for engineers. We model the problem as a queueing network. An exact method and two approximations for the evaluation of a given policy are presented. We exploit evaluation methods in a greedy heuristic procedure to optimize this integrated planning. In a numerical study, we show that for problems with more than five types of spare parts it is preferable to use approximate evaluations as they become significantly faster than exact evaluation. Moreover, approximation errors decrease as problems get larger. Furthermore, we test how the greedy optimization heuristic performs compared to other discrete search algorithms in terms of total costs and computation times. Finally, in a rather large case study, we show that we may incur up to 27% cost savings when using the integrated planning as compared to a separated optimization. , The Author(s).This publication was made possible by the NPRP award [NPRP 7-308-2-128] from the Qatar National Research Fund (a member of The Qatar Foundation). The statements made herein are solely the responsibility of the authors.Scopu

    A multi-criteria inventory management system for perishable & substitutable products

    Get PDF
    Perishable products represent a vital area in the retail industry and our daily lives. However, when considered with product substitution (which provides more choices) the short lifetime of perishable products creates significant challenges for the inventory management (e.g., one-third of food products are wasted). The main question is: what is the suitable ‘inventory policy’ when we have products that are both perishable and substitutable? Appropriate performance metrics are proposed to evaluate the whole system and provide a robust solution while also being easy for professionals to understand and adopt. Therefore, this paper proposes to use multi-metric approach, including Order Rate Variance Ratio, Average Inventory, and Fill Rate. The paper extends inventory theory to consider inventory management of products where they possess multi-period lifetime, positive lead time, required customer service level, and each item is treated separately. Under these circumstances, as the first research adopting these easily captured and analysed performance metrics, the proposed model will enable management of realistic scenarios by incorporating multiple inventory characteristics that support cross-functional continuous improvement

    Service Inventory Management : Solution techniques for inventory systems without backorders

    Get PDF
    Koole, G.M. [Promotor]Vis, I.F.A. [Copromotor

    Pooling and polling : creation of pooling in inventory and queueing models

    Get PDF
    The subject of the present monograph is the ‘Creation of Pooling in Inventory and Queueing Models’. This research consists of the study of sharing a scarce resource (such as inventory, server capacity, or production capacity) between multiple customer classes. This is called pooling, where the goal is to achieve cost or waiting time reductions. For the queueing and inventory models studied, both theoretical, scientific insights, are generated, as well as strategies which are applicable in practice. This monograph consists of two parts: pooling and polling. In both research streams, a scarce resource (inventory or server capacity, respectively production capacity) has to be shared between multiple users. In the first part of the thesis, pooling is applied to multi-location inventory models. It is studied how cost reduction can be achieved by the use of stock transfers between local warehouses, so-called lateral transshipments. In this way, stock is pooled between the warehouses. The setting is motivated by a spare parts inventory network, where critical components of technically advanced machines are kept on stock, to reduce down time durations. We create insights into the question when lateral transshipments lead to cost reductions, by studying several models. Firstly, a system with two stock points is studied, for which we completely characterize the structure of the optimal policy, using dynamic programming. For this, we formulate the model as a Markov decision process. We also derived conditions under which simple, easy to implement, policies are always optimal, such as a hold back policy and a complete pooling policy. Furthermore, we identified the parameter settings under which cost savings can be achieved. Secondly, we characterize the optimal policy structure for a multi-location model where only one stock point issues lateral transshipments, a so-called quick response warehouse. Thirdly, we apply the insights generated to the general multi-location model with lateral transshipments. We propose the use of a hold back policy, and construct a new approximation algorithm for deriving the performance characteristics. It is based on the use of interrupted Poisson processes. The algorithm is shown to be very accurate, and can be used for the optimization of the hold back levels, the parameters of this class of policies. Also, we study related inventory models, where a single stock point servers multiple customers classes. Furthermore, the pooling of server capacity is studied. For a two queue model where the head-of-line processor sharing discipline is applied, we derive the optimal control policy for dividing the servers attention, as well as for accepting customers. Also, a server farm with an infinite number of servers is studied, where servers can be turned off after a service completion in order to save costs. We characterize the optimal policy for this model. In the second part of the thesis polling models are studied, which are queueing systems where multiple queues are served by a single server. An application is the production of multiple types of products on a single machine. In this way, the production capacity is pooled between the product types. For the classical polling model, we derive a closedform approximation for the mean waiting time at each of the queues. The approximation is based on the interpolation of light and heavy traffic results. Also, we study a system with so-called smart customers, where the arrival rate at a queue depends on the position of the server. Finally, we invent two new service disciplines (the gated/exhaustive and the ??-gated discipline) for polling models, designed to yield ’fairness and efficiency’ in the mean waiting times. That is, they result in almost equal mean waiting times at each of the queues, without increasing the weighted sum of the mean waiting times too much
    corecore