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PART I

POOLING
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1
INTRODUCTION POOLING

In this part of the thesis we focus on pooling of resources. We consider respectively
pooling of inventory and pooling of server capacity. We start by a discussion on pooling of
resources in general, followed by introductions to each of the parts. Finally, we address
the connection between pooling and polling models.

1.1 Pooling of resources

Pooling refers to the grouping of resources and demand streams in order to maximize
the efficient use of it. One can obtain a better match between the resources and demand
streams, and hence a scarce resource can be better utilized. Typically this results in a
more profitable way of exploiting the resources, a higher utilization rate, and a risk re-
duction. The same performance level might be achieved with less resources, reducing the
capital expenditure, or one achieves shorter waiting times or more service completions.
In general, resources that are available to multiple customer streams, can be pooled to
achieve better utilization.

Pooling can be applied to a wide variety of resources, e.g. assets, equipment, per-
sonnel, effort. Examples include manufacturing facilities sharing production equipment
between several job types, clinical departments in a hospital sharing operating rooms,
hospital beds, and medical staff, a computer network clustering computational power of
the processors, and so on. In the service industry, one groups resources together from
which several customer classes can be served, rather than having dedicated, separate
resources for each individual customer class. In a separated system, the situation might
occur that the dedicated resource of a customer is unavailable, although another resource
in the system is available. This leads to extra waiting time for or the loss of this customer.
By pooling of the resources, this situation can be prevented. This is both beneficial for
the individual customer, as well as for the system as a whole.

We focus on two applications for which resources are pooled. Firstly, we consider
pooling of inventory, in two settings. The first setting is a common stockpile from which
multiple customer classes are served. Here we pool the otherwise separate inventories
for these classes. In the second setting, the inventories of multiple local warehouses
are pooled by allowing stock transfers between them. These stock transfers are called
lateral transshipments. For both settings, one can do with less inventory while keeping
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the service at the same level, or even improving it, compared to the situation without
pooling. For this, we optimize the allocation of the demands. Secondly, we consider
pooling of server capacity. In this part we first consider a server farm, where a large
number of servers is clustered to serve a stream of arriving work. Then we focus on a
manufacturing model where the production capacity of a single server is pooled for two
classes of customers, where the server can work on jobs of both classes simultaneously.

In both parts, we study the optimal use of pooling. That is, we characterize the deci-
sions to be taken for the optimal use of the inventory, respectively servers. In all chapters,
we derive optimal dynamic policies, which are policies that may depend on the whole state
of the system. E.g. for the inventory models, we let the decisions depend on the actual
on-hand inventories at all warehouses upon the decision epoch. In each chapter, we
completely characterize and prove the structure of the optimal policy. That is, we derive
the optimal policy for satisfying the demands or servicing the customers, minimizing the
average (or discounted) costs of the system in the long-run. For this, we use stochastic
dynamic programming. In Chapter 2, we outline the general approach along the lines
of a single stockpoint example with multiple customer classes. The optimal policy we
typically find, is a state-dependent threshold type policy. That is, the optimal policy is
characterized by one or multiple switching curves. In addition, in most of the chapters,
we also derive (sufficient) conditions under which the optimal policy simplifies. Only in
Chapter 5 we assume a given policy structure characterized by a number of parameters,
for which we provide an approximation algorithm that can be used to optimize these pa-
rameters. As in all models no pooling is a possible policy, the performance of the systems
cannot deteriorate by the use of pooling.

The main research questions we address, are the following:

• What is the optimal pooling policy?

• How can the optimal policy be characterized?

Furthermore, we focus on the question when pooling is beneficial and we address the
question how the optimal pooling policy relates to simpler policies. In particular, we
focus on the following research questions:

• How much costs may be saved by the application of pooling, and what are the
conditions under which savings are obtained?

• Under what conditions is a simple policy optimal?

• What is the improvement of the overall optimal policy compared to simpler policies,
or a given class of parameterized policies?

• When we assume a specific form of the pooling policy, which is characterized by a
number of parameters, how should we optimize these parameters?

Note that the one but last question is also interesting from an implementation point of
view, as a simple, straightforward policy, or a parameterized policy, may be much more
attractive than the overall optimal policy, which might be highly complex. This relates to
the last question, on the optimization within a given class of parameterized policies.

In all chapters (except Chapter 5), we answer the main research questions, by proving
the optimal policy structure for the problems considered. The other research questions
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are addressed in some of the chapters. In Chapter 5 we solely focus on a parameterized
policy.

REMARK 1.1.1 (Notation). In each chapter we introduce notation separately, unless stated
otherwise. In particular, we repeatedly use the approach for proving the optimal policy
structures as outlined in Chapter 2.

REMARK 1.1.2 (Optimal control). We assume that the pooled resources are owned by a
single entity, who takes system optimal actions. In game theoretic settings, problems are
considered where the resources are owned by independent parties, which are not the
models we focus on. The optimal policies that we derive, are optimal for the system as a
whole.

1.2 Pooling of inventory

In the first part we focus our attention on pooling of inventory. We consider models with
a single stockpoint where the inventory is pooled between multiple customers classes
by the use of stock rationing (Chapters 2 and 6), and we consider multi-location models
where inventory is pooled between the stockpoints by the use of stock transfers, so-called
lateral transshipments (Chapters 3, 4, and 5).

1.2.1 Inventory models

When multiple customer classes are served by a single stockpoint, this can be seen as a
form of pooling. By combining the otherwise separated stocks one achieves higher fill
rates, or can achieve the same fill rate with less inventory. However, because of differ-
ences in the profitability between the customer classes, stock rationing might be applied
to achieve higher profit. That is, when the on-hand inventory level becomes low, one
may stop serving the least profitable customer classes, in order to keep stock on-hand
in case of future demands from more profitable classes. The concept of stock rationing
was first addressed by Topkis [183], and has since then been studied for a wide vari-
ety of applications and model variations (see [180] for an overview). We study such
a model in Chapter 2 for the case that unsatisfied demands are lost, or satisfied via an
emergency delivery (from elsewhere). For this, we derive the optimal policy structure
for when to accept or reject demands from a certain class, minimizing the average costs
in the long run, consisting of the inventory holding costs and the lost sales costs. The
optimal action depends on the demand class and the actual stock level. In Chapter 6
we extend this problem by including the option to backorder a demand. Hence, each
time a demand arises, we take the optimal action, choosing from satisfying the demand
from stock, backlogging it, or a lost sale. For a problem with two demand classes, we
derive the optimal dynamic policy structure. That is, we characterize the structure of the
optimal actions which depend on both the on-hand stock level and the number of out-
standing backorders. Also, we derive conditions under which the optimal policy structure
simplifies.

Furthermore, we consider multi-location inventory models, where the inventory is
pooled by the use of stock transfers between the locations. These stock transfers are
referred to as lateral transshipments. Typically, when a lateral transshipment is applied,
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the request part is available at the location earlier than in case one has to wait for a
shipment from a central warehouse. However, it depletes the on-hand inventory level
at the location the lateral transshipment originated from. Hence, there is a trade-off
between these issues.

The beginning of modern inventory management is attributed to Harris [99, 100].
In his 1913 work, he derives the economic order quantity (EOQ) formula, see also [70].
The analysis of models incorporating stochasticity started in the early 1950s [97, 197].
Since the late 1950s, attention has also been given to more complex systems, including
models with multiple stocking locations [52]. More recent books about inventory man-
agement, in which more elaborate literature reviews can be found, include Zipkin [222],
Porteus [154], and Axsäter [13].

1.2.2 Spare parts inventory models

The motivation for our studies is found in spare parts inventory models. These provide
repairable spare parts for a critical component of advanced technical systems. The loss
of revenue because of downtime for these systems may be huge. For that purpose, ready-
for-use spare parts are kept on stock, to be able to quickly respond to a breakdown
of a system. In that case, the system demands a spare part at one of the stockpoints.
Depending on the model considered in each of the chapters, there are multiple options
how such a demand can be satisfied: directly from stock, via a lateral transshipment, via
an emergency repair procedure, or the demand can be backlogged. We consider spare
parts that are typically expensive, while demand rates are low. We investigate when
it is beneficial to pool this inventory between multiple demands classes, and between
multiple warehouses, respectively.

The cheapest option is to satisfy a demand directly from stock, which is possible when
on-hand inventory is available at the stockpoint. In this case, the ready-for-use spare part
is shipped to the site of the machine, where the failed part in the machine is replaced by
this spare part, after which the machine is working properly again. This strategy is called
a repair-by-replacement procedure. The defective part is shipped back to the stockpoint,
where it is repaired and added back to stock again. In case of a lateral transshipment,
a spare part is shipped from another stockpoint. This is possible when another location
has on-hand stock available. In this case, the system is down while it is waiting for
the part (i.e. higher loss of revenue), and extra transportation costs are incurred, and
hence this procedure is slightly more costly. For an emergency repair procedure, even
higher costs are incurred. In this case, the part is repaired in a fast repair procedure,
e.g. on site. Alternatively, an emergency shipment from a central warehouse might be
applied. A fast repair procedure is expensive, and the system is down for a longer period
of time. Because of the expensiveness of an emergency procedure, costs can be saved
by the efficient use of lateral transshipments. In Chapter 6, we also allow backlogging
of demand. In this case, one time costs are incurred, e.g. for the transportation costs, as
well as backlog costs per time unit, because of the downtime of the system. Our goal is to
choose the optimal action each time a demand occurs. We let the optimal action depend
on the state of the system, i.e. on the inventory levels at all locations (and on the number
of outstanding backorders in Chapter 6). Hence, we derive optimal dynamic policies.

We study the models in a continuous review setting, where all stockpoints execute
a base stock policy. That is, the number of parts in circulation in fixed. We assume
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Poisson demand processes, and allow for asymmetric demand rates and asymmetric costs
structures at the locations. Each location has ample repair capacity, and we assume repair
times to be exponentially distributed. The repairs can e.g. be done in a repair shop or
repair facility nearby the stockpoint, or being outsourced to an external party.

For inventory problems with lateral transshipments, currently only limited insights
are available on optimal policy structures; see Gross [93], Krishnan and Rao [121],
Das [58], Robinson [162], Archibald et al. [6], Axsäter [11], Wee and Dada [204], Zhao
et al. [217], and Herer et al. [104]. There is an urgent need for much better insights.
There is a substantial amount of literature in which heuristic policies for lateral transship-
ments are studied; see Wong et al. [213, 212] and Kranenburg [117], and the references
therein. Further, it is known that a lot of costs can be saved via lateral transshipments;
see in particular Kranenburg [120], who showed this for a spare parts inventory control
problem at ASML. However, there is a lack of insights into when exactly a lot of costs
can be saved by the use of lateral transshipments. This depends on the inventory holding
costs of spare parts, the costs for lateral transshipments, and the costs for emergency
procedures. We try to close this gap in the literature by this study, where we specifically
focus on systems with ample repair capacity, where unsatisfied demands are lost (i.e.
fulfilled by an emergency procedure).

REMARK 1.2.1 (Terminology). We have chosen to use the terminology of repairable spare
parts throughout this chapter, although the models described apply more generally. Con-
sumable spare parts fit into the same framework, as does basically any stock keeping unit
that is replenished from an exogenous source or being produced to stock, provided a base
stock policy is executed (see also the discussion in [212, Section 2.2]).

1.2.3 Models

In Chapter 3 we study a model with a so-called quick response warehouse (QR warehouse),
and multiple local warehouses. The QR warehouse provides a part to stocked-out local
warehouses in a shorter time than the time of an emergency shipment from the central
warehouse. However, as different locations might have different costs for not being able
to satisfy a demand, the QR warehouse should apply a form of stock rationing to mini-
mize the total costs. Namely, if a location with rather low costs for rejecting a customer
demand requests a part at the QR warehouse, while another location with high costs
is (nearly) stocked-out, one better holds one or a few parts back in the QR warehouse
in order to be able to satisfy future lateral transshipment requests from this warehouse.
Compared to Chapter 2, the QR warehouse can be seen as a single-location stockpoint
serving multiple demand classes (the lateral transshipment requests from the local ware-
houses) which is applying stock rationing. However, where the optimal decisions in the
problem of Chapter 2 depend only on the on-hand inventory level of the single-location,
for the QR warehouse problem, these decisions depend also on the stock levels in all local
warehouses. We characterize the optimal policy structure for these decisions, and also
provide sufficient conditions under which the optimal policy simplifies.

We continue in Chapter 4 with a model consisting of two locations. Now, we allow
lateral transshipments in both directions. That is, each warehouse might request for a
lateral transshipment from the other warehouse. We again characterize the optimal pol-
icy structure. The decision whether a lateral transshipment is optimally applied, depends
on the on-hand inventory levels at both locations. Also, we derive sufficient conditions
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under which simpler policies are optimal. In the optimal policy, a form of stock rationing
at one of the locations might appear. That is, if one of the locations has (much) higher
costs for not satisfying a demand, the other location might hold back one or a few parts
from its own demands, in order to be able to satisfy future lateral transshipment requests
from the other location. We derive conditions under which both locations always satisfy
demands directly from their own stock, i.e. under which this stock rationing is subop-
timal. Then, parts can only be held back from lateral transshipment request from the
other stockpoint. When this is the optimal strategy for both stockpoints, we call this a
hold back pooling policy. Also, we derive conditions under which it is always optimal
to apply a lateral transshipment in case of a out-of-stock. Combining these, the optimal
policy is a complete pooling policy, in which both warehouses basically act as being one
large warehouse. In this chapter we also address so-called proactive lateral transship-
ment, which are lateral transshipments not triggered by a demand arrival. For example,
when the stock levels between the two location become very asymmetric at some point
in time, one might decide to already ship parts from the location with excess inventory
to the other one. We also characterize the optimal policy for these transshipments.

In Chapter 5 we extend the model of Chapter 4 to multiple locations. However, we
are not able anymore to fully characterize the optimal policy structure. Therefore, we
assume a given policy, and use that to determine the performance characteristics of the
resulting model. More specifically, we let the system execute a hold back pooling policy.
Then, we are interested in the fraction of demand that are satisfied directly from stock,
satisfied via a lateral transshipment, or lost. For this we introduce a new approximation
algorithm, which uses interrupted Poisson processes. In an extensive numerical study,
we show that this algorithm is very accurate and results in much smaller approximation
errors than algorithms currently used in the literature.

REMARK 1.2.2 (Demands and repair lead times). In all chapters, we assume that demands
arrive according to Poisson processes, and that the repair lead times are exponentially
distributed. Hence, we can formulate the problems as Markov decision problems, where
the decisions are based on the actual stock levels, as pipeline information can be ignored.
It is known that the performance of the optimal policy can be expected to be nearly
insensitive to the distribution of the repair lead times, as shown in a.o. [2, 69, 120] for
similar models.

1.2.4 Relation to queueing systems

There is a strong relation between models in queueing theory and the inventory models
that we consider. Each stockpoint can also be interpreted as a multiserver queue, more
specifically, an Erlang loss queueing system. For that, the on-hand inventory corresponds
to the idle servers in the queueing model, the demands correspond to customer arrivals,
and the replenishments (repairs) are the service completions. The number of servers in
the queueing model is equal to the base stock level, i.e., the initial number of spare parts.
An Erlang loss system has no waiting positions, and customers arriving when all servers
are occupied, are lost. This corresponds to a demand in case of a stock-out. Hence, as the
inventory and queueing models coincide from a mathematical point of view, results and
insights for the inventory problems can be directly translated into results and insights for
queueing problems, and vice versa. Basically, in this way the inventory pooling can also
be seen as a form of server pooling between multiple queueing systems.
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Pooling in these kind of queueing systems dates back to Smith and Whitt [169]. They
show that pooling servers of several Erlang delay systems (i.e. combining the servers into
a single system) is always beneficial when the service time distributions are identical.
However, as Van Dijk and Van der Sluis [189] show, pooling is not necessarily benefi-
cial if service times are asymmetric, as customers with shorter service time distributions
may disproportionately suffer from the customers with long service time distributions.
In the models we consider, the service times (i.e. repair times) are typically identically
distributed.

1.2.5 Outline

The outline of the part on inventory pooling is as follows. We start by a single stockpoint
stock rationing problem in Chapter 2. We mainly use this to demonstrate our approach
of proving the optimal policy structure, as we use in all other chapters (except in Chap-
ter 5). Then, in Chapter 3, we consider a multi-location setting, where only a so-called
quick response warehouse can send out lateral transshipments. In Chapter 4 we consider
a two location model, where we allow lateral transshipments between both warehouses.
Then, in Chapter 5, we present a new approximation algorithm to determine the perfor-
mance characteristics of a multi-location setting with lateral transshipments between all
locations. Finally, in Chapter 6 we return our attention to a single-location stock rationing
problem, now with a combination of backorders and lost sales. We show the remarkable
similarity between this model and the two location lateral transshipment model of Chap-
ter 4. We provide a detailed discussion of the relevant literature to each of the models in
the chapters concerned.

1.3 Pooling of server capacity

The second part consists of two chapters on the pooling of server capacity, which also
is a form of pooling of resources. In both chapters we use the same kind of techniques
as in the part on pooling of inventory. Also, we assume Poisson arrival processes, and
exponentially distributed service times.

Firstly, in Chapter 7, we consider a so-called server farm. This is a cluster of multiple
servers which serves a stream of arriving customers. Pooling is achieved by the clustering
of the servers. In this way, however, there is an excess of capacity. As costs are incurred
for each server that is turned on, e.g. because of power consumption, one can save costs
by turning servers off. Moreover, costs are also incurred for switching a server from on
to off, and visa versa. When to turn servers on or off might depend on the amount of
work the system is facing at the moment. That is, we want to find an optimal dynamic
policy for switching the servers on and off. There is a trade-off between the costs for
keeping servers idle (keeping them on although there is no work) and the costs for the
switching from on to off, and visa versa. Depending on these cost parameters, it might
be beneficial to keep one or more server idle, in order to prevent the costs from turning
it off and having to turn it on again. We derive the optimal policy structure, determining
when one should turn off a server after a service completion, and when it is better to let it
idle. This model is a queueing problem with a dynamic number of servers, whereas in the
inventory part we considered models where the number of servers is given. By allowing
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the numbers of servers to be adapted over time, this becomes a decision variable, where
one has extra cost factors for these servers.

In the second chapter, Chapter 8, we consider a production system which serves two
classes of customers: regular customers and opportunity customers. The latter provide
an opportunity for the system to generate some extra income, as these customers can be
accepted or rejected, while it is required that the regular customers are always served.
Accepting opportunity customers might be particularly interesting when the workload of
the regular customers is low. In that way, the problem can be interpreted as a workload
control problem. One has to decide whether to accept or reject an arriving opportunity
customer. Moreover, when such a customer is accepted, one has to decide how to allocate
the server capacity between the two customers classes. The system has a single server,
which is applying the head-of-line processor sharing discipline. That is, one regular and
one opportunity customer can be in service at the same time, where the amount of server
capacity dedicated to each is a continuous decision variable. Again, we derive the optimal
dynamic policy structure, for both decisions.

1.4 Pooling and polling

The second part of this thesis focuses on polling models. A polling model consists of
multiple queues that are served by a single server. Typically, the server visits the queues
in cyclic order, and switchover times are incurred when the server switches the queue it is
working on. Basically, this is also a form of pooling. Namely, the server pools its capacity
between the queues.

The main differences with the pooling of server capacity, are (i) that we include
switchover times between the services of different customers classes, and (ii) the policy
structure assumed. Whereas in the pooling studies we derive optimal dynamic control
policies, for the polling models we assume a given policy. This policy describes a.o. that
the server cyclically works on the customer classes, and when the server switches to the
next customer class. For such a policy, we either evaluate the performance characteristics
of the studied models, or we optimize the parameters the policy depends on. Also, we
introduce new variations on existing policies. When the switchover times tend to zero,
the models reduce to the pooling models, when a pre-specified, parameterized control
policy is executed. Note that assuming a given policy is typically done in the polling
literature, where work on optimal dynamic control policies is scarce. Hence, as this is a
different point of view than the optimal dynamic control policies studied in the first part,
we devote a separate part of this thesis to polling models.
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2
STOCK RATIONING

As an introduction to the inventory models studied in this part of the thesis, we start
of with a basic, one dimensional stock rationing problem. For this model, we prove the
optimality of a so-called critical level policy using event based dynamic programming.
The analysis of this system serves as a leg up to the more complicated multi-location
models with stock transshipments in the sequel of this part.

2.1 Introduction

We consider a single stockpoint inventory model, which is facing demands of different
importance. These demands are categorized in classes, the so-called demand classes. For
example, the demands from long term, loyal customers might be more important than
those from occasional customers. The costs for not satisfying a demand depend on the
class the customer belongs to. In this way, the priorities of the demand classes can be
ordered with respect to these cost. When the on-hand inventory level becomes low, it
might be beneficial to stop serving lower priority customers, in order to be able to satisfy
future demands of higher priority. In this way, stock is reserved for demands of higher
importance. This is called stock rationing.

A model with multiple demand classes was first studied by Veinott [196] in 1965.
He introduced the concept of a critical level, an inventory at or below which only high
priority demands are served. This results in a critical level policy (cf. [183]), a policy
under which there exists a number of critical levels, one for each demand class, such
that a demand is satisfied when the on-hand stock is above its critical level, and rejected
otherwise. Topkis [183] proves the optimality of this policy for both the backlog and
lost sales case, for a periodic review model with zero lead times. The critical levels are
non-increasing in the priority of the class.

The stock rationing problem has been extensively studied in the literature, for vari-
ous settings and a wide range of model variations. Below we list a number of references,
classifying whether a periodic or continuous review setting is assumed, and whether
unsatisfied demands are backlogged or lost. Teunter and Klein Haneveld [180] pro-
vide a more detailed overview of the literature in diagram form, distinguishing between
the time modeling (discrete or continuous), the shortage treatment (backorders or lost
sales), the number of classes (two or multiple), the system (production or inventory),
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whether an ordering policy is used (yes or no), and the stock rationing policy (no, static
or dynamic).

There are two types of decisions to be made, namely when a replenishment order
should be placed (e.g. by executing a base stock policy), and whether an arriving demand
is satisfied (stock rationing). In the first study of Veinott [196] a periodic review setting
is considered, where unsatisfied demands are backlogged. He proves the optimality of
a base stock replenishment policy, for a model without rationing. Topkis [183] studies
a similar model, allowing stock rationing. He proves the optimality of a critical level
policy both for the backordering and lost sales cases. Periodic review models are also
considered in [47, 66, 101, 108, 145, 146, 179, 180, 219] for the case of backorders and
in [54, 71, 81] for lost sales.

Nahmias and Demmy [148] were the first to study the stock rationing problem in
a continuous review setting. They consider both the periodic and continuous review
case for a model with backorders. For various settings, continuous review models are
also considered in [7, 48, 62, 63, 59, 60, 74, 75, 88, 95, 110, 147, 198, 199, 214, 201]
for backorders, and in [15, 16, 19, 45, 61, 75, 94, 96, 118, 127, 141, 139, 140, 190]
for lost sales. In Chapter 6 we discuss the relevant literature for models that assume a
combination of lost sales and backorders [4, 21, 20, 46, 69, 156, 170, 178, 220, 221].

A system with ample production capacity has (infinitely many) parallel servers. Un-
less a deterministic lead time is assumed, replenishment orders may cross in time. That
is, an order placed at a later moment in time than another order, might arrive earlier.
For such a system, the optimality of a simple base stock policy for the replenishment
orders, cannot be guaranteed, see Erhardt [67]. Bulut and Fadıloğlu [43] study the
optimal order policy for a model similar to ours, for a finite number of parallel produc-
tion channels, making the assumption that previously placed production orders cannot
be canceled. They prove that the optimal production policy is a state-dependent base
stock policy, which depends on the number of production channels in use. The number
of production channels that should be used, is non-increasing in the on-hand inventory
level. Furthermore, the optimal rationing policy is proven, which is a state-dependent
threshold type policy.

When dropping the assumption that placed orders cannot be canceled, a so-called
bang-bang policy, which is characterized by a single threshold, becomes optimal: use all
available production channels, until the on-hand inventory level reaches a given thresh-
old, and from then on all channels are idled. Namely, by using all channels, the expected
duration until the first replenishment is minimized. In the limit, when the number of
production servers tends to infinity, this would mean that this duration tends to zero.
For the model with finitely many servers, a critical level policy is optimal for the stock
allocation.

Assuming a base stock policy in a continuous review setting with lost sales, we prove
in this chapter that a critical level policy is optimal (cf. [143, 190]). For optimization
of the critical levels and the base stock level in this setting, Kranenburg and Van Hou-
tum [119] provide three heuristics. These assume a given base stock level, but for op-
timization purposes this base stock level can be enumerated in a separate loop, using
bounds for this level derived by Dekker et al. [61]. Van Jaarsveld and Dekker [190]
prove that two of the algorithms in [119] always provide the optimal critical levels and
terminate in finitely many steps.

The on-hand inventory level evolves over time in the same way as the number of idle
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servers in an Erlang loss queueing model. This is a queueing model with multiple servers
and no waiting room. The parts on-stock resemble the idle servers, the demands resemble
the customer arrivals, and the replenishments resemble the service completions. Such a
queueing model with multiple customers types was first studied by Miller [143] in 1969.
He proves that the optimal policy for admitting customers (satisfying demands) is char-
acterized by critical levels, and that customers from the highest priority class are always
admitted. In [190] it is proven that these results remain valid when the replenishment
assumptions are relaxed.

In this chapter, we consider a continuous review model, with lost sales, where we as-
sume ample production capacity, with circulating stock (base stock policy). As our model
is motivated by a spare parts inventory problem with repairable parts, see Chapter 1,
we use the terminology of such a problem (see Remark 1.2.1). This justifies the base
stock assumption. Moreover, the lost sales are interpreted as emergency procedures, and
the productions/replenishments are repairs of broken parts. We prove that the optimal
rationing policy is a critical level policy. This result is already known in the literature,
however, we use a different technique, namely that of Event Based Dynamic Programming
(cf. Koole [115, 116]), to prove it. We present this model as an introduction to the work
in this part of this thesis, and to introduce the mentioned technique to the extent that it
is used in this thesis.

This chapter is organized as follows. Firstly, we introduce the basic stock rationing
model and its notation in Section 2.2. Then, in Section 2.3, we give a general outline
along which the structural results derived in this thesis are proven. Returning to the stock
rationing problem, we describe its dynamic programming formulation in Section 2.4. The
structural results are derived in Section 2.5, which also contains an example. All proofs
are given in Appendix 2.A.

2.2 Model description and notation

We consider a single stockpoint, keeping repairable spare parts of a single type on stock
for technically advanced machines. Initially, there are S ∈N0 :=N∪ {0} parts on stock.
By x we denote the on-hand stock, x ∈ S = {0, 1, . . . , S}, where S is the state space.
A demand can be (i) satisfied directly from stock, if x > 0, or (ii) be satisfied via an
emergency procedure. When the demand is fulfilled from stock, the ready-for-use spare
part is installed in the machine. The failed part is brought back to the stockpoint, where
it is repaired and added back to stock again. In this way, the down time of the machine
is reduced to a minimum. In case the demand is not directly satisfied from stock (which
might be the case even if there is on-hand stock), the demand must be satisfied via an
expensive emergency repair procedure. Then, the failed part is repaired in a fast repair
procedure, e.g. on-site, after which the machine is working properly again.

Holding costs h̃(x) are incurred per time unit, h̃(·) being a convex non-decreasing
function. There are J demands classes, j = 1, . . . , J , where a demand from a customer
belonging to demand class j is referred to as a class j demand. Each customer demands
a single part. The demands from class j follow a Poisson process with rate λ j > 0. The
repair times are exponentially distributed with mean 1/µ (µ > 0), and there is ample
repair capacity. That is, the repair rate is linear in the number of outstanding orders.
Furthermore, we assume all processes to be mutually independent.
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When a demand arises, it is either directly satisfied from stock (possible if x > 0), or
rejected. In the latter case, the demand has to be fulfilled by an emergency procedure, at
penalty costs c j for a class j demand. We assume (w.l.o.g.)

c1 ≥ c2 ≥ . . .≥ cJ > 0. (2.2.1)

So, it is most expensive to reject a class 1 demand. Hence, we say that these customers
have the highest priority, where class J customers belong to the lowest priority class.
Because of the cost structure, it might be beneficial to hold parts back from lower priority
customers, in order to be able to satisfy future higher priority demands, as those are more
expensive to reject.

In the sequel we derive the optimal policy structure for this problem, that is, the
policy that minimizes the average long run inventory holding and penalty costs per time
unit. For this, we use Event Based Dynamic Programming, which we introduce in the
next section.

2.3 General outline for proving structural results

In this section we present the general outline along which the optimal policy structures
presented in this thesis are derived.

2.3.1 Dynamic programming

When facing a decision, we should take into account the direct costs for that decision, as
well as the future expected costs this decision brings along. For the expected costs from a
state x (in general being a vector), we introduce the value function (see Puterman [155])
Vn : S 7→ R+. Vn(x) is the minimum expected total costs when there are n events (typi-
cally, demands or repairs) left starting in state x ∈ S. This Vn can be recursively expressed
for n> 0, starting from V0.

The key in deriving structural properties of an optimal policy, is the characterization
of structural properties, such as convexity and supermodularity, of the value function. For
this, we write the value function in so-called event operators. We show that the operators
of which Vn is composed, all preserve the structural properties. Then, when V0 satisfies
them, it follows directly by induction that the properties hold for Vn for all n ≥ 0. A
framework for this was introduced by Koole [115] (see also Koole [116]) as Event Based
Dynamic Programming. The main advantage of this approach is that one can prove the
propagation of properties for each of the event operators separately. This reduces the
complexity of the problem. Also, changes or extensions to the model can easily be made
by replacing or adding operators.

As the interarrival times of demands as well as the repair lead times are indepen-
dent exponentially distributed random variables, we can apply uniformization (cf. Lipp-
man [131]) to convert the semi-Markov decision problem into an equivalent Markov
decision problem (MDP). For that, we add fictitious transitions of states to itself, hence
ensuring that the total rate out of a state is equal for all states, the so-called uniformiza-
tion rate. Then, we consider the embedded discrete-time Markov process by looking at
the system only at transitions instants, which occur according to a Poisson process, with
as rate the uniformization rate.
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The existence of a stationary average costs optimal policy is guaranteed by Puter-
man [155, Theorem 8.4.5a]: as the state space and action space for every state are finite,
the costs are bounded and the model is unichain and aperiodic, there exists a stationary
average costs optimal policy. A model is said to be unichain if the transition matrix of ev-
ery (deterministic) stationary policy is unichain, that is, if it consists of a single recurrent
class plus a possibly empty set of transient states. Typically, the considered models are
unichain and aperiodic, as the state with fully replenished stocks is accessible from every
state in the state space, for every stationary policy, and this state has a positive transition
probability to itself. From the structural properties of Vn the optimal policy follows.

In the next section we apply this framework to the stock rationing problem. First
we give the structural properties that are used in the sequel of this thesis, and show the
general concept along which we prove optimal policy structures.

2.3.2 Structural properties

Let ei denotes the unit vector of appropriate length, consisting of all zeros except for a 1
at position i. Consider the following properties of a function f, defined for all x such that
the states appearing in the right-hand and left-hand side of the inequalities exist in S:

Decr(i) : f (x)≥ f (x + ei),
Incr(i) : f (x + ei)≥ f (x),

BFOD(i, c) : f (x + ei) + c ≥ f (x),
BFODD(i, j, c) : f (x + ei) + c ≥ f (x + e j),

Conv(i) : f (x) + f (x + 2 ei)≥ 2 f (x + 2ei),
Supermod(i, j) : f (x) + f (x + ei + e j)≥ f (x + ei) + f (x + e j),

SuperC(i, j) : f (x + 2 ei) + f (x + e j)≥ f (x + ei) + f (x + ei + e j).

(2.3.1)

Decr(i) stands for (non-strict) decreasingness of f in x i , Incr(i) analogously for (non-
strict) increasingness. BFOD(i, c) is the abbreviation of bounded first order difference and
states that the first order difference of f in component i is bounded below by a con-
stant −c. Similarly, BFODD is the bounded first order diagonal difference. Conv(i) stands
for convexity of f in x i , that is the difference f (x)− f (x + ei) is decreasing in x i . Su-
permod is supermodularity, the definition of which is symmetric in i and j. SuperC(i, j)
stands for superconvexity, adopting the terminology of [116]. It is a straightforward re-
sult that the combination of Supermod and SuperC(i, j) implies Conv(i), which follows
by adding the respective inequalities and canceling identical terms.

Decr stands for the combination of all Decr(i)’s,

Decr=
m
⋂

i=1

Decr(i),

where m is the dimensionality of the state space. Similarly,

Conv=
m
⋂

i=1

Conv(i), SuperC=
⋂

1≤i, j≤m
i 6= j

SuperC(i, j).
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These definitions are in accordance with the ones in [116].
Multimodularity (MM) (introduced by Hajek [98]) is, for the case of a two-dimensional

domain, equal to the combination of Supermod and SuperC:

MM= Supermod∩ SuperC. (2.3.2)

We use the following notation, cf. [116], for propagation results by an operator: for
an operator X we denote by X : P1, . . . , PN → P1 that when a function f satisfies prop-
erties P1, . . . , PN , then X f satisfies property P1. Note that the results for the propagation
of structural properties by operators contribute to the literature as they can be used in
other models as well. Libraries of propagation results are given in [116] and [51].

From the structural properties of Vn, the structure of the optimal policy for this n,
say fn, can be characterized. Typically, such a policy is a threshold type policy, that is, it
can be described by one or more so-called switching curves that partition the state space
into subsets where a given action is optimal. As this structure holds for all n, by letting n
tend to infinity, the structure of the optimal long-run average costs policy follows.

2.4 Dynamic programming formulation

In this section we give the dynamic programming formulation of the stock rationing
problem. We present the value function, which consists a.o. of operators for the demands
and for the repairs. Then, we indicate which structural properties we use. We prove
that the operators the value function consists of, preserve these and that hence the value
function satisfies them. From this, we derive the structure of the optimal stock rationing
policy, which is a critical level policy.

Recall that x is the on-hand inventory level. Upon a class j demand, a decision has to
be taken whether to fulfill it from stock (action 1), or reject it (action 0). The action taken
for a class j demand when in state x , is denoted by a j(x) ∈ {0, 1}, and an optimal action
is denoted by a∗j (x). The action space is A j(x) = {0, 1} if x > 0 and A j(0) = {0} (as
backorders are not allowed). Note that the model is unichain (as the state S is accessible
from every state x ∈ S for every stationary policy) and aperiodic (since the transition
probability from state S to itself is positive).

The value function Vn is given by:

Vn+1(x) = CU



µG Vn(x),
J
∑

j=1

λ j H j Vn(x)



, for x ∈ S, n≥ 0, (2.4.1)

starting with V0 ≡ 0. All operators (C for the costs, U for the uniformization, G for the
repairs, H j for class j demands) are defined below. Decisions are only made in the way
of fulfilling demands (in the operator H j). The decision is taken each time a demand
occurs, and it is based on the inventory level. For the repairs, no decisions are taken. Let
ν = Sµ+

∑J
j=1λ j be the so-called uniformization rate.

The cost operator C is defined by

C f (x) = h(x) + f (x),

where h(x) = h̃(x)/ν are the holding costs per time unit 1/ν .
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The uniformization operator U is, for this model, defined by:

U
�

f1, f2
�

=
1

ν

�

f1 + f2

�

. (2.4.2)

The event operator G models (potential) repair completions and is defined by

G f (x) =

¨

(S− x) f (x + 1) + x f (x), if x < S;

x f (x), if x = S.

When the on-hand inventory level is x , there are S − x parts in repair. Hence, with rate
(S− x)µ the stock level x is increased by one. To assure that the rate at which µG occurs
is always equal to Sµ, we apply uniformization. That is, we add fictitious transitions, to
let the rates sum to Sµ, by adding the term x f (x).

The event operator H j models the class j demands, and is defined by

H j f (x) =

¨

min{ f (x − 1), c j + f (x)}, if x > 0,

c j + f (x), if x = 0.
(2.4.3)

If a demand occurs, it has to be decided whether to fulfill it or to reject it. H j takes
the costs-minimizing action, where the costs consist of the direct costs for an action and
the expected remaining costs from the state the system is in after taking that action.
Either, the demand is satisfied from stock (at no extra costs, decreasing the on-hand
stock level by one), or the demand has to be fulfilled by an emergency procedure (at
costs c j , leaving x unchanged). When there is no stock on-hand (x = 0), the only option
is to reject the demand.

2.5 Structural results

In this section we prove our main result: the structure of the optimal policy. For this we
first prove that the value function Vn satisfies two structural properties, by proving that
the operators C , G, and H j , j = 1, . . . , J , preserve them. It then follows that Vn, for all
n ≥ 0, satisfies them. From this we derive the structure of the optimal stock rationing
policy, which is a critical level policy.

2.5.1 Properties of operators and value function

Consider, as introduced in Section 2.3.2, the following properties of a function f, de-
fined for all x such that the states appearing in the right-hand and left-hand side of the
inequalities exist in S:

BFOD(c1) : f (x + 1) + c1 ≥ f (x), (2.5.1)

Conv : f (x) + f (x + 2)≥ 2 f (x + 1), (2.5.2)

The next lemma shows that the operators C , G, and H j preserve these properties.

LEMMA 2.5.1. a) CU
�

G,
∑J

j=1λ j H j

�

: BFOD(c1)→ BFOD(c1),
b) G : Conv→ Conv.
c) H j : Conv→ Conv, for j = 1, . . . , J.
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The proofs of this lemma and all forthcoming theorems, are given in Appendix 2.A.
As C and U take linear combinations, both trivially preserve Conv (noting that the hold-
ing costs function h(·) is Conv as well). By induction on n, and using the results of
Lemma 2.5.1, the next theorem immediately follows.

THEOREM 2.5.2. Vn satisfies (2.5.1) and (2.5.2) for all n≥ 0.

These properties of Vn are the key in classifying the structure of the optimal policy.

2.5.2 Structure of optimal policy

We now characterize the structure of the optimal stock rationing policy.

THEOREM 2.5.3. There exist R1, R2, . . . , RJ , such that for all j = 1, . . . , J and for all x:

a∗j (x) =

¨

1 if x > R j;

0 otherwise.

Furthermore,
0= R1 ≤ R2 ≤ . . .≤ RJ . (2.5.3)

The described optimal policy is a critical level policy, where the R j ’s are the critical
levels. A class j demand is only satisfied, if the on-hand stock level is above its critical
level. The existence of the critical levels is a consequence of the fact that the value
function is Conv, the ordering follows from the ordering in the penalty costs (cf. (2.2.1)),
and R1 = 0 follows from BFOD(c1).

The intuition behind this theorem is as follows. If the on-hand stock level is high,
all customer classes are served. When the on-hand stock becomes low, parts are held
back from lower priority classes, because the expected costs for not being able to satisfy
a coming high priority demand, are higher then the relatively low costs for rejecting
this low priority demand. The lower the on-hand stock becomes, the more classes are
rejected. Furthermore, as there is no incentive to hold back stock from the highest priority
class, clearly R1 = 0, as otherwise there are part(s) kept on stock which are never handed
out.

2.A Appendix: Proofs

2.A.1 Proof of Lemma 2.5.1

PROOF. a) Assume that f is BFOD(c1), cf. (2.5.1), then for all j = 1, . . . , J and for all
x > 0:

H j f (x + 1) + c1 =min
�

f (x) + c1, f (x + 1) + c j + c1
	

≥min
�

f (x − 1), f (x) + c j
	

= H j f (x),
(2.A.1)

since f is BFOD(c1), applied twice. For x = 0:

H j f (1) + c1 =min
�

f (0) + c1, f (1) + c j + c1
	

≥ f (0) + c j = H j f (0), (2.A.2)
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by the fact that c1 ≥ c j for all j (cf. (2.2.1)), and by applying that f is BFOD(c1).
Also, for x + 1< S:

G f (x + 1) + S c1 = (S− x − 1) f (x + 2) + (x + 1) f (x + 1) + S c1

= (S− x − 1)
�

f (x + 2) + c1
�

+ x
�

f (x + 1) + c1
�

+ f (x + 1) + c1

≥ (S− x − 1) f (x + 1) + x f (x) + f (x + 1) + c1

= (S− x) f (x + 1) + x f (x) + c1

≥ (S− x) f (x + 1) + x f (x) = G f (x),

(2.A.3)

since f is BFOD(c1), and for x + 1= S analogously:

G f (S) + S c1

= S f (S) + S c1

= (S− 1)
�

f (S) + c1
�

+ f (S) + c1

≥ (S− 1) f (S− 1) + f (S) + c1

≥ f (S) + (S− 1) f (S− 1) = G f (S− 1).

(2.A.4)

Combining these results yields

CU

 

µG f (x + 1),
J
∑

i=1

λ j H j f (x + 1)

!

+ c1

= h(x + 1) +
1

Sµ+
∑J

i=1λ j

 

µG f (x + 1) +
J
∑

i=1

λ j H j f (x + 1)

!

+ c1

= h(x + 1) +
1

Sµ+
∑J

i=1λ j

 

µ(G f (x + 1) + S c1) +
J
∑

i=1

λ j(H j f (x + 1) + c1)

!

≥ h(x) +
1

Sµ+
∑J

i=1λ j

 

µG f (x) +
J
∑

i=1

λ jH j f (x)

!

= CU

 

µG f (x),
J
∑

i=1

λ j H j f (x)

!

,

where in the inequality we use (2.A.1) (or (2.A.2) when x = 0), (2.A.3) (or (2.A.4) when
x + 1= S), and that h(·) is non-decreasing.
b) Assume that f is Conv, cf. (2.5.2), then for all x + 2< S:

G f (x) + G f (x + 2)
= (S− x) f (x + 1) + x f (x) + (S− x − 2) f (x + 3) + (x + 2) f (x + 2)
= (S− x − 2)

�

f (x + 1) + f (x + 3)
�

+ 2 f (x + 1)
+ x
�

f (x) + f (x + 2)
�

+ 2 f (x + 2)
≥ 2(S− x − 2) f (x + 2) + 2 f (x + 1)
+ 2 x f (x + 1) + 2 f (x + 2)

= 2(S− x − 1) f (x + 2) + 2(x + 1) f (x + 1)
= 2 G f (x + 1),
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since f is Conv, and analogously, for x + 2= S:

G f (S− 2) + G f (S)
= 2 f (S− 1) + (S− 2) f (S− 2) + S f (S)
= 2 f (S− 1) + (S− 2)

�

f (S− 2) + f (S)
�

+ 2 f (S)
≥ 2 f (S− 1) + 2(S− 2) f (S− 1) + 2 f (S)
= 2 f (S) + 2(S− 1) f (S− 1)
= 2 G f (S− 1).

c) Assume that f is Conv, cf. (2.5.2), then for all j = 1, . . . , J and for all x > 0:

H j f (x) +H j f (x + 2)

=min















f (x − 1) + f (x + 1)
f (x − 1) + f (x + 2) + c j

f (x) + c j + f (x + 1)
f (x) + c j + f (x + 2) + c j

(∗)

Now note that, since f is Conv:

f (x − 1) + f (x + 1)≥ 2 f (x),
f (x − 1) + f (x + 2) + c j ≥ f (x − 1) + 2 f (x + 1)− f (x) + c j

≥ f (x) + f (x + 1) + c j ,

f (x) + c j + f (x + 2) + c j ≥ 2( f (x + 1) + c j).

Then, continuing from (∗):

(∗)≥min















2 f (x)
f (x) + f (x + 1) + c j

f (x) + c j + f (x + 1)
2( f (x + 1) + c j)

≥ 2 min
�

f (x), f (x + 1) + c j
	

= 2 H j f (x + 1).

For x = 0 analogously:

H j f (0) +H j f (2)

=min
�

f (0) + c j + f (1), f (0) + c j + f (2) + c j ≥ 2( f (1) + c j)
	

≥ 2 min
�

f (0), f (1) + c j
	

= 2 H j f (1).

2.A.2 Proof of Theorem 2.5.3

PROOF. Consider a class j demand. For x ∈ S, u ∈ {0, 1}, and n≥ 0, define

w(n)(u, x) :=

¨

Vn(x − 1) if u= 1,

Vn(x) + c j if u= 0,
(2.A.5)
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defining Vn(−1) := ∞. Hence H jVn(x) = minu∈{0,1} w(n)(u, x). Define, for u ∈ {0, 1},
n≥ 0, and x ∈ {0, 1, . . . S− 1}:

∆w(n)x (u, x) := w(n)(u, x + 1)−w(n)(u, x).

Then for each n≥ 0:

∆w(n)x (1, x)−∆w(n)x (0, x)

= w(n)(1, x + 1)−w(n)(1, x)−w(n)(0, x + 1) +w(n)(0, x)
= Vn(x)− Vn(x − 1)− (Vn(x + 1) + c j) + Vn(x) + c j

= 2 Vn(x)− Vn(x − 1)− Vn(x + 1)≤ 0,

as, by Theorem 2.5.2, Vn is Conv. So, ∆w(n)x (u, x) is decreasing in u:

∆w(n)x (1, x)≤∆w(n)x (0, x).

This implies that, for every n ≥ 0, there exists a threshold for the inventory level x ,
say R j,n, from which on it is optimal to satisfy a demand from stock. As this holds for
all j = 1, . . . , J , if fn+1 is the minimizing policy in (2.4.1), then fn+1 is a critical level
policy. Note that the transition probability matrix of every stationary policy is unichain
(since every state can access S, i.e. there exists a path with positive probability from
every state to state S) and aperiodic (since the transition probability from state S to itself
is positive). Then, by Puterman [155, Theorem 8.5.4], the long run average costs under
the stationary policy fn+1 converges to the minimal long run average costs as n tends to
infinity. Since there are only finitely many stationary critical level policies, this implies
that there exists an optimal stationary policy that is a critical level policy, with critical
levels, say R j .

By the ordering of the c j ’s, cf. (2.2.1), it follows that when f (x) ≤ f (x + 1) + c j also
f (x)≤ f (x+1)+c j+1, for all j = 1, . . . , J−1. Hence, R j+1 ≥ R j . From BFOD(c1), applied
for x = 0, if follows that it is optimal to satisfy a class 1 demand in state x = 1. So, the
critical level for a class 1 demand is zero: R1 = 0.
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3
MULTI-LOCATION INVENTORY MODELS WITH

A QUICK RESPONSE WAREHOUSE

We study a multi-location inventory problem with a so-called quick response warehouse.
In case of a stock-out at a local warehouse, a demand can be satisfied by a stock transfer
from the quick response warehouse. We derive the long-run average costs optimal policy
for when to apply such a stock transfer, as well as conditions under which that is always
optimal. In a numerical study we compare the performance of the optimal policy to that
of simpler policies. Furthermore, we study model variations.

3.1 Introduction

In this chapter we study a multi-location inventory model, with the special feature of
a so-called Quick Response (QR) warehouse. When a local warehouse is out-of-stock, a
demand can be satisfied by a stock transfer from this QR warehouse. This QR warehouse
is situated at close distance to the local warehouses. Hence, by a stock transfer the
demand is satisfied much faster compared to an emergency shipment from a central
warehouse (or from outside the network).

A relevant application of this is found in spare parts inventory networks, where ready-
for-use parts are kept on stock for critical components of advanced technical systems. Ex-
amples of these include the key manufacturing machines in a production line, trucks for
a transportation company, and expensive medical equipment in a hospital. Upon break-
down of such a system, it demands a spare part. During this time, the system is down at
very high costs because of loss of production/revenue. So, in order to reduce down time,
it is important that demand is quickly satisfied, and a quick response warehouse is a good
option for doing so. Axsäter et al. [14] and Howard et al. [105] describe the setting at
Volvo Parts Corporation, a global spare parts service provider, which makes use of QR
warehouses (referred to as ‘support warehouses’). Rijk [161] studies the stock control of
Océ, a company in printing and document management. They use quick response stocks
for storing parts that need to be within a short time range of the customers, but for which
it is not possible or efficient to store these in the car stocks of the maintenance engineers.

Another application of the model with a QR warehouse is the combination of physical
stores and an on-line shop, e.g. for books or fashion. Next to the physical stores, the on-
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line shop keeps items in inventory as well, located centrally. The demands of customers
visiting the physical stores are satisfied immediately when there is stock on-hand, but
their demands can be routed to the inventory of the on-line shop in case of a stock-out at
the store. Hence, this on-line shop, which also has its own demand stream, acts as a QR
warehouse.

Although a relevant problem, to the best of our knowledge, no results are known
about the optimal use of a QR warehouse. For that, we study the policy for when the QR
warehouse should accept and when it should reject a demand originating at a local ware-
house. All warehouses are assumed to follow a base stock policy, with given base stock
levels. We formulate the problem as a Markov decision problem (MDP) and use event-
based dynamic programming (cf. [116]) to derive the optimal policy structure of the QR
warehouse, minimizing the long-run average costs. Also, we derive simple, sufficient con-
ditions under which it is always optimal to accept a demand at the QR warehouse. The
analysis builds on the assumption of exponentially distributed replenishment lead times.
This implies that the decisions at the QR warehouse are based on the net stock levels
at all warehouses, as pipeline information can be ignored. It is known that then perfor-
mance of the optimal policy can be expected to be nearly insensitive to the distribution
of the replenishment times, as shown in a.o. [2, 69, 120] for similar models.

In inventory models, shipments of stock between warehouses of the same echelon are
referred to as lateral transshipments (LTs), see [153] for an overview. Typically, either
the optimal policy is derived for a two-location model [6, 218], or for a multi-location
setting with symmetric parameters for all warehouses [162]. Results for two-location
models cannot be extended by the techniques used to results for general multi-location
models. We, however, do so by considering a model in which only lateral transshipments
from the QR warehouse to the local warehouses are allowed.

Basically, our model is a combination of a so-called overflow model and a stock ra-
tioning model. In overflow models, unsatisfied demands are routed to another source.
These models typically arise in telecommunication models, e.g. in call centers (see [87]
for an overview). However, in these models, no costs are incorporated for the routing
or blocking of demands, whereas we show these costs to play an important role in the
optimal policy when incorporated. In stock rationing models (see [180] and the ref-
erences therein), multiple demand classes are served from a single stock point. If the
arrival processes are Poisson, the optimal policy for satisfying demands is a so-called crit-
ical level policy (see e.g. [183, 94, 60]), which prescribes a (net) stock level (the critical
level) for each demand class from which on their demands are satisfied. However, the
overflow demand streams in our model are not Poisson processes and, as a consequence,
such a critical level policy fails to be optimal. In fact, an overflow demand stream is a
special case of a Markov modulated Poisson process (MMPP, cf. [80]). The optimal pol-
icy depends on the states of each of these processes, i.e. on the stock levels at all local
warehouses.

The outline of this chapter is as follows. We start by describing the model and intro-
ducing the notation in Section 3.2. We formulate the problem as an MDP and introduce
the value function. In Section 3.3 we show that the value function satisfies certain struc-
tural results. From this the optimal policy at the QR warehouse is derived, as well as the
simplifying conditions. Section 3.4 shows numerical results on how much cost savings
are achieved by executing the optimal policy. Two model variations are discussed in Sec-
tion 3.5, and we end by a discussion on further research in Section 3.6. All proofs are
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given in Appendix 3.A. This chapter is based on [194].

3.2 Model and notation

3.2.1 Problem description

We consider the following multi-location inventory model. We have J local warehouses,
j = 1, . . . , J , and a quick response (QR) warehouse with index j = 0, keeping on stock
a single stock-keeping-unit. Warehouse j follows a base stock policy with base stock
level S j , j = 0, 1, . . . , J , where S0 ≥ 1 to avoid trivialities (S0 = 0 would be equivalent
to a situation without a QR warehouse). All warehouses j = 0,1, . . . , J are replenished
from a central warehouse with infinite stock (or equivalently, from an external supplier
outside the network), these being one-for-one and having i.i.d. exponentially distributed
lead times with mean 1/µ j for warehouse j. The replenishments can also be interpreted
as productions to stock, or repair procedures of repairables. Warehouse j faces a demand
stream that is Poisson with rate λ j , j = 0,1, . . . , J . We assume the interarrival and replen-
ishment times to be all mutually independent. Holding costs are incurred for on-hand
inventory: h j(x j) are the costs for keeping x j parts in stock at location j during one time
unit. The function h0(·) is assumed to be convex (it appears that this is the only property
needed for the structural results derived below).

When local warehouse j is out-of-stock, the demand can be fulfilled by a stock trans-
fer from the QR warehouse, at costs PQR

j . This is referred to as an overflow demand
of warehouse j. In this case a part from the QR warehouse is directly assigned to this
demand, and shipped to local warehouse j. Hence, the demand and part are instanta-
neously coupled. We assume this procedure to be much faster than waiting for a regular
replenishment. When the demand is not fulfilled from the QR warehouse, it has to be
fulfilled by a costly emergency procedure, at penalty costs PEP

j , e.g. by a shipment from
the central warehouse or an external supplier (equivalently, this can be interpreted as a
lost sale). Demands that occur at the QR warehouse itself, are either satisfied directly, or
fulfilled by an emergency procedure at penalty costs PEP

0 . To avoid trivialities, we assume
that 0≤ PQR

j ≤ PEP
j for all j, and define ∆Pj = PEP

j − PQR
j . For ease of notation, we define

PQR
0 = 0 and hence ∆P0 = PEP

0 . This inventory model is graphically presented in Fig-
ure 3.1. The question is when the QR warehouse should satisfy an (overflow) demand,
and when it is better to reject it, based on the stock levels at all warehouses.

The motivation for this setting is an inventory system which provides spare parts for
advanced technical systems. These systems are typically used in the primary processes of
their users. Hence, any down time of these systems is extremely costly, so ready-for-use
spare parts are kept in stock for the critical component of these systems. Upon failure
of a system, the defective part is replaced by a ready-for-use part from inventory, from
the warehouse the technical system is assigned to. We assume the penalty costs PQR

j

and PEP
j to include the down time costs (e.g. because of loss of production) of a machine

during the time required for the quick response and emergency procedure, respectively.
Note, however, that the model may also apply to other multi-location (or multi-product)
inventory systems; see also [153].
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Figure 3.1: Multi-location inventory model with a Quick Response warehouse.

3.2.2 Dynamic programming formulation

We formulate the problem as a Markov decision problem (MDP, cf. [155]) and use event-
based dynamic programming (cf. [116]) to derive the optimal policy structure, minimiz-
ing the long-run average costs. The existence of such an optimal policy is guaranteed
by [155, Theorem 8.4.5a].

Let x j be the stock level of location j, and let x = (x0, x1, . . . , xJ ) be the vector con-
sisting of all stock levels. So, x is the state of the system, on the state space S consisting
of all possible combinations of stock levels. Let Vn : S 7→ R be the value function, the
minimum cost function when there are n events (demands or replenishments) left. It is
given by:

Vn+1(x) =
1

ν





J
∑

j=0

h j(x j) +
J
∑

j=0

µ jG jVn(x) +
J
∑

j=1

λ jH jVn(x) +λ0HQRVn(x)



, (3.2.1)

for x ∈ S, n≥ 0, starting with V0 ≡ 0, where ν =
∑J

j=0 S j µ j +
∑J

j=0λ j is the uniformiza-
tion rate, and G j , H j , and HQR as defined below.

The operator H j models the demands at local warehouse j = 1, . . . , J , and is defined
by:

H j f (x) =















f (x − e j) if x j > 0;

min{PQR
j + f (x − e0),

PEP
j + f (x)} if x j = 0, x0 > 0;

PEP
j + f (x) otherwise.

Here e j is the unit vector of length J + 1 with a 1 at position j ( j = 0,1, . . . , J). When
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x j > 0 a part is taken from stock. When x j = 0 (and x0 > 0), H j selects the costs–
minimizing action of taking a part from the QR warehouse (at costs PQR

j ), or applying
an emergency procedure (at costs PEP

j ). If both the local and the QR warehouse are
out-of-stock, the only option is an emergency procedure.

Similarly, HQR models the demands at QR warehouse, and is defined by:

HQR f (x) =

¨

min{ f (x − e0), PEP
0 + f (x)} if x0 > 0;

PEP
0 + f (x) if x0 = 0.

The operator G j models the (potential) replenishments at warehouse j = 0,1, . . . , J ,
and is defined by:

G j f (x) =

¨

(S j − x j) f (x + e j) + x j f (x) if x j < S j;

S j f (x) if x j = S j .

The replenishment rate is linear in the number of outstanding orders, which is S j −
x j . The terms x j f (x) represent fictitious transitions, hence assuring that the total rate
at which µ j G j occurs is µ j S j , for all x . In Section 3.5.1 we consider state-dependent
replenishment rates as a model variation.

3.3 Structural results

In this section we prove our main result: the structure of the optimal policy of the QR
warehouse. For this, we first introduce the properties convexity and supermodularity.
Each of the operators in the value function preserves these properties, hence the value
function satisfies them. From this, the optimal policy structure is derived, as well as
conditions under which it simplifies.

3.3.1 Structural properties

Consider, as introduced in Section 2.3.2, the following properties of a function f, de-
fined for all x such that the states appearing in the right–hand and left–hand side of the
inequalities exist in the state space S:

Conv(x0) : f (x) + f (x + 2 e0)≥ 2 f (x + e0),
Supermod(x0, xk) : f (x) + f (x + e0 + ek)≥ f (x + e0) + f (x + ek), for k 6= 0.

LEMMA 3.3.1. The operators (i) H j , (ii) HQR, and (iii) G j preserve, for all j = 1, . . . , J, the
properties Conv(x0) and Supermod(x0, xk), for all k = 1, . . . , J.

Note that V0 ≡ 0 trivially is Conv(x0) and Supermod(x0, xk) for all k = 1, . . . , J .
Hence, by induction and using the results of Lemma 3.3.1, the next result directly follows.

THEOREM 3.3.2. For all n≥ 0, Vn is Conv(x0) and Supermod(x0, xk) for all k = 1, . . . , J.

Note that V0 ≡ 0 trivially is Conv(x0) and Supermod(x0, xk) for all k = 1, . . . , J .
Hence, by induction and using the results of Lemma 3.3.1, the next result directly follows.
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Figure 3.2: Optimal policy structure when J = 2 for demands at the local warehouses
j = 1, 2 when x j = 0.

3.3.2 Structure of optimal policy

The following theorem describes the structure of the optimal policy at the QR warehouse,
characterizing when to apply a stock transfer (accepting the demand), or not (rejecting
the demand). For this, we denote by x (0, j), j = 1, . . . , J , the vector x without the com-
ponent x0 and with x j = 0. That is, x (0, j) := (x1, . . . , x j−1, 0, x j+1, . . . , xJ ). Further,
x (0,0) := (x1, . . . , xJ ).

THEOREM 3.3.3. The optimal policy at the QR warehouse is a state-dependent threshold pol-
icy. That is, for all j = 0, 1, . . . , J there exists a switching curve T j(x (0, j)) that characterizes
the optimal decision for a demand at the QR warehouse (i.e., j = 0), or an overflow demand
from local warehouse j when x j = 0 (for j = 1, . . . , J):

• if x0 > T j(x
(0, j)) : accept;

• if x0 ≤ T j(x
(0, j)) : reject.

T j(x (0, j)) is decreasing in each component of x (0, j).

The proof makes use of the fact that the value function is Conv(x0) and Supermod(x0, x j).
Figure 3.2 shows the optimal policy structure for demands at the local warehouses when
J = 2. It shows that a demand is more likely to be accepted when the QR stock level is
high, and/or when the stock levels at the other local warehouses are high. This is in line
with the fact that T j(x (0, j)) is decreasing.

We have the following ordering in the optimal actions. Let j1, j2 ∈ {1, . . . , J} with
∆Pj1 ≥∆Pj2 , i.e. the cost difference ∆Pj1 at local warehouse j1 is larger than or equal to
the cost difference ∆Pj2 at local warehouse j2. Then their optimal actions for applying
a quick response are ordered accordingly. More precisely, denoting by a∗j (x) the optimal
action at local warehouse j in case of a demand, encoding a∗j (x) = 1 for a quick response
(i.e. accepting the demand) and a∗j (x) = 0 for an emergency procedure (rejecting the
demand), then the following holds.
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PROPOSITION 3.3.4. Let j1, j2 ∈ {1, . . . , J} with ∆Pj1 ≥∆Pj2 . Then a∗j1(x)≥ a∗j2(x) for all x
with x j1 = x j2 = 0.

When the base stock levels at all local warehouses equal zero, the overflow demand
stream from each of the local warehouses is a Poisson process with rate λ j . By Theo-
rem 3.3.3 the switching curve T j is a function of x (0, j), however, there is only one such
vector, namely the all zero vector. Hence, in this case, the switching curve T j reduces
to a constant, say C j ∈ {0, 1, . . . , S0}, for all j. An (overflow) demand is satisfied when
x0 > C j , and is rejected otherwise. This state-independent threshold policy is known
as a critical level policy [183], where the C j ’s are called the critical levels. It is known
to be optimal in this setting for Poisson demand streams, cf. [94]. So, we have proven
this result as a special case of our model. Moreover, Proposition 3.3.4 shows that the
critical levels are ordered based on the ∆Pj , that is, if ∆P1 ≥ ∆P2 ≥ . . . ≥ ∆PJ , then
C1 ≥ C2 ≥ . . . ≥ CJ , as in [94]. This model, where inventory at a single warehouse is
allocated to multiple customers classes with different costs factors ∆P1, is known as a
stock rationing problem.

An overflow demand stream from local warehouse j is a special case of a Markov
modulated Poisson process (MMPP [80]): one with S j states, demand rate λ j at the QR
warehouse when in state x j = 0, and zero otherwise, where the transition rates follow
from the replenishment rate and (local) demand rate. Hence, Theorem 3.3.3 gives the
optimal policy for a stock rationing problem with this form of MMPP demand streams,
showing that a state-dependent threshold policy is optimal in this case.

3.3.3 Conditions

The following theorem provides conditions under which a simpler policy is always op-
timal. Only the holding cost of the last part at the QR warehouse turn out to be of
importance, hence define ∆h0 = h0(1)− h0(0).

THEOREM 3.3.5. It is optimal to always accept a demand from local warehouse j at the QR
warehouse (for j = 1, . . . , J, when x0 > 0 and x j = 0), or a demand at the QR warehouse
(for j = 0, when x0 > 0) if:

J
∑

k=0

λk

�

∆Pk −∆Pj

�+
≤ µ0∆Pj +∆h0, (3.3.1)

where (x)+ =max{x , 0}.

Recall that ∆Pk = PEP
k − PQR

k , k = 1, . . . , J , and ∆P0 = PEP
0 . Furthermore, note that

the larger µ0 (i.e., the shorter the replenishment lead time), the easier the condition is
satisfied. This effect is obtained because a larger µ0 gives a lower risk of not being able
to meet a more important demand in the near future. Basically, these conditions give a
trade-off between the cost parameters. It is optimal to always satisfy any demand at the
QR warehouse, if (3.3.1) holds for all j = 0, 1, . . . , J .

3.4 Numerical results

In a numerical study we show how much is to be gained by executing the optimal policy,
compared to two simpler policies. For two examples, we vary the arrival rates and cost
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parameters, and compare the average costs per time unit of executing three possible
policies: (i) the optimal policy, (ii) a naive policy always satisfying all demands, and
(ii) a state-independent threshold policy with optimal thresholds, the so-called optimal
critical level policy.

In a critical level policy, for each warehouse a critical level is prescribed, say C j for
warehouse j = 0,1, . . . , J where C j ∈ {1, . . . , S0}. Only when the inventory level at the QR
warehouse is above this level, an (overflow) demand from warehouse j is satisfied. The
critical level is a fixed constant which does not depend on the state of the system. By an
exhaustive search we optimize the vector (C0, C1, . . . , CJ ). Note that at least one critical
level will equal zero, as otherwise at least one part of the stock at the QR warehouse
remains untouched in any case.

We consider two examples, both with three local warehouses and all base stock levels
equal to 3. All replenishment rates equal µ j = 1 and all holdings costs are 0. The
emergency costs are PEP

0 = 10, PEP
1 = 50, PEP

2 = 20, and PEP
3 = 10. We specify the quick

response costs by setting the ratio PQR
j /P

EP
j , taking values in {0.1,0.5, 0.9}. In Example 1,

the QR warehouse is facing no direct demand stream: λ0 = 0. Furthermore, we vary λ1
and λ2 = λ3 = 2.9. In Example 2, λ0 is positive: λ0 = λ2 = λ3 = 1.7, and again we vary
λ1. For finding the optimal critical level policy, we optimize over 37 possible critical level
policies in Example 1, and 175 in Example 2.

We calculate the relative extra costs per time unit for executing the naive and optimal
critical level policy compared to the optimal policy. The results are given in Table 3.1.
We see that a naive policy can be considerably worse than the optimal policy. The high-
est relative cost difference (7.79 %) is obtained for a situation with high demand rates
(relative to the base stock levels) and relatively low quick response costs (relative to the
emergency costs). Then it is important to hold back stock at the QR warehouse for de-
mands from the local warehouses 1 and 2. In the same situation, the optimal critical
level policy has a much smaller relative cost difference (2.34 %), but this is still a signifi-
cant difference. Apparently, looking at the whole state when holding back stock leads to
significantly better results than just looking at the stock level at the QR warehouse. The
highest relative cost difference for the optimal critical level policy (4.29 %) is obtained
in another situation with high demand rates and low quick response costs.

3.5 Model variations

In this section we study two model variations, namely stock level dependent replenish-
ment rates and backlogging at the local warehouses.

3.5.1 Stock level dependent replenishment rates

When the stock level at warehouse j ( j = 0,1, . . . , J) equals x j , there are y j := S j − x j
outstanding orders, where 0 ≤ y j ≤ S j . In the preceding we assumed that the replenish-
ment rate at this warehouse is y j µ j . We now investigate the case of stock level dependent
replenishment rates. That is, the replenishment rate is given by φ j : {0,1, . . . , S j} 7→R+,
where φ j(0) = 0 and furthermore φ j(y j) is assumed to be a concave, increasing function

of y j . Hence, its maximum is attained in S j , so maxy j∈{0,1,...,S j}φ j(y j) = φ j(S j) =: φ j ,

assuming φ j <∞.
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PQR
j : PEP

j λ1 Opt Naive vs. Opt Opt CL vs. Opt Opt CLs QR (Opt) EP (Opt)

0.1 1.5 14.95 15.30 + 2.34 % 15.30 + 2.34 % {0,0,0} 19.8 % 9.5 %
2.2 22.34 23.44 + 4.93 % 22.73 + 1.72 % {0,0,1} 18.5 % 12.3 %
2.2 33.34 35.94 + 7.79 % 34.13 + 2.35 % {0,0,2} 18.0 % 15.4 %

0.5 1.5 26.10 26.30 + 0.74 % 26.30 + 0.74 % {0,0,0} 19.7 % 9.6 %
2.2 37.50 38.11 + 1.63 % 37.71 + 0.57 % {0,0,1} 18.5 % 12.4 %
2.2 53.39 54.81 + 2.66 % 53.88 + 0.91 % {0,0,1} 18.0 % 15.3 %

0.9 1.5 37.26 37.30 + 0.10 % 37.30 + 0.10 % {0,0,0} 19.8 % 9.5 %
2.2 52.64 52.76 + 0.23 % 52.69 + 0.08 % {0,0,1} 18.5 % 12.2 %
2.9 73.36 73.64 + 0.39 % 73.46 + 0.13 % {0,0,1} 18.0 % 15.4 %

(a) Example 1

PQR
j : PEP

j λ1 Opt Naive vs. Opt Opt CL vs. Opt Opt CLs QR (Opt) EP (Opt)

0.1 0.7 8.53 8.54 + 0.11 % 8.54 + 0.11 % {0,0,0,0} 6.7 % 10.4 %
1.2 10.48 10.65 + 1.62 % 10.65 + 1.62 % {0,0,0,0} 6.9 % 10.7 %
1.7 14.45 15.07 + 4.29 % 15.07 + 4.29 % {0,0,0,0} 7.7 % 11.5 %

0.5 0.7 11.09 11.13 + 0.39 % 11.09 + 0.01 % {0,0,0,1} 5.4 % 11.2 %
1.2 14.31 14.39 + 0.58 % 14.31 + 0.02 % {0,0,0,1} 5.8 % 11.1 %
1.7 20.71 20.87 + 0.78 % 20.73 + 0.06 % {0,0,0,1} 6.7 % 12.0 %

0.9 0.7 12.94 13.72 + 6.04 % 12.95 + 0.02 % {0,1,2,3} 0.9 % 14.0 %
1.2 17.34 18.13 + 4.59 % 17.34 + 0.01 % {0,0,2,3} 1.8 % 13.8 %
1.7 25.86 26.68 + 3.16 % 25.87 + 0.01 % {0,0,2,3} 3.4 % 14.2 %

(b) Example 2

Table 3.1: Average costs of the optimal policy, the naive policy (always satisfying all
demands), and the optimal critical level policy, as well as the relative difference of the
last two policies compared to the optimal policy. Also given are the optimal critical levels,
as well as the fraction of the demand satisfied via a quick response and via an emergency
procedure under the optimal policy.

The replenishment operator, say G̃ j , now is given by:

G̃ j f (x) =

¨

φ j(y j) f (x + e j) + (φ j −φ j(y j)) f (x) if x j < S j (if y j > 0)

φ j f (x) if x j = S j (if y j = 0).

for j = 0,1, . . . , J . The rate out of each state because of G̃ j is equal to φ j . Analogously to
Lemma 3.3.1(iii), the following results hold.

LEMMA 3.5.1. The operator G̃ j preserves, for all j = 1, . . . , J, the properties Decr(x0),
Conv(x0), and Supermod(x0, xk), for all k = 1, . . . , J.

Here Decr(x0) stands for (non-strict) decreasingness in x0, that is: f (x) ≥ f (x + e0)
(as introduced in Section 2.3.2).

Example 3.5.1. An example of a stock level dependent replenishment rate where φ(.) is
increasing and concave, is a multi-server model with T servers. Each server processes
a replenishment at rate µ. So, the replenishment rate is linear in y , namely yµ, with
maximum rate Tµ:

φ(y) =

¨

yµ if 0≤ y < T ,

Tµ if T ≤ y ≤ S.
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Special cases are T = 1 (single server) and T = S (ample repair capacity, as in the current
model). This might also be an appropriate model when T machines are producing (i.e.
replenishing) to stock, with exponentially distributed production lead times.

As we need Decr(x0) in order for G̃ j to preserve convexity, we cannot include holding
costs anymore in the QR warehouse (as these are increasing in x0). So, the new value
function, say Ṽn, becomes:

Ṽn+1(x) =
J
∑

j=1

h j(x j) +
1

ν̃





J
∑

j=0

G̃ j Ṽn(x) +
J
∑

i=1

λ jH j Ṽn(x)



, for x ∈ S, n≥ 0,

starting again with e.g. Ṽ0 ≡ 0, where now ν̃ =
∑J

j=0φ j +
∑J

j=1λ j is the uniformization
rate.

As a consequence of Lemma 3.5.1, we have, like in Theorem 3.3.2, that Ṽn is Decr(x0),
Conv(x0) and Supermod(x0, xk) for all j = 1, . . . , J , when Ṽ0 satisfies these properties.
Hence, Theorem 3.3.3 remains to hold. Theorem 3.3.5 remains valid when µ0 in (3.3.1)
is replaced by µ0(S0)−µ0(S0 − 1):

J
∑

k=0

λk

�

∆Pk −∆Pj

�+
≤
�

µ0(S0)−µ0(S0 − 1)
�

∆Pj +∆h0. (3.5.1)

Again, it is optimal to always satisfy any demand at the QR warehouse, if (3.5.1) holds
for all j = 0,1, . . . , J .

3.5.2 Backlogging at local warehouses

In Ching [49] an approximate evaluation is given for a model that is almost identical to
our model as described in Section 3.2. Ching allows backlogging at the local warehouse,
up to a (finite) maximum B j . Only when this maximum is reached, a demand from a
local warehouse flows over to the QR warehouse. He assumes that such a demand is
always satisfied at the QR warehouse.

Instead of the stock level x j we now focus on the stock level plus the maximum num-

ber of outstanding backorders B j , that is: x (b)j := x j+B j . Taking the vector (x0, x (b)1 , . . . , x (b)J )
as the state of the system, we are now back at the original model, however, with a stock
level dependent replenishment rate (cf. Section 3.5.1) at each of the local warehouses.
The replenishment rate is given by:

φ j(x
(b)
j ) =

(

(S j − x (b)j + B j)µ j if x (b)j > B j ,

S jµ j if x (b)j ≤ B j .

Hence, the results of Section 3.5.1 apply to this model as well. As a consequence,
when (3.5.1) holds for all j = 0, 1, . . . , J , always accepting any (overflow) demand
at the QR warehouse, the policy assumed in [49], is optimal in this setting. Even
if we charge backlog costs per outstanding backorder per time unit (adding the term
∑J

j=1 b j(max(0,−x j)) where b j(·) is a non-increasing, convex function with b j(0) = 0),
the given structural results and conditions remain valid.
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3.6 Further research

It would be interesting for further research to study how well the sufficient condition (3.3.1)
covers the parameter settings under which all overflow demands from warehouse j are
accepted at the QR warehouse under the optimal policy. Moreover, an interesting ques-
tion is whether the same structural results of the optimal policy hold for more general
arrival processes at the QR warehouse. When the overflow demand streams at the QR
warehouse are Poisson processes, the optimal policy is known to be state-independent
threshold policy. We generalized this by letting the demand processes be the overflow
streams of the local warehouses, hence being a special form of Markov modulated Pois-
son processes (MMPPs). The question is whether this can be generalized even further, to
more general MMPPs or Markov arrival processes (MAPs).

3.A Appendix: Proofs

3.A.1 Proof of Lemma 3.3.1

PROOF. (i) For all j = 1, . . . , J the following holds.
• H j : Conv(x0) → Conv(x0).
Assume that f is Conv(x0), then we show that H j f is Conv(x0) as well. For x j > 0 we
have:

H j f (x)+H j f (x +2 e0) = f (x − e j)+ f (x +2 e0− e j)≥ 2 f (x + e0− e j) = 2 H j f (x + e0),

as f is Conv(x0). For x j = 0, x0 > 0 we have:

H j f (x) +H j f (x + 2 e0)

=min















f (x − e0) + PQR
j + f (x + e0) + PQR

j

f (x − e0) + PQR
j + f (x + 2 e0) + PEP

j

f (x) + PEP
j + f (x + e0) + PQR

j

f (x) + PEP
j + f (x + 2 e0) + PEP

j

which has to be greater than or equal to 2 H j f (x + e0) = 2 min{ f (x) + PQR
j , f (x + e0) +

PEP
j }. For the third term in the minimization this trivially holds, for the first and fourth

term it directly follows as f is Conv(x0), and for the second term we have to use this
twice:

f (x − e0) + PQR
j + f (x + 2 e0) + PEP

j ≥ f (x − e0) + PQR
j + 2 f (x + e0) + PEP

j − f (x)

≥ f (x) + PQR
j + f (x + e0) + PEP

j .

For x j = 0, x0 = 0 analogously:

H j f (x) +H j f (x + 2 e0)

=min
n

f (x) + PEP
j + f (x + e0) + PQR

j , f (x) + PEP
j + f (x + 2 e0) + PEP

j

o

≥ 2 min{ f (x) + PQR
j , f (x + e0) + PEP

j }= 2 H j f (x + e0).
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• H j : Supermod(x0, x j), Conv(x0) → Supermod(x0, x j).
Assume that f is Supermod(x0, x j) and Conv(x0), then we show that H j f is Supermod(x0, x j).
For x j > 0:

H j f (x) +H j f (x + e0 + e j) = f (x − e j) + f (x + e0)

≥ f (x + e0 − e j) + f (x) = H j f (x + e0) +H j f (x + e j),

as f is Supermod(x0, x j). For x j = 0, x0 > 0 we have:

H j f (x)+H j f (x+e0+e j) =min
n

f (x − e0) + PQR
j + f (x + e0), f (x) + PEP

j + f (x + e0)
o

,

which has to be greater than or equal to

H j f (x + e0) +H j f (x + e j) =min
n

f (x) + PQR
j , f (x + e0) + PEP

j

o

+ f (x).

For the second term in the minimization this trivially hold, for the first term we use that
f is Supermod(x0, x j):

f (x − e0) + PQR
j + f (x + e0)≥ 2 f (x) + PQR

j .

For x j = 0, x0 = 0 analogously:

H j f (x) +H j f (x + e0 + e j) = f (x) + PEP
j + f (x + e0)

≥min
n

f (x) + PQR
j , f (x + e0) + PEP

j

o

+ f (x) = H j f (x + e0) +H j f (x + e j).

• H j : Supermod(x0, xk), Conv(x0) → Supermod(x0, xk) for all k 6= j.
Assume that f is Supermod(x0, xk) and Conv(x0), then we show that H j f is Supermod(x0, xk).
For x j > 0:

H j f (x) +H j f (x + e0 + ek) = f (x − e j) + f (x + e0 + ek − e j)

≥ f (x + e0 − e j) + f (x + ek − e j) = H j f (x + e0) +H j f (x + ek).

as f is Supermod(x0, xk). For x j = 0, x0 > 0 we have:

H j f (x) +H j f (x + e0 + ek)

=min















f (x − e0) + PQR
j + f (x + ek) + PQR

j ,

f (x − e0) + PQR
j + f (x + e0 + ek) + PEP

j ,

f (x) + PEP
j + f (x + ek) + PQR

j ,

f (x) + PEP
j + f (x + e0 + ek) + PEP

j

which has to be greater than or equal to H j f (x + e0) + H j f (x + ek) = min{ f (x) +
PQR

j , f (x + e0) + PEP
j }+min{ f (x − e0 + ek) + PQR

j , f (x + ek) + PEP
j }. For the third term

in the minimization this trivially holds, and for the first and fourth term we use that f
is Supermod(x0, xk). For the second term we first use this, followed by using that f is
Conv(x0):

f (x − e0) + PQR
j + f (x + e0 + ek) + PEP

j

≥ f (x) + f (x − e0 + ek) + PQR
j + f (x + e0 + ek) + PEP

j − f (x + ek)

≥ f (x) + PQR
j + f (x + ek) + PEP

j .
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For x j = 0, x0 = 0 analogously:

H j f (x) +H j f (x + e0 + ek)

=min
n

f (x) + PEP
j + f (x + ek) + PQR

j , f (x) + PEP
j + f (x + e0 + ek) + PEP

j

o

≥min{ f (x) + PQR
j , f (x + e0) + PEP

j }+min{ f (x − e0 + ek) + PQR
j , f (x + ek) + PEP

j }

= H j f (x + e0) +H j f (x + ek).

(ii) • HQR : Conv(x0) → Conv(x0).
Assume that f is Conv(x0), then we show that HQR f is Conv(x0) as well. For x0 > 0:

HQR f (x) +HQR f (x + 2 e0) =min
n

f (x − e0) + f (x + e0), f (x − e0) + f (x + 2 e0) + PEP
0 ,

f (x) + PEP
0 + f (x + e0), f (x) + PEP

0 + f (x + 2 e0) + PEP
0

o

.

which has to be greater than or equal to 2 HQR f (x + e0) = 2 min{ f (x), f (x + e0)+ PEP
0 }.

For the third term in the minimization this trivially holds, for the first and fourth term we
use that f is Conv(x0), and for the second term we have to use this twice:

f (x−e0)+ f (x+2 e0)+PEP
0 ≥ f (x−e0)+2 f (x+e0)− f (x)+PEP

0 ≥ f (x)+ f (x+e0)+PEP
0 .

For x0 = 0 analogously:

HQR f (x) +HQR f (x + 2 e0)

=min
n

f (x) + PEP
0 + f (x + e0), f (x) + PEP

0 + f (x + 2 e0) + PEP
0

o

≥ 2 min{ f (x), f (x + e0) + PEP
0 }= 2 HQR f (x + e0).

• HQR : Supermod(x0, xk), Conv(x0) → Supermod(x0, xk), for j = 1, . . . , J .
Assume that f is Supermod(x0, xk) and Conv(x0), then we show that HQR f is Supermod(x0, xk).
For x0 > 0:

HQR f (x) +HQR f (x + e0 + ek)

=min















f (x − e0) + f (x + ek)
f (x − e0) + f (x + e0 + ek) + PEP

0 ,

f (x) + PEP
0 + f (x + ek)

f (x) + PEP
0 + f (x + e0 + ek) + PEP

0

which has to be greater than or equal to HQR f (x+ e0)+HQR f (x+ ek) =min{ f (x), f (x+
e0)+ PEP

0 }+min{ f (x+ ek− e0), f (x+ ek)+ PEP
0 }. For the third term in the minimization

this trivially holds, and for the first and fourth term we use that f is Conv(x0). For the
second term we first use this, followed by using that f is Conv(x0):

f (x − e0) + f (x + e0 + ek) + PEP
0

≥ f (x) + f (x − e0 + ek) + f (x + e0 + ek) + PEP
0 − f (x + ek)≥ f (x) + f (x + ek) + PEP

0 .
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For x0 = 0 analogously:

HQR f (x) +HQR f (x + e0 + ek)

=min
n

f (x) + PEP
0 + f (x + ek), f (x) + PEP

0 + f (x + e0 + ek) + PEP
0

o

min{ f (x), f (x + e0) + PEP
0 }+min{ f (x + ek − e0), f (x + ek) + PEP

0 }
= HQR f (x + e0) +HQR f (x + ek).

(iii) We prove the following, for all j = 0,1, . . . , J :

1) G j :Conv(x j) → Conv(x j),

2) G j :Conv(xk) → Conv(xk) for all k 6= j,

3) G0 :Supermod(x0, x j) → Supermod(x0, x j) for j 6= 0,

4) G j :Supermod(x0, x j) → Supermod(x0, x j) for j 6= 0,

5) G j :Supermod(x0, xk) → Supermod(x0, xk) for j 6= 0 and all k 6= 0, j.

From this the result of the lemma directly follows. For that, we note that 1) and 2) imply
that G j : Conv(x0)→ Conv(x0) for j = 0, 1, . . . , J .
• 1) G j : Conv(x j) → Conv(x j).

Assume that f is Conv(x j), then we show that G j f is Conv(x j) as well. For x j + 2< S j:

G j f (x) + G j f (x + 2 e j)

= (S j − x j) f (x + e j) + x j f (x) + (S j − x j − 2) f (x + 3 e j) + (x j + 2) f (x + 2 e j)

= (S j − x j − 2)
h

f (x + e j) + f (x + 3 e j)
i

+ x j

h

f (x) + f (x + 2 e j)
i

+ 2 f (x + e j) + 2 f (x + 2 e j)

≥ 2 (S j − x j − 2) f (x + 2 e j) + 2 x j f (x + e j) + 2 f (x + e j) + 2 f (x + 2 e j)

= 2 (S j − x j − 1) f (x + 2 e j) + 2 (x j + 1) f (x + e j) = 2 G j f (x + e j),

where the inequality holds by applying that f is Conv(x j) on the parts between brackets.
For x j + 2= S j analogously:

G j f (x) + G j f (x + 2 e j) = 2 f (x + e j) + (S j − 2) f (x) + S j f (x + 2 e j)

= 2 f (x + e j) + (S j − 2)[ f (x) + f (x + 2 e j)] + 2 f (x + 2 e j)

≥ 2 f (x + e j) + 2 (S j − 2) f (x + e j) + 2 f (x + 2 e j)

= 2 f (x + 2 e j) + 2 (S j − 1) f (x + e j) = 2 G j f (x + e j).

• 2) G j : Conv(xk) → Conv(xk) for all k 6= j.
Assume that f is Conv(xk), then we show that G j f for k 6= j is Conv(xk) as well. For
x j < S j:

G j f (x) + G j f (x + 2 ek)

= (S j − x j) f (x + e j) + x j f (x) + (S j − x j) f (x + e j + 2 ek) + x j f (x + 2 ek)

≥ 2 (S j − x j) f (x + e j + ek) + 2 x j f (x + ek) = 2 G j f (x + ek),
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and for x j = S j:

G j f (x) + G j f (x + 2 ek) = S j f (x) + S j f (x + 2 ek)≥ 2 S j f (x + ek) = 2 G j f (x + ek).

• 3) G0 : Supermod(x0, x j) → Supermod(x0, x j) for j 6= 0.
Assume that f is Supermod(x0, x j) for j 6= 0, then we show that G0 f is Supermod(x0, x j)
as well (for j 6= 0). For x0 + 1< S0:

G0 f (x) + G0 f (x + e0 + e j)

= (S0 − x0) f (x + e0) + x0 f (x) + (S0 − x0 − 1) f (x + 2 e0 + e j)

+ (x0 + 1) f (x + e0 + e j)

= (S0 − x0 − 1)
h

f (x + e0) + f (x + 2 e0 + e j)
i

+ f (x + e0) + x0

h

f (x) + f (x + e0 + e j)
i

+ f (x + e0 + e j)

≥ (S0 − x0 − 1)
h

f (x + e0 + e j) + f (x + 2 e0)
i

+ f (x + e0) + x0

h

f (x + e j) + f (x + e0)
i

+ f (x + e0 + e j)

= (S0 − x0) f (x + e0 + e j) + x0 f (x + e j) + (S0 − x0 − 1) f (x + 2 e0) + (x0 + 1) f (x + e0)

= G0 f (x + e j) + G j f (x + e0),

and for x0 + 1= S0:

G0 f (x) + G0 f (x + e0 + e j) = f (x + e0) + (S0 − 1) f (x) + S0 f (x + e0 + e j)

= (S0 − 1)
h

f (x) + f (x + e0 + e j)
i

+ f (x + e0) + f (x + e0 + e j)

≥ (S0 − 1)
h

f (x + e j) + f (x + e0)
i

+ f (x + e0) + f (x + e0 + e j)

= f (x + e0 + e j) + (S0 − 1) f (x + e j) + S0 f (x + e0) = G0 f (x + e j) + G j f (x + e0).

• 4) G j : Supermod(x0, x j) → Supermod(x0, x j) for j 6= 0.
This follows directly from 3) by symmetry of Supermod(x0, x j) in x0 and x j . Hence,
there is no need to distinguish between G0 and G j , and the statement follows.
• 5) G j : Supermod(x0, xk) → Supermod(x0, xk) for j 6= 0 and all k 6= 0, j.

Assume that f is Supermod(x0, xk), then we show that G j f is Supermod(x0, xk) as well
(for j 6= 0). For x j < S j:

G j f (x) + G j f (x + e0 + ek)

= (S j − x j) f (x + e j) + x j f (x) + (S j − x j) f (x + e0 + e j + ek) + x j f (x + e0 + ek)

≥ (S j − x j) f (x + e0 + e j) + x j f (x + e0) + (S j − x j) f (x + ek + e j) + x j f (x + ek)

= G j f (x + e0) + G j f (x + ek),

and for x j = S j:

G j f (x) + G j f (x + e0 + ek) = S j f (x) + S j f (x + e0 + ek)

≥ S j f (x + e0) + S j f (x + ek)

= G j f (x + e0) + G j f (x + ek).
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3.A.2 Proof of Theorem 3.3.3

PROOF. Consider a demand directly at the QR warehouse ( j = 0), or an overflow demand
from local warehouse j ∈ {1, . . . , J} when x j = 0. There are two options for such a
demand: accepting it (if x0 > 0) or rejecting it at the QR warehouse. Let

w j(u, x) :=

(

PQR
j + Vn(x − e0) if u= 1 (accept),

PEP
j + Vn(x) if u= 0 (reject).

Then H jVn(x) = minu∈{0,1} w j(u, x) for x such that x j = 0 and x0 > 0. Also, when
defining PQR

0 = 0, then HQRVn(x) =minu∈{0,1} w j(u, x) for x such that x0 > 0.
Let ∆xk

w j(u, x) := w j(u, x + ek)− w j(u, x) for all x with x0 > 0 and xk < Sk. Then,
for x0 > 0:

∆x0
w j(1, x)−∆x0

w j(0, x) = w j(1, x + e0)−w j(1, x)−w j(0, x + e0) +w j(0, x)

= Vn(x)− Vn(x − e0)− Vn(x + e0) + Vn(x)≤ 0,

as Vn is Conv(x0). Furthermore, for x0 > 0, k 6= j:

∆xk
w j(1, x)−∆xk

w j(0, x) = w j(1, x + ek)−w j(1, x)−w j(0, x + ek) +w j(0, x)

= Vn(x − e0 + ek)− Vn(x − e0)− Vn(x + ek) + Vn(x)≤ 0,

as Vn is Supermod(x0, xk).
This implies that, for every n ≥ 0, there exists a switching curve, say T n

j , which is a

function of x (0, j), such that the optimal decision at the QR warehouse is to accept the
demand if x0 > T n

j (x
(0, j)), and to reject it if x0 ≤ T n

j (x
(0, j)). As overflow demands from

local warehouse j can only occur when x j = 0, the switching curve does not depend
on x j . Moreover, it follows that T n

j is decreasing in each of its components.
Hence, if fn+1 is the minimizing policy in (3.2.1), then fn+1 is a state-dependent

threshold policy described by the switching curves T n+1
j , j = 0,1, . . . , J . Note that the

transition probability matrix of every stationary policy is unichain (since every state can
access (S0, S1, . . . , SJ )) and aperiodic (since the transition probability from state (S0, S1, . . . , SJ )
to itself is positive). Then, by [155, Theorem 8.5.4], the long run average costs under
the stationary policy fn+1 converges to the minimal long run average costs as n tends
to infinity. Since there are only finitely many stationary threshold policies, this implies
that there exists an optimal stationary policy that is a state-dependent threshold type
policy.

3.A.3 Proof of Proposition 3.3.4

PROOF. We show that when a∗j2(x) = 1 then a∗j1(x) = 1 as well, for all states x such that
x j1 = x j2 = 0. Suppose that a∗j2(x) = 1, i.e. applying a quick response at warehouse j2 in
case of a stock out is optimal, then

f (x − e0) + PQR
j2
≤ f (x) + PEP

j2
.

Hence
f (x − e0)≤ f (x) +∆Pj2 ≤ f (x) +∆Pj1 ,
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where the second inequality holds by the condition ∆Pj1 ≥∆Pj2 . Now

f (x − e0) + PQR
j1
≤ f (x) + PEP

j1
,

and so a∗j1(x) = 1.

3.A.4 Proof of Theorem 3.3.5

PROOF. We prove the theorem 1) for local warehouse j, j = 1, . . . , J , and 2) for the QR
warehouse.

1) We prove that when (3.3.1) is satisfied, the following holds:

Vn(x − e0) + PQR
j ≤ Vn(x) + PEP

j , for all x with x j = 0 and x0 = 1.

Hence, a demand from local warehouse j is always accepted at the QR warehouse in this
case. It follows from the structural results of Theorem 3.3.3 that this action is optimal as
well for x0 = 2, . . . , S0 (and x j = 0).

Write xa,b for x with x0 = a and x j = b:

xa,b := (a, x1, . . . , x j−1, b, x j+1, . . . , xJ ).

We prove that when (3.3.1) holds, then Vn(x0,0)− Vn(x1,0) ≤ PEP
j − PQR

j , for all n ≥ 0,
where the entries not x0 and x j are equal for x0,0 and x1,0. For this, we use induction
on Vn and consider each of the operators separately. For V0 ≡ 0 the inequality clearly
holds. Assume that it holds for a certain n and denote this Vn by f . That is, the induction
hypothesis (i.h.) is given by:

f (x0,0)− f (x1,0)≤ PEP
j − PQR

j . (i.h.)

We apply each of the operators separately to f (x0,0)− f (x1,0). All inequalities hold by
(i.h.) unless stated otherwise.
• HQR:

HQR f (x0,0)−HQR f (x1,0) =max{PEP
0 , f (x0,0)− f (x1,0)} ≤max{PEP

0 , PEP
j − PQR

j }.

• H j:

H j f (x0,0)−H j f (x1,0) =max{PEP
j − PQR

j , f (x0,0)− f (x1,0)} ≤ PEP
j − PQR

j .

• Hk (for k 6= j): if xk > 0:

Hk f (x0,0)−Hk f (x1,0) = f (x0,0 − ek)− f (x1,0 − ek)≤ PEP
j − PQR

j ,

and if xk = 0:

Hk f (x0,0)−Hk f (x1,0) =max{PEP
k −PQR

k , f (x0,0)− f (x1,0)} ≤max{PEP
k −PQR

k , PEP
j −PQR

j }.

Denoting by I{xk=0} the indicator function being 1 when xk = 0 and zero otherwise, we
have:

Hk f (x0,0)−Hk f (x1,0)≤max{I{xk=0} · (PEP
k − PQR

k ), PEP
j − PQR

j }.



42 MULTI-LOCATION INVENTORY MODELS WITH A QUICK RESPONSE WAREHOUSE

• G j:

G j f (x0,0)− G j f (x1,0) = S j[ f (x0,1)− f (x1,1)]≤ S j[ f (x0,0)− f (x1,0)]≤ S j[P
EP
j − PQR

j ],

where the first inequality holds as f (i.e. Vn) is Supermod(x0, xk) (cf. Theorem 3.3.5).
• G0:

G0 f (x0,0)− G0 f (x1,0)
= S0 f (x1,0)− (S0 − 1) f (x2,0)− f (x1,0)
= S0[ f (x1,0)− f (x2,0)]

≤ (S0 − 1)[ f (x0,0)− f (x1,0)]≤ (S0 − 1)[PEP
j − PQR

j ],

where the first inequality holds as f (i.e. Vn) is Conv(x0) (cf. Theorem 3.3.5).
• Gk (for k 6= 0, j):

Gk f (x0,0)− Gk f (x1,0)
= (Sk − xk) f (x0,0 + ek) + xk f (x0,0)− (Sk − xk) f (x1,0 + ek)− xk f (x1,0)
= (Sk − xk)[ f (x0,0 + ek)− f (x1,0 + ek)] + xk[ f (x0,0)− f (x1,0)]

≤ (Sk − xk)(P
EP
j − PQR

j ) + xk(P
EP
j − PQR

j ) = Sk[P
EP
j − PQR

j ].

Combining these results yields (recall that ν =
∑J

k=0λk +
∑J

k=0µk Sk):

ν
�

Vn+1(x0,0)− Vn+1(x1,0)
�

=
�

h0(0)− h0(1)
�

+λ0

�

HQR f (x0,0)−HQR f (x1,0)
�

+
J
∑

k=1

λk

�

Hk f (x0,0)−Hk f (x1,0)
�

+
J
∑

k=0

µk

�

Gk f (x0,0)− Gk f (x1,0)
�

≤
�

h0(0)− h0(1)
�

+λ0 max{PEP
0 , PEP

j − PQR
j }+λ j

�

PEP
j − PQR

j

�

+
J
∑

k=1
k 6= j

λk max{I{xk=0} · (PEP
k − PQR

k ), PEP
j − PQR

j }+µ0(S0 − 1)[PEP
j − PQR

j ]

+µ jS j[P
EP
j − PQR

j ] +
J
∑

k=1
k 6= j

µkSk[P
EP
j − PQR

j ] (∗) (3.A.1)

Now assume that PEP
j − PQR

j ≥ PEP
0 and (when xk = 0) PEP

j − PQR
j ≥ PEP

k − PQR
k , then,

continuing from (3.A.1) we have:

(∗) =
�

h0(0)− h0(1)
�

+ (ν −µ0)
�

PEP
j − PQR

j

�

≤ ν
�

PEP
j − PQR

j

�

,

as h0(0)− h0(1) is negative. So, under this assumptions the induction step holds. Now
assume PEP

j −PQR
j ≤ PEP

0 and (when xk = 0) PEP
j −PQR

j ≤ PEP
k −PQR

k , then again continuing
from (3.A.1) we have:

(∗) =
�

h0(0)− h0(1)
�

+λ0PEP
0 +

J
∑

k=1

λk[P
EP
k − PQR

k ] +
�

J
∑

k=0

µkSk −µ0

��

PEP
j − PQR

j

�

≤
�

µ0 +
J
∑

k=0

λk

��

PEP
j − PQR

j

�

+
�

J
∑

k=0

µkSk −µ0

��

PEP
j − PQR

j

�

= ν
�

PEP
j − PQR

j

�

,
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where the inequality holds by (3.3.1). Hence, also in this case the induction step holds.
The other possible cases can easily be checked to follow analogously.

2) We show that when (3.3.1) is satisfied, the following holds:

Vn(x − e0)≤ Vn(x) + PEP
0 , for all x with x0 = 1.

Hence, a demand at the QR warehouse j is always accepted in this case. It follows
from the structural results of Theorem 3.3.3 that this action is optimal as well for x0 =
2, . . . , S0.

Write xa for x with x0 = a, that is x(a) := (a, x1, . . . , xJ ). We prove that when (3.3.1)
holds, then Vn(x(0))− Vn(x(1)) ≤ PEP

0 , for all n ≥ 0, where the entries not x0 are equal
for x(0) and x(1). For this, we use induction on Vn and consider each of the operators
separately. For V0 ≡ 0 the inequality clearly holds. Assume that it holds for a certain n
and denote this Vn by f . That is, the induction hypothesis (i.h.) is given by:

f (x(0))− f (x(1))≤ PEP
0 . (i.h.)

We apply each of the operators separately to f (x(0))− f (x(1)). All inequalities hold by
(i.h.) unless stated otherwise.

• HQR:

HQR f (x(0))−HQR f (x(1)) =max{PEP
0 , f (x(0))− f (x(1))} ≤ PEP

0 .

• Hk: if xk > 0:

Hk f (x(0))−Hk f (x(1)) = f (x(0) − ek)− f (x(1) − ek)≤ PEP
0 ,

and if xk = 0:

Hk f (x(0))−Hk f (x(1)) =max{PEP
k − PQR

k , f (x(0))− f (x(1))} ≤max{PEP
k − PQR

k , PEP
0 }.

• G0:

G0 f (x(0))− G0 f (x(1)) = S0 f (x(1))− (S0 − 1) f (x(2))− f (x(1))

= S0[ f (x(1))− f (x(2))]≤ (S0 − 1)[ f (x(0))− f (x(1))]≤ (S0 − 1)PEP
0 ,

where the first inequality holds as f (i.e. Vn) is Conv(x0) (cf. Theorem 3.3.5).
• Gk (for k 6= 0):

Gk f (x(0))− Gk f (x(1))
= (Sk − xk) f (x(0) + ek) + xk f (x(0))− (Sk − xk) f (x(1) + ek)− xk f (x(1))
= (Sk − xk)[ f (x(0) + ek)− f (x(1) + ek)] + xk[ f (x(0))− f (x(1))]

≤ (Sk − xk)P
EP
0 + xk PEP

0 = Sk PEP
0 .
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Combining these results yields:

ν
�

Vn+1(x(0))− Vn+1(x(1))
�

=
�

h0(0)− h0(1)
�

+λ0

�

HQR f (x(0))−HQR f (x(1))
�

+
J
∑

k=1

λk

�

Hk f (x(0))−Hk f (x(1))
�

+
J
∑

k=0

µk

�

Gk f (x(0))− Gk f (x(1))
�

≤
�

h0(0)− h0(1)
�

+λ0PEP
0 +

J
∑

k=1

λk max{I{xk=0}(P
EP
k − PQR

k ), PEP
0 } (3.A.2)

+ PEP
0

�
J
∑

k=0

µkSk −µ0

�

. (∗∗) (3.A.3)

When all xk > 0, or PEP
0 ≥ PEP

k − PQR
k for xk = 0, then, continuing from (3.A.3) we have:

(∗∗) =
�

h0(0)− h0(1)
�

+ (ν −µ0)P
EP
0 ≤ νPEP

0 ,

as h0(0)− h0(1) is negative. So, in this case the induction step holds. When all xk = 0
and PEP

0 ≤ PEP
k − PQR

k then, again continuing from (3.A.3) we have:

(∗∗) =
�

h0(0)− h0(1)
�

+ PEP
0

 

λ0 +
J
∑

k=0

µkSk −µ0

!

+
J
∑

k=1

λk

�

PEP
k − PQR

k

�

≤ PEP
0

 

µ0 +
J
∑

k=1

λk

!

+ PEP
0

 

λ0 +
J
∑

k=0

µkSk −µ0

!

= νPEP
0 ,

where the inequality holds by (3.3.1). Hence, also in this case the induction step holds.
The other possible cases can easily be checked to follow analogously.

3.A.5 Proof of Lemma 3.5.1

PROOF. • G̃ j : Decr(x0) → Decr(x0).
Assume that f is Decr(x0), then we show that G̃ j f is Decr(x0) as well. The cases j ∈
{1, . . . , J} are trivial, so we only show j = 0. For x0 + 1< S0 we have:

G̃0 f (x)− G̃0 f (x + e0)

= φ0(y0) f (x + e0) +
�

φ0 −φ0(y0)
�

f (x)−φ0(y0 − 1) f (x + 2 e0)

−
�

φ0 −φ0(y0 − 1)
�

f (x + e0)

= φ0(y0 − 1)
�

f (x + e0)− f (x + 2 e0)
�

+
�

φ0 −φ0(y0)
��

f (x)− f (x + e0)
�

≥ 0,

and for x0 + 1= S0:

G̃0 f (x)− G̃0 f (x + e0)

= φ0(y0) f (x + e0) +
�

φ0 −φ0(y0)
�

f (x)−φ0 f (x + e0)

=
�

φ0 −φ0(y0)
��

f (x)− f (x + e0)
�

≥ 0.
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• G̃ j : Conv(x0),Decr(x0) → Conv(x0).
For j 6= 0 trivially G̃ j : Conv(x0) → Conv(x0). Hence we only show the proof for j = 0.
Assume that f is Conv(x0) and Decr(x0), then we show that G̃0 f is Conv(x0). Write
φ j(y j) = φ j −φ j(y j). For x0 + 2< S0 we have

G0 f (x) + G̃0 f (x + 2 e0)− G̃0 f (x + e0)

= φ0(y0) f (x + e0) +φ0(y0) f (x) +φ0(y0 − 2) f (x + 3 e0)

+φ0(y0 − 2) f (x + 2 e0)− 2φ0(y0 − 1) f (x + 2 e0)− 2φ0(y0 − 1) f (x + e0)

= φ0(y0 − 2)
�

f (x + 3 e0) + f (x + e0)− 2 f (x + 2 e0)
�

+ 2
�

φ0 −φ0(y − 2)
�

f (x + 2 e0)

−
�

φ0 −φ0(y − 2)
�

f (x + e0) +
�

φ0 −φ0(y)
�

f (x + e0)− 2
�

φ0 −φ0(y − 1)
�

f (x + 2 e0)

+φ0(y0) f (x) + 2φ0(y0 − 2) f (x + 2 e0)− 2φ0(y0 − 1) f (x + e0)

≥−φ0(y − 2) f (x + 2 e0) +φ0(y − 2) f (x + e0)−φ0(y0) f (x + e0) + 2φ0(y0 − 1) f (x + 2 e0)

+φ0(y) f (x)− 2φ0(y0 − 1) f (x + e0)

= φ0(y − 2)
�

f (x + e0)− f (x + 2 e0)
�

− 2φ0(y − 1)
�

f (x + e0)− f (x + 2 e0)
�

+φ0(y)
�

f (x)− f (x + e0)
�

≥
�

φ0(y − 2)− 2φ0(y − 1) +φ0(y)
��

f (x + e0)− f (x + 2 e0)
�

≥ 0,

where the first two inequalities hold as f is Conv(x0), and the last as f is Decr(x0) and
φ0(·) is convex (which holds as φ0(·) is concave).

For x0 + 2= S0 we have:

G̃0 f (x) + G̃0 f (x + 2 e0)− G̃0 f (x + e0)

= φ0(2) f (x + e0) +φ0(2) f (x) +φ0(0) f (x + 2 e0)− 2φ0(1) f (x + 2 e0)− 2φ0(1) f (x + e0)

=
�

φ0 −φ0(2)
�

f (x + e0) +φ0(2) f (x) +φ0(0) f (x + 2 e0)

− 2
�

φ0 −φ0(1)
�

f (x + 2 e0)− 2φ0(1) f (x + e0)

= φ0(2)
�

f (x)− f (x + e0)
�

− 2φ0(1)
�

f (x + e0)− f (x + 2 e0)
�

+φ0(0)
�

f (x + e0)− f (x + 2 e0)
�

≥
�

φ0(2)− 2φ0(1) +φ0(0)
��

f (x + e0)− f (x + 2 e0)
�

≥ 0.

where the last inequality holds as f is Decr(x0) and φ0(·) is convex. Note that we have
used that φ0(0) = φ0 −φ0(0) = φ0.

• G̃ j : Supermod(x0, x j) → Supermod(x0, x j), for j = 1, . . . , J .
Assume that f is Conv(x0) and Supermod(x0, x j) for j 6= 0, then we show that G̃k f is
Supermod(x0, x j) as well. We consider G̃0 (then G̃ j follows by symmetry) and G̃k for
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k 6= j separately. For G̃0 with x0 + 1< S0 we have:

G̃0 f (x) + G̃0 f (x + e0 + e j)− G̃0 f (x + e0)− G̃0 f (x + e j)

= φ0(y0) f (x + e0) + (φ0 −φ0(y0)) f (x) +φ0(y0 − 1) f (x + 2 e0 + e j)

+ (φ0 −φ0(y0 − 1)) f (x + e0 + e j)−φ0(y0 − 1) f (x + 2 e0)− (φ0 −φ0(y0 − 1)) f (x + e0)

−φ0(y0) f (x + e0 + e j)− (φ0 −φ0(y0)) f (x + e j)

= φ0(y0 − 1)
�

f (x + 2 e0 + e j) + f (x + e0)− f (x + 2 e0)− f (x + e0 + e j)
�

+ (φ0 −φ0(y0))
�

f (x) + f (x + e0 + e j)− f (x + e0)− f (x + e j)
�

≥ 0,

and for x0 + 1= S0 we have:

G̃0 f (x) + G̃0 f (x + e0 + e j)− G̃0 f (x + e0)− G̃0 f (x + e j)

= φ0(y0) f (x + e0) + (φ0 −φ0(y0)) f (x) +φ0 f (x + e0 + e j)

−φ0 f (x + e0)−φ0(y0) f (x + e0 + e j)− (φ0 −φ0(y0)) f (x + e j)

= (φ0 −φ0(y0))
�

f (x) + f (x + e0 + e j)− f (x + e0)− f (x + e j)
�

≥ 0.

For G̃k (k 6= 0, j) with xk < Sk we have:

G̃k f (x) + G̃k f (x + e0 + e j)− G̃k f (x + e0)− G̃k f (x + e j)

= φk(yk) f (x + ek) + (φk −φk(yk)) f (x) +φk(yk) f (x + e0 + e j + ek)

+ (φk −φk(yk)) f (x + e0 + e j) −φk(yk) f (x + e0 + ek)

− (φk −φk(yk)) f (x + e0)−φk(yk) f (x + e j + ek)− (φk −φk(yk)) f (x + e j)

= φk(yk)
�

f (x + ek) + f (x + e0 + e j + ek)− f (x + e0 + ek)− f (x + e j + ek)
�

+ (φk −φk(yk))
�

f (x) + f (x + e0 + e j)− f (x + e0)− f (x + e j)
�

≥ 0,

and for xk = Sk we have:

G̃k f (x) + G̃k f (x + e0 + e j)− G̃k f (x + e0)− G̃k f (x + e j)

= φk

�

f (x) + f (x + e0 + e j)− f (x + e0)− f (x + e j)
�

≥ 0.



4
OPTIMAL LATERAL TRANSSHIPMENT POLICY

FOR A TWO-LOCATION INVENTORY MODEL

For an spare parts inventory model with two stockpoints, we completely characterize
and prove the structure of the optimal lateral transshipment policy, using dynamic pro-
gramming. That is, we derive the optimal policy for satisfying demands, minimizing the
average costs of the system in the long-run. This optimal policy is a threshold type pol-
icy. In addition, we derive conditions under which the so-called hold back and complete
pooling policies are optimal, two policies that are often assumed in the literature.

4.1 Introduction

In this chapter we study an inventory model with two stockpoints, which provide spare
parts for advanced technical systems. These systems are typically used in the primary
processes of their users. Hence, any down-time of these systems is extremely costly, so
ready-for-use spare parts are kept in stock for the critical component of these systems.
We focus on a single, repairable part, for which a repair-by-replacement strategy is exe-
cuted: upon failure of a system, the defective part is replaced by a part from inventory.
The defective part is returned to the stockpoint, where it is repaired and added to the
inventory. We take the initial number of spare parts on hand at each location to be given.

The stockpoints service two groups of technical systems, where each group is assigned
to one stockpoint. In case of a breakdown of one of the systems, it demands a spare part
at its dedicated stockpoint. The demands form a Poisson process at each stockpoint, of
which the rates may differ. If a demand for a spare part is directly met at the stockpoint,
we refer to this as a demand that is directly fulfilled. Otherwise, there are two other
possibilities. The first option is a lateral transshipment, which means that a part is shipped
from the other stockpoint. In this case, the system is down while it is waiting for the part,
and extra transportation costs are incurred. The second option is an emergency repair
procedure: the defective part is repaired in a fast repair procedure, for which high costs
are incurred, and the system is down for a longer period of time. As downtime costs
are huge, mainly because of loss of production, this option is much more expensive than
a lateral transshipment. Due to these downtime costs, backordering of demands is not
allowed.
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By the use of lateral transshipments, significant costs can be saved, as the costs for
a lateral transshipment are much smaller than the costs for an emergency procedure.
For example, Kranenburg and Van Houtum [120] show that the company ASML, an
original equipment manufacturer in the semiconductor industry, can reduce their spare
parts provisioning costs by up to 50% through the efficient use of lateral transshipments,
while keeping the service at the same level. Robinson [162] shows that substantial costs
savings can be realized by the use of lateral transshipments, even when the transportation
costs are high. Based on two case studies in the computer and automobile industry, Cohen
and Lee [55]maintain that stock pooling is an effective way to improve the service levels,
even with less on-hand inventory. Also, Cohen et al. [53] point out that the pooling of
spare parts is one of the best ways for companies to realize cost reductions.

In this chapter, we focus on the optimization of the lateral transshipment policy. That
is, we determine the optimal decision on how to fulfill a demand to minimize the av-
erage running costs of the system in the long-run: (i) directly from own stock, (ii) via
a lateral transshipment, or (iii) via an emergency procedure. When is it beneficial to
apply a lateral transshipment, and when is it better to apply an emergency procedure? A
straightforward strategy would be to always fulfill demands from the own stockpoint, if
possible, and otherwise via a lateral transshipment, if possible. This strategy is known as
complete pooling (or full pooling) of inventory.

Depending on the cost parameters, a complete pooling strategy is suboptimal in cer-
tain cases. If a stockpoint has, for example, only one part left in stock, it could be
beneficial to hold this one back, even if the other stockpoint requests a lateral transship-
ment. This situation can occur when the cost parameters for both stockpoints are equal
(i.e. symmetric), but its effect may be even larger for asymmetric costs parameters. It
could, in fact, be better to hold back parts even in case of a demand at the stockpoint
itself, so as to be able to respond to a future lateral transshipment request of the other
stockpoint. This situation, where stockpoints can hold back some inventory, is known as
partial pooling. A hold back strategy (cf. Xu et al. [215]) is a special case of this in which
outgoing transshipments are limited.

A considerable amount of work has already been done on the use of lateral trans-
shipments in various settings (see e.g. Wong et al. [212] and Paterson et al. [153] for an
overview). Most of it focuses on (approximate) evaluation of performance characteris-
tics, (approximate) optimization of parameters when the policy is given, or optimization
of the replenishment strategy. However, only limited results seem to be known about the
optimal lateral transshipments policy. Archibald et al. [6] study a periodic review model
and prove the optimal transshipment policy in case of stock-outs. They find a threshold
type policy where the thresholds depend on the remaining time in a period. However,
they assume zero replenishment lead times and their approach is inappropriate when
these are positive. For optimal lateral transshipments rules in a continuous time review
setting, hardly any results are available. In Zhao et al. [218] a two location make-to-
stock system is considered for which the optimal production and optimal transshipment
policy are derived. They show that both of them can be described by a switching curve,
i.e. by state-dependent thresholds. However, they do not allow inventory to be held back
at a location. By generalization of this decision, we show that always satisfying a demand
directly from stock might be suboptimal. So the optimization of the lateral transshipment
policy in the current setting has not been done before. In Section 2 we present a more
detailed literature review.
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Our main contribution is as follows. For the described model, (a) we completely
characterize and prove the structure of the optimal lateral transshipment policy, which
is a threshold type policy. For this model, with positive lead times, the possibility to
hold back stock and to allow for asymmetric cost parameters, the optimal policy struc-
ture has not been derived before. Next to this, (b) we give conditions under which
the optimal policy simplifies to either a hold back policy or a complete pooling policy.
The latter strategy is often assumed in the literature about lateral transshipments, see
e.g. [2, 10, 90, 123, 126, 165, 174, 212, 218]. So we contribute to the literature by
presenting conditions on the cost parameters under which this policy is indeed optimal.

We model the inventory problem as a Markov decision problem (see e.g. Puter-
man [155]). Based on the inventory levels, a decision has to be taken each time a
demand arises at one of the two stockpoints. Using Event Based Dynamic Programming
(see Koole [115, 116]), we build up the n-period minimal cost function (the value func-
tion) of so-called event operators, where the possible events are demands and repairs.
Proving structural properties of the value function, such as monotonicity and multimod-
ularity, can then be done by considering each of these operators separately. Hence, this
reduces the complexity of the problem. From this we derive the optimal lateral trans-
shipment policy as well as conditions under which it is simplified.

Our model was inspired by an inventory system with repairables, which is common
practice in the spare parts industry. However, the model applies much more generally.
Inventory systems with replenishments (or productions to stock) fall within the same
model, in case a base stock policy is executed, with one-for-one replenishments (or pro-
ductions). The repair times in the current model resemble the replenishment (or produc-
tion) lead times and the emergency procedures resemble lost sales. This interpretation
would be more suitable when the inventory consists of consumables. Also inventory sys-
tems in which substitutions are allowed, fall within the same model. We study these
options as model extensions.

The outline of this chapter is as follows. We start with a literature review in Sec-
tion 4.2. In Section 4.3 we describe the model in more detail and we introduce the no-
tation. We model the system as a Markov decision problem, and introduce the technique
of Event Based Dynamic Programming. In Section 4.4 we give the structural properties
of the event operators and of the value function. This leads to the characterization of
the structure of the optimal policy which is a threshold type policy. Conditions are given
under which certain simple policies are optimal and some examples are shown. In Sec-
tion 4.5 we consider several extensions to the model. Finally, we summarize the results
and indicate possibilities for further research in Section 4.6. Appendix 4.A contains all
proofs. This chapter is based on [193].

4.2 Literature review

A considerable amount of work has already been done on the use of lateral transship-
ments in various settings. Wong et al. [212] and Paterson et al. [153] provide good
overviews. We distinguish between two types of work, depending on the lateral trans-
shipment rule. It can either be a predetermined and fixed rule, or it is subject to opti-
mization. In most of the literature, a given predetermined fixed rule is assumed, and
performance characteristics of the system are evaluated, either exactly or approximately
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(e.g. [126, 10, 165, 175, 123]), or optimal reorder policies are derived (e.g. [162, 150]).
More relevant in relation to our work, is the literature on the optimization of the lat-

eral transshipment rule. For the periodic-review case, we mention the following results.
For a system with two locations, Archibald et al. [6] prove the optimal transshipment
policy in case of stock-outs. It states when it is optimal to apply a lateral transshipment
in case of a demand at a location with zero stock. The decision is based both on the stock
level of the other location, and on the time left until the next replenishment opportu-
nity, where it is assumed that the replenishments occur instantaneously (i.e., if we would
let the period length go to zero, we would get a model with zero replenishment lead
time). The costs consist of the regular and emergency ordering costs, transshipments
costs and holding costs. The model they consider, however, considerably differs from our
model. Firstly, we study a model with positive lead times for which the approach of [6]
is inappropriate as there are no regeneration points any more. It is generally known in
inventory theory, that there is a major difference between positive and zero lead times.
Furthermore, it is assumed that a demand at a stockpoint is automatically fulfilled when
the stockpoint has at least one unit on stock. In our model, on the contrary, we allow
that in any state one can choose to apply a lateral transshipment or an emergency order.
In other words, if the stockpoint where the demand occurs has positive stock, then one
can choose between satisfying the demand directly from the own stock, applying a lateral
transshipment or applying an emergency shipment. I.e., our model has more decisions
and thus a higher complexity. Our results show that it is not always optimal to choose for
directly satisfying a demand from the own stock if possible. This relates to the following
point, namely, that we allow for non-equal emergency order costs. This relaxation is im-
portant as a consequence of it is, that it may be optimal to reserve a last unit on stock at
one stockpoint for a future demand at the other stockpoint. In that case a demand at that
stockpoint is not directly satisfied from stock, although the stockpoint has positive stock.

For multiple locations, Archibald et al. [5] come up with heuristics for the lateral
transshipment rule. Hu et al. [106] characterize the optimal production and transship-
ment decisions in a related setting, also assuming that replenishments occur instanta-
neously at the beginning of a period. Herer et al. [104] approximate the optimal trans-
shipment rule for multiple locations. In Herer and Tzur [103] an optimal transshipment
policy is derived, but here lateral transshipments are not used in reaction to stock-outs,
but only to balance stock because of different holding and replenishment costs at the
locations. These are called pro-active transshipments. Wee and Dada [204] study the de-
cision for a single period in a system with multiple locations and one central warehouse
and give five protocols for a transshipment attempt in case of a stock-out. They prove
that the optimal transshipment policy is described by exactly one of them, which can be
determined by evaluating a set of conditions.

For optimal lateral transshipments rules in a continuous time review setting, hardly
any results are available. Zhao et al. [216, 217] prove the optimal transshipment policy
for so-called decentralized networks, where the locations are independently owned and
operated. They find a policy where two, respectively three parameters determine when
to send and when to accept a transshipment request. The latter resembles work of Xu
et al. [215], which consider a hold-back parameter, that limits the amount of outgoing
transshipments, however, they work with an (Q, R) replenishment policy. For the case of
compound Poisson processes, Axsäter [11] comes up with a heuristic rule determining
which part of a given demand should be covered by a lateral transshipment. Evers [73]
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provides two heuristics giving critical values for on-hand inventory, above which a stock
transfers should be applied. Minner et al. [144] improve these heuristics, using an ap-
proach based on net present value.

In Zhao et al. [218] a two location make-to-stock system is considered. The demands
arrive according to two independent Poisson processes, and at each location the produc-
tion is modeled by a single-server make-to-stock queue, with exponentially distributed
production times. The optimal production and optimal transshipment policy are derived,
which both can be described by a switching curve, e.g. the optimal decisions are de-
scribed by state-dependent thresholds. In their model, demands are backordered, and
lateral transshipments can be applied both at the moment of a demand and at the mo-
ment of a production completion. However, they do not allow inventory to be held back
at a location in order to be able to respond to future lateral transshipment requests of
the other location, if it is, or is having a large risk of, facing a stock-out. So, the opti-
mization of the lateral transshipment policy in the current setting (positive lead times in
a continuous setting, the possibility to hold back stock and the possibility of asymmetric
costs parameters) has not been done before.

The inventory model we consider is closely related to a queueing system. By view-
ing the stockpoints as multi-server queues, demands as arriving customers and repair
lead times as service times, the problem translates into a routing problem in a queueing
model with two parallel queues. These problems are often modeled as Markov deci-
sion problems, as is the case in the current chapter. Stidham and Weber [172] provide
an overview on related problems for the control of (networks of) queues. For example,
Menich and Serfozo [142] show optimality of a join-the-shortest-queue routing policy.
Brouns [42] gives a partial characterization of the optimal routing policy to two two
parallel multi-server queues with no buffers, which is related to our work. The main
difference is, however, that in these kind of problems from the queueing literature, no
costs are incurred for the routing of customers. These costs, however, turn out here to
play an important role in the characterization of optimal policies.

4.3 Model and notation

In Section 4.3.1 we introduce the problem, followed by its modeling as a Markov decision
problem in Section 4.3.2. We introduce the value function (the n-period minimal cost
function) and two types of event operators (for the demands and for the repairs), by
which the value function can be recursively expressed.

4.3.1 Problem description

We consider a spare part inventory system consisting of two stockpoints, which provision
a single spare part for the critical component of an advanced technical system. Initially,
each stockpoint has a predetermined number of ready-for-use spare parts in stock of
a given stock keeping unit (SKU), Si ∈ N ∪ {0} at stockpoint i, i = 1,2. There are two
groups of systems, where each group is assigned to one stockpoint. When a system breaks
down, the critical component has to be replaced by a spare part, i.e., the system demands
a spare part at its designated stockpoint. The demands arrive continuously, according to
two independent Poisson processes with arrival rate λi ≥ 0 at stockpoint i, such that
λ1 + λ2 > 0. A demand can be fulfilled in one of the following three ways: (i) directly
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from own stock, (ii) via a lateral transshipment, or (iii) via an emergency procedure.
In either of the three cases, the defective part is returned to the stockpoint of which the
spare part originated from. The repair times of broken parts are exponentially distributed
with mean 1/µ, where µ > 0, and both stockpoints have ample repair capacity. As both
stockpoints repair the same kind of parts, the repair rates are equal. In Section 4.5.3
we investigate unequal repair rates. We assume that parts can be repaired an unlimited
number of times, and that repaired parts attain their original quality. The interarrival
and replenishment times are all mutually independent.

Our goal is to minimize the average costs in the long-run. The costs are composed
of the costs for the lateral transshipments, emergency procedures, and the downtimes of
the systems. We are only interested in the influence of the decisions on the costs, i.e.,
in the extra costs a lateral transshipment or an emergency procedure causes, compared
to a fulfillment of a demand directly from stock. The number of spare parts S1 and S2
is given, and we do not take into account the acquisition costs of these. Neither do we
take into account holding costs, as we have circulating stock. We set the costs when
a demand is met directly from own stock to zero. These would be the costs for the
downtime of the machine and for the shipment of the spare part to the system, as well
as replacing, shipping back and repairing the broken part. But these costs are made
in any case, independently of the chosen action. If a lateral transshipment is applied,
higher transportation costs are incurred, and as the system is down during the extra
transportation time, extra costs for loss of production are incurred too. All these costs
together, for applying a lateral transshipment from the other stockpoint to stockpoint i,
are put in the penalty costs for a lateral transshipment to stockpoint i, denoted by PLTi

.
The third option for fulfilling a demand, is an emergency procedure. The broken part is
repaired in a fast repair procedure, during which the machine is down. This can be a
considerable amount of time. These extra costs form the penalty costs for an emergency
procedure for a demand at stockpoint i, denoted by PEPi

. We assume PEPi
≥ PLTi

≥ 0,
i = 1,2.

We model the delays for lateral transshipments and emergency procedures entirely
in the cost factors PLTi

and PEPi
. This is because, compared to the repair lead times,

these delays are on a different time scale. We work together with several companies in
the spare parts industry and know the typical orders of magnitude for repair lead times,
lateral transshipment times, and emergency shipments. Repair lead times are typically in
the order of multiple weeks or months, whereas lateral transshipments and emergency
shipments are typically in the order of hours or at most one day, say. As a result, it is very
unlikely that a normal repair lead time of a part would be completed in the few hours
that a lateral transshipment or emergency procedure is executed. Hence, we model the
lateral transshipments and emergency procedures to occur instantaneously and put all
costs in the factors PLTi

and PEPi
.

We allow for non-equal lateral transshipment and emergency procedure costs at the
two stockpoints. The two groups of customers served by the two stockpoints, possibly
have different downtime costs. So, as these are incorporated in PLTi

and PEPi
, these cost

factors may differ at both locations. This also reflects possible differences in transporta-
tion costs.

Under the given repair strategy, we have a system with circulating stock. The inven-
tory position (the total number of parts in stock and parts in repair) is constant at each
stockpoint and equal to the initial amount of spare parts, which is Si at stockpoint i. The
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model, however, is suitable in a much more general setting, namely with replenishments
(or productions to stock) instead of repairs. This holds as long as a base stock policy is
executed, where the base stock level is Si , and one-for-one replenishments (or produc-
tions) are assumed. The repair times are then the equivalent of the replenishment (or
production) lead times, and the emergency repair procedures are the equivalent of lost
sales.

4.3.2 Dynamic programming formulation

The state x of the system is given by the inventory levels at both stockpoints: x = (x1, x2),
where x i ∈ {0, 1, . . . , Si} is the on-hand stock at stockpoint i. The state space S is given
by all possible combinations of inventory levels, S = {0,1, . . . , S1}×{0,1, . . . , S2}. Upon a
demand at stockpoint i, a decision has to be taken how to fulfill it, in one of the following
three ways: (0) directly from own stock, (1) via a lateral transshipment or (2) via an
emergency procedure. The action taken for a demand at i when in state x , is denoted
by ai(x) ∈ {0, 1,2}, respectively, and an optimal action is denoted by a∗i (x). Backorders
are not allowed. Hence, the decision space of each ai(x) consist of the decisions under
which x1 and x2 remain greater than or equal to zero.

As the interarrival times of demands as well as the replenishment times are inde-
pendent exponentially distributed random variables, we can apply uniformization (e.g.
Lippman [131]) to convert the semi-Markov decision problem into an equivalent Markov
decision problem (MDP).

The existence of a stationary average costs optimal policy is guaranteed by Puter-
man [155, Theorem 8.4.5a]: if the state space and action space for every state are finite,
the costs are bounded and the model is unichain, then there exists a stationary average
costs optimal policy. A model is said to be unichain if the transition matrix of every (de-
terministic) stationary policy is unichain, that is, if it consists of a single recurrent class
plus a possibly empty set of transient states. The current model is unichain, as the state
(S1, S2) is accessible from every state (x1, x2) ∈ S for every stationary policy.

When facing a decision, we should take into account the direct costs for a decision as
well as the future expected costs this decision brings along. For the expected costs from a
state, we introduce the value function (see e.g. Puterman [155]) Vn : S 7→ R+. Vn(x1, x2)
is the minimum expected total costs when there are n events (demands or repairs) left
starting in state (x1, x2) ∈ S. This Vn can be recursively expressed. The two types of
operators it consists of (Gi for the repairs at a stockpoint, and Hi for the demands) are
defined below. Vn is given by:

Vn+1(x1, x2) =
1

ν

 

2
∑

i=1

µGi Vn(x1, x2) +
2
∑

i=1

λi Hi Vn(x1, x2)

!

, for (x1, x2) ∈ S, n≥ 0,

(4.3.1)
starting with V0 ≡ 0, and ν = λ1 + λ2 + (S1 + S2)µ is the uniformization rate. Decisions
are only made in the way of fulfilling demands (in the operator Hi). The decision is
taken each time a demand arrives, and is based on the inventory levels. For the repairs
no decisions are taken.

Note that we do not include holding costs, as one can, without loss of generality,
assume that these are also charged for items in repair. So they only add a constant factor
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to the value function, and hence, we set them to zero. In Section 4.5.1 we consider
including these costs as a model extension.

The operator G1 models the repairs at stockpoint 1, and is defined by

G1 f (x1, x2) =

¨

(S1 − x1) f (x1 + 1, x2) + x1 f (x1, x2) if x1 < S1,

S1 f (x1, x2) if x1 = S1,
(4.3.2)

where f is an arbitrary function f : S 7→ R+. G2 is defined analogously. If the inventory
level is x1, there are S1 − x1 outstanding repairs, hence, the repairs occur at a rate
proportional to S1− x1. The term x1 f (x1, x2) corresponds to fictitious transitions. In this
way, we assure that the total rate at which G1 occurs is always equal to S1.

The operator H1 models the demands at stockpoint 1, and is defined by

H1 f (x1, x2)

=















PEP1
+ f (x1, x2) if x1 = 0, x2 = 0,

min{ f (x1 − 1, x2), PEP1
+ f (x1, x2)} if x1 > 0, x2 = 0,

min{PLT1
+ f (x1, x2 − 1), PEP1

+ f (x1, x2)} if x1 = 0, x2 > 0,

min{ f (x1 − 1, x2), PLT1
+ f (x1, x2 − 1), PEP1

+ f (x1, x2)} if x1 > 0, x2 > 0.

(4.3.3)

H2 is defined analogously. If a demand occurs, it has to be decided how to fulfill it.
There are three options for this: directly from stock, via a lateral transshipment, or via an
emergency procedure. Hi takes the costs-minimizing action, where the costs consist of
the direct costs for an action and the expected remaining costs from the state the system
is in after taking that action. Depending on the stock levels x1 and x2, four cases are
distinguished over which the minimization is carried out as stock levels cannot become
negative.

4.4 Structural results

In this section we prove our main result: the structure of the optimal policy. For this
we first prove that the value function Vn satisfies certain structural properties, such as
monotonicity and multimodularity. We show that the operators of which Vn is composed,
all preserve these properties. Then, as V0 satisfies them, it follows directly by induction
that the properties hold for Vn for all n ≥ 0. A framework for this was introduced by
Koole [115] (see also Koole [116]) as Event Based Dynamic Programming. The main
advantage of this approach is that one can prove the propagation of properties for each
of the event operators separately, reducing the complexity of the problem. Changes or
extensions to the model can easily be made by replacing or adding events.

In Section 4.4.1 we introduce the properties and prove that G1, G2, H1 and H2 pre-
serve them. It then follows that Vn, for all n ≥ 0, satisfies them as well. From this we
derive, in Section 4.4.2, the structure of the optimal lateral transshipment policy, which is
a threshold type policy. We give conditions under which it reduces to a simple policy, such
as a hold back or a complete pooling strategy in Section 4.4.3. Some examples are given
in Section 4.4.4, and the special case with symmetric system parameters is considered in
Section 4.4.5. All proofs are given in the appendix.
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4.4.1 Properties of operators and value function

Consider, as introduced in Section 2.3.2, the following properties of a function f, de-
fined for all x such that the states appearing in the right-hand and left-hand side of the
inequalities exist in S:

Decr(1) : f (x1, x2)≥ f (x1 + 1, x2), (4.4.1)

Decr(2) : f (x1, x2)≥ f (x1, x2 + 1), (4.4.2)

Conv(1) : f (x1, x2) + f (x1 + 2, x2)≥ 2 f (x1 + 1, x2), (4.4.3)

Conv(2) : f (x1, x2) + f (x1, x2 + 2)≥ 2 f (x1, x2 + 1), (4.4.4)

Supermod : f (x1, x2) + f (x1 + 1, x2 + 1)≥ f (x1 + 1, x2) + f (x1, x2 + 1), (4.4.5)

SuperC(1,2) : f (x1 + 2, x2) + f (x1, x2 + 1)≥ f (x1 + 1, x2) + f (x1 + 1, x2 + 1),
(4.4.6)

SuperC(2,1) : f (x1, x2 + 2) + f (x1 + 1, x2)≥ f (x1, x2 + 1) + f (x1 + 1, x2 + 1),
(4.4.7)

MM : Supermod∩ SuperC(1,2)∩ SuperC(2,1). (4.4.8)

Furthermore, Decr = Decr(1) ∩ Decr(2), Conv = Conv(1) ∩ Conv(2), and SuperC =
SuperC(1, 2)∩ SuperC(2, 1).

The following two lemmas give useful properties of the operators Gi and Hi , which
enable us to derive the structure of the optimal policy.

LEMMA 4.4.1. a) Operator Gi , i = 1,2, preserves each of the following properties:
(i) Decr; (ii) Conv; (iii) Supermod.
b) The sum of the operators G1 + G2 preserves each of the following properties:
(i) Decr; (ii) Conv; (iii) Supermod; (iv) SuperC; (v) MM.

Note that SuperC (and hence MM), is only preserved by the sum of the operators
G1+G2, and not by G1 and G2 separately. When G1+G2 is applied to (4.4.6) and (4.4.7)
respectively, some terms introduced by G1 cancel out against terms introduced by G2.

LEMMA 4.4.2. Operator Hi , i = 1,2, preserves each of the following properties:
(i) Decr, (ii) MM.

By induction on n, and using the results of Lemmas 4.4.1 and 4.4.2, the next theorem
immediately follows.

THEOREM 4.4.3. Vn satisfies (4.4.1)–(4.4.7) for all n≥ 0.

The properties (4.4.1)–(4.4.7) of Vn are the key in classifying the structure of the
optimal policy.

4.4.2 Structure of optimal policy

We now characterize the structure of the optimal policy in the following two theorems.
We state the optimal policy for fulfilling a demand at stockpoint 1 (see Figure 4.1); for
stockpoint 2, analogous results hold. First we give the result for x2 fixed, next for x1
fixed.



56 OPTIMAL LATERAL TRANSSHIPMENT POLICY FOR A TWO-LOCATION INVENTORY MODEL

THEOREM 4.4.4. The optimal policy for fulfilling a demand at stockpoint 1 for fixed x2
is a threshold type policy: for each x2 ∈ {0, 1, . . . , S2}, there exist thresholds T l t

1 (x2) ∈
{0, 1, . . . , S1 + 1} and T di

1 (x2) ∈ {1, . . . , S1 + 1}, with T l t
1 (x2)≤ T di

1 (x2), such that:

a∗1(x) = 2 (emergency procedure), for 0≤ x1 ≤ T l t
1 (x2)− 1;

a∗1(x) = 1 (lateral transshipment), for T l t
1 (x2)≤ x1 ≤ T di

1 (x2)− 1;

a∗1(x) = 0 (directly from own stock), for T di
1 (x2)≤ x1 ≤ S1,

where T l t
1 (0) = T di

1 (0)≥ 1.
The analogous result holds for demands at stockpoint 2 under a fixed x1 ∈ {0, 1, . . . , S1}.

This structure is graphically represented below the horizontal axis in Figure 4.1. For
each x2, the thresholds divide the set {0, . . . , S1} into (at most) three subsets. In the first
subset, where x1 is small, an emergency procedure is optimal; in the second one a lateral
transshipment; and in the third one, where x1 is large, it is optimal to take a part from
stock. A threshold can be equal to S1+1, hence, implying that for a given x2 taking parts
from stock or applying lateral transshipments is never optimal.

A special case is x2 = 0: as lateral transshipments are not possible at stockpoint 1, we
have T l t

1 (0) = T di
1 (0), where T di

1 (0)≥ 1. In this case, there are (at most) two subsets: an
emergency procedure is applied for 0 ≤ x1 < T di

1 (0), and a demand is directly delivered
from stock for T di

1 (0)≤ x1 ≤ S1.
The intuition behind this theorem is as follows. If the stock level x1 is high one is

willing to take a part from stock as there are still plenty left afterwards. But if the stock
level is low, one might, depending on the costs parameters, decide to hold some parts
back for future lateral transshipment requests of the other stockpoint. If x1 = 0 one is
forced to apply either an emergency procedure or a lateral transshipment.

A similar characterization of the optimal policy can be made for fixed x1, which is
given in the following theorem.

THEOREM 4.4.5. For the optimal policy for fulfilling a demand at stockpoint 1 for fixed
x1 ∈ {0, 1, . . . , S1}, there exist T̂ di

1 (x1) ∈ {0, 1, . . . , S2 + 1} and T̂ l t
1 (x1) ∈ {1, . . . , S2 + 1},

with T̂ di
1 (x1)≤ T̂ l t

1 (x1), such that:

a∗1(x) = 2 (emergency procedure), for 0≤ x2 ≤ T̂ di
1 (x1)− 1;

a∗1(x) = 0 (direct from own stock), for T̂ di
1 (x1)≤ x2 ≤ T̂ l t

1 (x1)− 1;

a∗1(x) = 1 (lateral transshipment), for T̂ l t
1 (x1)≤ x2 ≤ S2,

where T̂ di
1 (0) = T̂ l t

1 (0)≥ 1.
The analogous result holds for demands at stockpoint 2 under a fixed x2 ∈ {0, 1, . . . , S2}.

This structure is graphically represented next to the vertical axis in Figure 4.1. For a
given x1, the set {0, . . . , S2} is divided into subsets, such that in each subset one of the
three decisions is optimal. Again, a T̂ di

1 (x1) or T̂ l t
1 (x1) larger than the maximum stock

level indicates that a certain subset is empty, hence, that decision is never optimal. A
special case is x1 = 0, when it is not possible to deliver a demand directly from stock.
Hence T̂ di

1 (0) = T̂ l t
1 (0), where T̂ l t

1 (0)≥ 1.
If the stock level at the other stockpoint, x2, is high, a lateral transshipment can be

a good option as there are still plenty of parts left after the transshipment is carried
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Figure 4.1: General structure of the optimal policy for a demand at location 1. For fixed x2
the optimal policy structure is indicated below the horizontal axis, for fixed x1 next to the
vertical axis.

out. When x2 decreases, lateral transshipments are less likely to become the best option.
If x2 is low, or even zero, stockpoint 1 might hold stock back by applying emergency
procedures, which can be optimal if the emergency costs of stockpoint 2 are much higher
than those of 1. We note that this is the general form of the structure. It is unlikely that
it turns out to be optimal to take parts via lateral transshipments when x2 is large, but
hold parts back for stockpoint 2 when x2 is small.

Combining Theorem 4.4.4 and Theorem 4.4.5 restricts the possibilities for the optimal
policy significantly. The states where an emergency procedure is an optimal action for a
demand at stockpoint 1, i.e. the subset EP = {x ∈ S | a∗1(x) = 2}, form a connected part
of the state space, located in the lower left corner. This follows as given that a∗1( x̃) = 2
for some x̃ , we have a∗1(x) = 2 for all x with x1 ≤ x̃1 (by Theorem 4.4.4), and all x
with x2 ≤ x̃2 (by Theorem 4.4.5). For the remaining states, a lateral transshipment or
a delivery from stock is optimal. The curve dividing these two subsets, LT = {x ∈ S |
a∗1(x) = 1} respectively DI = {x ∈ S | a∗1(x) = 0}, is non-decreasing in x1. This implies
that the general structure of the optimal policy is as given in Figure 4.1.

4.4.3 Conditions simplifying the optimal policy

Under simple, sufficient conditions for the cost parameters, the structure of the optimal
policy is simplified. We give two such conditions: under the first one, (i) it is optimal
to fulfill a demand directly from own stock, whenever possible, but with a parameter
limiting the amount of outgoing lateral transshipment. We refer to this as a hold back
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policy (see e.g. Xu et al. [215]) as the parameters indicate the amount of stock that is
held back from a transshipment request. Hence, we refer to these as the hold back levels.
Next to this, under the second condition, (ii) it is optimal to fulfill a demand directly from
own stock, whenever possible, and otherwise to apply a lateral transshipment, whenever
possible. For an individual stockpoint, we call this a zero hold back policy, as the hold
back level equal zero. When both stockpoints execute this policy, this is called a complete
pooling policy.

The following theorem states conditions under which it is optimal to always fulfill a
demand directly from own stock:

THEOREM 4.4.6. 1a) If

PEP2
≤ PLT2

+
�

1+
µ

λ2

�

PEP1
, (4.4.9)

then T di
1 (x2) = 1 for all x2 ∈ {0, 1, . . . , S2}, i.e. a hold back policy is optimal at stockpoint 1.

b) If

PEP1
≤ PLT1

+
�

1+
µ

λ1

�

PEP2
, (4.4.10)

then T di
2 (x1) = 1 for all x1 ∈ {0, 1, . . . , S1}, i.e. a hold back policy is optimal at stockpoint 2.

2) If (4.4.9) and (4.4.10) hold, then it is optimal for both stockpoints to execute a hold back
policy.

Under condition (4.4.9), whenever there are items in stock at stockpoint 1, they
should always be used in case of a demand at stockpoint 1, see Figure 4.2(a). However,
stock can possibly be held back from lateral transshipment requests. If both stockpoints
execute a hold back policy, the entire policy is prescribed by only 2 parameters (T̂ l t

1 (0)
and T̂ l t

2 (0)). The case of symmetric costs at both stockpoints, i.e. PLT1
= PLT2

and PEP1
=

PEP2
, clearly satisfies conditions (4.4.9) and (4.4.10).
Next we give conditions under which the application of lateral transshipments in case

of a stock-out, is optimal, when possible:

THEOREM 4.4.7. 1a) If

PLT1
+

λ2

λ2 +µ
PEP2
≤ PEP1

, (4.4.11)

then T̂ l t
1 (0) = 1, i.e. a zero hold back policy is optimal at stockpoint 1.

1b) If

PLT2
+

λ1

λ1 +µ
PEP1
≤ PEP2

, (4.4.12)

then T̂ l t
2 (0) = 1, i.e. a zero hold back policy is optimal at stockpoint 2.

2) If (4.4.11) and (4.4.12) hold, then a complete pooling policy is optimal.

Note that conditions (4.4.11) and (4.4.12) are symmetric in their arguments. Under
condition (4.4.11), stockpoint 2 should not hold back stock if stockpoint 1 requests a
lateral transshipment when it is out-of-stock, see Figure 4.2(b). As condition (4.4.11)
is stronger than condition (4.4.9), i.e. as (4.4.11) implies (4.4.9), it follows that under
condition (4.4.11) a zero hold back pooling policy is optimal, see Figure 4.2(c). Under
a zero hold back pooling policy, a demand is directly met from own stock if possible,
and otherwise always via a lateral transshipment, if possible. The stockpoint does not
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Figure 4.2: (a) Always DI (hold back policy, Theorem 4.4.6); (b) Always LT if out-of-stock
(Theorem 4.4.7); (c) Complete pooling (again Theorem 4.4.7, as it implies Theorem 4.4.6).

hold back stock in any case. When both stockpoints execute this strategy, this is called a
complete pooling policy, a strategy that is often assumed in the literature (see e.g. [2, 10,
90, 123, 126, 165, 174, 212, 218] to mention only a few). Theorem 4.4.7 gives sufficient
conditions under which such a policy is indeed optimal.

The implication of (4.4.9) by (4.4.11) can be seen as follows. Rewriting (4.4.11)
gives λ2

λ2+µ
PEP2

≤ PEP1
− PLT1

, but this implies λ2

λ2+µ
PEP2

≤ PEP1
+ λ2

λ2+µ
PLT2

(as both PLT1

and λ2

λ2+µ
PLT2

are non-negative), which is equivalent to (4.4.9). Analogously, (4.4.12)
implies (4.4.10).

The given conditions in Theorem 4.4.6 and Theorem 4.4.7 are, in general, sufficient,
but not necessary. For the cases S1 = 1, S2 = 0, respectively S1 = 0, S2 = 1, the conditions
are necessary and sufficient. There exist examples not satisfying these conditions, in
which case, the optimal policy is neither a hold back nor a zero hold back pooling policy
(see Section 4.4.4, Example 4.4.1).

There is an interesting relation between the conditions when considered for both
stockpoints: either condition (4.4.9), or condition (4.4.12) holds (or both hold); and
either condition (4.4.10), or condition (4.4.11) holds (or both hold). These statements
follow from the following (e.g. for the first one): (i) if condition (4.4.9) does not hold,
then surely condition (4.4.12) holds; and (ii) if condition (4.4.12) does not hold, then
surely condition (4.4.9) holds. This follows by rewriting the conditions: for (i) we
have that if (4.4.9) does not hold, then PEP2

≥ PLT2
+ λ2+µ

λ2
PEP1

, but this implies PEP2
≥

PLT2
+ λ1

λ1+µ
PEP1

(as λ2+µ
λ2
≥ 1, but λ1

λ1+µ
≤ 1), which is exactly (4.4.12); and (ii) follows as

λ1

λ1+µ
≤ 1 in (4.4.12), but 1+ µ

λ2
≥ 1 in (4.4.9). The analogous reasoning holds for condi-

tions (4.4.10) and (4.4.11). Combined with the properties that (4.4.11) implies (4.4.9),
and that (4.4.12) implies (4.4.10), this immediately leads to the following corollary.

COROLLARY 4.4.8. The optimal lateral transshipment policy is

1. either (at least) a hold back policy at both locations;

2. or a zero hold back policy for (at least) one location.
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Figure 4.3: Optimal policy for the case with S1 = S2 = 4,λ1 = 2,λ2 = 1, µ = 1/3 and
penalty costs PEP1

= 25, PLT1
= 5, PEP2

= 10, PLT2
= 2.

Here, by ‘at least’ a hold back policy we mean either a hold back policy or a zero hold
back policy. In the second case, the optimal policy for one location is a zero hold back
policy, and the optimal policy for the other location can be a hold back policy, a zero hold
back policy, or neither of the two.

4.4.4 Examples

We illustrate our results by two examples.

Example 4.4.1. Consider the following example: S1 = S2 = 4, and λ1 = 2, λ2 = 1,
µ = 1/3, and cost parameters given by PEP1

= 25, PLT1
= 5 and PEP2

= 10, PLT2
= 2.

Hence, an emergency procedure is five times as expensive as a lateral transshipment,
and at location 1, the demand rate as well as the costs are higher. The optimal policy is
given in Figure 4.3.

At stockpoint 1 a zero hold back policy is optimal: the demands are fulfilled directly
from own stock if possible (a∗1(x1, x2) = 0 for x1 > 0), or via a lateral transshipment in
case of a stock-out (a∗1(0, x2) = 1, for x2 > 0). Only if stockpoint 2 is stocked-out as
well, an emergency procedure is applied (a∗1(0,0) = 2). This structure is implied by the
fact that the parameters satisfy condition (4.4.11), and hence, part 1a) of Theorem 4.4.7
holds.

For stockpoint 2, no further conclusions can be drawn for the optimal policy. De-
mands are only fulfilled directly from stock if the sum of the inventory levels at both
locations is large enough, i.e. if x1 + x2 ≥ 3 (and x2 > 0), otherwise an emergency
procedure is applied. This can be explained in the following way. The costs for lateral
transshipments to and emergency procedures at stockpoint 1 are much higher than those
at stockpoint 2. This results in the fact that stockpoint 2 will hold back parts, even when
it faces a demand. By holding back parts, the expensive costs for an emergency proce-
dure at stockpoint 1 are saved in case of a demand there, when it is stocked out. This
is at the expense of a lateral transshipment from 2 and possibly one or more emergency
procedures at 2. The option of holding back parts at 2, however, is on average less costly.
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Figure 4.4: Optimal policy for Example 4.4.1, now with PEP2
= 20, PLT2

= 4.

The optimal policy at location 2 resembles a so-called critical level policy, which is
common in stock rationing problems for single inventory point (see e.g. Ha [94]). In
such problems, one stockpoint satisfies demands of two (or more) types of customers,
which differs in penalty costs for lost sales. In the typical optimal policy, demands from
the most expensive customers are always satisfied, and a threshold (called the critical
level) exists for the inventory level. From this level on demands for the less expensive
customers should be satisfied as well. In the optimal policy in this example the sum of
the stock levels at 1 and 2 resembles such a critical level. The sum x1+x2 here determines
whether a demand at location 2 is directly satisfied or lost.

The optimal policy gives expected average costs per time unit of 18.2. Without lateral
transshipments, these costs would be 25.5; hence, the optimal policy reduces this by
almost 29%. A complete pooling policy has expected average costs per time unit of 20.0,
in this case, so the optimal policy reduces these costs by 9.4%.

Example 4.4.2. In Example 4.4.1, condition (4.4.11) (and hence, condition (4.4.9)) was
satisfied for stockpoint 1, but not for stockpoint 2. By doubling the penalty costs at 2, into
PEP2
= 20 and PLT2

= 4, condition (4.4.10) is satisfied as well. Hence, by Theorem 4.4.6,
this results in the optimality of a hold back policy at both locations (with still zero hold
back at 1). The optimal policy is given in Figure 4.4.

The two thresholds (the hold back levels), determine the entire policy, and are given
by T̂ l t

1 (0) = 1 and T̂ l t
2 (0) = 2. These are the inventory levels from which on lateral trans-

shipments (a∗i = 1) are applied instead of emergency procedures (a∗i = 2). The expected
average costs per time unit in this case are 22.9. For a policy without lateral transship-
ments these would be 27.6 (almost 17% reduction for optimal policy), and complete
pooling would give 23.2. This is only 1.4% reduction, but this policy differs from the
optimal policy only in a2(1,0).

4.4.5 Symmetric parameters

A special case is the system in which all parameters are symmetric, i.e. in which all
parameters for both stockpoints are equal: S1 = S2 =: S,λ1 = λ2 =: λ, PLT1

= PLT2
=:

PLT , PEP1
= PEP2

=: PEP . It is straightforward that in this case there exists a symmetric
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Figure 4.5: For symmetric system parameters, the optimal policy can be described by only
one threshold T (e.g., here T = 3).

optimal policy. As the conditions of Theorem 4.4.6 are clearly satisfied, it follows that for
both stockpoints a hold back policy is optimal. The entire policy can now be described by
a single (for both stockpoints equal) hold back level T̂ l t

1 (0) = T̂ l t
2 (0) =: T ∈ {1, 2, . . . , S+

1}, see Figure 4.5. T = 1 indicates zero hold back, T = 2 indicates that one part is held
back, and so on, and T = S + 1 indicates that no stock in shared in any way, i.e. there
is no interaction between the stockpoints. Hence, there are only S + 1 possible optimal
policies.

Given λ/µ, it turns out that the optimal policy is now determined by only the ratio
PLT/PEP . For S = 4 it is indicated in Figure 4.6a when each of the five possible policies
is optimal. These areas are determined by solving the steady-state distribution of the
Markov process for each of the policies and deriving the average costs of a policy from
this.

For the symmetric case Theorem 4.4.7 reduces to the following corollary, which also
holds when S1 6= S2.

COROLLARY 4.4.9. In case of symmetric system parameters, and if

PLT ≤
µ

λ+µ
PEP , (4.4.13)

a complete pooling policy is optimal.

In Figure 4.6a the curve PLT/PEP = µ/(λ+ µ) is plotted as well. Below it complete
pooling is optimal. From this figure it turns out that this condition, although only suffi-
cient, covers a large part of the total, exact area.

4.5 Model extensions

In this section we consider several model extensions. First we incorporate holding costs,
which would be of interest if we interpret the model as an inventory system with re-
plenishments. The general structure still holds, but the conditions do change. Secondly,
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Figure 4.6: For S = 4 and symmetric system parameters, the S+1 regions where each of the
thresholds T is optimal.

we restrict lateral transshipments to be carried out in only one direction. This is a suit-
able model for a substitution problem, which fits exactly within the lateral transshipment
model. Then we investigate the case of unequal repair rates, and we study the case
where the repair capacity is limited. Finally, we add the option of so-called proactive
lateral transshipment, which are lateral transshipments not triggered by a demand. Note
that each of the extensions is made to the basic model, although it is possible to combine
some of them.

4.5.1 Holding costs

The model was presented for an inventory system with repairables. It is, however, also
suitable when a base stock policy is executed, either with replenishments or productions
to stock. The base stock level then is Si . For repairables one can, without loss of general-
ity, charge holding costs for items in repair. Hence, as the inventory position is constant,
this constant factor can be left out of the value function. However, if we would include
it, the definition of the value function (4.3.1) becomes:

Vn+1(x1, x2) =
2
∑

i=1

hi(x i) +
1

ν

 

2
∑

i=1

µGi Vn(x1, x2) +
2
∑

i=1

λi Hi Vn(x1, x2)

!

, (4.5.1)

for (x1, x2) ∈ S and n ≥ 0, where hi : {0,1, . . . , Si} 7→ R are the holding costs at stock-
point i per part per time unit. We assume that hi(0) = 0 and that hi(x i) is non-decreasing
and concave in x i . Recall that ν = λ1 +λ2 + (S1 + S2)µ.

It is easily checked that Lemmas 4.4.1 and 4.4.2 still hold, except Decr. Hence, Theo-
rems 4.4.3, 4.4.4 and 4.4.5 still hold (as Decr is not used in the proofs). In the conditions
under which the (zero) hold back policy is optimal, however, an extra term incorporation
the holding costs should be added.

Analogously to inequalities (4.4.9) and (4.4.10) of Theorem 4.4.6, if

PEP2
≤ PLT2

+
�

1+
µ

λ2

�

PEP1
+

h1(1)
ν λ2

,
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respectively if

PEP1
≤ PLT1

+
�

1+
µ

λ1

�

PEP2
+

h2(1)
ν λ1

a hold back policy is optimal at stockpoint 1, respectively at stockpoint 2. If both condi-
tions hold, it is optimal for both stockpoints to execute a hold back policy.

Analogously to inequalities (4.4.11) and (4.4.12) of Theorem 4.4.7, if

PLT1
+

λ2

λ2 +µ
PEP2
≤ PEP1

+
h2(1)

ν (λ2 +µ)
,

respectively if

PLT2
+

λ1

λ1 +µ
PEP1
≤ PEP2

+
h1(1)

ν (λ1 +µ)

a zero hold back policy is optimal at stockpoint 1, respectively at stockpoint 2. If both
conditions hold, a complete pooling policy is optimal.

4.5.2 Unidirectional transshipments and substitutions

In the model we allow transshipments from both stockpoint 1 to 2, as well as vice versa. A
simplification of this is an unidirectional transshipment (c.f. Axsäter [12]) in which case a
lateral transshipment can take place in only one way, say only from 1 to 2. An application
of this is a problem with substations, where the parts of stockpoint 1 can substitute those
of stockpoint 2, but not the other way around. Another example is a single stockpoint
with two types of SKUs on stock, in which one can serve as a substitute of the other. This
might be a way to deal with stock-outs in such a system. A substitution might bring along
some extra costs, which are the PLT1

.
The restriction to unidirectional transshipments can be achieved by putting PLT2

=
PEP2

. In this way a lateral transshipment will never be an optimal action at stockpoint 2
(as it is as expensive as an emergency procedure, but does not reduce the stock level
at 1). Obviously, all structural result will remain to hold.

If PLT2
= PEP2

inequality (4.4.9) is always satisfied, and so, as is to be expected, a
hold back policy is optimal at stockpoint 1. Note that although (4.4.12) is never satisfied,
we can not conclude that a zero hold back policy is suboptimal at stockpoint 1. This is
because the conditions in Theorems 4.4.6 and 4.4.7 are sufficient but not necessary.

4.5.3 Asymmetric repair rates

As both stockpoints repair the same type of parts, we have taken their repair rates to
be equal. In fact, we need this assumption in order to be able to derive the structural
results. This is because according to Lemma 4.4.1 only G1+G2 preserves MM, and not G1
and G2 individually. This is a sufficient assumption but not a necessary one, as we can
easily construct examples with unequal repair rates for which the structural results do
hold. However, there are also examples with unequal repair rates for which the structural
results fail to hold, as shown in the following example.

Let S1 = 1, S2 = 2,λ1 = λ2 = 1, and µ1 = 1/3 6= µ2 = 1, denoting by µi the repair
rate at stockpoint i. Furthermore, let PEP1

= 1000, PLT1
= 175 and PEP2

= PLT2
= 10. The
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Figure 4.7: Example in which µ1 6= µ2: the structural properties of the optimal policy does
not hold.

(unique) optimal policy is given in Figure 4.7. Clearly, for demands at stockpoint 1 when
x1 = 1, the structure of the optimal policy is not the threshold type policy as described
by Theorem 4.4.4. This example illustrates that if µ1 6= µ2 the structural results do not
necessarily have to hold.

4.5.4 Limited repair capacity

A variant of the described system is a system in which there is limited repair capacity:
at each stockpoint there is only one server to repair the returned parts. The repair times
remain exponentially distributed with mean 1/µi at stockpoint i, where, for generality,
we allow for non-identical repair rates at both locations. We only have to change the
operator Gi into, say, G̃i , where

G̃1 f (x1, x2) =

¨

f (x1 + 1, x2) if x1 < S1,

f (x1, x2) if x1 = S1,
(4.5.2)

and G̃2 analogously. The value function Ṽn becomes

Ṽn+1(x1, x2) =
1

ν̃

 

2
∑

i=1

µi G̃i Ṽn(x1, x2) +
2
∑

i=1

λiHi Ṽn(x1, x2)

!

, for (x1, x2) ∈ S, n≥ 0,

with Ṽ0 ≡ 0, ν̃ = λ1 + λ2 + µ1 + µ2, and S and Hi , i = 1, 2, unchanged. The following
holds for G̃ j:

LEMMA 4.5.1. The operator G̃ j , j = 1, 2, preserves each of the following properties:
(i) Decr; (ii) Conv and Decr( j); (iii) Supermod; (iv) SuperC and Conv( j + 1); (v) MM and
Conv( j+ 1).

Here j + 1 should be read as j + 1 mod 2, and e.g. (ii) states that if f is Conv and
Decr( j), then G̃ j f is so as well. However, it does not hold that f Conv implies G̃ j f Conv.

COROLLARY 4.5.2. Ṽn satisfies (4.4.1)–(4.4.7) for all n≥ 0.

The following theorem is a direct consequence of this corollary.
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THEOREM 4.5.3. In case of a single repair server at both stockpoints, the same structural
results for the optimal policy hold for this system, i.e. Theorem 4.4.4 and Theorem 4.4.5 still
hold, even if µ1 6= µ2.

For Theorem 4.5.3 we do not need equal µi ’s, as G̃1 and G̃2 separately preserve MM,
and not only the sum of both. For symmetric system parameters, we compare the optimal
policy for a single repair server (see Figure 4.6b) with the case of ample repair capacity
(see Figure 4.6a). From the graphs it follows that the set of system parameters where
one can benefit from lateral transshipments, is much smaller in the case of a single repair
server.

4.5.5 Proactive lateral transshipments

We can include pro-active lateral transshipments (i.e. lateral transshipments not trig-
gered by a demand) in our two location inventory model. For this, we have to define an
operator modeling such an LT. We show that this operator propagates MM, so all struc-
tural results remain valid, and we prove that the optimal policy for proactive LTs is a
threshold type policy. We assume that, when a proactive LT is carried out, that we ship a
part in repair in the other direction. In this way, we the inventory positions S1, S2 remain
constant. Hence, a proactive LT from location 2 to 1 is possible when x2 > 0 and x1 < S1,
and analogously for a shipment from 1 to 2.

Let PPA
i be the costs for a pro-active LT to location i, and let transshipment time be

exponentially distributed with mean 1/τi . Let Fi be the operator for a pro-active LT to
location i, for i = 1 defined by:

F1 f (x1, x2)







min{PPA
1 + f (x1 + 1, x2 − 1),

f (x1, x2)} if x1 > 0 and x2 < S2;

f (x1, x2) otherwise,

and F2 defined analogously.

LEMMA 4.5.4. For i = 1,2:

Fi : MM→MM.

Including pro-active LTs, the value function becomes:

V F
n+1(x1, x2) =

1

ν F

 

2
∑

i=1

µGi V F
n (x1, x2) +

2
∑

i=1

λi Hi V F
n (x1, x2) +

2
∑

i=1

τi Fi V F
n (x1, x2)

!

,

for (x1, x2) ∈ S, n ≥ 0, again starting with V F
0 ≡ 0, where ν F = λ1 +λ2 + S1µ1 + S2µ2 +

τ1 +τ2 in the uniformization rate.

THEOREM 4.5.5. 1) V F is MM for all n≥ 0.
2) The optimal policy for applying proactive LTs to stockpoint 1 is described by a switching
curve T pa

1 (x1), such that a proactive LT is optimal if x2 ≥ T pa
1 (x1), and suboptimal other-

wise. Furthermore, T pa
1 (x1) is increasing in x1.

The analogous result holds for proactive LTs to stockpoint 2.
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Figure 4.8: Optimal policy, including proactive lateral transshipments, for Example 4.5.1.

Example 4.5.1. Consider an example with S1 = S2 = 4 and the following parameters:
λ1 = λ2 = 2, µ1 = µ2 = 1, τ1 = τ2 = 5, and cost parameters PEP

1 = 10, PEP
2 = 50,

P LT
1 = 1, P LT

2 = 5, and PPA
1 = PPA

2 = 0.2. The optimal policy for the demand fulfillments
and proactive lateral transshipments is given in Figure 4.8.

4.6 Conclusion

In this chapter, we proved that the structure of the optimal lateral transshipment policy is
a threshold type policy, and we gave sufficient conditions under which a (zero) hold back
policy or a complete pooling policy is optimal. We studied a number of model extensions
fitting within the same framework.

Interesting problems for further research would be the extension to three or more
stockpoints, variations in the repair time distribution (such as Erlangk distributed repair
times, or state-dependent repair rates), and the incorporation of so-called pro-active lat-
eral transshipments, i.e. rebalancing of the stock levels triggered by a replenishment.

4.A Appendix: Proofs

4.A.1 Proof of Lemma 4.4.1

PROOF. a) We give the proofs for the operator G1. By interchanging the numbering of the
locations, the results directly follow for the operator G2 as well.

(i) It is straightforward to check that if f is Decr(1) (cf. (4.4.1)), then G1 f is Decr(1)
as well, i.e. if f (x1, x2)≥ f (x1+1, x2), then G1 f (x1, x2)≥ G1 f (x1+1, x2), for all (x1, x2)
such that the states appearing exists ∈ S. Along the same lines it follows that if f is
Decr(2) (cf. (4.4.2)), then G1 f is Decr(2) as well, i.e. then G1 f (x1, x2)≥ G1 f (x1, x2+1).
Combining this proves that the operator G1 preserves Decr.

(ii) Assume that f is Conv(1) (cf. (4.4.3)), then we show that G1 f is Conv(1) as well.
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For x1 + 2< S1:

G1 f (x1, x2) + G1 f (x1 + 2, x2)
= (S1 − x1) f (x1 + 1, x2) + x1 f (x1, x2)
+ (S1 − x1 − 2) f (x1 + 3, x2) + (x1 + 2) f (x1 + 2, x2)

= (S1 − x1 − 2)
h

f (x1 + 1, x2) + f (x1 + 3, x2)
i

+ x1

h

f (x1, x2) + f (x1 + 2, x2)
i

+ 2 f (x1 + 1, x2) + 2 f (x1 + 2, x2)
≥ 2 (S1 − x1 − 2) f (x1 + 2, x2) + 2 x1 f (x1 + 1, x2) + 2 f (x1 + 1, x2) + 2 f (x1 + 2, x2)
= 2 (S1 − x1 − 1) f (x1 + 2, x2) + 2 (x1 + 1) f (x1 + 1, x2)
= 2 G1 f (x1 + 1, x2),

where the inequality holds by applying that f is Conv(1) on the parts between brackets.
And for x1 + 2= S1:

G1 f (S1 − 2, x2) + G1 f (S1, x2)
= 2 f (S1 − 1, x2) + (S1 − 2) f (S1 − 2, x2) + S1 f (S1, x2)
= 2 f (S1 − 1, x2) + (S1 − 2)[ f (S1 − 2, x2) + f (S1, x2)] + 2 f (S1, x2)
≥ 2 f (S1 − 1, x2) + 2 (S1 − 2) f (S1 − 1, x2) + 2 f (S1, x2)
= 2 f (S1, x2) + 2 (S1 − 1) f (S1 − 1, x2)
= 2 G1 f (S1 − 1, x2),

where again the inequality holds by applying that f is Conv(1) on the part between
brackets.

It is straightforward to check that if f is Conv(2) (cf. (4.4.4)), then G1 f is Conv(2) as
well, i.e. then G1 f (x1, x2) + G1 f (x1, x2 + 2) ≥ 2 G1 f (x1, x2 + 1). Combining this proves
that the operator G1 preserves Conv.

(iii) Along the same lines of the proof of (ii) one can prove that if f is Supermod
(cf. (4.4.5)), then G1 f is Supermod as well. Hence the operator G1 preserves Supermod.
b) (i)–(iii) trivially follow from part a).

(iv) We show that G1 + G2 preserves SuperC(1,2); then SuperC(2,1) follows by in-
terchanging the numbering of the locations. Assume that f is SuperC(1, 2) (cf. (4.4.6)),
then, for x1 + 2< S1 and x2 + 1< S2:

(G1 + G2) f (x1, x2 + 1) + (G1 + G2) f (x1 + 2, x2)

= (S1 − x1 − 2)
h

f (x1 + 1, x2 + 1) + f (x1 + 3, x2)
i

+ 2 f (x1 + 1, x2 + 1)

+ x1

h

f (x1, x2 + 1) + f (x1 + 2, x2)
i

+ 2 f (x1 + 2, x2)

+ (S2 − x2 − 1)
h

f (x1, x2 + 2) + f (x1 + 2, x2 + 1)
i

+ f (x1 + 2, x2 + 1)

+ (x2 + 1)
h

f (x1, x2 + 1) + f (x1 + 2, x2)
i

− f (x1 + 2, x2).

Now we use that f is SuperC(1, 2), and apply this to the terms between brackets. This
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gives

(G1 + G2) f (x1, x2 + 1) + (G1 + G2) f (x1 + 2, x2)

≥ (S1 − x1 − 2)
h

f (x1 + 2, x2) + f (x1 + 2, x2 + 1)
i

+ 2 f (x1 + 1, x2 + 1)

+ x1

h

f (x1 + 1, x2) + f (x1 + 1, x2 + 1)
i

+ 2 f (x1 + 2, x2)

+ (S2 − x2 − 1)
h

f (x1 + 1, x2 + 1) + f (x1 + 1, x2 + 2)
i

+ f (x1 + 2, x2 + 1)

+ (x2 + 1)
h

f (x1 + 1, x2) + f (x1 + 1, x2 + 1)
i

− f (x1 + 2, x2)

= (S1 − x1 − 1) f (x1 + 2, x2) + (x1 + 1) f (x1 + 1, x2)
+ (S1 − x1 − 1) f (x1 + 2, x2 + 1) + (x1 + 1) f (x1 + 1, x2 + 1)
+ (S2 − x2) f (x1 + 1, x2 + 1) + x2 f (x1 + 1, x2)
+ (S2 − x2 − 1) f (x1 + 1, x2 + 2) + (x2 + 1) f (x1 + 1, x2 + 1)
= (G1 + G2) f (x1 + 1, x2) + (G1 + G2) f (x1 + 1, x2 + 1).

The cases x1 + 2= S1 and/or x2 + 1= S2 are along the same lines.
(v) As MM = Supermod∩ SuperC (cf. (4.4.8)), it directly follows from parts (iii) and

(iv) that G1 + G2 preserves MM.

4.A.2 Proof of Lemma 4.4.2

PROOF. (i) It is straightforward to check that if f is Decr( j), then Hi f is Decr( j), for
i, j = 1, 2.
(ii) In order to prove that Hi preserves MM, we prove (cf. (4.4.8)) that it preserves
Supermod, SuperC(1,2) and SuperC(2, 1) (cf. (4.4.5)–(4.4.7)) together, that is, given
that f is Supermod, SuperC(1, 2) and SuperC(2, 1), we show that Hi f is Supermod,
SuperC(1, 2) and SuperC(2, 1) as well. We show this for H1; then for H2 it follows by
interchanging the numbering of the locations. Recall that Supermod and SuperC(i, j)
imply Conv(i) (cf. (4.4.3) and (4.4.4)).

The proofs come down to case checking: applying H1 to f (x) introduces a minimiza-
tion over three terms, so the sum of two gives a total of 3× 3= 9 possibilities, which we
all check separately. For this we use the trivial result:

a ≥min{a, b}, ∀a, b ∈R.

The proofs are given for x1 > 0, x2 > 0, but it is straightforward to check that they also
hold for the cases x1 = 0, x2 > 0, and x1 > 0, x2 = 0, and x1 = 0, x2 = 0.

Assume that f is Supermod, SuperC(1,2) and SuperC(2,1), which implies that f
is also Conv(1) and Conv(2). Below we prove that H1 preserves (i) Supermod, (ii)
SuperC(1, 2), and (iii) SuperC(2, 1).

(i) Supermod
For x1 > 0, x2 > 0 :

H1 f (x1, x2) +H1 f (x1 + 1, x2 + 1)

=min
n

f (x1 − 1, x2), f (x1, x2 − 1) + PLT1
, f (x1, x2) + PEP1

o
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+min
n

f (x1, x2 + 1), f (x1 + 1, x2) + PLT1
, f (x1 + 1, x2 + 1) + PEP1

o

=min
n

f (x1 − 1, x2) + f (x1, x2 + 1), f (x1 − 1, x2) + f (x1 + 1, x2) + PLT1
,

f (x1 − 1, x2) + f (x1 + 1, x2 + 1) + PEP1
, f (x1, x2 − 1) + PLT1

+ f (x1, x2 + 1),

f (x1, x2 − 1) + PLT1
+ f (x1 + 1, x2) + PLT1

,

f (x1, x2 − 1) + PLT1
+ f (x1 + 1, x2 + 1) + PEP1

,

f (x1, x2) + PEP1
+ f (x1, x2 + 1), f (x1, x2) + PEP1

+ f (x1 + 1, x2) + PLT1
,

f (x1, x2) + PEP1
+ f (x1 + 1, x2 + 1) + PEP1

o

.

It holds that:

f (x1 − 1, x2) + f (x1, x2 + 1)≥ f (x1, x2) + f (x1 − 1, x2 + 1) (by (4.4.5)),

f (x1 − 1, x2) + f (x1 + 1, x2) + PLT1
≥ 2 f (x1, x2) + PLT1

(by (4.4.3)),

f (x1 − 1, x2) + f (x1 + 1, x2 + 1) + PEP1

≥ 2 f (x1, x2)− f (x1 + 1, x2) + f (x1 + 1, x2 + 1) + PEP1

≥ f (x1, x2) + f (x1, x2 + 1) + PEP1
(by (4.4.3), resp. (4.4.5)),

f (x1, x2 − 1) + PLT1
+ f (x1, x2 + 1)≥ 2 f (x1, x2) + PLT1

(by (4.4.4)),

f (x1, x2 − 1) + PLT1
+ f (x1 + 1, x2) + PLT1

≥ f (x1, x2) + PLT1
+ f (x1 + 1, x2 − 1) + PLT1

(by (4.4.5)),

f (x1, x2 − 1) + PLT1
+ f (x1 + 1, x2 + 1) + PEP1

≥ 2 f (x1, x2)− f (x1, x2 + 1) + PLT1
+ f (x1 + 1, x2 + 1) + PEP1

≥ f (x1, x2) + PLT1
+ f (x1 + 1, x2) + PEP1

(by (4.4.4), resp. (4.4.5)),

f (x1, x2) + PEP1
+ f (x1 + 1, x2 + 1) + PEP1

≥ f (x1 + 1, x2) + PEP1
+ f (x1, x2 + 1) + PEP1

(by (4.4.5)).

This implies that:

H1 f (x1, x2) +H1 f (x1 + 1, x2 + 1)

≥min
n

f (x1, x2) + f (x1 − 1, x2 + 1), 2 f (x1, x2) + PLT1
,

f (x1, x2) + f (x1, x2 + 1) + PEP1
, f (x1, x2) + f (x1 + 1, x2 − 1) + 2 PLT1

,

f (x1, x2) + PLT1
+ f (x1 + 1, x2) + PEP1

, f (x1 + 1, x2) + f (x1, x2 + 1) + 2 PEP1

o

≥min
n

f (x1, x2), f (x1 + 1, x2 − 1) + PLT1
, f (x1 + 1, x2) + PEP1

o

+min
n

f (x1 − 1, x2 + 1), f (x1, x2) + PLT1
, f (x1, x2 + 1) + PEP1

o

= H1 f (x1 + 1, x2) +H1 f (x1, x2 + 1).

(ii) SuperC(1,2)
For x1 > 0, x2 > 0 :

H1 f (x1 + 2, x2) +H1 f (x1, x2 + 1)
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=min
n

f (x1 + 1, x2), f (x1 + 2, x2 − 1) + PLT1
, f (x1 + 2, x2) + PEP1

o

+min
n

f (x1 − 1, x2 + 1), f (x1, x2) + PLT1
, f (x1, x2 + 1) + PEP1

o

=min
n

f (x1 + 1, x2) + f (x1 − 1, x2 + 1), f (x1 + 1, x2) + f (x1, x2) + PLT1
,

f (x1 + 1, x2) + f (x1, x2 + 1) + PEP1
, f (x1 + 2, x2 − 1) + PLT1

+ f (x1 − 1, x2 + 1),

f (x1 + 2, x2 − 1) + PLT1
+ f (x1, x2) + PLT1

,

f (x1 + 2, x2 − 1) + PLT1
+ f (x1, x2 + 1) + PEP1

,

f (x1 + 2, x2) + PEP1
+ f (x1 − 1, x2 + 1), f (x1 + 2, x2) + PEP1

+ f (x1, x2) + PLT1
,

f (x1 + 2, x2) + PEP1
+ f (x1, x2 + 1) + PEP1

o

It holds that:

f (x1 + 1, x2) + f (x1 − 1, x2 + 1)≥ f (x1, x2) + f (x1, x2 + 1) (by (4.4.6)),

f (x1 + 2, x2 − 1) + PLT1
+ f (x1 − 1, x2 + 1)

≥ f (x1 + 1, x2 − 1) + f (x1 + 1, x2)− f (x1, x2) + PLT1
+ f (x1 − 1, x2 + 1)

≥ f (x1 + 1, x2 − 1) + PLT1
+ f (x1, x2 + 1) (by twice (4.4.6)),

f (x1 + 2, x2 − 1) + PLT1
+ f (x1, x2) + PLT1

≥ f (x1 + 1, x2 − 1) + PLT1
+ f (x1 + 1, x2) + PLT1

(by (4.4.6)),

f (x1 + 2, x2 − 1) + PLT1
+ f (x1, x2 + 1) + PEP1

≥ f (x1 + 1, x2 − 1) + f (x1 + 1, x2)− f (x1, x2) + PLT1
+ f (x1, x2 + 1) + PEP1

≥ 2 f (x1 + 1, x2) + PLT1
+ PEP1

(by (4.4.6), resp. (4.4.7)),

f (x1 + 2, x2) + PEP1
+ f (x1 − 1, x2 + 1)

≥ f (x1 + 1, x2) + f (x1 + 1, x2 + 1)− f (x1, x2 + 1) + PEP1
+ f (x1 − 1, x2 + 1)

≥ f (x1 + 1, x2) + f (x1, x2 + 1) + PEP1
(by (4.4.6), resp. (4.4.3)),

f (x1 + 2, x2) + PEP1
+ f (x1, x2) + PLT1

≥ 2 f (x1 + 1, x2) + PEP1
+ PLT1

(by (4.4.3)),

f (x1 + 2, x2) + PEP1
+ f (x1, x2 + 1) + PEP1

≥ f (x1 + 1, x2) + PEP1
+ f (x1 + 1, x2 + 1) + PEP1

(by (4.4.6)).

This implies that:

H1 f (x1 + 2, x2) +H1 f (x1, x2 + 1)

≥min
n

f (x1, x2) + f (x1, x2 + 1), f (x1 + 1, x2) + f (x1, x2) + PLT1
,

f (x1 + 1, x2 − 1) + f (x1, x2 + 1) + PLT1
, f (x1 + 1, x2 − 1) + f (x1 + 1, x2) + 2 PLT1

,

f (x1 + 1, x2) + f (x1, x2 + 1) + PEP1
, 2 f (x1 + 1, x2) + PLT1

+ PEP1
,

f (x1 + 1, x2) + f (x1 + 1, x2 + 1) + 2 PEP1

o

≥min
n

f (x1, x2), f (x1 + 1, x2 − 1) + PLT1
, f (x1 + 1, x2) + PEP1

o

+min
n

f (x1, x2 + 1), f (x1 + 1, x2) + PLT1
, f (x1 + 1, x2 + 1) + PEP1

o
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= H1 f (x1 + 1, x2) +H1 f (x1 + 1, x2 + 1).

(iii) SuperC(2,1)
For x1 > 0, x2 > 0 :

H1 f (x1, x2 + 2) +H1 f (x1 + 1, x2)

=min
n

f (x1 − 1, x2 + 2), f (x1, x2 + 1) + PLT1
, f (x1, x2 + 2) + PEP1

o

+min
n

f (x1, x2), f (x1 + 1, x2 − 1) + PLT1
, f (x1 + 1, x2) + PEP1

o

=min
n

f (x1 − 1, x2 + 2) + f (x1, x2), f (x1 − 1, x2 + 2) + f (x1 + 1, x2 − 1) + PLT1
,

f (x1 − 1, x2 + 2) + f (x1 + 1, x2) + PEP1
, f (x1, x2 + 1) + PLT1

+ f (x1, x2),

f (x1, x2 + 1) + PLT1
+ f (x1 + 1, x2 − 1) + PLT1

,

f (x1, x2 + 1) + PLT1
+ f (x1 + 1, x2) + PEP1

,

f (x1, x2 + 2) + PEP1
+ f (x1, x2), f (x1, x2 + 2) + PEP1

+ f (x1 + 1, x2 − 1) + PLT1
,

f (x1, x2 + 2) + PEP1
+ f (x1 + 1, x2) + PEP1

o

.

It holds that:

f (x1 − 1, x2 + 2) + f (x1, x2)≥ f (x1 − 1, x2 + 1) + f (x1, x2 + 1) (by (4.4.7)),

f (x1 − 1, x2 + 2) + f (x1 + 1, x2 − 1) + PLT1

≥ f (x1 − 1, x2 + 1) + f (x1, x2 + 1)− f (x1, x2) + f (x1 + 1, x2 − 1) + PLT1

≥ f (x1 − 1, x2 + 1) + f (x1 + 1, x2) + PLT1
(by twice (4.4.7)),

f (x1 − 1, x2 + 2) + f (x1 + 1, x2) + PEP1

≥ f (x1 − 1, x2 + 1) + f (x1, x2 + 1)− f (x1, x2) + f (x1 + 1, x2) + PEP1

≥ 2 f (x1, x2 + 1) + PEP1
(by (4.4.7), resp. (4.4.6)),

f (x1, x2 + 1) + PLT1
+ f (x1 + 1, x2 − 1) + PLT1

≥ f (x1, x2) + f (x1 + 1, x2) + 2 PLT1
(by (4.4.7)),

f (x1, x2 + 2) + PEP1
+ f (x1, x2)≥ 2 f (x1, x2 + 1) + PEP1

(by (4.4.4)),

f (x1, x2 + 2) + PEP1
+ f (x1 + 1, x2 − 1) + PLT1

≥ f (x1, x2 + 1) + f (x1 + 1, x2 + 1)− f (x1 + 1, x2) + PEP1
+ f (x1 + 1, x2 − 1) + PLT1

≥ f (x1, x2 + 1) + PLT1
+ f (x1 + 1, x2) + PEP1

(by (4.4.7), resp. (4.4.4)),

f (x1, x2 + 2) + PEP1
+ f (x1 + 1, x2) + PEP1

≥ f (x1, x2 + 1) + f (x1 + 1, x2 + 1) + 2 PEP1
(by (4.4.7)).

This implies that:

H1 f (x1, x2 + 2) +H1 f (x1 + 1, x2)

≥min
n

f (x1 − 1, x2 + 1) + f (x1, x2 + 1), f (x1 − 1, x2 + 1) + f (x1 + 1, x2) + PLT1
,

f (x1, x2 + 1) + PLT1
+ f (x1, x2), f (x1, x2) + f (x1 + 1, x2) + 2 PLT1

,
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2 f (x1, x2 + 1) + PEP1
, f (x1, x2 + 1) + PLT1

+ f (x1 + 1, x2) + PEP1
,

f (x1, x2 + 1) + f (x1 + 1, x2 + 1) + 2 PEP1

o

≥min
n

f (x1 − 1, x2 + 1), f (x1, x2) + PLT1
, f (x1, x2 + 1) + PEP1

o

+min
n

f (x1, x2 + 1), f (x1 + 1, x2) + PLT1
, f (x1 + 1, x2 + 1) + PEP1

o

= H1 f (x1, x2 + 1) +H1 f (x1 + 1, x2 + 1).

4.A.3 Proof of Theorem 4.4.4

PROOF. Consider a demand at stockpoint 1. For (x1, x2) ∈ S and u ∈ {0,1, 2}, define

w(u, x1, x2) :=







Vn(x1 − 1, x2) if u= 0,

Vn(x1, x2 − 1) + PLT1
if u= 1,

Vn(x1, x2) + PEP1
if u= 2,

(4.A.1)

where Vn(x1, x2) := ∞ if (x1, x2) /∈ S. Hence H1Vn(x1, x2) = minu∈{0,1,2} w(u, x1, x2).
Define, for u ∈ {0,1, 2} and x1 ∈ {0, 1, . . . S1 − 1}, x2 ∈ {0,1, . . . S2}:

∆wx1
(u, x1, x2) := w(u, x1 + 1, x2)−w(u, x1, x2).

Then for each n≥ 0, and for x2 > 0:

∆wx1
(1, x1, x2)−∆wx1

(0, x1, x2)

= Vn(x1 + 1, x2 − 1)− Vn(x1, x2 − 1)− Vn(x1, x2) + Vn(x1 − 1, x2)≥ 0

(as, by Theorem 4.4.3, Vn is SuperC(1,2)), and:

∆wx1
(2, x1, x2)−∆wx1

(1, x1, x2)

= Vn(x1 + 1, x2)− Vn(x1, x2)− Vn(x1 + 1, x2 − 1) + Vn(x1, x2 − 1)≥ 0

(as Vn is Supermod). So, for x2 > 0, ∆wx1
(u, x1, x2) is increasing in u:

∆wx1
(2, x1, x2)≥∆wx1

(1, x1, x2)≥∆wx1
(0, x1, x2).

This implies that, for every n ≥ 0, there exists a threshold for the inventory level x1,
which can depend on x2, say T di

n,1(x2), from which on it is optimal to fulfill demands
directly from stock. Next there exists a threshold, say T l t

n,1(x2), such that T l t
n,1(x2) ≤

T di
n,1(x2), from which on (until T di

n,1(x2)− 1) it is optimal to fulfill demands via a lateral
transshipment, and on the interval x1 = 0 up till T l t

n,1(x2)− 1 an emergency procedure
is optimal. Hence, if fn+1 is the minimizing policy in (4.3.1), then fn+1 is a threshold
policy. Note that the transition probability matrix of every stationary policy is unichain
(since every state can access (S1, S2)) and aperiodic (since the transition probability from
state (S1, S2) to itself is positive). Then, by Puterman [155, Theorem 8.5.4], the long run
average costs under the stationary policy fn+1 converges to the minimal long run average
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costs as n tends to infinity. Since there are only finitely many stationary threshold policies,
this implies that there exists an optimal stationary policy that is a threshold type policy.

For x2 = 0, lateral transshipments (u = 1) are not possible, and we have, for each
n≥ 0:

∆wx1
(2, x1, x2)−∆wx1

(0, x1, x2)

= Vn(x1 + 1, x2)− Vn(x1, x2)− Vn(x1, x2) + Vn(x1 − 1, x2)≥ 0

(as Vn is Conv(1)). Hence ∆wx1
(2, x1, 0) ≥ ∆wx1

(0, x1, 0), and so, for the special case
x2 = 0, there exists only one threshold. By the analogous reasoning as for x2 > 0, it
follows that there exists a T di

1 (0) (which is equal to T l t
1 (0)). As it is only possible to

deliver directly from stock if x1 ≥ 1, it follows that T di
1 (0)≥ 1.

By interchanging the numbering of the stockpoints, the analogous results for stock-
point 2 directly follow.

4.A.4 Proof of Theorem 4.4.5

PROOF. Analogously to the proof of Theorem 4.4.4, consider a demand at stockpoint 1,
and define:

∆wx2
(u, x1, x2) := w(u, x1, x2 + 1)−w(u, x1, x2),

where w(u, x1, x2) is as defined in (4.A.1). Then for each n≥ 0, and for x1 > 0:

∆wx2
(0, x1, x2)−∆wx2

(1, x1, x2)

= Vn(x1 − 1, x2 + 1)− Vn(x1 − 1, x2)− Vn(x1, x2) + Vn(x1, x2 − 1)≥ 0,

(as, by Theorem 4.4.3, Vn is SuperC(2, 1)), and:

∆wx2
(2, x1, x2)−∆wx2

(0, x1, x2)

= Vn(x1, x2 + 1)− Vn(x1, x2)− Vn(x1 − 1, x2 + 1) + Vn(x1 − 1, x2)≥ 0,

(as Vn is Supermod). Hence, for x1 > 0:

∆wx2
(2, x1, x2)≥∆wx2

(0, x1, x2)≥∆wx2
(1, x1, x2).

Analogously to the reasoning in the proof of Theorem 4.4.4, it now follows that, for n to
infinity, there exist two thresholds T̂ di

2 (x1) and T̂ l t
2 (x1), where T̂ di

2 (x1) ≤ T̂ l t
2 (x1), such

that from T̂ l t
2 (x1) lateral transshipments are optimal, from T̂ di

2 (x1) to T̂ l t
2 (x1)− 1 direct

delivering from stock is optimal, and from 0 to T̂ di
2 (x1)− 1 emergency procedures are

optimal.
For x1 = 0, directly satisfying a demand from stock (u = 0) is not possible, and we

have, for each n≥ 0:

∆wx2
(2, x1, x2)−∆wx2

(1, x1, x2) = Vn(x1, x2+1)−Vn(x1, x2)−Vn(x1, x2)+Vn(x1, x2−1)≥ 0,

(as Vn is Conv(2)). Hence ∆wx1
(2, x1, 0) ≥ ∆wx1

(0, x1, 0), and so, for the special case
x1 = 0, there exists only one threshold: T̂ l t

2 (0) (which is equal to T̂ di
2 (0)). As it is only

possible to apply a lateral transshipment if x2 ≥ 1, it follows that T̂ l t
2 (0)≥ 1.

By interchanging the numbering of the stockpoints, the analogous results for stock-
point 2 directly follow.
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4.A.5 Proof of Theorem 4.4.6

PROOF. We prove part 1a). Part 1b) then directly follows by interchanging the stock-
points, and 2) is a trivial consequence of 1a) and 1b).

For 1a), we prove that a∗1(1, x2) = 0 for all x2 ∈ {0, 1, . . . , S2}, then it follows by
Theorem 4.4.4 that T di

1 (x2) = 1 for all x2. It suffices to prove that, for all n≥ 0:

Vn(1, x2) + PEP1
≥ Vn(0, x2), for x2 ∈ {0, . . . , S2}, (4.A.2)

Vn(1, x2 − 1) + PLT1
≥ Vn(0, x2), for x2 ∈ {1, . . . , S2}. (4.A.3)

For S1 = 0 trivially T di
1 (x2) = 1 for all x2, and for S1 > 0, S2 = 0 we only have to

prove (4.A.2).
We prove the inequalities by induction, using that, by Theorem 4.4.3, Vn satisfies (4.4.1)–

(4.4.7). For V0 ≡ 0 both inequalities trivially hold. We first prove (i) the induction step
of (4.A.2), then (ii) that of (4.A.3), both for S1 > 0. All given inequalities hold by the
induction hypothesis, unless stated otherwise.

(i) Assume that (4.A.2) holds for a given n (induction hypothesis), and let S1 > 0. We
consider the operators H1, H2, G1 and G2 separately.

For x2 = 0:

H1Vn(1, 0) + PEP1
=min{PEP1

+ Vn(0,0), 2 PEP1
+ Vn(1,0)}

≥min{PEP1
+ Vn(0,0), PEP1

+ Vn(0, 0)}

= PEP1
+ Vn(0,0) = H1Vn(0,0);

and for x2 ∈ {1, 2, . . . , S2}:

H1Vn(1, x2) + PEP1
=min{PEP1

+ Vn(0, x2), PEP1
+ PLT1

+ Vn(1, x2 − 1), 2 PEP1
+ Vn(1, x2)}

≥min{PLT1
+ Vn(0, x2 − 1), PEP1

+ Vn(0, x2)}= H1Vn(0, x2).

For x2 = 0:

H2Vn(1, 0) + PEP1
=min{PEP1

+ PLT2
+ Vn(0, 0), PEP1

+ PEP2
+ Vn(1,0)}

≥min{PEP1
+ PLT2

− PEP2
+H2Vn(0,0), H2Vn(0, 0)}

= H2Vn(0, 0) +min{PEP1
+ PLT2

− PEP2
, 0};

and for x2 ∈ {1, 2, . . . , S2}:

H2Vn(1, x2) + PEP1
=min{PEP1

+ Vn(1, x2 − 1), PEP1
+ PLT2

+ Vn(0, x2), PEP1
+ PEP2

+ Vn(1, x2)}

≥min{Vn(0, x2 − 1), PEP1
+ PLT2

+ Vn(0, x2), PEP2
+ Vn(0, x2)}

≥ H2Vn(0, x2) +min{PEP1
+ PLT2

− PEP2
, 0},

as H2Vn(0, x2) =min{Vn(0, x2 − 1), PEP2
+ Vn(0, x2)}.

For the operator G1 we obtain:

G1Vn(1, x2) + (S1 − 1)PEP1
= (S1 − 1)Vn(2, x2) + Vn(1, x2) + (S1 − 1)PEP1

= (S1 − 1)[Vn(2, x2)− Vn(1, x2)] + S1Vn(1, x2) + (S1 − 1)PEP1

≥ (S1 − 1)[Vn(1, x2)− Vn(0, x2)] + S1Vn(1, x2) + (S1 − 1)PEP1

≥ S1Vn(0,1) = G1Vn(0, x2),
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where the first inequality holds as Vn is Conv(1) (cf. Theorem 4.4.3).
For x2 ∈ {0,1, . . . , S2 − 1} we obtain:

G2Vn(1, x2) + S2PEP1
= (S2 − x2)Vn(1, x2 + 1) + x2Vn(1, x2) + S2PEP1

≥ (S2 − x2)Vn(0, x2 + 1) + x2Vn(0, x2) = G2Vn(0, x2);

and for x2 = S2 trivially:

G2Vn(1, S2) + S2PEP1
= S2Vn(1, S2) + S2PEP1

≥ S2Vn(0, S2) = G2Vn(0, S2).

Combining these give, for all x2 (recall ν = λ1 +λ2 +µS1 +µS2):

ν(Vn+1(1, x2) + PEP1
)

= λ1H1Vn(1, x2) +λ2H2Vn(1, x2) +µG1Vn(1, x2) +µG2Vn(1, x2) + ν PEP1

= λ1[H1Vn(1, x2) + PEP1
] +λ2[H2Vn(1, x2) + PEP1

] +µ[G1Vn(1, x2) + (S1 − 1)PEP1
]

+µ[G2Vn(1, x2) + S2PEP1
] +µPEP1

≥ λ1H1Vn(0, x2) +λ2[H2Vn(0, x2) +min{PEP1
+ PLT2

− PEP2
, 0}] (4.A.4)

+µG1Vn(0, x2) +µG2Vn(0, x2)
≥ νVn+1(0, x2), (4.A.5)

where the last inequality holds by condition (4.4.9). This completes the induction step,
and hence (4.A.2) holds for all n≥ 0.

(ii) Assume that (4.A.3) holds for a given n (induction hypothesis), and let S1, S2 > 0.
We consider the operators H1, H2 and G1 + G2 separately:

For x2 ∈ {2, . . . , S2}:

H1Vn(1, x2 − 1) + PLT1

=min{PLT1
+ Vn(0, x2 − 1), 2 PLT1

+ Vn(1, x2 − 2), PLT1
+ PEP1

+ Vn(1, x2 − 1)}

≥min{PLT1
+ Vn(0, x2 − 1), PEP1

+ Vn(0, x2)}= H1Vn(0, x2);

and for x2 = 1:

H1Vn(1,0) + PLT1

=min{PLT1
+ Vn(0,0), PLT1

+ PEP1
+ Vn(1, 0)}

≥min{PLT1
+ Vn(0,0), PEP1

+ Vn(0,1)}= H1Vn(0,1).

For x2 ∈ {2, . . . , S2}:

H2Vn(1, x2 − 1) + PLT1

=min{PLT1
+ Vn(1, x2 − 2), PLT1

+ PLT2
+ Vn(0, x2 − 1), PLT1

+ PEP2
+ Vn(1, x2 − 1)}

≥min{Vn(0, x2 − 1), PEP2
+ Vn(0, x2)}= H2Vn(0, x2);

and for x2 = 1:

H2Vn(1, 0) + PLT1

=min{PLT1
+ PLT2

+ Vn(0, 0), PLT1
+ PEP2

+ Vn(1,0)}

≥min{Vn(0,0), PEP2
+ Vn(0,1)}= H2Vn(0,1).
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For x2 ∈ {1, . . . , S2 − 1}:

(G1 + G2)Vn(1, x2 − 1) + (S1 + S2)PLT1

= (S1 − 1)Vn(2, x2 − 1) + Vn(1, x2 − 1)
+ (S2 − x2 + 1)Vn(1, x2) + (x2 − 1)Vn(1, x2 − 1) + (S1 + S2)PLT1

= (S1 − 1)[Vn(2, x2 − 1)− Vn(1, x2)] + (S1 − 1)Vn(1, x2) + Vn(1, x2 − 1)
+ (S2 − x2)[Vn(1, x2)− Vn(0, x2 + 1)] + Vn(1, x2) + (S2 − x2)Vn(0, x2 + 1)
+ x2[Vn(1, x2 − 1)− Vn(0, x2)]− Vn(1, x2 − 1) + x2Vn(0, x2) + (S1 + S2)PLT1

≥ (S1 − 1)[Vn(1, x2 − 1)− Vn(0, x2)] + S1Vn(1, x2)
+ (S2 − x2)[Vn(1, x2)− Vn(0, x2 + 1)] + (S2 − x2)Vn(0, x2 + 1)
+ x2[Vn(1, x2 − 1)− Vn(0, x2)] + x2Vn(0, x2) + (S1 + S2)PLT1

≥ S1Vn(1, x2) + (S2 − x2)Vn(0, x2 + 1) + x2Vn(0, x2) + PLT1

= (G1 + G2)Vn(0, x2) + PLT1
,

where the first inequality holds as Vn is SuperC(1,2) (cf. Theorem 4.4.3). For x2 = S2:

(G1 + G2)Vn(1, S2 − 1) + (S1 + S2)PLT1

= (S1 − 1)Vn(2, S2 − 1) + Vn(1, S2 − 1)
+ Vn(1, S2) + (S2 − 1)Vn(1, S2 − 1) + (S1 + S2)PLT1

= (S1 − 1)[Vn(2, S2 − 1)− Vn(1, S2)] + S1Vn(1, S2)
+ S2[Vn(1, S2 − 1)− Vn(0, S2)] + S2Vn(0, S2) + (S1 + S2)PLT1

≥ (S1 − 1)[Vn(1, S2 − 1)− Vn(0, S2)] + S1Vn(1, S2)
+ S2[Vn(1, S2 − 1)− Vn(0, S2)] + S2Vn(0, S2) + (S1 + S2)PLT1

≥ S1Vn(1, S2) + S2Vn(0, S2) + PLT1
= (G1 + G2)Vn(0, S2) + PLT1

,

where the first inequality again holds as Vn is SuperC(1,2).
Combining these gives, for all x2 ∈ {1, . . . , S2}:

ν(Vn+1(1, x2 − 1) + PLT1
)

= λ1H1Vn(1, x2 − 1) +λ2H2Vn(1, x2 − 1) +µ(G1 + G2)Vn(1, x2 − 1) + ν PLT1

= λ1[H1Vn(1, x2 − 1) + PLT1
] +λ2[H2Vn(1, x2 − 1) + PLT1

]

+µ[(G1 + G2)Vn(1, x2 − 1) + (S1 + S2)PLT1
]

≥ λ1H1Vn(0, x2) +λ2H2Vn(0, x2) +µ(G1 + G2)Vn(0, x2) = νVn+1(0, x2),

which completes the induction step, and hence (4.A.3) holds for all n≥ 0.

4.A.6 Proof of Theorem 4.4.7

PROOF. We again prove only part 1a), as again part 1b) directly follows by interchanging
the stockpoints, and 2) is a trivial consequence of 1a) and 1b).

For 1a), analogously to the proof of Theorem 4.4.6, we prove that a∗1(0, 1) = 1, then
it follows by Theorem 4.4.5 that T̂ l t

1 (0) = 1. By induction, we prove that, for all n≥ 0:

Vn(0,1) + PEP1
≥ Vn(0,0) + PLT1

. (4.A.6)
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For V0 ≡ 0 this trivially holds.
Assume that (4.A.6) holds for a given n (induction hypothesis), and we consider the

operators H1, H2, G1 and G2 separately:

H1Vn(0,1) + PEP1
=min{PEP1

+ PLT1
+ Vn(0, 0), 2 PEP1

+ Vn(0, 1)}

≥ PEP1
+ PLT1

+ Vn(0, 0) = H1Vn(0, 0) + PLT1
;

H2Vn(0, 1) + PEP1
=min{PEP1

+ Vn(0,0), PEP1
+ PEP2

+ Vn(0, 1)}

≥min{PEP1
− PEP2

+ PEP2
+ Vn(0, 0), PEP2

+ Vn(0, 0) + PLT1
}

= H2Vn(0, 0) +min{PEP1
− PEP2

, PLT1
},

as H2Vn(0,0) = PEP2
+ Vn(0, 0);

G1Vn(0,1) + S1PEP1
= S1[Vn(1,1)− Vn(1, 0) + Vn(1, 0) + PEP1

]

≥ S1[Vn(0,1)− Vn(0, 0) + Vn(1, 0) + PEP1
]

≥ S1[Vn(1,0) + PLT1
] = G1Vn(0,0) + S1PLT1

,

where the first inequality holds as Vn is Supermod;

G2Vn(0,1) + (S2 − 1)PEP1
= (S2 − 1)[Vn(0,2)− Vn(0, 1) + PEP1

] + S2Vn(0, 1)

≥ (S2 − 1)[Vn(0,1)− Vn(0, 0) + PEP1
] + S2Vn(0, 1)

= S2Vn(0,1) + (S2 − 1)PLT1
= G2Vn(0,0) + (S2 − 1)PLT1

,

where the first inequality holds as Vn is Conv(2).
Combining these, using condition (4.4.11), gives, analogously to (4.A.5), the induc-

tion step, and hence (4.A.6) holds for all n≥ 0.

4.A.7 Proof of Lemma 4.5.1

PROOF. We give the proofs for the operator G̃1. By interchanging the numbering of the
locations, the results directly follow for the operator G̃2 as well.

(i) It is straightforward to check that if f is Decr(1) (cf. (4.4.1)), then G̃1 f is Decr(1)
as well, and if f is Decr(2) (cf. (4.4.2)), then G̃1 f is Decr(2) as well. Combining this
proves that G̃1 preserves Decr.

(ii) Assume that f is Conv(1) (cf. (4.4.3)), then we show that G̃1 f is Conv(1) as well.
For x1+2< S1 this is straightforward to check, for the case x1+2= S1 we need Decr(1):

G̃1( f (x1, x2) + f (x1 + 2, x2)) = f (x1 + 1, x2) + f (x1 + 2, x2)

≥ f (x1 + 2, x2) + f (x1 + 2, x2) = 2 G̃1 f (x1 + 1, x2).

The preservation of Conv(2) (cf. (4.4.4)) is again straightforward to check, and hence G̃1
preserves Conv.

(iii) It is straightforward to check that if f is Supermod (cf. (4.4.5)), then G̃1 f is
Supermod as well, hence G̃1 preserves Supermod.

(iv) It is straightforward to check that if f is SuperC(1,2) (cf. (4.4.6)), then G̃1 f is
SuperC(1,2) as well, hence G̃1 preserves SuperC(1,2). Assume that f is SuperC(2,1)
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(cf. (4.4.6)), then we show that G̃1 f is SuperC(2,1) as well. For x1 + 1 < S1 this is
straightforward to check, for the case x1 + 1= S1 we need Conv(2):

G̃1( f (x1, x2 + 2) + f (x1 + 1, x2)) = f (x1 + 1, x2 + 2) + f (x1 + 1, x2)
≥ f (x1 + 1, x2 + 1) + f (x1 + 1, x2 + 1)

= G̃1( f (x1, x2 + 1) + f (x1 + 1, x2 + 1)).

(v) By (4.4.8), this is a direct consequence of parts (iii) and (iv).

4.A.8 Proof of Lemma 4.5.4

PROOF. The proof is cf. Koole [116], as Fi without the condition x j < S j is a special case
of TC T D( j), defined on [116, p.25]. Hence, by applying [116, Theorem 7.4], the result
follows. It remains to check that Supermod, SuperC(1,2) and SuperC(2, 1) also hold for
the border x j = S j , which is straightforwardly checked to be the case.

4.A.9 Proof of Theorem 4.5.5

PROOF. 1) By induction on n, as V F
0 ≡ 0 is MM, and using the result of Lemma 4.5.4.

2) Analogously to the proofs of Theorems 4.4.4 and 4.4.5, in particular using that V F is
SuperC(1, 2) and SuperC(2,1) (which holds as V F is MM).
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5
APPROXIMATE EVALUATION OF

MULTI-LOCATION MODELS WITH HOLD BACK

LEVELS

In this chapter, we consider a continuous-time, single-echelon, multi-location inventory
model with Poisson demand processes. In case of a stock-out at a local warehouse, a
demand can be fulfilled via a lateral transshipment (LT). Each warehouse is assigned a
pre-determined sequence of other warehouses where it will request for an LT. However,
a warehouse can hold its last part(s) back from such a request. This is called a hold
back pooling policy, where each warehouse has hold back levels determining whether a
request for an LT by another warehouse is satisfied. We are interested in the fractions of
demand satisfied from stock (fill rate), via an LT, and via an emergency procedure from an
external source. From these, the average costs of a policy can be determined. We present
a new approximation algorithm for the evaluation of a given policy, approximating the
above mentioned fractions.

Whereas algorithms currently known in the literature approximate the stream of LT
requests from a warehouse by a Poisson process, we use an interrupted Poisson process.
This is a process that is turned alternatingly On and Off for exponentially distributed
durations. This leads to the On/Off overflow algorithm. In a numerical study we show
that this algorithm is significantly more accurate than the algorithm based on Poisson
processes, although it requires a longer computation time. Furthermore, we show the
benefits of hold back levels, and we illustrate how our algorithm can be used in a heuristic
search for the setting of the hold back levels.

5.1 Introduction

Pooling of inventory has proven to be an interesting option for costs reductions and ser-
vice level improvements. By sharing inventory between local warehouses such pooling
benefits can be achieved. In case of a stock-out at one warehouse, a demand can be sat-
isfied via a stock transfer from another warehouse. These stock transfers, which happen
within the same echelon, are called lateral transshipments (LTs). One possible strategy
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for this is complete pooling, under which all parts at all local warehouses may be used
for an LT. Complete pooling however, is not always optimal. In this chapter we study the
so-called hold back pooling policy. In Chapter 4, we have proven this policy to be optimal
under certain conditions in a two location setting. The policy was introduced by Xu et
al. [215] in a periodic review setting, and also arose to be optimal in a related two loca-
tion problem by Archibald et al. [6]. Under a hold back pooling policy, a warehouse can
hold back its last part(s) in stock from an LT request from another warehouse. The hold
back levels of the warehouses determine how many parts are held back. For determining
the optimal hold back levels, evaluation of the costs of a given setting is necessary. These
costs can be calculated when one knows the fractions of the demand that are satisfied
from stock (fill rate), satisfied via an LT, and satisfied via an emergency procedure. For
this, we present a new approximate evaluation algorithm. Such an algorithm facilitates
the search for optimal hold back and base stock levels. The distinct feature of our al-
gorithm is that it approximates the LT requests between the warehouses more precisely
than current algorithms. These are commonly approximated by Poisson processes (see
Axsäter [10], Alfredsson and Verrijdt [2], Kukreja et al. [123], Kutanoglu [124], Kra-
nenburg and Van Houtum [120], and Reijnen et al. [157]), where we use more accurate
interrupted Poisson processes. This improves the accuracy of the results, which we show
in an extensive numerical study. Moreover, compared to current algorithms given in the
literature, our algorithm can deal with hold back levels. To make comparison of results
possible, we extend an existing Poisson approximation algorithm for hold back levels.

In the present chapter, we consider an inventory model consisting of N local ware-
houses, with a given base stock policy. In case of positive on-hand stock at a particular
warehouse, an incoming demand at that warehouse is directly satisfied. In case of a
stock-out, the demand is satisfied via either an LT or an emergency procedure. A local
warehouse is only willing to hand out a part to an LT if it has sufficient inventory, that
is, if its on-hand stock level is above a certain threshold, called the hold back level. This
hold back level can depend on the location the LT request originates from. Furthermore,
each warehouse has a prescribed sequence of at most N − 1 other warehouses that will
be contacted for an LT.

Our model is motivated by spare parts inventory systems that serve installed bases
of technically advanced machines. As downtimes of these machines are very expensive,
spare parts stocks are needed to quickly respond to failures of machines. Further, back-
orders are not allowed, and thus LTs and emergency (repair) procedures are applied.
Typically, demand rates are low and many spare parts are expensive. In such situations,
the application of LTs may be very beneficial. Robinson [162] showed that substantial
cost savings can be realized by the use of LTs, even when the transportation costs for LTs
are high. Based on two case studies in the computer and automobile industry, Cohen
and Lee [55] showed that stock pooling is an effective way to improve the service levels
with even less on–hand inventory. A case study by Kranenburg and Van Houtum [120] at
ASML has shown that using LTs at both the tactical and operational planning level leads
to a 30% cost reduction in comparison to using LTs at the operational planning level only.
Cohen et al. [53] point out that the pooling of spare parts is one of the best ways for
companies to realize cost reductions.

As inventory pooling can simultaneously reduce costs and improve service levels, a
lot of research has been devoted to the use of LTs, see Wong et al. [212] and Paterson
et al. [153] for overviews. There are many options for the decisions on when to apply
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LTs. Generally, we distinguish between complete pooling and partial pooling. For partial
pooling all kinds of restrictions are possible, e.g. LTs can only take place between geo-
graphically nearby warehouses [124, 44, 125, 157], the LTs might be executed in only
one way [12, 132, 151], not all inventory has to be shared [215, 193]. We take these
restrictions into account in the following way. Firstly, each warehouse is assigned a se-
quence of warehouses it consults for an LT. Reijnen et al. [157] motivate this by a time
constraint on the fulfillment of a demand: only warehouses close enough are consulted.
Another motivation may be the transport facilities nearby some warehouses. In this way,
also transshipments in one-direction only can be taken into account. Next to this, we use
a hold back policy, cf. [215]. Note that by the combination of these options, we have a
very general form of partial pooling. Complete pooling forms a special case, obtained
when each warehouse can request for an LT from all other warehouses and all hold back
levels are set to zero.

LTs limited by holding back inventory is mainly considered in decentralized inventory
models, see e.g. [217, 218]. In such a setting, the local warehouses are independently
owned and operated, which gives a game theoretical setting. Another reason for holding
back parts is a periodic review setting. Based on the remaining time until a scheduled
replenishment, the decision is taken if an LT takes places, as in Archibald et al. [6]. This
also occurs in a periodic review setting when the replenishment lead times are non-zero,
see Tagaras and Cohen [175]. We, however, concentrate on a continuous review model
under centralized control.

Our incentive for the introduction of hold back levels are the results in Chapter 4
(see also Van Wijk et al. [193]) in which it is proven for two local warehouses that the
optimal LT policy structure is a hold back policy, under two (sufficient) conditions on
the cost parameters. These conditions are typically satisfied when the LT costs are non-
negligible, and the emergency procedure costs at both locations are not too asymmetric.
The setting assumed is identical to the setting as presented here. The benefit of holding
back inventory occurs when a warehouse has only one or a few parts left in stock. When
handing e.g. the last part out to an LT request, costs have to be made for this. This
warehouse is stocked out until the next replenishment. When it faces a demand during
this time, this demand has to be satisfied either via an LT or emergency procedure. In
both cases, more costs have to be made than when the first LT request was refused.

From the results of Chapter 4 for two locations, we might expect such a policy to be
optimal too, or at least to perform well, for a multi-location setting. Hence, in this work
we assume a hold back policy. Although, under the given policy structure, exact evalua-
tion and optimization is theoretically possible via Markov chain analysis, this is infeasible
for large instances by the curse of dimensionality, and calculation times explode. Large
problem instances require both accurate and fast approximate evaluation algorithms and
effective and efficient heuristic optimization procedures (which are built on approximate
evaluations). The focus of this chapter is on the development of evaluation algorithms.
The development of heuristics requires a study in itself and, in essence, is left outside
the scope of this chapter (we do touch this topic in Section 5.5, where we show benefits
of hold back levels and we consider the heuristic optimization of hold back levels under
given base stock levels).

The presented approximation algorithm is related to the approximate evaluation
method as described in Axsäter [10]. He decomposes the network of local warehouses
into individual local warehouses. The LTs between them are modeled as overflow de-
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mand streams, which are approximated by Poisson processes. In an iterative approach
the rates of these Poisson streams and the performance characteristics of the individual
local warehouses, are alternately updated. Similar algorithms are used in a.o. [2, 123,
124, 120, 157], each focusing on a different setting.

This chapter extends the above approximate evaluation methods in two directions.
First, our model extends all earlier partial pooling models, as we allow for all earlier
studied options for partial pooling. Second, our algorithm uses a more accurate approx-
imation of the overflow demand streams. We approximate these streams by a Poisson
process that can be turned On and Off, known as an interrupted Poisson process (IPP, cf.
Kuczura [122]). When a warehouse has parts in stock, the demand overflow to another
local warehouse where it requests for LTs, is turned Off. During a stock-out, the demand
overflow is turned On and follows a Poisson process. When the consulted warehouse is
that low on inventory that it does not fulfill LT requests, the overflow demand stream is
routed to a next warehouse, etc. We approximate the durations of these On and Off times
by exponential distributions. We call this the On/Off overflow algorithm. We refer to the
algorithms using an ordinary Poisson overflow process, as the Poisson overflow algorithm.
By an extensive numerical study, we show that the On/Off overflow algorithm is very
accurate, while still being efficient in terms of computations time. We also show that it is
significantly more accurate than the Poisson overflow algorithm.

An IPP is a special case of a Markov modulated Poisson process (MMPP, see Fischer
and Meier-Hellstern [80] and the reference therein). MMPPs have often been used to
describe the arrival process of data and telecommunication traffic, see e.g. [102]. An IPP
is a 2-state MMPP where one arrival rate is zero, and arises as a natural approximation
for the overflow process of (multi-server) queues, see [122]. E.g., Meier-Hellstern [138]
uses IPPs for the approximative analysis of a queueing system consisting of multiple
multi-server queues, in which overflows are rerouted to other queues.

The LT problem as studied here is also related to call center models (see Gans et
al. [87] for an overview). In these systems, calling customers can be handled by dif-
ferent so-called operators or groups of operators. The inventory in our model is the
equivalent of the operators in these call center models. Certain types of calls can only
be handled by a subset of operators having appropriate skills. This leads to skill-based-
routing of the customers, which gives a form of partial pooling. For structures with many
alternative routings, hardly any fast evaluation methods seem to be available in the call
center literature. Our type of approximation may be applied to such call centers as well.
A complication that has to be incorporated is that in call centers a rerouted customer
typically has a slower service rate.

Finally, the idea of hold back levels is related to so-called critical levels for stock ra-
tioning problems, see Topkis [183]. In these problems, a single warehouse faces multiple
classes of customers, with different penalty costs (and hence priorities) for not satisfying
a demand. The last part(s) are kept back from lower priority demands, reserving them
for the higher priority demand classes. The optimal policy in this case is proven to be a
critical level policy, see [143, 183], where the critical levels determine whether a demand
is satisfied. Our model can be seen as an extension to a multi-location setting with one
class of customers per location.

The outline of this chapter is as follows. We describe the model in more detail and
introduce the notation in Section 5.2. In Section 5.3, we describe the Poisson overflow
algorithm and present our On/Off overflow algorithm. In Section 5.4, a numerical study



5.2 MODEL AND NOTATION 85

is conducted to test the performance of the On/Off overflow algorithm, using the Poisson
overflow algorithm as the benchmark. In Section 5.5, we show the benefits of hold
back levels and present a simple heuristic optimization procedure for hold back levels
under given base stock levels. Finally, we conclude in Section 5.6. This chapter is based
on [195].

5.2 Model and notation

We consider a spare parts inventory system with N local warehouses, numbered i =
1, 2, . . . , N , which provide repairable spare parts for a single critical component of an
advanced technical system. This initial stock level at local warehouse i, i = 1, . . . , N , is
denoted by Si ∈N∪ {0}, which is referred to as the base stock level. The actual on-hand
stock is denoted by x i ∈ {0, 1, . . . , Si}. Define x = {x1, . . . , xN}. In case of a stock-out,
a demand can be fulfilled from another warehouse. In this case, a part is transshipped
from a warehouse with positive on-hand stock. This is called a lateral transshipment
(LT). Each warehouse has a set of hold back levels, determining if LT requests from other
warehouses will be accepted. Let hi, j ∈ {0, . . . , Si} be the hold back level at warehouse i
for accepting an LT request from warehouse j 6= i. Only if x i > hi, j , the request is fulfilled.
Define hi,i = 0 and hi = (hi,1, . . . , hi,N ).

When a system breaks down, the failed part has to be replaced by a spare part. The
failed part is returned to the stockpoint that supplied the requested spare part, repaired,
and is added back to stock after repair. The repair process at local warehouse i is mod-
eled as an ample server queue with exponential service times with mean 1/µi; i.e., the
repair rate equals (Si − x i)µi . This is equivalent to assuming that repair lead times at
warehouse i are exponentially distributed and mutually independent. This assumption
facilitates the analysis and is known to be justified, because the performance character-
istics of the system as a whole are relatively insensitive to the lead time distributions
for repairs, see [2, 157]. Note that only minor changes would have to be made in our
analysis to deal with other settings for the repair process, such as a repair rate of µi ,
independently of the number of outstanding orders.

The demand at warehouse i is given by a Poisson process with rate λi > 0, i =
1, . . . , N . We refer to this as class i demand. If there is on-hand stock at the warehouse
where a demand arises, the demand is directly fulfilled. Otherwise, the warehouse re-
quests for an LT at other warehouses. For this, each warehouse has a pre-specified order
by which it will contact other warehouses. Denote this sequence for warehouse i by σi ,
whose entries are in {1, . . . , N}\{i}. If e.g. σ1 = {2, 3}, then warehouse 1 will first con-
sult 2 for an LT, then 3, and otherwise the demand is satisfied by an external source and
thus lost for the local warehouses (see Figure 5.1). The latter is referred to as an emer-
gency procedure. By j ∈ σi we denote that j is an element of the sequence σi , and σi(k)
denotes the kth element of the sequence, 1≤ k ≤ |σi |, where |σi | denotes the number of
elements in the sequence. As i /∈ σi , we have 0 ≤ |σi | ≤ N − 1. Location j 6= i accepts
warehouse i’s LT request only if x j > h j,i . In this case, a part is taken from warehouse j’s
stock and used to fulfill warehouse i’s demand. If x j ≤ h j,i for all j ∈ σi (or if σi = ;),
then the demand is lost for the local warehouses. We do not allow for backorders, nei-
ther for rebalancing of stock. We assume all demand and repair processes to be mutually
independent.
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Figure 5.1: Demand overflow from warehouse 1 when σ1 = (2, 3).

So, for a demand at warehouse i, there are three possibilities to fulfill it: directly from
stock, via an LT, or via an emergency procedure. We are interested in the fractions of the
demands that are fulfilled in either way, so we define for warehouse i:

• βi: fraction of the class i demand that is fulfilled directly from stock;

• αi, j: fraction of the class i demand that is fulfilled via an LT from j ( j 6= i),
and by definition αi, j = 0 if j /∈ σi;

• θi: fraction of the class i demand fulfilled via emergency procedure.

Furthermore, we define αi to be the total fraction of the class i demand at warehouse i
that is fulfilled via an LT:

αi =
∑

j∈σi

αi, j , (5.2.1)

where an empty sum equals zero. By definition, for all i it holds that:

βi +αi + θi = 1. (5.2.2)

The model can be evaluated exactly as a Markov process for given hold back and base
stock levels. The state of the system is given by the vector of on-hand stock levels x =
{x1, . . . , xN} ∈ S where the state space S is given by S = {0,1, . . . , S1}×. . .×{0,1, . . . , SN}.
For N = 2 the transition rates are shown in Figure 5.2. Denote by Q the transition rate
matrix and by π the stationary probability distribution of x . It is well known that π can
be found by solving the following system:







πQ = 0,
∑

x∈S
π(x) = 1. (5.2.3)

From π, the values of βi , αi, j , and θi follow.

By the dimension of S, which is |S| =
N
∏

i=1

(Si + 1), and hence the dimension of Q,

evaluation of the stationary probability distribution by solving (5.2.3) is not feasible for
larger values of N and Si because of the curse of dimensionality. Hence, there is a need
for fast and accurate approximations for the βi ’s, αi, j ’s, and θi ’s.
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Figure 5.2: Diagram of the transition rates for N = 2, whenσ1 = (2), σ2 = (1) and the hold
back levels are given by h1,2 = 2 and h2,1 = 1. Note that when x1 = 0 and x2 > h2,1 = 1,
demands at warehouse 1 are satisfied by an LT from warehouse 2, and vice versa when
x2 = 0 and x1 > h1,2 = 2. Indicated are the states that contribute to β1 (light gray), α1
(=α1,2, gray), and θ1 (dark gray).

5.3 Approximation algorithms

In this section we present the Poisson overflow algorithm and the On/Off overflow algo-
rithm. Both approximate the βi , αi, j , and θi for all i and j when the hold back and base
stock levels are given. We first explain the general idea behind both algorithms. Then,
for each one separately, we discussion the steps it consists of in more detail.

5.3.1 Idea behind approximations

Our approximation is based on a decomposition of the network of warehouses into indi-
vidual warehouses, as in Axsäter [10]. In this way, we only deal with solving a Markov
process per local warehouse, with states x i , instead of solving the multi-dimensional
Markov process with state x . The LT requests are modeled as overflow demand streams.
These constitute an additional demand stream at other warehouses. The stream from
warehouse i at j ∈ σi is referred to as the overflow stream (i, j). This is graphically
depicted in Figure 5.1. Consequently, each warehouse can be evaluated individually as
an Erlang loss system (·/M/S/S queue) with state-dependent arrival rates. In earlier
approximations [10, 2, 123, 124, 120, 157], these overflow demand streams have been
assumed to be Poisson processes. For the sake of selfcontainedness and in order to show
how this approximation can be extended for hold back levels, we first present this algo-
rithm, which we call the Poisson overflow algorithm. In our second and main algorithm,
the On/Off algorithm, we approximate each overflow stream by an interrupted Poisson
process, cf. [122], a Poisson process that is alternatingly turned On and Off.

We expect the approximation using the On/Off processes to be more precise, as it
better follows the actual overflow demand streams. Overflow demands occur when the
warehouse is stocked out. So, during a stock-out the overflow demand process is turned



88 APPROXIMATE EVALUATION OF MULTI-LOCATION MODELS WITH HOLD BACK LEVELS

On. The demands it is then facing, flow over to other warehouses as LT requests, follow-
ing a Poisson process. On the other hand, when the warehouse has a positive stock level,
there are no overflow demands. So, the overflow process is turned Off. Hence, it is one
step more accurate than a Poisson process. The approximation here is that we assume the
On and Off durations to be independently, exponentially distributed. We take the means
of both to be equal to the actual means. It will turn out that this approximation performs
very well.

Both algorithms consist of two main steps, which are alternately executed:

Step 1: Evaluation of the steady-state distribution (and hence performance characteris-
tics) of the individual warehouses, given the overflow demand streams;

Step 2: Updating of the overflow demand streams, given the steady-state distribution of
the individual warehouses.

The two steps are executed until the changes in consecutive iterations are smaller than
some pre-specified, small value ε.

5.3.2 Poisson overflow algorithm

We approximate the overflow demand streams by Poisson processes. Let λi, j be the rate
of the overflow demand stream (i, j), j ∈ σi . Define λi,i = λi and λi, j = 0, j /∈ σi , j 6= i.
The overflow demand rates λi, j for all j ∈ σi are calculated from the probabilities that
a demand is satisfied either directly from stock or via an LT. Recall that an LT is carried
out from warehouse j to warehouse i only if x j > h j,i . We denote the probability that the
latter is true by pi, j for all i and j ∈ σi ∪ {i}, defining pi,i = P[x i > 0]. So, pi,i equals βi ,
the probability that a demand is directly fulfilled from stock. The pi, j are derived when
evaluating an individual warehouse. We initially assume that λi, j = 0 for all overflow
demand streams (i, j).

Evaluation of individual warehouses
Given the overflow rates λi, j for all i and j ∈ σi , we determine the probabilities that a
demand can be fulfilled, either directly from stock, or via an LT. Each of the warehouses
is evaluated individually. For warehouse i, we consider the Markov process, the state of
which is given by its stock level x i on the state space {0,1, . . . , Si}. We have the following
transitions. The repair rate is given by (Si − x i)µi . Class i demands arise with rate λi ,
and are satisfied when x i > 0. Moreover, the warehouse faces the demand overflow
streams from the other warehouses, namely with rate λ j,i from warehouse j. Only when
x i > hi, j such a demand is satisfied. Therefore, the demand rate depends on the state of
the system.

The arrival rate γi(x i) when the on-hand stock is x i , equals γi(x i) =
∑N

j=1λ j,i ·1{x i >

hi, j}. Note that γi(0) = 0, and that γi(x i) always includes λi = λi,i for x i > 0. Figure 5.3
shows an example of the transitions rates (where per state both the on-hand stock x i and
the number of outstanding orders y = Si − x i is denoted).

Consequently, we can analyze warehouse i separately using the Erlang loss model.
The steady-state behavior of the number of outstanding orders is identical to the steady-
state behavior of the number of busy servers y in an Erlang loss system (M/M/Si/Si
queue) with Si servers, a state-dependent arrival (i.e. demand) rate γi(Si− y), and mean
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Figure 5.3: Example of the transitions rates at warehouse 1, where N = 4, S1 = 5, and
h1 = (0, 1,5, 2).

repair lead time 1/µi as mean service time. Define L̃i to be the stationary probability
distribution of y ∈ {0,1, . . . , Si} at warehouse i, denoting by L̃i(y) its yth element:

L̃i(y) =

y−1
∏

j=0

γi(Si − j)

µ
y
i y!

Si
∑

n=0

n−1
∏

m=0

γi(Si −m)

µn
i n!

, y = 0, . . . , Si .

Recall that γi(·) is fully determined by the vectors hi and (λ1,i , . . . ,λN ,i). From the sta-
tionary probability distribution L̃i(·) the probabilities pi, j can be computed:

pi, j = P[x j > h j,i] =
S j−h j,i−1
∑

y=0

L̃ j(y), for all i and j ∈ σi , (5.3.1)

and 0 otherwise. Note that L̃i(·) depends on the overflow demand rates λi, j .

Updating overflow rates
Given the probabilities pi, j , for all i, j, we derive the overflow demand rates λi, j . The
fraction of demand that is directly satisfied from stock (the fill rate) is given by:

βi = pi,i . (5.3.2)

Hence, the rate of overflow stream (i,σi(1)) is λi,σi(1) = (1− βi)λi (assuming σi 6= ;).
Of this stream, a fraction pi,σi(1) is satisfied by warehouse σi(1), and hence the remaining
overflow to σi(2) has rate λi,σi(2) = (1− pi,σi(1))λi,σi(1). In general, defining pi,σi(0) = βi ,
the rate λi,σi(k) is recursively given by λi,σi(k) = (1 − pi,σi(k−1))λi,σi(k−1). Hence, for
k = 1, . . . , |σi |:

λi,σi(k) = λi

k−1
∏

l=0

(1− pi,σi(l)). (5.3.3)

Here we use of the assumption that the stock levels at the local warehouses are indepen-
dent.

For the fraction of the demands that is satisfied by an LT from warehouse j, we have

αi, j = pi, j

λi, j

λi
, for all i and j ∈ σi . (5.3.4)
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Algorithm 1: Poisson overflow algorithm
Input: λi ,µi , Si , hi ,σi , for i = 1, . . . , N , ε;
Output: βi , αi, j and so αi , θi , for i, j = 1, . . . , N , i 6= j;

Step 0: Initialize for all i, j ∈ σi: λi, j = 0 and λi,i = λi .
Step 1: Calculate for all i, j ∈ σi ∪ {i}: pi, j using (5.3.1).
Step 2: Calculate for all i, j ∈ σi: λi, j using (5.3.3).
Step 3: Repeat Steps 1 and 2 until the pi, j ’s do not change more than ε, for all i, j.

Then return, for all i, j ∈ σi: βi using (5.3.2), αi, j using (5.3.4), αi using (5.2.1),
and θi using (5.2.2).

Here λi, j/λi is the fraction of the demand of i that is offered to warehouse j, and of
this, a fraction pi, j is satisfied. Next, the total fraction that is satisfied via LT, αi , is given
by (5.2.1). Given βi and αi , the fraction of the demand that is not satisfied by the local
warehouses, θi , follows from (5.2.2). Algorithm 1 summarizes all steps.

5.3.3 On/Off overflow algorithm

We now develop a more precise approximation for the overflow demand processes.
Namely, instead of a Poisson process, we use an interrupted Poisson process, cf. [122]:
a Poisson process which is alternately turned On, for an exponentially distributed time,
and then turned Off, for another (independent) exponentially distributed time. This pro-
cess is described by three parameters. For the overflow demand stream (i, j), let 1/φ j,i
be the mean Off duration, 1/η j,i the mean On duration, and λi the rate while On. So,
we have to estimate two out of three parameters of the interrupted Poisson process.

The idea is as follows. The overflow demand process of warehouse i at warehouseσi(1)
can be in two states, based on warehouse i’s stock level. If warehouse i has on-hand stock,
there is no overflow. So, the overflow process is turned Off. However, if warehouse i faces
a stock-out, all demands flow over to warehouse σi(1): the overflow process is turned
On, and is given by a Poisson process with rate λi .

The same reasoning is applicable for the overflow demand of i at warehouse σi(k)
for k = 2, . . . , |σi |. The overflow process is On at σi(2) exactly when i is stocked out
and warehouse σi(1)’s inventory level is below or at its hold back level for i, i.e., when
xσi(1) ≤ hσi(1),i . The overflow is turned Off otherwise.

When precisely overflows are turned On or Off, basically depends on the entire state
space. The approximation we apply here, is to approximate the On and Off durations
by exponential distributions. We choose the means of these to be equal to the estimated
mean durations. These means are updated in each iteration of the algorithm.

The mean On duration at σi(1) is the duration that the stock level x i equals zero. It
is exactly exponentially distributed, with mean

1/ησi(1),i = 1/(Si µi). (5.3.5)

In general, for the other On and Off durations, the exponential distribution is an approx-
imation. Like in the Poisson overflow algorithm, we initialize by putting all overflow
demand streams to zero. That is, all On/Off processes start being turned Off:

φ j,i = 0 for j ∈ σi , η j,i =∞ for j ∈ σi . (5.3.6)
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Figure 5.4: Example of the Markov processes of warehouse 1, where N = 3, S1 = 4, h1 =
(0,0, 2), and d1 = {2,3}.

Evaluation of individual warehouses
Given the mean On and Off durations, we evaluate each of the individual warehouses.
Consider warehouse i. Next to its own demand stream, it faces a number of overflow
demands streams, namely from the warehouses j for which i ∈ σ j . Denote this vector by
di = ( j | i ∈ σ j , j = 1, . . . , N), and by di(k) its kth element. As each of these overflow
demand streams can either be turned On or Off, we have 2|di | possible combinations,
where |di | ≤ N−1. Hence the joint process of the stock level and this state of the overflow
demand streams, is a Markov process on a state space of dimension 2|di | by Si + 1. We
encode the states by (y,δ) with y = Si − x i the number of outstanding orders, y ∈
{0, 1, . . . , Si}, and δ ∈ {0, 1}|di |, where the kth component of δ equals 0 if the overflow
stream from di(k) is Off, and 1 if On. This state space is denoted by Si . Figure 5.4 shows
an example.

The transition rates of this Markov process are as follows. When the process is in
state (y,δ) three types of transitions can occur: a replenishment, an (overflow) demand,
or a change in whether one of the processes is On or Off. With rate y µi replenishments
take place, moving the process to state (y − 1,δ). A demand, occurring with rate λi ,
moves the process to (y + 1,δ) if y < Si . An overflow demand, occurring at rate λk
for all k ∈ di when the overflow demand stream (k, i) is On, is only accepted if Si −
y > hi,k. This also moves the process to state (y + 1,δ). Finally, each of the overflow
demand processes can switch from On to Off or vice versa. Transitions are only possible
between states for which δ differs in exactly one entry. With rate φi,di( j) the overflow
from warehouse di( j) is switched On, j = 1, . . . , |di |, hence with this rate the process
moves to state (y,δ+ edi( j)

), where ek denotes the unit vector of appropriate length with
an 1 at position k. Analogously, with rate ηi,di( j) the process moves to state (y,δ− edi( j)

).
See again Figure 5.4 for an example.
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Denote by Q i the matrix of transitions rates and denote by πi(y,δ) the stationary
probability distribution of this process. Then πi can be found by solving the system:

(

πiQ i = 0,
∑

(y,δ)∈Si
πi(y,δ) = 1.

(5.3.7)

The dimension of Q i is (Si + 1)2|di | by (Si + 1)2|di |, where |di | ≤ N − 1. We have to solve
the system for all i = 1, . . . , N in each iteration of the algorithm. Note that this is of
a much smaller order than the original problem (5.2.3), where the dimension of Q is
∏N

i=1(Si + 1) by
∏N

i=1(Si + 1). We solve (5.3.7) as a regular system of equation using
standard techniques. More tailored methods have been developed for solving steady-
state distributions, see e.g. [50] for an efficient algorithm for solving (5.3.7).

Updating On and Off durations
Given the stationary probability distribution of each of the individual warehouses, we
update the mean On and Off durations. Consider warehouse i and first concentrate on
stream (i,σi(1)). Its mean On duration is given by (5.3.5). We show that, by using
the stationary probability distribution πi , we can directly find the mean Off duration
1/φσi(1),i .

The fraction of class i’s demands that is satisfied from stock is βi . Hence, by PASTA, βi
is also the fraction of time that class i’s overflow is turned Off. And thus the fraction of
time the overflow is turned On is 1−βi . The state space Si can be split into two mutually
exclusive subsets, say Si,off (all states (y,δ) ∈ Si for which y < Si) and Si,on (all states
(y,δ) ∈ Si for which y = Si). Denote by E[Si,off] the expected duration the process is in
subset Si,off, once first entered it, before leaving it again. Define E[Si,on] analogously. It
holds that

βi

1− βi
=
E[Si,off]

E[Si,on]
.

Using that φσi(1),i = 1/E[Si,off] and ησi(1),i = 1/E[Si,on] = Si µi , it follows that:

φσi(1),i = Si µi
1− βi

βi
. (5.3.8)

The βi follows from the stationary probability distribution πi:

βi = 1−
∑

(Si ,δ)∈Si

πi(Si ,δ).

For the On and Off durations of i at σi(k) for k = 2, . . . , |σi | some more work has
to be done. Firstly, note that when the overflow stream (i,σi(1)) is turned On, there
are periods that these demands are satisfied by warehouse σi(1), and periods that this is
not the case because xσi(1) ≤ hσi(1),i . During the latter periods, the overflow (i,σi(2)) is
turned On. The duration of this On period, and that of the Off period as well, depends
on the (Markov) process at warehouse σi(1). Hence, in general, the durations of the On
and Off periods of i at warehouse σi(k) follow from evaluation of the Markov process at
warehouse σi(k− 1), k = 2, . . . , |σi |.

To find the expected On and Off durations of an overflow stream, we have to de-
termine the expected time the Markov process is in a certain subset of states from the
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moment on the process enters it, before leaving it again. For this, we split the state
space Sσi(k−1) into two mutually independent subsets, one consisting of the states in
which the overflow of i to warehouse σi(k) in turned On, and the other for which it is
turned Off. To calculate the mean time spent in a certain subset, we view all states except
the subset of interest as absorbing states, i.e. states that the Markov process cannot leave
anymore once entered. Then we need to derive the mean time until absorption in these
states. We first describe, following [91], how the mean time to absorption can be com-
puted in general. Next we explain how this can be used to calculate the mean On and
Off durations.

Consider a general, irreducible Markov process with state space S ′ = S ′1 ∪ S
′
2, where

S ′1 ∩ S ′2 = ;, with transition rates qi j for i, j ∈ S ′. Let the matrix P be the transition
probability matrix, given by pii = (νmax − |qii |)/νmax, and pi j = qi j/νmax for i 6= j, where
νmax = maxi |qii |. Let PS ′1 be an |S ′1| by |S ′1| matrix with only the rows and columns of P
that correspond to states in S ′1. Its row sums are ≤ 1. Given that we start in a state
s ∈ S ′1, let ts denote the expected number of steps to get absorbed in S ′2. It is the unique
solution of (I−PS ′1) t = (1, 1 . . . , 1)T , where t = (t1, . . . , t|S ′1|)

T and I is the identity matrix
of appropriate size. Then the vector with the mean times until absorption of the Markov
process is t/νmax.

When we are given an initial distribution over the starting states in S ′1, say p =
(p1, . . . , p|S ′1|), the mean time until absorption is

E[T (S ′1)] = p · t/νmax, (5.3.9)

where the dot denotes the inner product of two vectors. When we want to find the mean
duration the system is in S ′1 before going to S ′2, this initial distribution is given by the
steady-state probability distribution that the first step out of S ′2 is to s ∈ S ′1, say ps. Denote
by π= (πS ′1 ,πS ′2) the stationary probability distribution. Let

p̃ = πS ′2 · PS ′2,S ′1 ,

where PS ′2,S ′1 denotes the (non-square) matrix, which is the part of the transition proba-
bility matrix P of which the rows correspond to states in S ′2, and the columns to states
in S ′1. We normalize p̃ to find p = {p1, . . . , p|S ′1|}:

p = p̃/
∑

s∈S ′1

p̃s.

Hence, using (5.3.9) we have E[T (S ′1)] and the rate at which the process jumps from
subset S ′1 to S ′2 is 1/E[T (S ′1)].

In order to calculate the mean On and Off durations of the stream (i,σi(k)), we split
the state space Sσi(k−1) into two mutually independent subsets. Let j = σi(k − 1). The
overflow of i to σi(k) is turned On when i’s overflow to j is On but is not satisfied there,
because the stock level x j ≤ h j,i . Denote by S j(i) the subset of states of S j for which this
holds. Recall that y = Si − x i , then this subset is given by:

S j(i) = {(y,δ) ∈ S j | δ(i) = 1 and y > h j,i},

where δ(i) denotes the component of δ corresponding to the overflow demand stream
(i, j). Furthermore, define S j(i) = S j\S j(i), that is, the complement of S j(i) with respect
to S j .
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Algorithm 2: On/Off overflow algorithm
Input: λi ,µi , Si , hi ,σi , for i = 1, . . . , N , ε;
Output: βi , αi, j and so αi , and θi , for i, j = 1, . . . , N , i 6= j;

Step 0: Initialize for all i, j: φ j,i and η j,i using (5.3.6).
Step 1: Solve for all warehouses i the stationary probability distribution πi using (5.3.7).
Step 2: Calculate for all i, j ∈ σi: η j,i and φ j,i using (5.3.5), (5.3.8), and (5.3.10).
Step 3: Repeat Steps 1 and 2 until the elements of πi do not change more than ε, for all i.

Then return, for i, j ∈ σi: βi , αi, j , αi , and θi using (5.3.11).

In the example of Figure 5.4, S1(2) consists of only two states: (4, (1,0)) and (4, (1, 1)).
Only when warehouse 1 is out-of-stock (y = 4), the overflow demand stream (2,1) is not
satisfied when On. Hence, in these states, the overflow stream (2,σ2(k)) is On, when
σ2(k− 1) = 1. Analogously, S1(3) consists of six states, given by S1(3) = {(y1,δ) ∈ S1 |
δ ∈ {(0, 1), (1,1)} and y1 > 2 = h3,1}. In these states the overflow stream (3,σ3(k)) is
On, when σ3(k− 1) = 1.

The mean On and Off durations of (i,σi(k)) now follow from the mean times spent in
subset Sσi(k−1)(i), respectively subset Sσi(k−1)(i), from the moment on the process enters
the subset, before leaving it again. Hence, the rates η j,i and φ j,i follow and are given by:

ησi(k),i = 1/E[T (Sσi(k−1)(i))], φσi(k),i = 1/E[T (Sσi(k−1)(i))], (5.3.10)

for all i and k = 2, . . . , |σi |. Here we define 1/0 := ∞ and 1/∞ := 0. If, for ex-
ample, E[T (Sσi(k−1)(i))] = 0, then the overflow demand stream basically skips ware-
house σi(k − 1) and is entirely routed to warehouse σi(k). This overflow process then
has the same mean On and Off durations. Furthermore, recall that when On, the demand
rate of the overflow stream (i,σi(k)) equals λi .

Finalization
When the algorithm terminates, it remains to calculate the βi , αi, j , αi , and θi from
the πi ’s. This comes down to taking the summation of πi over certain subsets of states:

βi = 1−
∑

(Si ,δ)∈Si

πi(Si ,δ),

αi, j =
∑

(y,δ)∈S j : δ
(i)=1,

y≤S j−h j,i−1

π j(y,δ), for j ∈ σi , and 0 otherwise,

αi =
∑

j∈σi

αi, j ,

θi = 1− βi −αi .

(5.3.11)

Algorithm 2 summarizes all steps. As an additional result, the steady-state distribution
of the stock levels at each of the locations, are easily derived from the πi ’s calculated by
the algorithm.
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5.4 Numerical study

In order to determine the performance of the two presented approximation algorithms,
we execute a numerical study. We first focus on the case where all hold back levels are set
to 0. For that the Poisson overflow algorithm boils down to the algorithm given in [157].
Hence we can test the performance gained by the use of the On/Off approximation com-
pared to an algorithm currently known in the literature. Then we allow for hold back
levels. In both cases, we compare both the performance of the algorithms with respect
to the exact outcomes (via Markov analysis as described in Section 5.2), as well as the
mutual performance of the algorithms.

Testbed
We consider N = 2, 3, and 5 local warehouses. We perform a factorial design of the test
bed given in Table 5.1. In the table, the values of λi , µi , and σi are given, as well as fi .
The variable fi is the minimum fill rate of warehouse i in isolation, i.e. in a situation
without any LTs. From fi the base stock level Si follows:

Si =min
�

S ∈N∪ {0} | L (S,λi/µi)≤ 1− fi
	

, (5.4.1)

where L is the Erlang loss function: L (S,ρ) =
�

ρS/S!
� � �

∑S
n=0ρ

n/n!
�

. With respect to
the possibilities for LTs, we distinguish three types of pooling strategies:

• complete overflow: σi = {i + 1, . . . , i + N − 1} mod N (is complete pooling when
no hold back levels are set);

• one step: σi = {i+ 1 mod N};

• all to 1: σi = {1} for i 6= 1 and σ1 = ;.

For N = 2, 3, and 5, we test 384, 1500, respectively 2500 instances without hold back
levels, and 1000, 3000, respectively 5000 instances with hold back levels. That is, for
N = 2 without hold back levels, we perform a full factorial design of the settings given in
Table 5.1, and for the other cases we randomly select the indicated number of instances
from the full factorial designs. We restrict our attention to a single hold back level per
warehouse, i.e. hi = (h̄i , . . . , h̄i , 0, h̄i , . . . , h̄i) with a 0 on the i-th position. For the in-
stances with hold back levels, we take h̄i ∈ {0, 1, . . . , Si − 1}, excluding instances where
{h̄1, . . . , h̄N} = {0, . . . , 0}. So, we can both have instances where all hold back levels are
positive, as well as instances with combinations of zero and positive hold back levels. For
all instances we run:

• Poisson overflow algorithm, using ε = 10−10;

• On/Off overflow algorithm, using ε = 10−10;

• Exact Markov analysis (see Section 5.2).

We concentrate on the average and maximum absolute errors in the βi , αi , and θi (i =
1, . . . , N). Let

∆βi = |βi,approx − βi,exact | ∗ 100.
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Parameter Set of values
µ1,µ2, . . . ,µ5 1,
f1, f2, f3, f4, f5 50%,70%,90%,95%→ determines S1, . . . , S5 using (5.4.1),

h̄i 0,1, . . . , Si − 1 (for all i),
λ1 0.2,0.5, 1,2,

λ2,λ3 0.2,0.5, 1,
λ4,λ5 1,

(σ1, . . . ,σN ) σi = {i+ 1, i+ 2, . . . , i+ N − 1} mod N , i = 1, . . . , N ;
σi = {i+ 1} mod N , i = 1, . . . , N ;
σ1 = ;, σi = {1}, i = 2, . . . , N .

Table 5.1: Test bed for numerical study: factorial design of the given possibilities.

(a) Poisson overflow algorithm (b) On/Off overflow algorithm

Figure 5.5: Scatter plot of the absolute relative errors in αi versus βi , for N = 2 (i = 1,2, in
each plot 2,768 data points).

Figure 5.6: Scatter plot of the absolute relative errors, in the Poisson overflow algorithm
minus those in the On/Off overflow algorithm, plotted for αi versus βi , for N = 2 (i = 1, 2,
2,768 data points). Explanation: each data point on the right of (above) 0 indicates a case
where the On/Off overflow algorithm performs better for βi (αi); on the left (below) a case
where the Poisson overflow algorithm performs better for βi (αi).
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That is, we consider the error ∆βi as the differences in the percentages βi,approx and
βi,exact . By ‘av∆β ’ and ‘max∆β ’ we denote the average respectively maximum over all
∆βi (α and θ analogously).

The summary of all results is given in Table 5.2, which gives the average absolute
errors and the maximal absolute errors for βi , αi , and θi for both the Poisson overflow
algorithm as well as the On/Off overflow algorithm. From these results, it turns out that
the On/Off algorithm clearly outperforms the Poisson algorithm. The average error for
On/Off in β is about four times smaller. Also, the maximal errors are much smaller. Al-
ready from N = 3 on the errors in the On/Off algorithm are almost nil. In Figures 5.5
and 5.6 the errors are graphically represented. Again it becomes clear that the On/Off
overflow algorithm outperforms the Poisson overflow algorithm. In the following, we
further investigate the results.

Hold back levels
When we split out the results according to whether we include hold back levels or not,
the results are given in Table 5.3. Both algorithms perform better for the case with hold
back levels, about a factor two to three. Under the presence of hold back levels, a higher
fraction of the demand is already satisfied at the own warehouse, and thus the overflow
to the first candidate warehouse for an LT is smaller (the overflows to next warehouse
may increase in case of a positive hold back level at this first candidate). As a result, the
correlation in on-hand stocks at the local warehouses will reduce and the modeling of
the overflow streams as Poisson/On-Off processes becomes more accurate. Both effects
lead to an increased accuracy of the approximation algorithms.

Complete pooling
For the special case of complete pooling, we compare the results to those of the approx-
imation algorithm given in [120]. Under complete pooling, all warehouses basically act
as being one large warehouse. Hence, the fraction θi is the same for all warehouses and
can be computed exactly (by the Erlang loss formula). This is exploited in their approxi-
mation. For the rest, Kranenburg and Van Houtum’s algorithm is identical to our Poisson
overflow algorithm. As θi is determined exactly, the absolute errors in βi and αi are
always equal.

The results for complete pooling are given in Table 5.4. Both our On/Off algorithm
and Kranenburg and Van Houtum’s algorithm perform significantly better than the Pois-
son algorithm. Due to the exact calculation of the θi ’s, Kranenburg and Van Houtum’s
algorithm performs slightly better than our On/Off algorithm. However, the errors are of
the same order, and thus we may conclude that the On/Off algorithm achieves (almost)
the same accuracy as Kranenburg and Van Houtum’s algorithm, without the use of the
exact θi ’s.

Pooling
In the testbed, we distinguish three types of pooling strategies, which we have denoted
as complete overflow, one step, and all to 1. Note that for N = 2 the first two strategies
coincide. We split out the results according to these pooling strategies, see Table 5.5.
Clearly, the results are best for the all-to-1 strategy, and remarkably of the same order for
both the complete overflow and the one step strategies.
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Fill rates
We specified four fill rates in the testbed: 50%, 70%, 90%, and 95%. In Table 5.6 we split
out the results according to the fill rate at location 1. The accuracy of both algorithms
increases as the fill rate increases. This is due to similar effects as when one goes from
zero to positive hold back levels. Note that the number of instance increases in f1, as the
higher f1 the higher S1, allowing for more possibilities for h̄1.

Calculation time
The calculation time of the Poisson algorithm is extremely fast, it needs merely a fraction
of a second to run. In every iteration, for all N warehouses a Markov process on Si + 1
states has to be solved. In the numerical study, on average the algorithm converged in 8.4
iterations, where the On/Off algorithm used on average 9.4 iteration before convergence.
The On/Off algorithm requires also more calculation time in every iteration, but is still
reasonably fast. In every iteration a Markov process with (Si + 1) · 2|di | states has to be
solved, for all N warehouses. Hence, its speed depends on the pooling strategy chosen:
complete overflow is slower than ‘one step’ and ‘all to 1’, as in the first case the Markov
processes contains more states than in the latter two cases. However, there is a large gain
compared to exact evaluation, which requires solving the steady-state distribution of a
Markov process with

∏N
i=1(Si + 1) states. Furthermore, in the cases with zero hold back

levels, both the Poisson and the On/Off algorithm needs on average two extra steps to
converge, compared to the case hold back levels are set. This is due to the fact that with
hold back levels, more demands are directly satisfied at the warehouse itself, and hence
the overflow stream will be smaller.

5.5 Advantage of hold back levels

In this section we illustrate the advantage of hold back levels and we introduce a simple
and effective heuristic for the setting of hold back levels under given base stock levels.
We assume the following cost structure. Location i incurs holding costs ci per item per
time unit, where holding costs are also charged for items in repair. A demand at loca-
tion i satisfied by an LT incurs costs pl t

i , regardless of the location from which the part is
transshipped. When the demand is satisfied by an emergency procedure, the costs are pep

i
(≥ pl t

i ). We focus on the long run average costs for all locations together, denoted by C:

C =
N
∑

i=1

�

ci Si +λi αi pl t
i +λi θi pep

i

�

.

We propose the following greedy approach as a heuristic to set the hold back levels. We
start by setting all hold back levels to 0. Then, the hi, j which decreases the average costs
most, is increased by 1 (ties are broken with equal probabilities). We repeat this until
there is no cost reduction possible any more. For the evaluations of given policies that
are needed in this heuristic, we use exact evaluations. Notice, that the Poisson or On/Off
overflow algorithm could be used as well and would lead to much faster calculation
times. However, in this section we use the exact evaluation procedure to exclude the
effect of inaccuracies within the evaluations.

We consider a series of symmetric instances, with N = 3 location, and λi = 2 and
µi = 1 for all i. Furthermore, σi = {i + 1, i + 2} mod 3 for all i, and ci = 1 for all i.
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setting Si = 2: opt. vs. Si = 3: opt. vs. Si = 4: opt. vs. Si = 5: opt. vs.
pl t

i : pep
i pep

i np cp hr np cp hr np cp hr np cp hr

1:1 5 0.0 22.4 0.0∗ 0.0 16.5 0.0∗ 0.0 6.1 0.0∗ 0.0 1.1 0.0∗

10 0.0 25.7 0.0∗ 0.0 21.8 0.0∗ 0.0 9.8 0.0∗ 0.0 2.1 0.0∗

25 0.0 28.2 0.0∗ 0.0 27.1 0.0∗ 0.0 15.5 0.0∗ 0.0 4.4 0.0∗

50 0.0 29.2 0.0∗ 0.0 29.5 0.0∗ 0.0 19.2 0.0∗ 0.0 6.7 0.0∗

100 0.0 29.7 0.0∗ 0.0 30.9 0.0∗ 0.0 21.8 0.0∗ 0.0 9.2 0.0∗

1:2 5 1.4 4.4 0.0∗ 5.0 1.7 0.0∗ 5.7 0.5 0.0∗ 2.9 0.1 0.0∗

10 1.7 5.3 0.0∗ 7.1 2.4 0.0∗ 9.5 0.8 0.0∗ 5.4 0.2 0.0∗

25 2.0 6.0 0.0∗ 9.5 3.3 0.0∗ 16.0 1.5 0.0∗ 11.3 0.5 0.0∗

50 2.1 6.3 0.0∗ 10.7 3.7 0.0∗ 20.8 2.0 0.0∗ 17.8 0.9 0.0∗

100 2.1 6.4 0.0∗ 11.4 4.0 0.0∗ 24.4 2.5 0.0∗ 25.0 1.3 0.0∗

1:3 5 5.4 0.0 0.0∗ 11.1 0.0 0.0∗ 9.2 0.0 0.0 4.1 0.1 0.0∗

10 6.5 0.0 0.0∗ 15.7 0.0 0.0∗ 15.4 0.1 0.1 7.7 0.1 0.0∗

25 7.4 0.0 0.0∗ 20.9 0.0 0.0∗ 25.9 0.2 0.2 16.1 0.2 0.0∗

50 7.7 0.0 0.0∗ 23.6 0.0 0.0∗ 33.6 0.2 0.2 25.4 0.4 0.0∗

100 7.9 0.0 0.0∗ 25.1 0.0 0.0∗ 39.4 0.3 0.3 35.7 0.6 0.0∗

1:4 5 9.7 0.0 0.0∗ 15.0 0.0 0.0∗ 11.1 0.0 0.0∗ 4.7 0.0 0.0
10 11.6 0.0 0.0∗ 21.2 0.0 0.0∗ 18.6 0.0 0.0∗ 8.9 0.0 0.0
25 13.2 0.0 0.0∗ 28.2 0.0 0.0∗ 31.3 0.0 0.0∗ 18.6 0.1 0.1
50 13.8 0.0 0.0∗ 31.7 0.0 0.0∗ 40.6 0.0 0.0∗ 29.3 0.1 0.1

100 14.2 0.0 0.0∗ 33.9 0.0 0.0∗ 47.6 0.0 0.0∗ 41.1 0.2 0.2

Table 5.7: Results for the test bed of Section 5.5: relative decrease in costs when using the
optimal hold back policy instead of respectively no pooling (np), complete pooling (cp), and
a hold back policy where the hold back levels are determined by the greedy heuristic (hr,
where 0.0∗ denotes that the heuristic and optimal hold back levels coincide).

For base stock levels, we take Si ∈ {2,3, 4,5}. This corresponds to service percentages of
70%, 90%, 95%, respectively 99% for satisfying the demands either directly from stock or
via an LT, under the assumption of complete pooling. We also vary the costs for satisfying
demands by emergency procedures (pep

i ∈ {5,10, 25,50, 100}) and the ratio between the
costs for an emergency procedure and an LT (pl t

i : pep
i ∈ {1:1, 1:2,1:3,1:4}).

To find the optimal hold back policy, we conduct an exhaustive search over all hi, j ∈
{0, 1, . . . , Si}. Next, we consider the following policies: (i) no pooling (i.e., hold back lev-
els equal to the base stock levels); (ii) complete pooling (i.e., zero hold back levels); (iii)
a hold back policy where the hold back levels are determined via the greedy approach.
For each of these policies, we determine the relative decrease in costs when switching
from this policy to the optimal policy. The comparison with no pooling and complete
pooling shows the beneficial effect of hold back levels. The comparison with the third
policy shows the effectiveness of the greedy approach for the hold back levels. The results
are listed in Table 5.7.

The results show that the optimal hold back policy is better than the no pooling policy
in all instances with pep

i > pl t
i , and in many instances the improvement is large. The

optimal hold back policy is considerably better than complete pooling in those instances
where pep

i /p
l t
i is not too large. In fact, especially at medium levels of pep

i /p
l t
i , we see that

the optimal hold back policy may be significantly better than both the no pooling and
complete pooling policy.

The comparison of the optimal hold back policy to the policy obtained via the greedy
approach shows that the greedy approach finds the optimal hold back levels in 70 out
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of 80 instances. In the other 10 instances, the optimal policy is at most 0.3 % more
expensive than the policy obtained by the greedy approach. Hence, we may conclude
that the greedy heuristic performs very well (i.e., within our small test bed), and it may
be a good basis for the development of heuristics for the determination of both base stock
and hold back levels.

5.6 Conclusion and further research

In this chapter, we introduced the On/Off overflow algorithm for the approximation of
the performance characteristics of a multi-location inventory model with both LTs and
hold back levels. In this algorithm we approximate overflow demand streams more accu-
rately than currently done in the literature, by using interrupted Poisson processes. We
compared the performance of this algorithm to an extended version of the Poisson over-
flow algorithm (extended compared to Reijnen et al. [157], the extension is made for the
hold back levels). In an extensive numerical study, the On/Off algorithm turned out to
be very accurate, and considerably more accurate than the Poisson overflow algorithm.

The approximate evaluation algorithms can be used to optimize hold back and base
stock levels, where heuristic optimization procedures are needed for large-size instances.
The development of such heuristics requires further research. As an illustration, we
showed that, under given base stock levels, a greedy heuristic works well for the hold
back levels. We also showed that hold back levels may reduce costs significantly com-
pared to no pooling and complete pooling.

We assumed a pre-specified static order per location by which it will contact other
warehouses for an LT request. Instead, one could consider dynamic orders, which take
actual on-hand stocks into account. Recently, this has been studied by Tiemessen et
al. [181]. They show that in multi-location networks with delivery time constraints,
dynamic policies instead of static policies (with zero hold back levels) reduces costs by
5-10% for many instances in their test bed. In their study, base stock levels are taken as
given and hold back levels are implicit (whether the last part(s) are taken away from a
local warehouse is also determined dynamically). Obviously, the above cost difference
would be smaller when hold back levels are incorporated in the static policies. What
is most convenient in applications in practice, static or dynamic policies, depends on
multiple factors, such as requirements with respect to information systems and the people
who are involved at the tactical and operational decision levels.



6
STOCK RATIONING IN A SYSTEM WITH

BACKORDERS AND LOST SALES

We study a single-location stock rationing problem with two demand classes. Demands
can be (i) satisfied directly from stock, (ii) backordered, or (iii) satisfied via an emer-
gency procedure. We derive the optimal policy structure which minimizes the long-run
average costs, where the costs consist of inventory holding and backordering costs per
time-unit, and one-time penalty costs per backorder and per emergency procedure. We
show that a high priority demand is always satisfied from stock, if on-hand stock is avail-
able. Furthermore, we address the similarity between this model and the two-location
lateral transshipment problem of Chapter 4.

6.1 Introduction

In this chapter we return our attention to a stock rationing problem, where a single
stockpoint faces two types of customer demands. However, we relax our assumption of
Chapter 2 concerning the way a demand can be fulfilled. In Chapter 2 we had two possi-
bilities: a demand is satisfied either directly from stock or via an emergency procedure.
Now we add the possibility of backordering a demand. Each demand class has its own
one-time backorder costs and one-time emergency costs, and costs per outstanding back-
order per time unit are incurred. We want to optimize the decision which of the three
options is taken, in case of a demand from either of the two classes. We show that the
optimal policy is described by state-dependent threshold levels, i.e. by monotone switch-
ing curves. Note that a distinctive feature of this model is that there can be outstanding
backorders and on-hand stock at the same time, e.g. because demands of lower prior-
ity are backordered, holding back on-hand stock for higher priority demands. We show
the remarkable similarity between this model and the two-location lateral transshipment
problem of Chapter 4. We again use the terminology of a spare parts provisioning system,
see Remark 1.2.1. Note that essentially an emergency procedure can be interpreted as
a lost sales, as from a modeling point of view, these coincide. Hence, we refer to the
problem as a stock rationing problem with backorders and lost sales.

The initial motivation for this model comes from a stock rationing problem with two
demand classes (high and low priority), where the high priority demands are always
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satisfied from stock, if possible, and lost otherwise, whereas low priority demands can
be backordered. Enders et al. [69] study this model, where a single, static critical level
determines whether a low priority demand is backordered or satisfied from stock, and
whether an arriving replenished part (i.e. repair completion) is used to increase the stock
level or to decrease the number of outstanding backorders. They provide an exact evalu-
ation procedure and an extensive performance evaluation, comparing their critical level
policy to other policies.

In [69], three application areas for the model under consideration are discussed. The
first one occurs when the stockpoint faces demands from both loyal, long term customers
with high service level requirements, and occasional walk-in customers. Here, inventory
can be held back from the occasional customers by backlogging their demands, to be
able to satisfy the loyal customers from stock. In line with our spare parts provisioning
motivation (see Section 1.2.2), is the application of an OEM, which is both operating
a central warehouse as well as fulfilling emergency demands from a set of local ware-
houses. Such an emergency demand has a higher priority than a replenishment order of
a local warehouse, which might be backlogged when on-hand inventory is low. Another
application of a model with both backorders and lost sales is a combination of a physical
store and an on line shop. The customers in the physical shop are typically satisfied from
the on-hand stock, if possible, whereas the on line customers can be backlogged when
the on-hand stock is low, as they anticipate some lead time anyways.

This model fits into the stream of literature considering single-location, stock ra-
tioning models with multiple customer classes (see Section 2.1 for a discussion of the
literature on these models). In that literature, however, typically models with either
purely backorders are studied, or models with only lost sales (emergency procedures).
Below we discuss the literature that includes both of these options, as in the model of this
chapter. We start by discussing the literature on models with an optimal dynamic policy,
and then turn our attention to those with static decision rules.

The optimal policy structures for a model similar to ours, with a single production (i.e.
repair) server, are derived in Benjaafar et al. [21]. Our type of results strongly resemble
these. However, we consider a different setting. The main difference is that we study
a model with ample repair (i.e. production) capacity under a base stock policy, whereas
in [21] a model with a single production server is studied, with a state-dependent order-
up-to level. As we motivate our study with a closed-loop system providing repairable
spare parts (see Remark 1.2.1), a base stock policy is a natural choice here.

Benjaafar and ElHafsi [20] study is a model with a patient class of customers, whose
demands can be backordered, and an impatient class, of which the demands must be
satisfied directly or are lost otherwise. The way in which the demands are handled is
similar to that of [69]. They derive the optimal dynamic policy structures for this model.
Also Ha [95] studies a model with both on-hand stock and backorders at the same time,
for a problem with two customer classes. He proves that a single switching curve both
determines the optimal decision for whether to satisfy or backlog a class 2 demand,
as well as for whether to increase the on-hand stock level or decrease the number of
outstanding class 2 backorders in case of a production completion. He, however, does
not include the option of emergency procedures.

In Cattani and Souza [46] and Alvarez et al. [4] backorder-lost sales models with a
static policy are studied. In Cattani and Souza [46] six different policies are compared
for a single-location stock rationing problem with two demand classes. They either use
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lost sales, backlogging or a combination of both, where for each two policies are con-
sidered: either no stock rationing is applied, or rationing using a static critical level.
Their focus, however, is on shipment flexibility. They conclude that inventory rationing
and shipment flexibility are possibilities to increase profitability. They show the benefit of
backlogging low priority demands before being stocked-out, and rejecting these demands
when inventory is depleted.

Alvarez et al. [4] allow backorders and lost sales only in case of a stock-out. They
assume that the decision is only based on the demand class of a customer. More specif-
ically, they partition the set of demand classes into two subsets, where for one subset
emergency procedures are used, while the demands of the other subset are backlogged.
Although addressing the issue that a dynamic policy would lead to cost reductions, they
do not take this kind of policies into account in their study. Moreover, they impose a
static, critical level on the on-hand stock, which determines whether the on-hand stock
is increased (if the on-hand stock is below the critical level), or a backorder is cleared.
In an extensive numerical experiment they show the combination of both policies to out-
perform so-called ’one-size-fits-all’ strategies by 14%.

Models with both backorders and lost sales have also been studied for a periodic
review setting, assuming zero lead times. In Tang et al. [178] the optimality of a so-
called base stock rationing policy is proven, which consists of the combination of a base
stock level and a (single) rationing level in each period. In a numerical study, they
compare the optimal policy to two heuristics, and find that the benefits of the optimal
control policy can be significant. As in [69], they differentiate the use of backorders and
lost sales based on the demand class. A similar model is studied in Zhou and Zhao [220,
221] for multiple demand classes, and in Sobel and Zhang [170] for a combination of
deterministic and random demands. Finally, Rabinowitz et al. [156] limit the maximum
number of accumulated backorders in one period, where this number is used as a control
variable.

The contribution of this chapter is as follows. We study a new model with both back-
orders and lost sales for both demand classes and ample repair capacity. We prove the
optimal policy structure, which is a state-dependent threshold type policy, and deter-
mine when the optimal policy simplifies. Moreover, we identify the relation between this
backorder-lost sales model and the two-location lateral transshipment model.

The outline of this chapter is as follows. We start by introducing the model in more
detail and the notation in Section 6.2. In this section, we also present the dynamic
programming formulation and make the connection with the model of Chapter 4. Then,
in Section 6.3, we derive the structural results, from which we derive the structure of
the optimal policy. We also show when the optimal policy simplifies. We outline a model
variation in Section 6.4, and end with conclusions in Section 6.5. All proofs are given in
Appendix 6.A.

6.2 Model and notation

In Section 6.2.1 we introduce the problem, followed by its dynamic programming for-
mulation in Section 6.2.2. We introduce the value function (the n-period minimal cost
function) and the event operators. In Section 6.2.3 we discuss the connection with the
two-location lateral transshipment problem of Chapter 4.
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6.2.1 Problem description

We consider a single stockpoint, keeping repairable spare parts of a single type on stock
for technically advanced machines. Upon a breakdown of a machine, it demands a spare
part. A demand can be (i) satisfied directly from stock, (ii) backordered, or (iii) satis-
fied via an emergency procedure. When the demand is directly fulfilled from stock, the
ready-for-use spare part is installed in the machine. The failed part is brought back to the
stockpoint, where it is repaired and added to stock again. In this way, the down time of
the machine is reduced to a minimum. In case the demand is not directly satisfied from
stock (which might be the case even if on-hand stock is available), there are two remain-
ing options. The demand can be satisfied via an expensive emergency repair procedure.
Then, the failed part is repaired in a fast repair procedure, e.g. on-site, after which the
machine is working properly again. Otherwise, the demand can be backlogged. As the
machine is down and hence not making any revenue, backlog cost per outstanding order
per time unit are incurred. Also in this case, the failed part is brought back to the stock-
point. There it is repaired, and used to satisfy an outstanding backorder. Backlogs are
satisfied in order of arrival.

Initially, there are S ∈ N0 parts on stock. Holding costs are incurred at rate h̃(·) per
time unit, as a function of the number of parts on stock, where h̃(·) is non-negative, non-
decreasing, and convex. There are J = 2 demand classes. We refer to these as class j
demands, more specifically as high ( j = 1) and low ( j = 2) priority demands. Hence, the
set of technical systems served using the spare parts of this stock point, can be divided
into two subsets, of which the one is of higher importance than the other. Each demand
consists of the request for one part, and for each class, the demand arrivals form a Poisson
process with rate λ j , j = 1, 2. Upon a demand request, a decision has to be taken on how
to fulfill it. For this, both the direct costs, as well as the future costs should be taken into
account.

We set the costs for satisfying a demand directly from stock to 0, as these costs are
made anyways, and hence would only add a constant to the cost function. This option
is only possible if on-hand stock is available. The costs for fulfilling a demand by an
emergency procedure are denoted by p j , j = 1,2. When a demand is backordered, we
charge a one-time penalty cost b j , and costs b̃(·) per time unit as a function of the total
number of outstanding backorders. We assume 0 ≤ b j ≤ p j for j = 1,2, and p1 ≥ p2,
b1 ≥ b2. Hence, not satisfying a class 1 customers’ demand is more expensive, and hence
this demand class is of higher priority than class 2.

Note that the backlog costs per time unit are equal for both demand classes. If these
were different, say b̃ j(·) for class j, one would need a three-dimensional model in or-
der to keep track of the on-hand stock, the number of outstanding class 1 backorders,
and the number of outstanding class 2 backorders. By assuming them equal, we obtain
a two-dimensional model. This model is, from a mathematical point of view, almost
identical to the model of Chapter 4. Hence, all structural results readily follow. More-
over, we prove that it is always suboptimal to not satisfy a class 1 demand directly from
stock, when on-hand stock is available. We can generalize this result to the case where
b̃1(i) ≥ b̃2(i). Hence, when we allow class 1 demands to be backlogged or satisfied by
emergency procedures only when out-of-stock, this does not affect the model. We then
interpreted the backorders of class 1 as negative on-hand stock, and hence have a two-
dimensional model again. However, we need to make a small adjustment to the way in
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which repairs are used, in order for this to work. Therefore, we discuss this setting, with
class dependent backlog costs per time unit, as a model variation in Section 6.4.

For the purpose of analyzing the model, we limit the maximum number of outstand-
ing backorders to be B. This, however, is not restrictive, as B can always be chosen that
large that it does not influence the costs nor the optimal policy.

When a demand is satisfied from stock or the demand is backlogged, the failed part is
brought back to the stockpoint. This part is repaired and, after repair completion, either
added to stock or used to satisfy a backorder. We assume that there are two repair shops:
one for the repairs of parts to clear the backlog and one for the repair of parts that will
be added to stock. The first mentioned are referred to as backlog repairs, whereas the
latter are referred to as stock repairs. All repair lead times are exponentially distributed
with rate µ > 0, where we assume that ample repair capacity for both repair shops.
That is, the repair lead time of each part is exponentially distributed with mean 1/µ,
independently of the number of parts in repair. Hence, the rate of repair completions is
linear in the number of outstanding repairs at a repair shop. We assume all arrival and
repair processes to be mutually independent.

6.2.2 Dynamic programming formulation

Let the state of the system be given by (x , y), where x is the on-hand inventory, x ∈
{0, 1, . . . , S}, and B − y is the number of outstanding backorders, y ∈ {0,1, . . . , B}. By
letting B − y (instead of y) be the number of outstanding backorders, all the transition
rates and operators turn out to be identical to those in the model of Chapter 4 (see
Section 6.2.3). Now, y is the maximum number of outstanding backorders B, minus the
actual number of outstanding backorders. The state space S is given by

S = {(x , y) | x ∈ {0, 1, . . . , S}, y ∈ {0,1, . . . , B}}.

As the interarrival times of demands as well as the repair lead times are independent,
exponentially distributed random variables, we can apply uniformization (see [131])
to convert the semi-Markov decision problem into an equivalent Markov decision prob-
lem (MDP). For this, we use our technical assumption that there is a maximum number
of outstanding backorders, and that hence the maximum rate out of a state is finite.
The existence of a stationary average costs optimal policy is guaranteed by [155, Theo-
rem 8.4.5a], as the state space and action space for every state are finite, the costs are
bounded and the model is both unichain and aperiodic.

Let Vn : S 7→R be the value function, given by

Vn+1(x , y) = C
�

U
�

H1Vn(x , y), H2Vn(x , y), GSVn(x , y), GBVn(x , y)
�

�

starting with V0 ≡ 0, where C is the costs operator, U the uniformization operator, H j the
demand operator for class j customers, j = 1,2, and GS and GB are the repair operators
corresponding to a stock repair, respectively a backorder repair. All operators are defined
below. Let ν = λ1 +λ2 + (S+ B)µ be the uniformization rate.

The cost operator C is defined by

C f (x , y) = h(x) + b(B− y) + f (x , y),

where h(x) = h̃(x)/ν and b(B− y) = b̃(B− y)/ν .
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The uniformization operator U is, for this model, defined by:

U
�

f1, f2, f3, f4
�

=
1

ν

�

λ1 f1 +λ2 f2 +µ f3 +µ f4

�

. (6.2.1)

The operator H j models the demand of a class j customer, and is given by:

H j f (x , y) =















min{ f (x − 1, y), b j + f (x , y − 1), p j + f (x , y)} if x > 0, y > 0,

min{b j + f (x , y − 1), p j + f (x , y)} if x = 0, y > 0,

min{ f (x − 1, y), p j + f (x , y)} if x > 0, y = 0,

p j + f (x , y) if x = 0, y = 0.

(6.2.2)

Basically, there are three options to fulfill a demand in state (x , y): directly from stock
(possible when x > 0, decreasing the on-hand stock level x by one), by backordering
it (possible when y > 0, at direct costs b j , decreasing y by one), or via an emergency
shipment (at direct costs p j).

The operator GS models the (potential) stock repairs and is given by:

GS f (x , y) = (S− x) f (x + 1, y) + x f (x , y). (6.2.3)

In state (x , y) there are S− x outstanding stock orders. Hence, with this rate the on-hand
stock is increased by one. The term x f (x , y) represents fictitious transitions, hence assur-
ing that the total rate at which µGS occurs is equal to µS. Analogously, the operator GB
models the (potential) backorder repairs and is given by:

GB f (x , y) = (B− y) f (x , y + 1) + y f (x , y). (6.2.4)

REMARK 6.2.1. In the setting with linear backlog costs, when one assumes no maximum
level on the number of outstanding backorders, the system can be reduced to a one-
dimensional model. For this, only keep track of the on-hand stock level x , and note
that each backlogged demand has essentially its own repair process (as we assumed
ample repair capacity), with mean duration 1/µ, independently of the number of other
outstanding backorders and on-hand stock level. Hence upon a demand arrival, the
decision can be made only based on the on-hand stock level.
However, the current model allows for non-linear backlog costs, as well as variations of
the assumptions for the repair process, such as state-dependent repair rates, and e.g. a
model with a single repair server for the stock orders and one for the backorders.
The two-location lateral transshipment problem does not reduce to a one-dimensional
model, as the number of parts on-hand at location 2 is limited (compare: there is a
maximum level on the number of outstanding backorders). The reasoning above can
only be applied to this model when one assumes unlimited on-hand stock at location 2.

REMARK 6.2.2. The extension to multiple customers classes, say j = 1, 2, . . . , J is easily
made, by use of the operator H j . Instead of the two terms in the value function involv-

ing H1 and H2, one would get
∑J

j=1λ jH jVn(x , y), and
∑J

j=1λ j in the uniformization
rate ν (i.e. in the denominator in (6.2.1)). The values of b j and p j can be set differently
for each of the classes.
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6.2.3 Connection with two-location lateral transshipment problem

The model of this chapter, and in particular that of this section, is closely related to the
two-location inventory model with lateral transshipments of Chapter 4, see Figure 6.1.
Essentially, the mathematical model is the same, where we give another interpretation to
the variables and events. In Chapter 4 we deal with two stockpoints, each having their
own inventory, demand streams and repairs. Here we have one inventory point (stock-
point 1), where stockpoint 2 resembles the outstanding backorders. Hence, the base
stock levels S1 and S2 of Chapter 4, are equivalent to the base stock level S respectively
maximum number of outstanding backorders B in this chapter.

We now only have stock at a single point, say at location 1. The demand operator H j
in (6.2.2) then is the same as H1 (!) as defined in (4.3.3), for both j = 1, 2 (with PLT1

= b j
and PEP1

= p j). Note that H2 in (6.2.2) does not coincide with H2 (as defined analogously
to (4.3.3)), because one has a different cost structure for the possible transitions.

Because of this, we cannot reuse the conditions (4.4.9)–(4.4.12) of Theorems 4.4.6
and 4.4.7 to simplify the structure of the optimal policy. However, we derive (other)
conditions in Section 6.3.3, which also take into account the fact that we have holding
and backlog costs.

In Figure 6.1 the Markov processes of both problems are shown next to each other. For
the two-location lateral transshipment problem, demands and repairs at both locations
are depicted. The rates and costs are indicated. For the stock rationing problem with
backorders and lost sales, demands of class 1 and 2, a stock repair, and a backorder
repair are indicated. There is pairwise correspondence between these four events. The
main difference, however, is the ordering of the costs, for a demand at location 2, i.e.,
for a class 2 demand. In the two-location problem, the costs for the transition from
(x , y) to (x , y − 1) are smaller than those for the transition to (x − 1, y). Contrary, in
the backorder–lost sales problem, the opposite is true for a class 2 demand. The other
difference between the two models, is that we added backlog and holding costs for the
backorder–lost sales problem. When one assumes that holding costs are also charged for
parts in repair, as in Chapter 4, the holding costs are a constant, and hence can be left
out of the model. For generality, we have added them here.

x

y

B

0
0 S

T w o  s t o c k p o i n t s  w i t h
l a t e r a l  t r a n s s h i p m e n t s

x 1
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0 S 1
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+ b 1

l 1
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l 2

l 1 + P E P 1

+ P L T 2 ( S 2 - x 2 ) m+ P L T 1

Figure 6.1: The Markov processes for the two-location lateral transshipment problem (Chap-
ter 4), and that of the backorder-lost sales stock rationing problem of this chapter.
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6.3 Structural results

In this section we prove our main result: the structure of the optimal policy. For this we
first prove that the value function Vn is multimodular. From this we derive the structure
of the optimal lateral transshipment policy, which is a threshold type policy. We illustrate
this by an example. Finally, we give conditions under which the optimal policy structure
simplifies.

6.3.1 Properties of operators and value function

Consider, as introduced in Section 2.3.2, the following properties of a function f, defined
for all (x , y) such that the states appearing in the right-hand and left-hand side of the
inequalities exist in S:

BFOD(1, p1) : f (x + 1, y) + p1 ≥ f (x , y), (6.3.1)

BFODD(1,2, b1) : f (x + 1, y) + b1 ≥ f (x , y + 1), (6.3.2)

Decr(2) : f (x , y)≥ f (x , y + 1), (6.3.3)

Conv(1) : f (x , y) + f (x + 2, y)≥ 2 f (x + 1, y), (6.3.4)

Conv(2) : f (x , y) + f (x , y + 2)≥ 2 f (x , y + 1), (6.3.5)

Supermod : f (x , y) + f (x + 1, y + 1)≥ f (x + 1, y) + f (x , y + 1), (6.3.6)

SuperC(1,2) : f (x + 2, y) + f (x , y + 1)≥ f (x + 1, y) + f (x + 1, y + 1), (6.3.7)

SuperC(2,1) : f (x , y + 2) + f (x + 1, y)≥ f (x , y + 1) + f (x + 1, y + 1), (6.3.8)

MM : Supermod∩ SuperC(1, 2)∩ SuperC(2,1). (6.3.9)

In the proof of the following lemma, parts a) and b) reuse results of Chapter 4 for the
propagation of MM.

LEMMA 6.3.1. a) Operator H j , j = 1, 2, preserves Decr(2) and MM.
b) The sum of the operators GS + GB preserves Decr(2) and MM.
c) C

�

U
�

H1, H2, GS , GB
��

preserves (i) BFOD(1, p1) and (ii) BFODD(1, 2, b1).

Parts a) and b) are a direct consequence of Lemmas 4.4.1 and 4.4.2, respectively.
Part c) is proven in the Appendix. It uses the assumptions p1 ≥ p2 and b1 ≥ b2 for
part (i) and part (ii), respectively. By induction on n, the following result directly follows
from Lemma 6.3.1.

THEOREM 6.3.2. Vn satisfies properties (6.3.1)–(6.3.9) for all n≥ 0.

6.3.2 Structure of optimal policy

We now characterize the structure of the optimal policy. For this, we note that the re-
sults in Theorems 4.4.4 and 4.4.5 hold as well, providing the structure of the optimal
policy, i.e. the existence of a monotone switching curve (dynamic threshold level) for
the optimal decision when to satisfy a class j demand from stock, when to backorder it,
and when to satisfy it by an emergency procedure. The optimal policy is graphically de-
picted in Figure 6.2 (compare to Figure 4.1 for the relation with the two-location lateral
transshipment problem).

Denote by a∗j (x , y) the optimal decision for a class j demand when in state (x , y).
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Figure 6.2: Structure of the optimal policy for fulfilling a class j demand.

THEOREM 6.3.3. a) The optimal policy for fulfilling a demand from class j for fixed y
is a threshold type policy: for each y ∈ {0,1, . . . , B}, there exist thresholds T bo

j (y) ∈
{0, 1, . . . , S+ 1} and T st

j (y) ∈ {1, . . . , S+ 1}, with T bo
j (y)≤ T st

j (y), such that:

a∗j (x , y) = 2 (emergency procedure), for 0≤ x ≤ T bo
j (y)− 1;

a∗j (x , y) = 1 (backorder), for T bo
j (y)≤ x ≤ T st

j (y)− 1;

a∗j (x , y) = 0 (directly from stock), for T st
j (y)≤ x ≤ S,

where T bo
j (0) = T st

j (0)≥ 1.
b) T st

1 (y) = 1 for all y ∈ {0,1, . . . , B}, that is

a∗1(x , y) = 0 (directly from stock), for all x ≥ 1, y ≥ 0.

This structure is graphically represented below the horizontal axis in Figure 6.2. If
y = 0, only one threshold describes the optimal policy for when to fulfill the demand
from stock, and when to apply an emergency procedure.

The intuition behind this theorem is as follows. If the stock level x is high, one is
willing to take a part from stock as there are still plenty left afterwards. But if the stock
level is low, one might, depending on the cost parameters, decide to hold some parts
back for future higher priority demands. By part b), high priority demands are always
satisfied from stock, if on-hand stock is available.

This is intuitively correct, as there are no incentives for holding back parts for cus-
tomers from this demand class.

A similar characterization of the optimal policy can be made for fixed x , which is
given in the following theorem.

THEOREM 6.3.4. For the optimal policy for fulfilling a demand of class j for fixed x ∈
{0,1, . . . , S}, there exist T̂ st

j (x) ∈ {0, 1, . . . , B + 1} and T̂ bo
j (x) ∈ {1, . . . , B + 1}, with
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Figure 6.3: Optimal policy for Example 6.3.1.

T̂ st
j (x)≤ T̂ bo

j (x), such that:

a∗j (x) = 2 (emergency procedure), for 0≤ y ≤ T̂ st
j (x)− 1;

a∗j (x) = 0 (direct from stock), for T̂ st
j (x)≤ y ≤ T̂ bo

j (x)− 1;

a∗j (x) = 1 (backorder), for T̂ bo
j (x)≤ y ≤ B,

where T̂ st
j (0) = T̂ bo

j (0)≥ 1.

This structure is graphically represented next to the vertical axis in Figure 6.2. If
x = 0, a single threshold describes the optimal policy, for either backordering or applying
an emergency procedure.

Note that if b j = p j , one never backorders a demand. This follows from the mini-
mization in the definition of H j , as Vn is Decr(2), cf. (6.3.3).

As in Chapter 4, combining Theorems 6.3.3 and 6.3.4 restricts the possibilities for the
optimal policy significantly, see the discussion in Section 4.4.2.

Example 6.3.1. Let λ1 = 3, λ2 = 10, µ = 1, S = 4, B = 10 and h(x) = 0.1x , b(y) =
ln(11/(11− j)). Furthermore, let p1 = 100, b1 = 50 and p2 = 15, b2 = 2. Then the
optimal policy is as given in Figure 6.3. Note that it satisfies the optimal policy structure
described by Theorems 6.3.3 and 6.3.4, which is depicted in Figure 6.2.

This optimal policy structure for satisfying the demands is in line with the optimal
policy structure of [21]. In Enders et al. [69] a static, critical level is assumed which
determines whether a class 2 demand is satisfied from stock, or backlogged. Although
this policy satisfies the optimal policy structure, it typically is sub-optimal. In [69] it is
argued that the main advantage of such a single, static critical level is that it is easily
explained to practitioners and that it is easy to implement, as it does not depend on
other factors, such as the repair pipeline. In a testbed over 1,232 instance, they show an
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Figure 6.4: Simplified optimal policy structure when condition (6.3.10) is satisfied.

average relative difference of 2.1%, comparing the costs of the optimal state-dependent
policy, versus the optimal critical level policy.

6.3.3 Conditions simplifying the optimal policy

Under a sufficient condition on the cost parameters, the structure of the optimal policy is
simplified.

THEOREM 6.3.5. If

λ2

ν
min{(p1 − b1)− (p2 − b2), 0} ≥ b(B)− b(B− 1), (6.3.10)

then T̂ bo
1 (0) = 1.

Also, if
λ1

ν
min{(p2 − b2)− (p1 − b1), 0} ≥ b(B)− b(B− 1), (6.3.11)

then T̂ bo
2 (0) = 1.

That is, the optimal action is to always backorder a demand in case of a stock-out
(unless the maximum number of backorders is already reached).

Hence, under condition (6.3.10), the optimal policy for a class 1 demand is a greedy
policy: use a part from stock, if possible, otherwise backlog the demand, if possible, and
only when out-of-stock and already fully backordered, apply an emergency procedure
(see Figure 6.4). This is the equivalent of a complete pooling strategy at location 1 for
the two-location model of Chapter 4.

In Example 6.3.1, condition (6.3.10) is clearly satisfied, hence the optimal policy
found for class 1 demands in this example (see Figure 6.3, left) coincides with the sim-
plified optimal policy structure of Figure 6.4.

REMARK 6.3.6. In Enders et al. [69] a slightly different version of the options for satisfying
the demands is studied. Namely, a class 1 demand is directly satisfied from stock, if
possible, and lost otherwise; and a class 2 demand may be directly satisfied from stock,
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or can be backordered. In [69] a static threshold is used to determine which option is
used for a class 2 demand. The optimization, however, is a special case of our setting.
To achieve this, set b1 = p1 in (6.2.2), then the option to backorder a class 1 demand
is always suboptimal. Moreover, by (6.3.1), a demand is always satisfied from stock,
if possible. For a class 2 demand, if one lets p2 → ∞, the option of an emergency
procedure is always suboptimal. One should take B large enough, to avoid boundary
effects influencing the optimal policy.

REMARK 6.3.7. With the approach followed in this chapter, one is not able to optimize the
decision whether a repair completion is used to increase the stock level or to decrease
the number of outstanding backorders. The operator that would be used to optimize
this decision does not (necessarily) propagate the property Supermod, cf. (6.3.6). As a
consequence, also MM (6.3.9) is not propagated. Hence, the value function does not
(necessarily) satisfy the properties (6.3.4)–(6.3.9), and the structural results derived in
Section 6.3 does not have to hold.
Although examples for which the value function does not satisfy (6.3.6) are easily con-
structed, we did not succeed in finding a counter example violating the optimal policy
structure of Theorems 6.3.3 and 6.3.4. In such an example, the optimal policy is not
described by a switching curve. This means that there is no monotonicity in the optimal
actions when either x or y is fixed.
This problem arises in models that have (a finite or infinite number of) parallel severs.
For a model with a single repair server (for both backorders and stock) the optimization
is possible. Such an assumption is made in Benjaafar et al. [21] for a model similar to
ours (see also Ha [95]). In this case, one is then also able to prove the optimality of a
state-dependent base stock level. That is, one optimizes the decision whether to repair a
part for stock, clear a backorder, or do neither of the two.
Next to the optimized decisions, the following (heuristic) policies for using repair comple-
tions also lead to value functions that do not necessarily satisfy properties (6.3.4)–(6.3.9)
on S:

• Use all repair completions to increase the stock level until x = S, then use them to
decrease the number of outstanding backorders (until y = B);

• Use all repair completions to decrease the number of outstanding backorders until
y = B, then use them to increase the stock level (until x = S);

• Use a fixed threshold, as in e.g. [4, 69].

6.4 Model variation

In this section we outline a model variation, allowing asymmetric backlog cost per time
unit for class 1 and class 2 demands. In this way, the model becomes similar to the model
studied in Benjaafar et al. [21] (with a slightly different assumption on the repair rates),
to which we refer for the analysis.

We have assumed that the backlog cost per time unit are equal for both class 1 and
class 2 demands (see Section 6.2.1). In this way, the obtained model is two-dimensional.
For this model, we proved that a class 1 demand is always satisfied from stock, if possi-
ble (see Section 6.3.2). Hence, one can restrict the options for how a class 1 demand is
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satisfied, without changing the model, by only allowing the options of backlogging and
emergency procedures when out-of-stock. One now counts class 1 backlogs as negative
on-hand stock (one can do so, as class 1 backlogs only occur when x = 0). Only the
class 2 backorders are now counted in the direction of y . In this way, the class 1 and
class 2 backorders are separated. Hence, one can now allow for different backlog cost
per time unit, while keeping a two-dimensional model. There is an extra assumption
necessary for this to work, namely that class 1 backorders are first cleared, before parts
are added to stock. Moreover, one cannot charge one-time backlog cost for class 1 de-
mands: as these are non-convex in x , the resulting value function would not necessarily
be convex in x , and the propagation of the structural properties cannot be guaranteed.

Let b j(·) be the backlog costs per time unit as a function of the number of outstanding
class j backlogs, j = 1,2, assuming b j(·) to be non-negative, non-decreasing, and convex
for j = 1,2, such that b1(i)≥ b2(i) for all i. Let B j be the maximum number of outstand-
ing backorders for class j. The state of the system is still given by (x , y), where x is now
the stock level, such that x+ =max{x , 0} is the on-hand inventory, and x− =−min{x , 0}
is the number of outstanding class 1 backorders. Hence, x ∈ {−B1, . . . , 0, 1, . . . , S}, and
B2 − y is the number of outstanding class 2 backorders, y ∈ {0,1, . . . , B2}. The state
space S̃ is given by

S̃ = {(x , y) | x ∈ {−B1, . . . , 0, 1, . . . , S}, y ∈ {0, 1, . . . , B2}}.

One has to adapt the demand operators H1 and H2:

H̃1 f (x , y) =

¨

min{ f (x − 1, y), p j + f (x , y)} if x >−B1,

p j + f (x , y) if x =−B1,

and

H̃2 f (x , y) =















min{ f (x − 1, y), b2 + f (x , y − 1), p2 + f (x , y)} if x > 0, y > 0,

min{b2 + f (x , y − 1), p2 + f (x , y)} if x ≤ 0, y > 0,

min{ f (x − 1, y), p2 + f (x , y)} if x > 0, y = 0,

p2 + f (x , y) if x ≤ 0, y = 0.

One has to adapt the other operators to fit the state space S̃.
The resulting model is similar to the model of [21]. They assume a single production

server for the replenishments (where we assume ample repair capacity), and hence they
are also able to optimize the production decision (see Remark 6.3.7). Also, we bounded
the state space for computational purposes by the use of maximum numbers of outstand-
ing backorders, which is not a restriction, as these can be taken arbitrarily large. Hence,
the analysis follows along the same lines as in [21], where is it proven that the optimal
policy structure for satisfying the demands is again given by a state-dependent threshold
policy for both classes.

6.5 Conclusion

In this chapter we studied a stock rationing problem which combines the options of back-
orders and emergency procedures. We derived the optimal policy structure, minimizing
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the long-run average costs, for a problem with two demand classes. Furthermore, we
derived conditions under which the optimal policy simplified, and outlined a model vari-
ation with different backlog costs per time unit for the two demand classes.

For further research, it would be interesting to investigate whether one can derive
conditions such that value function remains Supermod, when the use of repairs is opti-
mized (see Remark 6.3.7). This also is an open question for the heuristic rules for the
use of the repairs. Both need further study.

6.A Appendix: Proofs

6.A.1 Proof of Lemma 6.3.1

PROOF. a) By Lemma 4.4.2, parts (i) and (ii), as the definitions of H j in (6.2.2) and H1
as in (4.3.3) coincide, for j = 1,2.
b) By Lemma 4.4.1, parts b), (i) and (v), as one can write G = GS + GB, where the
definitions of GS and G1 as in (4.3.2) coincide, and analogously the definitions of GB
and G2 coincide.
c) (i) Assume that f satisfies (6.3.1). Then, for y > 0:

H j f (x + 1, y) + p1

=min







f (x , y) + p1 ≥ f (x , y) + p j

b j + f (x + 1, y − 1) + p1 ≥ b j + f (x , y − 1)
p j + f (x + 1, y) + p1 ≥ p j + f (x , y)

≥min{ f (x − 1, y), b j + f (x , y − 1), p j + f (x , y)}= H j f (x , y),

for j = 1,2, since f satisfies property (6.3.1), and p1 ≥ p j for all j. The case y = 0
proceeds along the same lines.
Also, for x < S, y < B, writing G = GS + GB:

G f (x + 1, y) + (S+ B)p1

= (S− x − 1) f (x + 2, y) + (B− y) f (x + 1, y + 1) + (x + y + 1) f (x + 1, y) + (S+ B)p1

= (S− x − 1)
�

f (x + 2, y) + p1
�

+ (B− y)
�

f (x + 1, y + 1) + p1
�

+ (x + y)
�

f (x + 1, y) + p1
�

+ f (x + 1, y) + p1

≥ (S− x − 1) f (x + 1, y) + (B− y) f (x , y + 1) + (x + y) f (x , y) + f (x + 1, y) + p1

= (S− x) f (x + 1, y) + (B− y) f (x , y + 1) + (x + y) f (x , y) + p1

≥ (S− x) f (x + 1, y) + (B− y) f (x , y + 1) + (x + y) f (x , y) = G f (x , y),

since f satisfies property (6.3.1) (used in the first inequality), and p1 ≥ 0 (second in-
equality). The cases x = S, y < B, and x < S, y = B, and x = S, y = B proceed along
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the same lines. Then U
�

H1, H2, GS , GB
�

f satisfies property (6.3.1) as well:

U
�

H1, H2, GS , GB
�

f (x + 1, y) + p1

=
1

λ1 +λ2 + (S+ B)µ

�

λ1H1 +λ2H2 +µG
�

f (x + 1, y) + p1

=
1

λ1 +λ2 + (S+ B)µ

�

λ1(H1 f (x + 1, y) + p1) +λ2(H2 f (x + 1, y) + p1)

+µ(G f (x + 1, y) + (S+ B)p1)
�

≥
1

λ1 +λ2 + (S+ B)µ

�

λ1H1 f (x , y) +λ2H2 f (x , y) +µG f (x , y)
�

=
1

λ1 +λ2 + (S+ B)µ

�

λ1H1 +λ2H2 +µG
�

f (x , y)

= U
�

H1, H2, GS , GB
�

f (x , y).

(6.A.1)

This leads to

C
�

U
�

H1, H2, GS , GB
��

f (x + 1, y) + p1

= h(x + 1) + b(B− y) + U
�

H1, H2, GS , GB
�

f (x + 1, y) + p1

≥ h(x + 1) + b(B− y) + U
�

H1, H2, GS , GB
�

f (x , y)
≥ h(x) + b(B− y) + U

�

H1, H2, GS , GB
�

f (x , y)
= C

�

U
�

H1, H2, GS , GB
��

f (x , y),

(6.A.2)

where the first inequality holds by (6.A.1), and the second as h(x) is non-decreasing in x .
(ii) Assume that f satisfies (6.3.2). Then, for x > 0, y > 0:

H j f (x + 1, y) + p1

=min







f (x , y) + b1 ≥ f (x , y) + b j

b j + f (x + 1, y − 1) + b1 ≥ b j + f (x , y)
p j + f (x + 1, y) + b1 ≥ p j + f (x , y + 1)

≥min{ f (x − 1, y + 1), b j + f (x , y), p j + f (x , y + 1)}= H j f (x , y + 1),

for j = 1,2, since f satisfies property (6.3.2), and b1 ≥ b j for all j. The cases x > 0,
y = 0, and x = 0, y > 0, and x = 0, y = 0 proceed along the same lines.
Also, for x < S, y < B, writing G = GS + GB:

G f (x + 1, y) + (S+ B)b1

= (S− x − 1) f (x + 2, y) + (B− y) f (x + 1, y + 1) + (x + y + 1) f (x + 1, y) + (S + B)b1

= (S− x − 1)
�

f (x + 2, y) + b1
�

+ (B− y)
�

f (x + 1, y + 1) + b1
�

+ (x + y + 1)
�

f (x + 1, y) + b1
�

≥ (S− x − 1) f (x + 1, y + 1) + (B− y)
�

f (x + 1, y + 1) + b1
�

+ (x + y + 1) f (x , y + 1)
= (S− x) f (x + 1, y + 1) + (B− y − 1)

�

f (x + 1, y + 1) + b1
�

+ (x + y + 1) f (x , y + 1) + b1

≥ (S− x) f (x + 1, y + 1) + (B− y − 1) f (x , y + 2) + (x + y + 1) f (x , y + 1) + b1

≥ (S− x) f (x + 1, y + 1) + (B− y − 1) f (x , y + 2) + (x + y + 1) f (x , y + 1) = G f (x , y + 1),
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since f satisfies property (6.3.1) (used in the first two inequalities), and b1 ≥ 0 (third
inequality). The cases x = S, y < B, and x < S, y = B, and x = S, y = B proceed along
the same lines.Then U

�

H1, H2, GS , GB
�

f satisfies property (6.3.2) as well:

U
�

H1, H2, GS , GB
�

f (x + 1, y) + b1

=
1

λ1 +λ2 + (S+ B)µ

�

λ1H1 +λ2H2 +µG
�

f (x + 1, y) + b1

=
1

λ1 +λ2 + (S+ B)µ

�

λ1H1( f (x + 1, y) + b1) +λ2(H2 f (x + 1, y) + b1)

+µ(G f (x + 1, y) + (S+ B)b1)
�

≥
1

λ1 +λ2 + (S+ B)µ

�

λ1H1 f (x , y + 1) +λ2H2 f (x , y + 1) +µG f (x , y + 1)
�

=
1

λ1 +λ2 + (S+ B)µ

�

λ1H1 +λ2H2 +µG
�

f (x , y + 1)

= U
�

H1, H2, GS , GB
�

f (x , y + 1).

(6.A.3)

Analogously to (6.A.2), now using inequality (6.A.3), this leads to

C
�

U
�

H1, H2, GS , GB
��

f (x + 1, y) + b1 ≥ C
�

U
�

H1, H2, GS , GB
��

f (x , y + 1).

6.A.2 Proof of Theorem 6.3.3

PROOF. a) The proof is along the same lines as the proof of Theorem 4.4.4.
b) By inequality (6.3.1) it directly follows that T st

1 (0) = 1. By inequality (6.3.2) it follows
that T st

1 (y) = 1 for all y ≥ 1.

6.A.3 Proof of Theorem 6.3.5

PROOF. We prove the result for class 1 demands, as the result for class 2 demands follows
along the same lines, by interchanging the demand classes. We prove that a∗1(0,1) =
1 (backorder), then it follows by Theorem 6.3.4 that T̂ bo

1 (0) = 1. It suffices to prove that,
for all n≥ 0:

Vn(0,1) + p1 − b1 ≥ Vn(0, 0). (6.A.4)

We prove this inequality by induction. For V0 ≡ 0, (6.A.4) trivially holds, as by assump-
tion p1 ≥ b1. Assume that (6.A.4) holds for a given n (induction hypothesis). We consider
the operators H1, H2, and GS+GB separately. All given inequalities hold by the induction
hypothesis, unless stated otherwise.

H1Vn(0,1) + p1 − b1 −H1Vn(0,0)
=min{Vn(0,0) + p1, Vn(0, 1) + 2 p1 − b1} −

�

Vn(0,0) + p1
�

≥ Vn(0,0) + p1 −
�

Vn(0,0) + p1
�

≥ 0.

H2Vn(0,1) + p1 − b1 −H2Vn(0,0)
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=min{Vn(0,0) + b2 + p1 − b1, Vn(0,1) + p2 + p1 − b1} −
�

Vn(0,0) + p2
�

≥min{Vn(0,0) + b2 + p1 − b1, Vn(0,0) + p2} −
�

Vn(0,0) + p2
�

≥min{(p1 − b1)− (p2 − b2), 0}.

(GS + GB)Vn(0, 1) + (S+ B)(p1 − b1)− (GS + GB)Vn(0, 0)
= SVn(1, 1) + (B− 1)Vn(0,2) + Vn(0,1) + (S+ B)(p1 − b1)− SVn(1,0)− BVn(0, 1)
= S
�

Vn(1, 1) + p1 − b1 − Vn(1,0)
�

+ (B− 1)
�

Vn(0,2) + p1 − b1 − Vn(0, 1)
�

+ Vn(0,1)− Vn(0,1) + p1 − b1

≥ p1 − b1 ≥ 0,

where the last inequality holds by assumption. Combining these give

Vn+1(0,1) + p1 − b1 − Vn+1(0,0) = h(0) + b(B− 1)− h(0)− b(B)

+
1

ν

�

λ1

�

H1Vn(0, 1) + p1 − b1 −H1Vn(0,0)
�

+λ2

�

H2Vn(0, 1) + p1 − b1 −H2Vn(0, 0)
�

+µ
�

(GS + GB)Vn(0, 1) + (S+ B)(p1 − b1)− (GS + GB)Vn(0,0)
�

�

≥ b(B− 1)− b(B) +λ2 min{(p1 − b1)− (p2 − b2), 0}/ν ≥ 0,

where the last inequality holds by condition (6.3.10). This completes the induction step,
and hence (6.A.4) holds for all n≥ 0.
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7
OPTIMAL CONTROL OF A SERVER FARM

A server farm consists of ample servers that serve a stream of arriving customers. Upon
a service completion, a server can be turned off. This might be beneficial to save power,
and hence costs. However, for shutting down and starting up a server, extra power (i.e.
costs) is incurred. Thus, there is a trade-off between the savings by turning servers off,
and the extra costs made for the start-ups and shut-downs. We consider a model where
arriving customers are taken into service directly. For this, we study the optimal control
of such a server farm, that is, we derive the optimal dynamic control policy deciding
when a server should be turned off after a demand completion, minimizing the expected
discounted long-run costs. We prove this policy to be a state-dependent threshold type
policy.

7.1 Introduction

A server farm consists of an unlimited amount of servers, that serve an arriving stream
of customers. Each server in the system can be in one of the following three states: busy,
idle, or off. Busy servers consume power, idle servers consume less power, and off servers
consume no power at all. Hence, by turning an idle server off, power, and hence costs,
can be saved. However, for starting-up and shutting-down a server, extra power (i.e.
costs) is incurred. In this way, there is a trade-off between the potential costs savings,
and the extra costs incurred. Thus the question is, when servers should be turned off,
and when they should be idled. In this chapter we derive the optimal control policy for
such a server farm, answering this question.

Bell [18] studies a server farm consisting of only two servers (i.e., an M/M/2 system),
for which he characterizes the optimal policy by four parameters. Lu and Serfozo [133]
consider an M/M/1, where they choose the arrival and departure rate from a finite set of
possibilities. Szarkowicz and Knowles [173] allow to turn on or off an arbitrary number
of servers at decision epoch, i.e. they take the decision to have u ∈ {0,1, . . . , S} servers
on until the next decision epoch. Artalejo et al. [8] derive the steady-state behavior of
a system without control. That is, servers are turned on or off when a customer arrives
respectively departs. Moreover, they assume an exponentially distributed setup time for
turning a server on. In Feinberg and Zhang [77] an M/M/∞ system is studied, where
all servers can be turned on and off at once. An exponential setup time is required when
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all are turned on. They prove that the optimal policy can be described by two thresholds
on the number of customers in the system.

By controlling the servers in a server farm, the energy consumption can be decreased,
see e.g. [85, 86]. There is a variety of systems referred to as server farms, with different
options for control. Our focus is on a server farm consisting of an unlimited number of
servers, where costs are incurred for turning servers on or off, and per time unit a server
is on. We assume that customers arrive according to a Poisson process, each requiring an
exponentially distributed service time. An arriving customer has to be taken into service
directly, either by occupying an idle server, or by switching on a server. We want to
minimize the expected long-run discounted costs. When a server completes service to a
customer, we can decide whether to turn this server off, or let it idle. For this system,
we derive the optimal control policy, which we prove to be a dynamic state-dependent
threshold type policy.

The outline of this chapter is as follows. We start by describing the model and in-
troducing the notation in Section 7.2, where we also formulate the problem as an MDP
and introduce the value function. In Section 7.3 we show that the value function satisfies
certain structural results, from which we derive the optimal policy structure. We end by
an example and possibilities for further research. All proofs are in the Appendix 7.A. This
chapter is based on [1].

7.2 Model and notation

7.2.1 Problem description

We study a server farm consisting of an unlimited number of servers. Each server can be
in one of three states: busy, idle, or off. Customers are arriving to the system according
to a Poisson process with rate λ > 0. Each customer requests an i.i.d. exponentially
distributed service time with mean 1/µ, for µ > 0. If an incoming customer finds a server
in idle state, he starts getting served immediately by that server, and that server state
instantaneously changes to busy. If there are no idle servers, the customer occupies one
of the servers turned off and starts getting served. The state of that server instantaneously
changes to busy. As there is an unlimited number of servers, there is always an off server
available. When a service completes at a server, we have an option of switching the server
state to idle or off instantaneously. We do not allow turning an idle server off.

Costs are incurred for keeping servers on, and turning them on and off. As we require
all jobs to be taken into service directly, the costs for busy servers add up to a constant, for
all policies. Hence, we do not take those costs into account, since they do not influence
the optimal decisions, and we only charge costs c̃(i) per unit time to keep i servers idle.
We assume that c̃(i) is convex in i. It costs K on to turn a server from off to on (i.e.
busy), while it costs K off to switch a server off after a service completion. We assume
that the state change of a server happens immediately. When j servers are busy, the next
service completion occurs at rate µ( j), which is an increasing, bounded function, with
µ(0) = 0 and a finite upper bound µ̄. This upper bound is required to be able to apply
uniformization. In this way, the infinite server case µ( j) = jµ is not included, however,
the many server case µ( j) = min{ j, M}µ, for some finite M , is. We want to derive an
optimal policy that minimizes the expected long-run discounted cost, with continuous
discount factor α > 0.
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Figure 7.1: Transition rates for the server farm model.

7.2.2 Dynamic programming formulation

We model the problem as a Markov decision process (MDP, cf. [155]). Denote by i the
number of servers in idle state and by j the number of servers in busy state. Then the
state space S is given by

S = {(i, j) | i ≥ 0, j ≥ 0}.

There are two types of events that can occur: customer arrivals and service completions.
At rate λ customers arrive to the system. When it finds a server idle (i > 0), it directly
occupies this server (at no extra costs), changing the server’s state to busy. If i = 0, an
off server has to be turned on, at costs K on, and the customer directly occupies this server,
changing the server’s state state to busy as well. When service to a customer is completed
(at rate µ( j)), we have two option to choose from. Either, one can leave the server idle
(at no direct extra costs), or one can decide to switch off the server, incurring costs K off.
Note that lower costs per time unit are made in the latter case, as one pays per time unit
for each server being idle.

As the interarrival times of demands as well as the service times are independent
exponentially distributed random variables, we can apply uniformization (cf. [131]) to
convert the semi-Markov decision problem into an equivalent Markov decision problem
(MDP). For this, we add fictitious transitions, to let the service completion event occur
at rate µ̄. The existence of a stationary optimal policy is guaranteed by [155, Theo-
rem 11.5.3].

Let Vn : S 7→ R be the value function, the minimum cost function when there are n
events (customer arrivals or service completions) left. It is given by:

Vn+1(i, j) = c(i) +
1

ν

�

λTarrVn(i, j) + TdepVn(i, j)
�

, (7.2.1)

starting with V0 ≡ 0, where ν = λ+ µ̄+ α is the uniformization rate, and c(i) = c̃(i)/ν .
The operators Tarr (customer arrival) and Tdep (service completion, i.e., departure) are
defined below. The costs c(i) represent the costs for keeping i servers idle during one
time unit 1/ν . Recall that c̃(·), and hence c(·), is assumed to be convex.



126 OPTIMAL CONTROL OF A SERVER FARM

The operator Tarr models the customer arrivals, and is defined by

Tarr f (i, j) =

¨

f (i − 1, j+ 1) if i > 0;

f (i, j+ 1) + K on if i = 0.

When there or no idle servers (i = 0), a server has to be turned on (at costs K on) to
serve the arriving customer. When there is at least one server idle (i > 0), the arriving
customer occupies one of these servers. Hence one server switches from idle to busy.

The operator Tdep models (potential) service completions (i.e., departures), and is
defined by

Tdep f (i, j) = µ( j)min{ f (i+ 1, j− 1), f (i, j− 1) + K off}+ (µ̄−µ( j)) f (i, j).

When there are j servers busy, a service completion occurs with rate µ( j). The opera-
tor Tdep takes the cost minimizing decision to either keep the vacant server idle, or turn
it off (at costs K off). The part (µ̄−µ( j)) f (i, j) is a fictitious transition, to assure that the
rate at which Tdep occurs is always equal to µ̄.

In Figure 7.1 the transition rates are graphically depicted.

7.3 Structural results

In this section we prove our main result: the structure of the optimal control policy for
a server farm. For this, we first introduce a number of structural properties. Each of
the operators in the value function preserves these properties, hence the value function
satisfies them. From this the optimal policy structure is derived.

7.3.1 Properties of operators and value function

Consider, as introduced in Section 2.3.2, the following properties of a function f, defined
for all i, j ≥ 0:

Conv(i) : f (i, j) + f (i+ 2, j)≥ 2 f (i+ 1, j), (7.3.1)

Supermod(i, j) : f (i, j) + f (i+ 1, j+ 1)≥ f (i+ 1, j) + f (i, j+ 1), (7.3.2)

SuperC(i, j) : f (i, j+ 1) + f (i+ 2, j)≥ f (i+ 1, j) + f (i+ 1, j+ 1), (7.3.3)

BFOD(i, K on) : f (i+ 1, j) + K on ≥ f (i, j). (7.3.4)

Note that we prove BFOD(i, K on) for all i ≥ 0, although we only need it for i = 0.
The next two lemmas show that the operators Tarr and Tdep preserve properties (7.3.1)–

(7.3.3). Furthermore, the third lemma shows that (7.3.4) is preserved as well. The proofs
are given in the Appendix 7.A. Recall that X : P1, . . . , PN → P1 denotes that when a
function f satisfies properties P1, . . . , PN , then X f satisfies property P1, for operator X .

LEMMA 7.3.1. For all i, j ≥ 0:

1) Tarr : Conv(i), BFOD(i, K on) → Conv(i),

2) Tarr : Supermod(i, j) → Supermod(i, j),

3) Tarr : SuperC(i, j), BFOD(i, K on) → SuperC(i, j).
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leave idle turn off struc. prop.
i) ←: (i− 1, j) →: (i+ 1, j) Conv(i)

ii) ↓ : (i, j− 1) ↑ : (i, j+ 1) Supermod(i, j)
iii) ↖: (i− 1, j+ 1) ↘: (i+ 1, j− 1) SuperC(i, j)

Table 7.1: If in state (i, j) the optimal action is to leave the server idle (to turn the server
off), then the left (middle) column indicates the states in which that is the optimal action
as well (see Figure 7.2). The right column indicates the structural properties of the value
function needed for that result.

LEMMA 7.3.2. For all i, j ≥ 0:

1) Tdep : Conv(i) → Conv(i),

2) Tdep : Supermod(i, j), SuperC(i, j) → Supermod(i, j),

3) Tdep : SuperC(i, j), Supermod(i, j) → SuperC(i, j).

LEMMA 7.3.3. For all i, j ≥ 0:

1

λ+ µ̄+α

�

λTarr + Tdep

�

: BFOD(i, K on) → BFOD(i, K on).

REMARK 7.3.4. In both Lemma 7.3.1 and 7.3.2 it suffices to prove parts 2) and 3), since
they imply 1). For completeness, we also give the proofs for 1).

Since V0(i, j) = 0 for all (i, j), V0 satisfies the properties (7.3.1)–(7.3.4). We assumed
that the cost function c̃(i) is convex. Moreover, taking a linear combination preserves
these properties. Then, by induction on n, Lemmas 7.3.1, 7.3.2, and 7.3.3 lead to the
following result:

THEOREM 7.3.5. Vn satisfies properties (7.3.1)–(7.3.4) for all n≥ 0.

7.3.2 Structure of optimal policy

Using the result of Theorem 7.3.5, we derive the structure of the optimal policy.

THEOREM 7.3.6. The optimal policy is described by a switching curve T (i), such that if
service completes in state (i, j) it is optimal to leave the server idle if j ≤ T (i), and turn the
server off if j > T (i). Furthermore, T (i) is strictly decreasing in i, i.e. T (i) > T (i + 1), for
all i ≥ 0 (until it reaches 0).

The optimal policy structure is shown in Figure 7.2. Suppose that in state (i, j) the
optimal action is to leave the server idle, then this is also the optimal action in states
(i − 1, j), (i, j − 1), and (i − 1, j + 1). When in state (i, j) the optimal action is to turn
the server off, then this is also the optimal action in states (i + 1, j), (i, j + 1), and (i +
1, j − 1) (for both, see again Figure 7.2). Table 7.1 summarizes this, and also indicates
the structural properties of the value function needed for each of the statements.

We end by an example and suggestions for model variations.
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Figure 7.2: Structure of the optimal policy.
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Figure 7.3: Optimal policy for Examples 7.3.1(a) and 7.3.1(b).

Example 7.3.1. Consider the following example, with λ = 5, µ = 1, for α ↓ 0, where
K off = 0.
(a) When K on/c = 1, the optimal policy that minimizes the long run cost per unit time is
given by the following switching curve: T (1) = 14, T (2) = 3 and T (i) = 0 for i ≥ 3 (see
Figure 7.3), with long run cost 2.49K on.
(b) When K on/c = 5, the optimal policy is given by T (1) ≥ 50, T (2) = 18, T (3) =
8, T (4) = 5, T (5) = 3, T (6) = 2, and T (i) = 0 for i ≥ 7 (see again Figure 7.3), with
long run cost .95K on.

REMARK 7.3.7. Possible extensions for the model include (i) adding the option of turning
off an idle server at any time (i.e. not triggered by a service completion), (ii) limiting
the number of servers, (iii) considering an unbounded rate for the total server rate, (iv)
investigating the long-run average costs case, (v) adding a positive start-up and/or shut
down time when turning a server on or off, e.g. following an exponential distribution,
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and (vi) allowing customers to queue, charging holding costs for waiting customers.

7.A Appendix: Proofs

7.A.1 Proof of Lemma 7.3.1

PROOF. 1) Suppose that f is Conv(i) and BFOD(i, Kon), then we show that Tarr f is Conv(i). For
i > 0:

Tarr f (i, j) + Tarr f (i+ 2, j) = f (i− 1, j+ 1) + f (i+ 1, j+ 1)

≥ 2 f (i, j+ 1) = 2 Tarr f (i+ 1, j),

since f is Conv(i), and for i = 0:

Tarr f (0, j) + Tarr f (2, j) = f (0, j+ 1) + Kon + f (1, j+ 1)

≥ 2 f (0, j+ 1) = 2 Tarr f (1, j),

since f is BFOD(i, Kon).

2) Suppose that f is Supermod(i, j), then we show that Tarr f is Supermod(i, j). For i > 0:

Tarr f (i, j) + Tarr f (i+ 1, j+ 1) = f (i− 1, j+ 1) + f (i, j+ 2)

≥ f (i, j+ 1) + f (i− 1, j+ 2) = Tarr f (i+ 1, j) + Tarr f (i, j+ 1),

since f is Supermod(i, j), and for i = 0:

Tarr f (0, j) + Tarr f (1, j+ 1) = f (0, j+ 1) + Kon + f (0, j+ 2)

= Tarr f (1, j) + Tarr f (0, j+ 1).

3) Suppose that f is SuperC(i, j) and BFOD(i, Kon), then we show that Tarr f is SuperC(i, j). For
i > 0:

Tarr f (i, j+ 1) + Tarr f (i+ 2, j) = f (i− 1, j+ 2) + f (i+ 1, j+ 1)

≥ f (i, j+ 1) + f (i, j+ 2) = Tarr f (i+ 1, j) + Tarr f (i+ 1, j+ 1),

since f is SuperC(i, j), and for i = 0:

Tarr f (0, j+ 1) + Tarr f (2, j) = f (0, j+ 2) + Kon + f (1, j+ 1)

≥ f (0, j+ 1) + f (0, j+ 2) = Tarr f (1, j) + Tarr f (1, j+ 1),

since f is BFOD(i, Kon).

7.A.2 Proof of Lemma 7.3.2

PROOF. The proofs of parts 1)-3) come down to case checking: applying Tdep to f introduces a min-
imization over two terms, so the sum of two gives a total of four possibilities, which we each check
separately. For this we use the trivial results: a ≥min{a, b}, and hence a+b ≥ 2 min{a, b}, ∀a, b ∈
R. Furthermore, we use that µ( j) is increasing in j, hence µ( j + 1)− µ( j) ≥ 0, and we use that
µ( j)≤ µ̄ for all j, hence µ̄−µ( j)≥ 0 for all j. Moreover, for a few cases we use:

µ( j) a+
�

µ( j+ 1)−µ( j)
�

b ≥ µ( j)min{a, b}+
�

µ( j+ 1)−µ( j)
�

min{a, b}= µ( j+ 1)min{a, b},
(7.A.1)
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for all a, b ∈R.

1) Suppose that f is Conv(i), then we show that Tdep f is Conv(i). For j > 0:

Tdep f (i, j) + Tdep f (i+ 2, j)

=
�

µ̄−µ( j)
��

f (i, j) + f (i+ 2, j)
�

+µ( j)min































À f (i+ 1, j− 1) + f (i+ 3, j− 1)≥ 2 f (i+ 2, j− 1)
Á f (i+ 1, j− 1) + f (i+ 2, j− 1) + Koff

Â f (i, j− 1) + Koff + f (i+ 3, j− 1)
≥ 2 f (i+ 1, j− 1) + f (i+ 3, j− 1)− f (i+ 2, j− 1) + Koff

≥ f (i+ 1, j− 1) + f (i+ 2, j− 1) + Koff

Ã f (i, j− 1) + Koff + f (i+ 2, j− 1) + Koff ≥ 2 f (i+ 1, j− 1) + 2 Koff

≥ 2
�

µ̄−µ( j)
�

f (i+ 1, j) + 2µ( j)min{ f (i+ 2, j− 1), f (i+ 1, j− 1) + Koff}= 2 Tdep f (i+ 1, j),

where all inequalities hold since f is Conv(i), and for j = 0:

Tdep f (i, 0) + Tdep f (i+ 2, 0) = µ̄
�

f (i, 0) + f (i+ 2,0)
�

≥ 2 µ̄ f (i+ 1,0) = 2 Tdep f (i+ 1, 0),

since f is Conv(i).

2) Suppose that f is Supermod(i, j) and SuperC(i, j) (and hence Conv(i)), then we show that Tdep f
is Supermod(i, j). For j > 0:

Tdep f (i, j) + Tdep f (i+ 1, j+ 1)

=
�

µ̄−µ( j)
�

f (i, j) +
�

µ̄−µ( j+ 1)
�

f (i+ 1, j+ 1)

+min















À µ( j) f (i+ 1, j− 1) +µ( j+ 1) f (i+ 2, j)
Á µ( j) f (i+ 1, j− 1) +µ( j+ 1)

�

f (i+ 1, j) + Koff
�

Â µ( j)
�

f (i, j− 1) + Koff
�

+µ( j+ 1) f (i+ 2, j)
Ã µ( j)

�

f (i, j− 1) + Koff
�

+µ( j+ 1)
�

f (i+ 1, j) + Koff
�

≥
�

µ̄−µ( j)
�

f (i+ 1, j) +
�

µ̄−µ( j+ 1)
�

f (i, j+ 1) +µ( j)min{ f (i+ 2, j− 1), f (i+ 1, j− 1) + Koff}
+µ( j+ 1)min{ f (i+ 1, j), f (i, j) + Koff}
= Tdep f (i+ 1, j) + Tdep f (i, j+ 1).

Here À holds because:

�

µ̄−µ( j)
�

f (i, j) +
�

µ̄−µ( j+ 1)
�

f (i+ 1, j+ 1) +µ( j) f (i+ 1, j− 1) +µ( j+ 1) f (i+ 2, j)

=
�

µ̄−µ( j)
��

f (i, j) + f (i+ 1, j+ 1)
�

+µ( j)
�

f (i+ 1, j− 1) + f (i+ 2, j)
�

+
�

µ( j+ 1)−µ( j)
��

f (i+ 2, j)− f (i+ 1, j+ 1)
�

≥
�

µ̄−µ( j)
��

f (i+ 1, j) + f (i, j+ 1)
�

+µ( j)
�

f (i+ 2, j− 1) + f (i+ 1, j)
�

+
�

µ( j+ 1)−µ( j)
��

f (i+ 2, j)− f (i+ 1, j+ 1)
�

=
�

µ̄−µ( j)
�

f (i+ 1, j) +
�

µ̄−µ( j+ 1)
�

f (i, j+ 1) +µ( j) f (i+ 2, j− 1) +µ( j+ 1) f (i+ 1, j)

+
�

µ( j+ 1)−µ( j)
��

f (i+ 2, j)− f (i+ 1, j+ 1)− f (i+ 1, j) + f (i, j+ 1)
�

≥
�

µ̄−µ( j)
�

f (i+ 1, j) +
�

µ̄−µ( j+ 1)
�

f (i, j+ 1) +µ( j) f (i+ 2, j− 1) +µ( j+ 1) f (i+ 1, j),

since f is Supermod(i, j), respectively SuperC(i, j).
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And Á holds because:
�

µ̄−µ( j)
�

f (i, j) +
�

µ̄−µ( j+ 1)
�

f (i+ 1, j+ 1) +µ( j) f (i+ 1, j− 1) +µ( j+ 1)
�

f (i+ 1, j) + Koff
�

=
�

µ̄−µ( j+ 1)
��

f (i, j) + f (i+ 1, j+ 1)
�

+µ( j) f (i+ 1, j− 1) +µ( j+ 1)
�

f (i+ 1, j) + Koff
�

+
�

µ( j+ 1)−µ( j)
�

f (i, j)

≥
�

µ̄−µ( j+ 1)
��

f (i+ 1, j) + f (i, j+ 1)
�

+µ( j) f (i+ 1, j− 1) +µ( j+ 1)
�

f (i+ 1, j) + Koff
�

+
�

µ( j+ 1)−µ( j)
�

f (i, j)

=
�

µ̄−µ( j)
�

f (i+ 1, j) +
�

µ̄−µ( j+ 1)
�

f (i, j+ 1) +µ( j)
�

f (i+ 1, j− 1) + Koff
�

+µ( j+ 1) f (i+ 1, j)

+
�

µ( j+ 1)−µ( j)
��

f (i, j) + Koff − f (i+ 1, j)
�

=
�

µ̄−µ( j)
�

f (i+ 1, j) +
�

µ̄−µ( j+ 1)
�

f (i, j+ 1) +µ( j)
�

f (i+ 1, j− 1) + Koff
�

+µ( j) f (i+ 1, j)

+
�

µ( j+ 1)−µ( j)
��

f (i, j) + Koff
�

,

since f is Supermod(i, j) and since by (7.A.1):

µ( j) f (i+ 1, j) +
�

µ( j+ 1)−µ( j)
��

f (i, j) + Koff
�

≥ µ( j+ 1)min{ f (i+ 1, j), f (i, j) + Koff}.

For Â first note that

f (i, j− 1) + f (i+ 2, j) = f (i, j− 1) + f (i+ 2, j) + f (i+ 1, j)− f (i+ 1, j)

≥ f (i+ 1, j− 1) + f (i, j) + f (i+ 2, j)− f (i+ 1, j)

≥ 2 f (i+ 1, j) + f (i+ 1, j− 1)− f (i+ 1, j)

= f (i+ 1, j) + f (i+ 1, j− 1), (7.A.2)

since f is Supermod(i, j), respectively Conv(i). Now Â holds because:
�

µ̄−µ( j)
�

f (i, j) +
�

µ̄−µ( j+ 1)
�

f (i+ 1, j+ 1) +µ( j)
�

f (i, j− 1) + Koff
�

+µ( j+ 1) f (i+ 2, j)

=
�

µ̄−µ( j)
��

f (i, j) + f (i+ 1, j+ 1)
�

+µ( j)
�

f (i, j− 1) + Koff + f (i+ 2, j)
�

+
�

µ( j+ 1)−µ( j)
��

f (i+ 2, j)− f (i+ 1, j+ 1)
�

≥
�

µ̄−µ( j)
��

f (i+ 1, j) + f (i, j+ 1)
�

+µ( j)
�

f (i+ 1, j) + Koff + f (i+ 1, j− 1)
�

+
�

µ( j+ 1)−µ( j)
��

f (i+ 2, j)− f (i+ 1, j+ 1)
�

=
�

µ̄−µ( j)
�

f (i+ 1, j) +
�

µ̄−µ( j+ 1)
�

f (i, j+ 1) +µ( j)
�

f (i+ 1, j− 1) + Koff
�

+µ( j+ 1) f (i+ 1, j)

+
�

µ( j+ 1)−µ( j)
��

f (i+ 2, j)− f (i+ 1, j+ 1) + f (i, j+ 1)− f (i+ 1, j)
�

≥
�

µ̄−µ( j)
�

f (i+ 1, j) +
�

µ̄−µ( j+ 1)
�

f (i, j+ 1) +µ( j)
�

f (i+ 1, j− 1) + Koff
�

+µ( j+ 1) f (i+ 1, j),

where the first inequality holds since f is Supermod(i, j) (part with µ̄−µ( j)) and by (7.A.2) (part
with µ( j)), and the second inequality holds since f is SuperC(i, j).
Finally, Ã holds because:

�

µ̄−µ( j)
�

f (i, j) +
�

µ̄−µ( j+ 1)
�

f (i+ 1, j+ 1) +µ( j)
�

f (i, j− 1) + Koff
�

+µ( j+ 1)
�

f (i+ 1, j) + Koff
�

=
�

µ̄−µ( j+ 1)
��

f (i, j) + f (i+ 1, j+ 1)
�

+µ( j)
�

f (i, j− 1) + Koff + f (i+ 1, j) + Koff
�

+
�

µ( j+ 1)−µ( j)
��

f (i, j) + f (i+ 1, j) + Koff
�

≥
�

µ̄−µ( j+ 1)
��

f (i+ 1, j) + f (i, j+ 1)
�

+µ( j)
�

f (i+ 1, j− 1) + Koff + f (i, j) + Koff
�

+
�

µ( j+ 1)−µ( j)
��

f (i, j) + f (i+ 1, j) + Koff
�

=
�

µ̄−µ( j)
�

f (i+ 1, j) +
�

µ̄−µ( j+ 1)
�

f (i, j+ 1) +µ( j)
�

f (i+ 1, j− 1) + Koff
�

+µ( j+ 1)
�

f (i, j) + Koff
�

,

since f is Supermod(i, j).
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Furthermore, for j = 0:

Tdep f (i, 0) + Tdep f (i+ 1,1)

= µ̄ f (i, 0) +µ(1)min

(

À f (i+ 2, 0)
Á f (i+ 1, 0) + Koff

)

+
�

µ̄−µ(1)
�

f (i+ 1, 1)

≥ µ̄ f (i+ 1, 0) +
�

µ̄−µ(1)
�

f (i, 1) +µ(1)min{ f (i+ 1,0), f (i, 0) + Koff}
= Tdep f (i+ 1, 0) + Tdep f (i, 1),

where À holds because:

µ̄ f (i, 0) +µ(1) f (i+ 2, 0) +
�

µ̄−µ(1)
�

f (i+ 1, 1)

= µ̄
�

f (i, 0) + f (i+ 1,1)
�

+µ(1)
�

f (i+ 2, 0)− f (i+ 1,1)
�

≥ µ̄
�

f (i+ 1, 0) + f (i, 1)
�

+µ(1)
�

f (i+ 2,0)− f (i+ 1,1)
�

= µ̄ f (i+ 1, 0) +
�

µ̄−µ(1)
�

f (i, 1) +µ(1)
�

f (i+ 2,0)− f (i+ 1,1) + f (i, 1)
�

≥ µ̄ f (i+ 1, 0) +
�

µ̄−µ(1)
�

f (i, 1) +µ(1) f (i+ 1,0),

since f is Supermod(i, j), respectively SuperC(i, j), and Á holds because:

µ̄ f (i, 0) +µ(1)
�

f (i+ 1, 0) + Koff
�

+
�

µ̄−µ(1)
�

f (i+ 1,1)

=
�

µ̄−µ(1)
��

f (i, 0) + f (i+ 1,1)
�

+µ(1)
�

f (i+ 1,0) + Koff + f (i, 0)
�

≥
�

µ̄−µ(1)
��

f (i+ 1,0) + f (i, 1)
�

+µ(1)
�

f (i+ 1,0) + Koff + f (i, 0)
�

= µ̄ f (i+ 1, 0) +
�

µ̄−µ(1)
�

f (i, 1) +µ(1)
�

f (i, 0) + Koff
�

,

since f is Supermod(i, j).

3) Suppose that f is SuperC(i, j) and Supermod(i, j), then we show that Tdep f is SuperC(i, j). For
j > 0:

Tdep f (i, j+ 1) + Tdep f (i+ 2, j)

=
�

µ̄−µ( j+ 1)
�

f (i, j+ 1) +
�

µ̄−µ( j)
�

f (i+ 2, j)

+min















À µ( j+ 1) f (i+ 1, j) +µ( j) f (i+ 3, j− 1)
Á µ( j+ 1) f (i+ 1, j) +µ( j)

�

f (i+ 2, j− 1) + Koff
�

Â µ( j+ 1)
�

f (i, j) + Koff
�

+µ( j) f (i+ 3, j− 1)
Ã µ( j+ 1)

�

f (i, j) + Koff
�

+µ( j)
�

f (i+ 2, j− 1) + Koff
�

≥
�

µ̄−µ( j)
�

f (i+ 1, j) +
�

µ̄−µ( j+ 1)
�

f (i+ 1, j+ 1)

+µ( j)min{ f (i+ 2, j− 1), f (i+ 1, j− 1) + Koff}+µ( j+ 1)min{ f (i+ 2, j), f (i+ 1, j) + Koff}
= Tdep f (i+ 1, j) + Tdep f (i+ 1, j+ 1).

Here À holds because:

�

µ̄−µ( j+ 1)
�

f (i, j+ 1) +
�

µ̄−µ( j)
�

f (i+ 2, j) +µ( j+ 1) f (i+ 1, j) +µ( j) f (i+ 3, j− 1)

=
�

µ̄−µ( j+ 1)
��

f (i, j+ 1) + f (i+ 2, j)
�

+µ( j)
�

f (i+ 1, j) + f (i+ 3, j− 1)
�

+
�

µ( j+ 1)−µ( j)
��

f (i+ 1, j) + f (i+ 2, j)
�

≥
�

µ̄−µ( j+ 1)
��

f (i+ 1, j) + f (i+ 1, j+ 1)
�

+µ( j)
�

f (i+ 2, j) + f (i+ 2, j− 1)
�

+
�

µ( j+ 1)−µ( j)
��

f (i+ 1, j) + f (i+ 2, j)
�

=
�

µ̄−µ( j)
�

f (i+ 1, j) +
�

µ̄−µ( j+ 1)
�

f (i+ 1, j+ 1) +µ( j+ 1) f (i+ 2, j) +µ( j) f (i+ 2, j− 1),
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since f is SuperC(i, j).
And Á holds because:

�

µ̄−µ( j+ 1)
�

f (i, j+ 1) +
�

µ̄−µ( j)
�

f (i+ 2, j) +µ( j+ 1) f (i+ 1, j) +µ( j)
�

f (i+ 2, j− 1) + Koff
�

=
�

µ̄−µ( j+ 1)
��

f (i, j+ 1) + f (i+ 2, j)
�

+µ( j+ 1) f (i+ 1, j) +µ( j)
�

f (i+ 2, j− 1) + Koff
�

+
�

µ( j+ 1)−µ( j)
�

f (i+ 2, j)

≥
�

µ̄−µ( j+ 1)
��

f (i+ 1, j) + f (i+ 1, j+ 1)
�

+µ( j+ 1) f (i+ 1, j) +µ( j)
�

f (i+ 2, j− 1) + Koff
�

+
�

µ( j+ 1)−µ( j)
�

f (i+ 2, j)

=
�

µ̄−µ( j)
�

f (i+ 1, j) +
�

µ̄−µ( j+ 1)
�

f (i+ 1, j+ 1) +µ( j)
�

f (i+ 1, j) + Koff
�

+µ( j) f (i+ 2, j− 1)

+
�

µ( j+ 1)−µ( j)
�

f (i+ 2, j),

since f is SuperC(i, j), and since by (7.A.1):

µ( j)
�

f (i+1, j)+Koff
�

+(µ( j+1)−µ( j))( f (i+2, j))≥ µ( j+1)min{ f (i+2, j), f (i+1, j)+Koff}.

For Â first note that

f (i, j) + f (i+ 3, j− 1) = f (i, j) + f (i+ 3, j− 1) + f (i+ 1, j)− f (i+ 1, j)

≥ f (i, j) + f (i+ 2, j) + f (i+ 2, j− 1)− f (i+ 1, j)

≥ f (i+ 1, j− 1) + f (i+ 1, j) + f (i+ 2, j)− f (i+ 1, j)

= f (i+ 1, j− 1) + f (i+ 2, j), (7.A.3)

since f is SuperC(i, j) (used twice). Now Â holds because:

�

µ̄−µ( j+ 1)
�

f (i, j+ 1) +
�

µ̄−µ( j)
�

f (i+ 2, j) +µ( j+ 1)
�

f (i, j) + Koff
�

+µ( j) f (i+ 3, j− 1)

=
�

µ̄−µ( j)
��

f (i, j+ 1) + f (i+ 2, j)
�

+µ( j)
�

f (i, j) + Koff + f (i+ 3, j− 1)
�

+
�

µ( j+ 1)−µ( j)
��

f (i, j) + Koff − f (i, j+ 1)
�

≥
�

µ̄−µ( j)
��

f (i+ 1, j) + f (i+ 1, j+ 1)
�

+µ( j)
�

f (i+ 1, j− 1) + f (i+ 2, j) + Koff
�

+
�

µ( j+ 1)−µ( j)
��

f (i, j) + Koff − f (i, j+ 1)
�

=
�

µ̄−µ( j)
�

f (i+ 1, j) +
�

µ̄−µ( j+ 1)
�

f (i+ 1, j+ 1) +µ( j)
�

f (i+ 1, j− 1) + Koff
�

+µ( j) f (i+ 2, j) +
�

µ( j+ 1)−µ( j)
��

f (i, j) + Koff + f (i+ 1, j+ 1)− f (i, j+ 1)
�

≥
�

µ̄−µ( j)
�

f (i+ 1, j) +
�

µ̄−µ( j+ 1)
�

f (i+ 1, j+ 1) +µ( j)
�

f (i+ 1, j− 1) + Koff
�

+µ( j) f (i+ 2, j) +
�

µ( j+ 1)−µ( j)
��

f (i+ 1, j) + Koff
�

,

where the first inequality holds since f is SuperC(i, j) (part with µ̄− µ( j)) and by (7.A.3) (part
with µ( j)), and the second inequality holds since f is Supermod(i, j), and using that by (7.A.1):

µ( j) f (i+ 2, j)+
�

µ( j+ 1)−µ( j)
��

f (i+ 1, j)+ Koff
�

≥ µ( j+ 1)min{ f (i+ 2, j), f (i+ 1, j)+ Koff}.
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Finally, Ã holds because:

�

µ̄−µ( j+ 1)
�

f (i, j+ 1) +
�

µ̄−µ( j)
�

f (i+ 2, j) +µ( j+ 1)
�

f (i, j) + Koff
�

+µ( j)
�

f (i+ 2, j− 1) + Koff
�

=
�

µ̄−µ( j+ 1)
��

f (i, j+ 1) + f (i+ 2, j)
�

+µ( j+ 1)
�

f (i, j) + Koff + f (i+ 2, j− 1) + Koff
�

+
�

µ( j+ 1)−µ( j)
��

f (i+ 2, j)− f (i+ 2, j− 1)− Koff
�

≥
�

µ̄−µ( j+ 1)
��

f (i+ 1, j+ 1) + f (i+ 1, j)
�

+µ( j+ 1)
�

f (i+ 1, j) + Koff + f (i+ 1, j− 1) + Koff
�

+
�

µ( j+ 1)−µ( j)
��

f (i+ 2, j)− f (i+ 2, j− 1)− Koff
�

=
�

µ̄−µ( j+ 1)
�

f (i+ 1, j+ 1) +
�

µ̄−µ( j)
�

f (i+ 1, j) +µ( j+ 1)
�

f (i+ 1, j) + Koff
�

+µ( j)
�

f (i+ 1, j− 1) + Koff
�

+
�

µ( j+ 1)−µ( j)
��

f (i+ 2, j)− f (i+ 2, j− 1)− f (i+ 1, j) + f (i+ 1, j− 1)
�

≥
�

µ̄−µ( j+ 1)
�

f (i+ 1, j+ 1) +
�

µ̄−µ( j)
�

f (i+ 1, j) +µ( j+ 1)
�

f (i+ 1, j) + Koff
�

+µ( j)
�

f (i+ 1, j− 1) + Koff
�

,

since f is SuperC(i, j), respectively Supermod(i, j).

Furthermore, for j = 0:

Tdep f (i, 1) + Tdep f (i+ 2, 0)

=
�

µ̄−µ(1)
�

f (i, 1) +µ(1)min

(

À f (i+ 1, 0)
Á f (i, 0) + Koff

)

+ µ̄ f (i+ 2, 0)

≥ µ̄ f (i+ 1,0) +
�

µ̄−µ(1)
�

f (i+ 1, 1) +µ(1)min{ f (i+ 2, 0), f (i+ 1, 0) + Koff}
= Tdep f (i+ 1,0) + Tdep f (i+ 1,1),

where À holds because:

�

µ̄−µ(1)
�

f (i, 1) +µ(1) f (i+ 1,0) + µ̄ f (i+ 2, 0)

=
�

µ̄−µ(1)
��

f (i, 1) + f (i+ 2,0)
�

+µ(1)
�

f (i+ 1,0) + f (i+ 2, 0)
�

≥
�

µ̄−µ(1)
��

f (i+ 1, 0) + f (i+ 1,1)
�

+µ(1)
�

f (i+ 1,0) + f (i+ 2,0)
�

= µ̄ f (i+ 1, 0) +
�

µ̄−µ(1)
�

f (i+ 1, 1) +µ(1) f (i+ 2,0),

since f is SuperC(i, j), and Á holds because:

�

µ̄−µ(1)
�

f (i, 1) +µ(1)
�

f (i, 0) + Koff
�

+ µ̄ f (i+ 2,0)

= µ̄
�

f (i, 1) + f (i+ 2, 0)
�

+µ(1)
�

f (i, 0) + Koff − f (i, 1)
�

≥ µ̄
�

f (i+ 1,0) + f (i+ 1, 1)
�

+µ(1)
�

f (i, 0) + Koff − f (i, 1)
�

= µ̄ f (i+ 1, 0) +
�

µ̄−µ(1)
�

f (i+ 1, 1) +µ(1)
�

f (i, 0) + Koff − f (i, 1) + f (i+ 1,1)
�

≥ µ̄ f (i+ 1, 0) +
�

µ̄−µ(1)
�

f (i+ 1,1) +µ(1)
�

f (i+ 1,0) + Koff
�

,

since f is SuperC(i, j), respectively Supermod(i, j).
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7.A.3 Proof of Lemma 7.3.3

PROOF. Suppose that f is BFOD(i, Kon), then we show that 1
λ+µ̄+α

�

λTarr+Tdep

�

f is BFOD(i, Kon) as
well. For i > 0, respectively i = 0:

1

λ+ µ̄+α

�

λTarr f (i+ 1, j) + Tdep f (i+ 1, j)
�

+ Kon

=
1

λ+ µ̄+α

�

λ f (i, j+ 1) +µ( j)min
�

f (i+ 2, j− 1), f (i+ 1, j− 1) + Koff
	

+
�

µ̄−µ( j)
�

f (i+ 1, j) + (λ+ µ̄+α)Kon
�

=
1

λ+ µ̄+α

�

λ
�

f (i, j+ 1) + Kon
�

+µ( j)min
�

f (i+ 2, j− 1) + Kon, f (i+ 1, j− 1) + Koff + Kon
	

+
�

µ̄−µ( j)
��

f (i+ 1, j) + Kon
�

+αKon
�

≥
1

λ+ µ̄+α

�

λ

�

i > 0 : f (i− 1, j+ 1)
i = 0 : f (i, j+ 1+ Kon)

�

+µ( j)min
�

f (i+ 1, j− 1), f (i, j− 1) + Koff
	

+
�

µ̄−µ( j)
�

f (i, j)
�

+
α

λ+ µ̄+α
Kon

≥
1

λ+ µ̄+α

�

λTarr f (i, j) + Tdep f (i, j)
�

,

since f is BFOD(i, Kon) and α/(λ+ µ̄+α)Kon ≥ 0.

7.A.4 Proof of Theorem 7.3.6

PROOF. Define, for all i ≥ 0, j > 0, and n≥ 0:

w(n)(on, i, j) := Vn(i+ 1, j− 1),

w(n)(off, i, j) := Vn(i, j− 1) + Koff.

Hence
TdepVn(i, j) = µ( j) min

u∈{on,off}
w(n)(u, i, j) +

�

µ̄−µ( j)
�

Vn(i, j).

i) Define ∆w(n)i (u, i, j) := w(n)(u, i+ 1, j)−w(n)(u, i, j). Then

∆w(n)i (on, i, j+ 1)−∆w(n)i (off, i, j+ 1)

= w(n)(on, i+ 1, j+ 1)−w(n)(on, i, j+ 1)−w(n)(off, i+ 1, j+ 1) +w(n)(off, i, j+ 1)

= Vn(i+ 2, j)− Vn(i+ 1, j)− Vn(i+ 1, j) + Vn(i, j)≥ 0

as, by Corollary 7.3.5, Vn is Conv(i). Hence, if the optimal action in state (i, j) is to keep the server
on upon a service completion, then this is the optimal action as well in state (i − 1, j). Also, if the
optimal action in state (i, j) is to turn the server off upon a service completion, then this is the
optimal action as well in state (i+ 1, j).

ii) Define ∆w(n)j (u, i, j) := w(n)(u, i, j+ 1)−w(n)(u, i, j). Then

∆w(n)j (on, i, j+ 1)−∆w(n)j (off, i, j+ 1)

= w(n)(on, i, j+ 2)−w(n)(on, i, j+ 1)−w(n)(off, i, j+ 1) +w(n)(off, i, j+ 2)

= Vn(i+ 1, j+ 1)− Vn(i+ 1, j)− Vn(i, j+ 1) + Vn(i, j)≥ 0
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as, by Corollary 7.3.5, Vn is Supermod(i, j). Hence, if the optimal action in state (i, j) is to keep the
server on upon a service completion, then this is the optimal action as well in state (i, j− 1). Also,
if the optimal action in state (i, j) is to turn the server off upon a service completion, then this is
the optimal action as well in state (i, j+ 1).

iii) Define ∆w(n)j−i(u, i, j) := w(n)(u, i− 1, j+ 1)−w(n)(u, i, j). Then

∆w(n)j−i(on, i, j+ 1)−∆w(n)j−i(off, i, j+ 1)

= w(n)(on, i, j+ 2)−w(n)(on, i, j+ 1)−w(n)(off, i, j+ 1) +w(n)(off, i, j+ 2)

= Vn(i, j+ 1)− Vn(i+ 1, j)− Vn(i− 1, j+ 1) + Vn(i, j)≥ 0

as, by Corollary 7.3.5, Vn is SuperC(i, j). Hence, if the optimal action in state (i, j) is to keep the
server on upon a service completion, then this is the optimal action as well in state (i − 1, j + 1).
Also, if the optimal action in state (i, j) is to turn the server off upon a service completion, then
this is the optimal action as well in state (i+ 1, j− 1).

This proves that the described optimal policy structure holds for an arbitrary n≥ 0. As Vn→ V
as n → ∞, it follows that V satisfies properties (7.3.1)–(7.3.4) (cf. Lemma 7.3.1), and hence
satisfies the above results as well. Then, from (7.2.1) (for n → ∞) it follows that this is also the
optimal policy structure in the limit as n→∞.



8
OPTIMAL CONTROL OF A HEAD-OF-LINE

PROCESSOR SHARING MODEL

Motivated by a workload control setting, we study a model where two types of customers
are served by a single server according to the head-of-line processor sharing discipline.
Regular customers and opportunity customers are arriving to the system according to
two independent Poisson processes, each requiring an exponentially distributed service
time. The regular customers will queue, incurring some holding costs. On contrary, an
opportunity customer has to be taken into service directly, or is lost otherwise. There can
be at most one opportunity customer in the system. The server can work on both one
regular and one opportunity customer at the same time, where one can decide on how
the server speed is split out. Moreover, one can decide whether to accept or reject an
opportunity customer, incurring penalty costs for the latter. In this way, one has partial
control about the workload in the system. We formulate the model as a Markov decision
problem. We prove that the optimal policy, minimizing the expected discounted long-run
cost, has a monotone structure in the number of regular customers. That is, the optimal
policy for accepting an opportunity customer is described be a threshold, and the fraction
of the server’s attention devoted to the opportunity customer is a monotone decreasing
function.

8.1 Introduction

Motived by a workload control setting, we study a model where two types of customers
are served by a single server. These two types are regular customers and opportunity
customers. The regular customers are willing to wait before taken into service, whereas
the opportunity customers have to be taken into service directly, or are lost otherwise.
We allow at most one such a customer in the system. When, for example, the workload
of the regular customers is low, an opportunity customer provides the opportunity for
some extra revenue. Hence, we have control over the workload by deciding whether to
take such a customer into service. For this system, we derive the optimal control policy
in this chapter.

We model this problem as a single server queueing model servicing the two types of
customers. The regular customers form a queue upon arrival to the system. The server
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can work on both one regular and one opportunity customer at the same time. The
(total) service rate of the server is given and fixed, but one can adjust how it is split
out among these two customers. This is known as the head-of-line processor sharing
discipline, with adjustable service rate. Moreover, one can decide whether to accept or
reject an opportunity customer, incurring penalty costs for the latter. Hence, we have to
balance the server speed and acceptance decision. If the service rate of the opportunity
customer is set too low, we face the risk of the next opportunity customer already arriving
before service completion (having to reject it). On the other hand, a higher server speed
will let all regular customers queue for a longer time, incurring longer and higher holding
costs.

We formulate the model as Markov decision problem. Based on the number of re-
gular customers in the system, a decision has to be taken whether to accept or reject
an arriving opportunity customer. Moreover, one has to decide on the server speed for
an opportunity customer, if such a customer is present in the system. Using event-based
dynamic programming, we prove that the value function is increasing and multimodular.
From that, the structure of the optimal policy follows. This optimal policy is a threshold
policy for admitting an opportunity customer, and a monotone decreasing function for
the server rate assigned to the opportunity customer.

The optimal control of a head-of-line processor sharing is to the best of our knowledge
an open problem. We mention the following related results. Konheim et al. [113] give
a complete analysis of a system with two parallel queueing lines, served by a single
server, but assume that each is served with half of the service rate. Fayolle et al. [76]
study a more general framework than [113], where the fraction of the attention to each
queue is flexible. However, they assume that from a given number of customers on,
the service rates are independent. Wasserman and Bambos [202] study the dynamic
allocation of a single server to parallel queues with finite-capacity buffers, characterizing
the allocation policy that stochastically minimizes the number of customers lost due to
buffer overflows. A similar problem is studied in Towsley et al. [184]. Stidham [171]
focuses on the optimal control of admission to queueing systems, and uses dynamic-
programming to show that an optimal control is monotonic or characterized by one or
more critical levels. Weber and Stidham [203] study the optimal control of service rates
in a network of queues. The optimal control of limited processor sharing is studied in
Van der Weij et al. [188]. They dynamically adjust the number of servers in a queue with
processor sharing, where every customer in service receives a proportional fraction of
the processing time. They use the same kind of techniques and derive the same kind of
structural results as we do, namely monotonicity properties and optimal dynamic policies
using dynamic programming.

The outline of this chapter is as follows. We start by introducing the model and
notation in Section 8.2. We describe the problem in more detail and give the dynamic
programming formulation. In Section 8.3 we present the optimal policy structure, and
show some examples. We derive the steady-state probability distribution in Section 8.4.
In Section 8.5 we consider two model generalizations, which we show to fit in the same
framework. Combining them leads to a general two queue head-of-line processor sharing
model. We conclude in Section 8.6. All proofs are in Appendix 8.A, and the details of
the derivation of the steady-state probability distribution are given in Appendix 8.B. This
chapter is based on [191].
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8.2 Model and notation

In this section we describe the model in more detail and introduce the notation used.
We then formulate the model as a Markov decision problem (MDP). We also present the
value function and the event operators.

8.2.1 Problem description

We consider the following queuing model, with two types of customers served by a single
server. Regular customers arrive according to a Poisson process with rate λreg , and form
a queue; opportunity customers arrive according to a Poisson process with rate λopp. An
opportunity customer has to be taken into service directly, or is lost otherwise, at penalty
cost Copp ≥ 0. Holding costs are charged for both regular and opportunity customers in
the system: h̃reg(·) and h̃opp(·) respectively, per time unit as a function of the number of
regular, respectively opportunity customers in the system. We assume h̃reg(·) and h̃opp(·)
to be non-negative, increasing and convex. By incorporating holding costs for an oppor-
tunity customer in service, we try to prevent the model from choosing a very low service
rate for this customer.

A single server servers both queues, applying the head-of-line processor sharing strat-
egy with adjustable weights. That is, the server can simultaneously serve an opportunity
customer and the first in line regular customer. The total service rate of the server is
fixed, say µ̄, but it can be decided how this is split out between both customer types. De-
note by µ ∈ [0, 1] the fraction of the rate dedicated to the opportunity customer. Then,
with rate 0 ≤ µµ̄ ≤ µ̄ the opportunity customer is served, leaving rate (1− µ)µ̄ for the
regular customer. Here µ is a decision variable, where we assume µ = 0 when there are
no opportunity customers in the system. For generality, we charge costs c(µ) when rate µ
is chosen, assuming c(0) = minµ∈[0,1] c(µ). The service times of both opportunity and
regular customers are exponentially distributed with mean 1. We assume all processes to
be mutually independent. Furthermore, we require λreg < µ̄, hence a policy resulting in
a stable system always exists. We derive the optimal policy structure that minimizes the
expected long-run discounted cost, with continuous discount factor α > 0.

8.2.2 Dynamic programming formulation

Denote by x ∈ {0,1} the number of opportunity customers in the system, and by y ∈N0
the number of regular customers in the system, hence

(x , y) ∈ S = {(x , y) | x ∈ {0, 1}, y ∈N0},

denoting by S the state space.
As the interarrival times of customer arrivals as well as service times are indepen-

dent exponentially distributed random variables, we can apply uniformization (cf. [131])
to convert the semi-Markov decision problem into an equivalent Markov decision prob-
lem (MDP). The existence of a stationary optimal policy is guaranteed by [155, Theo-
rem 11.5.3].

Let the value function Vn : S 7→R+ be the minimum expected discounted costs when
there are n events (customer arrivals or (potential) service completions) left, starting in
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state (x , y) ∈ S. It is given by:

Vn+1(x , y) = Tcosts

�

Tunif

�

TCA(1)Vn(x , y), TA(2)Vn(x , y), T̃C T D(1)Vn(x , y)
�

�

, (8.2.1)

starting with V0 ≡ 0. Below, we define the operators the value function consists of. Let
ν = λopp +λreg + µ̄+α be the uniformization rate.

The costs operator Tcosts is defined by

Tcosts f (x , y) = hopp(x) + hreg(y) + f (x , y),

where hopp(x) = h̃opp(x)/ν and hreg = h̃reg(x)/ν are the holding costs per time unit 1/ν .
These are non-negative, increasing, and convex as well.

The uniformization operator Tunif for this problem is defined by

Tunif( f1, f2, f3)(x , y) =
1

ν

�

λopp f1(x , y) +λreg f2(x , y) + µ̄ f3(x , y)
�

.

The operator TCA(1) models the (controlled) arrivals of opportunity customers, and is
defined by

TCA(1) f (x , y) =

¨

min{Vn(x + 1, y), Vn(x , y) + Copp} if x = 0,

Vn(x , y) + Copp} otherwise.
(8.2.2)

Upon arrival of an opportunity customer, one has to decide to either accept it (moving
the process to state (x + 1, y)) or reject it (at costs Copp), with the restriction that there
can maximally be one opportunity customer in the system at a time.

The operator TA(2) models the (uncontrolled) arrivals of regular customers, and is
defined by

TA(2) f (x , y) = Vn(x , y + 1). (8.2.3)

The operator T̃C T D(1) models the (potential) service completions, and is defined by

T̃C T D(1) f (x , y) = min
µ∈[0,1]

n

c(µ) +µVn((x − 1)+, y) + (1−µ)Vn(x , (y − 1)+)
o

, (8.2.4)

where x+ = max{x , 0}. Here, µ is a decision variable, deciding which part of the server
speed is allocated to the opportunity customer. Hence, with rate µ, x decreases by one
(when x is positive). A fraction 1− µ is left to the regular customers, hence with this
rate y decreases by one (when y is positive). Costs c(µ) are incurred when µ is chosen.
Recall that we assume µ= 0 when x = 0, where c(0) =minµ∈[0,1] c(µ). If y = 0, fictitious
transitions are made to a state itself, hence assuring that the rate at which T̃C T D(1) occurs
is always equal to µ̄.

The operator T̃C T D(1) is almost equal to the operator that is used for modeling the
service completions in a two-stage tandem queue, where the total service capacity is
split out between the two queues, such that µ is a decision variable. This operator is
defined as TC T D(1) in [116, Definition 5.4]. Remarkably, this operator coincides with our
operator T̃C T D(1), when a coordinate transformation is y is made. Hence, known results
for TC T D(1) can easily be adapted for T̃C T D(1). We use this in the proofs of the propagation
results for T̃C T D(1).
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8.3 Structural results

In this section we prove our main result: the structure of the optimal policy. For this, we
prove that the value function Vn is increasing and multimodular by showing that each of
the operators in Vn preserve these properties. From this we derive the structure of the
optimal policy, which is a threshold policy for accepting an opportunity customer, and a
monotone deceasing function for the optimal server speed dedicated to the opportunity
customer. We illustrate the policy by examples. All proofs are given in Appendix 8.A.

8.3.1 Properties of operators and value function

Consider, as introduced in Section 2.3.2, the following properties of a function f, de-
fined for all x such that the states appearing in the right-hand and left-hand side of the
inequalities exist in S:

Incr(x) : f (x + 1, y)≥ f (x , y), (8.3.1)

Incr(y) : f (x , y + 1)≥ f (x , y), (8.3.2)

Conv(x) : f (x , y) + f (x + 2, y)≥ 2 f (x + 1, y), (8.3.3)

Conv(y) : f (x , y) + f (x , y + 2)≥ 2 f (x , y + 1), (8.3.4)

Supermod : f (x , y) + f (x + 1, y + 1)≥ f (x + 1, y) + f (x , y + 1), (8.3.5)

SuperC(x , y) : f (x + 2, y) + f (x , y + 1)≥ f (x + 1, y) + f (x + 1, y + 1), (8.3.6)

SuperC(y, x) : f (x , y + 2) + f (x + 1, y)≥ f (x , y + 1) + f (x + 1, y + 1), (8.3.7)

Incr : Incr(x)∩ Incr(y), (8.3.8)

MM : Supermod∩ SuperC(x , y)∩ SuperC(y, x). (8.3.9)

LEMMA 8.3.1. The operators TCA(1), TA(2), T̃C T D(1), Tunif, and Tcosts preserve Incr and MM.

That is, if some function f is Incr and MM, then T f is Incr and MM as well, where T
is one of the mentioned operators. By induction on n, and using that V0 ≡ 0, the next
result immediately follows.

THEOREM 8.3.2. Vn is Incr and MM for all n≥ 0.

We use this result to derive the structure of the optimal policy.

8.3.2 Structure of optimal policy

The next theorem states the optimal policy structure, which minimizes the expected long-
run discounted costs.

THEOREM 8.3.3. a) The optimal policy for admitting an opportunity customer is a threshold
policy. That is, there exist a threshold, say T ∈ N0, such that the optimal decision is to
accept the opportunity customer if y ≤ T, and to reject it otherwise.
b) The optimal server speed dedicated to the opportunity customer is a monotone deceasing
function in y.

Here, the decreasingness in part b) is understood to be non-strict (i.e., the server
speed is non-increasing). The optimal policy structure is in line with our intuition. When
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the workload of regular customers is low, one is more likely to accept an opportunity
customer. Also, the more regular customers there are in the system, the larger the fraction
of the server’s attention is assigned to these customers. As a consequence, the server
speed for the opportunity customer is decreasing in y .

REMARK 8.3.4. In the case that no holding costs are charged for an opportunity customer
in service, i.e. when hopp(1) = 0, or in case hopp(0) = hopp(1), the opportunity customer
is always accepted. That is, T =∞. However, it might receive no service (µ= 0) when y
is large. It might even be the case that when taken into service, µ is positive, but if it
happens that the number of regular customers increases, the service rate may decrease
to zero.

When c(µ) ≡ 0, the optimal µ is always either 0 or 1. This follows directly from the
fact that in this case a linear function is minimized in (8.2.4). Hence, the optimal policy
can be described by a single threshold.

COROLLARY 8.3.5. If c(µ) ≡ 0, then the optimal policy for the server speed dedicated to the
opportunity customer is a threshold policy. That is, there exist a threshold, say M ∈ N0,
such that when x = 1, the optimal fraction of the service rate dedicated to the opportunity
customer is 1 if y ≤ M, and 0 otherwise.

8.3.3 Examples

We consider two examples, one for which c(µ) ≡ 0, and one for which it is positive for
some values of µ.

Example 8.3.1. Consider an example with the following parameters: λreg = 3, λopp = 1,
µ̄= 10, α ↓ 0, Copp = 8, c(µ) = 0, hopp(x) = x and

hreg(y) =

¨

0.05 y2 if y < 20;

100 y otherwise.

Hence, the holding costs are more than linearly increasing. Moreover, for computational
purposes, we can truncate the state space for y large, as the optimal policy avoids getting
to states for which y ≥ 20. The optimal policy for accepting opportunity customers is
given by:

x\y 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Here a 1 indicates acceptance, and a 0 indicates that the customer is reject under the
optimal policy. So, the optimal policy is indeed a threshold policy for accepting an op-
portunity customer. The threshold is T = 6, where the opportunity customer is accepted
when y ≤ T , and rejecting otherwise. The optimal fraction µ ∈ [0, 1] of the server speed
dedicated to the opportunity customer is given by:

x\y 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
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Figure 8.1: Transition rates when executing the optimal policy in case c(µ) ≡ 0. Figure for
T < M.

In line with Corollary 8.3.5, the opportunity customers either gets full attention of the
server, or no attention at all. The threshold for this is M = 10.

Example 8.3.2. We use the same parameter values as in Example 8.3.1, however, for c(µ)
we now take:

c(µ) =















0 if 0≤ µ < 0.25;

0.5 if 0.25≤ µ < 0.50;

1 if 0.50≤ µ < 0.75;

1.5 if 0.75≤ µ≤ 1,

which clearly satisfies the assumption c(0) =minµ∈[0,1] c(µ). The threshold for accepting
opportunity customers now is T = 5. The optimal fraction µ ∈ [0, 1] of the server speed
dedicated to the opportunity customer, is given by:

x\y 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0.75 0.25 0.25 0.25 0.25 0 0 0

So, the server speed for the opportunity customer is indeed monotone decreasing.

8.4 Steady-state probability distribution

Given the optimal policy structure, we now derive a closed-form expression for the
steady-state probability distribution (i.e., for the equilibrium probabilities), for the case
that c(µ) ≡ 0. Hence, µ is either 0 or 1. By deriving the steady-state probabilities, the
average costs of a policy can easily and quickly be calculated. In this way, one can also
easily and quickly calculate the optimal policy parameters. We state the results in this
section, where the details of the derivation are given in Appendix 8.B.

The transition rates when executing the optimal policy are indicated in Figure 8.1.
Denote by p(x , y) the stationary probability of being in state (x , y). When T < M , these
are given by:

p(x , y) =











c1v1(x) + c2v2(x)α
y
2 + c3v3(x)α

y
3 for 0≤ y < T ;

d1w1(x) + d2w2(x)
�

λreg

µ

�y−T
+ d3w3(x)

�

λreg

λreg+µ

�y−T
for T ≤ y < M ;

q(x)
�

λreg

µ

�y−M
for y ≥ M .

The constants α2, α3, vi(x), and wi(x), for i = 1,2, 3, are given in (8.B.4), (8.B.5),
and (8.B.12) respectively. The remaining 8 constants (q(0), q(1), d1, d2, d3, c1, c2,
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Figure 8.2: Example of the steady-state probabilities p(x , y) (where p(0, y) in dark gray
and p(1, y) in light gray) for T = 6, M = 10, when λopp = 1, λreg = 3, and µ̄= 4.

and c3) follow from solving a system of 8 equations, see Appendix 8.B. An example of
the steady-state probabilities is given in Figure 8.2. For the cases T > M and T = M
similar expressions can be obtained.

Denote the average costs per time unit when executing the (not necessarily opti-
mal) described threshold policy with thresholds T and M , for the case that c(µ) ≡ 0,
by c(T, M). Using the steady-state probabilities p(x , y), it can be expressed as:

c(T, M) =
∑

y

�

h̃reg(y)p(0, y) +
�

h̃opp(1) + h̃reg(y)
�

p(1, y)
�

+λoppCopp

�

∑

y>T

p(0, y) +
∑

y

p(1, y)
�

.
(8.4.1)

The optimal thresholds, say T ∗ and M∗, are now given by

(T ∗, M∗) = argmin
(T,M)

c(T, M).

In Figure 8.3, c(T, M) is given for multiple values of T and M for the parameter settings
of Example 8.3.1. Indeed, the minimum costs are attained for T = 6 and M = 10,
as we established using value iteration in Example 8.3.1. Note that by the expressions
for p(x , y), the resulting infinite geometric sums in (8.4.1) can be calculated exactly.

8.5 Generalized model

We consider two generalizations of the model of Section 8.2. Firstly, we allow opportunity
customers to queue as well. Secondly, we allow regular customers to be rejected as well.
We show that both generalizations fit in the same framework as the original model.
Combining them leads to a general two-queue head-of-line processor sharing model.
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(b) Graph for T = 6 (note: different scales than in
Figure (a)).

Figure 8.3: Average costs per time unit c(T, M) as in (8.4.1) for Example 8.3.1, where
c(T, M) is plotted against M. The costs are minimized for (T, M) = (6,10).

8.5.1 Queueing of opportunity customers

Instead of having to take an opportunity customer directly into service, we now allow
them to queue as well. Here, we assume that both types of customers (regular and op-
portunity) form separate queues. The server can only work on the first in line customers
of both queues.

For this generalization, we have to adapt TCA(1) of (8.2.2) into say T̃CA(1):

T̃CA(1) f (x , y) =min{Vn(x + 1, y), Vn(x , y) + Copp}. (8.5.1)

This removes the restriction that there can maximally be one opportunity customer in the
system at a time. In Vn of (8.2.1), we replace TCA(1) by T̃CA(1). The resulting Vn is Incr
and MM for all n≥ 0, on the state space {(x , y) | x ∈N0, y ∈N0}.

For this model, the following theorem describes the optimal policy. We encode accep-
tance of a customer by 1, and rejecting by 0.

THEOREM 8.5.1. a) The optimal policy for admitting opportunity customers is a state-de-
pendent threshold policy. That is, there exist a switching curve, say Topp(x), such that the
optimal decision in state (x , y) is to accept the opportunity customer when y ≤ Topp(x),
and to reject it otherwise. Moreover, Topp(x) is strictly decreasing in x (until it reaches 0).
b) The optimal server speed dedicated to an opportunity customer is a function, say M(x , y),
which is monotone increasing in x and monotone decreasing in y.

Again, the increasingness and decreasingness in part b) are understood to be non-
strict.

8.5.2 Rejecting of regular customers

We now allow regular customers to be rejected as well, at costs Creg ≥ 0. To model
this decision, instead of the operator TA(2) of (8.2.3), we now have controlled arrivals of
regular customers:

TCA(2) f (x , y) =min{Vn(x , y + 1), Vn(x , y) + Creg}.
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In Vn of (8.2.1), we replace TA(2) by TCA(2). The resulting Vn is Incr and MM for all n≥ 0.
Analogously to Theorem 8.5.1, part a), the optimal decision for accepting customers

can again be characterized by a state-depended threshold:

THEOREM 8.5.2. The optimal policy for admitting regular customers is a state-dependent
threshold policy. That is, there exist a switching curve, say Treg(x), such that the optimal
decision in state (x , y) is to accept the regular customer when y ≤ Treg(x), and to reject it
otherwise. Moreover, Treg(x) is strictly decreasing in x (until it reaches 0).

The optimal server speed dedicated to the opportunity customer is still as described
in Theorem 8.5.1, part b).

REMARK 8.5.3 (General model). When combining the generalizations of Sections 8.5.1
and 8.5.2, we have a general two queue head-of-line processor sharing model, controlling
the allocation of the service rate as well as the acceptance of customers in both queues.
For this model, the optimal control policy is as described in Theorems 8.5.1 and 8.5.2.

8.6 Conclusion

We presented a single server head-of-line processor sharing model. For this, we derived
the structure of the optimal policy. The results are in line with one’s intuition for the
control of such a system. We derived the steady-state probability distribution of the num-
ber of customers in the system, when executing a threshold policy. This policy structure
is optimal for c(µ) ≡ 0. We also discussed a more general model, allowing opportunity
customers to queue, and regular customers to be rejected.

Using the steady-state probabilities, the average costs follow. In further research,
this can be used in a numerical study, to compare the performance of the optimal policy
to simple policies, e.g. a policy that always accepts or always rejects the opportunity
customers, or that always gives full attention to the opportunity customer in service.
Another interesting questions for further research is whether the structural results will
remain to hold when the total service rate is increasing (or decreasing) when the server
divides its attention to two customers.

8.A Appendix: Proofs

8.A.1 Proof of Lemma 8.3.1

PROOF. For TCA(1), TA(2), Tunif, and Tcosts, the statements follow from [116, Theorems 7.1
and 7.2] (for the specific case of a two dimensional state space). Note that in [116] TCA(1)
is defined as TCA(1) f (x , y) = min{Vn(x + 1, y), Vn(x , y) + Copp}, however, one can easily
incorporate the restriction x ≤ 1 by replacing h̃opp(x) in (8.2.1) by

¨

h̃opp(x) if x ≤ 1;

K x if x > 1,
(8.A.1)

with K a large constant (cf. [116, p.57]). Hence, when x = 1, the minimum is always
attained for Vn(x , y) + Copp, preventing the system from moving to some state (2, y).
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T̃C T D(1) is a small variation of TC T D(1) as in [116, Definition 5.4]. It holds that

T̃C T D(1) f (x , y) = TC T D(1) f (x , y − 1) for y > 0.

Hence, for y > 0, the statements directly follows from [116, Theorem 7.4]. For y = 0
the properties can be proven along the same lines as in the original proves for TC T D(1),
using the property Incr.

8.A.2 Proof of Theorem 8.3.3

PROOF. a) Consider the arrival of an opportunity customer. For (x , y) ∈ S, u ∈ {0, 1},
and n≥ 0, define

w(n)(u, x , y) :=

¨

Vn(x , y) + Copp if u= 0 (reject),

Vn(x + 1, y) if u= 1 (accept),

where Vn(x , y) := ∞ if (x , y) /∈ S. Hence TCA(1)Vn(x , y) = minu∈{0,1} w(n)(u, x , y). De-
fine, for u ∈ {0,1} and n≥ 0:

∆w(n)y (u, x , y) := w(n)(u, x , y + 1)−w(n)(u, x , y).

Then, for each n≥ 0:

∆w(n)y (1, x , y)−∆w(n)y (0, x , y) = Vn(x+1, y+1)−Vn(x+1, y)−Vn(x , y+1)+Vn(x , y)≥ 0,

as, by Theorem 8.3.2, Vn is MM and hence Supermod. So, ∆w(n)y (u, x , y) is increasing
in u:

∆w(n)y (1, x , y)≥∆w(n)y (0, x , y).

This implies that, for every n ≥ 0, there exists a threshold for y , say T (n), from which
on it is optimal to reject an opportunity customer. Hence, the described optimal policy
structure holds for an arbitrary n ≥ 0. As Vn → V as n → ∞, it follows that V satisfies
properties (7.3.1)–(7.3.4) (cf. Lemma 7.3.1), and hence satisfies the above results as
well. Then, from (7.2.1) (for n → ∞) it follows that this is also the optimal policy
structure in the limit as n→∞.

b) Consider a (potential) service completion. For (x , y) ∈ S, u ∈ {0, 1}, and n ≥ 0,
define

m(n)(µ, x , y) := c(µ) +µVn((x − 1)+, y) + (1−µ)Vn(x , (y − 1)+). (8.A.2)

Hence T̃C T D(1)Vn(x , y) =minµ∈[0,1]m
(n)(µ, x , y).

Define, for all µ ∈ [0,1] and and n≥ 0:

∆m(n)y (µ, x , y) := m(n)(µ, x , y + 1)−m(n)(µ, x , y)

We only need to consider x > 0, as when x = 0, µ= 0 by assumption. So, for each n≥ 0,
x > 0, y > 0, and 0≤ µ1 ≤ µ2 ≤ 1:

∆m(n)y (µ1, x , y)−∆m(n)y (µ2, x , y)

= µ1Vn(x − 1, y + 1) + (1−µ1)Vn(x , y)−µ1Vn(x − 1, y)− (1−µ1)Vn(x , y − 1)
−µ2Vn(x − 1, y + 1)− (1−µ2)Vn(x , y) +µ2Vn(x − 1, y) + (1−µ2)Vn(x , y − 1)

=
�

µ1 −µ2
�

�

Vn(x − 1, y + 1)− Vn(x , y)− Vn(x − 1, y) + Vn(x , y − 1)
�

≤ 0,
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as the first factor is non-positive, as µ1 ≤ µ2, and the second factor is non-negative, as by
Theorem 8.3.2, Vn is MM and hence SuperC(y, x). So, ∆m(n)y (µ, x , y) is increasing in µ:

∆m(n)y (µ1, x , y)≤∆m(n)y (µ2, x , y) for µ1 ≤ µ2.

This implies that, for every n ≥ 0, the optimal fraction of the server speed dedicated to
an opportunity customer, is decreasing in y .

When y = 0 (and x > 0), we find

∆m(n)y (µ1, x , 0)−∆m(n)y (µ2, x , 0) =
�

µ1 −µ2
��

Vn(x − 1, 1)− f (x − 1,0)
�

≤ 0,

as the second factor in non-negative as Vn is Incr(y). Hence, also for y = 0 the result
holds.

8.A.3 Proof of Theorem 8.5.1

PROOF. a) The proof is along the same lines as the proof of Theorem 8.5.2, but then for
an opportunity customer instead of a regular customer.
b) The proof is along the same lines as the proof of Theorem 8.3.3, part b), generalized
to allow for x > 1.

8.A.4 Proof of Theorem 8.5.2

PROOF. Consider the arrival of a regular customer. For (x , y) ∈ S, u ∈ {0, 1}, and n ≥ 0,
define

w̃(n)(u, x , y) :=

¨

Vn(x , y) + Creg if u= 0 (reject),

Vn(x , y + 1) if u= 1 (accept),

Hence TCA(2)Vn(x , y) =minu∈{0,1} w̃(n)(u, x , y).
Define, for u ∈ {0,1} and n≥ 0:

∆w̃(n)y (u, x , y) := w̃(n)(u, x , y + 1)− w̃(n)(u, x , y).

Then, for each n≥ 0:

∆w̃(n)y (1, x , y)−∆w̃(n)y (0, x , y) = Vn(x , y+2)−Vn(x , y+1)−Vn(x , y+1)+Vn(x , y)≥ 0,

as, by Theorem 8.3.2, Vn is MM and hence Conv(y). So, ∆w̃(n)y (u, x , y) is increasing in u:

∆w̃(n)y (1, x , y)≥∆w̃(n)y (0, x , y).

This implies that, for every n ≥ 0, there exists a threshold for y , which can depend
on x , say T (n)reg(x), from which on it is optimal to reject a regular customer. By the same
reasoning as in the proof of part a) of Theorem 8.3.3, this proves the optimality of a
state-dependent threshold policy.

Define, for u ∈ {0,1} and n≥ 0:

∆w̃(n)x−y(u, x , y) := w̃(n)(u, x + 1, y)− w̃(n)(u, x , y + 1).
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Then, for each n≥ 0:

∆w̃(n)x−y(1, x , y)−∆w̃(n)x−y(0, x , y) (8.A.3)

= Vn(x + 1, y + 1)− Vn(x , y + 2)− Vn(x + 1, y) + Vn(x , y + 1)≤ 0 (8.A.4)

as, by Theorem 8.3.2, Vn is MM and hence SuperC(y, x). So,∆w̃(n)x−y(u, x , y) is decreasing
in u:

∆w̃(n)x (1, x , y)≤∆w̃(n)x (0, x , y).

Hence, Treg(x) is strictly decreasing in x (until it reaches 0).

8.B Appendix: Steady-state probability distribution

We show the derivation of the stationary probability distribution under the assumption
that T < M . The cases M = T and M ≥ T proceed along the same lines.

For deriving the stationary probability distribution of (x , y), we partition the state
space into three mutually disjoint subsets. The upper part consists of all (x , y) for which
y ≥ M , the middle part of all (x , y) for which T ≤ y < M , and the lower part of all
(x , y) for which 0 ≤ y < T . For each part, the transition rates differ, see Figure 8.1.
Also, for each part, the expression for p(x , y) contains three (lower and middle) or two
(upper) constants, which only depend on the model parameters. These constants can
then be found by solving a system of linear equations, which is found by linking the
expressions for p(x , T ) and p(x , M), x = 0, 1. Together with the boundary conditions
and the normalization equation, one can then solve these constants.

Lower part. For y ≤ T , we have the system:

p(0, y)(λopp +λreg +µ) = p(0, y − 1)λreg + p(0, y + 1)µ+ p(1, y)µ, (8.B.1)

p(1, y)(λreg +µ) = p(1, y − 1)λreg + p(0, y)λopp. (8.B.2)

This holds for the part where y < T . Plugging in

p(0, y) = v(0)αy ,

p(1, y) = v(1)αy .

yields, after division by αy−1:

v(0)α(λopp +λreg +µ) = v(0)λreg + v(0)α2µ+ v(1)αµ,

v(1)α(λreg +µ) = v(1)λreg + v(0)αλopp.

Rewriting gives

v(0)
�

α(λopp +λreg +µ)−λreg −α2µ
�

− v(1)αµ= 0,

v(1)
�

α(λreg +µ)−λreg

�

− v(0)αλopp = 0,
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and hence
�

α(λopp +λreg +µ)−λreg −α2µ −αµ
−αλopp α(λreg +µ)−λreg

� �

v(0)
v(1)

�

=
�

0
0

�

.

(8.B.3)
The determinant of the matrix is set to 0:

�

α(λopp +λreg +µ)−λreg −α2µ
��

α(λreg +µ)−λreg

�

−α2λoppµ= 0,

which gives three solutions for α:

α1 = 1,

α2 =
λreg

λreg +µ
·
λopp +λreg + 2µ−

p

(λopp +λreg)2 + 4λoppµ

2µ
, (8.B.4)

α3 =
λreg

λreg +µ
·
λopp +λreg + 2µ+

p

(λopp +λreg)2 + 4λoppµ

2µ
.

We now solve the system (8.B.3), for α1, α2, and α3 to find a non-null solution for
respectively v1, v2, and v3. We find;

v1(0) = 1, v1(1) = λopp/µ,

v2(0) = 1, v2(1) =
λreg −λopp +

p

(λopp +λreg)2 + 4λoppµ

2(λreg +µ)
, (8.B.5)

v3(0) = 1, v3(1) =
λopp −λreg +

p

(λopp +λreg)2 + 4λoppµ

2(λreg +µ)
.

We write the solution of this system of (8.B.1) and (8.B.2) as:

p(x , y) = c1v1(x)α
y
1 + c2v2(x)α

y
2 + c3v3(x)α

y
3 ,

Plugging in α1, the vi(0), i = 1,2, 3, and v1(0) as in (8.B.5), this becomes

p(0, y) = c1 + c2α
y
2 + c3α

y
3 , (8.B.6)

p(1, y) = c1

λopp

µ
+ c2v2(1)α

y
2 + c3v3(1)α

y
3 , (8.B.7)

where α2, α3, v2(1), and v3(1) as given in (8.B.4) and (8.B.5) respectively (note: they
only depend on λopp, λreg , and µ).

Middle part. For T ≤ y < M , we have the system:

p(0, y)(λreg +µ) = p(0, y − 1)λreg + p(0, y + 1)µ+ p(1, y)µ, (8.B.8)

p(1, y)(λreg +µ) = p(1, y − 1)λreg . (8.B.9)

Plugging in

p(0, y) = w(0)β y ,

p(1, y) = w(1)β y .



8.B APPENDIX: STEADY-STATE PROBABILITY DISTRIBUTION 151

yields, after division by β y−1:

w(0)β(λreg +µ) = w(0)λreg +w(0)β2µ+w(1)βµ,

w(1)β(λreg +µ) = w(1)λreg .

Rewriting gives

w(0)
�

β(λreg +µ)−λreg − β2µ
�

−w(1)βµ= 0,

w(1)
�

β(λreg +µ)−λreg

�

= 0,

and hence
�

β(λreg +µ)−λreg − β2µ −βµ
0 β(λreg +µ)−λreg

� �

w(0)
w(1)

�

=
�

0
0

�

. (8.B.10)

The determinant of the matrix is set to 0:
�

β(λreg +µ)−λreg − β2µ
��

β(λreg +µ)−λreg

�

= 0,

which gives three solutions for β:

β1 = 1,

β2 = λreg/µ, (8.B.11)

β3 = λreg/(λreg +µ).

We now solve the system (8.B.10), for β1, β2, and β3 to find a non-null solution for
respectively w1, w2, and w3. We find:

w1(0) = 1, w1(1) = 0,

w2(0) = 1, w2(1) = 0, (8.B.12)

w3(0) = 1, w3(1) =−λreg/(λreg +µ).

We write the solution of the system of (8.B.8) and (8.B.9) as:

p(x , y) = d1w1(y)β
x−T1
1 + d2w2(y)β

x−T1
2 + d3w3(y)β

x−T1
3 .

Plugging in the βi ’s and wi(y)’s as given in (8.B.11) and (8.B.12) respectively, this be-
comes

p(x , 0) = d1 + d2

�

λreg

µ

�y−T

+ d3

�

λreg

λreg +µ

�y−T

, (8.B.13)

p(x , 1) =−d3

�

λreg

λreg +µ

�y+1−T

. (8.B.14)

Upper part. For y ≥ M , we have

p(x , y) = q(x)

�

λreg

µ

�y−M

. (8.B.15)
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Boundary. The boundary conditions are given by

p(0, 0)(λopp +λreg) = p(0, 1)µ+ p(1, 0)µ, (8.B.16)

p(1,0)(λreg +µ) = p(0, 0)λopp. (8.B.17)

We can discard one equation, say (8.B.16), and replace it by the normalization equation:
∑

(x ,y)

p(x , y) = 1. (8.B.18)

Solving the system. Note that we have 8 unknown: q(0), q(1), d1, d2, d3, c1, c2, and c3.
We solve them by deriving 8 linear equations. For this, we consider the expressions for
the coordinates:

(0, 0), (1, 0), (0, T ), (1, T ), (0, M), (1, M),

where for (0, T ) and (0, M) two linear equations are derived, hence the total number of
equations equals 8.

For p(0,0) and p(1,0)we have the boundary equation as given in (8.B.16) and (8.B.17)
respectively. We plug in (8.B.6) and (8.B.7) to find:

(λopp +λreg)
�

c1 + c2 + c3

�

= µ
�

c1 + c2α2 + c3α3

�

+µ
�

c1

λopp

µ
+ c2v2(1) + c3v3(1)

�

,

(λreg +µ)
�

c1

λopp

µ
+ c2v2(1) + c3v3(1)

�

= λopp

�

c1 + c2 + c3

�

.

For (1, T ) we have from (8.B.14) and (8.B.7):

−d3

λreg

λreg +µ
= c1

λopp

µ
+ c2v2(1)α

T
2 + c3v3(1)α

T
3 . (8.B.19)

For (0, T ) we have from (8.B.13) and (8.B.6):

d1 + d2 + d3 = c1 + c2α
T
2 + c3α

T
3 . (8.B.20)

For (0, T ) we have as well, from (8.B.1), plugging in (8.B.6) for p(0, T − 1), plugging
in (8.B.13) for p(0, T ) and p(0, T +1), and plugging in (8.B.14) for p(1, T ), which gives,
after simplification:

(λopp +λreg +µ)
�

d1 + d2 + d3
�

= λreg

�

c1 + d2 + c2α
T−1
2 + c3α

T−1
3

�

+ d1µ. (8.B.21)

Note that we could also have used (8.B.6) and (8.B.7) for p(0, T ) and p(1, T ) respectively,
as these are set equal to (8.B.13) and (8.B.14) in (8.B.20) and (8.B.19) respectively.

For (1, M) we have from (8.B.15) and (8.B.14):

q(1) =−d3

�

λreg

λreg +µ

�M+1−T

. (8.B.22)
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For (0, M) we have from (8.B.15) and (8.B.13):

q(0) = d1 + d2

�

λreg

µ

�M−T

+ d3

�

λreg

λreg +µ

�M−T

. (8.B.23)

For (0, M) we have as well, from (8.B.8), plugging in (8.B.13) for p(0, M − 1) and plug-
ging in (8.B.15) for p(0, M), p(0, M + 1), and p(1, M), which gives, after simplification:

µ
�

q(0)− q(1)
�

= d1λreg + d2µ

�

λreg

µ

�M−T

+ d3

�

λreg

λreg +µ

�M−T

(λreg +µ). (8.B.24)

Note that we could also have used (8.B.13) and (8.B.14) for p(0, M) and p(1, M) respec-
tively, as these are set equal to (8.B.15) for y = 0 and y = 1 in (8.B.23) and (8.B.22)
respectively.

Finally, we use the boundary condition (8.B.17). We plug in (8.B.6) and (8.B.7) for
p(0, 0) and p(1, 0) respectively. This gives

(λreg +µ)
�

c1

λopp

µ
+ c2v2(1) + c3v3(1)

�

= λopp
�

c1 + c2 + c3
�

. (8.B.25)

We now have a linear system of 8 equations: (8.B.19), (8.B.20), (8.B.21), (8.B.22),
(8.B.23), (8.B.24), (8.B.25), and the normalization equation (8.B.18). We can solve this
system to find the 8 unknowns (q(0), q(1), d1, d2, d3, c1, c2, and c3), in terms of λopp,
λreg , and µ. Hence, from (8.B.6), (8.B.7), (8.B.13), (8.B.14), and (8.B.15) we find the
steady-state probabilities p(x , y) in terms of λopp, λreg , and µ.
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9
INTRODUCTION POLLING

In the second part of this thesis, we study polling models. A polling model is a queueing
model consisting of multiple queues that are served cyclically by a single server. In the
first two chapters, we derive general results for the mean performance analysis of polling
models. Then, we present two chapters studying the operation of a polling model in such
a way as to achieve both ‘fairness’ and ‘efficiency’.

We provide a general introduction to polling models in this chapter. We introduce the
model and the notation used throughout the chapters. Moreover, we present techniques
known in the literature to derive the main performance characteristics of a polling model.
Of most importance for our studies, are the mean steady-state waiting times at each of
the queues. We discuss those techniques that are used in multiple chapters. Finally, we
give an overview of the chapters, addressing the models studied and the contributions.

A polling model can be interpreted as a form of pooling of the server capacity. Namely,
the single server pools its capacity between the queues. The main difference with the
studies in the first part of this thesis, is that we assume a given policy, e.g. the cyclic
routing and the service discipline at each of the queues. Given such a policy, we derive
the performance characteristics, or we optimize the parameters within a class of policies.
Also, we adapt existing policies to create new strategies.

9.1 Introduction

A polling system is a queueing system with multiple queues and one single server. Typ-
ically, the server visits the queues in a cyclic order, where at each queue it serves the
customers. A so-called switch-over time is incurred when the server switches from one
queue to another. Such a setting was first studied by Mack [134, 135] in 1957, for a
patrolling machine repairman problem in the British cotton industry. The studies deter-
mine the efficiency of such a repairman, who walks round a set of machines, inspecting,
servicing, and, when necessarily, fixing each of them upon a visit. Since these pioneering
works, a huge body of literature has been developed in many application areas. The term
‘polling’ dates back to the application of a central computer which cyclically polls termi-
nals to see whether these have data to transmit. This is called a ‘polling data link control
scheme’. Here, the central computer acts as the server, and the terminals are the queues.
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Polling models are used in the modeling of many problems. Next to the patrolling
repairman and the data transmission application, they are used in e.g. telecommunica-
tion, computer networks, maintenance problems, and production systems. The surveys
of Takagi [177], Levy and Sidi [130], and Vishnevskii and Semenova [200] provide good
overviews of applications of polling systems. A recent literature study can be found in
Boon et al. [27], which categorizes the literature both on the models used and on the
applications studied. Also Winands [208] provides an extensive literature review. Tak-
agi [176] is a seminal work on polling models.

In a polling model, a key issue is the decision when the server should switch to the
next queue. The strategy for this, applied at a queue, is called the service discipline,
for which there are many possible choices. Those most often studied are the exhaustive
service discipline (when the server serves all customers at a queue, until the queue has
become empty) and the gated service discipline (when the server arrives at a queue, a gate
closes and only the customers who are before the gate, i.e., who are already present, will
be served in this server visit). The service discipline might vary at each of the queues,
although often the same discipline is chosen for all queues. The service disciplines in-
fluence both the performance (waiting times and queue lengths) at each of the queues,
as well as the overall performance of the system. We study both the classical gated and
exhaustive discipline, but moreover we introduce variations on and new combinations of
these disciplines.

Note that we assume a given policy, and either evaluate the performance characteris-
tics (exact or approximately) or optimize the parameters the policy depends on. The com-
plexity of polling models makes the study of optimal dynamic policies almost intractable.
Hence, such policies have hardly been studied in the literature, and when studied, only
for special cases such as a two-queue model, or heavy traffic limits [136, 137, 159].

9.2 Model and notation

We consider a polling system [176], with N queues, Q1, . . . ,QN , where each queue has in-
finite capacity. The queues are served by a single server, in fixed cyclic order Q1,Q2, . . . ,QN ,
Q1,Q2, . . .. Customers in each queue are served in order of arrival: first come, first served
(in [33] variations on this assumption are studied). The arrival processes at the queues
are independent Poisson processes with arrival rate λi at Q i , i = 1, . . . , N . The ser-
vice times at Q i are i.i.d. non-negative random variables, denoted by Bi , having finite
first and second moment, and Laplace-Stieltjes transform (LST) βi(.). The switch of the
server from Q i−1 to Q i (from QN to Q1 for i = 1) lasts for a switch-over time Si , these
being i.i.d. nonnegative random variables, with finite first two moments, and LST σi(.).
The sum of the switch-over times is denoted by S =

∑N
i=1 Si , where we assume E[S]> 0

(otherwise the mean cycle length in steady-state becomes zero and the analysis changes
slightly; see [30] for the relation between polling systems with and without switch-over
times). The (equilibrium) residual length of a random variable X is denoted by X res with
E[X res] = E[X 2]/(2E[X ]). We assume that the arrival processes, the service times and
the switch-over times are all mutually independent. Customers at Q i are referred to as
type i customers. Indices are understood to be modulo N : QN+1 actually refers to Q1.

The service discipline applied at a queue determines when the server switches to the
next queue. We focus on the gated and exhaustive service disciplines. In case of gated
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service (gat), the server serves exactly the customers present upon its arrival at the queue.
In case of exhaustive service (exh), the server serves customers until the queue where it
is working on, is empty. Both disciplines are, from a practical point of view, relevant,
and allow for exact analysis. When all queues are served according to the exhaustive
(gated) service discipline, we refer to this as a system with purely exhaustive (gated)
services. We restrict our attention to a single service discipline for all queues; in [24, 26]
combinations of disciplines are studied.

The traffic offered per time unit at Q i is denoted by ρi and is given by ρi = λiE[Bi].
The total traffic offered to the system per time unit is ρ =

∑N
i=1ρi . A necessary and suf-

ficient condition for stability in case of gated and exhaustive services, is ρ < 1, see [82].
In the sequel we assume ρ < 1, and we concentrate on the steady-state behavior of the
system. We are mainly interested in the waiting times of customers. By Wi we denote the
steady-state waiting time of a type i customer, excluding its own service time. Also, by Li
we denote the steady-state queue length of Q i , excluding the customer in service. Fur-
thermore, BPi denotes a busy period induced by a type i customer, having first moment
E[BPi] = E[Bi]/(1−ρi).

By Ci we denote the cycle time starting from Q i and consisting of the visit times
to each of the queues and all switch-over times incurred. A well-known result [176]
is that its first moment does not depend on i and is given by E[C] = E[S]/(1 − ρ).
Moreover, E[C] does not depend on the service disciplines at the queues. A cycle time
can be divided into the visit time to Q i and the intervisit time of Q i . The visit time is the
duration that the server is serving the queue, and is denoted by Vi . Its first moment is
given by E[Vi] = ρiE[C], as a fraction ρi of the time the server is working at Q i . The
intervisit time is the duration between the moment the server leaves the queue until it
starts working on it again. It is denoted by Ii , and using that E[C] = E[Vi] +E[Ii] for
all i, it follows that its first moment is given by E[Ii] = (1−ρi)E[C].

9.3 Techniques

Various analysis techniques have been presented in the literature in order to derive perfor-
mance characteristics of polling models, such as waiting times and queue lengths. These
include the Pseudo Conservation Law, Mean Visit Times, Mean Value Analysis for polling
systems, and Multi-type Branching Processes. These concepts are discussed below, as
they are used in the sequel of this thesis. We mention that other techniques have been
derived in the polling literature for determining the performance characteristics of polling
models, which include the Buffer Occupancy approach [57, 56, 68, 114], the Descendant
Set approach [111, 112], and the Station Time approach [78] (see also [129, 130, 177]
for a discussion on these methods). However, we do not use these in our studies.

9.3.1 Pseudo conservation law

As typically a switch-over time is incurred when the server switches from one queue to
another, polling models are not work conserving, and hence ordinary work conservation
laws do not hold in general. However, Boxma and Groenendijk [34] derive a so-called
Pseudo Conservation Law (PCL) for the case of cyclic order polling systems. These pseudo
conservation laws give an expression for the weighted sum of the mean waiting times
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at each of the queues:
∑N

i=1ρiE[Wi]. Based on a workload decomposition result, the
following expression is derived, cf. [34, (3.10)]:

N
∑

i=1

ρiE[Wi] =
ρ

1−ρ

N
∑

i=1

ρiE[Bi
res] +ρE[Sres] +

E[S]
2(1−ρ)

 

ρ2 −
N
∑

i=1

ρ2
i

!

+
N
∑

i=1

E[Mi],

(9.3.1)
where E[Mi] is the mean amount of work in Q i at a departure epoch of the server
from Q i . This is the only term that depends on the service discipline at the queues.
For the exhaustive discipline, trivially E[M E

i ] = 0 (cf. [34, (3.11)]), and for the gated
discipline, E[M G

i ] = ρiE[Vi] = ρ2
i E[S]/(1−ρ) (cf. [34, (3.12)]).

The expression in (9.3.1) is derived by considering a workload decomposition. De-
note by Vwith the amount of work in the cyclic service system at an arbitrary epoch in
time, by Vwithout the amount of work in the same system but without switch-over times
at an arbitrary epoch in time, and by Y the amount of work in the system at an arbi-
trary epoch in a switch-over interval. It has been proven in [34] that Vwithout and Y are
independent and that the following relation holds:

Vwith
d
=Vwithout + Y,

where
d
= denotes equality in distribution. This gives that

E[Vwith] = E[Vwithout] +E[Y ].

The mean amount of work in the system without switch-over times is given by

E[Vwithout] =

∑N
i=1ρiE[Bi

res]

1−ρ
, (9.3.2)

independent of the service strategies. Denoting by Li the number of customers at Q i ,
then we also have

E[Vwith] =
N
∑

i=1

E[Bi]E[Li] +
N
∑

i=1

ρiE[Bi
res]

=
N
∑

i=1

ρiE[Wi] +
N
∑

i=1

ρiE[Bi
res]. (9.3.3)

Combining (9.3.2) and (9.3.3) gives

N
∑

i=1

ρiE[Wi] = ρ

∑N
i=1ρiE[Bi

res]

1−ρ
+E[Y ]. (9.3.4)

By Yi we denote the amount of work at an arbitrary epoch in a switch-over interval
when switching to Q i . Then E[Y ] is the weighted sum of E[Yi]:

E[Y ] =
N
∑

i=1

E[Si]
E[S]

E[Yi]. (9.3.5)
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In order to find the PCL, it remains to determine E[Yi] for i = 1, . . . , N . Note that these
depend on the service disciplines at the queues. In [34] this is done for the cases of
purely exhaustive and purely gated services, and also for mixtures of these, which result
in (9.3.1).

As the PCL gives an expression for
∑N

i=1ρiE[Wi], it is in that way a measure for the
efficiency of the service disciplines at the queues. Exhaustive is the most efficient service
discipline, as the server never switches when there are still customers in the queue it is
serving. So, it leaves no customers behind that have to wait for an entire cycle. The
latter is the case for the gated discipline, which is less efficient. In Chapters 12 and 13
we use the PCL when investigating the efficiency of (variations on) the exhaustive and
gated disciplines.

9.3.2 Mean value analysis

The first moments of the waiting times, E[Wi], can be obtained in an efficient way using
mean value analysis (MVA) for polling systems, introduced by Winands, Adan and Van
Houtum [210] (see also [208]). The main idea is the setting up of a system of linear
equations, making use of PASTA and Little’s Law. Each equation has a probabilistic and in-
tuitive explanation. For a system with purely exhaustive or purely gated service, a system
of N2, respectively N(N + 1) linear equations is derived. The system can (numerically)
be solved in order to find the unknowns, in particular, the E[Wi]’s. Below, we show the
MVA approach for a systems with the exhaustive service discipline at all queues; the cases
of gated or mixed service disciplines require only minor changes (see [210] for details).

The mean waiting time E[Wi] of a type i customer can be expressed in the following
way: upon arrival of a (tagged) type i customer, it has to wait for the (residual) time it
takes to serve all type i customers already present in the system, plus possibly the time
before the server arrives at Q i . By PASTA, the arriving customer finds in expectation E[Li]
waiting type i customers in queue, each having an expected service time E[Bi], and with
probability ρi , it finds a type i customer currently in service, hence having to wait for a
mean residual service time E[Bi

res]. Let Ti be the time it takes before the server starts
working on Q i again (which depends on the service discipline at the queues). This gives,
for i = 1, . . . , N :

E[W exh
i ] = E[Li]E[Bi] +ρiE[Bi

res] + (1−ρi)E[Ti]. (9.3.6)

Moreover, Little’s Law gives, for i = 1, . . . , N ,

E[Li] = λiE[Wi]. (9.3.7)

Hence, it remains to derive E[Ti].
For this purpose, a system of equations is composed for the conditional mean queue

lengths: E[Li j], which is the expected queue length at Q i during a switch-over time to
or visit time at Q j . These can be expressed in mean residual durations of (sums of) visit
and switch-over times. We define period i as the switch-over time to plus the visit time
at Q i . Clearly, Q i is empty at the end of period i. Denote by qi the fraction of the time
the system is in period i: qi = (E[Si] +E[Vi])/E[C], where E[Vi] = ρiE[C]. Then the
mean number of type i customers waiting in the queue, E[Li], is a weighted average of
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the E[Li j], so for i = 1, . . . , N :

E[Li] =
N
∑

j=1

q jE[Li j].

Further, let the interval (i, j) consist of the periods i, i + 1, . . . , i + j − 1 and denote by
E[Ri j] the expected residual time of interval (i, j). One can derive a system of linear
equations relating E[Ri j] and E[Li j] (see [210, Eq. (6)–(9)]). The final step is to use the
solution of this system to determine the E[Ti], and hence the E[Li] and E[Wi] follow.

For (purely) gated services, one defines period i as the visit time at Q i plus the switch-
over time to Q i+1. In this case, there are no customers behind the gate of Q i at the start
of period i. For the mean waiting time, we have E[W gat

i ] = E[Li]E[Bi] + E[Ti], as
under the gated discipline an arriving type i customer always has to wait until the server
starts working (on the customers behind the gate) at Q i . The equations relating E[Ri j]
and E[Li j] (and hence E[Ti]) differ from those for the exhaustive case, see [210, Eq.
(12)–(16)].

We illustrate the MVA approach with a two-queue example, where both queues are
served according to the exhaustive discipline. The mean waiting times are as given
in (9.3.6), and we use Little’s Law, cf. (9.3.7). For the mean number of type 1 customers
in the system, we have

E[L1] = q1E[L11] + q2E[L12].

As Q1 is empty at the end of a server visit, which is the start of period 2, E[L12] is just
the mean number of type 1 customers that have arrived during period 2. Since the mean
duration of period 2 already past is equal to the mean residual period duration, which is
E[R21], we find

E[L12] = λ1E[R21].

Because of the exhaustive service discipline, we have

E[R21] = E[L22]E[BP2] +
E[S2]

E[S2] +E[V2]
E[S2

res]
1−ρ2

+
E[V2]

E[S2] +E[V2]
E[B2

res]
1−ρ2

,

where the terms 1/(1−ρ2) come from the fact that each arriving type 2 customer induces
a busy period. Finally, for E[T1] we have

(1−ρ1)E[T1] =
E[S1]
E[C]

E[S1
res] + q2(E[R21] +E[S1]).

Starting from a type 2 customer, a similar set of equations can be derived. From these
equations, we can solve E[Ri1], E[Li j], and E[Ti], and hence the E[Li] and E[Wi]
follow.

9.3.3 Multi-type branching processes

By the use of multi-type branching processes, polling systems where the service disci-
plines satisfy the so-called branching property [160, Property 1], can generally be ana-
lyzed exactly. The branching property states (where pgf stands for probability generating
function):
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If the server arrives at Q i to find ni customers there, then during the course
of the server’s visit, each of these ni customers will effectively be replaced in
an i.i.d. manner by a random population having pgf hi(z1, . . . , zN ), which can
be any N -dimensional pgf.

Both the gated service discipline and the exhaustive service discipline satisfy this property.
We determine the LST of the waiting times Wi analogously to Resing [160]. Given that
the service discipline in each queue satisfies the branching property, the queue length
process at polling instants of a fixed queue (the moments the server starts working on
this queue) is a multi-type branching process (MTBP) with immigration in each state.
This leads to expressions for the generating function of the joint queue length process at
polling instants. Conform e.g. [25] we then derive the LSTs of the steady-state waiting
times.

Let the start of the visit to Q1 be the start of the cycle. By the branching prop-
erty, each customer present will during the cycle be replaced in an i.i.d. manner by cus-
tomers of type 1, . . . , N , according to the probability generating function hi(z), where
z = (z1, . . . , zN ). For the gated service discipline, this hi is given by:

hgat
i (z1, z2, . . . , zN ) = βi





N
∑

j=1

λ j(1− z j)



 . (9.3.8)

Recall that βi(·) is the LST of the service time distribution of a type i customer. For the
exhaustive service discipline, hi is given by

hexh
i (z1, z2, . . . , zN ) = θi





∑

j 6=i

λ j(1− z j)



 , (9.3.9)

where θi(·) is the LST of a busy period triggered by one type i customer in Q i in isolation.
Now [160, Theorem 2.2] states that, for a cyclic polling model where the service

disciplines at each queue Q i satisfy the branching property with pgf hi(z), the numbers
of customers in Q1 at successive time points that the server reaches Q1 constitute a MTBP
with immigration in each state. The offspring pgfs f (i)(z) are given by

f (i)(z) = hi
�

z1, . . . , zi , f (i+1)(z), . . . , f (N)(z)
�

. (9.3.10)

The pgf of the nth generation offspring can be recursively defined as:

fn(z) = ( f
(1)( fn−1(z)), . . . , f (N)( fn−1(z))), n≥ 1,

f0(z) = z.

The immigration pgf g(z) is given by

g(z) =
N
∏

i=1

σi+1

�
i
∑

k=1

λk(1− zk) +
N
∑

k=i+1

λk(1− f (k)(z))
�

. (9.3.11)

Recall that σi(·) is the LST of the switch-over time distribution when switching to Q i , and
index N + 1 should understood to be 1.
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Then the pgf P of the stationary distribution π( j1, j2, . . . , jN ) of the number of cus-
tomers present in the system at the moment that the server starts working on Q1, is given
by

P(z) =
∞
∏

n=0

g( fn(z)), (9.3.12)

The infinite product in (9.3.12) converges only if ρ < 1. By renumbering the queues,
in the same way we can find expressions for the queue lengths at the moment that the
server starts working on Q i , i = 2, . . . , N .

Alternatively, let Vbi
(z) and Vci

(z) be the pgfs of the steady-state joint queue length
distributions at the beginning and completion, respectively, of a visit to Q i (analogously
to [25], hence P = Vb1

). We can express Vb1
(z) in itself, by repeated application of the

following relation, cf. [25, (2.2)]:

Vbi+1
(z) = Vci

(z)σi

�
N
∑

j=1

λ j(1− z j)
�

= Vbi
(z1, . . . , zi−1, hi(z), zi+1, . . . , zN )σi

�
N
∑

j=1

λ j(1− z j)
�

, i = 1,2, . . . , N ,

(9.3.13)

where N + 1 is understood to be 1. Hence, we have a recursive expression, from which
the Vbi

can be solved.
The LST of the steady-state waiting time distribution of a type i customer is given by,

cf. [25, (2.8)]:

E[e−ωWi] =
Ṽci
(1−ω/λi)− Ṽbi

(1−ω/λi)

(ω−λi(1− βi(ω)))E[C]
, (9.3.14)

where Ṽbi
(·) is the pgf of the steady-state marginal queue length distribution at a visit

beginning of Q i , given by Ṽbi
(z) = Vbi

(1, . . . , 1, z, 1, . . . , 1), with z as the ith argument,
and Ṽci

(·) is defined analogously. By differentiation, moments of the steady-state waiting
time for an arbitrary type i customer can be derived.

Note that polling systems that do not satisfy the branching property, rarely can be
analyzed in an exact way. See [83, 160] for more details on this branching property.

9.4 Overview

We now discuss the models, research questions and contributions in each of the chap-
ters in this part of the thesis. In the first two chapters, we derive general results on the
mean performance analysis for polling models. We study a model variation on the arrival
processes in Chapter 10, and derive a closed-form approximation for the mean waiting
times in Chapter 11. Then, we devote two chapters on the study of ‘fairness and effi-
ciency’. We try to achieve (almost) equal mean waiting times at each of the queues by
introducing two new service disciplines: the κ-Gated discipline in Chapter 12, and the
Gated/Exhaustive discipline in Chapter 13. We draw conclusions and discuss possibilities
for further research at the end of each of the chapters separately.
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9.4.1 Polling: Mean performance analysis

In a classical polling model, the customers arrive to each of the queues according to a
Poisson process. In Chapter 10 we study a variation on this. Using the concept of so-
called smart customers, the arrival rate in each queue varies depending on the position of
the server. For example, the arrival rate might increase when the server is approaching
the queue, whereas it is much lower when the server has just served the queue, as an
arriving customer has to wait for almost an entire cycle in this case. For this model,
we derive the mean waiting times using MVA, and show that in a few special cases it is
possible to derive a PCL. Furthermore, we show the typical features of the model by an
example.

Expressions for the mean waiting times in a polling system typically require cum-
bersome computations resulting in unmanageable expressions. The results from solving
a system, like in the MVA approach, yield lengthy and complicated expressions, which
are difficult to interpret. Also, numerical procedures to exactly or approximately derive
the E[Wi]’s are computationally complex and non-transparent. Consequently, there is
a lack of insight into the mean waiting times in polling models, and the impact of pa-
rameters on these and the system performance in general. For this reason, we derive
in Chapter 11 closed-form approximate solutions for the mean waiting times (and mean
marginal queue lengths) in a polling model. The expressions can be computed by simple
calculations. Also, it is very suitable for the design and optimization phase of (the appli-
cation of) a polling model, as it provides insights in the system behavior when parameters
are changed. In addition, in this chapter, we relax the assumption of Poisson arrivals to
renewal arrival processes.

9.4.2 Polling: Fairness and efficiency

In certain applications it is important to maintain fairness, in the sense of the queues hav-
ing (almost) equal mean waiting times. In [152, 185] this was motivated by a dynamic
bandwidth allocation problem of Ethernet Passive Optical Networks (EPON). In achieving
fairness, however, one usually has to sacrifice the efficiency of the system. To overcome
this, we introduce two new service disciplines in Chapters 12 and 13, which achieve both
fairness and efficiency. For this, we modify the ordinary gated and exhaustive strategies.
We define fairness as the maximal difference in the mean waiting times at each of the
queues (although other definitions exist), where we use the PCL (see Section 9.3.1) as a
measure for the efficiency of the system. We then optimize a weighted sum of the fairness
and the efficiency.

Fairness has frequently played a role in the choice of a service discipline in polling sys-
tems. In [152, 185], a two-stage gated service discipline is studied. This was seen to give
rise to relatively small differences between mean waiting times at the various queues,
but at the expense of longer delays, i.e., at the expense of the efficiency of the system.
The strategy was later generalized to multi-phase gated (see [186]). Besides the two- and
multi-stage gated disciplines, a number of other disciplines have been proposed in the lit-
erature in order to achieve fairness. Altman, Khamisy and Yechiali [3] (see also Shoham
and Yechiali [167]) consider a so-called elevator strategy in a globally gated regime. In
this setting the queues are visited in the order: 1,2, . . . N − 1, N , N , N − 1, . . . 2, 1, 1, 2, . . .
etc. When the server turns around at queue 1 or queue N , a gate closes at all queues:
only those before the gate are served. This strategy turns out to be perfectly fair. How-
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ever, it is less efficient because of the globally gated regime. Moreover, our focus is on
cyclic models. Other options for the control of a polling model proposed in the literature
include the use of a polling table (introduced by [41], see also [17, 205]), which pre-
scribes the order in which queues are visited. This is related to the ideas of efficient visit
orders [39] and efficient visit frequencies [38]. These options, however, do not focus on
fairness.

Both the exhaustive and gated discipline have advantages and disadvantages with
respect to fairness and efficiency. The main advantage of the exhaustive strategy, is that
it is optimally efficient. That is, it minimizes the PCL. However, the differences between
mean waiting times at the queues might be large. Typically, the heaviest loaded queue
has the smallest mean waiting time in this discipline. Conversely, the gated discipline
leads in general to much smaller differences in mean waiting times. But this is at the
expense of the efficiency, which is lower for this discipline. We aim to combine the best
of both worlds into new service disciplines. We do so in Chapter 12 by introducing a
hybrid version of exhaustive and gated: the κ-gated service discipline. In Chapter 13 we
try to achieve this by introducing a combination of the gated and exhaustive discipline,
by applying an alternating pattern of both strategies: the Gated/Exhaustive discipline. The
κ-gated service discipline has a vector of parameters κ which can be used to optimize the
strategy. In that way, it includes the purely exhaustive and the purely gated discipline
as a special case. The main research question studied in both chapters, is whether the
proposed strategies achieve (Chapter 13) or can be optimized to achieve (Chapter 12) a
combination of both fairness and efficiency.



POLLING: MEAN PERFORMANCE

ANALYSIS

167





10
SMART CUSTOMERS

In this chapter we study a polling model where the arrival rate at a queue depends on
the position of the server, which we refer to as a polling model with smart customers.
We derive the mean waiting times using MVA, and show that in a few special cases it is
possible to derive a PCL. Furthermore, we show the typical features of the model in an
example.

10.1 Introduction

In this chapter we consider the basic polling model as described in Chapter 9, with the
distinguishing feature that the rates of the Poisson arrival processes at the various queues
depend on the server location. This model was first considered by Boxma [32], who
refers to this model as a polling model with smart customers, because one way to look at
this system is to regard it as a queueing system where customers choose which queue to
join, based on the current server position.

Allowing arrival rates to depend on the location of the server has practical relevance
because in, e.g., certain production environments or traffic intersections, the arrival rates
are influenced by the position of the server.

A relevant application can be found in [89], where a polling model is used to model
a dynamic order picking system (DPS). In a DPS, a worker picks orders arriving in real
time during the picking operations and the picking information can dynamically change
in a picking cycle. One of the challenging questions that on-line retailers now face,
is how to organize the logistic fulfillment processes during and after order receipt. In
traditional stores, purchased products can be taken home immediately. However, in the
case of on-line retailers, the customer must wait for the shipment to arrive. In order
to reduce throughput times, an efficient enhancement to an ordinary DPS is to have
products stored at multiple locations. The system can be modeled as a polling system
with queues corresponding to each of the locations, and customers corresponding to
orders. The location of the worker determines in which of the queues an order is being
placed. In this system arrival rates of the orders depend on the location of the server (i.e.
the worker), which makes it a typical smart customers example. A graphical illustration
is given in Figure 10.1. We focus on one specific order type, which is placed in two
locations, say Q i and Q j . While the picker is on its way to Q i , say at location 1, all of
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Q i
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Picker

Figure 10.1: A dynamic order picking system. Orders are placed in queues Q1, . . . ,QN .

these orders are routed to Q i and the arrival rate at Q j is zero. If the picker is between Q i
and Q j , say at location 2, the situation is reversed and Q j receives all of these orders.

Besides practical relevance, the smart customers model also provides a powerful
framework to analyze more complicated polling models. For example, a polling model
where the service discipline switches each cycle between gated and exhaustive (the
Gated/Exhaustive service discipline, see Chapter 13), can be analyzed constructing an
alternative polling model with twice the number of queues and arrival rates being zero
during specific visit periods. The same idea can be applied to analyze the κ-Gated ser-
vice discipline, see Chapter 12. The idea of temporarily setting an arrival rate to zero is
also used in [24] for the analysis of a polling model with multiple priority levels. Time
varying arrival rates also play a role in the analysis of a polling model with reneging at
polling instants [23].

Concerning state-dependent arrival rates, more literature is available for systems con-
sisting of only one queue, often assuming phase-type distributions for vacations and/or
service times. A system consisting of a single queue with server breakdowns and arrival
rates depending on the server status is studied in [166]. A difference with the system
studied in the present chapter, besides the number of queues, is that the machine can
break down at arbitrary moments during the service of customers. Shanthikumar [164]
discusses a stochastic decomposition for the queue length in an M/G/1 queue with server
vacations under less restrictive assumptions than Fuhrmann and Cooper [84]. One of the
relaxations is that the arrival rate of customers may be different during visit periods and
vacations. Another system, with so-called working vacations and server breakdowns is
studied in [107]. During these working vacations, both the service and arrival rates are
different. Mean waiting times are found using a matrix analytical approach. For polling
systems, a model with arrival rates that vary depending on the location of the server has
not been studied in detail yet. Boxma [32] studies the joint queue length distribution at
the beginning of a cycle, but no waiting times or marginal queue lengths are discussed. In
a recent paper [36], a polling system with Lévy-driven, possibly correlated input is con-
sidered. Just as in the present chapter, the arrival process may depend on the location
of the server. In [36] typical performance measures for Lévy processes are determined,
such as the steady-state distribution of the joint amount of fluid at an arbitrary epoch,
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and at polling and switching instants. The present chapter studies a similar setting, but
assumes Poisson arrivals of individual customers.

For polling models with smart customers, we provide the Mean Value Analysis for
determining the mean queue lengths and mean waiting times. Also, we show that under
certain conditions a Pseudo-Conservation Law for the total amount of work in the system
holds. Finally, typical features of the model under consideration are demonstrated in a
numerical example.

This chapter is structured as follows. In Section 10.2 we introduce the model and
notation used. Then, in Section 10.3 we adapt the MVA framework for polling systems
to smart customers. This results in a very efficient method to compute the mean waiting
time of each customer type. In Section 10.4 we show that, under certain conditions,
a PCL is satisfied by our model. We present a numerical example that illustrates some
typical features and advantages of the model under consideration in Section 10.5. Finally,
Appendix 10.A contains equations omitted from the main text. This chapter is based
on [28], in which also distributions are derived for the joint queue lengths at polling
instants, the marginal queue lengths, the cycle times, and the visit times.

10.2 Model and notation

We consider a polling model as described in Section 9.2, with one distinguishing feature,
which is the arrival process. This arrival process is a standard Poisson process, but the
rate depends on the location of the server. The arrival rate at Q i is denoted by λ(P)i ,
where P denotes the position of the server, which is either serving a queue, or switching
from one queue to the next: P ∈ {V1, S1, . . . , VN , SN}. We refer to this as a polling model
with smart customers. Throughout the sequel of this chapter, we focus on the exhaustive
service discipline, although only minor changes are required for the gated discipline or
for mixed service disciplines.

10.3 Mean Value Analysis

We extend the Mean Value Analysis (MVA) framework for polling models (see Sec-
tion 9.3.2) in this section to suit the concept of smart customers. We first determine
the mean visit times and the mean cycle time, and then present the MVA equations for a
polling system with smart customers.

10.3.1 Mean visit times and mean cycle time

For the case of smart customers, the visit times to a queue depend on all arrival rates λ
(Vj)
i

and λ
(S j)
i , i, j = 1, . . . , N . In order to extend MVA to this case, we first derive the mean

visit times to each of the queues, E[Vi], for i = 1, . . . , N . We need these to determine the
fraction of the time the server is switching to or visiting a certain queue. For this, we set
up a system of N linear equations where the mean visit time of a queue is expressed in
terms of the other mean visit times.

At the moment the server finishes serving Q i , there are no type i customers present
in the system any more. From this point on, the number of type i customers builds up at



172 SMART CUSTOMERS

rates λ(Si)
i ,λ(Vi+1)

i , . . . ,λ(Si+N−1)
i (depending on the position of the server), until the server

starts working on Q i again. Each of these customers initiates a busy period, with mean
E[BPi] = E[Bi]/(1−λ

(Vi)
i E[Bi]). This gives:

E[Vi] = E[BPi]



λ
(Si)
i E[Si] +

i+N−1
∑

j=i+1

�

λ
(Vj)
i E[Vj] +λ

(S j)
i E[S j]

�



 ,

for i = 1, . . . , N . The E[Vi] follow from solving this set of equations. Once these have
been obtained, the mean cycle time follows from E[C] =

∑N
i=1(E[Vi] +E[Si]).

10.3.2 MVA equations

We extend the MVA approach to polling systems with smart customers. First, we briefly
introduce some extra notation, then we give expressions for the mean waiting times, and
the mean conditional and unconditional queue lengths. After eliminating variables, we
end up with a system of linear equations. The system can (numerically) be solved in
order to find the unknowns, in particular, the mean unconditional queue lengths and the
mean waiting times. Although all equations are discussed in the present section, for the
sake of brevity of this section, some of them are presented in Appendix 10.A.

Denote by E[P] is the mean duration of a period P ∈ {V1, S1, . . . , VN , SN}, and by
E[P2] its second moment. Then the mean residual duration of a period P, at an arbi-
trarily chosen point in this period, is E[Pres] = E[P2]/(2E[P]). The fraction of time
the system is in a given period P is denoted by q(P) := E[P]/E[C]. The mean condi-
tional number of type j customers in the queue during a random point in P is denoted by
E[L(P)j ], and the mean (unconditional) number of type j customers in queue is denoted
by E[L j] (both excluding a customer potentially in service).

We define an interval (P1 : P2), P1, P2 ∈ {V1, S1, . . . , VN , SN}, as the consecutive periods
from period P1 on, until and including period P2. The mean residual duration of the
interval is denoted by E[(P1 : P2)

res].

For the mean conditional durations of a period, we have the following: E[
←−
Vi
(Vj)]

denotes the mean duration of the previous period Vi , seen from an arbitrary point in Vj

(i.e., Vi seen backward in time from the viewpoint of Vj), and E[
−→
Vi
(Vj)] denotes the mean

duration of the next period Vi (i.e., Vi seen forward in time from the viewpoint of Vj).
For i = j they both coincide, and represent the mean age, respectively the mean residual
duration of Vi . Since the distribution of the age of a period is the same as the distribution
of the residual period, we have E[

←−
Vi
(Vi)] = E[

−→
Vi
(Vi)] = E[Vi

res]. Generally, however,
E[
←−
Vi
(Vj)] 6= E[

−→
Vi
(Vj)] for i 6= j, because of the dependencies between the durations of

periods. Analogously, we defineE[
←−
Vi
(S j)], E[

−→
Vi
(S j)], E[

←−
Si
(Vj)], andE[

−→
Si
(Vj)]. Note that,

e.g., E[
−→
Si
(Vj)] = E[Si], but E[

←−
Si
(Vj)] 6= E[Si]. As switch-over times are independent,

the following quantities directly simplify:

E[
←−
Si
(S j)] = E[

−→
Si
(S j)] =

¨

E[Si] for i 6= j,
E[Si

res] for i = j.
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Furthermore, we define

λi =
1

E[C]

N
∑

j=1

�

λ
(Vj)
i E[Vj] +λ

(S j)
i E[S j]

�

.

Then, the probability that the server is at position P ∈ {V1, S1, . . . , VN , SN} at the arrival
of a type i customer, is

λ
(P)
i E[P]

λiE[C]
=

q(P)λ(P)i

λi

.

Having introduced the required notation, we now present the main theorem of this
section, which gives a set of equations that can be solved to find the mean waiting times
of customers in the system.

THEOREM 10.3.1. The mean waiting times, E[Wi], for i = 1, . . . , N, and the mean queue
lengths, E[Li], satisfy the following equations:

E[Wi] =
q(Vi)λ

(Vi)
i

λi

�

E[L(Vi)
i ]E[Bi] +E[Bi

res]
�

+
i+N−1
∑

j=i+1

q(Vj)λ
(Vj)
i

λi



E[L
(Vj)
i ]E[Bi] +

i+N−1
∑

k= j

�

E[Sk] +E[
−→
Vk
(Vj)]
�





+
i+N−1
∑

j=i

q(S j)λ
(S j)
i

λi



E[L
(S j)
i ]E[Bi] +E[S j

res] +
i+N−1
∑

k= j+1

�

E[Sk] +E[
−→
Vk
(S j)]
�



 ,

(10.3.1)

E[Li] = λiE[Wi], (10.3.2)

E[Li] =
i+N
∑

j=i+1

�

q(Vj)E[L
(Vj)
i ] + q(S j)E[L

(S j)
i ]
�

, (10.3.3)

where the conditional mean queue lengths E[L
(Vj)
i ] and E[L

(S j)
i ], for j = i+1, . . . , i+N−1,

are given by

E[L
(Vj)
i ] =

j
∑

k=i+1

λ
(Vk)
i E[

←−
Vk
(Vj)] +

j−1
∑

k=i

λ
(Sk)
i E[

←−
Sk
(Vj)], (10.3.4)

E[L
(S j)
i ] =

j
∑

k=i+1

λ
(Vk)
i E[

←−
Vk
(S j)] +

j
∑

k=i

λ
(Sk)
i E[

←−
Sk
(S j)], (10.3.5)

and where all E[
←−
P1
(P2)] and E[

−→
P1
(P2)], for P1, P2 ∈ {V1, S1, . . . , VN , SN}, satisfy the set of

equations (10.3.6) – (10.3.8) below, and (10.A.2)–(10.A.7) in Appendix 10.A.

PROOF. In order to derive the mean waiting time E[Wi], we condition on the period in

which a type i customer arrives. A fraction q(Vj)λ
(Vj)
i /λi , and q(S j)λ

(S j)
i /λi respectively,

of the type i customers arrives during period Vj , and during period S j respectively. If a
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tagged type i customer arrives during period Vi (i.e., while his queue is being served),
he has to wait for a residual service time, plus the service times of all type i customers
present in the system upon his arrival, which is (by conditional PASTA), E[L(Vi)

i ]. As

a fraction q(Vi)λ
(Vi)
i /λi of the customers arrives during Vi , this explains the first line of

(10.3.1). If the customer arrives in any other period, he has to wait until the server
returns to Q i again. For this, we condition on the period in which he arrives. If the
arrival period is a visit to Q j , say Vj for j 6= i, he has to wait for the residual duration
of Vj and the interval (S j :Si−1), and for the service of the type i customers present in the
system upon his arrival. This gives the second line of (10.3.1). The third line, the case
where the customer arrives during the switch-over time from Q j to Q j+1 (period S j), can
be interpreted along the same lines as the case Vj .

Equation (10.3.3) is obtained by unconditioning the conditional queue lengthsE[L(P)i ].
The mean number of type i customers in the queue at an arbitrary point during Vj , given
by (10.3.4), is the mean number of customers built up from the last visit to Q i (when Q i
became empty) until and including a residual duration of Vj (as the mean residual dura-
tion of Vj is equal to the mean age of that period), taking into account the varying arrival
rates. The mean number of type i customers queueing in the system during period S j ,
given by (10.3.5), can be found similarly. Equations (10.3.4) and (10.3.5) show one of
the difficulties in adapting the ‘ordinary’ MVA approach to that of smart customers. If
the arrival rates remain constant during a cycle, these expressions would reduce to λi
multiplied by the mean time passed since the server has left Q i . However, for the smart
customers case, we have to keep track of the duration of all the intermediate periods,
from the viewpoint of period Vj respectively S j .

As indicated in Theorem 10.3.1, at this point, the number of equations is insufficient
to find all the unknowns, E[

←−
P1
(P2)] and E[

−→
P1
(P2)], for P1, P2 ∈ {V1, S1, . . . , VN , SN}. In the

remainder of the proof, we develop additional relations for these quantities to complete
the set of equations. We start by considering E[

−→
Vi
(Vj)], which is the mean duration of

the next period Vi , when observed from an arbitrary point in Vj . For i = j this is just the
residual duration of Vi , consisting of a busy period induced by a customer with a residual
service time left, and the busy periods of all type i customers in the queue. The cases i 6= j
need some more attention. The duration of Vi now consists of the busy period induced by

the type i customers in the queue, which are in expectation E[L
(Vj)
i ] customers. During

the periods Vj , S j , . . . , Si−1, however, new type i customers are arriving, each contributing
a busy period to the duration of Vi . Hence, summing over these periods and taking into
account the varying arrival rates, we get the mean total of newly arriving customers in
this interval. This yields, for i = 1, . . . , N and j = i+ 1, . . . , i+ N − 1:

E[
−→
Vi
(Vi)] = E[BPi]E[L

(Vi)
i ] +E[Bi

res]/
�

1−λ(Vi)
i E[Bi]

�

, (10.3.6)

E[
−→
Vi
(Vj)] = E[BPi]



E[L
(Vj)
i ] +

i+N−1
∑

k= j

�

λ
(Vk)
i E[

−→
Vk
(Vj)] +λ(Sk)

i E[Sk]
�



 . (10.3.7)

Analogously, E[
−→
Vi
(S j)] denotes the mean duration of the next period Vi , when observed

from an arbitrary point in S j . The explanation of its expression is along the same lines as

that of E[
−→
Vi
(Vj)], although it should be noted that i = j is not a special case. See (10.A.1)

in Appendix 10.A.
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The last step in the proof of Theorem 10.3.1 needs the following lemma to find the
final relations between E[

←−
P1
(P2)] and E[

−→
P1
(P2)]:

LEMMA 10.3.2. For i = 1, . . . , N, and j = i+ 1, . . . , i+ N:

j−1
∑

k=i

E[Sk]
E[(Si :Vj)]

 

E[
←−
Si
(Sk)] +

k
∑

l=i+1

�

E[
←−
Sl
(Sk)] +E[

←−
Vl
(Sk)]

�

−E[Sk
res]−E[

−→
Vj
(Sk)]−

j−1
∑

l=k+1

�

E[Sl] +E[
−→
Vl
(Sk)]

�

!

=
j
∑

k=i+1

E[Vk]
E[(Si :Vj)]

 

E[
−→
Vj
(Vk)] +

j−1
∑

l=k

�

E[Sl] +E[
−→
Vl
(Vk)]

�

−E[
←−
Si
(Vk)]−E[

←−
Vk
(Vk)]−

k−1
∑

l=i+1

�

E[
←−
Sl
(Vk)] +E[

←−
Vl
(Vk)]

�

!

. (10.3.8)

PROOF. Equation (10.3.8) can be proven by studying all mean residual interval lengths
E[(Si :Vj)

res], E[(Si :S j)
res], E[(Vi :Vj)

res], and E[(Vi :S j)
res]. Consider E[(Si :Vj)

res], the
mean residual duration of the interval Si , Vi+1, . . . , Vj . We condition on the period in
which the interval is observed. As the mean duration of the interval is given byE[(Si :Vj)],
it follows that E[Sk]/E[(Si : Vj)] is the probability that the interval is observed in pe-
riod Sk. The remaining duration of the interval consists of the remaining duration of Sk
plus the mean durations of the (coming) periods Vk+1, Sk+1, . . . , Vj , when observed from
period Sk. When observing E[(Si :Vj)] from Vk, a similar way of reasoning is used. This
gives, for i = 1, . . . , N , and j = i+ 1, . . . , i + N :

E[(Si :Vj)
res] =

j−1
∑

k=i

E[Sk]
E[(Si :Vj)]

 

E[Sk
res] +E[

−→
Vj
(Sk)] +

j−1
∑

l=k+1

�

E[Sl] +E[
−→
Vl
(Sk)]

�

!

+
j
∑

k=i+1

E[Vk]
E[(Si :Vj)]

 

E[
−→
Vj
(Vk)] +

j−1
∑

l=k

�

E[Sl] +E[
−→
Vl
(Vk)]

�

!

. (10.3.9)

We now use that the distribution of the residual length of an interval is the same as the
distribution of the age of this interval. Again, focus on E[(Si :Vj)

res], conditioning on the
period in which the interval is observed, but now looking forward in time. Consider all
the periods in (Si : Vj) that have already passed when observing during Sk. The interval
has lasted for the sum of these periods, plus the age of Sk. The same can be done for an
arbitrary point in Vk. This gives, for i = 1, . . . , N , j = i+ 1, . . . , i+ N :

E[(Si :Vj)
res] =

j−1
∑

k=i

E[Sk]
E[(Si :Vj)]

 

E[
←−
Si
(Sk)] +

k
∑

l=i+1

�

E[
←−
Sl
(Sk)] +E[

←−
Vl
(Sk)]

�

!

+
j
∑

k=i+1

E[Vk]
E[(Si :Vj)]

 

E[
←−
Si
(Vk)] +E[

←−
Vk
(Vk)] +

k−1
∑

l=i+1

�

E[
←−
Sl
(Vk)] +E[

←−
Vl
(Vk)]

�

!

.

(10.3.10)

The proof of Lemma 10.3.2 is completed by equating (10.3.9) and (10.3.10) and rear-
ranging the terms.
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Similar to the proof of Lemma 10.3.2, we can develop two different expressions for
each of the terms E[(Si :S j)

res],E[(Vi :Vj)
res], and E[(Vi :S j)

res]. For the sake of brevity of
this section, they are presented in Appendix 10.A, Equations (10.A.2)–(10.A.7). Equat-
ing each pair of these expressions, completes the set of (linear) equations for the mean
waiting times and mean queue lengths. This concludes the proof of Theorem 10.3.1.

10.4 Pseudo-Conservation Law

In this section we derive a Pseudo-Conservation Law (PCL), which gives an expression
for the weighted sum of the mean waiting times at each of the queues. For ‘ordinary’
cyclic polling systems, Boxma and Groenendijk [34] derive a PCL under various service
disciplines (see Section 9.3.1):

N
∑

i=1

ρiE[Wi] =
ρ

1−ρ

N
∑

i=1

ρiE[Bi
res] +ρE[Sres] +

E[S]
2(1−ρ)

 

ρ2 −
N
∑

i=1

ρ2
i

!

+
N
∑

i=1

E[Mi].

(10.4.1)
A required restriction for our approach in this section, is that the Poisson process

according to which work arrives in the system, has a fixed arrival rate during all visit
periods. We also require that the amounts of work brought by an individual arrival are
identically distributed for all visit periods. We mention two typical cases where this
requirement is satisfied. Firstly, the case when the arrival rate at a given queue stays
constant during different visit times, and secondly when the total arrival rate remains
constant during visit times and the service times are identically distributed:

Case 1: λ
(V1)
i = λ(V2)

i = . . .= λ(VN )
i =: λ(V )i , i = 1, . . . , N , (10.4.2)

Case 2:
N
∑

i=1

λ
(Vj)
i =: Λ(V ), and B1

d
= . . .

d
=BN , j = 1, . . . , N , (10.4.3)

denoting by
d
= equality in distribution. During visit periods, let Λ(V ) be the total arrival

rate of all customer types, and let B(V ) denote the generic service time of an arbitrary
customer entering the system. In particular, this means for Case 1 that Λ(V ) =

∑N
i=1λ

(V )
i

and B(V )
d
=Bi with probability λ(V )i /Λ(V ) for i = 1, . . . , N . We introduce ρ(V ) to denote

the mean amount of work entering the system per time unit during a visit period, so
ρ(V ) = Λ(V )E[B(V )].

For deriving the PCL, we focus on the mean amount of work in the system at an
arbitrary point in time. Denote this by Y , and let Y (V ) and Y (S) be the amount of work at
an arbitrary point during respectively a visit period, and a switch-over period. Then

Y
d
=

¨

Y (V ) w.p. ρ,

Y (S) w.p. 1−ρ,
(10.4.4)

where ρ :=
∑N

i=1ρi =
∑N

i=1λiE[Bi] is the mean amount of work offered per time unit.
Hence,

E[Y ] = ρE[Y (V )] + (1−ρ)E[Y (S)]. (10.4.5)
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Another way to obtain the mean total amount of work in the system, is by taking the
sum of the mean workloads. The mean workload in Q i is the mean amount of work of
all customers in the queue, plus, with probability ρi = λiE[Bi], the mean remaining
amount of work of a customer in service at Q i:

E[Y ] =
N
∑

i=1

�

E[Li]E[Bi] +ρiE[Bi
res]
�

. (10.4.6)

In the next subsections we show that equating (10.4.5) and (10.4.6), and applying Little’s
Law, E[Li] = λiE[Wi], gives a PCL for the mean waiting times in the system. However,
we first derive E[Y (S)] and E[Y (V )].

10.4.1 Work during switch-over periods

The term E[Y (S)] denotes the mean amount of work in the system when observed at a
random point in a switch-over interval. Denoting by E[Y (Si)] the mean amount of work
in the system at an arbitrary moment during Si , we can condition on the switch-over
interval in which the system is observed:

E[Y (S)] =
N
∑

i=1

E[Si]
E[S]

E[Y (Si)]. (10.4.7)

We can split E[Y (Si)] into two parts: the mean amount of work present at the start
of Si , plus the mean amount of work built up since the start of the switch-over time.
In expectation, a duration E[Si

res] has passed since the beginning of the switch-over
time, in which work arrived at rate λ(Si)

j E[B j] at Q j . Hence, this gives a contribution to

E[Y (Si)] of
∑N

j=1λ
(Si)
j E[B j]E[Si

res]. Denote by M j the amount of work, present at Q j
at the end of the visit to this queue. For the work present at the start of the switch-
over period, we start looking at the moment that the server left Q j , leaving a mean
amount of work E[M j] behind in this queue. For exhaustive service, E[M j] = 0, for

gated service E[M j] = λ
(Vj)
j E[B j]E[Vj]. Since then, the interval (S j : Vi+N ) has passed,

for j = i + 1, . . . , i + N − 1. In this interval the amount of type j work increased

at rates λ
(S j)
j E[B j],λ

(Vj+1)
j E[B j], . . . ,λ(Si−1)

j E[B j],λ
(Vi)
j E[B j] during the various periods.

This leads to the following expression for E[Y (Si)]:

E[Y (Si)] =
N
∑

j=1

�

λ
(Si)
j E[B j]E[Si

res] +E[M j]
�

+
i+N−1
∑

j=i+1

i+N−1
∑

k= j

�

λ
(Sk)
j E[B j]E[Sk] +λ

(Vk+1)
j E[B j]E[Vk+1]

�

. (10.4.8)

10.4.2 Work during visit periods

For obtaining E[Y (V )], we follow the proof of the PCL as in [34]. The key observation
in this proof is the work decomposition property in a polling system. This property states
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that the amount of work at an arbitrary epoch in a visit period is distributed as the sum of
two independent random variables: the amount of work in the “corresponding” M/G/1
queue at an arbitrary epoch during a busy period, denoted by Y (V)M/G/1, and the amount

of work in the polling system at an arbitrary epoch during a switch-over time, Y (S). In
a polling model with smart customers, this decomposition does not typically hold, but a
minor adaptation is required. We follow the proof in [34] as closely as possible, meaning
that we use the concepts of ancestral line and offspring of a customer, as introduced
in [84]. We also copy the idea of comparing the polling system to an M/G/1 queue with
vacations and Last-Come-First-Served (LCFS) service. The traffic process offered to this
M/G/1 queue is identical to the traffic process of the polling system. The server of the
M/G/1 queue takes vacations exactly during the switching periods of the polling system.
These vacations might interrupt the service of a customer in the M/G/1 queue. This
service is not resumed until all customers that have arrived during the vacation and their
offspring have been served (in LCFS order).

We now focus on the amount of work in this M/G/1 system at an arbitrary moment
during a visit (busy) period. Let K be the customer being served at this observation
moment, and let KA be his ancestor. By definition, KA has arrived during a vacation period
(i.e. switch-over period in the corresponding polling system). Denote by YKA

the amount
of work present in the system at the moment that KA enters the system. An important
difference with the situation studied in [34] is that we cannot use the PASTA property, so
in general YKA

6= Y (S). We now condition on the customer type of KA. The mean duration
of the service of a type i ancestor and his entire ancestral line is E[Bi]/(1−ρ(V )). This
can be regarded as the mean busy period commencing with the service of an exceptional
first customer (namely a type i customer). Each type i customer arriving during S j , with

arrival rate λ
(S j)
i , i, j = 1, . . . , N , starts such a busy period, so the probability that KA is a

type i customer is:

pi =

∑N
j=1λ

(S j)
i E[S j]E[Bi]/(1−ρ(V ))

∑N
k=1

∑N
j=1λ

(S j)
k E[S j]E[Bk]/(1−ρ(V ))

=

∑N
j=1λ

(S j)
i E[S j]E[Bi]

∑N
k=1

∑N
j=1λ

(S j)
k E[S j]E[Bk]

. (10.4.9)

Given that KA is a type i customer, we again pick up the proof of the work decomposition
in [34]. Denote by BKA

the service requirement of KA. Then, because of the LCFS service
discipline of the M/G/1 queue, the amount of work when KA goes into service is exactly
YKA
+ BKA

, and the amount of work when the last descendant of KA has been served
equals YKA

again (for the first time, since the arrival of KA). Ignoring the amount of
work present at KA’s arrival, the residual amount of work evolves just as during a busy
period in an M/G/1 queue with an exceptional first customer (having generic service
requirement Bi). The only exception is caused by the vacations (i.e. switch-over times in
the polling model), during which the work remains constant or may increase because of
new arrivals. However, just as in [34], if we ignore these vacations and the (LCFS) service
of the ancestral lines of the customers that arrive during these vacations, what remains
is the workload process during a busy period initiated by a type i customer. Denote by
Y (V )M/G/1|i the amount of work at an arbitrary moment during this busy period, and denote

by Y (S)Ai
the amount of work present in the polling system at an arbitrary arrival epoch of

a type i customer during a switch-over time. Note that YKA
is distributed like Y (S)Ai

. Then
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we have the following decomposition:

Y (V )
d
=Y (V )M/G/1|i + Y (S)Ai

w.p. pi , i = 1, . . . , N , (10.4.10)

with pi as given in (10.4.9), and Y (V )M/G/1|i and Y (S)Ai
being independent. This leads to

E[Y (V )] =
N
∑

i=1

pi

�

E[Y (V )M/G/1|i] +E[Y
(S)

Ai
]
�

, (10.4.11)

with

E[Y (V )M/G/1|i] = E[Bi
res] +

ρ(V )

1−ρ(V )
E
h

�

B(V )
�res
i

, (10.4.12)

E[Y (S)Ai
] =

N
∑

j=1

λ
(S j)
i E[S j]

∑N
k=1λ

(Sk)
i E[Sk]

E[Y (S j)]. (10.4.13)

For (10.4.12) we use standard theory on an M/G/1 queue with an exceptional first
customer (cf. [211]), and (10.4.13) is established by conditioning on the switch-over
period in which a type i customer arrives.

10.4.3 PCL for smart customers

We are now ready to state the PCL.

THEOREM 10.4.1. Provided that (10.4.2) or (10.4.3) is valid, the following Pseudo-Conservation
Law holds:

N
∑

i=1

ρiE[Wi] = (1−ρ)
N
∑

i=1

E[Si]
E[S]

E[Y (Si)]−
N
∑

i=1

ρiE[Bi
res]

+ρ
N
∑

i=1

pi







N
∑

j=1

λ
(S j)
i E[S j]

∑N
k=1λ

(Sk)
i E[Sk]

E[Y (S j)] +E[Bi
res] +

ρ(V )

1−ρ(V )
E
h

�

B(V )
�res
i






,

(10.4.14)

where E[Y (Si)] are as in (10.4.8), and the pi as in (10.4.9).

PROOF. We have two equations, (10.4.5) and (10.4.6), for the mean total amount of work
in the system. Combining these two equations, and plugging in (10.4.7) and (10.4.11),
we find

N
∑

i=1

�

E[Li]E[Bi] +ρiE[Bi
res]
�

= (1−ρ)
N
∑

j=1

E[S j]

E[S]
E[Y (S j)]ρ

N
∑

i=1

pi

�

E[Y (V )M/G/1|i] +E[Y
(S)

Ai
]
�

.

By application of Little’s Law, E[Li] = λiE[Wi], using that ρi = λiE[Bi], plugging in
(10.4.12) and (10.4.13), after some rewriting we obtain (10.4.14), which is a PCL for a
polling model with smart customers.
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REMARK 10.4.2. When λ(S1)
i = λ(S2)

i = . . . = λ(SN )
i = λ(V1)

i = · · · = λ(VN )
i = λi , for all

i = 1, . . . , N , Equation (10.4.14) reduces to the standard PCL (10.4.1). E.g., because of
PASTA, E[Y (S)Ai

] = E[Y (S)], and pi = λi/Λ for all i.

Case 2, where the assumptions of (10.4.3) hold, has a nice practical interpretation if

we add the additional requirement that
∑N

i=1λ
(S j)
i =

∑N
i=1λ

(Vj)
i =: Λ for all j = 1, . . . , N .

Now, the model can be interpreted as a polling system with customers arriving in one
Poisson stream with constant arrival rate Λ, and generic service requirement B, but join-
ing a certain queue with a fixed probability that may depend on the location of the server
at the arrival epoch. In Section 10.5, we discuss an example on how these probabili-
ties may be chosen to minimize the mean waiting time of an arbitrary customer. The
PCL (10.4.14) can be simplified considerably in this situation.

COROLLARY 10.4.3. If (10.4.3) is valid, the PCL (10.4.14) reduces to:

N
∑

i=1

ρiE[Wi] =
N
∑

i=1

E[Si]
E[S]

E[Y (Si)] +
ρ2

1−ρ
E[Bres]. (10.4.15)

PROOF. This is a direct consequence of assumptions (10.4.3). E.g., in the computation of
(10.4.12) there is no need to condition on a special first customer, and hence the term
E[YM/G/1|i] does not depend on i anymore:

E[YM/G/1|i] =
E[Bres]
1−ρ

,

where ρ = ΛE[B]. Additionally, the term
∑N

i=1 piE[Y
(S)

Ai
] also simplifies considerably:

N
∑

i=1

piE[Y
(S)

Ai
] =

N
∑

i=1

E[Si]
E[S]

E[Y (Si)].

Combining this, multiple terms cancel out and (10.4.15) follows. It is easily seen that
(10.4.15) is in line with the standard PCL (10.4.1), when the arrival rates do not change
during various visit and switch-over times.

10.5 Numerical example

We consider a polling system where arriving customers choose which queue they join,
based on the current position of the server. In [32, 37] a fully symmetric case is studied
with gated service, and it is proven that the mean sojourn time of customers is minimized
if customers join the queue that is being served directly after the queue that is currently
being served. Although the exhaustive case is not studied, it is intuitively clear that in
this situation smart customers join the queue that is currently being served. Or, in case an
arrival takes place during a switch-over time, join the next queue that is visited. In this
example, we study this situation in more detail by adding an extra parameter that can
be varied. The polling model is fully symmetric, except for the service time of customers
in Q1, which is varied. The practical interpretation is the following: customers arrive
with a fixed arrival intensity, say Λ, and choose which queue they join. This does not
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affect their service time, except when they choose Q1. In this case, the service time
has a different distribution. To illustrate the dynamics of this system, we choose the
following setting. The system consists of three queues with exhaustive service. The
switch-over times are all exponentially distributed with mean 1. The service times are
also exponentially distributed with E[B2] = E[B3] = 1, and E[B1] is varied between 0
and 2. Arriving customers choose one queue which they want to join. This queue is
the same for all customers, so there is no randomness involved in the selection, which
is only based on the location of the server at their arrival epochs. We intend to find
the optimal queue for customers to join. In terms of the model parameters: we seek to

find values for λ
(Vj)
i and λ

(S j)
i , i, j = 1,2, 3, that minimize the mean sojourn time of an

arbitrary customer, under the restriction that for each value of j, exactly one λ
(Vj)
i and

exactly one λ
(S j)
i is equal to Λ, and all the other values are 0. A valid combination of

these arrival intensities is called a strategy, and we introduce the short notation for a
strategy by the indices of the queues that are joined in respectively (V1, S1, V2, S2, V3, S3).
E.g., for the fully symmetric case, with E[B1] = 1, it is intuitively clear that the optimal
strategy is to join Q i , if the arrival takes place during Vi , and to join Q i+1 if the arrival
takes place during Si . This strategy is denoted by (1,2, 2,3, 3,1), and corresponds to
λ
(V1)
1 = λ(V2)

2 = λ(V3)
3 = Λ, and λ(S1)

2 = λ(S2)
3 = λ(S3)

1 = Λ. The other arrival intensities
are 0. As stated before, we vary E[B1] between 0 and 2, and focus on the overall mean
sojourn time. It is clear that making E[B1] smaller, makes it more attractive to join Q1
(even if another queue is served), whereas making E[B1] larger, makes it less attractive
to join Q1. In order to obtain numerical results, we choose the (arbitrary) value Λ = 3

5
.

It turns out that as much as seven different strategies can be optimal, depending on the
value of E[B1]. We refer to these strategies as I through VII, listed in Table 10.1, along
with their region of optimality. For each of these strategies, the mean sojourn time of an
arbitrary customer is plotted versus E[B1] in Figure 10.2.

Strategy Queue to join during Region of optimality
V1 S1 V2 S2 V3 S3

I 1 1 X 1 X 1 0.00≤ E[B1]≤ 0.41
II 1 2 1 1 X 1 0.41≤ E[B1]≤ 0.66
III 1 2 2 1 X 1 0.66≤ E[B1]≤ 0.73
IV 1 2 2 3 1 1 0.73≤ E[B1]≤ 0.84
V 1 2 2 3 3 1 0.84≤ E[B1]≤ 1.10
VI 2 2 2 3 3 1 1.10≤ E[B1]≤ 1.16
VII X 2 2 3 3 2 1.16≤ E[B1]

Table 10.1: The seven smartest strategies that minimize the mean waiting time of an arbi-
trary customer who can choose the queue in which he wants to be served. An ‘X’ means that
the length of the corresponding visit time equals 0 because customers never join this queue.

As expected, Q1 is most popular if E[B1] is very small. In particular, for very small
values of E[B1], customers always join this queue (Strategy I). As E[B1] becomes larger,
Q2 and later also Q3 are chosen in more and more situations (Strategies II–V). Strategy V,
which is optimal if the system is (nearly) symmetric, is the one where customers join the
queue that is being served, or is going to be served next if the arrival takes place during
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Figure 10.2: The mean sojourn time of an arbitrary customer for the seven smartest strate-
gies, against the mean service time in Q1.

a switch-over time. Strategy VI, which is optimal in only a very small range of values of
E[B1], states that customers only join Q1 during the switch-over time S3. Strategy VII,
in which customers never join Q1, is optimal for large values of E[B1]. The ergodicity
constraint, considering all parameters are fixed except for E[B1], for the different strate-
gies is interesting to mention. For strategies I-V, the necessary and sufficient condition for
stability is E[B1] <

5
3
. Strategies VI and VII always result in a stable system, regardless

of E[B1].
It is also interesting to discuss what stupid customers would do in this system. Stupid

customers choose the worst possible strategy, in order to maximize the mean sojourn
time of an arbitrary customer. We do not go into details and do not mention exactly
which strategy is worst for each value of E[B1], but we pick out some interesting cases.
Obviously, when E[B1] = 0, the worst possible thing to do is never to join Q1. The worst
strategy in this case is (X , 3, 3, 2, 2, 3), where X means that any queue can be chosen
(because the length of the corresponding visit time equals 0, since customers never join
this queue). This strategy leads to an overall mean sojourn time of 7.48. As E[B1] grows
larger, Q1 gradually will be chosen more frequently. In the symmetric case, E[B1] = 1,
customers arriving during Vi choose Q i−1, and customers arriving during Si choose Q i ,
resulting in a mean sojourn time of 8.5. For largeE[B1], the worst possible strategy might
be a bit surprising. It is not simply to always join Q1, but it is (1, 1,1, 2,1, 3). During visit
periods, customers always join Q1, but during Si customers join Q i . For E[B1] ↑

5
3
,

this strategy results in the highest mean sojourn time of an arbitrary customer. For the
situation E[B1] ≥

5
3
, there are many strategies for which the system becomes unstable

and sojourn times become infinite. The worst possible strategy for E[B1] ≥
5
3

that still
results in a stable system, is (3,1, X , 1, 1, 1).

10.A Appendix: MVA equations

In this appendix we present all MVA equations that have been omitted in Section 10.3.
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The mean duration of the next period Vi , when in S j is denoted by E[
−→
Vi
(S j)]. A

difference with E[
−→
Vi
(Vj)], is that E[

−→
Vi
(Si)] is not different from E[

−→
Vi
(S j)] for j 6= i.

Similar to (10.3.7), we have for i = 1, . . . , N , j = i, . . . , i+ N − 1:

E[
−→
Vi
(S j)] = E[BPi]



E[L
(S j)
i ] +λ

(S j)
i E[S j

res] +
i+N−1
∑

k= j+1

�

λ
(Vk)
i E[

−→
Vk
(S j)] +λ(Sk)

i E[Sk]
�



 .

(10.A.1)
Equation (10.3.9) forE[(Si :Vj)

res], the mean residual duration of the interval Si , Vi+1, . . . , Vj ,
is obtained by conditioning on the period in which the interval is observed, looking
forward in time. Similarly, we find expressions for E[(Si :S j)

res], E[(Vi :Vj)
res], and

E[(Vi :S j)
res]. For i = 1, . . . , N , j = i+ 1, . . . , i+ N − 1:

E[(Si :S j)
res] =

j
∑

k=i

E[Sk]
E[(Si :S j)]

 

E[Sk
res] +

j
∑

l=k+1

�

E[Sl] +E[
−→
Vl
(Sk)]

�

!

+
j
∑

k=i+1

E[Vk]
E[(Si :S j)]

 

j
∑

l=k

�

E[Sl] +E[
−→
Vl
(Vk)]

�

!

. (10.A.2)

For i = 1, . . . , N , j = i+ 1, . . . , i+ N − 1:

E[(Vi :Vj)
res] =

j−1
∑

k=i

E[Sk]
E[(Vi :Vj)]

 

E[Sk
res] +E[

−→
Vj
(Sk)] +

j−1
∑
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�

E[Sl] +E[
−→
Vl
(Sk)]

�

!

+
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E[Vk]
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. (10.A.3)

For i = 1, . . . , N , j = i+ 1, . . . , i+ N − 1:

E[(Vi :S j)
res] =

j
∑

k=i

E[Sk]
E[(Vi :S j)]

 

E[Sk
res] +

j
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l=k+1

�

E[Sl] +E[
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(Sk)]
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+
j
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E[Vk]
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�

E[Sl] +E[
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Vl
(Vk)]

�

!

. (10.A.4)

In Section 10.3, a second set of equations is discussed for E[(Si :Vj)
res], E[(Si :S j)

res],
E[(Vi :Vj)

res], and E[(Vi :S j)
res]. This set is obtained by conditioning on the period in

which the interval is observed, but now looking backward in time. We use that the
residual length of an interval has the same distribution as the elapsed time of this interval.
The equation forE[(Si :Vj)

res] is given by (10.3.10). The other equations are given below.
For i = 1, . . . , N , j = i+ 1, . . . , i+ N − 1:

E[(Si :S j)
res] =
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,

(10.A.5)
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for i = 1, . . . , N , j = i+ 1, . . . , i+ N − 1:
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k=i

E[Sk]
E[(Vi :Vj)]

 

k
∑

l=i

�

E[
←−
Sl
(Sk)] +E[

←−
Vl
(Sk)]

�

!

+
j
∑

k=i

E[Vk]
E[(Vi :Vj)]

 

E[
←−
Vk
(Vk)] +

k−1
∑

l=i

�

E[
←−
Sl
(Vk)] +E[

←−
Vl
(Vk)]

�

!

,

(10.A.6)

and for i = 1, . . . , N , j = i, . . . , i+ N − 1:

E[(Vi :S j)
res] =

j
∑

k=i

E[Sk]
E[(Vi :S j)]

 

k
∑

l=i

�

E[
←−
Sl
(Sk)] +E[

←−
Vl
(Sk)]

�

!

+
j
∑

k=i

E[Vk]
E[(Vi :S j)]

 

E[
←−
Vk
(Vk)] +

k−1
∑

l=i

�

E[
←−
Sl
(Vk)] +E[

←−
Vl
(Vk)]

�

!

.
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11
CLOSED-FORM WAITING TIME

APPROXIMATION

In this chapter, we derive closed-form approximations for the mean waiting times and
mean marginal queue lengths of polling systems with renewal arrival processes. The
approximations derived can be computed by simple calculations. The results may be
useful and suitable for the design and optimization phase in many application areas,
such as telecommunication, maintenance, manufacturing and transportation.

11.1 Introduction

When studying literature on polling systems (e.g. [130, 177, 200]), it rapidly becomes
apparent that the computation of the distributions and moments of the waiting times and
marginal queue lengths is very cumbersome. Closed-form expressions do not exist, and
even when one specifies the number of queues and solves the set of equations that leads
to the mean waiting times, the obtained expressions are still too lengthy and complicated
to interpret directly. Numerical procedures, both approximate and exact, have been de-
veloped in the past to compute these performance measures. However, these methods
have several drawbacks. Firstly, they are not transparent and act as a kind of black box. It
is, for instance, rather difficult to study the impact of parameters like the occupation rate
and the service level. Secondly, these procedures are computationally complex and hard,
if not impossible, to implement in a standard spreadsheet program commonly used on
the work floor. Finally, the vast majority of standard methods focuses on Poisson arrival
processes, which may not be very realistic in many application areas. In the present chap-
ter we study polling systems in which the arrival streams are not (necessarily) Poisson,
i.e., the interarrival times follow a general distribution. The goal is to derive closed-form
approximate solutions for the mean waiting times and mean marginal queue lengths,
which can be computed by simple spreadsheet calculations.

Our approach in developing an approximation for the mean waiting times uses novel
developments in polling literature. Recently, a heavy traffic (HT) limit has been devel-
oped for the mean waiting times as the system becomes saturated [187]. In the present
chapter we derive an approximation for the light traffic (LT) limit, i.e. as the load goes
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down to zero, which is exact for Poisson arrivals. The main idea is to create an interpo-
lation between the LT limit and the HT limit. This interpolation yields good results, and
has several nice properties, like satisfying the Pseudo Conservation Law (PCL), and being
exact for symmetric systems with Poisson arrivals and in many limiting cases. These prop-
erties are described in more detail in the present chapter. In polling literature, several al-
ternative approximations have been developed before, most of which assume Poisson ar-
rivals. For polling systems with Poisson arrivals and gated or exhaustive service, the best
results, by far, are obtained by an approximation based on the PCL (see e.g. [31, 72, 92]).
Fischer et al. [79] study an approximation for the mean waiting times in polling systems,
which is also based on an interpolation between (approximate) LT and HT limits. Their
approach, however, is applied to a system with Poisson arrivals and time-limited service.
Hardly any closed-form approximations exist for non-Poisson arrivals. The few that ex-
ist, perform well in specific limiting cases, e.g., under HT conditions [149, 187], or if
switch-over times become very large [207, 209], but performance deteriorates rapidly if
these limiting conditions are abandoned. We show in an extensive numerical study that
the quality of our approximation can be compared to the PCL approximation for systems
with Poisson arrivals, but provides good results as well for systems with renewal arrivals.

Because of its simple form, the approximation function is very suitable for optimiza-
tion purposes. Although only the mean waiting times of systems with exhaustive or
gated service are studied, the results can be extended to higher moments and general
branching-type service disciplines. Polling systems with polling tables and/or batch ser-
vice can also be analyzed in a similar manner.

The structure of the present chapter is as follows: the next section introduces the
model and the required notation, and states the main result. Section 11.3 illustrates
how this main result is obtained, while Section 11.4 provides results on the accuracy
of the approximation for a large set of combinations of input parameter values. Finally,
Section 11.5 discusses further research topics and possible extensions of the model. This
chapter is based on [29].

11.2 Model description and main result

We consider a polling model as described in Section 9.2, with a generalization to renewal
arrivals. That is, we allow the interarrival times to have an arbitrary distribution. We
focus on both the gated as well as the exhaustive discipline.

We regard several variables as a function of the load ρ in the system. Scaling is done
by keeping the service time distributions fixed, and varying the interarrival times. For
each variable x that is a function of the load in the system, ρ, its value evaluated at
ρ = 1 is denoted by x̂ . For ρ = 1, the generic interarrival time of the stream in Q i is
denoted by Âi . Reducing the load ρ is done by scaling the interarrival times, i.e., taking
the random variable Ai := Âi/ρ as generic interarrival time at Q i . After scaling, the
load at Q i becomes ρi = ρE[Bi]/E[Âi]. The (scaled) rate of the arrival stream at Q i
is defined as λi = 1/E[Ai]. Similarly, we define arrival rates λ̂i = 1/E[Âi], and the
proportional load at Q i , ρ̂i = ρi/ρ. Note that

∑N
i=1 ρ̂i = 1. We use B to denote the
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generic service requirement of an arbitrary customer entering the system, with

E[Bk] =

∑N
i=1 λ̂iE[Bk

i ]
∑N

j=1 λ̂ j

for any integer k > 0. The system is assumed to be stable, so ρ is varied between 0 and 1.
We now present the main result of this chapter, which is a closed-form approximation

formula for the mean waiting time E[Wi] of a type i customer as a function of ρ:

E[Wi,app] =
K0,i + K1,iρ+ K2,iρ

2

1−ρ
, i = 1, . . . , N . (11.2.1)

The constants K0,i , K1,i , and K2,i depend on the input parameters and the service disci-
pline. If all queues receive exhaustive service, the constants become:

K0,i =E[S
res], (11.2.2)

K1,i =ρ̂i
�

E[Âi] ĝi(0)− 1
�

E[Bres
i ] +E[B

res] + ρ̂i
�

E[Sres]−E[S]
�

−
1

E[S]

N−1
∑

j=0

j
∑

k=0

ρ̂i+kVar[Si+ j], (11.2.3)

K2,i =
1− ρ̂i

2







∑N
j=1 λ̂ j

�

Var[B j] + ρ̂2
jVar[Â j]

�

∑N
j=1 ρ̂ j(1− ρ̂ j)

+E[S]






− K0,i − K1,i . (11.2.4)

If all queues receive gated service, we get:

K0,i =E[S
res], (11.2.5)

K1,i =ρ̂i
�

E[Âi] ĝi(0)− 1
�

E[Bres
i ] +E[B

res] + ρ̂iE[S
res]

−
1

E[S]

N−1
∑

j=0

j
∑

k=0

ρ̂i+kVar[Si+ j],

(11.2.6)

K2,i =
1+ ρ̂i

2







∑N
j=1 λ̂ j

�

Var[B j] + ρ̂2
jVar[Â j]

�

∑N
j=1 ρ̂ j(1+ ρ̂ j)

+E[S]






− K0,i − K1,i . (11.2.7)

The term ĝi(t) is the density of Âi , the interarrival times at ρ = 1. This term is discussed
in more detail in the next section, but for practical purposes it is useful to know that
E[Âi] ĝi(0) can be very well approximated by

E[Âi] ĝi(0)≈







2
cv2

Ai

cv2
Ai
+1

if cv2
Ai
> 1,

�

cv2
Ai

�4
if cv2

Ai
≤ 1,

where cv2
Ai

is the squared coefficient of variation (SCV) of Ai (and, hence, also of Âi).
Note that this simplification results in an approximation that requires only the first two
moments of each input variable (i.e., service times, switch-over times, and interarrival
times).
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REMARK 11.2.1. In case of Poisson arrivals, the constants K1,i and K2,i simplify consider-
ably. E.g., for exhaustive service they simplify to:

KPoisson
1,i =E[Bres] + ρ̂i

�

E[Sres]−E[S]
�

−
1

E[S]

N−1
∑

j=0

j
∑

k=0

ρ̂i+kVar[Si+ j],

KPoisson
2,i =(1− ρ̂i)







E[Bres]
∑N

j=1 ρ̂ j(1− ρ̂ j)
+
E[S]

2






− K0,i − KPoisson

1,i .

The derivation of this approximative formula for the mean waiting time is the topic
of the next section. An approximation for the mean queue length at Q i , E[Li] is obtained
by application of Little’s Law to the sojourn time of type i customers, i.e. the waiting time
plus the service time. As a function of ρ, we have

E[Li,app] = ρ
E[Wi,app] +E[Bi]

E[Âi]
.

11.3 Idea behind the approximation

In the present section, we explain the idea behind approximation (11.2.1) forE[Wi]. The
restrictions that we impose on our approximation, are firstly that the formula should be
closed-form, and easy to implement, since these are necessities for optimization purposes
and implementation in a spreadsheet. Secondly, we want the approximation to capture
the light traffic limit, i.e. ρ ↓ 0, and high traffic limit, i.e. ρ ↑ 1, behavior in an exact way.
Based on these restrictions, we have chosen the form

E[Wi,app] =
K0,i + K1,iρ+ K2,iρ

2

1−ρ
, i = 1, . . . , N .

It is proved in [187] that capturing the HT behavior in an exact way, requires the (1−ρ)
term in the denominator. This term is not surprising at all, because the mean waiting
times of practically all queueing systems show this behavior (the best known exception
is an M/G/1 queue with shortest remaining processing time policy [163]). The motiva-
tion for taking a polynomial in the numerator of (11.2.1) can be found in several other
approximations based on interpolation between LT and HT limits. E.g., Reiman and
Simon [158] (see also [168]), and Whitt [206] use this approach to develop approxi-
mations for the mean waiting time in, respectively, queueing systems with Poisson input
and GI/G/1 queues. A second-order polynomial fulfills the need for simplicity, and is
sufficient to obtain an approximation which is exact for the two limiting situations (and,
as is shown in Section 11.3.4, in many other limiting cases).

The remainder of this section is devoted to finding the constants K0,i , K1,i , and K2,i .
The requirement for the interpolation is an approximation for E[Wi] in light traffic. No
such approximation exists in existing literature, so the next subsection is devoted to
finding one. We can use this LT expression to find constants K0,i and K1,i in (11.2.1).
The last unknown in the interpolation, K2,i , is obtained using the HT limit of the mean
waiting time, which has been found quite recently [187].
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11.3.1 Light traffic

The mean waiting times in the polling model under consideration in light-traffic, have
been studied in Blanc and Van der Mei [22], under the assumption of Poisson arrivals.
They obtain expressions for the mean waiting times in light traffic that are exact up to
(and including) first-order terms in ρ. These expressions have been found by carefully
inspecting numerical results obtained with the Power-Series Algorithm, but no proof is
provided. In the present section we shall not only prove the correctness of the light-traffic
results in a system with Poisson arrivals, but also use them as base for an approximation
for the mean waiting times in polling systems with renewal interarrival times. The key
ingredient to the LT analysis of a polling system, is the well-known Fuhrmann-Cooper
decomposition [84]. It states that in a vacation system with Poisson arrivals the queue
length of a customer is the sum of two independent random variables: the number of
customers in an isolated M/G/1 queue, and the number of customers during an arbitrary
moment in the vacation period. The distributional form of Little’s Law [109] can be used
to translate this result to waiting times. Since no independence is required between the
length of a vacation and the length of the preceding visit period, this decomposition also
holds for polling systems with Poisson arrivals. Recall that Vi denotes the length of a visit
period at Q i , Ii denotes the length of the intervisit period, i.e. the time that the server
is away between two successive visits to Q i . Furthermore, Ci denotes the cycle time,
starting at a visit beginning to Q i . It holds that E[Vi] = ρiE[Ci], E[Ii] = (1−ρi)E[Ci],
and E[Ci] = E[C] = E[S]/(1−ρ).

The Fuhrmann-Cooper decomposition, applied to the mean waiting time, results in:

exhaustive: E[Wi] = E[Wi,M/G/1] +E[I
res
i ], (11.3.1)

gated: E[Wi] = E[Wi,M/G/1] +E[I
res
i ] +

E[Vi Ii]
E[Ii]

. (11.3.2)

For our approximation, we assume that this decomposition also holds for renewal arrival
processes in light traffic. Determining the LT limit of the mean waiting time, E[W LT

i ],
in a polling system with exhaustive or gated service is based on the following two-step
approach. The first step is to find the LT limit of E[Wi,GI/G/1], the mean waiting time of
a GI/G/1 queue with only type i customers in isolation, i = 1, . . . , N . The second step is
determining E[I res

i ], the mean residual intervisit time of Q i , and E[Vi Ii]/E[Ii], the mean
visit time of Q i given that it is being observed at a random epoch during the following
intervisit time.

For the LT limit of the mean waiting time in a GI/G/1 queue, we use Whitt’s re-
sult [206, Equation (16)], which gives:

lim
ρi↓0

E[Wi,GI/G/1]

ρi
=

1+ cv2
Bi

2
E[Âi] ĝi(0)E[Bi], (11.3.3)

where cv2
Bi

is the SCV of the service times, and ĝi(t) is the density of the interarrival
times Âi . For practical purposes, it may be more convenient to express ĝi(0) in terms of
the density of Ai , the generic interarrival time of Q i in the scaled situation.The relation
between the density of the scaled interarrival times Ai (= Âi/ρ), denoted by gi(t), and
the density of Âi , ĝi(t), is simply: gi(t) = ρ ĝi(ρt). This means that the term E[Âi] ĝi(0)
can be rewritten as

E[Âi] ĝi(0) = E[Ai]gi(0).
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Because of this equality, in the remainder of the chapter we might use either notation.
Since determining E[Âi] ĝi(0) is a required step in the computation of our approximation
for E[Wi], we give some practical examples.

Example 11.3.1. If the scaled interarrival times Ai are exponentially distributed with
parameter λi := 1/E[Ai], we have gi(t) = λie

−λi t . This implies that E[Ai]gi(0) = 1.

Example 11.3.2. Assume that Ai follows a H2 distribution with balanced means. The
SCV of Ai is denoted by cv2

Ai
. The density of this hyper-exponential distribution is (see

e.g. [182])
gi(t) = pµ1e−µ1 t + (1− p)µ2e−µ2 t ,

with

p =
1

2






1+

s

cv2
Ai
− 1

cv2
Ai
+ 1






,

µ1 =
1

E
�

Ai
�






1+

s

cv2
Ai
− 1

cv2
Ai
+ 1






,

µ2 =
1

E
�

Ai
�






1−

s

cv2
Ai
− 1

cv2
Ai
+ 1






.

This leads to E[Ai]gi(0) = 1+ (cv2
A− 1)/(cv2

A+ 1) = 2 cv2
A/(cv

2
A+ 1).

Example 11.3.3. Assume that the interarrival times follow a mixed Erlang distribution.
The density of the scaled interarrival times is:

gi(t) = p
µk−1 tk−2

(k− 2)!
e−µt + (1− p)

µk tk−1

(k− 1)!
e−µt ,

i.e., a mixture of an Erlang(k− 1) and an Erlang(k) distribution with

k =
l

1/cv2
Ai

m

,

p =
k cv2

Ai
−
Æ

k(1+ cv2
Ai
)− k2 cv2

Ai

1+ cv2
Ai

,

µ=
k− p

E[Ai]
.

If k > 2, this leads to E[Ai] gi(0) = 0.

The distributions in Examples 11.3.1–11.3.3 are typical distributions to be used in a
two-moment fit if the SCV of the interarrival times is respectively 1, greater than 1, and
less than 1 (cf. [182]). The examples illustrate how E[Ai]gi(0) can be computed if the
density of the (scaled) interarrival times is known. If no information is available about
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the complete density, but the first two moments of Ai are known, Whitt [206] suggests
to use the following approximation for E[Ai]gi(0):

E[Ai]gi(0) =







2
cv2

Ai

cv2
Ai
+1

if cv2
Ai
> 1,

�

cv2
Ai

�4
if cv2

Ai
≤ 1,

where cv2
Ai

is the squared coefficient of variation of the interarrival times of Q i . This
approximation is exact for cv2

Ai
> 1, if the interarrival time distribution is a hyper-

exponential distribution as discussed in Example 11.3.2. For cv2
Ai
≤ 1, the approximation

is rather arbitrary, but Example 11.3.3 shows that E[Ai]gi(0) becomes small (or even
zero) very rapidly as cv2

Ai
gets smaller.

Summarizing, the LT limit of a GI/G/1 queue (ignoring O(ρ2
i ) terms and higher) is:

E[W LT
i,GI/G/1] = ρiE[Ai]gi(0)E[B

res
i ]. (11.3.4)

For Poisson arrivals (E[Ai]gi(0) = 1), it is known that

E[Wi,M/G/1] =
ρi

1−ρi
E[Bres

i ] = ρiE[B
res
i ] +O(ρ2

i ),

which is consistent with our approximation.
The second step in determining the LT limit of the mean waiting time of a type i cus-

tomer in a polling system, is finding the LT limits of E[I res
i ], the mean residual intervisit

time of Q i , and (for gated service only) E[Vi Ii]/E[Ii], the mean visit time Vi given that it
is observed from the following intervisit time Ii . In this LT analysis we need to focus on
first order terms only. Noting the fact that Ii = Si + Vi+1 + Si+1 + . . .+ Vi+N−1 + Si+N−1,
we condition on the moment at which Ii is observed. We distinguish between two cases.
The moment of observation either takes place during a visit time, or during a switch-over
time:

E[ILT,res
i ] =

N−1
∑

j=1

E[Vi+ j]

E[Ii]
E[ILT,res

i |observed during Vi+ j]

+
N−1
∑

j=0

E[Si+ j]

E[Ii]
E[ILT,res

i |observed during Si+ j]. (11.3.5)

Observation during visit time. The probability that a random observation epoch takes
place during a visit time, say Vj , is E[Vj]/E[Ii], for any j 6= i. However, we are only
interested in order ρ terms, so this probability simplifies to

E[Vj]

E[Ii]
=

ρ jE[C]

(1−ρi)E[C]
= ρ j +O(ρ2).

The fact that this probability is O(ρ), implies that all further O(ρ) terms in E[ILT,res
i |

observed during Vj] can be ignored, because in LT we focus on first order terms only.
The length of the residual intervisit time is the length of the residual visit period

of type j customers, V res
j , plus all switch-over times S j + . . . + Si−1, plus all visit times
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Vj+1 + . . . + Vi−1. The first term simplifies to E[V res
j ] = E[Bres

j ] + O(ρ). The terms
E[Vk|observed from Vj], k = j + 1, . . . , i − 1, in light traffic, are all O(ρ). Summarizing,
the mean residual intervisit period when observed during Vj is simply a mean residual
service time E[Bres

j ], plus all mean switch-over times E[S j+ . . .+Si−1], plus O(ρ) terms:

E[ILT,res
i |observed during Vj] = E[B

res
j ] +

i−1
∑

k= j

E[Sk] +O(ρ). (11.3.6)

Observation during switch-over time. We continue by determining the mean residual
intervisit period, conditioned on a random observation epoch during a switch-over time,
say S j , j = 1, . . . , N . The probability that such an epoch takes place during S j , is

E[S j]

E[Ii]
=

E[S j]

(1−ρi)E[C]
=
E[S j]

E[S]
1−ρ
1−ρi

=
E[S j]

E[S]
(1−ρ+ρi) +O(ρ2).

It becomes apparent from this expression that things get slightly more complicated now,
because order ρ terms in the conditional residual intervisit time may no longer be ne-
glected. The residual intervisit time now consists of the residual switch-over time Sres

j ,
plus the switch-over times S j+ . . .+Si−1, plus all visit periods Vj+1+ . . .+Vi−1. The length
of a visit period Vk, for k > j, is the sum of the busy periods of all type k customers that
have arrived during Si , . . . , S j−1, Spast

j , Sres
j , and S j+1, . . . , Sk−1. By Spast

j we denote the
elapsed switch-over time during which the intervisit period is observed, which has the
same distribution as the residual switch-over time Sres

j . Compared to an observation dur-
ing a visit time, it is more difficult to determine the conditional mean length of a busy
period E[Vk|observed during S j] under LT. We use a heuristic approach, which is exact if
the arrival process of type k customers is Poisson, and approximate it by:

E[Vk|observed during S j]≈ ρk





∑

l 6= j

E[Sl] +E[S
past
j ] +E[S

res
j ]



+O(ρ2),

for k = j + 1, . . . , i − 1. If Ak is exponentially distributed, the above expression is exact.
Nevertheless, numerical experiments have shown that this approximative assumption has
no or at least negligible impact on the accuracy of the approximated mean waiting times.
Summarizing:

E[ILT,res
i |observed during S j]

≈
j−1
∑

k=i

E[Sk]





i+N−1
∑

l= j+1

ρl



+E
�

Spast
j

�





i+N−1
∑

k= j+1

ρk



+E
�

Sres
j

�



1+
i+N−1
∑

k= j+1

ρk





+
i+N−1
∑

k= j+1

E[Sk]



1+
i+N−1
∑

l= j+1

ρl



+O(ρ2). (11.3.7)

The expression for I res
i under light traffic conditions now follows from substituting
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(11.3.6) and (11.3.7) in (11.3.5). The result can be rewritten to:

E[ILT,res
i ]

≈
i+N−1
∑

j=i+1

ρ jE[B
res
j ] +

i+N−1
∑

j=i+1

ρ j

i+N−1
∑

k= j

E[Sk]

+
i+N−1
∑

j=i

1

2E[S]



E
�

S2
j

�



1−ρ+ρi + 2
i+N−1
∑

k= j+1

ρk









+
1

E[S]

� j−1
∑

k=i

E[S j]E[Sk]





i+N−1
∑

l= j+1

ρl



 (11.3.8)

+
i+N−1
∑

k= j+1

E[S j]E[Sk]



1−ρ+ρi +
i+N−1
∑

l= j+1

ρl





�

+O(ρ2)

=
i+N−1
∑

j=i+1

ρ jE[B
res
j ] +

i+N−1
∑

j=i+1

ρ j

i+N−1
∑

k= j

E[Sk]

+ (1−ρ+ρi)E[S
res] +

1

E[S]

i+N−1
∑

j=i

i+N−1
∑

k=i

E[S jSk]





i+N−1
∑

l= j+1

ρl



+O(ρ2)

= E[Sres] +ρE[Bres]−ρiE[B
res
i ] +ρi (E[S

res]−E[S])

−
1

E[S]

N−1
∑

j=0

j
∑

k=0

ρi+kVar[Si+ j] +O(ρ2), (11.3.9)

for i = 1, . . . , N . The last step in (11.3.9) follows after some straightforward (but tedious)
rewriting.

The Fuhrmann-Cooper decomposition of the mean waiting time for customers in a
polling system with gated service (11.3.2), also requires computing E[Vi Ii]/E[Ii] under
LT conditions. Here, again, we have to resort to using a heuristic and useE[Vi Ii]/E[Ii] =
ρiE[S]+O(ρ2), because this value is exact in the case of Poisson arrivals. Intuitively this
term can be explained by observing that the only thing that changes for gated service,
compared to exhaustive service, is that type i customers arriving during Vi are not served
until the next cycle. As we have seen before, the probability of a type i arrival taking
place during Vi is ρi +O(ρ2). The mean residual cycle, observed from a random epoch
in Vi , isE[C res

i |observed during Vi] = E[S]+O(ρ). Combined, this givesE[Vi Ii]/E[Ii] =
ρiE[S] +O(ρ2), in the case of Poisson arrivals. If the arrival process is not Poisson, this
is not exact, but we use it as an approximation.

Having made all required preparations, we are ready to formulate the main result of
the present subsection. Under light traffic, an approximation for the mean waiting time
of a type i customer in a polling model with general arrivals and respectively exhaustive
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and gated service in Q i , is:

E[W LT,exh
i ]≈E[Sres] +ρi(E[Âi] ĝi(0)− 1)E[Bres

i ] +ρE[B
res] (11.3.10)

+ (ρ−ρi) (E[S]−E[Sres]) +
1

E[S]

i+N−1
∑

k=i+1

ρk

k−1
∑

j=i

Var[S j] +O(ρ2),

E[W LT,gated
i ]≈E[W LT,exh

i ] +ρiE[S], (11.3.11)

for i = 1, . . . , N , where ĝi(t) is the density of the interarrival times of type i customers at
ρ = 1. Equation (11.3.10) follows from substitution of (11.3.4) and (11.3.9) in

E[Wi]≈ E[Wi,GI/G/1] +E[I
res
i ], i = 1, . . . , N . (11.3.12)

For Poisson arrivals, (11.3.10) and (11.3.11) are exact. The LT limit for polling sys-
tems with Bernoulli service (and Poisson arrivals) has been experimentally found in [22]
and, indeed, it can be shown that their result for exhaustive service, which is a spe-
cial case of Bernoulli service, agrees with our result after substituting E[Âi] ĝi(0) = 1
in (11.3.10).

11.3.2 Heavy traffic

The mean delay in a polling system with renewal arrivals in HT, i.e. as ρ tends to 1, has
been analyzed in [187], where the following result has been obtained:

E[W HT
i ] =

ωi

1−ρ
+ o((1−ρ)−1), ρ ↑ 1. (11.3.13)

Obviously, in HT, all queues become unstable and, thus, E[Wi] tends to infinity for all i.
The rate at which E[Wi] tends to infinity as ρ ↑ 1 is indicated by ωi , which is referred
to as the mean asymptotic scaled delay at queue i, and depends on the service discipline.
For exhaustive service,

ωi =
1− ρ̂i

2







σ2

∑N
j=1 ρ̂ j(1− ρ̂ j)

+E[S]






, i = 1, . . . , N ,

with

σ2 :=
N
∑

i=1

λ̂i

�

Var[Bi] + ρ̂
2
i Var[Âi]

�

.

Here, the limits are taken such that the arrival rates are increased, while keeping the
service-time distributions fixed, and keeping the distributions of the interarrival times Ai ,
(i = 1, . . . , N) fixed up to a common scaling constant ρ. Notice that in the case of Poisson
arrivals we have σ2 = E[B2]/E[B].

For gated service, we have

ωi =
1+ ρ̂i

2







σ2

∑N
j=1 ρ̂ j(1+ ρ̂ j)

+E[S]






, i = 1, . . . , N .
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11.3.3 Interpolation

Now that we have the expressions for the mean delay in both LT and HT, we can deter-
mine the constants K0,i , K1,i , and K2,i in approximation formula (11.2.1). We simply im-
pose the requirements that approximation (11.2.1) results in the same mean waiting time
for ρ = 0 as the LT limit, and for ρ ↑ 1 as the HT limit. Since (11.3.10) (and (11.3.11)
for gated service) has been determined up to the first order of ρ terms, we also add the
requirement that the derivative with respect to ρ, taken at ρ = 0, of our approximation
is equal to the derivative of the LT limit. A more formal definition of these requirements
is presented below:

E[Wi,app]
�

�

ρ=0 = E[Wi]
�

�

ρ=0,

d

dρ
E[Wi,app]

�

�

ρ=0 =
d

dρ
E[Wi]

�

�

ρ=0,

(1−ρ)E[Wi,app]
�

�

ρ=1 = (1−ρ)E[Wi]
�

�

ρ=1.

This leads to (11.2.1) as approximation for E[Wi] in a polling system with general ar-
rivals. Constants K0,i , K1,i , and K2,i are defined in (11.2.2)–(11.2.4) for systems with
exhaustive service, or (11.2.5)–(11.2.7) for gated service.

11.3.4 Special cases

The approximation for the mean waiting time of a type i customer, E[Wi,app], has several
nice properties discussed in the remainder of this subsection.

Pseudo-conservation law. A well-known result in polling literature, is the Pseudo-
Conservation Law, derived by Boxma and Groenendijk [34], see Section 9.3.1:

N
∑

i=1

ρiE[Wi] =
ρ

1−ρ

N
∑

i=1

ρiE[Bi
res] +ρE[Sres] +

E[S]
2 (1−ρ)

 

ρ2 −
N
∑

i=1

ρ2
i

!

+
N
∑

i=1

E[Mi],

(11.3.14)
where E[Mi] is the mean amount of work in Q i at a departure epoch of the server
from Q i . Hence, E[Mi] = 0 for the exhaustive discipline, and E[Mi] = ρiE[Vi] =
ρ2

i E[S]/(1−ρ) for the gated discipline.
It can be shown that our approximation satisfies the pseudo-conservation law in the

case of Poisson arrivals: if E[Âi] ĝi(0) = 1 for i = 1, . . . , N , then
∑N

i=1ρiE[Wi,app] also
equals the right-hand side of (11.3.14). The derivation consists of basic, but cumber-
some, algebraic manipulations only, and is therefore omitted. We only mention a helpful
intermediate result:

N
∑

i=1

i+N
∑

k=i+1

k−1
∑

j=i

ρiρk = N
N
∑

i=1

N
∑

k=i

ρiρk,

so
N
∑

i=1

i+N
∑

k=i+1

k−1
∑

j=i

ρiρkVar[S j] =
1

2

 

ρ2 +
N
∑

i=1

ρ2
i

!

Var[S].

Using this result, it follows that
∑N

i=1ρi K2,i = 0.
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Light and heavy traffic. The light traffic limit of E[Wi], given by (11.3.10) for ex-
haustive service and by (11.3.11) for gated service, is exact for Poisson arrivals. The
heavy traffic limit (11.3.13) of E[Wi] is even exact for renewal arrivals. An appropriate
choice of constants K0,i , K1,i , and K2,i can reduce (11.2.1) to either (11.3.10), (11.3.11),
or (11.3.13). Since the LT and HT limits have been used in the set of equations that
determine the coefficients of the approximation, it goes without saying that E[Wi,app] is
equal to (11.3.10) (or (11.3.11) for gated service) and (11.3.13), for ρ ↓ 0 and ρ ↑ 1 re-
spectively. This implies that the LT limit of our approximation is exact for Poisson arrivals,
and the HT limit is exact for general arrivals.

Symmetric system. If ρ̂i = 1/N for all i = 1, . . . , N , all Bi have the same distribution,
and the variances Var[Si] of all switch-over times are equal, then our approximation is
exact if all interarrival distributions are exponential. For exhaustive service, we obtain

K1,i =E[B
res] +

N − 1

N
E[S]−

�

2−
1

N

�

E[Sres] +
1

E[S]

i+N−1
∑

k=i+1

ρ̂k

k−1
∑

j=i

Var[S j]

=E[Bres] +
N − 1

N
E[S]−

�

2−
1

N

�

E[Sres] +
N − 1

N

Var[S]
2E[S]

=E[Bres] +
�

1−
1

N

�

E[S]
2
−E[Sres],

which means that E[Wi,app] = E[Wi,symm] (because K2,i = 0 in a symmetric system), with

E[Wi,symm] =
ρ

1−ρ
E[Bres] +E[Sres] +

ρ
�

1− 1
N

�

1−ρ
E[S]

2
.

Note that we do not require that the mean switch-over times E[Si] are equal. One can
verify that the same holds for gated service.

Single queue (vacation model). An immediate consequence of the fact that our ap-
proximation is exact in symmetric polling systems with Poisson arrivals, is that it also
gives exact results for the mean waiting time of customers in a single-queue polling sys-
tem with Poisson arrivals. A polling system consisting of only one queue, but with a
switch-over time between successive visits to this queue, is generally referred to as a
queueing system with multiple server vacations.

Large switch-over times. For S deterministic, S →∞, and, again, under the assump-
tion of Poisson arrivals, it is proven in [208, 207] that E[Wi]

S
→ 1−ρi

2 (1−ρ) for exhaustive
service. It can easily be verified that our approximation has the same limiting behavior:

lim
S→∞

E[Wi,app]

S
=

1−ρi

2 (1−ρ)
.

For gated service

lim
S→∞

E[Wi,app]

S
→

1+ρi

2 (1−ρ)
,

which is also the exact limit (see e.g. [208]).
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Miscellaneous other exact results. The approximation is also exact in several other
cases, all with Poisson arrivals, when the parameter values are carefully chosen. The
relations between the input parameters that yield exact approximation results become
very complicated, especially in polling systems with more than two queues. We only
mention one interesting example here: our approximation gives exact results for a two-
queue polling system with exhaustive service and

E[B1] = E[B2], E[S1] = E[S2], cv2
A1
= cv2

A2
, cv2

B1
= cv2

B2
, cv2

S1
= cv2

S2
, (11.3.15)

if the following constraint is satisfied:

ρ =
1+ I2

Ai

2IAi

−
cv2

Si

1+ cv2
Bi

·
E[Si]
E[Bi]

, (11.3.16)

where IAi
= ρ̂1/ρ̂2 is the ratio of the loads of the two queues. Obviously, if IAi

= 1, the
system is symmetric and our approximation gives exact results regardless of the other
parameter settings.

11.4 Numerical study

11.4.1 Initial glance at the approximation

Before we study the accuracy of the approximation to a huge test bed of polling systems,
we just pick a rather arbitrary, simple system to compare the approximation with exact
results in order to get some initial insights. Consider a three-queue polling system with
loads of Q1, Q2, and Q3 divided as follows: ρ̂1 = 0.1, ρ̂2 = 0.3, and ρ̂3 = 0.6. All service
times and switch-over times are exponentially distributed, with mean 1. The interarrival
times have SCV cv2

Ai
= 3 for i = 1,2, 3. In Figure 11.1 we plot the approximated mean

waiting time of Q2, E[W2,app], versus the load of the system ρ. Since this system cannot
be analyzed analytically, we compare the approximated values with simulated values.
Both in the approximation and in the simulation we fit a H2 distribution as described in
Example 11.3.2.

The errors are largest for Q2, which is the reason why we chose this queue in par-
ticular in Figure 11.1. The most important information that this figure reveals, is that
even though the accuracy of the approximation is worst for this queue (a relative error
of −4.47% for ρ = 0.7), the shape of the approximation function is very close to the
shape of the exact function, which makes it very suitable for optimisation purposes. The
maximum relative errors of Q1 and Q3 are 3.10% and 2.90% respectively.

In order to get more insight in the numerical accuracy of the approximation for a huge
variety of different parameter settings, we create a large test bed in the next subsection
and compare the approximation with exact or simulated results. It turns out that the
maximum relative errors for most of the polling systems are smaller than the one selected
in the above example.

11.4.2 Accuracy of the approximation

In the present section we study the accuracy of our approximation. We compare the
approximated mean waiting times of customers in various polling systems to the exact
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Figure 11.1: Approximated and simulated mean waiting time E[W2] of Q2 of the example
in Section 11.4.1.

values. The complete test bed of polling systems that are analyzed, contains 2304 differ-
ent combinations of parameter values, all listed in Table 11.1. We show detailed results
for exhaustive service first, and discuss polling systems with gated service at the end of
this section. We have varied the load between 0.1 and 0.9 with steps of 0.2, and included

Parameter Notation Values
Number of queues N 2,3, 4,5
Load ρ 0.1, 0.3,0.5, 0.7,0.9, 0.99
SCV interarrival times cv2

Ai
0.25,1, 2

SCV service times cv2
Bi

0.25, 1
SCV switch-over times cv2

Si
0.25, 1

Imbalance interarrival times IAi
1, 5

Imbalance service times IBi
1, 5

Ratio service and switch-over times ISi/Bi
1, 5

Table 11.1: Test bed used to compare the approximation to exact results.

ρ = 0.99 to analyze the limiting behavior of our approximation when the load tends
to 1. The SCV of the interarrival times, cv2

Ai
, is varied between 0.25 and 2. In case of

non-Poisson arrivals, i.e. cv2
Ai
6= 1, the exact values have been established through exten-

sive simulation because they cannot be obtained in an analytic way. In these simulations
we fit a phase-type distribution to the first two moments of the interarrival times, as
described in Examples 11.3.2 and 11.3.3. For service times and switch-over times, only
SCVs of 0.25 and 1 are considered. SCVs greater than 1 are less common in practice and
are discussed separately from the test bed later in this section. The imbalance in interar-
rival times and service times, IAi

and IBi
, is the ratio between the largest and the smallest

mean interarrival/service time. The interarrival times are determined in such a way, that
the overall mean is always 1, λ1 is the largest and λN the smallest, and the steps between
the λi are linear. E.g., for N = 5 and IAi

= 5 we get λi = 2− i/3, i = 1, . . . , 5. The mean
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service times E[Bi] increase linearly in i = 1, . . . , N , with E[BN ] = IBi
E[B1] (so E[B1] is

the smallest mean service time). They follow from the relation
∑N

i=1λiE[Bi] = ρ. E.g.,
for N = 5, and IAi

= IBi
= 5 we get E[Bi]/ρ = 3i/35. The last parameter that is varied in

the test bed, is the ratio between the mean switch-over times and the mean service times,
ISi/Bi

= E[Si]/E[Bi]. The total number of systems analyzed is 4× 6× 3× 25 = 2304.
A system consisting of N queues results N mean waiting times, E[W1], . . . ,E[WN ], so in
total these 2304 systems yield 8064 mean waiting times. The absolute relative errors,
defined as |o − e|/e, where o stands for observed (approximated) value, and e stands
for expected (exact) value, are computed for all these 8064 queues. Table 11.2 shows
these relative errors (times 100%) categorised in bins of 5%. In this table, and in all
other tables, results for systems with a different number of queues are displayed in sep-
arate rows. The reader should keep in mind that the statistics in each row are based on
1
4
× 2304×N absolute relative errors, where N is the number of queues used in the spe-

cified row. Table 11.2 shows that, e.g., 98.84% of the approximated mean waiting times
in polling systems consisting of 3 queues deviate less than 5% from their true values.
From Table 11.2 it can be concluded that the approximation accuracy increases with the
number of queues in a polling system. More specifically, for systems with more than 2
queues, no approximation errors are greater than 10%, and the vast majority is less than
5%. The mean relative errors for N = 2, . . . , 5 are respectively 2.18%, 0.93%, 0.70%, and
0.57%. It is also noteworthy, that 193 out of the 2304 systems yield exact results. All of
these 193 systems have Poisson input, and all of them – except for one – are symmetric.
The only asymmetric case for which our approximation yields an exact result, happens
to satisfy constraints (11.3.15) and (11.3.16).

In Table 11.3 the mean relative error percentages are shown for a combination of in-
put parameter settings. The number of queues is always varied per row, while per column
another input parameter is varied. This way we can find in more detail which (combi-
nations of) parameter settings result in large approximation errors. In Table 11.3(a) the
load ρ is varied, and it can be seen that for a load of ρ = 0.7 the approximation is least
accurate. E.g., the mean relative error of all approximated waiting times in polling sys-
tems consisting of 3 queues with a load of ρ = 0.7 is 1.69%. Table 11.3(b) shows the
impact of the SCV of the interarrival times on the accuracy. Especially for systems with
more than 2 queues the accuracy is very satisfactory, in particular for the case cv2

Ai
= 1.

In Table 11.3(c) the impact of imbalance in a polling system on the accuracy is depicted,
and, as could be expected, it can be concluded that a high imbalance in either service
or interarrival times has a considerable, negative, impact on the approximation accuracy.
Polling systems with more than 2 queues are much less bothered by this imbalance than
polling systems with only 2 queues.

N 0− 5% 5− 10% 10− 15% 15− 20%
2 86.46 10.24 2.78 0.52
3 98.84 1.16 0.00 0.00
4 99.78 0.22 0.00 0.00
5 99.93 0.07 0.00 0.00

Table 11.2: Errors of the approximation applied to the 2304 test cases with exhaustive
service, as described in Section 11.4, categorized in bins of 5%.
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N Load (ρ)
0.10 0.30 0.50 0.70 0.90 0.99

2 0.31 1.81 3.41 4.17 2.70 0.67
3 0.16 0.84 1.44 1.69 1.07 0.39
4 0.13 0.68 1.14 1.28 0.73 0.25
5 0.11 0.57 0.94 1.03 0.57 0.22

(a)

N SCV interarrival times (cv2
Ai

)
0.25 1 2

2 2.27 1.76 2.50
3 1.36 0.52 0.92
4 1.13 0.29 0.69
5 0.97 0.19 0.56

(b)

N Imbalance interarrival and service times
IAi
= 1, IAi

= 1, IAi
= 5, IAi

= 5,
IBi
= 1 IBi

= 5 IBi
= 1 IBi

= 5
2 0.69 2.92 2.80 2.30
3 0.65 1.27 0.75 1.06
4 0.56 0.89 0.62 0.73
5 0.49 0.69 0.53 0.59

(c)

Table 11.3: Mean relative approximation error, categorized by number of queues (N) and
total load of the system (a), SCV interarrival times (b), and imbalance of the interarrival
and service times (c).

11.4.3 Miscellaneous other cases

More queues. In this subsection we discuss several cases that are left out of the test
bed because they might not give any new insights, or because the combination of pa-
rameter values might be rarely found in practice. Firstly, we discuss polling systems with
more than 5 queues briefly. Without listing the actual results, we mention here that the
approximations become more and more accurate when letting N grow larger, and still
varying the other parameters in the same way as is described in Table 11.1. For N = 10
already, all relative errors are less than 5%, with an average of less than 0.5%, and it only
gets smaller as N grows further.

More variation in service times and switch-over times. In the test bed we only use
SCVs 0.25 and 1 for the service times and switch-over times, because these seem more
relevant from a practical point of view. As the coefficient of variation grows larger, our
approximation will become less accurate. E.g., for Poisson arrivals we took cv2

Bi
∈ {2, 5},

cv2
Si
∈ {2, 5}, and varied the other parameters as in our test bed (see Table 11.1). This

way we reproduced Table 11.2. The result is shown in Table 11.4 and indicates that
the quality of our approximation deteriorates in these extreme cases. The mean relative
errors for N = 2, . . . , 5 are respectively 3.58%, 1.78%, 1.07%, and 0.77%, which is still
very good for systems with such high variation in service times and switch-over times. For
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non-Poisson input, no investigations were carried out because the results are expected to
show the same kind of behaviour.

N 0− 5% 5− 10% 10− 15% 15− 20%
2 74.22 14.84 6.51 2.08
3 89.76 7.29 2.08 0.69
4 94.53 4.56 0.91 0.00
5 97.71 2.19 0.10 0.00

Table 11.4: Errors of the approximation applied to the 768 test cases with Poisson arrival
processes and high SCVs of the service times and switch-over times, categorized in bins of
5%.

Small switch-over times. Systems with small switch-over times, in particular smaller
than the mean service times, also show a deterioration of approximation accuracy, espe-
cially in systems with 2 queues. In Figure 11.2 we show an extreme case with N = 2,
service times and switch-over times are exponentially distributed with E[Bi] = 9/40 and
E[Si] = 9/200 for i = 1,2, which makes the mean switch-over times 5 times smaller
than the mean service times. Furthermore, the interarrival times are exponentially dis-
tributed with λ1 = 5λ2. In Figure 11.2 the mean waiting times of customers in both
queues are plotted versus the load of the system. Both the approximation and the exact
values are plotted. For customers in Q1 the mean waiting time approximations underes-
timate the true values, which leads to a maximum relative error of −11.2% for ρ = 0.7
(E[W1,app] = 0.43, whereas E[W1] = 0.49). The approximated mean waiting time for
customers in Q2 is systematically overestimating the true value. The maximum relative
error is attained at ρ = 0.5 and is 28.8% (E[W1,app] = 0.41, whereas E[W1] = 0.52).
Although the relative errors are high in this situation, the absolute errors are still rather
small compared to the mean service time of an individual customer. This implies that
the mean sojourn time is already much better approximated. Nevertheless, this example
illustrates one of the situations where our approximation gives unsatisfactory results.
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Figure 11.2: Approximated and exact mean waiting times for a two-queue polling system
with small switch-over times.
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11.4.4 Comparison with existing approximations

For non-exponential interarrival times hardly any good alternative approximations exist.
In [149, 187] it is suggested to use the HT limit (11.3.13) as an approximation, but the
accuracy is only found to be acceptable for ρ > 0.8. Another approximation for the mean
waiting time in polling systems with non-exponential interarrival times uses the limit for
S → ∞, see [207, 209]. This approximation is usable if either the total setup time in
the system is large and the setup times have low variance, or the total setup time in the
system is large and the system is in heavy traffic. The approximation discussed in the
present chapter is exact in all these limiting cases, but performs much better for systems
under less extreme conditions. This makes our approximation the only one which can be
applied under all circumstances.

For polling systems with Poisson arrivals, several alternative approximations have
been developed in existing literature. The best one among them (see e.g. [31, 72, 92])
uses the relation E[Wi] = (1± ρi)E[C res

i ], where Ci is the cycle time, starting at a visit
completion to Q i when service is exhaustive, and starting at a visit beginning for gated
service. By ± we mean − for exhaustive service, and + for gated service. The mean
residual cycle time, E[C res

i ], is assumed to be equal for all queues, i.e. E[C res
i ]≈ E[C

res],
and can be found by substituting E[Wi] ≈ (1± ρi)E[C res] in the pseudo-conservation
law (11.3.14). We have used this PCL-based approximation to estimate the mean waiting
times of all queues in the test bed described in Table 11.1, but taking only the 768 cases
where cv2

Ai
= 1. Table 11.5 shows the mean relative errors for our approximation (a) and

the PCL approximation (b), categorized in bins of 5% as was done before in Table 11.2.
From these tables (and from other performed experiments that are not mentioned for the
sake of brevity) it can be concluded that for N > 2 both approximation have almost the
same accuracy, our approximation being slightly better for small values of ρ, and the PCL
approximation being slightly better for high values of ρ (both methods are asymptotically
exact as ρ ↑ 1). However, for N = 2 our method suffers greatly from imbalance in the
system, whereas the PCL approximation proves to be more robust.

N 0− 5% 5− 10% 10− 15%
2 89.32 9.11 1.56
3 100.00 0.00 0.00
4 100.00 0.00 0.00
5 100.00 0.00 0.00

(a)

N 0− 5% 5− 10% 10− 15%
2 96.09 2.86 1.04
3 99.31 0.69 0.00
4 100.00 0.00 0.00
5 100.00 0.00 0.00

(b)

Table 11.5: Errors of the approximation applied to the 768 test cases with Poisson input,
categorized in bins of 5%. In (a) the percentages of mean relative errors in each bin are
shown for our approximation, in (b) results are shown for the PCL approximation.
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11.4.5 Gated service

Until now we have only shown and discussed approximation results for polling systems
with exhaustive service. The complete test bed described in Table 11.1 has also been
analyzed for polling systems where each queue receives gated service. As can be seen in
Table 11.6, the overall quality of the approximation is good, but worse than for polling
systems with exhaustive service. More details on the reason for these inaccuracies can be
found in Table 11.7, which is the equivalent of Table 11.3 for gated service. Table 11.7(b)
illustrates that there is now a huge difference between systems with Poisson arrivals, and
systems with non-Poisson arrivals. For the cases with cv2

Ai
= 1, the approximation is

extremely accurate, even for two-queue polling systems. The accuracy in cases with
cv2

Ai
6= 1 is worse, which is caused by the assumptions that are made to approximate

the LT limit (11.3.11). Firstly, the decomposition (11.3.2) does not hold for non-Poisson
arrivals, and secondly, the terms E[I res

i ] and E[Vi Ii]/E[Ii] in this decomposition have
only been approximated. For exhaustive service, these assumptions do not have much
negative impact on the accuracy, but apparently, for gated service, they do. The mean
relative errors for N = 2, . . . , 5 queues are respectively 2.70%, 2.25%, 1.90%, and 1.63%.
The imbalance of the mean interarrival and service times hardly influences the accuracy
of the approximation, as can be concluded from Table 11.7(c).

If we consider the 768 cases with Poisson arrivals only, the mean relative errors of our
approximation for N = 2, . . . , 5 are respectively 0.34%, 0.17%, 0.10%, and 0.08%. This
accuracy is even better than the one achieved by the PCL approximation.

N 0− 5% 5− 10% 10− 15% 15− 20%
2 82.55 12.33 2.95 1.56
3 85.42 10.53 3.13 0.81
4 88.85 8.46 2.43 0.26
5 92.22 6.60 1.15 0.03

Table 11.6: Errors of the approximation applied to the 2304 test cases with gated service, as
described in Section 11.4.5, categorized in bins of 5%.

11.5 Further research topics

The research that is done in the present chapter can be extended in many different direc-
tions.

Other service disciplines. In the present chapter, only exhaustive and gated service are
discussed. In order to obtain results for polling systems with some queues receiving ex-
haustive service, and others receiving gated service, only minor modifications should be
made. It would be more challenging to generalize the approximation to a wider variety
of service disciplines. In particular, it would be nice to have one expression for the mean
waiting time of customers in a queue with an arbitrary branching-type service discipline
(cf. [160]). The exhaustiveness of a branching-type service discipline (cf. [208]) might
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N Load (ρ)
0.10 0.30 0.50 0.70 0.90 0.99

2 2.64 4.55 4.31 3.10 1.25 0.37
3 2.03 3.78 3.68 2.68 1.04 0.30
4 1.62 3.14 3.13 2.32 0.92 0.28
5 1.35 2.67 2.71 2.03 0.81 0.21

(a)

N SCV interarrival times (cv2
Ai

)
0.25 1 2

2 4.72 0.34 3.05
3 4.06 0.17 2.53
4 3.45 0.10 2.16
5 2.98 0.08 1.84

(b)

N Imbalance interarrival and service times
IAi
= 1, IAi

= 1, IAi
= 5, IAi

= 5,
IBi
= 1 IBi

= 5 IBi
= 1 IBi

= 5
2 2.76 2.64 2.81 2.59
3 2.28 2.25 2.27 2.21
4 1.93 1.91 1.90 1.87
5 1.64 1.66 1.64 1.58

(c)

Table 11.7: For gated service: mean relative approximation error, categorized by number of
queues (N) and total load of the system (a), SCV interarrival times (b), and imbalance of
the interarrival and service times (c).

appear in this expression. Gated and exhaustive are both branching type service disci-
plines, but are discussed separately in the present chapter. The HT limit can most likely
be established for arbitrary branching type service disciplines (see conjectures in [149]),
so the question that remains is whether the LT limit can be found in a similar way.

Optimization. One of the main reasons to choose (11.2.1) as form of the interpola-
tion, besides its asymptotic correctness, is its simplicity. Having this exact and simple
expression for the approximate mean waiting times, makes it very useful for optimiza-
tion purposes. In production environments, one can, for example, determine what the
optimal strategy is to combine orders of different types (i.e., determine what queue cus-
tomers should join). Because general arrivals are supported, one can determine optimal
sizes of batches in which items are grouped and sent to a specific machine. The simplicity
of (11.2.1) makes it possible for a manager to create a handy Excel sheet that can be used
by operators to compute all kind of optimal parameter settings. No difficult computations
are required at all, so a large variety of users can use the approximation.

In the present chapter the accuracy of the approximation has been investigated and
has been found to be very good in most situations. Another advantage of our approxi-
mation regarding optimization purposes, is that the general shape of the approximated
curve follows the exact curve very closely. Even in cases where the relative errors are
rather large, like in Figure 11.1, the shape of the actual curves is still very well approxi-
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mated. This means that plugging our approximation, instead of an exact expression if it
had been available, in an optimization function yields an optimum that should be close
to the true optimum.

Polling Table. The interpolation based approximation can also be extended to polling
systems where the visiting order of the queues is not cyclic. Waiting times in polling
systems with so-called polling tables can be obtained in the same way as shown in the
present chapter. Both the LT and HT limits are not difficult to determine in this situation,
and the interpolation follows directly from these limits.

Model. The form of the interpolation might be changed to improve the accuracy of
approximations for cases that give less satisfactory results in the present form. E.g.,
one could try other functions than a second-order polynomial as numerator of (11.2.1).
Alternatively, one could try to find a correction term which could be added to (11.2.1)
to obtain better results for, e.g., two-queue polling systems. But most of all, if an exact
LT limit of the mean waiting time in a polling system with non-Poisson arrivals could be
found, the accuracy of the approximation in the case of gated service might be improved.

Distributions. In Dorsman et al. [64], an approximation is derived for the waiting-time
distributions. Their approach uses the results derived in this chapter. They show their
approximation to be highly accurate over a wide range of parameter settings.

Batch services. In Dorsman et al. [65] polling systems with batch services are studied.
In optimizing the batch sizes, a cost structure that is a function of the mean waiting
times is used. They use a similar approach for approximating the mean waiting times as
in this chapter, however, they judge the form of the approximation in (11.2.1) to be too
complex for their purposes. Instead, they use a first order polynomial in the numerator:
E[Wi,app] = (a+ bi ρ)/(1−ρ).
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We study a polling model where we want to achieve a balance between the fairness of
the waiting times and the efficiency of the system. For this purpose, we introduce a novel
service discipline: the κ-gated service discipline. It is a hybrid of the classical gated and
exhausted disciplines, and consists of using κi consecutive gated service phases at Q i
before the server switches to the next queue. The advantage of this discipline is that the
parameters κi can be used to balance fairness and efficiency. We derive the distributions
and means of the waiting times, a pseudo conservation law for the weighted sum of the
mean waiting times, and the fluid limits of the waiting times. Our goal is to optimize
the κi ’s so as to minimize the differences in the mean waiting times, i.e. to achieve
maximal fairness, without giving up too much on the efficiency of the system. From
the fluid limits we derive a heuristic rule for setting the κi ’s. In a numerical study the
heuristic is shown to perform well in most cases.

12.1 Introduction

Polling models are used in the modeling of many problems, for example computer sys-
tems, maintenance systems and telecommunication. In these models, multiple queues
are served by a single server, which cyclically visits the queues. A typical performance
measure in such systems is the mean waiting time at each of the queues. In certain ap-
plications (see e.g. [152, 185]) it is important to maintain fairness, in the sense of the
queues having (almost) equal mean waiting times. In achieving this, one usually has to
sacrifice the efficiency of the system. In this chapter, however, we introduce a strategy
which on the one hand achieves fairness, while on the other hand is still efficient. Here,
the efficiency is given by the sum of the mean waiting times, weighted by the utilization
rates, and fairness is understood as the maximal difference in the mean waiting times at
each of the queues. In the literature, multiple meanings have been associated to fairness,
e.g. serving customers in order of arrival (see [9, 40], where [9] is a survey on the matter
of fairness). These interpretations, however, are different from the fairness considered
here.

In a polling model, when the server switches to the next queue, a switch-over time is
incurred. There are many possible choices for deciding when the server should switch to
the next queue. The rules studied most often are the exhaustive service discipline (when
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the server arrives at a queue, it serves its customers until the queue has become empty)
and the gated service discipline (when the server arrives at a queue, a gate closes and
only the customers who are before the gate, i.e., who are already present, will be served
in this server visit).

The main advantage of the exhaustive strategy, is that it is optimally efficient. That
is, it minimizes the sum of the mean waiting times at the queues weighted by their uti-
lization rates. However, the differences between mean waiting times at the queues might
be large. Typically, the heaviest loaded one has the smallest mean waiting time in this
discipline. Conversely, the gated discipline leads in general to much smaller differences.
But this is at the expense of the efficiency, which is much lower for this discipline. We
aim to combine the best of both worlds into a new service discipline, by introducing a
hybrid version of exhaustive and gated: the κ-gated service discipline.

The κ-gated discipline consists of using κi consecutive gated service phases at queue i
before the server switches to the next queue. That is, upon arrival of the server, it serves
the queue consecutively (at most) κi times, according to the gated discipline. So upon
arrival of the server, a first gate closes and only the customers before this gate are served.
After this, a second gate closes, and again only the customers before this gate are served,
etcetera. This is done κi times, or until the queue becomes empty. The parameters κi
are specified in the vector κ = (κ1, . . . ,κN ), where N is the number of queues. Note
that when κi = 1, queue i is served according to the gated discipline; when κi → ∞,
queue i is served according to the exhaustive discipline (as it is served until it becomes
empty). One of the main questions studied in the current chapter is whether the κi ’s can
be optimized as to achieve both fairness and efficiency.

Fairness has frequently played a role in the choice of a service discipline in polling
systems. For example, motivated by a dynamic bandwidth allocation problem of Ethernet
Passive Optical Networks (EPON), in [152, 185] a two-stage gated service discipline is
studied. In that case, a gate closes behind the customers in a stage-1 buffer at the moment
the server arrives, the customers in the stage-2 buffer are being served, and then those
present in stage-1 move to the stage-2 buffer. This was seen to give rise to relatively
small differences between mean waiting times at the various queues, but at the expense
of longer delays, i.e., at the expense of the efficiency of the system. The strategy was
later generalized to multi-phase gated (see [186]). The κ-gated discipline can be seen as
a variant of this discipline, where we have removed the extra cycles all customers have
to wait for, in between moving to the next stage buffer. Hence, we expect it to lead to
small differences between mean waiting times as well, but with significantly smaller total
mean delays than for two- or multi-stage gated.

Besides the two- and multi-stage gated disciplines, a number of other disciplines have
been proposed in the literature in order to achieve fairness (in the sense considered here).
We mention a few in the following. Altman, Khamisy and Yechiali [3] (see also Shoham
and Yechiali [167]) consider a so-called elevator strategy in a globally gated regime. In
this setting the queues are visited in the order: 1,2, . . . N − 1, N , N , N − 1, . . . 2, 1, 1, 2, . . .
etc. When the server turns around at queue 1 or queue N , a gate closes at all queues: only
those before the gate are served. This strategy turns out to be perfectly fair. However, it is
far less efficient because of the globally gated regime. Our focus here is on cyclic models.
Boxma, Van Wijk and Adan [41] introduce the Gated/Exhaustive discipline (see Chap-
ter 13): the queues are visited cyclically, where in one cycle alternately all queues are
served according to the gated discipline or all queues are served exhaustively. The incen-
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tive for this mixed strategy arose from the well-known expressions for the mean waiting
time of queue i for gated respectively exhaustive systems: E[W gat

i ] = (1+ρi)E[Ci
res] re-

spectively E[W exh
i ] = (1−ρi)E[C∗i

res], where ρi is the workload. Furthermore E[Ci
res]

and E[C∗i
res] denote the mean residual cycle duration in case the cycle is assumed to

start at the visit completion, respectively visit beginning of Q i . These can be approxi-
mated by E[C res] ≈ E[Ci

res] ≈ E[C∗i
res]. From the resulting approximations for E[W gat

i ]
and E[W exh

i ], one might expect the mean waiting time in the Gated/Exhaustive disci-

pline to become E[W G/E
i ] ≈ E[C res], which does not depend on i. However, it turns out

that this guess is incorrect, as the exhaustive cycle dominates in the mean waiting times.
The difference in mean waiting times only marginally decreases compared to exhaustive.
To overcome this, [41] proposes the use of a polling table (see also [17, 205]), which
prescribes the order in which queues are visited. This is related to [39], in which efficient
visit orders are studied. Another option are efficient visit frequencies, see [38]. These
options, however, do not focus on fairness.

Our contribution in this chapter is as follows. We introduce the κ-gated discipline.
Our motivation for this novel discipline is the search for a policy that achieves almost
equal mean waiting times at the queues (fairness), without giving up too much of the
efficiency. In earlier work in the literature, the focus has been solely on fairness, leading
to inefficient disciplines [3, 185], whereas the advantage of the κ-gated discipline is that
its parameter κ can be used to balance fairness and efficiency. For the κ-gated discipline
we derive the distributions and means of the waiting times, a pseudo conservation law
for the weighted sum of the mean waiting times, and the fluid limits of the waiting times.
We want to set the κi ’s so as to achieve maximal fairness without giving up too much
on the efficiency of the system. To accomplish this, we use the fluid limits to derive a
heuristic for setting κ. Finally, in a numerical study we extensively test the performance
of the heuristic. It turns out to perform well in most cases.

The structure of this chapter is as follows. In Section 12.2 we introduce the model in
more detail and give the notation that is being used. In Section 12.3 we derive the mean
visit times at the queues, a Pseudo Conservation Law for the weighted sum of the mean
waiting times, the waiting time distributions at all queues using Multi-type Branching
Processes, the mean waiting times using the Mean Value Analysis technique exploiting the
concept of Smart Customers, and the Fluid Limits of the waiting times. In Section 12.4 we
derive a heuristic rule for the setting of κ based on the fluid limits. Section 12.5 contains
examples and a numerical study into the performance of the heuristic. We end with a
conclusion and discussion of possible further work in Section 12.6. This chapter is based
on [192].

12.2 Model and notation

We consider a polling model as described in Section 9.2, using a new service discipline at
each of the queues: the κ-gated service discipline. This discipline works as follows. Upon
arrival at Q i , the server serves exactly those customers present on arrival (phase 1); when
this is done, it serves exactly those customers present in Q i at that moment (phase 2);
and so on, until (at most) κi phases are completed, and then the server switches to the
next queue. If the queue is empty at the start of a phase, the server also switches. This
discipline consists of the prescription of κ= (κ1, . . . ,κN ), with κi ∈ {1,2, . . .}∪{∞} for all
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i = 1, . . . , N . For κi = 1 the discipline at Q i is equivalent to the gated service discipline,
and for κi =∞ it is equivalent to the exhaustive service discipline, as the queue is served
until it becomes empty. It is readily verified that the condition ρ < 1 is also necessary
and sufficient for the stability in case of the κ-gated service discipline.

We want to achieve fairness in the waiting times, that is, we want the E[Wi] for
i = 1, . . . , N to be (almost) equal. Hence, we want to minimize

max
i, j

�

E[Wi]−E[Wj]
�

.

On the other hand, we do not want to give up too much of the efficiency of the system.
For the efficiency, we use the weighted sum over all mean waiting times:

N
∑

i=1

ρiE[Wi].

This is a measure for the total workload in the system: it is the expected value of the
waiting work in the system at an arbitrary moment. Hence, we focus on the following
performance characteristic of the system:

γ̃(α) := (1−α)max
i, j

�

E[Wi]−E[Wj]
�

+α
N
∑

i=1

ρiE[Wi], (12.2.1)

for some α ∈ [0, 1]. The expression in (12.2.1) represents the trade-off between fairness
and efficiency, by assigning 100(1−α)% of the importance to fairness and the remaining
100α% to efficiency. Note that (12.2.1) depends on the service discipline at each of
the queues. Under the κ-gated discipline, for a given α, the κ can be optimized to
minimize γ̃. This optimization is a trade-off between the fairness (maximal difference
in mean waiting times) and the efficiency (weighted sum of mean waiting times). One
can distinguish two extreme cases. For α = 0, only the fairness of the discipline counts.
In that case, the elevator strategy in a globally gated regime (cf. [3, 167]) is the best
choice, as it leads to equal mean waiting times. For α = 1, only the efficiency of the
system is important. The exhaustive discipline is optimal in that case. We remark that
for the term measuring the efficiency, a so-called pseudo conservation law holds, and it
is easily determined without having to calculate all individual mean waiting times (see
Section 12.3.2).

12.3 Analysis of the κ-Gated Discipline

In this section we present the analysis of the κ-gated discipline. First, we derive the
mean visit times at each of the queues. Then, we give a pseudo conservation law for
the weighted sum of the mean waiting times. Next, we present the derivation of the
waiting time distributions, using multi–type branching processes. Following that, we
briefly indicate a simpler way to compute the mean waiting times. For this, we show
that the discipline fits into the framework of smart customers, and then we apply mean
value analysis for polling models. We end this section by presenting the fluid limits of the
waiting times. These fluid limits are used in the next section to derive a heuristic for the
optimal setting of κ.
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12.3.1 Mean Visit Times

For the κ-gated discipline, we derive the expected duration of each of the visits and visit
phases to a queue. The expected cycle duration is E[C] = E[S]/(1−ρ). A fraction ρi of
the cycle the server is working on Q i , hence the expected duration of a visit to Q i , denoted
by E[Vi], is given by E[Vi] = ρiE[C]. This gives that the mean intervisit time, denoted
by E[Ii], is given by E[Ii] = (1−ρi)E[C]. To further specify the visit times, let E[V k

i ]
be the mean visit time of phase k at Q i , for k = 1, . . . ,κi . Then E[Vi] =

∑κi
k=1E[V

k
i ]. In

the first phase, all work that arrived during the last phase of the previous cycle and the
intervisit time has to be served. This gives for its mean duration:

E[V 1
i ] = ρi(E[V

κi
i ] +E[Ii]). (12.3.1)

In the second phase, the work that arrived during the first phase is served; in the third
phase that of the second, and so on. This leads to:

E[V k
i ] = ρiE[V

k−1
i ]

= ρk−1
i E[V 1

i ], for k = 2, . . . ,κi .

Substituting this expression for k = κi into (12.3.1) gives E[V 1
i ] = ρi

�

ρ
κi−1
i E[V 1

i ]+(1−
ρi)E[C]

�

. Solving this leads to

E[V 1
i ] = ρi

1−ρi

1−ρκi
i

E[C],

and hence

E[V k
i ] = ρ

k
i

1−ρi

1−ρκi
i

E[C], k = 1, . . . ,κi . (12.3.2)

Note that the mean duration of subsequent phases decreases, as is to be expected. It is

readily verified that with (12.3.2), it indeed holds that:
κi
∑

k=1

E[V k
i ] +E[Ii] = E[C], for

i = 1, . . . , N .

12.3.2 Pseudo Conservation Law

Boxma and Groenendijk [34] derive a so-called Pseudo Conservation Law (PCL) for the
case of cyclic order polling systems (see Section 9.3.1):

N
∑

i=1

ρiE[Wi] =
ρ

1−ρ

N
∑

i=1

ρiE[Bi
res] +ρE[Sres] +

E[S]
2(1−ρ)

 

ρ2 −
N
∑

i=1

ρ2
i

!

+
N
∑

i=1

E[Mi],

(12.3.3)
where E[Mi] is the mean amount of work in Q i at a departure epoch of the server
from Q i . This is the only term that depends on the service discipline at the queues. For
the exhaustive discipline E[M exh

i ] trivially equals zero (cf. [34, (3.11)]), and for gated
it holds that E[M gat

i ] = ρiE[Vi] = ρ2
i E[S]/(1 − ρ) (cf. [34, (3.12)]). The workload

decomposition result in [34] is also valid for the κ-gated discipline, and we find, us-
ing (12.3.2):

E[Mκ-gat
i ] = ρiE[V

κi
i ] = ρ

κi+1
i

1−ρi

1−ρκi
i

E[S]
1−ρ

.
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Remark that for the two extreme cases κi = 1 and κi = ∞ this expression simplifies to
that of the gated respectively exhaustive discipline.

Comparing the term E[Mi] for (κ-) gated and exhaustive, we find the following:

0= E[M exh
i ]≤ E[M

κ-gat
i ]≤ E[M gat

i ],

with equality for the first ‘≤’ if and only if κi = ∞, and equality for the second ‘≤’
if and only if κi = 1. Exhaustive is the most efficient service discipline, as the server
never switches when there are still customers in the queue it is serving. So, it leaves no
customers behind that have to wait for an entire cycle. Under the (κ-) gated discipline,
however, customers may be left behind. Gated (i.e. κi = 1) is less efficient than κ-gated
for κi ≥ 2, since more customers will be left behind when the server switches to the next
queue. It follows that the efficiency of the κ-gated discipline is always between that of
exhaustive and gated.

By substituting the expression for E[Mκ-gat
i ] into (12.3.3) we find the pseudo conser-

vation law for the κ-gated discipline:

N
∑

i=1

ρiE[Wi] = ρ

∑N
i=1ρiE[Bi

res]

1−ρ
+ρE[Sres] +

E[S]
2(1−ρ)

 

ρ2 −
N
∑

i=1

ρ2
i

!

+
N
∑

i=1

ρ
κi+1
i

1−ρi

1−ρκi
i

E[S]
1−ρ

.

As only the terms E[Mi] depend on the service discipline (and hence on κ for the κ-
gated discipline), we can restrict our attention to

∑N
i=1E[Mi] instead of

∑N
i=1ρiE[Wi].

So in the sequel, instead of (12.2.1), we concentrate on optimizing:

γ(α) := (1−α)max
i, j

�

E[Wi]−E[Wj]
�

+α
N
∑

i=1

E[Mi], (12.3.4)

for some α ∈ [0, 1].

12.3.3 Waiting time distributions

We determine the Laplace–Stieltjes transform (LST) of the waiting times Wi analogously
to Resing [160] (as described in Section 9.3.3). In [160] it is shown, that if the service
discipline in each queue satisfies the branching property ([160, Property 1]), then the
queue length process at polling instants of a fixed queue is a multi-type branching process
(MTBP) with immigration in each state. The κ-gated service discipline does satisfy the
branching property. Let the start of the visit to Q1 be the start of the cycle, then by the
branching property, each customer present will during the cycle be replaced in an i.i.d.
manner by customers of type 1, . . . , N , according to the probability generating function
(pgf) hi(z), where z = (z1, . . . , zN ). For the gated service discipline, this hi is given by:

h(gated)
i (z) = βi





N
∑

j=1

λ j(1− z j)



 .
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For κ-gated we can recursively express hi as follows:

h(1-gated)
i (z) = h(gated)

i (z),

h(m-gated)
i (z) = βi





N
∑

j=1, j 6=i

λ j(1− z j) +λi

�

1− h((m− 1)-gated)
i (z)

�



 , for m= 2,3, . . ..

For κi =∞, the pgf hi coincides with that of the exhaustive service discipline, which is
given by:

h(∞-gated)
i (z) = h(exhaustive)

i (z) = θi





N
∑

j=1, j 6=i

λ j(1− z j)



 ,

where θi(·) is the LST of a busy period triggered by one type i customer in Q i in isolation.
Now, along the lines outlined in Section 9.3.3, the LSTs of the steady-state waiting time
distributions can be derived. Then, by differentiation, moments of the steady-state wait-
ing time for an arbitrary type i customer follow. These calculations are straightforward,
but cumbersome. The next section explains an intuitive approach to calculate the first
moments of the waiting times.

12.3.4 Mean waiting times

We briefly discuss how the first moments of the waiting times, E[Wi], can easily be
obtained in a more efficient way. For this, we show that the κ-gated discipline fits into
the framework of a polling model with smart customers (see Chapter 10). Hence, we
can use mean value analysis (MVA) for polling systems, adapted for smart customers (cf.
Section 10.3). Recall that in a model with smart customers, the arrival rate at a queue
depends on the position of the server.

We use the concept of smart customers to route arriving customers to a specific queue,
depending on the position of the server. Let the arrival rate be λi, j at Q i when the server
is serving (or switching to) Q j . The routing proceeds in the following way. We introduce
a polling model with the gated discipline that is related to the one served according to
the κ-gated discipline. In that model, we create multiple copies of the same queue. We
refer to this as the corresponding model, in which customers are routed as follows. A
customer arriving at Q i in the original model is routed in the corresponding model to
the copy of Q i that will be served first. The underlying idea of this is the following. In
the κ-gated model, arriving customers queue behind a gate, which only opens when the
server starts one of the κi serving phases. In the corresponding model, each of these
phases now becomes a separate queue. Hence, we create a polling model with κi copies
of queue Q i , denoted by Q(1)i , . . . ,Q(κi)

i . No switch-over times are incurred between these

copies. Denoting phase k of a visit to Q i by V (k)i , then the cycle, including the switch-over

times Si (between Q(κi)
i and Q(1)i+1) becomes:

V (1)1 −V (2)1 −. . .−V (κ1)
1 −S1−V (1)2 −V (2)2 −. . .−V (κ2)

2 −S2−. . .−SN−1−V (1)N −. . .−V (κN )
N −SN .

We now have an ‘ordinary’ cyclic polling model with
∑N

i=1 κi queues, each of which is
served according to the gated discipline. We want this system to have the same arrival
process as the original one. For that, we have to route the arriving customers, depending
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Figure 12.1: The fluid limit of the workload Hi at Q i during one cycle.

on the position of the server. A customer arriving at Q i in the original model is now
routed to Q( j)i during V ( j−1)

i , for j = 2, . . . ,κi , and to Q(1)i otherwise.
The corresponding model is a polling model with smart customers, in which arriving

type i customers are routed to Q( j+1)
i while the server is at Q( j)i , for 1 ≤ j < κi , and to

Q(1)i otherwise. In Section 10.3, we showed how a system of O
�

N2
�

linear equations
can be derived for an N queue polling model with the exhaustive service discipline, from
which the E[Wi] can immediately be solved. Analogously, we can write down a system

of O
�

(
∑N

i=1 κi)2
�

linear equations for the corresponding model with gated service, from
which the E[Wi] directly follow.

REMARK 12.3.1. Boon et al. [28] also present the MTBP approach for polling models
with smart customers. In the case that some of the arrival rates equal zero, they have
to introduce extra queues requiring zero service times. However, by the structure of the
κ-gated discipline, the MTBP analysis can be reduced to that presented in Section 12.3.3.

12.3.5 Fluid limits

The exact expressions for the mean waiting times, following from Sections 12.3.3 and
12.3.4, do not provide an easy way to determine the κi ’s minimizing γ(α). Therefore, we
derive the fluid limit approximations of the mean waiting times. These approximations
yield closed-form expressions, and can hence easily be used to (approximately) optimize
the κi ’s.

By taking the fluid limits, we scale the interarrival and service times. For this, we let
λi →∞ and E[Bi]→ 0 while keeping the workload λiE[Bi] = ρi fixed. We concentrate
on the amount of work present at a queue, denoted by Hi at queue Q i . By the use of this
scaling, we smoothen the discrete process Hi into a continuous one. In this way, work
arrives at a constant rate ρi , and during the visit time work is removed at rate 1. So,
during the intervisit time of mean length E[Ii] = (1 − ρi)E[C], the amount of work
increases at rate ρi , and during the visit time, with mean length E[Vi] = ρiE[C], the
amount of work decreases at rate 1−ρi . This cyclic pattern repeats itself in every cycle.
Hence, the workload Hi during a cycle in the κ-gated discipline becomes as depicted in
Figure 12.1.

At the end of the visit to Q i , the amount of work present is equal to that built up
during the last visit phase V κi

i . So, it is ρiE[V
κi
i ] =: m. At the start of the visit time it is
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Figure 12.2: Fluid limits of the waiting times: E[W fluid
i ]/E[C] plotted versus ρi for κi =

1, 2,3, . . . , 10 and for κi =∞.

equal to the work already present at the beginning of Ii , which is m, plus the work built
up during the intervisit time. Hence, it is m+ρiE[Ii] =: M . Consequently, the average
fluid level during a cycle, i.e. the mean workload E[Hi], is given by:

E[Hi] =
m+M

2
= m+

ρiE[Ii]
2

= (1+ρκi
i )
ρi(1−ρi)

2 (1−ρκi
i )
E[C].

Using Little’s Law formulated for the workload, E[Hi] = ρiE[Wi], the fluid limit of the
mean waiting time of a type i customer directly follows:

E[W fluid
i ] =

m+M

2ρi
= (1+ρκi

i )
1−ρi

2 (1−ρκi
i )
E[C]. (12.3.5)

Figure 12.2 shows these fluid limits for different κi .
It is easily checked that for κi = 1, (12.3.5) reduces toE[W fluid

i ] = 1+ρi

2
E[C], which is

indeed the fluid limit for the gated discipline. For κi =∞, (12.3.5) reduces toE[W fluid
i ] =

1−ρi

2
E[C], which is indeed the fluid limit for the exhaustive discipline.

12.4 Balancing fairness and efficiency

We now want to choose κ such that on one hand we achieve fairness, while on the other
hand the system is still efficient. For that, we want to determine the κ that minimizes γ(α)
as given in (12.3.4). As we do not have closed-form expressions for the mean waiting
times, optimization could be done by an exhaustive search over all κi . However, we use
the fluid limits (12.3.5) as approximation for the mean waiting times in the optimization:

min
κ
γfluid(κ,α) (12.4.1)
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where

γfluid(κ,α) = (1−α)max
i, j

�

E[W fluid
i ]−E[W fluid

j ]
�

+α
N
∑

i=1

E[Mκ-gat
i ].

For deriving a heuristic rule for the optimal setting of κ, we take the following ap-
proach. First we determine the κi ’s such that all mean waiting times are equal (optimal
fairness), then, using these κi ’s, we minimize the term

∑

iE[Mi] (maximal efficiency
given optimal fairness). That is, we consider the following optimization problem:

min
κ

N
∑

i=1

E[Mκ-gat
i ],

such that E[W fluid
1 ] = . . .= E[W fluid

N ].

(12.4.2)

For the moment we allow the κi ’s to be fractional, later we round them to integers. Note
that the problem in (12.4.2) does not depend on α. In an extensive numerical study
in the next section we compare the performance of this heuristic setting to that of the
optimal setting solving (12.4.1). We now solve (12.4.2), first for 2 queues, and then
for N queues.

12.4.1 2 queues

For simplicity we start with the case of 2 queues. In this case we can explicitly solve
E[W fluid

1 ] = E[W fluid
2 ] for κ2 in terms of κ1,ρ1 and ρ2:

(1+ρκ1
1 )

1−ρ1

2(1−ρκ1
1 )
= (1+ρκ2

2 )
1−ρ2

2(1−ρκ2
2 )

,

where we have divided by E[C] 6= 0. Solving for κ2, denoted by κopt
2 , gives:

ρ
κ

opt
2

2 =
(1−ρ1)

�

1+ρκ1
1

�

− (1−ρ2)
�

1−ρκ1
1

�

(1−ρ1)
�

1+ρκ1
1

�

+ (1−ρ2)
�

1−ρκ1
1

� . (12.4.3)

So, this κ2 achieves optimal fairness (recall that we allowed κ2 to be fractional). Using
this κ2, we now optimize the efficiency, i.e. we minimize:

2
∑

i=1

E[Mi] = ρ
κ1+1
1

1−ρ1

1−ρκ1
1

+ρκ
opt
2 +1

2

1−ρ2

1−ρκ
opt
2

2

=
(ρ1 −ρ2)ρ2 +ρ

κ1
1

�

2(1−ρ1)ρ1 + (2−ρ1)ρ2 −ρ2
2

�

2(1−ρκ1
1 )

. (12.4.4)

In (12.4.4) we have substituted (12.4.3) and simplified the expression.
The minimum of (12.4.4) (where κ1 > 0, for ρ1 6= ρ2) is found for κ1 →∞. In this

way, from (12.4.3), κopt
2 becomes:

κ
opt
2 = logρ2

ρ2 −ρ1

2−ρ1 −ρ2
. (12.4.5)
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Figure 12.3: Optimal value of κ2 (rounded to the nearest integer), given by κopt
2 =

�

logρ2

ρ2 −ρ1

2−ρ1 −ρ2

�

, for ρ1 < ρ2 and ρ1 +ρ2 < 1.

This only makes sense for ρ1 < ρ2; if ρ1 > ρ2, we interchange the indices. In case
ρ1 = ρ2 all κ1 = κ2 give equal mean waiting times. However, κ1 = κ2 = ∞ optimizes
the efficiency. So, we come up with the following heuristic for the choice of κ1 and κ2:







if ρ1 < ρ2: κ1 =∞, κ2 = logρ2

ρ2−ρ1

2−ρ1−ρ2
,

if ρ1 = ρ2: κ1 = κ2 =∞,

if ρ1 > ρ2: κ1 = logρ1

ρ1−ρ2

2−ρ1−ρ2
, κ2 =∞.

In order to get integer κi ’s, we have three possibilities: rounding to the nearest in-
teger, denoted by [x]; using the integer floor function, bxc; or using the integer ceiling
function, dxe. We study all three options in the numerical study in Section 12.5. We
denote a κ set according to the heuristic by [κ], bκc, respectively dκe.

We plot (12.4.5) in Figure 12.3, for ρ1 < ρ2 (and ρ1+ρ2 < 1 for stability) where we
round κ2. From the figure it becomes clear that κ2 = 2 almost always is a proper choice.

12.4.2 N queues

For N queues we first determine which κi ’s give equal mean waiting times. We solve
E[W fluid

1 ] = E[W fluid
j ] for j = 2, . . . , N , which leads to an expression analogous to (12.4.3),

with 2 replaced by j everywhere. We plug these into
∑N

i=1E[Mi]. The resulting expres-
sion depends only on κ1, and on all ρi ’s. It only makes sense if ρ1 is the smallest of all
ρi , and it is minimized for κ1→∞. From this, the expressions for the optimal κ2, . . . ,κN

directly follow: κopt
j = logρ j

ρ j−ρ1

2−ρ1−...−ρN
, for j = 2, . . . , N .
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Hence, we come up with the following heuristic for the choice of the κi ’s, i = 1, . . . , N :
(

For all i such that i = argminρi , let κi =∞;

For all j = 1, 2, . . . , N where j 6= i, let κ j = logρ j

ρ j−ρi

2−ρ .
(12.4.6)

It is interesting to note that for any number of queues N , the queue(s) with the smallest
traffic load ρi will always be served exhaustively (corresponding to κi =∞).

Recall that we have three options to get integer κi ’s (round, floor, ceiling). An im-
portant notion here is that, by construction, this heuristic does not depend on α. The
numerical results in the next section, however, show that it performs well for a wide
range of α’s. So, this heuristic is robust against the value of α.

12.5 Numerical analysis

In this section we first consider two examples, followed by an extensive numerical study
into the performance of the heuristic setting of κ. We determine γ(α) as defined in (12.3.4),
where, for brevity of notation, we define:

∆=max
i, j

�

E[Wi]−E[Wj]
�

,

Σ =
N
∑

i=1

E[Mi].

We compare the results of the κ-gated discipline with the elevator strategy in a glob-
ally gated regime, cf. [3, 167]. For this strategy all mean waiting times are equal:
E[W elev.GG

1 ] = E[W elev.GG
2 ] = . . .= E[W elev.GG

N ], and given by, cf. [3, (6), (10)]:

E[W elev.GG
1 ] =

1

1−ρ

N
∑

i=1

ρiE[Bi
res] +E[Sres] +

1+ρ
2(1−ρ)

E[S].

The PCL easily follows:
∑N

i=1ρiE[Wi] = ρE[W1]. Using (12.3.3), it follows that:

N
∑

i=1

E[M elev.GG
i ] =

ρ+
∑N

i=1ρ
2
i

2(1−ρ)
E[S].

12.5.1 Examples

Example 12.5.1. Consider a polling model with N = 2 queues, Si , Bi ∼ exp(1), i =
1, 2, and λ1 = 0.6, λ2 = 0.2. Hence ρ1 = 0.6 and ρ2 = 0.2. We have ρ1 > ρ2 and
logρ1

ρ1−ρ2

2−ρ1−ρ2
≈ 2.15. Hence the heuristic settings are [κ] = bκc = (2,∞) and dκe =

(3,∞).
For the κ-gated discipline, taking κ1,κ2 ∈ {1, 2,3,∞}, the performance γ(α) defined

by (12.3.4) is listed in Table 12.1 for α = 0, 1
2
, 2

3
, and 5

6
. It turns out that the heuristic

settings for κ perform well in comparison to most other settings listed in Table 12.1. Al-
though suboptimal for small α, their performance seems to be rather robust with respect
to α. Despite κ = (2,2) performs better in this example for the four values of α chosen,
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κ1 κ2 E[W1] E[W2] ∆ Σ γ(0) γ( 1
2
) γ( 2

3
) γ( 5

6
)

1 1 12.77 9.69 3.08 4.00 3.1 3.5 3.7 3.8
2 1 8.42 11.49 3.07 1.75 3.1 2.4 2.2 1.0
3 1 6.90 12.60 5.70 1.06 5.7 3.4 2.6 1.8
∞ 1 5.04 14.88 9.84 0.40 9.8 5.1 3.5 1.0
1 2 13.00 7.21 5.83 3.67 5.8 4.8 4.4 4.0
2 2 8.77 8.77 0.0038 1.42 0.0 0.7 0.9 1.2
3 2 7.27 9.82 2.55 0.73 2.6 1.6 1.3 1.0
∞ 2 5.38 12.20 6.82 0.07 6.8 5.0 4.5 4.1
1 3 13.10 6.76 6.34 3.61 6.3 5.0 4.5 4.1
2 3 8.85 8.25 0.60 1.36 0.6 1.0 1.1 1.2
3 3 7.36 9.29 1.92 0.67 1.9 1.3 1.1 0.9
∞ 3 5.47 11.66 6.19 0.01 6.2 3.1 2.1 1.0
1 ∞ 13.12 6.64 6.48 3.60 6.5 5.0 4.6 4.1

[κ] , bκc : 2 ∞ 8.88 8.11 0.77 1.35 0.8 1.1 1.2 1.3
dκe : 3 ∞ 7.39 9.13 1.74 0.66 1.7 1.2 1.0 0.8

∞ ∞ 5.50 11.50 6.00 0.00 6.0 3.0 2.0 1.0
Elev.GG 15.00 15.00 0.00 6.00 0.0 3.0 4.0 5.0

Table 12.1: Results for Example 12.5.1 for the κ-gated strategy, where κ1,κ2 ∈ {1, 2,3,∞}.
Smallest values per column are given in bold; the optimal settings from the heuristic are
underlined. Recall that κi = ∞ is equivalent to the exhaustive service discipline; κi = 1
to the gated service discipline. Elevator strategy in a globally gated regime is added for
comparison.

each of the heuristic settings will dominate in performance for α close to 1, since they
are more efficient. In general, the heuristic settings outperform the (2,2) setting (unless
α is small), as the numerical study in Section 12.5.2 shows (see Table 12.5).

The difference in mean waiting times, ∆, is, in this example, minimal for κ = (2, 2).
This is not surprising as for N = 2 and κ= (2, 2) the κ-gated discipline closely resembles
the elevator strategy in a globally gated regime (cf. [3, 167]). In this discipline the visit
order is 1, 2, . . . , N−1, N , N , N−1, . . . , 2, 1, 1, 2, . . ., and all gates are closed when turning
around at 1 and at N . Hence, for N = 2 the queues are served as:

. . . − Q1

(∗)
− Q1 − S1 − Q2

(∗)
− Q2 − S2 − Q1

(∗)
− Q1 − S1 − . . . − . . .

where (∗) denotes that the gates are closed at both queues. In the κ-gated strategy where
κ= (2, 2), the queues are served as:

. . . − Q(1)1 − Q(2)1 − S1 − Q(1)2 − Q(2)2 − S2 − Q(1)1 − Q(2)1 − S1 − . . . − . . .

where the gate is closed when each service phase starts. As the elevator strategy in
a globally gated regime leads to E[W1] = E[W2], it should not be surprising that the
(2,2)-gated strategy leads to almost equal mean waiting times.

Example 12.5.2. Now consider the following setting, again for N = 2 queues. Let
Si ∼ exp(2), Bi ∼ exp(1), i = 1, 2 and λ1 = 0.35, λ2 = 0.25. Hence ρ1 > ρ2 and
logρ1

ρ1−ρ2

2−ρ1−ρ2
≈ 2.51, and thus the heuristic settings are [κ] = dκe = (3,∞) and

bκc = (2,∞). The results are given in Table 12.2. The heuristic setting (3,∞) per-
forms well compared to the other settings of κ in Table 12.2, and is even optimal for
α= 1

2
, 2

3
, and 5

6
. Note that ∆ is again small for κ= (2, 2).



222 κ-GATED

κ1 κ2 E[W1] E[W2] ∆ Σ γ(0) γ( 1
2
) γ( 2

3
) γ( 5

6
)

1 1 9.30 8.68 0.63 1.85 0.6 1.2 1.4 1.6
2 1 6.36 9.16 2.80 0.94 2.8 1.9 1.6 1.3
3 1 5.60 9.37 3.77 0.73 3.8 2.3 1.7 1.2
∞ 1 5.19 9.53 4.33 0.63 4.3 2.5 1.9 1.2
1 2 9.57 6.30 3.28 1.35 3.3 2.3 2.0 1.7
2 2 6.65 6.77 0.12 0.44 0.1 0.3 0.3 0.4
3 2 5.87 6.98 1.11 0.23 1.1 0.7 0.5 0.4
∞ 2 5.46 7.16 1.71 0.13 1.7 0.9 0.7 0.4
1 3 9.66 5.80 3.86 1.25 3.9 2.6 2.1 1.7
2 3 6.74 6.25 0.49 0.35 0.5 0.4 0.4 0.4
3 3 5.97 6.47 0.50 0.13 0.5 0.3 0.3 0.2
∞ 3 5.55 6.65 1.10 0.03 1.1 0.6 0.4 0.2
1 ∞ 9.70 5.63 4.07 1.23 4.1 2.7 2.2 1.7

bκc : 2 ∞ 6.79 6.07 0.72 0.32 0.7 0.5 0.5 0.4
[κ] , dκe : 3 ∞ 6.02 6.28 0.26 0.10 0.3 0.2 0.2 0.1

∞ ∞ 5.60 6.46 0.87 0.00 0.9 0.4 0.3 0.1
Elev.GG 11.50 11.50 0.00 3.93 0.0 2.0 2.6 3.3

Table 12.2: Results for Example 12.5.2 for the κ-gated strategy. Smallest values per column
are given in bold; the optimal settings from the heuristic are underlined.

12.5.2 Performance of fluid based heuristic

In a numerical experiment we study the performance of the heuristic settings for the
κi ’s compared to the exhaustive, gated, and globally gated disciplines. For systems with
only a few queues, we also compare their performance to that of the optimal κ-gated
discipline. We use a test bed with 4,614 instances (see Table 12.3) with N = 2, 3,4,
and 5 queues. We calculate the mean waiting times and derive γ(α) for α = 0, 1

2
, 2

3
,

and 5
6

for the following strategies:

• exhaustive;

• gated;

• κ-gated with κ as in the heuristic (cf. (12.4.6));

• κ-gated with optimal κ, found by enumeration of all possibilities
(only for N = 2,3);

• elevator strategy in a globally gated regime (cf [3, 167]).

The elevator strategy in a globally gated regime is added for comparison, as it is
known to give identical mean waiting times. However, it is in general far less efficient.
On the contrary, the exhaustive discipline is optimally efficient, however, it might be
less fair. For the κ-gated discipline, we consider κ set according to the heuristic setting,
as well as the optimal κ. The latter is found by enumerating over all combinations of
κi ∈ {1,2, 3,4, 5,6,∞} (for N = 2) or κi ∈ {1,2, 3,∞} (for N = 3), for i = 1, . . . , N .
For N = 4 and 5 we omit this, as enumeration over all combinations of κi is too time-
consuming for these N .

The results over all cases of the test bed are given in Table 12.4, and are split out
for N = 2, 3,4, and 5 in Tables 12.5, 12.6, 12.7, and 12.8 respectively. The columns list
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TEST BED

N = 2 (2,925 settings)
λ1,λ2 ∈ {0.05,0.1, 0.3,0.5, 0.7,0.9, 0.95},

B1 ∼ exp(1),
B2, S1, S2 ∼ exp(.) with mean ∈ {0.2,0.5, 1., 2., 5.},

N = 3 (243 settings)
λ1,λ2,λ3 ∈ {0.1,0.3, 0.5,0.7, 0.9},

B1 ∼ exp(1),
B2, B3 ∼ exp(.) with same mean ∈ {0.5,1., 2.},

S1, S2, S3 ∼ exp(.) with same mean ∈ {0.5,1., 2.},
N = 4 (552 settings)

λ1, . . . ,λ4 ∈ {0.1,0.3, 0.5,0.7, 0.9},
B1 ∼ exp(1),

B2, . . . , B4 ∼ exp(.) with same mean ∈ {0.5,1., 2.},
S1, . . . , S4 ∼ exp(.) with same mean ∈ {0.5,1., 2.},

N = 5 (894 settings)
λ1, . . . ,λ5 ∈ {0.1,0.3, 0.5,0.7, 0.9},

B1 ∼ exp(1),
B2, . . . , B5 ∼ exp(.) with same mean ∈ {0.5,1., 2.},
S1, . . . , S5 ∼ exp(.) with same mean ∈ {0.5,1., 2.},

Table 12.3: Test bed for numerical study: full factorial design of the given possibilities which
are stable:

∑N
i=1ρi < 1. In total 4,614 settings.

discipline \ averages ∆ Σ γ(0) γ( 1
2
) γ( 2

3
) γ( 5

6
)

exhaustive 19.1 0.0 19.1 9.6 6.4 3.2
gated 6.4 9.3 6.4 7.9 8.3 8.8
elevator gg 0.0 14.7 0.0 7.4 9.8 12.3
κ-gat heur (round) 1.2 3.2 1.2 2.2 2.5 2.9
κ-gat heur (floor) 5.9 6.7 5.9 6.3 6.4 6.6
κ-gat heur (ceiling) 1.9 2.6 1.9 2.3 2.4 2.5

Table 12.4: Results over all 4,614 instances.

the average values over all cases considered. For example, the column E[W1] shows the
average of E[W1] over all cases, and the column ∆ the average of ∆ = maxi, j

�

E[Wi]−
E[Wj]

�

over all cases. Note that the average of maxi, j
�

E[Wi]−E[Wj]
�

is not the same
as the maximum of the differences between the average values of E[Wi] and E[Wj].

From the tables we can make the following observations. The elevator strategy in a
globally gated regime, having equal mean waiting times (maximal fairness), is always
optimal for α = 0. This will be the case for small values of α near zero as well. The
exhaustive strategy (in all queues), leading to Σ = 0 (maximal efficiency), will be optimal
for values of α close to one. The κ-gated discipline, using the heuristic settings for κ,
seems to perform well in the range of α’s in between. For a specific α (and specific setting
of the parameters), one can typically find a better performing κ, but this optimization by
exhaustive search is very time-consuming. For N = 2 it outperforms (2,2) for all α except
for α close to zero. When using the floor function in the heuristic, the results seem to
be not that good. It is both less fair and less efficient on average than the rounding and
ceiling. The performance of those two does not differ that much.

One might expect the performance of the different settings to depend heavily on the
switch-over times incurred during a cycle, as during those intervals all work in the system
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discipline \ averages E[W1] E[W2] ∆ Σ γ(0) γ( 1
2
) γ( 2

3
) γ( 5

6
)

Q1 exh - Q2 exh 9.8 30.7 25.6 0.0 25.6 12.8 8.5 4.3
Q1 exh - Q2 gat 7.5 35.8 28.2 1.7 28.2 15.0 10.5 6.1
Q1 gat - Q2 exh 21.7 10.5 11.3 7.9 11.3 9.6 9.0 8.5
Q1 gat - Q2 gat 19.5 15.2 6.2 9.6 6.2 7.9 8.5 9.0
elevator gg 22.7 22.7 0.0 11.9 0.0 6.0 7.9 9.9
κ-gat heur (round) 13.2 12.9 0.7 4.4 0.7 2.6 3.2 3.8
κ-gat heur (floor) 15.3 12.9 3.9 5.8 3.9 4.9 5.2 5.5
κ-gat heur (ceiling) 12.3 13.5 1.9 2.9 1.9 2.4 2.6 2.7
κ= (2,2) 13.5 13.6 0.4 4.1 0.4 2.3 2.9 3.5
κ-gat opt α= 0 13.5 13.5 0.3 4.1 0.3 2.2 2.8 3.5
κ-gat opt α= 1

2
13.1 13.2 0.5 3.7 0.5 2.1 2.6 3.2

κ-gat opt α= 2
3

12.0 13.5 2.0 2.7 2.0 2.4 2.5 2.6
κ-gat opt α= 5

6
10.4 15.3 6.7 1.1 6.7 3.9 3.0 2.0

Table 12.5: Results of numerical study for N = 2: average values over 2,925 cases (as de-
scribed in Table 12.3). Minimum value per column in bold. Optimization of κ by exhaustive
search over κi ∈ {1, 2,3, 4,5, 6,∞}, i = 1,2.

discipline \ averages E[W1] E[W2] E[W3] ∆ Σ γ(0) γ( 1
2
) γ( 2

3
) γ( 5

6
)

exhaustive 11.2 12.2 12.3 6.2 0.0 6.2 3.1 2.1 1.0
gated 16.0 15.3 15.4 4.2 5.6 4.2 4.9 5.1 5.4
elevator gg 21.4 21.4 21.4 0.0 10.2 0.0 5.1 6.8 8.5
κ-gat heur (round) 12.2 12.1 12.2 0.7 1.6 0.7 1.2 1.3 1.5
κ-gat heur (floor) 14.7 14.0 14.0 6.2 4.9 6.2 5.6 5.3 5.1
κ-gat heur (ceiling) 12.1 12.2 12.2 0.8 1.6 0.8 1.2 1.3 1.5
κ-gat opt α= 0 12.2 12.2 12.3 0.7 1.7 0.7 1.2 1.4 1.5
κ-gat opt α= 1 12.1 12.2 12.2 0.7 1.6 0.7 1.2 1.3 1.5
κ-gat opt α= 2 11.9 12.0 12.3 1.1 1.4 1.1 1.3 1.3 1.4
κ-gat opt α= 5 10.7 11.7 13.5 4.6 0.5 4.6 2.6 1.9 1.2

Table 12.6: Results of numerical study for N = 3: average values over 243 cases (as described
in Table 12.3). Optimization of κ by exhaustive search over κi ∈ {1,2, 3,∞}, i = 1, 2,3.

discipline \ averages E[W1] E[W2] E[W3] E[W4] ∆ Σ γ(0) γ( 1
2
) γ( 2

3
) γ( 5

6
)

exhaustive 20.3 22.4 22.4 22.6 9.7 0.0 9.7 4.9 3.2 1.6
gated 30.6 29.0 29.0 29.1 8.0 11.1 8.0 9.6 10.1 10.6
elevator gg 43.5 43.5 43.5 43.5 0.0 23.0 0.0 11.5 15.3 19.2
κ-gat heur (round) 22.9 23.1 23.2 23.2 2.3 2.9 2.3 2.6 2.7 2.8
κ-gat heur (floor) 29.5 27.6 27.6 27.6 11.6 10.5 11.6 11.1 10.9 10.7
κ-gat heur (ceiling) 22.9 23.1 23.2 23.2 2.3 2.9 2.3 2.6 2.7 2.8

Table 12.7: Results of numerical study for N = 4: average values over 552 cases (as described
in Table 12.3). Note: Ceiling differs in only 3 instances from Round.
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is waiting. For that reason, we separate the results according to the value of E[S] (the
mean total switch-over time during a cycle), see Table 12.9. We focused on N = 2, as
this most clearly illustrates the results. From the table, we see that the performance of
e.g. the elevator strategy in a globally gated regime is best for small values of E[S], as
is to be expected, but it is outperformed by the κ-gated discipline already for small α, by
all indicated choices for the setting of the κ (except the heuristic setting using the floor
function). Note that it is also outperformed by κ= (2,2), although these settings closely
resemble each other.

Summarizing, the κ-gated discipline with κ set according to the heuristic, either
rounding or ceiling, is robust against the setting of α and it performs well over a wide
range of values for α and E[S].

12.6 Conclusion

We introduced the κ-gated service discipline for a polling model. It is a hybrid of the
classical gated and exhausted disciplines, and consists of using κi gated service phases
at Q i before the server switches to the next queue. The aim of this discipline is to provide
fairness (almost equal mean waiting times at the queues), while not giving up efficiency
(weighted sum of mean waiting times). For the trade-off between these two we intro-
duced the factor α. The κi ’s can then be optimized.

We showed how the mean visit times, the pseudo conservation law, the distribution
of waiting times and the mean waiting times can be derived. We also derived the fluid
limits. Further, using the fluid limits, we provided a heuristic to set the κ (not depending
on α). In an extensive numerical study we showed that the heuristic performs well.
Typically when α is given, one can find (e.g. by an exhaustive search) a better setting,
but the heuristic setting is robust against the value of α, that is, for all α it performs well.
So, the factor α typically does not play a significant role in the choice of κ.

We have chosen here to set κ so as to optimize the fairness and efficiency. However,
the κ-gated discipline can be used for other performance characteristics on the mean
waiting times as well. Instead of the efficiency, one could for example consider the sum
∑N

i=1 ciE[Wi], where each queue i = 1, . . . , N is assigned a cost factor ci . This could e.g.
reflect a difference in the importance of the customers in each queue.

An interesting option for further research is the handling of the fractional κi ’s. Instead
of rounding, one might assign a probability, say pi , with which bκic phases are used, and
dκie otherwise. This, however, might lead to a more complicated exact analysis. Another
question is in which order the queues should be placed, as to minimize the variance in
waiting times or in the γ(α).
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GATED/EXHAUSTIVE

We consider a polling system where the server cyclically serves the queues according to
the following discipline: the server does one round of visits to the queues applying the
gated service discipline at each of the queues, followed by one round of visits applying
the exhaustive service discipline at each of the queues, and this alternating pattern re-
peats itself. We call this the Gated/Exhaustive service discipline. For this we derive (i) a
Pseudo Conservation Law for the weighted sum of the mean waiting times, (ii) the mean
steady-state waiting times using Mean Value Analysis, and (iii) queue length distributions
making use of Multi-type Branching Processes. For (ii) and (iii) we apply the concept of
smart customers (see Chapter 10).

13.1 Introduction

The classical polling system is a queueing system with multiple queues and one single
server. The server cyclically visits all queues, where it serves the customers. Typically
a so-called switch-over time is incurred when the server switches from one queue to
another. There are many possible choices for deciding when the server should switch to
the next queue. Those most often studied are the exhaustive service discipline (when the
server arrives at a queue, it serves its customers until the queue has become empty) and
the gated service discipline (when the server arrives at a queue, a gate closes and only
the customers who are before the gate, i.e., who are already present, will be served in
this server visit).

The present chapter considers the following variant of this classical model. First the
server cyclically serves all queues according to the gated service discipline, and then the
server cyclically serves all queues according to the exhaustive service discipline, and this
alternating pattern repeats itself. We call this the Gated/Exhaustive discipline.

We present a detailed analysis of this model. We first aim for mean values, deriving
both a Pseudo Conservation Law for the mean waiting times and exploiting the Mean Value
Analysis (MVA) technique, that was recently [210] developed for polling systems, to ob-
tain all mean waiting times. For the latter, we use the concept of smart customers,cf. Chap-
ter 10, and basically doubling the number of queues in the system. Subsequently, we
relate the joint queue length process to Multi-type Branching Processes, also using smart
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customers. In this way, we obtain the joint queue length distribution at server polling
epochs.

Our work was partly motivated by the question whether an alternation of gated and
exhaustive cycles might lead to fairness to the queues, in the sense of having almost
identical mean waiting times. Fairness is a topic that has frequently played a role in
the choice of service discipline in polling systems. In some recent studies [152, 185]
of dynamic bandwidth allocation of Ethernet Passive Optical Networks (EPON), polling
models have been considered with two-stage gated service: a gate closes behind the
customers in a stage-1 buffer at the moment the server arrives, the customers in the
stage-2 buffer are being served, and then those present in stage-1 move to the stage-2
buffer. This was seen to give rise to relatively small differences between mean waiting
times at the various queues, but at the expense of longer delays. We conjectured that an
alternation of gated and exhaustive cycles might also lead to small differences between
mean waiting times (but with smaller delays than for two-stage gated), as various mean
waiting time approximations (see e.g. [72]) have been based on the following facts: (i)
for gated service, the mean waiting time at the ith queue is (1 + ρi) times the mean
residual length of one server cycle for the ith queue, with ρi the traffic load at the ith
queue; (ii) for exhaustive service, the mean waiting time is roughly (1− ρi) times the
mean residual length of one server cycle. Averaging with equal weights would yield
roughly equal mean waiting times at all queues; our numerical results, however, will
show that there can still be substantial differences between mean waiting times.

The structure of this chapter is as follows. In Section 13.2 we introduce the model,
explaining the Gated/Exhaustive service discipline. In Section 13.3 we analyze the
Gated/Exhaustive discipline. We derive the mean visit times of the server at each of
the queues, and derive the Pseudo Conservation Law for the mean waiting times. Also,
we apply the concept of smart customers to the Gated/Exhaustive discipline, and hence
derive the (mean) waiting times, using Mean Value Analysis and Multi-type Branching
Processes. Then, in Section 13.4, we numerically compare the mean waiting times of the
Gated/Exhaustive discipline to (other mixes of) the exhaustive and gated discipline, and
we end with a discussion of possible further work in Section 13.5. This chapter is based
on [41].

13.2 Model and notation

We consider a polling model as described in Section 9.2, using a new service discipline:
the Gated/Exhaustive service discipline (G/E discipline). This discipline works as follows.
The server visits the queues in fixed cyclic order. A cycle consists of the visit of the server
to each of the queues twice: once serving them according to the gated service discipline,
and once to the exhaustive one. The first visit to Q i is gated, denoted by Q iG , the second
exhaustive, denoted by Q iE

. Starting with the switch-over to Q1, a cycle is typically given
by:

S1 −Q1G
− S2 −Q2G

− . . .− SN −QNG
− S1 −Q1E

− S2 −Q2E
− . . .− SN −QNE

.

The cycle time, denoted by C , consists of the visit times to each of the queues twice, and
all switch-over times occurred. A well known result [176] for the mean cycle time in a
system where the queues are visited once in a cycle is E[C1visi t] = E[S]/(1− ρ). As a



13.3 ANALYSIS OF G/E DISCIPLINE 229

cycle now contains two visits to each of the queues, we have

E[C] =
2E[S]
1−ρ

. (13.2.1)

13.3 Analysis of G/E discipline

In this section we present the analysis of the G/E Discipline. First, we derive the mean
visit times at each of the queues. Then, we give a pseudo conservation law for the
weighted sum of the mean waiting times. Next, we show how the G/E Discipline fits
into the concept of smart customers. Using that, we derive the mean waiting times using
mean value analysis, and derive the waiting time distributions using multi-type branching
processes.

13.3.1 Mean visit times

For the G/E discipline, we derive the expected duration of the visits at each of the queues.
Denote by E[ViG] the expected duration of a visit period to Q i when it is served gated,
and by E[ViE

] when it is served exhaustively, i = 1, . . . , N . Denote by E[Vi] the expected
duration of the visit periods to Q i per cycle, so

E[Vi] = E[ViG] +E[ViE
].

As the server is working a fraction ρi of the time on Q i , it follows from (13.2.1) that, for
i = 1, . . . , N :

E[Vi] =
2E[S]ρi

1−ρ
. (13.3.1)

In order to determine the individual mean visit times E[ViG] and E[ViE
] we set up a

system of linear equations. For each of the 2 N visits to a queue during one cycle, we
have a single linear equation. This equation expresses the expected duration of that visit
in terms of the other mean visit times.

For E[ViG] we make use of the fact that at the moment an exhaustive service to Q i
ends, there are no type i customers present in the system any more. After this, type i
customers arrive at rate λi during the switch-over and visit times at other queues, until
the start of the next gated service at Q i . At that moment the type i customers present in
the system are placed before a gate and these are the only ones to be served in this visit
period to the queue. Now the mean duration of this visit time is the mean number of
customers present at the start of the service, times the mean service time per customer.
The mean number of customers present at the start of the service is equal to the arrival
rate λi times the expected amount of time that has passed since the previous exhaustive
visit to the queue. This gives:

E[ViG] = λiE[Bi]
�

E[Si+1] +E[Vi+1E
] +E[Si+2] + . . .

+E[VNE
] +E[S1] +E[V1G

] + . . .+E[Si]
�

= ρi

 

E[S] +
N
∑

k=i+1

E[VkE
] +

i−1
∑

k=1

E[VkG
]

!

, (13.3.2)
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for i = 1, . . . , N , where an empty sum equals zero.
A similar expression can be found for E[ViE

]. Note that at the beginning of a gated
service to Q i there are no type i customers behind the gate, as all are placed before.
Newly arriving type i customers are not served during this visit period any more, but
have to wait until the server returns to the queue. So the mean number of customers
present at the beginning of the exhaustive service to Q i is equal to the arrival rate λi times
the expected amount of time that has passed since the beginning of the previous gated
service. But as the service to the queue is now exhaustive, the newly arriving customers
during this visit time are still to be served during this visit. This can be interpreted as that
every customer present at the start of the visit time induces a busy period. The expected
duration of a busy period of one type i customer is E[Bi]/(1−ρi). This gives

E[ViE
] = λi

E[Bi]
1−ρi

�

E[ViG] +E[Si+1] +E[Vi+1G
] + . . .

+E[VNG
] +E[S1] +E[V1E

] + . . .+E[Si]
�

=
ρi

1−ρi

 

E[S] +
N
∑

k=i

E[VkG
] +

i−1
∑

k=1

E[VkE
]

!

, (13.3.3)

for i = 1, . . . , N .
Now (13.3.2) and (13.3.3) give a system of 2 N linear equations in the 2 N un-

knowns E[ViG] and E[ViE
], i = 1, . . . , N . Solving this gives explicit expressions for E[ViG]

and E[ViE
], i = 1, . . . , N , in terms of E[S] and ρi .

In equilibrium, the rate at which type i customers enter the system is equal to the rate
at which they leave the system. So for i = 1, . . . , N :

λiE[C] =
E[ViE

] +E[ViG]

E[Bi]
.

The left-hand side gives the mean number of type i customers that enters the system
during a cycle; the right-hand side gives the mean number of type i customers that are
served during a cycle. This observation is another way to derive (13.3.1).

13.3.2 Pseudo Conservation Law

Boxma and Groenendijk [34] derive a Pseudo Conservation Law (PCL) for the case of
cyclic order polling systems (see Section 9.3.1):

N
∑

i=1

ρiE[Wi] =
ρ

1−ρ

N
∑

i=1

ρiE[Bi
res] +ρE[Sres] +

E[S]
2(1−ρ)

 

ρ2 −
N
∑

i=1

ρ2
i

!

+
N
∑

i=1

E[Mi],

(13.3.4)
where E[Mi] is the mean amount of work in Q i at a departure epoch of the server
from Q i . For the exhaustive discipline, E[M E

i ] = 0, and for the gated discipline E[M G
i ] =

ρiE[Vi] = ρ2
i E[S]/(1−ρ).

The PCL is based on a workload decomposition, where the only aspect that depends
on the service discipline is the amount of work left by the server upon a service comple-
tion. Using (9.3.4), deriving the PCL for a certain discipline reduces to determiningE[Y ]:
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the expected amount of work in the system at an arbitrary epoch in a switch-over inter-
val. It is a weighted sum of the E[Yi], which is the mean amount of work at an arbitrary
epoch in a switch-over interval when switching to Q i , cf. (9.3.5). In [34], E[Y ] is de-
rived for the cases of purely exhaustive and purely gated services, and also for mixtures
of these. We now derive E[Y ] in case of the G/E discipline, hence determining the PCL
for the G/E discipline.

Denote by E[YiG] the mean amount of work at an arbitrary epoch in a switch-over
interval to Q i served gated, i.e. to Q iG , and by E[YiE

] to Q i served exhaustively, i.e. to Q iE
.

As both the switch-over intervals have the same distribution, when looking at the system
at an arbitrary epoch in a switch-over interval to Q i , it is with equal probability a switch-
over interval to Q i served gated or to Q i served exhaustively. Therefore, for i = 1, . . . , N :

E[Yi] =
1

2
E[YiG] +

1

2
E[YiE

],

and so, using (9.3.5):

E[Y ] =
1

2

N
∑

i=1

E[Si]
E[S]

E[YiG] +
1

2

N
∑

i=1

E[Si]
E[S]

E[YiE
]. (13.3.5)

We look at the system at an arbitrary epoch in the switch-over interval Si . Firstly, we
consider the amount of work that arrived to the system during the time already passed
in this switch-over time. As at Q i work is arriving at rate ρi = λiE[Bi], the rate at which
work is arriving to the system is ρ =

∑N
i=1ρi . Now use that the expected amount of time

already passed during the switch-over interval is equal to the expected residual switch-
over time, which is E[Si

res]. This gives that the amount of work arrived to the system
during the time already passed in this switch-over interval is equal to ρE[Si

res].
Secondly, at each of the Q i work arrived at rate ρi during the period until the start

of the switch-over time which is considered. If the last visit to Q i was exhaustive, then
this mean amount of work is equal to ρi times the mean duration of all intervals after
the end of the visit to Q i until the start of the switch-over interval considered. If the
last visit to the queue was gated, then we also have to include the mean duration of
this gated visiting time, as the type i customers arriving in this interval are still in the
system. Deriving the expressions for E[YiG] and E[YiE

] is now straightforward, but some
tedious bookkeeping is needed to consider which switch-over intervals and visit times are
concerned. We find, for i = 1, . . . , N :

E[YiG] = ρE[Si
res] +

i−1
∑

k=1

ρk

�

E[VkG
] +

i−1
∑

j=k+1

(E[S j] +E[VjG])
�

+
N
∑

k=i

ρk

� i−1
∑

j=1

(E[S j] +E[VjG]) +
N
∑

j=k+1

(E[S j] +E[VjE ])
�

,

E[YiE
] = ρE[Si

res] +
i−2
∑

k=1

ρk

� i−1
∑

j=k+1

(E[S j] +E[VjE ])
�

+
N
∑

k=i

ρk

�

E[VkG
] +

i−1
∑

j=1

(E[S j] +E[VjE ]) +
N
∑

j=k+1

(E[S j] +E[VjG])
�

,
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where an empty sum equals zero. Substituting these expressions into (13.3.5) gives the
expression for E[Y ] in terms of ρi and E[Si]. Using (9.3.4) we then find the PCL for a
polling system with N queues in the G/E policy.

For the case of N = 1 queue, served according to the G/E discipline, this gives

E[W1] =
ρ2E[B1

res]
1−ρ

+ρE[S1
res] +

E[S1]
2(1−ρ)

�

ρ−ρ2
�

.

Note that for gated services the last term is E[S1]
2(1−ρ)

�

2ρ2
�

, and for exhaustive services it
vanishes.

13.3.3 Smart customers

For modeling the G/E policy, we make use of smart customers (cf. Chapter 10). It provides
the option to let the arrival rate at a queue depends on the position of the server. We
exploit this concept for routing customers in a model with 2 N queues. Denote the arrival
rate of customers at Q i when the server is working at Q j by λi j , and the rate when the
server is switching from Q j−1 to Q j , by µi j .

In order to distinguish between the visits to a given queue in the gated service part of
the cycle or in the exhaustive one, we number the queues as if there were 2 N queues:

Q1,Q2, . . . ,QN ,QN+1, . . . ,Q2 N .

For i = 1,2, . . . , N we have that Q i represents a gated visit to Q i , and for i = N + 1, N +
2, . . . , 2 N we have that QN+i represents an exhaustive visit to Q i . A cycle of the server is
given by:

S1 −Q1 − S2 −Q2 − . . .− SN −QN − S1 −QN+1 − S2 −QN+2 − . . .− SN −Q2 N .

The important observation here is that Q i and QN+i are actually the same queue.
When a type i customer arrives it should be directed to the appropriate queue. This can
be achieved by a proper choice for the λi j and µi j .

First we look at the gated part of the cycle. When the server has not been working
on Q i yet, we direct arriving type i customers to queue Q i . If the server has already
served Q i , then arriving type i customers are directed to the queue served exhaustively,
i.e. to QN+i . If the server is working at Q i , we have that arriving type i customers are
not served in this service interval anymore, as the service discipline is gated. They will
be served when the server returns to this queue, and so the customers are also directed
to QN+i .

For the exhaustive part of the cycle we have almost the same reasoning. If the server
has not yet been working on QN+i , arriving type i customers are directed to this queue.
If the server has already served QN+i , they are sent to Q i . But when the server is working
at QN+i , newly arriving customers are in this case served in this service interval, as the
service discipline is exhaustive. So they are sent to QN+i .

We can summarize the above as follows. Let the set Ji = {i+ 1, . . . , N + i}, then

λi j =







λi for i = 1, . . . , N , j /∈ Ji ∪ {i},
λi for i = N + 1, . . . , 2 N , j ∈ Ji ∪ {i},
0 otherwise,

(13.3.6)
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and

µi j =







λi for i = 1, . . . , N , j /∈ Ji ,

λi for i = N + 1, . . . , 2 N , j ∈ Ji ,

0 otherwise.

(13.3.7)

13.3.4 Mean Value Analysis

In this section we derive the mean steady-state waiting times using Mean Value Analysis
(MVA) with smart customers. The main idea of MVA is outlined in Section 9.3.2, and
adapted in Chapter 10 for the concept of smart customers. In this section, we show how
the G/E discipline fits into the framework of smart customers.

As in Section 13.3.3, we consider a model with 2 N queues, where Q i and Q i+N are
basically the same queue. A cycle consists of the visits to all of these 2 N queues, and
switch-over times incurred. We number the switch-over times and visit times to these
queues from 1 to 4 N , starting with the switch-over to Q1 served gated. This gives

S1 Q1G
S2 Q2G

. . . SN QNG

1 2 3 4 . . . 2 N − 1 2 N

S1 Q1E
S2 Q2E

. . . SN QNE

2 N + 1 2 N + 2 2 N + 3 2 N + 4 . . . 4 N − 1 4 N

Now we define period j, j = 1, . . . , 4 N , as either the switch-over time or visit time num-
bered correspondingly. By q j we denote the fraction of time the system is in period j,
j = 1, . . . , 4 N . Let interval (i, j) consist of the periods i, i+ 1, . . . , i+ j− 1. For the mean
cycle length we have E[C] = 2E[S]/(1− ρ), cf. (13.2.1), and the mean visit times to
the queues E[ViG] and E[ViE

] are derived in Section 13.3.1. Recall that the switch-over
times to Q i served gated and served exhaustively are probabilistically identical.

System of equations. We derive a system of equations in order to determine E[Wi].
Let E[WiG] denote the mean waiting time of a type i customer receiving gated service,
and E[WiE

] denote the mean waiting time for one receiving exhaustive service. For these
we have, for i = 1, . . . , N ,

E[Wi] = qG,iE[WiG] + qE,iE[WiE
], (13.3.8)

where qG,i denotes the fraction of type i customers that will receive gated service, and qE,i
the fraction that will receive exhaustive service. Clearly qE,i = 1− qG,i .

Let E[LiG] and E[LiE
] be the mean number of waiting type i customers in the system

that will receive gated, respectively exhaustive service. Then, for i = 1, . . . , N ,

E[Li] = E[LiG] +E[LiE
].

There are type i customers in the system waiting for exhaustive service during the periods
2i, . . . , 2 N + 2i, and type i customers waiting for gated service during the periods 2 N +
2i + 1, . . . , 4 N , 1, . . . , 2i. These two intervals are almost complementary; only during
period 2i, which is the visit to Q iG , both types of customers can be simultaneously present
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in the system: the ones that will receive (gated) service during this period and the ones
that have arrived in this period, but who have to wait until the next (exhaustive) service
to the queue. Hence we obtain, by PASTA, the following expressions, i = 1, . . . , N ,

qG,i =
2i−1
∑

j=2 N+2i+1

q j , qE,i =
2 N+2i
∑

j=2i

q j , (13.3.9)

where the summation for qG,i should be understood to be cyclical, i.e., over all j ∈ {2 N+
2i+ 1, . . . , 4 N , 1, . . . , 2i− 1}.

Denote by λiG and λiE
the arrival rates of type i customers that will be served gated,

respectively exhaustively. So, for i = 1, . . . , N ,

λiG = λi qG,i , λiE
= λi qE,i .

Little’s Law gives the following relations, for i = 1, . . . , N ,

E[LiG] = λiGE[WiG], E[LiE
] = λiE

E[WiE
].

By E[Li j] we denote the mean number of type i customers waiting in the queue during
period j, for i = 1, . . . , N and j = 1, . . . , 4 N . Hence, we have, for i = 1, . . . , N ,

E[Li] =
4 N
∑

j=1

q jE[Li j].

During a gated service to Q i , which is period 2i, we distinguish between type i customers
that will still receive service during this period (the ones before the gate), and type i
customers that have to wait until the next visit of the server to the queue. These last ones
are those type i customers that arrived during this period, and so, as the service discipline
is gated, will not receive service any more in this period. By L̄i,2i we denote the ones that
will receive service, and by L̃i,2i the ones that have to wait. We have Li,2i = L̄i,2i + L̃i,2i .
Analogously to (13.3.9), this gives, for i = 1, . . . , N ,

E[LiG] = q2iE[ L̄i,2i] +
2i−1
∑

j=2 N+2i+1

q jE[Li j],

E[LiE
] = q2iE[ L̃i,2i] +

2 N+2i
∑

j=2i+1

q jE[Li j],

where the summation for E[LiG] should again be understood to be cyclical.
By making use of the PASTA property we obtain for the mean waiting time of a gated

type i customer,

E[WiG] =
E[LiG]− q2iE[ L̄i,2i]

qG,i
E[Bi] +E[R2 N+2i+1,2 N−1], (13.3.10)

where Ri j denotes the residual time of the periods i, i + 1, . . . , i + j − 1. This expres-
sion can be interpreted as follows. A type i customer that will receive gated service,
has to arrive in the periods 2 N + 2i + 1, . . . , 4 N , 1, . . . , 2i − 1, consisting of 2 N − 1
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periods, and in which the system is a fraction qG,i of the time. Arriving customers
have to wait for the services of all customers already present in the queue, and for
the time it takes before the server starts working on Q i again. The latter time has
mean duration E[R2 N+2i+1,2 N−1]. On arrival of a type i customer, there are on aver-

age
∑2i−1

j=2 N+2i+1 q jE[Li j] = E[LiG]− q2iE[ L̄i,2i] type i customers already present in the
system, all having mean service time E[Bi].

For the exhaustive type i customers we similarly find, for i = 1, . . . , N :

E[WiE
] =

E[LiE
]

qE,i
E[Bi] +

q2i + . . .+ q2i+2 N−1

qE,i
E[R2i,2 N−1] +

q2i+2 N

qE,i
E[Bi

res]. (13.3.11)

This gives a system of equations for E[Wi], E[WiG], E[WiE
], E[Li], E[LiG], E[LiE

] which
can be solved, provided E[Ri j] and E[Li j] are known. The required equations for E[Ri j]
and E[Li j] are derived in the next section.

Residual periods and conditional queue lengths. We now derive a set of equations
relating E[Ri j] and E[Li j]. At the end of an exhaustive service to Q i , this queue is empty.
From this moment on, the number of type i customers in the system increases at rate λi .
As the residual duration of a period is in distribution equal to the amount of time already
elapsed, so are their means. Hence

λiE[R2 N+2i+1, j] =

∑ j
k=1 q2 N+2i+kE[Li,2 N+2i+k]

∑ j
l=1 q2 N+2i+l

,

for i = 1, . . . , N and j = 1, . . . , 2 N − 1.
The same idea applies to gated service. But now, at the beginning of a gated service

to Q i , there are no type i customers behind the gate, and from this moment on their
number starts to increase at rate λi . This gives

λiE[R2i, j] =
q2iE[ L̃i,21] +

∑ j−1
k=1 q2i+kE[Li,2i+k]

∑ j−1
l=0 q2i+l

,

for i = 1, . . . , N and j = 1, . . . , 2 N , where an empty sum equals zero.
Another way to express E[Ri j] is to determine the expected residual duration of an

(i, j) interval based on the mean queue lengths at an arbitrary epoch during this interval.
First we consider the case j = 1. For i odd, a residual (i, 1) period is just a residual
switch-over time, so

E[Ri,1] = E[Si
res], E[R2 N+i,1] = E[Si

res], i = 1,3, . . . , 2 N − 1.

The residual time of a visit time at Q i served gated satisfies

E[R2i,1] = E[Bi
res] +E[ L̄i,2i]E[Bi],

for i = 1, . . . , N . First we have to wait for the residual service time of the customer in
service, and then for the service of the L̄i,2i customers in front of the gate. In case Q i
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is served exhaustively, we have to wait for the busy periods induced by the customers
present, yielding for i = 1, . . . , N :

E[R2 N+2i,1] =
E[Bi

res]
1−ρi

+E[Li,2 N+2i]
E[Bi]
1−ρi

.

We now consider j = 2, in which case it is convenient to introduce qi, j defined as the
sum of qi , . . . , qi+ j−1. With probability qi+1/qi,2 the residual (i, 2) period is equal to the
residual (i + 1,1) period. With probability qi/qi,2 it is equal to the residual (i, 1) period
plus either a switch-over time (if i is even) or plus the busy period incurred by the number
of customers present in the system and that of those arriving during the residual (i, 1)
period (if i is odd). This yields, for i = 1, . . . , N ,

E[R2i−1,2] =
q2i−1

q2i−1,2

�

E[Si
res](1+ρi) +E[Li,2i−1]E[Bi]

�

+
q2i

q2i−1,2
E[R2i,1],

E[R2i,2] =
q2i

q2i,2

�

E[R2i,1] +E[Si+1]
�

+
q2i+1

q2i,2
E[R2i+1,1],

E[R2 N+2i−1,2] =
q2 N+2i−1

q2 N+2i−1,2

�

E[Si
res]

1−ρi
+E[Li,2 N+2i−1]

E[Bi]
1−ρi

�

+
q2 N+2i

q2 N+2i−1,2
E[R2 N+2i,1],

E[R2 N+2i,2] =
q2 N+2i

q2 N+2i,2

�

E[R2 N+2i,1] +E[Si+1]
�

+
q2 N+2i+1

q2 N+2i,2
E[R2 N+2i+1,1],

where 2 N + 2 N + 1 is assumed to equal 1 as the system is cyclic. This can be readily
extended to j > 2: with probability qi+1, j−1/qi, j the residual (i, j) period is equal to the
residual (i+1, j−1) period, and otherwise, it is equal to the residual (i, 1) period plus an
(i+ 1, j− 1) period, the mean length of which is determined by the mean queue lengths
during period i. The resulting expressions are rather lengthy, and therefore omitted.

We thus obtain sufficiently many equations to determine the unknowns E[Ri j] and
E[Li j], hence E[WiG] and E[WiE

] follow from (13.3.10) and (13.3.11), respectively.
Then, using (13.3.8), the mean waiting times E[Wi] follow.

13.3.5 Multi-type Branching Processes

In Resing [160] it is shown that for polling systems with gated or exhaustive service
disciplines, the joint queue length process at the beginning of a visit time at a fixed queue,
is a Multi-type Branching Process (MTBP), see Section 9.3.3. This gives expressions for
the generating functions of the joint queue length distributions at these times.

If the service discipline in each queue satisfies the branching property, cf. [160, Prop-
erty 1], then the queue length process at polling instants of a fixed queue is a multi-type
branching process (MTBP) with immigration in each state. The gated, exhaustive, and
G/E service disciplines do satisfy this branching property. Hence, if the server arrives at Q i
and it finds ki customers there, during the visit of the server each of these ki customers is
replaced in an i.i.d. way by a random population, having probability generating function
(pgf) hi(z1, z2, . . . , zN ). For the gated and exhaustive service discipline, respectively, hi is
given in (9.3.9), and in (9.3.8), respectively, and the immigration pgf g(z1, z2, . . . , zN ) is
as given in (9.3.11).
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For the G/E discipline, we have to adapt the hi and g. Replacing λ j by λ ji (see
Section 13.3.3) in the hi , we find:

(G) hG
i (z1, z2, . . . , zN ) = βi





N
∑

j=1

λ ji(1− z j)



 , (13.3.12)

(E) hE
i (z1, z2, . . . , zN ) = θi





∑

j 6=i

λ ji(1− z j)



 , (13.3.13)

and replacing λk by µki in g gives:

g(z1, z2, . . . , zN ) =
N
∏

i=1

σi

� i
∑

k=1

µki(1− zk) +
N
∑

k=i+1

µki(1− f (k)(z1, z2, . . . , zN ))
�

.

(13.3.14)

As the service disciplines are either gated or exhaustive, they do satisfy the Branching
Property, with pgf hG

i or hE
i respectively, and immigration process g(z1, z2, . . . , zN ).

In order to analyze the G/E discipline, we can now follow the same procedure as
described in Section 9.3.3, with 2 N queues and the λi j and µi j as given in (13.3.6)
and (13.3.7) respectively. Using hG

i and hE
i of (13.3.12) and (13.3.13) respectively, we

can by (9.3.10) calculate the offspring pgfs f (i)(z1, z2, . . . , z2 N ) for i = 1, . . . , 2 N . In
combination with g(z1, z2, . . . , z2 N ) of (13.3.14), the pgf of the stationary distribution
π( j1, j2, . . . , j2 N ) follows by (9.3.12). This is the pgf of the number of customers present
in the system at the moment that the server starts working on Q1 according to the gated
discipline. By renumbering the queues, we can in the same way find expressions for the
moment that the server starts working on Q i , i = 2, . . . , 2 N , i.e. to Q i , i = 1, . . . , N served
either gated or exhaustively. Also, we can use (9.3.14), in combination with (9.3.13), to
find the LST of the waiting time distribution.

13.4 Comparison of gated and exhaustive strategies

We compare gated and exhaustive strategies for a system with two queues where λ1 =
0.6, λ2 = 0.2, and E[Si] = 1, E[Si

res] = 1, E[Bi] = 1, E[Bi
res] = 1, for i = 1, 2. This

is the same example as in [210], in which, using MVA, mean waiting times are derived
in case both queues are served purely gated, purely exhaustively and mixed gated and
exhaustively. The performance of these strategies is shown in Table 13.1, together with
the results for the G/E strategy, starting the cycle either at Q1 or Q2. Namely, as the
G/E strategy is not symmetric, this leads to different mean waiting times, although the
weighted sum (i.e., the mean amount of work in the system) is the same for both cases.

From Table 13.1 we see that the weighted sum of the expected waiting times is min-
imal, when both queues are served exhaustively, as is to be expected, since in this dis-
cipline the server does not unnecessarily switch to the other queue when there is still
work at the current queue. Serving both queues gated gives the highest weighted sum of
mean waiting times, but this strategy is more fair to the queues, as the difference in the
mean waiting times is smaller. The weighted sum of the mean waiting times for the two
strategies, where one queue is served exhaustively and the other gated, is bigger than for
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Strategy ρ1E[W1]+ |E[W1]−
Q1 Q2 Q1 Q2 E[W1] E[W2] ρ2E[W2] E[W2]|

E E E E 5.50 11.50 5.6 6.00
G G G G 12.77 9.69 9.6 3.08
E G E G 5.04 14.88 6.0 9.84
G E G E 6.64 13.12 6.6 6.48
G G E E 6.96 12.11 6.6 5.15
E G G E 6.84 12.47 6.6 5.63

Table 13.1: Comparison of the mean waiting times for a polling system with 2 queues.

purely exhaustive, and these strategies are less fair. On the other hand, the G/E strategy,
starting the cycle at Q1, is more fair than purely exhaustive, and the weighted sum of the
mean waiting times is only a little larger. Starting the G/E strategy at Q2 does not lead
to more fairness.

The given strategies try to achieve fairness in waiting times at the expense of (slightly)
higher waiting times. The price paid, however, seems to be far less than that in the case
of the two-stage gated service discipline [185]; this strategy achieves more fairness than
purely gated service, but the mean waiting times increase by roughly an expected cycle
time.

Based on the intuition as explained in the introduction, we initially expected that the
G/E discipline would lead to small differences in mean waiting times, and hence more
fairness. This clearly turns out not to be the case, probably because the mean visit times at
the queues differ quite a lot: in this example we have {E[V1G

],E[V2G
],E[V1E

],E[V2E
]}=

{3, 1,9, 3}. Hence, roughly three quarter of the time the system is in the exhaustive part
of the cycle, which explains why the mean waiting times of the exhaustive case dominate
the ones for the G/E case. Further research should provide more insight in the potential
of achieving fairness by making cycles of one or more gated visits to the queues, followed
by one or more cycles of exhaustive visits.

13.5 Conclusion and discussion

In this work we introduced the Gated/Exhaustive service discipline for polling systems.
We derived a Pseudo Conservation Law for the mean waiting times, and used Mean Value
Analysis and Multi-type Branching Processes to derive the (mean) waiting times at each
of the queues, using the concept of Smart Customers. We numerically compared the
mean waiting times in the Gated/Exhaustive discipline to number of mixtures of gated
and exhaustive strategies, for the case of two queues. This disproved the idea that the
Gated/Exhaustive discipline would lead to almost identical mean waiting times at all
queues.

A possible topic for further study is to devise polling systems that do lead to better
equalized mean waiting times. In Chapter 12 we introduced the κ-gated discipline for
this reason. Also, one could think of the following:

(i) Other mixes of gated and exhaustive services, e.g., gated and exhaustive cycles in
a ratio of kG : kE for some kG and kE to be determined. We could vary the order in which
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the cycles are applied, e.g. G−E−G−E−G repetitively, or we could take different ratios
for each of the queues.

(ii) A mixed strategy of exhaustive and gated services, where the one chosen depends
on a coin flip. There are multiple ways to do this. One way is to flip a coin at the
beginning of a cycle and let this determine whether we do the entire round gated services
or exhaustive services. Another way would be to decide this at each queue separately,
at the moment the server arrives. For both cases, we could also let these probabilities
depend on whether a gated or an exhaustive service was previously applied to the cycle
respectively the queue, in that way letting the order of strategies become a Markov chain.

(iii) The fractional gated policy or fractional exhaustive policy [128]. In these strate-
gies, for each of the customers it is decided whether or not it will be served during this
visit of the server to the queue.

(iv) The Gated/Exhaustive policy applied to non-cyclic polling systems, like systems
with fixed polling tables [17, 35] (e.g. Q1,Q2,Q1,Q3 repetitively). As such a model fits
into the framework of branching type models [160] and that of smart customers, the
analysis for a given polling table could be done along the same lines as the analysis
discussed in this chapter.

The parameters in the above mentioned strategies could be chosen in such a way as
to equalize the mean waiting times, by minimizing the difference between the largest
and the smallest mean waiting time; they could also be chosen such that they optimize
some other performance measure.
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[43] Ö. Bulut and M.M. Fadıloğlu. Production control and stock rationing for a make-to-stock
system with parallel production channels. IIE Transactions, 43(6):432–450, 2011.

[44] K.E. Caggiano, P.L. Jackson, J.A. Muckstadt, and J.A. Rappold. Efficient computation of time-
based customer service levels in a multi-item, multi-echelon supply chain: A practical ap-
proach for inventory optimization. European Journal of Operational Research, 199(3):744–
749, 2009.

[45] S. Carr and I. Duenyas. Optimal admission control and sequencing in a make-to-
stock/make-to-order production system. Operations Research, 48(5):709–720, 2000.

[46] K.D. Cattani and G.C. Souza. Inventory rationing and shipment flexibility alternatives for
direct market firms. Production and Operations Management, 11(4):441–457, 2002.

[47] S. Chen, J. Xu, and Y. Feng. A partial characterization of the optimal ordering/rationing
policy for a periodic review system with two demand classes and backordering. Naval
Research Logistics, 57(4):330–341, 2010.

[48] E. Chew, L. Lee, and S. Liu. Dynamic rationing and ordering policies for multiple demand
classes. OR Spectrum, To appear, DOI: 10.1007/s00291-011-0239-2:1–25, 2011.

[49] W.K. Ching. Markov-modulated Poisson processes for multi-location inventory problems.
International Journal of Production Economics, 53(2):217–223, 1997.



244 BIBLIOGRAPHY

[50] W.K. Ching, R.H. Chan, and X.Y. Zhou. Circulant preconditioners for Markov-modulated
Poisson processes and their applications to manufacturing systems. SIAM Journal on Matrix
Analysis and Applications, 18(2):464–481, 1997.

[51] E.B. Çil, E.L. Örmeci, and F. Karaesmen. Effects of system parameters on the optimal policy
structure in a class of queueing control problems. Queueing Systems, 61(4):273–304, 2009.

[52] A.J. Clark and H. Scarf. Optimal policies for a multi-echelon inventory problem. Manage-
ment Science, 6(4):475–490, 1960.

[53] M.A. Cohen, N. Agrawal, and V. Agrawal. Winning in the aftermarket. Harvard Business
Review, 84(5):129–138, 2006.

[54] M.A. Cohen, P.R. Kleindorfer, and H.L. Lee. Service constrained (s, S) inventory systems with
priority demand classes and lost sales. Management Science, 4(34):482–499, 1988.

[55] M.A. Cohen and H.L. Lee. Out of touch with customer needs? Spare parts and after sales
service. Sloan Management Review, 31(2):55–66, 1990.

[56] R.B. Cooper. Queues served in cyclic order: Waiting times. Bell System Technical Journal,
49(3):399–413, 1970.

[57] R.B. Cooper and G. Murray. Queues served in cyclic order. Bell System Technical Journal,
48(3):675–689, 1969.

[58] C. Das. Supply and redistribution rules for two-location inventory systems: One-period
analysis. Management Science, 21(7):765–776, 1975.

[59] F. de Véricourt, F. Karaesmen, and Y. Dallery. Assessing the benefits of different stock-
allocation policies for a make-to-stock production system. Manufacturing & Service Oper-
ations Management, 3(2):105–121, 2001.

[60] F. de Véricourt, F. Karaesmen, and Y. Dallery. Optimal stock allocation for a capacitated
supply system. Management Science, 48(11):1486–1501, 2002.

[61] R. Dekker, R.M. Hill, M.J. Kleijn, and R.H. Teunter. On the (S − 1, S) lost sales inventory
model with priority demand classes. Naval Research Logistics, 49(6):593–610, 2002.

[62] R. Dekker, M.J. Kleijn, and P.J. De Rooij. A spare parts stocking policy based on equipment
criticality. International Journal of Production Economics, 56–57:69–77, 1998.

[63] V. Deshpande, M.A. Cohen, and K. Donohue. A threshold inventory rationing policy for
service-differentiated demand classes. Management Science, 49(6):683–703, 2003.

[64] J.L. Dorsman, R.D. van der Mei, and E.M.M. Winands. A new method for deriving waiting-
time approximations in polling systems with renewal arrivals. Stochastic Models, 27(2):318–
332, 2011.

[65] J.L. Dorsman, R.D. van der Mei, and E.M.M Winands. Polling systems with batch service.
OR Spectrum, To appear, DOI: 10.1007/s00291-011-0275-y, 2011.

[66] S. Duran, T. Liu, D. Simchi-Levi, and J.L. Swann. Optimal production and inventory policies
of priority and price-differentiated customers. IIE Transactions, 39(9):845–861, 2007.

[67] R. Ehrhardt. (s, S) Policies for a dynamic inventory model with stochastic lead times. Oper-
ations Research, 32(1):121–132, 1984.



BIBLIOGRAPHY 245

[68] M. Eisenberg. Queues with periodic service and changeover time. Operations Research,
20(2):440–451, 1972.

[69] P. Enders, I.J.B.F. Adan, A. Scheller-Wolf, and G.J. van Houtum. Inventory rationing for a
system with heterogeneous customer classes. Working paper 2008-E2, Tepper School of
Business, Carnegie Mellon University, 2008.

[70] D. Erlenkotter. Ford Whitman Harris and the economic order quantity model. Operations
Research, 38(6):937–946, 1990.

[71] R.V. Evans. Sales and restocking policies in a single item inventory system. Management
Science, 14(7):463–472, 1968.

[72] D. Everitt. Simple approximations for token rings. IEEE Transactions on Communications,
34(7):719–721, 1986.

[73] P.T. Evers. Heuristics for assessing emergency transshipments. European Journal of Opera-
tional Research, 129(2):311–316, 2001.
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[75] M.M. Fadıloğlu and Ö. Bulut. A dynamic rationing policy for continuous-review inventory
systems. European Journal of Operational Research, 202(3):675–685, 2010.

[76] G. Fayolle, P.J.B. King, and I. Mitrani. The solution of certain two-dimensional Markov
models. Advances in Applied Probability, 14(2):295–308, 1982.

[77] E.A. Feinberg and X. Zhang. Switching on and off the full capacity of an M/M/∞ queue.
In Proceedings of the 50th IEEE Conference on Decision and Control and European Control
Conference (CDC-ECC), pages 7678–7683, 2011.

[78] M. Ferguson and Y. Aminetzah. Exact results for nonsymmetric token ring systems. IEEE
Transactions on Communications, 33(3):223–231, 1985.

[79] M.J. Fischer, C.M. Harris, and J. Xie. An interpolation approximation for expected wait in a
time-limited polling system. Computers & Operations Research, 27(4):353–366, 2000.

[80] W. Fischer and K. Meier-Hellstern. The Markov-modulated Poisson process (MMPP) cook-
book. Performance Evaluation, 18(2):149–171, 1993.

[81] K.C. Frank, R.Q. Zhang, and I. Duenyas. Optimal policies for inventory systems with priority
demand classes. Operations Research, 51(6):993–1002, 2003.

[82] C. Fricker and M.R. Jaibi. Monotonicity and stability of periodic polling models. Queueing
Systems, 15(1):211–238, 1994.

[83] S.W. Fuhrmann. Performance analysis of a class of cyclic schedules. Bell Laboratories Tech-
nical Memorandom, 81–59531–1, 1981.

[84] S.W. Fuhrmann and R.B. Cooper. Stochastic decompositions in the M/G/1 queue with
generalized vacations. Operations Research, 33(5):1117–1129, 1985.

[85] A. Gandhi, V. Gupta, M. Harchol-Balter, and M.A. Kozuch. Optimality analysis of energy-
performance trade-off for server farm management. Performance Evaluation, 67(11):1155–
1171, 2010.



246 BIBLIOGRAPHY

[86] A. Gandhi, M. Harchol-Balter, R. Das, and C. Lefurgy. Optimal power allocation in server
farms. In Proceedings of the 2009 Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS), pages 157–168. ACM, 2009.

[87] N. Gans, G. Koole, and A. Mandelbaum. Telephone call centers: Tutorial, review, and
research prospects. Manufacturing and Service Operations Management, 5(2):79–141, 2003.

[88] J.P. Gayon, F. de Véricourt, and F. Karaesmen. Stock rationing in an M/Er/1 multi-class
make-to-stock queue with backorders. IIE Transactions, 41(12):1096–1109, 2009.

[89] Y. Gong and R. de Koster. A polling-based dynamic order picking system for online retailers.
IIE Transactions, 40(11):1070–1082, 2008.

[90] J. Grahovac and A. Chakravarty. Sharing and lateral transshipment of inventory in a supply
chain with expensive low-demand items. Management Science, 47(4):579–594, 2001.

[91] C.M. Grinstead and J.L. Snell. Introduction to probability. American Mathematical Society,
1997.

[92] W.P. Groenendijk. Waiting-time approximations for cyclic-service systems with mixed service
strategies. In Proceedings of the 12th International Teletraffic Congress (ITC), pages 1434–
1441, 1989.

[93] D. Gross. Centralized inventory control in multilocation supply systems. In H.E. Scarf, D.M.
Gilford, and M.W. Shelly, editors, Multistage Inventory Models and Techniques, pages 47–84.
Stanford University Press, Stanford, CA, 1963.

[94] A.Y. Ha. Inventory rationing in a make-to-stock production system with several demand
classes and lost sales. Management Science, 43(8):1093–1103, 1997.

[95] A.Y. Ha. Stock-rationing policy for a make-to-stock production system with two priority
classes and backordering. Naval Research Logistics, 44(5):457–472, 1997.

[96] A.Y. Ha. Stock rationing in an M/Ek/1 make-to-stock queue. Management Science,
46(1):77–87, 2000.

[97] G. Hadley and T.M. Whitin. Analysis of inventory systems. Prentice Hall, 1963.

[98] B. Hajek. Extremal splittings of point processes. Mathematics of Operations Research,
10(4):543–556, 1985.

[99] F.W. Harris. How many parts to make at once. Factory, The Magazine of Management,
10(2):135–136, 152, 1913.

[100] F.W. Harris. How many parts to make at once. Operations Research, 38(6):947–950, 1990.

[101] H.C. Haynsworth and B.A. Price. A model for use in the rationing of inventory during lead
time. Naval Research Logistics, 36(4):491–506, 1989.

[102] H. Heffes and D. Lucantoni. A Markov modulated characterization of packetized voice and
data traffic and related statistical multiplexer performance. IEEE Journal on Selected Areas
in Communications, 4(6):856–868, 1986.

[103] Y.T. Herer and M. Tzur. The dynamic transshipment problem. Naval Research Logistics,
48(5):386–408, 2001.



BIBLIOGRAPHY 247

[104] Y.T. Herer, M. Tzur, and E. Yücesan. The multilocation transshipment problem. IIE Transac-
tions, 38(3):185–200, 2006.

[105] C. Howard, I.C. Reijnen, J. Marklund, and T. Tan. Using pipeline information in a multi-
echelon spare parts inventory system. Working paper, Eindhoven University of Technology,
2010.

[106] X. Hu, I. Duenyas, and R. Kapuscinski. Optimal joint inventory and transshipment control
under uncertain capacity. Operations Research, 56(4):881–897, 2008.

[107] M. Jain and A. Jain. Working vacations queueing model with multiple types of server break-
downs. Applied Mathematical Modelling, 34(1):1–13, 2010.

[108] A. Kaplan. Stock rationing. Management Science, 15(5):260–267, 1969.

[109] J. Keilson and L.D. Servi. The distributional form of Little’s law and the Fuhrmann-Cooper
decomposition. Operations Research Letters, 9(4):239–247, 1990.
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SUMMARY

Pooling and Polling: Creation of Pooling in Inventory and
Queueing Models

The subject of the present monograph is the ‘Creation of Pooling in Inventory and Queue-
ing Models’. This research consists of the study of sharing a scarce resource (such as in-
ventory, server capacity, or production capacity) between multiple customer classes. This
is called pooling, where the goal is to achieve cost or waiting time reductions. For the in-
ventory and queueing models studied, both theoretical, scientific insights are generated,
as well as strategies which are applicable in practice.

This monograph consists of two parts: pooling and polling. In the first part, pooling
is applied to multi-location inventory models. It is studied how cost reduction can be
achieved by the use of stock transfers between local warehouses, so-called lateral trans-
shipments. In this way, stock is pooled between the warehouses. The setting is motivated
by a spare parts inventory network, where critical components of technically advanced
machines are kept on stock, to reduce down time durations. We create insights into the
question when lateral transshipments lead to cost reductions, by studying several models.

Firstly, a system with two stock points is studied, for which we completely charac-
terize the structure of the optimal policy, using dynamic programming. For this, we
formulate the model as a Markov decision process. We also derived conditions under
which simple, easy to implement, policies are always optimal, such as a hold back policy
and a complete pooling policy. Furthermore, we identified the parameter settings under
which cost savings can be achieved. Secondly, we characterize the optimal policy struc-
ture for a multi-location model where only one stock point issues lateral transshipments,
a so-called quick response warehouse. Thirdly, we apply the insights generated to the
general multi-location model with lateral transshipments. We propose the use of a hold
back policy, and construct a new approximation algorithm for deriving the performance
characteristics. It is based on the use of interrupted Poisson processes. The algorithm is
shown to be very accurate, and can be used for the optimization of the hold back levels,
the parameters of this class of policies. Also, we study related inventory models, where a
single stock point servers multiple customers classes.

Furthermore, in the first part, the pooling of server capacity is studied. For a two
queue model where the head-of-line processor sharing discipline is applied, we derive
the optimal control policy for dividing the servers attention, as well as for accepting
customers. Also, a server farm with an infinite number of servers is studied, where servers
can be turned off after a service completion in order to save costs. We characterize the
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optimal policy for this model.
In the second part of the thesis, polling models are studied, which are queueing sys-

tems where multiple queues are served by a single server. An application is the production
of multiple types of products on a single machine. In this way, the production capacity
is pooled between the product types. For the classical polling model, we derive a closed-
form approximation for the mean waiting time at each of the queues. The approximation
is based on the interpolation of light and heavy traffic results. Also, we study a system
with so-called smart customers, where the arrival rate at a queue depends on the position
of the server. Finally, we invent two new service disciplines (the gated/exhaustive and
the κ-gated discipline) for polling models, designed to yield ’fairness and efficiency’ in
the mean waiting times. That is, they result in almost equal mean waiting times at each
of the queues, without increasing the weighted sum of the mean waiting times too much.
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