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Preface 

In the past twenty-five years much has changed. Not the weather; that is still 
beyond our control. But the scientific climate did change, particularly in the field 
of operations research. On January 1, 1965, Gijs de Leve was appointed Professor 
in the Mathematics of Operations Research at the University of Amsterdam, in 
addition to his position at the Mathematical Centre in Amsterdam. At that time 
operations research was hardly recognized as a discipline in the Netherlands, nei
ther in academia nor in industry. Twenty-five years later, the situation is quite 
different. Dutch researchers are now preerninent, both in stochastic optimization 
and in mathematical programming. Many of them originate from the Amsterdam 
school of Gijs de Leve. 

The reputation of a scientist is not always determined by his number of publi
cations and the degree of mathematical sophistication achieved therein. Although 
creativity and sparkling ideas are characteristic of Gijs de Leve, he prefers to put 
others on the scent of new and exciting research. Eight dissertations with a broad 
spectrum of topics were completed under his supervision. Not only did he create a 
most stimulating research environment, but he has also invested much energy in 
the popularization of operations research in Dutch government and industry. 
Among his initiatives were the so-called 'working-weeks', where people from 
practice learned about new developments in the area. He also took the lead in 
establishing the national Research Community in the Mathematics of Operations 
Research and the annual Lunteren Conference, where Dutch OR workers meet 
each other informally. Binding people and groups together is the trademark of 
Gijs de Leve. It is with good reason that he is called the godfather of operations 
research in the Netherlands. 

The initiative to compile a Liber Arnicorum for Gijs de Leve on the occasion of 
his silver jubilee as Professor at the University of Amsterdam met with an 
enthusiastic response from his (ex-)associates and students. Our editorial tasks 
were further alleviated by the willingness of the CWI to publish this book, by the 
indefatigable efforts of Wim Aspers and Yvonne Samseer in producing it, and by 
the help of the CWI library staff in compiling the list of publications. 

Amsterdam/ Eindhoven 
December 1989 

Jan Karel Lenstra 
HenkTijms 

Ton Volgenant 
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Decision support: challenges, opportunities, and 

limitations of operations research 

1. INTRODUCTION 

J.Chr. van Dalen 
Open University of the Netherlands 

Heer/en 

It is quite a difference between the very first developments of linear program
ming to the state of the art of operations research nowadays. On the one hand 
it took a short period of time, compared with developments in other discip
lines. On the other hand the development path shows a variety of directions. 
Methodologically one can identify several theoretical and computational 
varieties. Applications are elaborated in several fields, due to differences in 
problems to be solved and sectors of industry to be served. Even in the non
profit sector applications of operations research (henceforth abbreviated as 
OR) are more or less normal practice. With the rise of other disciplines, espe
cially in the field of information and communication technology, the use of 
OR techniques is emerging in managerial life more and more. 

This aspect, more formally called 'the contribution of OR to managerial 
decision making', will be the main issue in this contribution. As a consequence 
its scope is broader than - mathematical - problem solving itself, and covers 
the process of decision making and its organization too. It is interesting to see 
how OR matches with common decision culture of management in organiza
tions of different origins, while it is as interesting to conclude that OR - as a 
way of problem solving - has its beneficial impact on decision making itself. 
The idea of optimality e.g. has spread through whole decision making life. 
Whether it concerns investment, bargaining or political decision making, most 
participants in decision making have a notion of being constrained by condi
tions that prevent them from being greedy to the limit. They have learned to 
navigate in the feasible space between Scilla and Charibdis of e.g. resource lim
itations. So we may conclude that OR has not only contributed to the solution 
of managerial problems themselves, but also to the decision making attitude of 
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managers (and non-managers) engaged in problem solving. 

2. DECISION MAKING IN ORGANIZATIONS 

Decision making, especially managerial decision making, can be distinguished 
in a variety of ways. The reader can be given a lot of references to the abun
dance of publications on decision making (e.g., Cyert & March, 1962; Hanken, 
1981; Mintzberg et al., 1976; Saaty, 1981; Simon, 1960, 1979) out of the rich 
history of decision making research. We will follow some of the recognized dis
tinctions to clarify the role of decision making in organization and manage
ment. The first distinction to be mentioned is between levels in decision mak
ing: 
- Strategic decision making, regularly connected with long terms, broad refer
ences, goal setting activities, etc. Strategic decision making mostly implies high 
levels of uncertainty, speculations about future developments in the system 
considered. It asks for an intensive thinking process of participants and takes 
quite a long period of preparation. Complexity is challenging the decision 
maker. One can think of long term investments in Research and Development 
of new products for certain (new) markets as an example of this kind of deci
sion making. 
- Tactical decision making is constrained by the outcomes of a strategic deci
sion process. The decision making freedom is less. In a certain sense tactical 
decision making is the execution of strategic decision making. The decision 
horizon (like a planning horizon) is shorter than with strategic decisions. The 
tactical decision making asks for less - cognitive - effort of the participating 
decision makers. Corresponding to the example mentioned before, the execu
tion of the R&D investment program by means of the procurement of labora
tory equipment can be added as an example of the tactical continuation of the 
decision making process. 
- Operational decision making is seen as the lowest level of decision making, 
constrained by tactical decision making. Mostly procedures and rituals are 
leading the decision maker. The decision horizon is short, and feed back from 
factual execution of the decisions is direct. The use of the laboratory equip
ment is an example of this kind of decision making. 

Before suggesting some typical application modes of OR with respect to 
these kinds of decision making, we will treat another distinction of decision 
making in two levels: 
- individual decision making; 
- organizational decision making. 

Individual decision making refers to one actor decision models, the actor 
being a person. Especially when dealing with managerial decision making it is 
of interest to know e.g. how individual managers make their decisions, what 
information they use, how they treat the acquired information, how their 
interaction with their environments is taking place etc. All these aspects of 
individual decision making have to do with psychological factors, with socio
logical factors, with economical, informational and technical factors, etc. 
Important is the cognitive treatment of information. The cognitive abilities of 
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managers determine largely the outcomes of the individual decision process. 
For every decision to be made it is necessary that the decision maker can rely 
on an adequate knowledge base and on some heuristic. Well known heuristics 
encompass rules like the minimax, the maximin, the lexicographic, the minimal 
loss and the equal probability rule. The application of a heuristic is related to 
an already existing goal. At this point difficulties may arise. E.g., what has to 
be done in the case of more than one goal. The famous multicriteria problem 
interfering with many well founded solution procedures emerges. OR theorists 
and practioners have struggled with the problem for years, and found - among 
others - solutions like conjunctive and disjunctive rules. 

Mostly individual decision making is supposed to be subject to conditions of 
rationality. Traditionally these conditions refer to (1) the possession of perfect 
information on choice alternatives and their consequences, (2) the sensitivity of 
the decision maker for the slightest differences in relevant variables, (3) coher
ence of the preference ordering of decision outcomes and (4) the constant 
search for maximal utility. When studying practical decision making it is useful 
not to take into account one form of rationality but to discriminate between 
some more. We distinguish as follows (see Vlek & Michon, 1980; Van Dalen, 
1987): 
- Representational rationality, referring to the ability of decision makers to 
design proper models of the decision problems to be solved. The individual 
decision maker will need an adequate image of his environment. 
- Goal rationality, referring to a logical coherent system of values underpinning 
the decision makers' decision goals. Most individual decision makers do rely 
on a hierarchical system of values and goals, guiding their decision making. 
- Methodological rationality, referring to the solution methods for decision 
problems. Some decision makers will try to build extensive heuristics, and will 
try for a long time to improve their solutions. Sometimes it will be apparent 
that decision makers construct intelligent solution procedures, without succeed
ing in the proper modelling of decision problems. 
- Metarationality, referring to the policy used by the individual decision maker 
with respect to the other three rationalities. A well balanced appeal to each of 
the three rationalities leads to a high valued meta rationality. Overestimation 
of one of the rationalities leads to a lesser value and mostly correspondingly to 
a less valuable decision outcome. One can imagine that over-emphasizing e.g. 
the representational rationality leads to a splendid model of the decision prob
lem, without being capable of solving it. Or, overemphasis of the methodologi
cal rationality will possibly lead to very sophisticated solution procedures 
without having a proper goal structure. 

So, one has to compromise with respect to the three rationalities in a clever 
and balanced way for the best achievable solution. 

So far we dealt with cognitive aspects of individual decision making only. 
Two other aspects of individual decision making are of interest for us too: the 
affective and the active aspects. For decision making and for its effectivity it is 
necessary that it is performed in concordance with the proper know-how of 
decision problems and decision making. However, it is as important that 
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decisions to be made and to be executed are affectively valued positively and 
are experienced as executable. Often one is confronted in organizations with 
decisions that are raising resistance and are never executed in the intended 
way (if executed at all). 

The other level of decision making, the organizational level, is characterized 
by other factors. However, scanning the literature, it seems that organizational 
decision making is supposed to be just of the same type as individual decision 
making. The same process is supposed, the same rationalities, the same way of 
handling information, etc. As Feldman & March (1981) observe: 'The classic 
representation of organizational choice is a simple extension of decision theory 
visions of individual choice. In particular, decisions are seen as derived from 
an estimate of uncertain consequences of possible actions and an estimate of 
uncertain future preferences for those consequences.' Nevertheless, organiza
tional decision making has to do with a more complex situation, due to -
among other things - the interaction of several actors. These actors - being 
groups or individuals - are not all equal. Some actors are more influential than 
others, or have more information to rely on. Voting and bargaining are intro
duced, sometimes treated as folkloristic, sometimes as intriguing mathematical 
processes. Optimal voting rules can be designed, bargaining games constructed. 

For the benefit of a proper insight, the organizational multi-actor decision 
making can be divided in three classes of decision systems (see Hanken, 1981 ), 
( 1) autocratic systems (in itself divided into hierarchical and poly hierarchical 
systems), (2) systems with collective decision making (divided into systems with 
voting, consensus systems and simple coalition systems) and (3) systems with 
individual decision making (divided into autonomous systems, bargaining sys
tems and general coalition systems). One of the intriguing differences between 
individual and organizational decision making refers to the - mental - mapping 
of decision problems and the solution alternatives. In the case of individual 
decision making we can describe the mapping or modelling procedure by 
means of a personality theory, the theory of personal constructs (Kelly, 1963). 
In the case of organizational decision making the modelling is often guided by 
theory based rules, shared by those engaged in the modelling exercise. Several 
approaches are advocated, some systems analysis like, some along the lines of 
mathematical logic, and so on. 

So far we neglected the process aspects of decision making in organizations. 
Several writers have been engaged in researching and describing decision 
processes in a normative or non-normative way (see Mintzberg et al., 1976; 
Davies & Morgan, 1982; Nutt, 1984). Enlighting is a decision process adopted 
from Davies and Morgan (see Van Dalen, 1987). This process encompasses 
four phases, together forrning a sequence in time, albeit that several times feed
back loops guarantee the adaptation to new circumstances. The process starts 
with a so-called garbage can phase, in which problems are competing with each 
other and with problem solutions, helped by participants with time and energy 
to commit themselves to these problems. This phase is specially dedicated to 
problem identification and model building. Several techniques are at hand and 
can be used. However, lots of process problems have to be solved first. E.g., 
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problems with respect to the bargaining as practiced by the - potential - parti
cipants in the game of solving a decision problem. OR can have a beneficial 
function with respect to this phase in clarifying problem structures and the sol
vability of problems. OR can have a beneficial function with respect to the 
bargaining process too (see Brams, Lucas & Straffin, 1983). 

The next phase in the schematic decision process is the political phase mainly 
consisting of negotiating activities. As a result of the activities in the former 
phase, the number of active participants is diminished. For mean-while, those 
persons who concluded that their interests are not so much at stake left the 
scene. 

The input to this phase is the output of the garbage can phase: a clear pic
ture of the nature of the decision problem and the goals to be reached. There 
is an agreement on the terms of reference and the remaining participants do 
share the picture of the decision problem. The second phase is characterized by 
informality, interaction of small groups of those directly concerned, bargaining 
and compromising and sometimes the active intervention of authoritative 
administrators (managers). The output of this phase mostly includes agreement 
on possible fields of solutions to the decision problem, with the supposition 
that these fields coincide with already existing policy lines. During this phase 
the number of active participants often is diminished further. 

In the third phase, main activities are directed towards the construction of a 
feasible solution to the decision process. To all the persons concerned it is 
clear that a definite solution has to be found. Sometimes bargains have to be 
reaffirmated, as a result of the testing of solutions against criteria of acceptabil
ity, feasibility, maintainability, etc. As a consequence of the ever diminishing 
number of active participants, the solution to be chosen in the end has to be 
legitimated to the broader group of those influenced by the solution or by the 
way the solution is implemented. So we call this phase the legitimation phase. 
The output of this phase can be characterized by e.g. an agreed line of action, 
commitment of several groups and persons to the solution (the decision), 
accepted guidelines for execution of the decision, etc. 

The last phase, called the implementation phase, ends with an operational 
decision or a policy-strategy, e.g. an optimal production schedule, that is main
tained over a longer period. As a consequence of the process idea, the execu
tion of the policy or the single decision will result in some kind of feed back, 
leading on its part to alterations in the optimizing program if necessary. 

It is interesting to infer from this presentation of several aspects of decision 
making what contributions can be expected from OR. To start with the pro
cess just presented, we can conclude that the obvious contribution will be in 
the area of model building, and it may be as obvious that model building has 
a function in bargaining processes as they are incorporated in the whole deci
sion 'building' process. The construction of alternative models, the probing of 
the models by simulation and sensitivity analysis, will support the participants 
engaged in bargaining and compromising on their way of arriving at a sound 
decision. A splendid example is the use of macro econometric models in the 
bargaining around the conception of a policy note at the level of national 
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government, or around the constitution of a new government (which is a regu
lar and repeated issue). Also within the area of strategy building in private 
firms the use of modeling is fruitful. The probing of scenario's with their own 
suppositions gives a valuable insight into the consequences of the actual reali
zation of decisions, policies, strategies, etc. These applications of OR in the 
context of organizational decision making are deviating from the original line 
of development, which was mainly in designing new solution techniques. So we 
may conclude that organizational practice has lead the development of OR in 
two main directions. The first one is about solution techniques, like LP, 
dynamic programming, networks, etc. The second one is in modelling problem 
situations. Quite a lot of different approaches have been developed, sometimes 
as an analogy of e.g. modelling techniques in informatics, sometimes as com
position of original OR techniques, matched with techniques from other discip
lines, as with scenario analysis. 

The main theme in the development and use of OR in theory and practice is 
the stress laid on decision making (or perhaps better: decision building) as a 
context for all activities in this area. With respect to the presented decision 
process we may emphasize that OR is used within the process as well as over 
the process. OR instruments can e.g. be used within the process as model 
building facility or as solution facility with respect to the decision problem at 
hand. But OR instruments can also be used as a facility over the whole deci
sion making process (or parts of it) e.g. in modeling bargaining constellations 
and designing optimal bargaining strategies. The composition of (working) 
groups may be approached with the help of OR too. 

An interesting and fairly new offspring of the vast tree of OR techniques, 
methods, procedures, etc. is the manipulation and effective preservation of 
knowledge. This line of development is well known as expert systems or 
artificial intelligence (see Van Dalen, 1989). Such a development is the splen
did blend of OR and IT (Information Technology). By means of all the new 
devices in IT, varying from sophisticated mainframes and PC's to networks in 
a variety of manifestations, it is possible now to use OR applications in a mul
titude of situations. Centrally as well as decentrally knowledge can be 
exploited in favor of sound decision making. Nevertheless, the applications of 

expert systems in practice are relatively scarce. Mostly their scope does not go 
beyond the diagnosis of problem situations, without reaching for solutions. 
However, these applications are valuable, while for situations that have to be 

characterized by large amounts of data, it is possible now to support the first 
decision making task: diagnosing the problem. 

3. OR AND STRATEGY 

Strategy is a concept with a long, and perhaps glorious, history. Well known is 
the meaning in the context of the military, in use for eras. It is used in con
trast with and in addition to concepts as tactics and operations. The concept is 
mostly connected with the flavour of broad viewing and high places, and posi
tions like those of generals. In this section we will treat the concept of strategy 
as in use in the field of OR as well as in the fields of business and 
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informatization. The strategic meaning of OR in organizational contexts will 
be dealt with too. 

The meaning of strategy in OR is less prestigious as in the military. Stra
tegy, being regarded as a synonym of policy, is interpreted as a decision rule, 
resulting in a decision at every point of time, given the existing state of the 
system under study and eventually given the history of the system during some 
period of time. Depending upon the characteristics of the system some speciali
zations of this interpretation can be given. One of the common specializations 
is the assumption of stationarity, resulting in decisions based solely on the 
existing state. Another specialization is introduced by the difference between 
finite and infinite horizons. The class of techniques related to the design of 
(optimal) strategies is - as a rule - labelled 'dynamic programming', suggesting 
by this title that ongoing change is a key feature of the connected type of deci
sion making. 

So far the meaning of strategy in the area of OR. In business organizations -
and in a growing rate in non-profit and governmental organizations - strategy 
is used in a variety of ways. The main difference is the use of the 
'phenomenon' internally or externally. Internally strategy is mostly connected 
with the ways people in organizations try to change the organization, to set 
agendas for innovations, to facilitate the diffusion process of innovations (the 
introduction of OR being one of them) in the organizational context, to 
influence others in e.g. bargaining situations, etc. This meaning is clearly 
related to the notion of dynamism that belongs to the make-up of the OR
interpretation of strategy. One can hold the statement that this type of strategy 
is constructing decisions on the basis of - at least - the current state of the 
organization. 

The external version of business strategies has to do with the entrepeneurial 
status of the organization, and is connected to the way the organization func
tions in its market-environment. A strategy is sometimes described as 'the fun
damental characteristics of the match that an organization achieves among its 
skills and resources and the opportunities and threats in its external environ
ment that enables it to achieve goals and objectives' (see Chrisman et al., 
1988). As an elaboration of the strategy concept several classifications are for
mulated, among which the classification of Miles & Snow (1978) is well 
known: 
- Prospectors, being organizations which almost continually search for market 
opportunities, and can be considered creators of change and uncertainty. 
These organizations are usually not completely efficient, but rather stress 
effectiveness. 
- Defenders, being organizations which have narrow product/market domains, 
and whose primary attention focuses on improving the efficiency of their exist
ing operations. 
- Analyzers, an intermediate organizational type, operating in one relatively 
stable and another relatively changing product/market domain. In the stable 
domain they operate routinely and efficient, in the more turbulent domains 
top-managers watch their competitors closely for new ideas and then rapidly 
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adopt those ideas which appear to be most promising. 
- Reactors, being organizations in which top-managers frequently perceive 
change occurring in their organizational environments, but are unable to 
respond effectively. They can lack a consistent strategy-structure relationship 

too. 
In addition to the elucidation of the last strategic type it may be stipulated 

that in theory and practice there is a continuing debate about the order rela
tion between strategy and structure of the organization, in the form of 'strategy 
follows structure' versus 'structure follows strategy'. 

The mutual importance of the organizational strategies and OR is twofold. 
On the one hand the strategic make-up of organizations really do structure the 
feasible space for OR applications. Some strategic types ask for strictly 
efficiency reenforcing OR approaches, while other types preferably are sup
ported by more loosely structured OR techniques. On the other hand it is the 
question whether and to what extent OR applications are supporting the stra
tegic position of organizations. This question is quite analogous to the one 
that is often posed with respect to the introduction of new technologies in 
organizations. Especially nowadays the introduction and diffusion of informa
tion and communication technology is questioned. As a consequence of the 

close relationship between OR and information technology (as stipulated ear
lier) one can make distinctions with respect to the strategic impact of OR 
applications as McFarlan (1983) makes with respect to information technology 

applications. Two kinds of strategic impact are important: 
- strategic impact of existing applications; 
- strategic impact of future applications (applications to be developed). 
The two types of impact function as dimensions of a double dichotomy - low 
and high impact - and generate four organization types, as follows: 
- Low impact of existing as well as future applications: support organization, 

referring to the fact that the effective functioning of the organization is not 
fully dependent on existing applications, while the development of new appli
cations is not essential for the effectivity of the organization too (examples can 
be found in chemical industries). 
- Low impact of existing, high impact of future applications: turnaround organ

ization, traditionally not very dependent on IT /OR applications, but with the 
development over time such applications are gaining importance. New produc
tion factories e.g. with their CAD/CAM practice and with the integration of 

production and administrative systems demonstrate the meaning of this type. 
- High impact of existing, low impact of future applications: factory type, tradi
tionally strongly relying on applications of OR/IT systems. Future activities 
in this area are directed towards maintenance of the existing applications. Lot 
of retail-organizations are examples of this type. 
- High impact of existing, as wel as future applications: strategic type. The 
effective functioning of the organization is strongly dependent on the function
ing of sophisticated information systems. Moreover the competitive strength of 
these organizations is based on the creative use of information and the 
development of new OR/IT applications. Banking industry and insurance 



Decision support and operations research 9 

companies are proper examples of this type. These kinds of organizations are 
sometimes labelled as 'expert companies' (see Feigenbaum, McCorduck & Nii, 
1988), because their success is mostly determined by the effective use of human 
or artificial expertise. 

So far the meaning of strategies in OR context is explained, with special 
emphasis on the strategic impact of OR applications (mostly in combination 
with IT applications). The four types of organizations just mentioned, are 
important as types themselves, but are far more important when placed in the 
context of change of organizations from one type to another. These transitions 
indicate the opportunities of OR applications. The character of OR applica
tions related to management tasks (as supportive to them) will be illustrated 
hereafter. 

4. VARIETIES OF OR CONTRIBUTIONS 

OR applications are related to decision making in organizations. Especially to 
managerial decision making. So some insight in the process of managerial work 
will be helpful. 

The main task of management in organizations can be characterized as coor
dination. Coordination between people, between people and machinery, 
between streams of information, etc. The coordination tasks will be analyzed 
by means of a model of the so called management cycle, encompassing four 
phases. The phases are based upon a two-dimensional decomposition of the set 
of possible coordination activities. One of the dimensions is the modelling 
dimension, referring to the circumstance that coordination can be founded on 
the reality of organizations itself, or in the model (the image) of reality. The 
other dimension introduces time as a coordination variable, by distinguishing 
between feed forward and feed back. These two dimensions together constitute 
a four phase management cycle as follows (see Van Dalen, 1987): 

model-based reality-based 

feed forward planning/ execution/ 
strategy implementation 

feed back learning/ evaluation/ 
adaptation control 

OR applications, as supportive means to managerial decision making must 
have somehow a relation to the four phases. Planning c.q. strategy applications 
are very common in the field of OR. Several techniques (e.g., scheduling, fore
casting, optimal lot-size) are developed and in operation. Mostly these applica
tions are really used as planning facilities. But alternative uses are not 
excluded. One such alternative is the use of a planning technique as a 
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diagnostic instrument (see Bronnenberg, 1989). Without exaggeration it may be 
stated that most applications of OR belong to the first phase of the manage
ment cycle. The following phase is receiving quite a lot attention too. In the 
reality of executing planned activities OR applications nowadays are often 
practised in combination with IT applications. One can think of transport pro
grams, supporting the actual transport, e.g. by interactive routing, dependent 
upon actual road conditions, changed destinations, etc. The programming of 
CAD/CAM machinery is another example. In the evaluation phase, a combi
nation of feed back and real activities, few applications are developed (e.g. 
related to quality control). Nevertheless decision problems do exist with 
respect to this phase, and applications certainly will be designed. 

The fourth phase is the most neglected phase: learning or adaptation. This 
phase is about the improvement of the organisation, its decision making and 
its management as a system. So OR applications in this phase should 
emphasize the change of the model building as prerequisite of planning. As 
mentioned earlier model building is not the strongest part of OR applications. 
Nevertheless energy should be devoted to this type of decision problem. 

The coordination activities, as reflected in the management cycle have to be 
connected with processes in the organization. Not restricted to the sector of 
private enterprises we can discriminate between seven essential processes, 
necessary for the continuity of an organization. Without suggesting any 
preemptive order between the processes they can be characterized by the fol
lowing labels (see Hanken & Van Dalen, 1987): 
- acquisition of new clients, sometimes new markets, or sometimes a combina-

tion of both; 
- research and development, necessary to design new products/services; 
- production and logistics, sometimes called the primary processes; 
- material resources, like production or facilitating machinery; 
- human resources, including tasks belonging to the personnel and organiza-

tion function; 
- financial resources, comprising both the acquisition as well as the distribu

tion of financial means; 
- informational resources, comprising traditional bookkeeping as well as inno-

vative diagnostic experiences. 
Each of the seven processes can be described with the help of systems theory 
tools. The simplest version of such a description uses the input-throughput
output metaphor, supplemented by supporting processes if necessary. An 
analysis based on such a description - focused on control (or decision making) 
mechanisms - will give insight into the behaviour of each of the processes and 
into the possibilities to exercise influence on them. With respect to the control 
of the processes, the phases of the management cycle are important as a frame
work for internal coordination. Moreover such an analysis is well suited for 
scanning the possibilities for OR applications. As an example we can take the 
financial resources process. The input of the process will be different types of 
funds, acquired in several ways. OR can be helpful in modelling the acquisi
tion problem, differentiating among distinguishable fund resources, taking into 
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account - among others - the cost of acquiring funds. In the end an optimal 
fund raising scheme might be possible to construct. 

The throughput of the financial resources process can be characterized as a 
distribution problem. The acquired funds have to be distributed among more 
or less profitable projects. The opportunities for OR applications are obvious. 
Portfolio e.g. is one of the promising approaches. The output of the financial 
resources process consists mainly of payments to outside creditors. Here too, 
one can identify several opportunities for OR applications. E.g. cash manage
ment is among them. In accordance to the line of analysis loosely presented 
here, all processes can be scanned globally and in detail. The opportunities 
and challenges of OR applications can be evaluated against criteria of feasibil
ity cost, quality, etc. 

So far the coordination within the seven essential processes. However, the 
seven processes have to be coordinated mutually too. This generates a more 
complex task. Coordination mechanisms must be created between processes. In 
the traditional work organization these types of coordination mechanisms are 
often effectuated by ad hoe interpersonal contact. But in the future - as is 
often stated - more emphasis will be laid upon coordination and accompanying 
communication by means of information technological devices. So one may 
expect that the need for formal systematic coordination will grow. This con
fronts us with a complex task of interlinking different processes, each with 
their own coordination policies. E.g. the human resources process has to be 
coordinated with the financial resources process, and with the material 
resources process (not to leave out of the discussion the production and the 
R&D process). Challenges for sophisticated OR applications in abundance! 

5. DISCUSSION 

In this contribution OR as a science and as an art is dealt with from the 
viewpoint of management. It is assumed that OR is supportive to managerial 
decision making in a broad sense. On the one hand OR contributes to proper 
coordination decisions, being the main theme of managerial work. On the 
other hand, a bit underexposed here, OR contributes to the proper production 
process in organizations, even to the product. More and more products are 
designed in such a way that a substantial component of the product itself con
sists of information and of some kind of optimization. The so called high-tech 
products are spreading all around the market, and nearly nobody can with
draw himself from the impact of these products. 

OR, this time seen as a product, has a variety of appearances, varying from 
just model building to sophisticated optimization, with mixtures of model 
building and local optimization in between. Several levels of problem formula
tion, e.g. used in a nested form, underline the wide applicability. This rich 
variety of appearances makes it possible to apply OR methods and techniques 
in a lot of decision situations. Nevertheless, there are boundaries restricting 
the use of OR. OR employs the language of mathematics as a vehicle to for
mulate decision problems. OR needs quantified criteria to solve such problems. 
More abstractly formulated, OR is applicable only in decision situations one 
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can describe by normative knowledge. Several examples of OR applications 
have shown that this normative knowledge is necessary, and sometimes has to 
be created artificially (e.g. in sensitivity analysis, simulation or penalty con
structions). 
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Assignment and shortest path problems 

B. Dorhout 
Faculty of Applied Mathematics 

University of Twente 
Enschede 

The author's algorithm for solving the linear assignment problem by means of a 
number of shortest path calculations is reviewed, and two simple postoptimal 
extensions are given. 

1. INTRODUCTION 

In 1973 a course was given at the Mathematical Centre in Amsterdam on the 
subject of mathematical programming. On that occasion the author was 
scheduled to give a lecture in which the properties of algorithms for the linear 
assignment problem would be compared. Thus he read a number of papers on 
the subject, tried out a couple of algorithms for which ALGOL-procedures 
were published, and wrote programs for the most promising algorithms for 
which no ALGOL-programs could be found. It came out that an algorithm 
described by Tomizawa (1971) gave the best results. Tomizawa solved an n Xn 
problem iteratively, starting with the solution of a 1 X 1 problem, and after
wards deriving from the optimal solution to a k X k problem the optimal solu
tion to a (k + l)X(k + 1) problem, fork = l, ... ,n -1. This was done by solv
ing shortest path problems. As it seemed possible to apply Tomizawa's ideas in 
a more efficient way, the author conducted a number of experiments that led 
to a revised algorithm which outperformed all other algorithms tested. The 
main differences with Tomizawa's algorithm are that k X n problems are 
solved, and that good start solutions are used. This approach to solving assign
ment problems appears to be very successful. The algorithm became well 
known after a FORTRAN-translation of the author's program was published 
in a book written by Burkard and Derigs (1980). It will be described in section 
2, in a way which is slightly different from its description by Dorhout (1973b ). 

In section 3 we will look at the increase of the objective value if an assign
ment is made obligatory. In particular we will show how the calculation of 
such increases can be made for more than one element simultaneously after the 
optimal solution of the assignment problem is obtained by our method. Only 
some further shortest path calculations have to be made which are of the same 
kind as those made in our algorithm. 
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In section 4 we describe an algorithm for the one-to-all shortest path prob
lem with arbitrary distances based on the same principles as those applied in 
the algorithm for the linear assignment problem. 

2. SOLVING THE ASSIGNMENT PROBLEM BY SHORTEST PATH AUGMENTATIONS 

We consider a complete directed bipartite graph G = (I,J,A) with node sets I 
and J of cardinality m and n, respectively. To all arcs (i,j)EA weights ciJ are 
attached. Without loss of generality we assume that m o;;;;;;n. The linear assign
ment problem is to find a maximum matching of minimum weight. This prob
lem can be formulated as an integer linear programming problem, but the 
integrality property of transportation problems allows us to leave out integral
ity constraints. If we define 

_ {l if j EJ is assigned (matched) to i El, 
xiJ - 0 otherwise, 

then we obtain the optimal solution of the assignment problem by solving its 
LP-relaxation: minimize 

subject to 

~ ~ ciJxiJ 
iE/ jEJ 

~Xij = 1, 
jEJ 

~xiJo;;;;;;l, 
iE/ 

(2.1) 

iEI, (2.2) 

jEJ, (2.3) 

iE/, jEJ. (2.4) 

In order to solve this problem, we choose an arbitrary subset I 1 <;;J with 
I I 1 I = I. Problem (2.1 ), ... ,(2.4), with I replaced by I 1 will be called (P 1 ). It 
can be solved by inspection. In subsequent iterations h is extended with one 
new element of I to h +i. k = 1, ... ,m - 1, with Im = I. In these iterations the 
optimal solutions to the corresponding problems (P 2 ), ••• ,(P m) are constructed. 
This is done by Dijkstra's method for the one-to-all shortest path problem with 
nonnegative distances. In each iteration the distances are changed in such a 
way that they never will become negative. This is possible if solutions of the 
dual problems are known. 

The dual linear programming problem (Dm) of (2.l), ... ,(2.4) is: maximize 

subject to 

~ U; - ~ Vj (2.5) 
iE/ jEJ 

ui -vj ,,;;;;;; ciJ, 

vj ;;;;;. 0, 

iE/, jEJ, 

jEJ. 

(2.6) 

(2.7) 
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The complementary slackness conditions for optimal solutions to (Pm) and 
(Dm) are: 

and 

xiJ > 0 implies u; -v1 = ciJ, i El, j EJ, 

'L xiJ < 1 implies v1 = 0, j EJ. 
iE/ 

(2.8) 

(2.9) 

Without loss of generality we may assume that I = {l,. . .,m }, I 1 = {l }, 
h = {1,. . .,k }, k = 2,. . .,m. Let Gk denote the complete subgraph of G with 
node sets Ik and J, and let Xk = {(i,j)lxt = I} be the matching found in 
iteration k. If we call matched all nodes incident with Xk and free all other 
nodes, then after iteration k all nodes of h are matched. The subset of free 
nodes of J will be denoted by Fk = U EJ I ~;El, xt = 0}. 

Problem (Pi) is solved easily: find t from c It = minJEJ c 11 . Then clearly 
optimal solutions to (P 1) and its dual problem (D 1) are: 

{
l if j = t, 

I -
x 11 - 0 otherwise, 

ul = C11, 

(2.10) 

(2.11) 

v) = 0, jEJ. (2.12) 

Now assume that optimal solutions xk to (Pk) and (uk,vk) to (Dk) are known. 
Using these, we find optimal solutions to (Pk+i) and (Dk+d by changing 
assignments on an alternating path. Such a path starts at the free node k + 1 
and ends in a free node of Fk. It consists of an alternating sequence of forward 
arcs (i,j)fl.Xk and backward arcs (i,j)EXk. After the path has been found we 
make assignments xt + 1 = 1 on its forward arcs and delete all assignments on 
its backward arcs, thus augmenting the number of assignments by 1. The fol
lowing steps are made. 
- Extend Gk to Gk+i. define u%+ 1 = min1EJ(ck+l,J+vj) and give length 

c;£ = ciJ - u7 + vj to each arc (i,j) of Gk + 1• Then ciJ ;;a.O by the definition of 
uk + 1 and feasibility of the solution to (Dk). Also, by complementary slack
ness, cij = 0 for all backward arcs (i,j). 

- Apply Dijkstra's method, starting at node k + 1, until the nearest free node 
)k + 1 EJ is reached, and derive Xk + 1 by adding to Xk all forward arcs in the 
shortest path from k + 1 to )k + 1 and deleting from Xk all backward arcs. 

- Using dh as denotation for the tentative <Estan~es from node k + 1 to nodes 
h, found by Dijkstra's method, we define d by d = d1k+,, and di. by 

di. = min(dh,d). 

Then the optimal solution to (Dk+ 1) is 

u7+ 1 = u7 +d-d7, iEh+i. 

vj + 1 = vj + d - dj, j EJ. 

(2.13) 

(2.14) 
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Optimality of Xk + 1 and (uk + 1, vk + 1) can be proved as follows (cf. Tomizawa, 
1971). 

Compare the tentative distances dh with the real shortest distances dh, which 
satisfy 

(2.15) 

with an equality sign holding if (i,j) is on the shortest path from k + 1 to j. 
After the execution of Dijkstra's method, node set h + 1 UJ is partitioned into 
a set T of tentatively labeled nodes and a set P of permanently labeled nodes. 
We assume that the labeling procedure was executed in such a way that 
d; = d1 for all (i,j)EXk. Then 

-
dh = dh = di, ~ d, h EP, 

A -

dh ;;;,. dh ;;;,. di, = d, h ET. 

From (2.14) we obtain 

cij-uf+ 1 +vj+I = cij+d;-dj, iEh+i.}EJ. 

Therefore, it follows from 

cij+d;-dj = -cij+d;-d1;;;.o, 

c;1 + d; - dj ;:;;. ciJ + d; - d1;:;;. o, 
iEP, jEP, 

iEP, JET, 

cij+d;-dj = cij+d-d1;;;.c;1 ;;;.o, iET, JEP, 

cij +d; -dj = cij +"d-"d = -cij;;;.o, i ET, JET, 

that(u,v) = (uk+l,vk+l)satisfies(2.6)with/ = h+i· 

(2.17) 

(2.18) 

From (2.12), (2.13) and (2.14) it follows immediately that (2.7) is satisfied. 
(2.8) is satisfied for all i and j with (i,j)EXk> since for these indices d; = d1 

and from (2.14) the left hand side of (2.6) is not changed. (2.8) is also satisfied 
for all i and j with (i,j) E Xk + 1 \ Xk because these (i,j) are on the shortest path 
from k + 1 to }k + 1 and for those 

' k+J + k+J - - +d* d* - - dA dA - 0 2 9 ciJ - U; v J - ciJ ; - J - ciJ + ; - J - • ( .1 ) 

Since Fk+ 1 C T, it follows from (2.14) and (2.13) that dj = d and 
vj + 1 = vj = 0 for all j E Fk + 1• So (2.9) is also satisfied, and Xk + 1 is an 
optimal solution to (Pk +1). D 

Notice that the optimal value of the objective function is 

~ uj - ~ vj = ~ u~ (2.20) 
iE/ jEJ kEI 

if it is assumed that nodes k El are numbered in the order in which they are 
matched. From now on we will drop this assumption. 

The method just described can be improved considerably by the application 
of start procedures. A very simple algorithm is this: 
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- X : = 0 ; F : = J. 
- For each i El: 

determine}; such that c;i, = mini El ciJ; 
if);EFthen: F := F\LJ;}; X := XU{(i,);)}; u; := ciJ. 

If, with k = jXj, the sets h, Xb and Fk are defined by h = {i El I}; EF}, 
Xk = X, and Fk = F respectively, then optimal solutions to (Pk) and (Dk), 
satisfying complementary slackness conditions are Xk, and uf = u;, 
i Eh, vj = 0, j EJ. Starting with these solutions the procedure described 
above can be continued. 

If m = n, then (2.2) implies that in (2.3) the ~ signs can be replaced by = 

signs and consequently (2.7) can be dropped from the dual problem. In that 
case the start procedure can be improved to: 
- X : = 0; F : = J; H : = / (with H c_l denoting the subset of free nodes in 

/). 
- For each i El: 

determine}; such that ciJ, = mini El c;i; u; : = ciJ,· 
- Define JP = U EJ I for some i El: ciJ - U; = 0} and J e = J \ JP. 

For each j EJe: 
set vi : = - min; EI( ciJ - u; ); denote by ii the value of i for which this 
minimum is achieved; 
if iiEH then: H := H\ {ii}; F := F\ U}; X := XU{(ii,J)}. 

- For each i EH: 
ifj;EFthen: H := H\{i}; F := F\U;}; X := XU{(i,j;)}. 

If now k = IXI and h, Xb and Fk are defined by h = / \ H, Xk = X, and 
Fk = F respectively, then optimal solutions to (Pd and (Dd, satisfying com
plementary slackness conditions are Xb and uf = u;, i Eh, vj = vi, j EJ 
respectively. 

If all minima in this algorithm are achieved for one unique index, then, 
given the dual solution (u,v) = (u,V), the cardinality of primal starting solu-
tions cannot be greater than k. _ _ 
_ This can be seen as follows. Consider the ~ipartite graph G = (I,J,A ), with 

A = {(i,j) EA lciJ - u; + vi = 0}. Each (i,j) EA is either one of the arcs (i,j;) or 
one of the arcs (ii,J). Now from the way of scanning it is seen that the arcs of 
the first category form a forest, consisting of trees of diameter 2, and that these 
trees after adding the arcs of the second category grow to trees with a diameter 
of 4 or less. So a maximal matching will be built up if subsequently all arcs 
incident with a point of degree 1 are included in the matching, provided that 
the other node of the arc is still free. This is done in the procedure. 0 

Nawijn and Dorhout (1988) proved that for m = n the expected fraction of 
assignments obtained with this starting procedure is asymptotically equal to 
2-exp( - 1 le)- exp( - exp( - 1 I e ))-0.8073, if the cost coefficients are inde
pendent identically distributed random variables with continuous distribution 
function. Moreover, this fraction is monotonously decreasing in n. If the dis
tribution function is not continuous, the fraction of assignments obtained will 
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still be higher, as in general there is more freedom in the choice of assign
ments. Although this procedure is quite satisfactory with respect to the ratio of 
the number of assignments to the number of operations, needed to obtain it, 
experiments by Jonker and Volgenant ( 1987) demonstrate that it is worthwhile 
to construct a starting solution with a low value of the objective function 
rather than a large number of assignments, even though this takes more time. 

As Dijkstra's method requires 0( IA I) operations, the complexity of the 
algorithm described above is O(m IA I) in the worst case. In practice the 
efficiency of the algorithms for Dijkstra's method strongly depends on sorting 
procedures and data structures used. Especially for applications in sparse 
graphs these factors play an important role. 

Finally we remark that the algorithm, as described in this section, has the 
property that searching for minima of (reduced) costs is allways done over the 
outgoing arcs from nodes in 1. So one can work with representations of the 
graph in 'forward star' form, and in-core out-of-core versions of the algorithm 
can be implemented very efficient. 

3. POSTOPTIMAL ANALYSIS 

In several situations one is interested in the increase of the minimum value of 
the objective function caused by making an assignment obligatory. A well
known example constitutes the solution of the asymmetric travelling salesman 
problem by branch and bound methods, for which the assignment problem is 
used as a relaxation of the original problem. The~ the optimal solution to the 
original problem is found, if the optimal solutio_!! X to the assignment problem 
results in a_!our. Otherwise a~ least one arc in X has to be exchanged with an 
arc not in X. An arc not in X will not be part of an optimal tour if forcing it 
in the solution of the assignment problem will give an 01?.i_ective value higher 
than the value z • of a known feasible tour. An arc in X will be part of a 
minimal tour with certainty, if its exclusion causes a value higher than z •. 
This is the case, for example, if for each of the arcs with the same tail, inclu
sion in the tour gives a value higher than z *. 

As remarked by Kreuzberger (1971) and Kindervater et al. (1985), it is not 
necessary, in the application mentioned above, to resolve an assignment prob
lem completely for each arc that possibly is included or excluded in its solu
tion. Kreuzberger described an algorithm for the computation of the increase 
of the objective function of an n X n problem, if assignments (i,j) are forced. 
He did this simultaneously for fixed i and all j EJ, starting from the optimal 
primal and dual solutions of the original problem. So in order to obtain these 
numbers for all (i,j)EA, this algorithm has to be executed n times, once for 
each i El. Dorhout (1973a) demonstrated that the same numbers can be com
puted in n supplementary applications of Dijkstra's method after the solution 
of the assignment problem by the method described in section 2. Then in each 
of these applications the increase of the objective function is calculated simul
taneously for all i El and fixed j EJ. This can be seen as follows. 

Assume that the optimal solutions to (Pn) and (Dn) are 
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(3.1) 

and (u, V) respectively, and that one wishes to know the increase of the optimal 
value of the objective function, if (ib} 1) is made obligatory. Then one has to 
delete from G nodes ik and j 1 and all arcs incident with these nodes. As a 
consequence the assignments (ii.} 1) and (ik,)k) in the optimal solution for G 
are cancelled, and the remaining assignment problem (P') has to be reoptim
ized. This is accomplished by making one iteration of the algorithm described 
in section 2, in which the shortest path from node i 1 to node }k is determined, 
with arc lengths 

cij = cij-u;+vj;;:;,: 0, iEl\ {ik}, }El\ Ud (3.2) 

(with Cij = 0 for all (i,j)EX). 
If d, denotes the distance from i 1 to nodes r El Ul, the increase of the 

minimal objective value is 

(3.3) 

Often one is interested in the increases of the minimal objective value for all 
(ib} 1 ), with ik El\ {ii}, and fixed Ji. Then Dijkstra's method gives an alter
nating spanning tree T of shortest paths from node j 1 to all other nodes of G. 
This tree represents a basic solution to the assignment problem, and, with 

we have 

-, - -, +-' >-: 0 c iJ - ciJ - u ; v 1 ~ , 

c'iJ = o, 
(i,j)EA, 

(i,j)ET, 

(3.4) 

(3.5) 

(3.6) 

showing that complementary slackness properties hold for these solutions of 
the primal assignment problem and its dual. Now, an arbitrary arc 
(ib} 1 ), ik =/=- i 1' forms an alternating cycle with arcs of T. So, if the matching 
is altered by changing all assignments on this cycle, the objective function 
increases, by (3.6), with c';J,. This amount is the minimum increase of the 
objective function if (ib}i) is forced in the solution, since the feasibility and 
complementary slackness relations with the U1; and v'1 values from (3.4) are 
unchanged for the resulting (n - l)X(n -1) problem. Applying Dijkstra's 
method in this way for all j El gives the minimum increase of the objective 
function for all unassigned arcs (i,j) in O(n 3) operations. 

4. SHORTEST PATHS WITH NEGATIVE ARC LENGTHS ALLOWED 

Let G = (N,A) be a directed graph with node set N = {1, ... ,n} and arc set A. 
We consider the problem of determining the shortest paths from one arbitrary 
node to all other nodes, with given lengths c;1 for all arcs (i,j) in A. (Without 
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loss of generality we may assume that G does not have multiple arcs or loops.) 

As the problem only makes sense if G does not contain negative directed 

cycles, we assume that there is no sequence of arcs (ii.i 2), ... ,(ik-J.ik), (ik,ii) 

with c;,;, + ... +c;,;, <0. 
If r = I {i EN\ {1} 13 j EN: (i,j)EA, ciJ<O} I, the complexity of the algo

rithm is O(r IA I). 
Assume that G is connected and that one wants to know the shortest paths 

from node 1. As they form a spanning tree of G, we may define xiJ as the 

number of shortest paths that contain (i,j). The problem can be formulated as 
to minimize 

n n 

2 2 ciJxiJ (4.1) 
i =I i=2 

subject to 
n 

2 X1k = n -}, (4.2) 
k =2 

n n 

- 2xij+ 2 Xik -1, j = 2, ... ,n, (4.3) 
i =I k =2 

i = 1, ... ,n, j = 2, ... ,n. (4.4) 

Here, for ease of notation, we have assumed that with combinations ij of 
indices only those are meant for which (i,j)EA. 

Now ( cf. Wagner, 1975), after the introduction of nonnegative slack vari

ables xii• with cii = 0, j = 2, ... ,n, this problem is transformed into the nonde
generate transportation problem: minimize (4.1) subject to 

n 

2xiJ = n -1, i = 1, ... ,n, 
i=2 

n 

2 xiJ = n, j = 2, ... ,n, 
i=I 

(4.5) 

(4.6) 

and (4.4), which now includes nonnegativity constraints for xii• j = 2, ... ,n. If 

G is not connected, this problem does not have a feasible solution. If G does 

not have a negative cycle, the optimal values of all xii are positive. 
The dual of problem (4.1), (4.4), (4.5), (4.6) is: maximize 

n n 

(n-I)2u;-n2vi 
i =I i=2 

subject to 

u;-vi ~ ciJ. i = 1, ... ,n, j = 2, ... ,n. 

(4.1), (4.4), (4.5), (4.6) is solved by first solving the problem: minimize 

n n 

2 2 ciJxiJ 
i=2i=2 

(4.7) 

(4.8) 

(4.9) 
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subject to 
n 

~xiJ = n -l, i = 2, ... ,n, 
j=2 

n 

~xiJ = n - l, j = 2, ... ,n, 
i=2 

xiJ ;;;;;;. 0, i = 2, ... ,n, j = 2, ... ,n. 

21 

(4.10) 

( 4.11) 

(4.12) 

First we replace the right-hand sides in (4.10) and (4.11) with I's, and solve the 
resulting assignment problem by the algorithm described in section 2. It is 
started by matching (i,i) for all those i, for which there is no ciJ<O, 
j = l, ... ,n. After that the optimal primal and dual solutions are obtained in at 
most r iterations. Multiplication of the optimal x-values by n - 1 gives the 
optimal solution to (4.9), ... ,(4.12). The optimal values of the dual problems are 
equal. If they are u; = Ii;, v; = v;, i = 2, ... ,n, then after suppletion with 
u1 = minJ=l, .. .,n(c 11 +vj) we determine the shortest alternating tree from node 
I to all other nodes in the bipartite graph G' = (I,J,B), with I = {1, ... ,n }, 
J = {2, ... ,n}, B =Au U JEJ{(j,j)}, and arc lengths ciJ = ciJ-u;+v1, 

(i,j)EB. If d 1 = u 1 and d1-d1 are the distances from node 1 to j in G', for 

all j El UJ, then (u, v), defined by 

- -
U; = U;-d;, iE/, 

(4.13) 

is the optimal solution to ( 4. 7), ( 4.8). Just like in section 2 is ciJ - u; + v 1 = 0 
for all arcs (i,j) of the shortest path tree T. So the optimal primal solution is 
obtained by sending a flow n - I from node I to each node j EJ over the arcs 
of T. This is possible because all forward arcs of T have infinite capacity and 
all backward arcs have capacity n -1. So T is the optimal tree in G', and the 
arcs (i,j) in T with i=/=j correspond with the optimal tree in G. Moreover, 

~J = ~1 , j = 2, ... ,n, (4.14) 

and these numbers are equal to the shortest distances from node I to nodes j 
in G. 
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Heuristics for the hierarchical network design problem 
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The Hierarchical Network Design Problem is a minimum spanning tree problem 
involving two weight functions: the edges on the elementary path between two 
given nodes are to be weighted by a more expensive cost function. This prob
lem is shown to be NP-hard. 

Three heuristics are considered: the method introduced by Current, Revelle 
and Cohon in 1986, a revised version, and a newly developed heuristic based 
on branch chord exchanges. An implementation for the latter is given of square 
order complexity in the number of nodes. This heuristic appears to be best on 
3000 symmetric test problems (up to 100 nodes and from sparse to full dense), 
yielding nearly always the optimal value. In asymmetric networks the revised 
heuristic is expected to be the best. 

1. INTRODUCTION 

Most models for network problems define only one cost function on the edges 
of the network. However, in real life problems often more than one cost func
tion is involved. Current, Revelle and Cohon (1986) were the first to study a 
minimum spanning tree problem with two costs on each edge of a network. 
Their Hierarchical Network Design Problem can be formulated as follows. 

Let G = (N,s,t,E,c,d) be a (directed) double weighted graph with N the set 
of nodes; s and t 'special' nodes (the source and target); E the set of edges; 
and c respectively d, a primary and secondary weight function on E. 

The (Directed) Hierarchical Network Design Problem denoted (D)HNDP, is 
the problem of finding a (directed) spanning tree T (rooted into t) of minimum 
hierarchical weight: 

Z (T) = "2.(i,j)EPCij + "2.(i,j)ET\ pd;j, 

where P denotes the fundamental path from s to t in T is primary weighted. 
Applications arise in situations where an overall connection is required but 

an expensive high quality linkage is only necessary between the two special 
nodes. For example, in the design of a new road infrastructure two major 
towns have to be connected by highways while others can be linked with 
unimproved roads. 

Two special cases of the HNDP are well known and satisfactorily solved: 
when c = d the problem is an ordinary Minimum Spanning Tree problem; 
when d = 0 it reduces to a Shortest Path problem. On the other hand 
(D)HNDP is a special case of the Hierarchical Steiner problem that considers 
two or more special nodes, see Duin & Volgenant ( 1989). 



24 C. Duin, A. Volgenant 

As most applications approve this, we will restrict ourselves to the 
undirected HNDP, i.e., the two cost functions c, d are symmetric n Xn 

matrices (n = IN I) with ciJ ~d;1 for all i,j EN (cu = du = oo if (i,j) t£E). For 
this special case Duin & Volgenant (1989) developed reduction tests that 
reduce the size of the problem graph by showing redundancy of edges and/ or 
nodes and sharpened the linear programming lower bound of Current et al. 
The complexity of the problem (with c ~d) was still open. Here we will prove 
that it is NP-hard. In section 3 two heuristics are considered for the HNDP, 

both of O(n 2 ) complexity and with worst case ratio 2. In section 4 we develop 
a more sophisticated greedy branch chord exchange algorithm and a lower 
bounding procedure. Computational results in section 5 illustrate the perfor
mance of these three heuristics and show the superiority of the branch chord 
heuristic. 

Let us first agree on the notation and terminology to be used: 
- We often refer to a subgraph in (N,E) as a subset of N or a subset of E. 

Also subsets of N or E may be identified with the subgraphs they induce in 
(N,E). 

- For any n X n matrix p and a subset of edges B the quantity p(B) denotes 

°'2:.(i,j)EBPiJ· 
- The symbol T* stands for an optimal solution, P* is its primary weighted 

path connecting s tot and z* denotes its optimal weight: c(P*)+d(T* \P*). 
- For any path P from s to t, the tree 1p is an optimum solution under the 

extra condition P* = P; let zj, denotes its objective value. 
- With S we denote a minimum spanning tree with respect to the secondary 

weights d. 
- For any two nodes i,j in a tree T spanning N, the subset of edges T<i,j> 

constitutes the elementary path in T connecting nodes i and j. 
- For typesetting reasons suffixes may be bracketed, e.g., we write c(i0 ,j0 ) 

instead of c;ni •. 

2. A POLYNOMIAL TRANSFORMATION OF 3-SATISFIABILITY TO HNDP 
With the number of special nodes bounded the Steiner problem is polynomi
ally solvable, while the Hierarchical Steiner problem is not, even not the 
HNDP. We will prove this by showing that the HNDP problem is NP-hard. 

It suffices to transform an arbitrary instance of a known NP-complete prob
lem to an instance of (the recognition version of) the undirected HNDP with 
c ~d. The problem 3-Satisfiability (3-SA T) is suited. 

Let C = {c;li = 1,2,. . .,m) be a collection of three-element sets of literals 
over a set of boolean variables U, say c; = {x;,y;,z;}. A literal x over U is 
either equal to a boolean variable u of U or to u the negation of such a vari
able. Now 3-SAT asks whether there exists a truth assignment 
a:U~{true,false}, that satisfies C, i.e., for each c; in Cat least one of the 3 
literals x;,y;,z; is true under a. The transformation we use to reduce the 
instance (U,C) of 3-SAT to an instance G of HNDP is of the constructive 
type. 

For any literal x let Ix I denote the number of occurrences of x in the sets 
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{x;,y;,z;} for i = 1,2, ... ,m. The HNDP problem graph G is complete and 
undirected. It has as node set N a union of m disjoint subsets N;, constructed 
from { X;,y;,Z;} as follows: 

N; = {vx;,WX;} UN;(x;)U {vy;,wy;} UN;(y;)U {vz;,wz;} UN;(z;) 

with N;(x) containing exactly Ix I vertices for any literal x. So the number of 
nodes n in N is 

6m+~i'=1(lx;I + ly;I + lz;I) = 6m+2~reulrl lrl. 

The primary weight function assumes only values 1 and oo. The edges of pri
mary weight 1 are the edges incident with vertices of N; (i = 1,2, ... ,m) that 
are continuously drawn in figure I. All other edges have primary weight oo. 
The secondary weight function assumes value 1 everywhere except on a set £ 0 

with ~re u I r I I r I edges in it, where it attains zero value. For every pair of 
literals rEc;, sEcj with r = s, precisely one edge exists in £ 0• This edge con
nects a vertex of N;(r) with a vertex of Nj(s); they can be chosen in such a 
way that no edges of E 0 share a common node. The construction of G can be 
done in time polynomial in max { m, I U I } . 

Truth assignments a on U that satisfy C, canonically correspond with 
optimal primary paths from s = vx 1 tot = wxm in G. For every i = 1,2, ... ,m 
the path P; visits the nodes of only one of the sets N;(x;), N;(y;) or N;(z;), 
corresponding to a literal that is true under a (at least one is); see figure I. 
Now the question whether C is satisfiable is equivalent with the question 
whether there exists an HNDP solution of weight n - I £ 0 I -1. To understand 
this, note that for any successful truth assignment a the path P; cannot con
tain both endnodes of an edge in £ 0, so P; can be extended to an optimal 
HNDP solution T with £ 0 entirely in it of weight z(T) = n-1£0 1-1. On 
the other hand if we have an HNDP solution T of weight 
z(T) = n-1£0 1-1, then E 0 CT, so P = T<s,t> cannot contain both sets 
N;(r) and N/r) for any pair rEc;,rEcj. Thus when defining 

a(r) =true if rEc; and N;(r)CP for some i = 1,2, ... ,m, 
= false otherwise, 

this solution corresponds to a correctly defined truth assignment a satisfying 
c. 

The given transformation is an adaption of the transformation Gabow, 
Maheswari and Osterweil (1976) use to show that the search for a path in a 
digraph with forbidden pairs of nodes is NP-complete. With the adaption it 
follows that their problem is also NP-complete in an undirected graph with 
disjoint pairs of nodes forbidden. 
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U = {a,b,c,d}; C = {{b,c,d}, {a,b,c}, {b,c,d,}, {a,b,c}}; 
dashed: edges of E 0 ; continuous: edges with primary weight 1; 
-: P~ for o: = (a,false), (b,true), c,true), (d,true)}; 

FIGURE I. Transforming an instance of 3-SAT into an instance of HNDP. 

3. HEURISTICS FOR THE HNDP 
A special case of the HNDP was already mentioned in the introduction: when 
matrix d equals 0 the problem is a Shortest Path Problem. The heuristic 
described by Current, Revelle and Cohon ( 1986) emphasizes this aspect of 
HN DP; the steps of the algorithm are: 
Step 1. Determine a shortest path P from s to t with respect to the cost 

matrix c. 
Step 2. Set the secondary arc costs of P on zero and extend it to a minimal 

spanning tree U on the transformed secondary cost matrix. 
Step 3. With the arcs of P primary weighted and the arcs in U \ P secondary 

weighted the tree U is a feasible solution. 
Current et al. recommend to apply the above procedure for the second best 
(third best etc.) shortest path, selecting the solution with the minimum weight. 
Let zcK be the minimum weight for the K best shortest paths. The time com
plexity to obtain zCK is O(Kn 2 ) in undirected graphs and O(Kn 3 ) in directed 
graphs, which are the time complexities for finding the K-best shortest paths 
by respectively the algorithm of Yen (1971) and of Katho (1982). We will only 
consider C 1 here. 

Steps 2 and 3 are optimal in the sense that the best possible solution with 
primary path fixed at P is returned, i.e. zc 1 = zj,. We can write 

zj, = c(P)+d(S)-bp, 

for some bp ;;;;.o, denoting the savings P induces in secondary connection costs. 



Heuristics for the hierarchical network design problem 27 

In its attempt to approximate the optimal primary path, C 1 merely minimizes 
the primary path costs c(P) neglecting its secondary costs consequences. With 
other or more nodes on the primary path P, the savings bp may increase more 
than the cost of the primary path, see figure 2. 

To approximate this effect, we use a matrix p, defined as 

where 
JL; = min{ dk; I k eN} 

=O 

i,jEN, 

iEN\{s}, 
i = s. 

For any path P from 1 to n the difference 

c(P)-p(P) = ~iEPJl.i 
is a lower bound on the savings in step 2, where we have all the nodes of P in 
the secondary MST at zero cost. 

It seems reasonable to revise step 1 of the heuristic of Current et al. by 
choosing the path P as the shortest with respect to matrix p instead of c. With 
this modification the heuristic is likely to produce better solutions. In order to 
decide which nodes to incorporate in the primary path instead of connecting 
them by secondary arcs, not only the primary cost of P is a criterion for its 
choice, but also the lower bound ~iEPJl.; on the savings in secondary connec
tion cost. 

s 5/1 k 5/5 t 

6/3 

./. =c/d 

i j 

FIGURE 2. Going via k implies z 10+4; going via i,j implies z = 12+ 1. 

The reduction test Primary Edge Elimination as formulated in Duin & Vol
genant (1989) can eliminate arcs of the primary path computed by the original 
heuristic, while it fails on the primary arcs chosen by the modified version. 
Moreover the new procedure produces a lower bound value on the cost of the 
hierarchical network, namely µ.+'1T81 , where '1T81 stands for the length of the 
shortest path from s to t with respect to ((p)) andµ. is defined as ~iENJl.;. The 
argument is simple; for any feasible solution T we have 

z(T);;;a.µ.+c(P)- ~iEPJl.;;;;;.p.+p (P);;;:.p.+'1Ts1· 

In a graph with nonnegative edge weights a shortest path between two 
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specified nodes can be found in order n 2 time with the algorithm of Dijkstra. 
A minimum spanning tree can be found in the same time complexity order. It 
follows that the heuristics have time complexity O(n 2). 

To determine the worst case ratios, consider the network in figure 3. Here 
all secondary weights are equal to one. The primary weights are defined as 

C;j = Ii - j I - F( Ii - j I )t: 
=l 

if li-Jl>l, 
if Ii - j I = 1; 

where F(k) is the k-th Fibonacci number and t: is an infinitesimal number 
smaller than l!nF(n). The optimal value here is z* = n with T'(=P' =S) 

equal to the horizontal lines -t. As F(k +m)>F(k)+F(m) for any two 
nodes the direct connection is the shortest primary connection. 

k-F(k)f m-F(m)f 

~~-
0=s0~10 ... k0 ... _Jk+m 

k+m-F(k+m)f 

(all secondary weights equal to l; F(i + l) = F(i)+ F(i -1), 
F(l) = F(2) = l) 

FIGURE 3. Worst case for heuristic CK. 

1 
-o 0 

n-1 n=t 

Current's heuristic chooses P = { (s,t)} and has outcome 

2n - l - F (n )t:( > 2n - l - ~ ), whereas the modified heuristic (p;,; + 1 being zero) 

chooses the optimal primary path. For growing value of n the ratio zc 1 I z * 
approximates 2. Moreover when s - t paths are considered in order of increas
ing primary length, the optimal solution is found for the 2n - 1-th path and one 
can show that for any polynomial K(n) the ratio zCK/z* approximates 2 for 
n~oo. 

Suppose the problem graph of figure 3 is extended by edges (k,k') for 
k = 1,2, ... ,n with primary and secondary weight zero. Then again z* = n, 
only this time (the µ-values being zero) Cl as well as its revised version Cµ 
choose nonoptimally with outcome 2n -1- F(n ). So also z ,,1 z * approximates 
2 for n~oo. 

On the other hand we have that z,, and zc 1 are at most y+d(S).;;;2z*, 
where y is the length of the shortest primary path from s to t. Thus both 
heuristics have worst case ratio 2. In section 5 we will compare them on test 
problems. 
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4. BOUNDS BY BRANCH CHORD METHODS 
For the undirected HNDP we know that all secondary edges in an optimal 
solution are part of S, see Duin & Volgenant (1989). The best solution Tp with 
weight z; for a compulsory primary path P can be found as follows: 

Initially take S as the 'solution'. Then bring in with primary weight 
each edge of P, while deleting the longest of the secondary weighted 
edges from the cycle that would otherwise have been created. 

In other words the solution IP is formed by exchanging a set of branches B p 

in S for the set P of chords; the savings in secondary connection costs bp, 
defined as c(P)+d(S)-zp, is equal to d(Bp). This approach leads to a lower 
bound as well as an upper bound procedure. 

The lower bound procedure uses the notion of bottleneck distance. For any 
nodes i,j EN, we define the bottleneck distance bu as the maximum secondary 
weight on the elementary path S < i,j > in the minimum spanning tree S. It is 
a straightforward check that, conform the definition given in Duin & Vol
genant (1986), for all i,jEN: 

bu = min[max{dvwl(v,w)EPu}IPu is a path connecting i and)]. (3) 

LEMMA. For atry primary path P the value bp is at most ".2.(i,J)EPbiJ. 

PROOF. Consider the above given process for transforming S into IP with 
weight zp. Assume P has m edges. For r = 0, l, ... ,m P' stands for the subset 
of the first r edges in P. Let T' denote the solution at stage r with P' as com
pulsory set of edges, e.g., T 0 = S, Tm = IP. Then for r = 0, l, ... ,m the tree 
T' is the MST with respect to the modified secondary weight matrix d'. By 
definition d' is equal to d except on P': d'ij = 0 for (i,j)EP'. 

When T'+ 1 is formed out of T', say by bringing in (i,j)EP'+ 1 \P', the 
secondary weight of some longest d' -branch in T' <i,j > is returned and this 
weight is equal to the bottleneck length bij of (i,j) with respect to d'. Because 
of equality (3) and d' .:;;;.d, we have bij .:;;;.biJ and the desired inequality follows: 

bp = d(Bp) = ",2.(i,j)EPb'ij.:;;;_",2.(i,j)EPbij. 

PROPOSITION. Let y6 denote the length of the shortest path from s to t with 
respect to difference matrix cb = c - b. Then y6 + d (S) is a lower bound for the 
HNDP with sources and target t. 

PROOF. Applying the lemma top* we have 

z* = c(F*)-bp· +d(S);;:.c(F*)-".2.(i,J)EP·bu+d(S) 

= cb(F*)+d(S);;:.y6 +d(S). 

The idea for a new approximation algorithm is to actually perform the 
branch chord exchanges when computing the heuristical primary path. Start
ing from s we reach out for t in a greedy way. 
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At any time during the algorithm we maintain for every node j: zj,A.j and 
ej. The weight of a best solution found so far for the HNDP with target node 
j, is denoted by zj. In this solution A.j is the predecessor node of j on the pri
mary path from s to j and ej denotes the branch in B p that is replaced by 
(A.j,)). We proceed as in the shortest path algorithm of Dijkstra (1959). The set 
N is partitioned in a set of labeled nodes L and a set of unlabeled nodes 
N \ L. For each labeled node u we store the solution tree T" with weight zu· 
Initially only s is labeled, rs is S and we terminate as soon as t gets labeled . 

. In the scanning step the edges incident to a newly labeled node are considered 
as primary edges in an attempt to improve the zj values for j EN\ L. For any 
tree T, let Tu be the longest secondary weighted edge on the elementary path 
T <i,j>· 

Now the complete algorithm is given below. 

Step 1 (initialization) 
L := {s}; Ts := S; 
for every JEN\L: A.j := s, ej := T;j, zj := d(S)+csj-d(ej); 

Step 2 (labeling a new node) 
u := argmin{zjl}EN\L}; L := LU{u}; 
T" := (~U{(Au,u)})\{eu}; 
if u = t then STOP: 

Step 3 (scanning node u) 
(a) Give all edges of the primary weighted path in T" secondary weight zero; 
(b) for every j EN\ L do 

z : = Zu +cuj-d('Puj), 

if z <zj then zj : = z, ej : = 'Puj; 

(c) Restore the original secondary weights on the primary path in T"; 
goto step 2. 

In step 3(b) the solution T" is transformed to a solution with value z of the 
HNDP with target j by extending the primary path <s, ... ,A.(A.u),A.u,u > with 
edge (u,j). The additional cost is cuj minus the longest of the secondary 
weighted edges on T"<u,j>; step 3(a) ensures that none of the primary 
weighted edges is considered here. 

The algorithm ends with the approximate solution T' of weight z,. In a 
non-negatively weighted graph subpaths of shortest paths must also be shor
test. The heuristic is based on the observation that for optimal primary paths 
this is usually also true. If <s,i1>i2, ••• ,im> is an optimal primary path for the 
HNDP problem with target im then the subpath <s,i 1,ii,. . .,im-i> is often an 
optimal primary path for the problem with target im - I. If this were true in 
general the algorithm would have been exact. 

We will now show that with a suitable data structure the algorithm can be 
implemented in O(n 2) time. The trees T" are stored in an n Xn array TREES 
of which row u represents T" rooted into u, see figure 4. 
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2 I 4 I 6 I lo I 
• • • • nodes: s 1 2 3 4 5 6 

I I I u I TREES[u]: 5 5 s 9 5 8 8 
so--+-o o---+--o firs thorn: 2 0 0 0 0 4 0 

5 I 8 I brother: 1 0 0 7 s 0 5 
t t 

I 9 I 
1 0 3 0 o-+--o 7 

FIGURE 4. Data structures for tree Tu. 

2 I 4 I 6 I lo I 
• • • nodes: s 1 2 3 4 5 6 
I I u I TREES [ >.u]: 5 5 s ).u 5 ).u ).u 
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5 t 

I 
1 0 

0 0 TREES[u]: 9 
).u t •I 

I •u It 
I 9 11 

3 0- +- - -o--o 7 

FIGURE 5. Forming Tu out of TA.u. 

scan( j: node for which step 3 is to be performed in current call; 
ej: edge assuming value r:,1 in current call; 

/ej: real number assuming value d('P,,1)) 
begin 

if brotherl/] > 0 then scan(brotherl/],/ej,ej); 
if d(j, ruun> lej then 
begin lej: =d(j, TUU]); ej: =(), ruu]) end; 
ifjEN\L then 
begin 

z := zu+c[u,j]-lej; 
if z <zUJ then 
begin Al/]:= u; eUJ := ej; zUJ := z end; 

end; 
if firstbornU] > 0 then scan( firstbornU ], le j, e j) 

end 

FIGURE 6. Linear time procedure for step 3(b ). 
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7 8 9 10 u 
9 u u u 0 
0 6 3 0 10 
0 9 0 8 0 

7 ).u 9 10 u 
9 0 3 u 9 

u u 0 

- - -· delete 
insert 

It suffices to show that each execution of step 2 and 3 requires O(n) time. 
This is easy for step 2. When making Tu, one first copies vector TA.". Then 

this tree is rooted into u, see figure 5, by reversing the arrows along the path 
from u until and with the first node of eu (which eliminates eu from the tree) 
and by the assignment TREES[u][Aul := u the new edge (Au,u) is inserted. To 
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perform step 3(b) efficiently one first generates in linear time two vectors called 
'brother', and 'firstbom' for the tree Tu representing its offspring, see figure 4. 
After that the call scan(firstbom[ u ], 0, 0) of the recursive procedure given in 
figure 6 performs step 3(b) in O(n) time. 

5. COMPUTATIONAL RESULTS ON THE HNDP 

We give a computational comparison on problems with up to 100 vertices and 
three edge densities: sparse (with average degree 3), medium (with average 
degree 10), and complete. Nodes drawn as points in a square with uniformly 
random coordinates, were randomly connected by line segments to form a con

nected graph of the desired density. 
In each graph (N,E), 50 HNDP instances were solved with 'Euclidean' 

weights assigned to the edges and the same 50 problems were solved with 'ran
dom' weights. In the Euclidean problem the secondary weight on an edge is 
taken as the Euclidean length (rounded up to integer value) of the associated 
line segment, while in the random problem it is a uniformly random number 
(rounded up integer) in the interval (0, 100]. Both types have primary weights 

ciJ as the truncated value of r;/diJ with riJ E[l,2] uniformly random. 
For each number of nodes and edges we generated 20 different graphs (N,E) 

and the results of 20*5 = 100 HNDP instances are summarized in a line of 
table I for Euclidean weights and in table 2 for random weights. Every HNDP 

instance was solved by the heuristic of Current, Revelle and Cohon (C I), its 
adjusted version (Cµ) and the branch chord heuristic (BC). The results can be 
compared in three main columns. Information is given about the gaps between 
the upper bound considered and the best of the lower bounds (BL) of section 
3 and 4 (nearly always the bottleneck bound). Each gap was measured as a 

percentage of the BL value; the table summarizes the number of gaps, the 
maximum gap and the average over the non-zero gaps. 

As expected the number of gaps increases with the problem size, while the 
extent of the (relative) gap decreases; both tendencies are stronger for the 
Euclidean problems. In the (medium) dense case the Euclidean problems 
appear to be more difficult than the corresponding random problems. In ran
dom problems of larger size, the number of Cµ \ BL and BC\ BL gaps is 
maximal for medium dense problems. For complete random problems the 
latter number tends to become zero. This can be explained: secondary edge 
weights are uniform in [ 1, 100], so in a dense graph the weights of all edges in 
the secondary MST will approximate value I, i.e., bp = IP I -1. This is recog
nized by the BC heuristic, the bottleneck lower bound and the revised heuris
tic. 

The results for the branch chord heuristic excel. For each of the 6 possible 
comparisons our program counted the number of times one heuristic per
formed worse than the other. Of the 3000 problems considered BC was beaten 
only once (by the revised heuristic). One may wonder which of the values BC 

or LB is (dominantly) non-optimal in case of a non zero BC I BL gap. For each 
problem size the instance attaining the maximum BC I BL gap was solved to 
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Table 1. Results on Euclidean graphs 
(average of the non zero gaps and maximal gaps between lower and 
upper bound) 

problem graph heuristic C 1 heuristic C µ heuristic BC 

nodes degree # a m% # a m% # a m% 

20 3 29 2.1 6.9 12 1.7 3.6 3 1.0 1.6 
10 55 2.8 8.6 27 1.8 6.2 6 .9 1.1 
20 68 3.9 14.9 26 2.2 5.9 7 1.5 3.5 

40 3 28 .9 3.2 16 .7 1.7 7 .4 1.4 
10 53 1.3 5.3 35 .9 3.2 14 .5 1.2 
40 80 3.7 11.2 38 1.4 5.2 6 .6 1.1 

60 3 41 .9 2.9 27 .6 2.9 15 .2 .7 
10 61 1.1 4.4 35 .6 2.2 9 .2 1.2 
60 86 3.1 9.1 38 1.2 3.6 11 .3 .5 

80 3 27 .5 2.4 23 .4 .9 7 .1 .2 
10 59 .9 2.9 47 .5 1.3 26 .3 .6 
80 82 2.7 8.0 59 .8 2.6 16 .3 1.1 

100 3 35 .5 1.4 34 .4 .9 10 .1 .4 
10 56 .9 3.3 43 .4 1.1 20 .2 .4 

100 92 2.6 5.4 64 .8 3.0 14 .2 .3 

optimality using techniques from Duin and Volgenant (1989). In all but two 
cases the BC heuristic was optimal. 

We conclude that the BC heuristic is superior. However it cannot be applied 
on asymmetric problems, in contrast to the other two heuristics. The heuristic 
CK will probably perform better when applied for the K ( > 1) best shortest 
paths. But then again the K-best path version of Cµ having a similar imple-
mentation, is expected to perform better. 
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Table 2. Results on random graphs 
(average of the non zero gaps and maximal gaps between lower 
and upper bound) 

problem graph heuristic C 1 heuristic C µ. heuristic BC 
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1. INTRODUCTION AND SUMMARY 
Professor Gijs de Leve's treatise on generalized Markovian decision processes 
(1964) marked one of the founding contributions to the field of dynamic pro
gramming and Markov decision processes (MDP's). It, as well as his popular 
course on dynamic programming, inspired my own original research, see e.g., 
DE LEVE et al. (1977a, 1977b) and FEDERGRUEN (1978), as well as that of so 
many prominent scholars in the Netherlands. This paper is devoted to this 
special scholar and mentor at the occasion of the 25th anniversary of his 
chaired professorship at the University of Amsterdam. 

Until recently, almost all research efforts in the dynamic programming area 
were focused on the development of efficient solution methods and the charac
terization of qualitative properties of fully optimal strategies. Most applications 
suffer unfortunately from the famous curse of dimensionality, i.e., the 
corresponding MDP's have state and action sets of large dimension and 
efficient algorithms for the determination of fully optimal strategies fail to 
exist. More importantly, the complexity of the structure of fully optimal stra
tegies makes them unattractive and hard-if not impossible-to implement, 
even if such strategies could be computed efficiently. 

It is therefore that in the last 5 to 10 years, the focus has shifted-and with 
considerable success-towards the identification of close-to-optimal, but not 
necessarily fully optimal, policies of relatively simple structure which are easy 
to compute and to implement, as well as accurate and easily computable 
approximations of the total system-wide cost for use in design and parametric 
studies. 

Most approximation approaches start with an exact formulation of the plan
ning problem as a dynamic program or Markov decision problem. As pointed 
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out above, the large dimension of the associated state (and action) spaces pre
cludes, in general, exact solution of these dynamic programs. The exact model 
is therefore replaced by an approximate one through the application of one or 
several manipulations of the problem like those used in large scale mathemati
cal programming (relaxations, restrictions, projections, cost approximations, cf. 
GEOFFRION (1970)). These distinctions are important, because the properties of 
an approximation depend on the types and sequence of manipulations applied. 
If only relaxations of lower bound cost approximations are used, for example, 
the resulting approximation is a lower bound on the true optimal cost of the 
problem. This fact is very helpful in assessing optimality gaps for any heuristic 
strategy, since the cost of an appropriately constructed feasible strategy pro
vides an upper bound on the optimal cost. (As is the case with most mathemat
ical programming approximation methods such as Lagrangian relaxation, the 
heuristic strategy is usually based on the solution of the approximate model.) 
If the difference between upper and lower bounds is small, we can conclude 
both that the approximation is accurate and that the constructed policy is a 
good one. 

Another approach is first to restrict the policy space to a more convenient 
and qualitatively appealing class. If determination of an optimal strategy 
within the chosen class is still intractable and the restriction is followed by one 
or more relaxations, the result is a lower bound, not on the original problem, 
but on the minimum cost among all policies within the class so that optimality 
gaps may be assessed with respect to the chosen class of strategies only. 

One of the most basic multi-echelon distribution systems is that consisting 
of a central depot which supplies a collection of outlets {1, ... ,J} where exo
genous, random demands for a single commodity must be filled. (The demand 
process may be correlated across outlets.) The deport places orders with an 
outside supplier which arrive there after a 'supplier leadtime' of L time units. 
The outlets are supplied by shipments from the depot which require a (second) 
shipment leadtime of 11 time units (j = 1, ... ,J). Instantaneous perfect infor
mation about all inventory levels is assumed. Unfilled demand is backlogged. 
(To facilitate the exposition below, we assume that all leadtimes are deter
ministic. Random leadtimes, with arbitrary leadtime distributions, often an 
important factor in the design of an appropriate distribution strategy, may 
however be treated as well; we merely assume that consecutive orders or ship
ments to a given outlet do not cross in time, i.e., arrive in the sequence in 
which they were originated, and that leadtimes are independent of the demand 
process, see ZIPKIN (1986).) 

Distribution systems of this type apply one of the following two basic 
management philosophies: 
(a) Push systems, and 
(b) Pull systems. 

In Push systems, there is a central decision maker who possesses continu
ously or periodically updated information about inventories and sales at all 
relevant facilities. This information is used to decide 
(i) when to place orders with an outside supplier, 
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(ii) in what quantities, 
(iii) when to transfer stock from the upper to the lower echelon, and 
(iv) how to allocate the released stock among the retailers. 
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In a Pull system, it is each outlet which places orders with the depot on the 
basis of its own local information (inventory level and shipments outstanding). 
The warehouse responds passively to these orders and fills them on a first
come-first-serve basis as long as sufficient stocks are available. The depot 
decides on all orders to the outside supplier, either on the basis of its own 
inventory position only, or on that of all facilities. 

Analysis of a Push system model 
Assume a Push system is adopted and that a system-wide replenishment stra
tegy is sought to achieve an 'optimal' tradeoff of the following three cost com
ponents: 
(i) variable shipment costs assumed to be proportional with the shipment 

volumes between the depot and the outlets; 
(ii) inventory carrying and backlogging penalty costs, assumed to be propor

tional with the inventory levels and backlog sizes respectively; 
(iii) costs for outside order, consisting of a fixed component and a variable 

one which is proportional with the order size (see FEDERGRUEN and ZIP
KIN (1984a) for more general order cost structures). 

In general, centralized ordering as represented here offers two distinct 
advantages. The first advantage is the possibility to exploit economies of scale 
in the order costs. Note also that one could choose to decide the future alloca
tions at the same time as the order. Postponing the allocations permits one to 
observe the demands in the intervening / periods, and thus to make better
informed decisions. The phrase 'statistical economies of scale' has been used 
(EPPEN and SCHRAGE (1981)) to describe this effect. 

Another important distinction is that between systems where inventory is 
carried at the depot, and systems without central inventories. (The latter 
applies, for example, when the 'depot' does not represent a physical location at 
all, but rather a centralized ordering function; here decisions about shipment 
to the ultimate destinations can be postponed until L periods after the bulk 
order is placed. Even if it does correspond to a physical location, the depot 
acts as a transshipment center, not a stocking point.) ROSENFIELD and PEN
DROCK (1980) refer to such systems as 'uncoupled' and 'coupled' respectively. 

For systems without central inventories and an infinite planning horizon, we 
refer to EPPEN and SCHRAGE (1981) and FEDERGRUEN and ZIPKIN (1984c) for 
a detailed discussion of approximation methods of the above described type. 
FEDERGRUEN and ZIPKIN (l 984a) treat coupled systems with a finite planning 
horizon and possibly non-stationary parameters and demand distributions. 
Similar approximation analyses and results have been obtained for systems 
with central inventories and finite or infinite planning horizons, see FEDER
GRUEN and ZIPKIN (I 984b, 1989). 

In Section 2, we discuss an alternative model for one-warehouse multiple 
retailer systems and give a detailed outline of successful relaxation and 
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restriction approaches for this model. 

2. AN ALTERNATIVE MODEL FOR COUPLED SYSTEMS 
An alternative model for two-echelon distribution systems without central 
stock, goes back to SILVER (1965). Here the assumption is that orders are 
received instantaneously by the depot, i.e., L =O; alternatively, if L is positive, 
one assumes that any order to the outside supplier is to be allocated among 
the outlets, the very moment it is placed by the depot. This restriction elim
inates the possibility of exploiting the statistical economies of scale mentioned 
in Section 1 (and hence the need to allocate incoming orders), by effectively 
eliminating the first leadtime component (L). Contrary to the model in Sec
tion 1, Silver's allows for all shipment and order cost functions to consist of 
fixed (as well as variable) components. 

SILVER (1965) as well as all subsequent papers on this type of model, 
assumes that inventories are monitored continuously rather than periodically, 
but this distinction from the periodic review models in Section 1 is not essen
tial. In fact, Federgruen and Zipkin have used continuous-time analogs of their 
models in some applications and NADDOR (1975) treats a periodic review ana
log of the Silver model. The earlier papers by VEINOTT (1965), BESSLER and 
VEINOTT (1966) and IGNALL and VEINOTT (1969) may all be viewed as 
periodic analogs of Silver's model, in the absence of any economies of scale 
i.e., linear costs throughout. (They may therefore also be viewed as special 
cases of the models in Section 1. On the other hand, these models allow for 
joint constraints in inventory positions.) These three papers show that myopic 
policies are optimal under various assumptions; and it is of interest that the 
(approximate) myopia results for the more general models mentioned in Sec
tion 1 are reminiscent of theirs. SOBEL ( 1977) extends the results in these three 
papers to demand processes which are correlated across outlets as well as time, 
following a general autoregressive moving-average structure. 

Returning to Silver's model, demands are assumed to be generated by 
independent unit or compound Poisson processes. The independence of the 
demand processes represents an additional restriction. This multilocation 
model can easily be formulated as a semi-Markov decision problem; once 
again, in view of the dimensionality of the state space, exact solution methods 
are computationally intractible. Moreover, IGNALL (1969) showed that an 
optimal rule may fail to have a simple form (even in the case of two outlets) 
and would therefore be hard or impossible to implement even if it could be 
computed with reasonable resources. 

The proposed approximation methods may be partitioned into those based 
on relaxations and those starting with a restriction of the policy space. (We use 
the term relaxation in the general sense popularized by GEOFFRION ( 1970), i.e., 
any approximation of a minimization model which results in a lower bound, 
e.g., expansions of the feasible set and/ or replenishments of the objective func
tion by lower bound objectives.) Since the vast majority of the literature on 
the Silver model is based on the restriction approach, and relaxation 
approaches have started to appear only recently, we treat the former first. 
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2.1. Restriction approaches 
Most of the literature confines the policy space to so-called (s,c,S) or can-order 
policies: three parameters s1, c1, and s1 are specified for each location j with 
s1 ~c1 <S1 . An order (to the outside supplier) is triggered by location j when 
its inventory position falls to or below the reorder level s1; any location i=/=-j 
whose inventory position is at or below its can-order level c;, is included in this 
order, and the inventory position of each location k included in the order is 
increased to the order-up-to-level Sk. (Silver's original model considered only 
the special cases where all can-order levels are set equal to either (i) the 
reorder levels c or (ii) the order-up-to levels S. The former case amounts to 
managing each item by itself ignoring opportunities to exploit economies of 
scale. The class of can-order policies was first introduced in BALINTFY (1964) 
in a random yield but deterministic demand model.) 

For the special case of unit Poisson demands, SILVER (1974) provides an 
iterative method to compute a suboptimal policy in the above described class 
of (s,c,S) rules. THOMPSTONE and SILVER (1975) present a heuristic method 
for the special case of compound Poisson demands and zero leadtimes, by 
using a transformation of the compound Poisson distribution into an 
'equivalent' unit Poisson distribution. Solution methods for the most general 
case are due to SILVER (1981) and FEDER GRUEN et al. (1984). See also PETER
SON and SIL VER ( 1979). 

All of the above methods employ decomposition as an additional type of 
approximation, i.e., the multilocation model is decomposed into J single
location problems with iteratively adapted characteristics. (Decomposition 
techniques are common to many mathematical programming solution methods 
or evaluation and control methods for queueing networks.) Each single
location problem has normal replenishment opportunities at the location's 
demand epochs. The fixed cost of a normal order is given by the fixed depot 
order cost plus the fixed shipment cost to this specific location. In addition 
there are special replenishment opportunities where the fixed order costs are 
limited to the fixed shipment cost only; these opportunities arise at epochs 
generated by an independent Poisson process which is an approximation of the 
superposition of the order processes triggered by the other locations. (It is this 
representation of the superposition of these order processes, which represents 
the approximate element in the decomposition method.) For each location, the 
mean time between consecutive 'special replenishment opportunities' (and 
hence the parameter of the Poisson process representing these special epochs) 
is adapted iteratively. In FEDERGRUEN et al. (1984) an optimal (s,c,S) rule is 
found for each of the single location problems via a specialized and highly 
efficient policy-iteration method. (The latter generalizes the policy iteration 
methods in FEDERGRUEN and ZIPKIN (1984d, 1985) for finding optimal (s,S) 
policies in ordinary single location problems.) SILVER (1974), THOMPSTONE 
and SILVER (1975) and SILVER (1981) employ heuristic evaluation and search 
methods for the single location problems. The numerical study in FEDERGRUEN 
et al. (1984) suggests that the algorithm presented there, provides accurate 
(approximate) evaluations of the average cost of (s,c,S) policies as well as 
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other performance measures of interest. On the other hand, in this restriction 
approach no bounds are obtained for the optimality gap of the generated 
(s,c,S) policies. 

Analogous to the approaches mentioned in Section 1, one could restrict one
self to policies which determine when to place an order and of what size on 
the basis of the aggregate inventory position only. Indeed RENBERG and 
PLANCHE ( 1967) in a lesser known paper adopt a restriction approach of tis 
type: an order is placed when the aggregate inventory position falls to or 
below some system-wide reorder point R and all locations' inventory positions 
are increased to specific order-up-to levels { S/ j = 1, ... ,J}. In the absence 
of fixed shipment costs and as shown for the models mentioned in Section 1, 
the aggregate inventory position represents an adequate proxy for the system 
state (the vector of the outlets' inventory positions) and indeed a perfect state 
description in the relaxed model ibid. The same is true when it is optimal to 
replenish all outlets with (roughly) equal frequencies. In other settings the res
triction appears undersirable, even though it is quite commonly used practice: 
e.g., IBM's IMPACT system is based on this type of restriction approach, see 
KLEYNEN and RENS (1978) or VOLLMANN et al. (1984). See also PANTUMSIN
CHAI (1988) for a (not altogether conclusive) numerical comparison between 
(W,SI> ... ,S1) and (s,c,S) policies. 

2.2. Relaxation approaches 
Observe that in the Silver model, the need for centralized control arises 
exclusively because of the fixed cost that is incurred for orders to the outside 
supplier. Note also that if this nonseparable cost structure were replaced by a 
separable lower bound cost structure, the problem would decompose into J 
independent single location problems. As pointed out in the introduction of 
this section, such an approximation is referred to as a relaxation, since it 
results in a lower bound for the minimum achievable cost value. 

A separable lower bound cost structure is obtained when allocating the fixed 
(depot) order cost Kin fixed proportions (a1>a2 , ••. ,a1) with 2.}= 1a1= 1 and 
a1 ~0 U = 1, ... ,J). (Note that under the approximate cost structure, the 
fixed costs incurred under a1ry replenishment strategy are less than under the 
exact cost structure.) In the resulting relaxed model it is clearly optimal to 
manage each location separately according to an (s,S) policy and the optimal 
(s,S) policy is easily found for each of the locations j = 1, ... ,J with one of 
the algorithms discussed above. Thus, for j = 1, ... ,J, let 

k1 = fixed shipment cost for location j, 
T/s,S) = expected time between consecutive order by location j under an 

(s,S) policy, 
C/s,S) = expected long run average holding and shortage cost for location 

j under the (s,S) policy. 

We thus obtain the following solution of the relaxed problem: 
J 

(LB)a: = ~!/;/a), where 
j=l 
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(aK+k) 
if;/a1) := ~{ ~(s,S)J +C/s,S)}. 

Note that the functions if;/·) are piecewise linear and concave and may be 
evaluated with the above mentioned standard algorithms for the determination 
of optimal (s,S) policies in single location models. For each allocation vector 
a, we thus obtain a lower bound (LB a) for the minimum achievable cost value. 
The best such bound is clearly given by 

(LB):= max {~i/;/a1) I ~a1 = l; a1;;;.0(j=l, ... ,J)}. 
j j 

Evaluation of (LB) thus reduces to maximizing a separable concave objective 
subject to a single constraint, an optimization problem for which many 
efficient solution methods exist, see e.g., ZIPKIN (1980) or FEDERGRUEN and 
GROENEVELT (1986). The above construction of the lower bound (LB) bears 
considerable similarity to the lower bounds obtained for mathematical pro
grams via the popular technique of Lagrangian relaxation. (LB a) has the addi
tional advantage of being separable in a. 

The above presentation is distilled from FEDERGRUEN and ZHENG (1989). 
The lower bound (LB) was however first presented in ATKINS and IYOGUN 
(1987, 1988). (The latter suggest employing the a-vector which maximizes the 
lower bound in the deterministic, constant demand rate analog of this model. 
Federgruen and Zheng show that the true value of (LB) may be efficiently 
computed.) 

When computing (LB) we obtain the vector a* maximizing (LB a) and the 
corresponding J-tuple of (s,S) pairs. This vector of (s,S) policies represents a 
feasible system-wide replenishment strategy. For significant values of K it is 
however unlikely to be efficient since with probability 1 all orders generated 
under this strategy are made for one location only, i.e., the locations are 
managed independently and FEDERGRUEN et al. (1984) have shown that even 
the best independent control policy can be significantly more expensive than 
various heuristic coordinated strategies. 

The following procedure generates a vastly superior replenishment strategy 
instead: For the allocation vector a*, determine an optimal (m1, v1#) policy for 
each location j =I, ... ,J, treating m as a continuous time-variable. (It is 
empirically known that in single location problems, optimal (m, v) policies 
come close to being globally optimal.) Next, round the vector of replenishment 
cycles (m/ j = 1, ... ,J) to a neighboring power-of-two (mj: j =I, ... ,J), 
i.e., a vector in which all components are power-of-two multiples of a common 
base period, and implement the resulting {(mj,vf ): j =I, ... ,J) policy. This 
rounding procedure is standard in constructing feasible strategies from lower 
bounds for many deterministic, constant demand rate models (e.g., ROUNDY 
(1985, 1986)) where it can be shown to result in very minor cost increases (2% 
or 6% at worst, depending upon the exact implementation of the rounding pro
cedure). Note that the vector m * consists of few distinct components. This 
together with the nestedness of the replenishment intervals in a power-of-two 
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vector, induces a large degree of joint replenishments among the different loca
tions. 

ATKINS and IYOGUN (1988) use different heuristics for the determination of 
the vector of replenishment interval (m/ j = l, ... ,J): (i) mj=m for al/ loca
tions, with m the best common interval value or (ii) mj=m for all locations j 
with aj >0, and mj chosen as an (integer) multiple for all other locations j, 
i.e., with aj =O. Atkins and Iyogun show in a limited numerical study that 
their heuristic strategies outperform the (s,c,S) policies of Section 2.1 except 
for settings in which the fixed order cost K is small. In their sample, the cost 
value of the policies is on average 12% higher than the specific (suboptimal) 
lower bound computed in their method. Moreover it appears that the relaxa
tion methods of ATKINS and IYOGUN (1988) and FEDERGRUEN and ZHENG 
( 1989) are, in addition, computationally simpler than the methods of Section 
2.1. 

The relaxation approach has the additional advantage of being applicable to 
more general joint cost structures; indeed, as shown in FEDERGRUEN and 
ZHENG (1989), it is applicable to any joint cost structure which satisfies a gen
eral economies-of-scale (submodularity) property. The only change occurs in 
the specification of the lower bound (LB). Under a general submodular cost 
structure, the separable concave objective ~ji'j( ·) is to be maximized over a 
more general polyhedron, which is however still of a special (polymatroidal) 
structure allowing for highly efficient solution methods, see FEDERGRUEN and 
GROENEVELT (1986) and GROENEVELT (1985). 
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On the transition probabilities of a Markov process 

with interventions 

A. Hordijk 
University of Leiden 

Consider a Markov process. Any time the Markov process enters a given set U, 
an intervention brings it outside U. The transition probabilities for the process 
with these interventions are constructed. It is shown that they satisfy the 
Chapman-Kolmogorov equations. 

1. INTRODUCTION 

In December of 1967 I became research associate at the statistics department 
of the Mathematical Centre in Amsterdam. After I had studied a couple of 
introductory books on operations research, professor De Leve asked me to 
read and to correct the second volume of his Mathematical Centre Tracts on 
Generalized Markovian Decision Processes (reference [I]). In this tract the pro
babilistic background of the generalized Markovian decision process is treated. 
This decision process is a Markov process with extra instantaneous transitions, 
any time a closed set, say U, is entered. The original Markov process has as 
state space (E, <ffi) a finite dimensional Borel space. Moreover, the sample paths 
are continuous from the right and have only a finite number of discontinuities 
in each bounded time interval. Consequently, entrance times in the set U are 
well defined. If the process enters U in state u then there will be an interven
tion of the decision maker which gives the process an instantaneous transition 
to a state in uc = E \ U. The transition probabilities of this intervention are 
given by q(u, B), u EU, B ='ffi n uc. The main problem in the tract was the 
question whether the process with interventions is again a strong Markov pro
cess. Since the analysis of the tract is very technical and inaccessible I spent 
many months in struggling my way through it. The analysis of De Leve is 
basically a sample path analysis. After reading the tract I started to approach 
the problem with constructing the transition probabilities and showing that 
they satisfy the Chapman-Kolmogorov equations. When the editors of De 
Leve's Liber Amicorum asked me for a contribution I thought of my twenty 
years old notes on this problem. Since extending the research is not possible 
for lack of time, I have restricted myself to rewrite them in english. Hopefully, 
the original telegram style in dutch has become a readable paper. Unfor
tunately, some assumptions about measurability still remain. It seems to me 
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that it should be possible to get rid of them. Clearly, the analysis of this paper 
does not solve De Leve's original problem. Since the transition probabilities 
do satisfy the Chapman-Kolmogorov equations they correspond to a Markov 
process. However, to assure that they correspond to a strong Markov process, 
it seems that continuity properties on the transition probabilities are needed 
(cf. theorem 3.2 and 3.14 of [2]). If the original process is a standard process 
(see [2] p. 104) then an interesting question is, under which conditions on the 
instantaneous transition probabilities q(u,B) are the transition probabilities of 
the process with interventions (see (4.1)) stochastically continuous functions. In 
case they are, they correspond to a standard Markov process and hence the 
strong Markov property holds (cf. [2] theorem 3.14). 

We assume that the Markov process is a strongly measurable, complete, 
strong Markov process on the state space (E, ~) with sample paths 
Xr(w), 1;;;;.o, WEU. For uc=E\ u an open Borel set, let T be the first exit time 
from uc. Then the process with sample paths, 

Xr(w) = Xmin(t,1(w))(w) 

defines a strong Markov process (cf. [2] theorem 10.2). This process is called 
the stopped process. It is stopped at the first exit time of uc or equivalently 
the first entrance time of U. We will denote the transition probabilities of the 
stopped process with P 0(t, x, B), t ;;;;.o, x EE and BE~. These transition proba
bilities are the building stones of our analysis. In the assumptions 3.1 and 3.2 
we will assume existence and monotone dominance of the right hand side 
derivatives of P0(t, x, B) for t =O, x E uc and BE~ n U. It would be interest
ing to analyze whether this assumption holds for the practical problems to 
which De Leve's Markovian decision analysis has been applied (see [4]). 

2. DISCRETE TIME HITTING TRANSITION PROBABILITIES 

It is well known ([2]) that the transition probabilities P 0(t, x, B), t ET, x Ep, 
of the stopped process are monotone nondecreasing and right continuous in t 
for BE~ n U. The discrete time hitting transition probabilities are defined 
through the jumps in P 0(t, x, B) as function of t. For all t>O, x E uc and 
BE~ n U we introduce the notation, 

pd(t, x, B) = P 0(t, x, B) - lim P 0(t -h, x, B). 
h!O 

It follows from the properties of the P 0(t, x, B) transition probabilities that 
pd(t, x, B) is for fixed Ba measurable function of the pair (t, x). Moreover, for 
any pair (t, x), Pd(t, x, B) is a finite measure on~ n U. 

Since for all x and t i. · · · , tn, 
n 
L pd(t;,x,U) :5';; P 0(max t;,x, U) :5';;1, 
i=I I 

we conclude that pd(t, x, U) has at most a countable number of t values for 
which it is positive. However these t values may depend on x. 

We introduce T(t, x) as follows; -rET(t, x) if Pd(-r,y, U)>O on a set of y's 
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with positive P 0(t, x, ·)-measure. We will show that T(t, x) has at most a 
countable number of elements. Therefore we need the following relation. 

LEMMA 2.1. The following equality holds for all t ;;;.O, T>O and x E uc, 
pJ(t +T, x, U)= J P 0(t, x,dy)pd(T,y, U). 

PROOF. 

U' 

Pd(t +T, x, U) = lim (P 0(t +T, x, U)-P 0(t +T-h, x, U)) 
h!O 

= Iim(P 0(t, x,U)+ J P 0(t, x, dy)P 0(T,y,U)-P 0(t, x, U) 
h!O U' 

- f Po(t, x, dy)Po(T-h,y,U)) 
U' 

= lim J P 0(t, x, dy)(P 0(T,y,U)-P 0(T-h,y,U)) 
h!O U' 

= J P 0(t, x, dy)pd(T,y, U), 
U' 

where for the last equality the monotone convergence theorem is used. D 

From this relation we conclude that 

pJ(t +T, x, U) >0 if and only if (ifl) TET(t, x). 

Since { x} has P 0(0, x, ·)-measure equal to one, it follows that 

t + TET(O, x) iff TET(t, x). 

Since T(O, x) is a finite or countable set the same is true for T(t, x). 

(2.1) 

For any B E'ffi n U the !-values of the jumps in P 0(1, x, B) an contained in 
T(O, x). The discrete time hitting transition probabilities are defined as the 
sum of all jumps, which is possible since there are at most a countable number 
of them. For any x E uc and B E'ffi n U we define, 

Pd(t, x, B) = ~ Pd(T, x, B). 
O<T.;;;t 

TE T(O,x) 

Remark that in this definition we take x, B inside resp. outside U. Hence they 
represent the discrete part of the probabilities of hitting the set U in subset B 
before or at time t. 

We conclude this section with a relation for the discrete time hitting transi
tion probabilities. 

LEMMA 2.2. The following equality is true for any x E uc and B E'ffi n U, 

f P 0(t, x, dy)PJ(s,y, B) = Pd(t +s, x, B) - Pd(t, x, B). 
U' 
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PROOF. From the definition of the discrete time hitting probabilities we have, 

Pd(t +s, x, B) - Pd(t, x, B) = ~ pd{T, x, B). 

With lemma 2.1 and relation (2.1) we find, 

t<T.;;,( +s 
TET{O,x) 

f P 0(t, x, dy)Pd(s,y, B) = f P 0(t, x, dy)( ~ Pd(T,y, B)) 
if if O<T.;;.s 

TET(I, x) 

~ Pd(t +T, x, B) = 
O<T.;;.s 

I +TET{O,x) 

where in the second expression Pd(T,y, B) is integrated with respect to 
P 0(t, x, dy) and therefore we may restrict the summation to the T's in T(t, x). 
Combining the relations gives the assertion of the lemma. D 

3. THE HITTING TRANSITION RATES 

In this section we define the hitting transition rates. As far as we know their 
existence is not always guaranteed for the general state space(£, 021). Therefore 
we make the following assumption. 

ASSUMPTION 3.1. For any x E uc and B E021 n U, limh!O h - Ip o(h, X, B) exists . 

We call these limits the hitting transition rates at t =O. They will be denoted 
by p0(0, x, B). We also need the following properties of these hitting transi
tion rates. 

ASSUMPTION 3.2. 
(i) p 0(0, x,-) is a measure on 021 n U, 
(ii) for some finite and measurable function g(x) and constant h0 >0 with 

P 0(h, x, U),;;;;,hg(x) for all 0<h,;;;;,h 0 , the integral JifP 0(t, x, dy)g(y) is 

finite for all t and x. 

Assumption 3.2 (ii) will be used to apply the monotone convergence theorem. 
From the existence of the time derivative at t =O follows the existence of the 
time derivative at any time point. This consequence of the semigroup property 
is fairly standard. Let us state it in the following lemma. 

LEMMA 3.1. For any x E uc and B e021 n U, 

lim h- 1(P 0(t +h, x, B)-P0(t, x, B)) 
h!O 

exists. With the notation p 0(t, x, B) for this limit the following relation holds, 

Po(t, x, B) = j P 0(t, x, dy)p 0(0,y, B) 
if 

(3.1) 
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PROOF. From 

P 0(t +h, x, B) = j P 0(t, x, dy)P 0(h,y, B) 
E 

it easily follows for x E uc and B E£iB n U, 

h- 1(P 0 (t +h, x, B)-P0 (t, x, B)) 

= j P o(t, x, dy )(h - IP o(h, y, B)). 
if 
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(3.2) 

From the monotone convergence theorem and assumption 3.2 (ii) we conclude 
that the limit of the right-hand side does exist and that the relation (3.1) is 
satisfied. D 

We will call p 0(t, x, B), 1.;;;;0, x E uc, B E£iB n Uthe hitting transition rates. 
It is well known that P 0 (1, x, B) is a measurable function of the pair (t, x ). 

From this it follows with standard arguments that p 0(t, x, B) is also measur
able in (t, x). It is also straightforward to show that for any t and x E uc the 
function p 0(t, x, ") is a finite nonnegative measure on £iB n U. 

For later use we state in the following lemma a generalization of the relation 
(3. l). 

LEMMA 3.2. The following equality holds for all t, s ;;;.o, x E uc and B E£iB n U, 

po(t +s, x, B) = j Po(t, x, dy)po(s,y, B). 
if 

PROOF. It is easily seen that for x E uc and B E£iB n U, 

h- 1(P 0(t +s +h, x, B)-P0(t +s, x, B)) 

= j Po(t, x, dy)(h- 1(P0(s +h,y, B)-P0(s,y, B))). 
if 

(3.3) 

From relation (3.2) and assumption 3.2(ii) we find that the right-hand side is 
dominated by, 

j Po(t, x, dy) j P 0(s,y, dz)g(z).;;;; j P 0(t +s, x, dz)g(z) < oo. 
if if if 

The assertion of the lemma follows from taking the limits for hio in (3.3) and 
using the monotone convergence theorem. D 

The discrete time hitting transition probabilities Pd• were defined as the sum 
over all jumps. We now define the continuous time hitting transition probabili
ties Pc, as the difference of P 0 and Pd• more precisely; for all x E uc and 
B E1iB n U let, 

Pc(t, x, B) = Po(t, x, B) - Pd(t, x, B). 

It is easily seen that Pc(t, x, B) as function of t is continuous and 
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nondecreasing. Moreover, we showed that p 0(t, x, B) is its righthand side 
derivative. Since Pc(O, x, B)=P0(0, x, B)=O for x E uc and B E6i> n U, it fol
lows from a well-known result in real analysis (see [3] p. 596) that, 

I 

Pc(t, x, B) = j Po(-r, x, B)d-r. (3.4) 
0 

Hence the hitting transition rates are the time derivatives of the continuous 
time hitting transition probabilities. 

4. THE TRANSITION PROBABILITIES OF THE PROCESS WITH INTERVENTIONS 

In this section we suppose that when the process enters the set U, say in state 
u, there will be an intervention which at the same instant brings the system to 
a state outside U. The new state is a random variable, its distribution is given 
by the jump transition probabilities q(u, ·). As seen from the notation q(u, ·) the 
distribution of the new state may depend on the entrance state u of the set U. 

We assume that q(u, B), u EU and B E6i> n uc are transition probabilities. 
Hence q(u, B) for B EGj, n uc is measurable as function of u. 

In [l] the process with interventions is studied via a sample path method. 
Here, we will approach it via the transition probabilities. We will give an expli
cit expression for the transition probabilities. Therefore, we need the regular
ity assumption that with probability one the process with interventions will 
enter the set U in any finite time interval only a finite number of times. Then 
in an inductive way we will define the transition probabilities given the process 
enters the set U exactly k, k i=N0 times. 

The transition probabilities without entering U are given by, 

P0(t, x, B), 1;;;;.o, xEUc, BEGj,n uc. 

Now suppose the transition probabilities with entering U precisely (k -1) 
times or equivalently, with (k -1) interventions, are given by Pk_ 1 (t, x, B). 
Then the transition probabilities with k interventions are equal to, 

I 

Pk(t, x, B)= J dT(j p 0(-r, x, du)(j q(u, dy)Pk-i(t -T,y, B))) 
0 u lf 

+ ~ </Pa(-r,x,ilu)(jq(u,dy)Pk-l(t--r,y,B))). 
0<.-.;;1 u lf 

TET(O,x) 

For the existence of the integrals above we need that Pk-I (t, x, B) is measur
able in (t, x). For a process on a semi-compact state space (see [2]) this does 
not seem to be a severe restriction. However, we do not know general condi
tions implying it for all k ;;;;.O. Also in the proofs below we will interchange at 
various places the order of integration. Since all integrands are nonnegative 
there is no strong restriction of generality in assuming that this is correct. Our 
claim is that the transition probabilities of the process with interventions are 
given by, 

00 

P(t, x, B) = ~ Pk(t, x, B), (4.1) 
k =O 
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for t ;;;.O, x E uc and BE~ n uc. To justify our claim we have to show that 
P (t, x, B), t ;;;;.O, x E~ n uc is a semigroup of transition probabilities and 
moreover that they correspond to the process with interventions. The measura
bility properties follow from the assumption that they hold for Pk for all k;;a.O. 
With standard arguments it can be shown from the regularity assumption on 
the finiteness of the number of interventions in [O, t] that P (t, x, ·) is a proba
bility measure on ~ n uc. We will take it for granted that these transition pro
babilities do model the process with interventions. What remains to show is 
that the semigroup property holds. In the next section we show this by proving 
that the Chapman-Kolmogorov relation is satisfied. 

In the remainder of this section we do some preparatory work. 

LEMMA 4.1. For all t, s ;;;.o, x E uc and BE~ n uc, 
s 

j Po(t, x, dy)(j dt(j p 0(r,y, du)(j q(u, dz)Pk(s -r, z,B))) 
U' 0 u U' 

I +s 

j dr(j Po(r, x, du)(j q(u, dz)Pk(t +s -r, z, B))). 
u U' 

PROOF. The proof follows straightforward from lemma 3.2 and an interchange 
of the order of integration. D 

The analogous result with the discrete time hitting transition probabilities is: 

LEMMA 4.2. For all t, s ;;;.o, x E uc and BE~ n uc, 

j Po(t, x, dy)( ~ (j Pd(r,y, du)(j q(u, dz)Pk(s -r, z, B)))) 
lj' kT~ U lj' 

TET(O,y) 

~ (j Pd(r, x, du)(j q(u, dz)Pk(t +s -r, z, B))). 
l<T~t+s U if 
TET(O,x) 

PROOF. The proof is essentially the application of lemma 2.2. However, for 
clearness we do not refer to this lemma. In the first expression Pd(r,y, ·) is 
integrated with respect to P 0(t, x, dy). Therefore we may restrict to r-values 
for which Pd(r,y, U) is positive on a set of y's with positive P 0(t, x, ·)-measure. 
This set of r's was defined as T(t, x). Hence the first expression with inter
changing the order of summation and integration and only the relevant part 
explicitly written out, is equal to 

~ j P 0(t, x, dy)Pd(r,y, du)···. 
O<T~S U' 

TE T(l,x) 

With lemma 2.1 and relation (2.1) we find that this is equal to, 
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L Pd('T, x, du) · · ·. 
l<T..-;/ +s 
TET(O,x) 

From which the assertion follows. D 

5. THE CHAPMAN-KOLMOGOROV EQUATIONS 
The transition probabilities with exactly k interventions were denoted by 
Pk(t, x, B), 1;;;.0, x E uc, B E0i> n uc. If there are n interventions in the interval 
(0, t + s] and k in (0, t] then there should be (n -k) interventions (t, t + s ]. 
Hence the equality of the following lemma is intuitively clear. It gives the main 
step to prove the Chapman-Kolmogorov equations. 

LEMMA 5.1. For all n El\J0 , x E uc and B E0i> n uc, 

L j Pk(t, x, dy)P1(s,y, B) = Pn(t +s, x, B). 
k +l=nl.f 

PROOF. The proof goes with induction on n. The Chapman-Kolmogorov equa
tions for the P 0(t, x, B) transition probabilities on (UC, 0i> n Uc) give the rela
tion for n =O. Suppose the relation holds for n equal tom. To prove the rela
tion for m + 1 we split the sum ~k +t =m + 1 • • • in ~k +t =m + 1, k :;;a, 1 and the 
term with (k =O, I =m + 1). 

(i) L j Pk(t, x, dy)P1(s,y, B)= 
k+l=m+ll.f 

k:;;aol 

I 

L f l<f d'T + L ) J (po('T, x, du)+ Pd('T, x, du))· 
k+l=m+lc.t O 

k:;;aol 
O<T..-;I u 

TET(O,x) 

(j q(u, dz )Pk - I (t -'T, z,dy ))JP1(s, y, B) 
l.f 

= <! dt + 
0 

L ) j (po('T, x, du)+ pd('T, x, du))' 
O<T..-;/ u 

TET(O,x) 

(j q(u,dz)( L j Pk- 1(t-T,z,dy)P1(s,y,B))) 
l.f k+l=m+ll.f 

k:;;aol 

L ) J (po('T, x, du)+ Pd('T, x, du))· 
O<T..-;I u 

TET(O,x) 

(j q(u, dz)P mU +s -'T, z, B)), 
l.f 

where in the above shorthand notation the p 0 ,pd has to be combined with 
the integral resp. the summation over T; the last equality follows from the 
induction hypothesis. 
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(ii) The lemma's 4.1 and 4.2 imply that 

J Po(t, x, dy)Pm +1(s,y, B)= 
If 

t +s 

( J + ~ ) j (po(T, x, du)+ Pd(T, x, du))· 
t<T,.;;,1 +s U 
TET(O,x) 

(j q(u, dz)Pm(t +s -T, z, B)). 
If 
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The final expressions of (i) and (ii) added together give the defining rela
tion of Pm+i(t +s, x, B) and the assertion is proved. D 

The main result of this paper follows now easily. It shows that the transition 
probabilities of the process with interventions satisfy the Chapman
Kolmogorov equations. 

THEOREM 5.1. For all t, s ~O, x E uc and B Eiffi n uc, 
j P(t, x, dy)P(s,y, B) = P(t +s, x, B). 
If 

PROOF. The proof follows by interchanging the order of integration and sum
mation. Indeed, 

j P(t, x, dy )P(s, y, B) 
If 

00 00 

= j ( ~ Pk(t, x, dy ))( ~ P1(s, y, B)) 
If k=O l=O 

00 

= ~ ~ (j Pk(t, x, dy)P1(s,y, B)) 
n=Ok+l=n If 

00 

= ~ Pn(t +s, x, B) = P(t +s, x, B), 
n=O 

where the equality before the last one is a consequence of lemma 5.1. D 
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In many introductory textbooks on Operations Research and Mathematical Pro
gramming the Linear Assignment Problem is solved by the Hungarian Method, 
probably because this is the oldest method. We highlight another method, the 
Bradford method of Mack; we think it to be more suited to explain a solution 
method for the Linear Assignment Problem. After a short review of assignment 
algorithms, we give an exposition of elements of these algorithms. Then we 
explain Mack's algorithm illustrated with an example and we will show it to be 
near - equivalent to the Hungarian Method. Finally we indicate an improvement 
on Mack's Method. 

1. INTRODUCTION 

In many introductory textbooks on Operations Research and Mathematical 
Programming, e.g., Daellenbach, George and McNickle (1983), and Taha 
(1987), the Linear Assignment Problem is introduced by the Hungarian 
Method, probably because this is the oldest method and maybe because not 
many textbooks treat any other method. 

We highlight another method, the Bradford method of Mack (1969), which 
is theoretically equivalent to the Hungarian method; we think it to be more 
suited to explain a solution method for the Linear Assignment Problem. In 
1969, Mack developed this method, which can be considered a forerunner of 
Tomizawa's (1971). 

We start with a short review of assignment algorithms, followed by an expo
sition of elements of these algorithms. Then we explain Mack's algorithm illus
trated with an example and we will show it to be near-equivalent to the Hun
garian Method. Finally we indicate how Mack's method can be improved. 

As is well known, the Linear Assignment Problem on then Xn cost matrix 
(cij) can be formulated as a linear program: 

subject to 

n n 

min ~ ~ C;/Xij 
i=lj=l 

n 
~ Xij = 1 (i = l, ... ,n), 
j=l 
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n 
~xij = 1 (j = 1, ... ,n), 
i=l 

Xij E {0, 1} (i,j = l, ... ,n ). 

55 

The zero-one constraints on the xij can be relaxed to nonnegativity restrictions, 
yielding the dual problem: 

n n 

max~u; + ~vj 
i=l j=l 

subject to 

cij-u;-v/;;;i.O (i,j = 1, ... ,n). 

From the dual variables u; and vj we may calculate the reduced costs 
cij -u; -vj (i,j = 1, ... ,n ). So, the dual problem is to find a reduction of the 
cost matrix with maximum sum and non-negative reduced costs. 

In this and the following sections, n is the number of assignments to make. 
Indices i and j refer to rows and columns respectively; X; is the index of the 
column assigned to row i and yj the index of the row assigned to column j, 
with x; = 0 for an unassigned row i and yj = 0 for an unassigned column j; 
the dual variable u; corresponds to row i and vj to column j. We denote the 
reduced costs C;j - u; -vj by credij• and we may refer to the dual variables as 
'prices'. An unassigned row or column is 'free'. 

2. A REVIEW OF ALGORITHMS 

Methods to solve the Linear Assignment Problem can be classified (roughly) in 
three categories: 
a. algorithms based on maximum flow, 
b. algorithms based on shortest paths, 
c. algorithms based on the simplex method. 
Most algorithms based on maximum flow are primal-dual methods. Papadimi
triou & Steiglitz (1982) give an introduction to these methods that is very well 
suited for use in the classroom. A primal-dual method for the Linear Assign
ment Problem performs the following steps: 
step 1. find a feasible dual solution; 
step 2. solve a restricted primal problem, that is, find a (partial) primal solu

tion that has complementary slackness with the dual solution; 
step 3. terminate if the solution of the restricted primal problem solves the 

Linear Assignment Problem; otherwise, solve a restricted dual prob
lem to adjust the dual solution leading to a less restricted primal 
problem, and return to step 2. 

Essentially, step 2 consists of solving a maximum flow problem on an auxiliary 
graph. The notion 'complementary slackness' known from the theory of linear 
programming will be described in section 3 for the use in the context of the 
Linear Assignment Problem. 

Historically seen Kuhn's Hungarian algorithm (1955, 1956) was actually the 
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'father' of the general primal-dual algorithm. The original method had compu
tational complexity O(n 4), but later O(n 3) versions were developed (Lawler 
(1976)). Bertsekas (1981) also presented a primal-dual algorithm. The method 
is of the Hungarian type, and the best version even uses the Hungarian algo
rithm itself. 

The methods based on shortest paths are dual algorithms in the sense that 
dual feasibility exists and primal feasibility has to be reached. This is achieved 
by considering the Linear Assignment Problem as a minimum cost flow prob
lem, which can be solved by steps that involve finding shortest (augmenting) 
paths on an auxiliary graph. 

In this group two algorithms, both of time complexity O(n 3), stand out: 
Tomizawa's from 1971 and Hung & Rom's from 1980. The latter method is 
the more ingenious, but the former approach the faster. The algorithm of Tom
izawa is initialized with a partial primal solution and a corresponding feasible 
dual solution. The partial assignment is augmented into a complete solution by 
primal steps in each of which one shortest augmenting path is determined 
using Dijkstra's method (1959). Hung & Rom's initial solution is complete, but 
may be infeasible. They determine in each step a shortest path tree, which 
takes more effort, but may lead to finding more augmenting paths per itera
tion. 

Jonker & Volgenant (1987) described a Linear Assignment Problem algo
rithm including a Pascal implementation, that appears to be faster than the 
best known methods from the literature. 

We highlight in this note the so-called Bradford method of Mack (1969), 
especially for its intuitively appealing presentation. It resembles the method of 
Hun§ & Rom, but, as originally presented, has computational complexity 
O(n ). Adapting it to obtain complexity O(n 3) results in an algorithm close to 
Tomizawa's. 

The linear programming based algorithms in the third category are (very) 
specialized versions of the simplex method. The best published results are from 
Barr, Glover & Klingman (1977). A major difficulty with all of these methods 
is the phenomenon of zero pivot steps. This can be illustrated in the classroom 
by solving a Linear Assignment Problem example as a transportation problem, 
showing a lot of degeneracy: almost half of the basic variables are equal to 
zero. A drawback is also their relatively complex implementation, as compared 
to the other approaches. Computational experiments (Hung & Rom (1980)) 
show that they are outperformed by the best primal-dual and dual algorithms. 

The O(n 3) Signature algorithm presented by Balinski (1985) also belongs to 
this category. It considers feasible dual solutions corresponding to trees in the 
bipartite graph of row and column nodes. Since its first publication, some 
refinements have been published, but, up to now, no computational results 
have been presented. 
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3. ELEMENTS OF LINEAR. ASSIGNMENT ALGORITHMS 
Most primal-dual and dual Linear Assignment Problem algorithms are based 
on only a few standard operations: 
- initialization: a feasible dual solution u; (i = l, ... ,n) and vj (j = l, ... ,n) is 

determined; the primal solution x; (i = 1, ... ,n), with corresponding 
yj (j = l, ... ,n), is initialized so that complementary slackness holds, that is, 
x; = j only if credij = O; 

- finding an augmenting path: a sequence of, alternately, row and column 
indices is determined, with the first an unassigned row, the last an unas
signed column, and the intermediate columns and rows assigned in succes
sive pairs; 

- augmentation: augmentation of a partial solution can take place along an 
augmenting path by assigning all rows in the path to their succeeding 
column, which results in one more assignment; 

- adjustment of the dual solution: prices are adjusted either to obtain at least 
one additional zero reduced cost coefficient, while maintaining complemen
tary slackness, or to restore complementary slackness after augmentation of 
a partial assignment. 

The concept of augmentation along alternating paths is the basis for every 
assignment algorithm. How to adjust the dual solution merits some thought. 
Each algorithm specifies its own rules for this operation. The purpose is to 
maintain complementary slackness, that is, 

(i,j = l, ... ,n), 

c;k-u;-vk = 0, if x; = k (i = l, ... ,n). 

Substituting the u; from (2) into (1) leads to 

c;k-vk~cij-vj (j = l, ... ,n). 

(1) 

(2) 

This implies that for every assigned column k (yk = i) the vk must be chosen 
so that 

c;k-vk = min{c;-vjlj = l, ... ,n}, 

and for every assigned row i (x; = k) the u; must be set at 

So all assignments in a (partial) solution must correspond to row minima in 
the reduced costs matrix. After augmentation of a partial solution, this trivial 
observation will usually show the best way to adjust prices. It even forms the 
basis of the assignment algorithm of Mack (1969) in which algorithm only the 
values of the v-variables have to be recorded, making it easier to understand 
the solution procedure. 



58 R. Jonker, A. Volgenant 

4. THE ALGORITHM OF MACK 
Mack's linear assignment method is easy to understand, and easy to use. We 
will show it to be near-equivalent to both the algorithm of Tomizawa and the 
Hungarian method. So, in a way, Mack's algorithm provides the best statement 
for an Hungarian-type assignment algorithm. The method is based on two 
trivial observations for the Linear Assignment Problem: 
1. the cost matrix can be reduced without influencing the optimal solution; 
2. an optimal solution is found if for a certain reduced cost matrix the row 

minima occur in different columns. 
As long as 2 is not fulfilled, Mack's algorithm adjusts the reduced costs in such 
a way that the row minima are spread over more columns. 

3* 7 6 6 6* 7 6 6 6 7 6* 6 
l* 6 8 8 4* 6 8 8 4* 6 8 8 
3 O* 8 l 6 O* 8 1 6 O* 8 1 
O* 7 9 9 3* 7 9 9 3* 7 9 9 

(a) start (b) (c) 

8 7 6* 6 9 8 6* 6 9 8 6* 6 
6* 6 8 8 7* 7 8 8 7 7* 8 8 
8 O* 8 1 9 1* 8 1 9 1 8 1· 
5* 7 9 9 6* 8 9 9 6* 8 9 9 

(d) (e) (f) optimal 

FIGURE 1. An assignment problem solved by Mack's algorithm (bases are 
starred). 

We illustrate the method on a simple example, which has the cost matrix 
given in Figure l(a). The column where for a certain row i the minimum 
current reduced costs occur is called the base of row i, denoted base;. (The 
bases are starred in Figure 1.) The method terminates if every column con
tains one base. 

First consider column 1, which contains more than one base. By increasing 
its entries we create an alternative position for one of the bases in this column. 
If column 1 is increased by 3, an alternative position is found for base1, under
lined in matrix (b ). This position being free, we switch base1 from column l 
to column 3 in matrix (c), using in fact an augmenting path of length two. In 
the next iteration we consider again column 1, still containing two bases. After 
increasing column l by the amount 2, we find a new possibility for basei in 
matrix ( d). The corresponding column 2 is already occupied by a base, so from 
now on we must increase columns 1 and 2 simultaneously. An increase of I for 
both columns leads to the cost matrix of Figure l(e). In this matrix a path 
exists, alternating between bases and alternative bases, along which the current 
set of bases can be spread over one more column. The solution in Figure l(f) 
is optimal. Note that after every step, in (c) and in (f), the bases are spread 
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over one more column. 
This is a more formal statement of the assignment algorithm of Mack. 

step 1. Initialization: Determine the bases in the cost matrix. 
step 2. Termination, if every column contains one base. 
step 3. Select a column j that contains more than one base. 

Set COL:= lj} and ROW:= {ilbase;ECOL}. 
step 4. For iE ROW set m; = min{cred;k-cred;,base, lkECOL}. 

Determine 6 = min{ m; Ii E ROW}. 
Let rr be a row and kk a column for which 6 is assumed. 
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step 5. Adjust the dual solution: Increase the reduced costs of all columns in 
COL by the amount 6. 
If.column kk contains no base, go to step 6. Otherwise go to step 7. 

step 6. Augmentation: A path has been found consisting of, alternately, bases 
and alternative bases, starting in column kk: 
- alter the current set of bases along the alternating path, 
- go to step 2. 

step 7. Column kk is base for some row(s): 
- mark column kk as alternative base for row rr, 
- COL:= COL U{kk}; ROW:= ROW U{ilbase; = kk}, 
- go to step 4. 

Bunday and Garside (1987) have published a computer program for Mack's 
method. 

5. IMPROVING MACK'S ALGORITHM 
When considering the complexity of Mack's algorithm, step 4 turns out to be 
inefficient. Its formulation above requires O(n 2 ) operations to update the row 
minima over the columns not in COL. An alternative formulation is: 
step 4. For kE COL set mmk = min{cred;k - credi,base, liEROW}. 

Determine 6 = min{ mmk I k ECOL }. 
Let rr be a row and kk a column for which 6 is assumed. 

When 6sum is the sum of the 6-values by which columns in COL were 
increased in previous applications of step 5 during the current iteration, we 
note that 

mmk+6sum = dk (k = l, ... ,n). 

This implies that updating the row minima is equivalent to determining a shor
test path from the original column j (from step 2) to any unoccupied column 
in an auxiliary network. As in Tomizawa, Dijkstra's method can be used as we 
consider the (non-negative) reduced costs. So in this formulation, the column 
minima over the rows in ROW can be updated in O(n) operations, and the 
computational complexity of the method becomes O(n 3 ). 

Using the second formulation of step 4 yields a method that is almost 
equivalent to that of Tomizawa (1971). Note, however, that Mack's method 
was published in 1969. Tomizawa's method is obtained as follows: 
- rows are assigned only if the minimum reduced costs occur in an unassigned 
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column, that is, every column is assigned at most once; 
- the set ROW is initialized (in step 3) with any unassigned row and COL 

with the empty set. 
The improvement of this section may be omitted when treating Mack's 

method in the classroom. For further improvements, e.g., about finding an ini
tial solution (step 1), we refer to Jonker & Volgenant (1987). 

6. CONCLUSION 
We have highlighted Mack's Linear Assignment Problem algorithm to promote 
it as a method to be discussed in textbooks on Operations Research and 
Mathematical Programming. We think the given explanation as well as the 
cohesion with other Linear Assignment Problem algorithms to contain enough 
arguments for the recommendation to use the method for teaching students 
about the Linear Assignment Problem. 
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In the time-constrained TSP, each city has to be visited within a given time interval. 
Such 'time windows' often occur in practice. When practical vehicle routing prob
lems are solved in an interactive setting, one needs algorithms for the time
constrained TSP that combine a low running time with a high solution quality. 
Local search seems a natural approach. It is not obvious, however, how local 
search for the TSP has to be implemented so as to handle time windows 
efficiently. This is particularly true when parallel computer architectures are avail
able. We consider these questions. 

I. INTRODUCTION 

On May 2, 1969, Professor Gijs de Leve showed his newly-appointed assistant 
around in the Mathematical Centre, then located in an old school building. 'Here 
is our library,' he said. 'And this is how you do research. You just pick up a jour
nal, and - well, there isn't any Markov programming here, but this may interest 
you.' The journal was a recent issue of Operations Research, and the paper was 
Bellmore and Nemhauser's survey of the traveling salesman problem [Bellmore & 
Nemhauser, 1968]. 

This was neither the first nor the last time that De Leve put someone on the 
track of the traveling salesman. As a result, the TSP has always occupied a central 
position in the research in combinatorial optimization at the University of 
Amsterdam and at the Mathematical Centre. This has led to a long list of publica
tions, which probably starts with the survey by Tijdeman [ 1968]. It includes De 
Leve's own elegant improvement of the assignment bound [Jonker, De Leve, Van 
der Velde & Volgenant, 1980] as well as the impressive computational work of 
Jonker [1986] and Volgenant [1987]. The latest additions focus on the availability 
of new computer architectures for interactive and parallel computing and their 
consequences for the TSP. 
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In this contribution, we review some of this recent work. We give a nontechni
cal summary in Section 2. Sections 3-7 provide more detail; most of this material 
is adapted from Martin Savelsbergh's dissertation on interactive vehicle routing 
[Savelsbergh, 1988] and Gerard Kindervater's dissertation on parallel combina
torial computing [Kindervater, 1989]. 

2. NONTECHNICAL SUMMARY 

2.1. Theory versus practice 
The theory of operations research is concerned with the investigation of a broad 
class of mathematical models that are somehow inspired by practical decision 
situations, and with the design and analysis of algorithms for their solution. The 
practice of operations research is an even broader and considerably less scientific 
occupation. A huge and ever growing pile of literature is devoted to the tension 
between theory and practice and to the inadequacy of the mathematical models 
and methods in giving real-world solutions to real-world problems. 

For the benefit of the reader, we summarize this literature in one paragraph. 
The first observation is that decision problems tend to be both soft and hard. At 
the practical side, the decision situation is usually ill-defined and the quality of a 
decision, as expressed by notions like feasibility and optimality, is an imprecise 
concept. Feasibility requirements may be loose rather than strict, and tradeoffs 
between optimality criteria are often not explicitly known but carried implicitly in 
the value judgement of the decision maker. At the mathematical side, any reason
able abstraction of the decision situation is likely to be computationally intract
able in a well-defined sense. The second observation is that no solution can be 
better than the model to which it provides an answer. While the construction of 
models that are both realistic and tractable is a delicate affair. the implementation 
of solution procedures and their results in practice is far more difficult. For appli
cations of operations research, the modeling stage is a minor obstacle in com
parison to the implementation stage. 

One way out of these complications, which has been much advocated, is to 
create a so-called gap between theory and practice and to try to fill it up with the 
literature on operations research. Another approach, which yields more mutual 
benefits, goes under the name of man-machine interaction. The idea is that man 
and machine each have their given and complementary capabilities. Human prob
lem solving is empirical by nature, based on generalization, insight, and experi
ence. Automated problem solving is normative and proceeds by the efficient 
application of general rules in specific situations. An interactive planning system 
combines the strengths of both approaches. Roughly speaking, the planner is in 
charge of the global problem aspects and takes care of all kinds of ad hoe con
straints, and the computer performs the routine work, such as the manipulation 
and representation of data and the solution of detailed subproblems. (The reader 
should note the contrast with artificial intelligence, which is concerned with the 
automation of tasks that are better done by human beings.) We refer to Anthon
isse, Lenstra & Savelsbergh [ 1989] for a further elaboration on the functional and 
technical characteristics of these types of systems. 
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2.2. Local search 
The emergence of interactive planning systems has reinforced the need for algo
rithms that can handle problems of a realistic size and give solutions of a reason
able quality in a reasonable amount of time. One often employs some form of 
local search of the solution space. Although theoretical results on the performance 
of local search algorithms are scarce and mostly negative, it is generally ack
nowledged that their empirical behavior is excellent. In addition to being effective 
and efficient, local search is also robust and easy to program. That is, a local search 
method for a certain model is usually readily adapted to handle minor variations 
of the model, and developing a computer code requires much less effort than in 
the case of highly structured optimization algorithms or tailored approximation 
techniques. 

Local search owes this flexibility and simplicity to the fact that it proceeds on 
the basis of relatively little information about the problem under consideration. 
One only has to specify an initial feasible solution and fast subroutines that, given 
a feasible solution, compute its cost (i.e., the value of the objective function) and 
its neighborhood (i.e., a set of feasible solutions that are in some sense close to it). 
Given a starting solution, its neighborhood is searched for a solution of lower 
cost. If such a solution exists, it becomes the new starting point and the search 
continues. Otherwise, a local optimum relative to the neighborhood definition ha:. 
been found. 

This heuristic solution approach enjoys an increasing popularity. Many vari
ants have recently been proposed, such as simulated annealing, tabu search, 
neural nets, and genetic algorithms. It is not our purpose to discuss this class of 
so-called homeopathic algorithms [Van Hee, 1989). Rather, we will consider a plain 
and simple local search method for the TSP and examine its implementation 
when time constraints are added to the model. 

2.3. Local search for the TSP 
Like so many other approaches in combinatorial optimization, local search was 
first seriously investigated in the context of the TSP. Lin [ 1965) calls a traveling 
salesman tour k-optimal when it cannot be improved by replacing) of its edges by 
j other edges, for any j~k. It is not known whether, for any fixed value of k ?2, a 
k-optimal tour can be generated in polynomial time. However, it is trivial to 
observe that the k-optimality of a given tour through n cities can be verified in 
O(nk) time: there are (k) ways to delete k edges; for each of these, there is a con
stant number of candidate improvements (where the constant depends on k); and 
each of these candidates can be evaluated in constant time. For example, if k = 2. 
two edges are replaced by two other edges, and only four cost coefficients have to 
be checked in order to compute the length of the new tour. 

Now suppose that each city has its own time window during which it must be 
visited, and again consider the case k = 2. If two edges are replaced by two other 
edges, then a certain segment of the tour will be traversed in the opposite direc
tion. In addition to the test for improvement, there is now also a test for feasibility 
with respect to the time windows. This takes time proportional to the length of the 
reversed segment. In general. a straightforward implementation of the algorithm 
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requires linear rather than constant time for evaluating a single k-exchange and 
thereby E>(nk + 1) time for verifying the k-optimality of a tour. We will present a 
way to avoid this additional factor of n and to verify k-optimality for the time
constrained TSP in O(nk) time. 

2. 4. Serial and parallel computing 
So far, we have implicitly assumed that our algorithms were to be executed on a 
traditional computer, which performs at most one computation at a time. An 
algorithm for a given problem is /ikable if the number of computations involved is 
bounded by a polynomial function of the problem size, and the algorithm is more 

likable if the degree of the polynomial is lower. Thus, we do not now if there is a 
likable algorithm for generating a k-optimal tour. However, such an algorithm 
does exist for verifying k-optimality of a given tour, and we like our 0(1/) 

approach better that the obvious O(nk + 1) implementation. 
Now suppose that we have a computer that can perform a number of opera

tions in parallel. Such a computer has a greater processing power than a serial 
one. This is especially important in the context of man-machine interaction, 
where the user expects fast answers in real time. 

More specifically, assume that we have an unbounded number of processors 
that operate in parallel and communicate with each other in constant time. Con
sider, as an example, the simple problem of finding the maximum of /1 numbers 
a 1,a 2, ••• ,a,,. At the first stage, one processor takes the maximum of a 1 and a 2 , 

another processor takes the maximum of a 3 and a 4 , and so on. At the second 
stage, about n 12 numbers are left, and again pairwise maxima are taken. So it 
continues. After pognl stages, we have the overall maximum. (All logarithms in 
this paper are to the base 2.) It follows that the problem is solvable in logarithmic 
time on a linear number of processors and that, in order to achieve this, each pro
cessor needs to know only a small fraction of the entire problem instance. Indeed, 
if a problem of size n is solved in log /1 time, no single processor is able to read all 
of the problem data. It appears that, when we can compute in parallel, we can find 
algorithms that are more than likable. 

2.5. Parallel local search for the TSP 

We have explained that the maximum of n numbers can be found by n 12 proces
sors in logn time. Similarly, the k-optimality of a tour through n cities can be 
verified by O(nk) processors in O(logn) time: each processor evaluates a single 
k-exchange in constant time, and the best of these is selected in logarithmic time. 
In both cases, it is not hard to reduce the number of processors involved by a fac
tor of logn. Hence, for the TSP, O(nk /logn) processors do in time O(logn) what 
a single processor can do in time O(nk). We thus achieve a perfect speedup. 

When time constraints are added, complications occur. Evaluating a single k
exchange seems to be a serial process, but it is not too hard to design a parallel 
implementation that requires logarithmic time and a linear number of processors. 
This leads to an algorithm for verifying k-optimality in O(logn) time using 
0 (n k + 1 I log n) processors. Further improvements are possible, and we can save a 
factor of n in the number of processors, again achieving a perfect speedup. 
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2. 6. Yet another summary 
Section 3 gives a brief and informal introduction into the relevant concepts of 
complexity theory. Sections 4 and 5 discuss serial and parallel local search for the 
unconstrained TSP, respectively; this material is relatively straightforward. Sec
tion 6 presents our implementation of serial local search for the time-constrained 
TSP, and Section 7 deals with the parallel case. 

3. SERIALISM, PARALLELISM, AND COMPLEXITY 
Complexity theory deals with the classification of problems based on the running 
time and the work space required by algorithms for their solution. When consider
ing parallel algorithms, we also have to take the number of processors into account. 
Complexity theory concentrates on decision problems (i.e., problems that produce 
a 'yes' or 'no' answer), but this is not a severe restriction, since most other prob
lems can be reformulated in terms of a limited series of decision problems. An 
optimization problem, for example, can be solved by posing questions about the 
existence of a feasible solution with at most or at least a given value. 

In this section, we discuss some aspects of complexity theory that are of impor
tance to combinatorial optimization. We do not intend to go into much detail, 
and refer to Garey & Johnson [ 1979] and Cook [ 1981] for more complete exposi
tions. 

Sequential computers are reasonably represented by models of computation 
such as the Turing machine and the random access machine (RAM). Given these 
models, we can define several complexity classes. The class ~p contains the prob
lems that are solvable in polynomial time, i.e., the running time is bounded by a 
polynomial in the problem size. The problems in :P are often called well solved or 
easy. ':~~SPACE contains the problems that are solvable in polynomial space, i.e., in 
work space that is bounded by a polynomial in the problem size. A very well stu
died class included in :PSPACE is :1t 0 P, the class of problems for which a feasible 
solution can be recognized as such in polynomial time. It is obvious that 
:·P <;;; ':'1lc·P <;;; '.'VSPACE, and it is conjectured that both these inclusions are proper. 

Another class contained in ~PSPACE, which has not attracted much attention in 
the context of serial computations, is POLYLOGSPACE. It consists of the problems 
that are solvable in polylog space, i.e., in work space that is polynomially bounded 
in the logarithm of the problem size. Many problems in '.'P belong to 
POLYLOGSPACE, but it is generally believed that :P ~ POLYLOGSPACE. We do 
know, however, that POL YLOGSPACE =I=- ':'VSPACE. 

The classes :PsPACE and ~'li.'.'P have their complete members. The '.'VSPACE
complete problems are generalizations of all other problems in ~PSPACE in terms of 
transformations that require polynomial time. More precisely: a problem is 
:·PsPACE-complete under polynomial-time transformations if it belongs to :·PsPACE 
and if any other problem in :·PsPACE is reducible to it by a transformation that 
requires polynomial time. It follows that if any :'PsPACE-complete can be shown to 
belong to :·P, then :PsPACE = ':P. Since this equality is not believed to be true, a 
polynomial-time algorithm for a :·PsPACE-complete problem is very unlikely to 
exist. For the class ~'l[:·P and its complete members, the same properties hold. 

'.'Palso has its complete problems. The :·P-complete problems generalize all other 
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problems in 0' in terms of transformations that require logarithmic work space. 
Formally: a problem is log space complete for 0' or, better, 0'-complete under log
space transformations, if it belongs to 0' and if any other problem in 0' is reducible 
to it by a transformation using logarithmic work space. If any <!?-complete prob
lem would belong to POLYLOGSPACE, then<!? c POLYLOGSPACE. As this inclusion 
is believed to be false, an algorithm for a 0'-complete problem that uses only poly
logarithmic work space cannot be expected to exist. 

Serial and parallel computations are related by a hypothesis known as the 
parallel computation thesis [Chandra, Kozen & Stockmeyer, 1981; Goldschlager, 
1982]: time bounded parallel machines are polynomially related to space bounded 
sequential machines. That is, for any function T of the problem size n, the class of 
problems solvable by a machine with unbounded parallelism in time T(n )0 0> (i.e., 
polynomial in T(n )) is equal to the class of problems solvable by a sequential 
machine in space T(n )0 0>. This thesis is a theorem for many 'reasonable' parallel 
machine models and 'well-behaved' time bounds; see Van Emde Boas [ 1985] for a 
survey. 

A frequently used model of parallel computation is the parallel random access 
machine, or PRAM. The PRAM is a machine with an unbounded number of pro
cessors and a shared memory. The processors perform their operations in a syn
chronized fashion. Simultaneous reads from the same memory location are 
allowed, but simultaneous writes into the same memory location are prohibited. 
The computation starts with one processor activated; at any step, an active pro
cessor can do a standard operation or activate another processor; and the compu
tation stops when the initial processor halts. 

Current technology prohibits the realization of a shared memory and, hence, of 
a machine with PRAM-like properties. However, the PRAM model is of theoreti
cal interest. It helps us in investigating the intrinsic parallelism in problems and 
algorithms. For examgle, Fortune & Wyllie [1978] showed that the class of prob
lems solvable in T(n) (I) time by a PRAM is equal to the class of problems solv
able in T(n )0 <1> work space by a Turing machine, if T(n )~log n. 

As a consequence, the class of problems solvable by a PRAM in polynomial 
time is equal to 0'SPACE. Since the PRAM is able to solve the apparently difficult 
problems in <:PSPACE (such as the ~'.PSPACE-complete and 01.0'-complete ones) in 
polynomial time, it is obviously an extremely powerful model. The theorem by 
Fortune & Wyllie also implies that the problems in POL YLOGSPACE are exactly the 
ones solvable by a PRAM in polylog parallel time, i.e., in time that is polynomially 
bounded in the logarithm of the problem size. This leads to a distinction within 
the class 01. 

The problems in ':'f' belonging to POL YLOGSPACE are solvable in polylog parallel 
time. They can be considered to be among the easiest problems in 0', in the sense 
that the influence of problem size on solution time has been limited to a 
minimum. (It should be noted here that a further reduction to sublogarithmic 
solution time is generally impossible. One reason for this is that a PRAM needs 
O(log n) time to activate n processors. A similar reason is that in any realistic 
model of parallelism a constant upper bound on the maximum number of connec
tions of any processor to other processors leads to a logarithmic lower bound on 
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the communication time between processors. That is, a fixed degree implies at 
least a logarithmic diameter of the processor network.) 

On the other hand, the ':'P-complete problems are unlikely to admit solution in 
polylog parallel time. If any such problem would be solvable in polylog parallel 
time, it would belong to POLYLOGSPACE, and it would follow that \'V <;;; 
POLYLOGSPACE. Hence, their solution in polylog parallel time is not expected. 
Any solution method for these hardest problems in ':P is likely to require superlog
arithmic time and is therefore, loosely speaking, probably 'inherently sequential' 
in nature. This does not imply. of course, that parallelism cannot yield substantial 
speed ups. 

We can, therefore, distinguish within ':'P between the 'very easy' problems, which 
are solvable in polylog parallel time, and the 'not so easy' ones, for which such a 
speedup due to parallelism is unlikely. 

The picture of the PRAM model as sketched above is in need of some 
qualification. The model is theoretically very useful, but its unbounded parallel
ism is hardly realistic. The reader will have no difficulty in verifying that a PRAM 
is able to activate a superpolynomial number of processors in subpolynomial 
time. If a polynomial time bound is considered reasonable, then certainly a poly
nomial bound on the number of processors should be imposed. It is a trivial 
observation, however, that the class of problems solvable if both bounds are 
respected is simply equal to ':'P. Within this more reasonable model, ·DI<:P-complete 
and 0'SPACE-complete problems remain as hard as they were without parallelism. 

Discussions along these lines have led to the consideration of simultaneous 
resource bounds and to the definition of new complexity classes. For example, 
Nick (Pippenger)'s Class :lc2 contains all problems solvable in polylog parallel 
time on a polynomial number of processors, and Steve (Cook)'s Class ~l::' contains 
all problems solvable in polynomial sequential time and polylog space. Some sort 
of extended parallel computation thesis might suggest that :'ll2 = f-l::'. This is a 
major unresolved issue in complexity theory, and outside the scope of this paper. 
We refer to Johnson [ 1983] for further details and more references. 

4. LOCAL SEARCH FOR THE TSP 
In the traveling salesman problem, one is given a complete undirected graph G 
with vertex set {I, ... , n} and a travel time du for each edge { i.j}. and one wishes 
to find a Hamiltonian cycle (i.e., a cycle passing through each vertex exactly once) 
of minimum total duration. We assume that the travel times satisfy the triangle 
inequality. i.e., diJ +dJk ~d;k for each triple (i.j.k). The TSP is a well-known :'ll\·P
hard problem, for which many optimization and approximation algorithms have 
been proposed; cf. Lawler, Lenstra, Rinnooy Kan & Shmoys [1985]. 

We consider the following local search algorithm for the TSP. Construct an ini
tial Hamiltonian cycle by taking an arbitrary permutation of the vertices or by 
applying a specific heuristic method such as the nearest neighbor rule or the double 
minimum spanning tree algorithm. Then try to improve the tour by replacing a set 
of k of its edges by another set of k edges. and iterate until no further improve
ment is possible. Such replacements are called k-exchanges. and a tour that can
not be improved by a k-exchange is said to be k-optimal. We will consider the case 
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k = 2 in detail. For k > 2, the analysis is conceptually similar but technically 
more involved. 

I y 

FIGURE 1. A 2-exchange. 

For notational convenience, we consider the tour (1,2, .... 11,11+1), where the 
origin I and the destination /1 + I denote the same vertex. A 2-exchange replaces 
two edges {i,i +I} and U.l +I} of the tour by two other edges {i,j} and 
{ i + I ,l + I}, thereby reversing the path from i + I to l; see Figure 1. It is an open 
question if there exists a polynomial-time algorithm that obtains a 2-optimal tour 
by a sequence of 2-exchanges [Johnson, Papadimitriou & Yannakakis, 1988]. We 
therefore restrict ourselves to deciding whether a given tour is 2-optimal. 

Because the travel times between the vertices do not depend on the direction, a 
2-exchange results in a local improvement if and only if 

d;j+d;+I.j+I <d;,;+I +dj.j+I· 

Testing a single 2-exchange for improvement involves only a constant amount of 
information and hence requires constant time. It follows that verifying 2-
optimality takes 0(11 2) time. No algorithm that proceeds by enumerating all pos
sible improvements can run faster, as there are (2) 2-exchanges. 

5. PARALLEL LOCAL SEARCH FOR THE TSP 
Before discussing the verification of 2-optimality on the PRAM model, we will 
first consider an elementary problem and describe a basic technique in parallel 
computing for its solution. 

The problem is to find the partial sums of a given sequence of /1 numbers. For 
the sake of simplicity. let /1 = 2m and suppose that the /1 numbers are given by 

an,an+I• ... ,azn-1· We wish to find the partial sums an+· .. +an+J for 
l = 0, ... , /1 - 1. The following procedure is due to Dekel & Sahni [ 1983]: 

for 1- m -1 downto 0 do 
par [2' ~1~2'+ 1 -1] a1- a11+a21+1; 

b1-a1; 
for I - I to m do 

par [21 ~1~2'+ 1 - I] b1- if l odd then bv - ii12 else bJ! 2 -ai + 1 . 
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Here, a statement of the form 'par [a~j~w] s/ denotes that the statements s1 are 
executed in parallel for all values of j in the indicated range. 

The computation is illustrated in Figure 2. In the first phase, represented by 
solid arrows, the sum of the a/sis calculated. Note that the a-value corresponding 
to a non-leaf node is set equal to the sum of all a-values corresponding to the 
leaves descending from that node. In the second phase, represented by dotted 
arrows, each parent node sends a b-value (starting with b 1 = a 1) to its children: 
the right child receives the same value, the left one receives that value minus the 
a-value of the right child. The b-value of a certain node is therefore equal to the 
sum of all a-values of the nodes of the same generation, except those with a higher 
index. This implies, in particular, that at the end we have b,, + J = a,,+ · · · +a,,+ J 
for j = 0, ... , n - 1. 

l=O 

/=I 

/=2 

I= 3 

FIGURE 2. Partial sums: an instance with n = 8. 

The algorithm requires O(Jog n) time and n processors. This can be improved to 
O(logn) time and O(n!logn) processors by a simple device. First, the set of n 
numbers is partitioned into nllogn groups of size logn each, and n!logn proces
sors determine the sum of each group in the traditional serial way in log n time. 
After this aggregation process, the above algorithm computes the partial sums 
over the groups; this requires O(n!logn) processors and O(logn) time. Finally, a 
disaggregation process is applied with the same processor and time requirements. 

In the form given above, the algorithm does not work for operations such as 
maximization. The partial sums algorithm uses subtraction, which has no 
equivalent in the case of maximization. We therefore present a version of the par
tial sums algorithm which is not quite so elegant as the original one, but which has 
the desired property since it makes use of addition only. It also runs in O(logn) 
time using O(n !logn) processors: 
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for l+-m -1 downto 0 do 
par [2'~j..,;;2'+ 1 - l] aj+-a2j+a2j+1; 

for l+-0 tom do 
par [2'~j~2'+ 1 - l] 

bj+- if j = 2' then aj else if j odd then b(j- l)/2 else hv- 2>12 +aj. 

We now return to the verification of 2-optimality. The following procedure 
decides whether or not the tour (1, 2, ... , n, n + 1) is 2-optimal: 

Par [l~i<J·~n] 8· +-d ·+d+ 1 ·+ 1·-d ·+ 1-d·+ 1 · I) 11 I •l I, I l•l ' 
8mi0 +-min{ 8;j 11 ~i <j~n }; 
if 8min;;;a.O 
then (1,2, ... ,n,n + 1) is a 2-optimal tour 
else let i* and J* be such that 8;*j* = 8min• 

(1, ... , i*,j*,j* -1, ... , i* + l,j* +I, ... , n + l) is a shorter tour. 

By adapting the first phase of the partial sums algorithm such that it computes the 
minimum of a set of numbers and also delivers an index for which the minimum is 
attained, the above procedure can be implemented to require O(log n) time and 
O(n 2 /logn) processors. The total computational effort is O(logn·n 2 /logn) = 
0 (n 2 ), as it is in the serial case. This is called a full processor utilization or a perfect 
speedup. 

Although the serial and parallel implementations seem similar, there is a basic 
distinction. When the tour under consideration is not 2-optimal, the serial algo
rithm will detect this after a number of steps that is somewhere in between 1 and 
(D. In the parallel algorithm, confirmation and negation of 2-optimality always 
take the same amount of time. 

6. LOCAL SEARCH FOR THE TIME-CONSTRAINED TSP 
In the TSP with time windows, each vertex i has a time window on the departure 
time, denoted by [s;,t;]. The time window is opened at times; and closed at time t;. 
If the salesman arrives at i before s;, he has to wait; if he arrives after t;, he is late 
and his tour is infeasible. 

Due to the presence of time windows, there are feasible and infeasible tours, 
and this complexities the problem. To start with, the problem of determining the 
existence of a feasible tour is 01,'8'-complete in the strong sense. This follows from 
the observation that the unconstrained TSP has a tour of duration no more than B 
if and only if there is a feasible tour for the constrained TSP in which each vertex 
has a time window [O, B ]. 

Secondly, when applying local search, we have to test all candidate improve
ments for feasibility. A k-exchange influences the arrival times at all vertices 
visited after the first change in the tour. This may lead to changes in the departure 
times and even to infeasibility. In a straightforward implementation, we need 
0 (n) time to handle a single k-exchange, which results in a time complexity of 
O(nk + 1) for the verification of k-optimality. We will show how to reduce this time 
bound by an order n, thereby obtaining the same time complexity as in the uncon
strained case. 
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The basic idea is the use of a specific search strategy in combination with a set 
of global variables such that testing the feasibility of a single exchange and main
taining the set of global variables require no more than constant time. We con
sider the case k = 2 in detail. 

As before, we consider the tour (1,2, ... , n,n + 1 ). We assume that this tour is 
feasible. A 2-exchange involves the replacement of the edges {i,i + 1} and 
U,J + 1} by the edges { i,j} and { i + l ,j + 1}. Such an exchange is both feasible 
and profitable if and only if the following three conditions are satisfied: 

( 1) the reversed path U, ... , i + I) is feasible, i.e., the new departure time at ver
tex k is not larger than tb fork= i + 1, ... ,j; 

(2) the new departure time at vertex j +I is smaller than it was before the 
exchange; 

(3) a part of the gain at vertex j +I can be carried through to the destination, 
i.e., the original departure time at vertex k is strictly larger than sk, for 
k=j+I, ... ,n. 

Condition (3) needs further consideration. If it is violated, the exchange will not 
affect the duration of the tour. However, it will reduce the duration of the path 
from 1 to k - 1, for the smallest k for which violation occurs. In the sequel, we will 
drop condition (3), for two reasons. First, introducing some slack may be 
beneficial for the rest of the procedure, even though the slack cannot be carried 
through to the end of the tour. In addition, taking condition (3) into account 
would make the presentation needlessly complicated. 

We propose a search strategy that examines the 2-exchanges in lexicographic 
order. We choose i successively equal to 1,2, ... ,n -2; this will be referred to as 
the outer loop. For a fixed value of i, we choose j successively equal to 
i + 2,i + 3, ... , n; this will be called the inner loop. In the inner loop, the previ
ously reversed path U - I, ... , i + 1) is repeatedly expanded with the edge 
U,J - I}; cf. Figure 3. 

FIGURE 3. The search strategy for 2-exchanges. 

In the following, we assume that i is fixed and consider the inner loop. The 
departure time at vertex k in the tour (1, 2, .... n, n + I) will be denoted by Dk, for 
k = 1, ... , n + 1. The waiting and departure times at vertex k after reversal of the 
path (i + 1, ... ,j) will be denoted by W{ and D{. respectively. fork >i. 

We define three global variables, which will be maintained throughout the inner 
loop. We suppose that the reversed path (j - I. ... , i +I) has been considered. 
First, T is equal to the total travel time along this path: 

T- "'-'J- 2 d 
- .:::_, k = i + I k.k + I . 
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Secondly, W is equal to the total waiting time along the path after departing from 
vertexj-1: 

W=°"'J-2 w{-1 . 
...::Jk =i+I 

Thirdly, Sis equal to the maximum forward shift in time of the departure time at 
vertex j - 1 that would cause no time window violation along the path: 

S = min;+1.;;k.;;1-1ltk-(DJ=l +L1;:~d1,1+i)]. 

Expanding the reversed path (j - 1, ... , i +I) with the edge U,J - I} may 
change the arrival time at vertex j - I and thereby all departure times along the 
path (j - 1, ... , i + I). We define a local variable 6. to denote the difference 
between the new arrival time and the old departure time at vertex j - I: 

- . ·-1 
6. - 0+dj.j-1-0-1· 

6. can be computed in constant time, using DJ= max{s1,D; +d;1} and DJ= l = 
max{s1 _ i.D; +d;,J-I }. 

In order to prove that we can verify 2-optimali ty of the tour ( 1, 2, ... , n, n + I) 
in O(n 2 ) time, we have to establish two facts: it is possible to update the values of 
the global variables in constant time, and the new values allow us to handle a sin
gle 2-exchange in constant time. 

As to updating the global variables, we note that the definition of 6. covers two 
cases. In the case that 6.<0, the triangle inequality implies that the old arrival at 
j - I cannot have been later than the new arrival. It follows that the old arrival 
and departure times did not coincide, so that the old departure occurred at the 
opening of the time window. But then we have that - 6. = W]- 1, the new waiting 
time at j - 1. In the case that 6.;;;.0, we obviously have 6. = DJ- 1 - Dj =I, the for
ward shift of the departure time at j - 1. We conclude that the new values of the 
global variables are obtained by 

T~ T+dJ,J+i. 

W ~ max{ W-6.,0}, 

S ~ min{t1 - Dj,S-6.}. 

These updates require constant time. 
As to handling a single 2-exchange, the conditions (I), requiring feasibility, and 

(2), stipulating profitability at vertex j + 1, can be written as 

(1) D{ ~tk fork=i+I, ... ,J, 

(2) 0+1 < Dj+I· 

The inequalities (1) are obviously equivalent to S ;;;.o; see Savelsbergh [ 1988] for a 
formal proof. For inequality (2), we observe that the new departure time at j + I 
satisfies 

0+1 = max{s1+1,Dj+T+ W+d;+I,J+I }. 

We conclude that conditions (1) and (2) can be tested in constant time. 
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7. PARALLEL LOCAL SEARCH FOR THE TIME-CONSTRAINED TSP 
We will now present a parallel algorithm for verifying 2-optimality of a time
constrained TSP tour. It requires O(logn) time and O(n 21logn) processors, and 
thereby has the same resource requirements as in the unconstrained case. 

Again, we consider the tour (1,2, ... , n,n + 1), which is assumed to be feasible. 
We start by computing all partial path lengths along the tour. This enables us to 
construct the tours that can be obtained by a 2-exchange. Our algorithm has five 
phases. 

(l) We first compute all partial sums TiJ of travel times along the tour: 

par[l~i~j~n + l] TiJ~ ~{~~ dk,k+I· 

By application of the ~artial sums algorithm from Section 5, this phase requires 
O(log n) time and O(n /log n) processors. 

(2) We now investigate the effect of the time windows on the paths along the 
tour. For each pair of vertices { i,j} with i <j, we define EiJ as the earliest possible 
departure time at vertex j when traveling along the tour from i to j, and EJi as the 
earliest possible departure time at vertex i when traveling from j to i in the reverse 
direction along the tour. Note that E l,n + 1 is the arrival time at vertex 1. Further, 
let LiJ denote the latest possible departure time at vertex i such that the path from 
i to j remains feasible, and let LJi denote the latest possible departure time at ver
tex} such that the path from} to i remains feasible. We then have: 

par [I ~i~j~n + l] EiJ~ max;.;;k.;;/sk + Tk1); 
par [I ~i ~j ~n +I] EJi~ max; .;;k .;;/sk + T;k ); 
par [l~i~j~n +I] LiJ~ min;.;;k.;;j(tk -T;k); 
par [I ~i~j~n +I] LJi~ min;.;;k.;;j(tk -Tk)· 

Using the partial sums algorithm from Section 5 with addition replaced by max
imization or minimization, we have the same time and processor requirements as 
in phase (I). 

(3) Given the earliest and latest possible departure times relative to paths along 
the tour, we compute the earliest departure time D;j(k) at any vertex k and the 
earliest arrival time AiJ at the origin after the replacement of the edges { i,i + 1} 
and LJ,j + l} by the edges {i,j} and {i + l,j + \}: 

par [l ~; <j~n] DiJ(j)~ max{E 1; +diJ, s1 }; 
par [l ~; <J~n] D;j(i +I)~ max{DiJ(j)+ T; + l.J· E1,; +d; 
par [l ~i <j~n] DiJ(j +I)~ max{D;/i + l)+d; + l.J +i. s1 + i}; 
par [l ~i<j~n] AiJ~ max{Dij(j + l)+ TJ+l.n +i. EJ+l,n +I}. 

For this phase we need 0(1) time and O(n 2 ) processors, or O(logn) time and 
O(n 2 /log n) processors. 

(4) We then test for the feasibility of the tours obtained by 2-exchanges, using 
boolean variables F;/ 

par [l ~i <J~n] F;1~ (Dij(j)~LJ.i + 1) &(DiJ(j + l)~LJ +l.n + 1 ). 

The first condition tests for feasibility at the vertices i + 1, ... . j and the second 
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one at the vertices j + 1, .... n + 1. As in the previous phase. we need 0 ( 1) time 
and O(n 2) processors. or O(logn) time and O(n 2 /logn) processors. 

(5) Finally, we decide whether or not the given tour is 2-optimal in the same 
way as in the case without time windows: 

Amin~ rnin{ AiJ I F;1, 1.;;;i <j .;;;n}; 
if £ 1.n +I .;;;Amin 
then (1,2 .... ,n,n + 1) is a 2-optimal tour 
else let i* and J* be such that F;*J* & A i*J* = A rnin, 

(l, .... i*,J*,J* -1 .... ,i* + l,j* + 1, .... n + 1) is a better feasible tour. 

For this last phase, the same time and processor bounds as before suffice. So. we 
end up with an algorithm that runs in O(log n) time using 0(11 2 /log11) processors. 
which is the same as in the case without time windows. 

For each fixed k>2, we can derive a logarithmic-time algorithm along similar 
lines. One has to take into account that, given k edges, several k-exchanges are 
possible. Further, the influence of a k-exchange on a tour is more complex. How
ever, it is not hard to see that the running time remains O(log n) using 
O(nk !logn) processors, which is optimal with respect to the number 8(nk) of k
exchanges. 
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Constructing valid inequalities for 

combinatorial optimization problems 
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Limburg University, Maastricht 

Two construction methods for valid inequalities for combinatorial optimization 
problems will be presented. The first method is based on a description of the 
problem by a (mixed) integer programming formulation using auxiliary variables 
in addition to the original variables and constructs the projection of the linear 
programming relaxation of this formulation on the space of the original vari
ables. In the second method we will derive an explicit description of a valid ine
quality simply by assuming properties of the coefficients of a facet inducing 
valid inequality for the convex hull of feasible solutions. Both construction 
methods will be demonstrated on the economic lot-sizing problem. 

1. INTRODUCTION 

Cutting plane algorithms have been used very successfully for solving combina
torial optimization problems. In a cutting plane algorithm we start with an ini
tial (mixed) integer programming formulation of the combinatorial optimiza
tion problem. H the optimal solution of the linear programming (LP) relaxa
tion is a feasible solution to the combinatorial problem, then we have found an 
optimal solution. Otherwise we try to find valid inequalities for the combina
torial problem (i.e., inequalities which are satisfied by all feasible solutions) 
which are violated by the optimal LP-solution. These inequalities are added to 
the LP-formulation which is then reoptimized. This continues until either we 
find a feasible solution to the combinatorial problem or we can't find any more 
violated inequalities among the known valid inequalities. In the latter case we 
frequently end with a very good bound on the optimal solution value. Together 
with a good feasible solution this can be used to fathom nodes in a branch
and-bound procedure. So in order to apply a cutting plane algorithm we first 
of all need valid inequalities and secondly we need to be able to solve the 
separation problem, i.e., given a solution we must be able to find valid inequal
ities which are violated by the given solution. In this paper we discuss two 
methods for constructing valid inequalities which can sometimes be used to 
find classes of valid inequalities for combinatorial optimization problems. 

The first method which we call the projection method is based on a descrip
tion of the problem as a (mixed) integer programming formulation using auxi
liary variables iri. addition to the original variables. The LP-relaxation of the 
constraint set of this formulation is then projected on the space of the original 
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variables. For more details we refer to Section 2. 
The second method which we call the polyhedral method is based on proper

ties of inequalities needed in a minimal description of a polyhedron. We will 
see that by assuming certain properties about the coefficients of these inequali
ties "e will be able to obtain an explicit description of these inequalities. The 
theoretical foundation for the polyhedral method as well as a more detailed 
description will be given in Section 3. 

Both construction methods will be demonstrated on the economic lot-sizing 
problem. In the economic lot-sizing problem we have to decide when and how 
much to produce in order to meet the known positive demands for a given 
product over a finite discrete planning horizon so as to minimfa:e total cost 
consisting of production and inventory costs. The inventory costs are linear in 
the number of items in stock at the end of each time period. The production 
costs decompose into two parts; a fixed set-up cost is incurred whenever we 
set-up production in addition to a cost linear in the number of items produced. 
The economic lot-sizing problem is the problem of minimizing 

n 
l'! (p,x,+ f;Y1+h1s1) 
i=l 

subject to 

x1+s1-i -s1 = d1, i = 1,2, ... ,n (1.1) 

So= Sn = 0 (1.2) 

x1 ~dil&)I;, i = 1,2, ... ,n (1.3) 

x1,s1;;;a.O, i = 1,2, ... ,n (1.4) 

y1e{0,1}, i = 1,2, ... ,n, (1.5) 

where n is the number of time periods; Ji is the set-up cost and p1 is the pro
duction cost per item in period i; h1 is the inventory cost per item in stock at 
the end of period i; d1 is the positive demand in period i, i = 1,2,~ .. ,n. With 
d,k we denote the total demand in periods p,p + 1, ... ,k, i.e., d,k = ~~ =pd1. The 
variable y1 indicates whether we set up production in period i (y1 = 1) or not 
(y1 =O}, the variable x1 is the amount produced in period i and s1 is the inven
tory level at the end of period i, i = 1,2, •.. ,n. Since backlogging is not allowed 
we will always produce for future periods. Because the inventory at the end of 
period n is zero we will never produce more than d1n in period i, i = 1,2, ... ,n. 
Constraints (1.3) guarantee that a set-up cost is incurred whenever we produce 
in a period. Note that we may decide to set up production without starting 
production. Constraints (1.1) are balancing constraints which tell us that the 
total amount entering period i (production in period i and inventory at the end 
of period i -1) equals the amount leaving period i (demand in period i and 
inventory at the end of period 1). We can eUminate the inventory variables 
from the formulation, namely s1 = ~:=ix1 -du. H we define 
c1 = p1 +~1=;h1, i = 1,2, ... ,n, then we obtain the following formulation in 
what we call the original variables of the economic lot-sizing problem: 
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minimize 

subject to 

n 

~ (e;X; +/;JI;) 
i=l 

n 

~X; = d;n 
i =1 

t 

~x;;;;i.d 1 ,, t = 1,2, ... ,n -1 
i=l 

X;o;;;;;d;,c)';, i = 1,2, ... ,n 

x;;;;i:O, i = 1,2, ... ,n 

y;e{O,l}, i = 1,2, ... ,n 

A. W.J. Kolen 

(1.6) 

(1.7) 

(1.8) 

(1.9) 

(1.10) 

It can be shown that optimal solutions to this problem can be characterized by 
J,JC{l,2, ... ,n}, le/CJ, where I is the set of production periods and J is the 
set of set-up periods. The production in a period equals the total demand from 
this period until the next production period (or period n in case of the last 
production period). This means that production is only started when inventory 
is zero (see Van Hoese}, Kolen & Wagelmans (1989)). 

2. THE PROJECTION METHOD 

Let S CR'+ be a finite set for which we want to find a linear description (i.e., 
a description in terms of the solution set of a number of linear inequalities) of 
the convex hull of S, where the convex hull is denoted by conv(S). 

Assume the existence of a polyhedron P CR'+ +m such that for every x eS 
there exists a z eR'.t'. such that (x,z)eP. H we define the projection, pro}x(P), 
of the polyhedron P on the space of the x-variables by 

pro}x(P) = {xeR'+ l(x,z)eP for some z;;;i:O}, 

then another way of stating our assumption is 

eonv(S) Cpro}x(P). (2.1) 

If on the other hand we can prove that for every e eRn the optimization prob
lem 

minimize ex (2.2) 

subject to (x,z)eP, 

has an optimal solution (x * ,z *) with x * eS, then since (2.2) is equivalent to the 
optimization problem 

minimize ex (2.3) 

subject to x eprojx(P), 
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we have proved that every extreme point of projx(P) belongs to S and hence 

projx(P) !;;; conv(S). (2.4) 

It follows from (2.1) and (2.4) that in this case 

conv(S) = projx(P). (2.5) 

Each inequality in a linear description of projx(P) will provide a valid inequal
ity for conv(S) if (2.1) holds. If in addition (2.5) holds, then the linear 
descriptions of conv(S) and projx(P) are identical. 

To obtain a linear description of projx(P), we use the result that the cone 
{ u I BT u ~o. u ~O} defined by some integer matrix B has a finite set of genera
tors {ui I} = 1,2, ... ,J}, i.e., every element in the cone can be written as a non
negative combination of these generators. The following theorem shows how to 
obtain a linear description of projx(P). 

THEOREM 1. If P = {(x,z)eR++m IAx+BzE;;;d}, then projx(P) = 
{xeR'+ l(ui)T AxE;;;(ui)Td, j = 1,2, ... ,J}, where {uilj = 1,2, ... ,J} is a finite 
set of generators of {ulBTu~O. u~O}. 

PROOF. According to Farkas' Lemma statements (i) and (ii) are equivalent: 
(i) there exists z ~O such that Bz E;;;d - Ax, 
(ii) BT u~O implies (d-Ax)T u~O. for all u~O. 
Using the set of generators { ui I} = 1,2, ... ,J} statement (ii) is equivalent to: 
(iii) (d-Ax)Tui~O for all}= 1,2, ... ,J. 
Since (i) is equivalent to x eprojx(P) the result follows. D 

COROLLARY 1. If P = {(x,z)eR++m IAx +BzE;;;d,z~O,xeQ}, where Q is an 
arbitrary subset of Rn, then projx(P) = {x eR'+ I (ui)T AxE;;;(ui)T d, j = 1,2, ... ,J, 
xeQ}. 

PROOF. Similar to the proof of Theorem 1. D 

Even if we cannot completely characterize a set of generators of the cone 
{ulBTu~O,u~O}, every element u of the cone will give us a valid inequality 
(d -Ax )Tu ~O for projx(P). One of the first problems on which the projection 
technique was used is the perfect matchable subgraph problem on a bipartite 
graph (Balas & Pulleyblank (1983)). 

We will describe two situations which frequently arise and in which the pro
jection method can be applied, namely disaggregation and dynamic program
ming. 

2.1. Disaggregation 
Wheh using disaggregation we are looking at the problem at a more detailed 
level than is necessary to describe it. The original variables are decomposed 
into a sum of new auxiliary variables. At the cost of a larger model with more 
variables disaggregation allows us to obtain a better formulation in the sense 
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that the LP-relaxation yields a better bound for the optimal value than the 
LP-relaxation of the original formulation. 

In the economic lot-sizing problem we know that the production in period i 
will be used to satisfy demand in future periods. Therefore a natural disaggre
gation is obtained by introducing auxiliary variables q11 indicating the produc
tion in period i used to satisfy demand in period t,t';i;IJi. We have X; = ~~=1q11 • 
The new formulation of the economic lot-sizing problem is to minimize 

subject to 

n 

~ (C;X; + /;J';) 
i=l 

t 
~q;, = d,, 
i=l 

n 

~q;, = X;, 
t=i 

t = 1,2, ... ,n 

i = 1,2, ... ,n 

i = 1,2, ... ,n, t = i, ... ,n 

O~;E;;;l, x1-;;ai.O, q1,-;;ai.O, i = 1,2, ... ,n, t = i, ... ,n 

i = 1,2, ... ,n. 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

Constraints (2.6) say that the demand in period t must be produced in periods 
1,2, ... ,t, i.e., backlogging is not allowd. Constraints (2.8) say that we can only 
produce in period i to satisfy the demand in period t whenever a set-up has 
occurred in period i, and that the quantity produced q1, will never exceed the 
total demand d,. It is easy to show that if (x,y,q) is a solution of (2.6)-(2.10), 
then (x,y) is a solution of (1.6)-(1.10). Conversely, given (x,y) satisfying (1.6)
(1.10) it is easy to find a vecior q such that (x,y,q) satisfies (2.6)-(2.10). (For 
example, q can be constructed by always assuming that demand in a period is 
satisfied from the oldest production period for which still some production is 
left over.) 

It is well known that the LP-relaxation of the above problem given by (2.6)
(2.9) always has an integer optimal solution. For a constructive proof see 
Wagelmans, Kolen & Van Hoesel (1989). Therefore if Sis the set of solutions 
to the economic lot-sizing problem characterized by the subsets 
J,J!;;{l,2, ... ,n} as described at the end of Section 1, then 

conv(S) = projx(P1), 

where P 1 is the polyhedron defined by (2.6)-(2.9). 
The projection of P 1 still is very difficult to describe. However by introduc

ing additional auxiliary variables we obtain a polyhedron P 2 for which the 
projection is easy to describe and since projx,y(P 1) = projx,y(P 2) will serve to 
find a linear description of conv(S). The polyhedron P 2 is given by 
P 2 = {(x,y,q,s)l·(x,y,q,s) satisfy (2.7), (2.8), (2.9), (2.11) and s,-;;ai.o, 
i = 1,2, ... ,n -1 }, where (2.11) is given by 
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I 

~q;1 +s1 -i-s1 = d1, t = 1,2, ... ,n, 
i=I 
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(2.11) 

with s 0 = sn = 0. The quantity q;1 can be interpreted as the amount produced 
in period i for periods t,t + l, .. ,n, s1 is the inventory at the end of period t. We 
will first prove that the projections of P 1 and P 2 are identical. 

THEOREM 2. projx.y(P 1) = projx.y(P 2). 

PROOF. Clearly projx,y(P1)Cprojx.y(P2); take s = 0. The proof that 
projx.y(P2)Cprojx.y(P1) follows an idea of Pochet (1987). Given 
(x,y)Eprojx.y(P2) let q and s be such that (x,y,q,s)EP 2 and ~7~i1s; is minimal. 
We shall prove that ~7~11 s; = 0, i.e., (x,y,q)EP 1 and hence (x,y)Epro}x,y(P 1). 

Assume ~7~ls;>O. Then there exist t1>t 2,loe;;;t 1<t2 oe;;;n such that 
s1,- 1 = 0, s12 = 0 andsp>O,p = 11>····'2-l. 

Claim 1. If q;,1, >0, then q;,12 = d,J';· 

PROOF. If q;,1, >0 and q;,12 <d1,Y;, then we decrease q;,1, and sP, p = 
t1>····t 2 -1 with £ and increase q;,1, with £, where t>O is sufficiently small. 
Then (x,y,q,s)EP 2, where (q,s) is the new vector defined above. Since 
~n - I A ~n - I di th . . r f ~n - I th 1 . f ll D ..:..;=I s;<..:..;=I s; contra cts e mm1ma 1ty o ..:..;=Is; e c aun o ows. 

Claim 2. ~:·=1(q; 1 ld1 )oe;;;~:·=1(q;, Id,). 
t I I t 2 l 

PROOF. Since q;,1, oe;;;d,J'; it follows from Claim 1 that whenever q;,1, >0 then 

(q;,1/ d1,)oe;;:y; = (q;,1/ d,,). D 

Now s1,- 1 = 0, s1, >0 and ~:·=iq;,1 , +s1,- 1-s1, = d,, imply ~:~1q;, 1 , >d11 , 

i.e., 

I I 

~ (q;,1, I d1, )> 1. (2.12) 
i =I 

Furthermore s1, = 0, s1,-1 >0 and ~:·=iq;, 1, +s12 _ 1 -s1, = d1, imply 
~'· d . ..:..; =I q;,1, < lz' I.e., 

1, 

~ (q;,1, I d1,)< 1. (2.13) 
i =I 

From (2.12) and (2.13) it follows that ~:·=i(q;,1/d,,)<~:·=i(q;,1 /d,,) contrad
icting Claim 2. We conclude that ~7 ~11 s; = 0. D 

Let P; be the dual variable associated with constraint i of (2.7), wit the variable 
associated with oonstraint i,t of (2.8), and a1 the variable associated with con
straint t of (2.11). Then the cone corresponding to the projection of P 2 is 
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described by 

a,+ /J; +'1T;,;;;;,O, 

-a,+a,+1 ;;;;,o, 

i = 1,2, ... ,n, t = i, ... ,n 

t = l, ... ,n-1 

i = 1,2, ... ,n, t = i, ... ,n. 

A. W.J. Kolen 

(2.14) 

(2.15) 

(2.16) 

We will prove in Theorem 3 that a finite set of generators for this cone is given 
by 

(a, = I, t = l, ... ,n, {J; = -1, i = l, .. ,n; all other values zero) (2.17) 

('1T;1 = 1; all other values zero), i = l, ... ,n, t = i, ... ,n (2.18) 

(/J; = l; all other values zero), i = l, ... ,n · (2.19) 

(/J; = -1; '"it = 1, t = i, ... ,n; all other values zero), i = l, ... ,n (2.20) 

(a,= -1, t = 1, ... ,/, /J; = 1, ieS, 'IT;,= l, ie{l, ... ,/} \S, t = i, ... ,I; 

all other values zero), I = l, ... ,n, S ~ { l, ... ,/}. (2.21) 

As an element (a,/J,'1T) of the cone leads to the inequality ~7= 1 a,d,+ 
~i'=1/J;x;+~i'=1~7=;'";,dtY;;;;;,O the generators (2.17)-(2.21) lead to the linear 
inequalities (2.22)-(2.26) which together with O:s;;;y;:s;;;I, x;;;;;,O, i = 1,2, •.. ,n (see 
Corollary 1) form a linear description of the convex hull of feasible solutions 
for the economic lot-sizing problem. 

n 
~x;:s;;;din (2.22) 

i =I 

y;;;;i,O (2.23) 

X;;;;;,O (2.24) 

X; :s;;;d;,ty; (2.25) 

~x;+ ~ dily;;;;;,d 11, I= 1, ... ,n, S~{l, ... ,/} (2.26) 
ieS ie{I, .. .,/} \S 

Constraints (2.26) are the so called (S,/)-inequalities defined by Barany, Van 
Roy & Wolsey (1984), who were also the first to prove that the linear descrip
tion is complete. Although the description is complete it is not a minimal 
description. We leave it to the reader to prove that for example constraints 
(2.25) are redundant. 

THEOREM 3. The solutions defined by (2.17)-(2.21) form a set of generators for 
the cone defined by (2.14)-(2.16). 

PROOF. We will prove that any point in the cone can be written as a nonnega
tive combination of the points defined by (2.17)-(2.21). Let (a,/J,'1T) be a point 
in the cone. 

Since the point defined by (2.17) satisfies all inequalities with equality we 
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can subtract a positive multiple of it from (a,/J,'11') and still have a point of the 
cone. Therefore we may assume that a~O. 

If /J;<O for some i, then it follows from a,+/J;+'11'it;;i.o that '11';1 ~-/J; 
(remember that a,~O) for all t, 1-;;i.;. Hence we can subtract the -/J; multiple 
of point i of (2.20) from (a,/J,'11') and still have a point of the cone. Therefore 
we may assume that p;;i.o. 

Assume a=#=(). Let I be the largest index t for which a,<O. Then from 
a,~a,+ 1 it follows that a 1 ~ • • • ~a1<0 and a1+1 = · · · = an = 0. Define 
S = {iE{l, ... ,/}l/J;>O} and£= min{min;es{/J;},-a1}. We claim that if we 
subtract the £ multiple of the solution defined by I and S of (2.21) from 
(a,/J,'11'), then we still have a point of !)le cone. In order to prove this claim we 
need to show that the new point (a,/J,:;,) satisfies the cone inequalities. As to 
(2.14): 

A 

If iES,t~/, then a,+f};+:;,it = (a,+£)+(fJ;-£)+'11';t);;i.O. 
If ifl.S,t~I, then a,+/J;+:;,it = (a,+£)+/J;+('11';1 -£);;i.O. 
If iES,t>I, then a,+p;+:;,;, = a,+(fJ;-£)+'11'it;;i.O since 
a, = 0, '11'jt ;;i.o and /J; ?"£. 
If i fl.S,t >I, then a,+ /J; +:;,;, = a,+ /J; +'1Tit;;i.o. 

As to (2.15), it is clear that a,~at+l>t = l, ... ,n -1 since 
a, = a,+£~0 = a/+I· As to (2.16): 

If ifl.S, t~/, then '11';,;;i.£ since a,+/J;+'1Tit = a1 +'11';,;;i.O and -a,;;i.£. 
Hence :;,it = '1Tit -£-;;i.O; in all other cases :;,it = '11';1• 

We conclude that (a,p,:;,) satj_sfies the cone inequalities. Note that 
a, = 0 ==> a, = 0 and /J; = 0 ==> /J; = 0. Furthermore there is at least one 
index such that <Xp <0 and ap = 0, or /Jp >0 and Pp = 0. By repeating the 
argument we arrive at a solution (a,/J,'11') for which a = 0. 

It is trivial to see that a solution (a,/J,'11') for which a = 0, p;;i.o, '11'-;;i.O can 
be written as a nonnegative combination of points in (2.18) and (2.19). D 

2.2. Dynamic programming 
Let S CR i, a finite set, be the set of feasible solutions to a problem for which 
a dynamic programming formulation exists. When we consider the state space 
of the dynamic programming formulation, then we can construct a digraph 
G = ('Y,Ci) with the property that there is a one-to-one correspondence 
between a feasible solution and a path between two given vertices s,t ECV: The 
vertices of the graph correspond to states and arcs to feasible state transitions. 
Let us assume that there exists an n X I Cl I integer matrix B such that x is a 
feasible solution if and only if there exists a path from s to t with (0, 1) 
incidence vector z such that x = Bz. Define the polyhedron P by 
P = {(x,z)ERi+l«l IAz = f,Bz = x}, where A is the vertex-arc incidence 
matrix of G and f is a vector with zero components except the components 
corresponding to sand t which are 1 and -1 respectively. 
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THBoREM 4. conv(S) = Projx(P). 

PllooF. Let xeconv(S). Then x can be written as a convex combination of ele
ments in S. Take z to be the identical convex combination of incidence vectors 
of paths corresponding to these elements in S. Then Az = f, Bz = x and 
hence xeProjx(P). 

Let x e Projx(P) and z ;;;.o such that Az = f, Bz = x. Since every z ;;;.o with 
Az = f can be written as a convex combination of incidence vectors of paths 
from s to t we can write x as the identical convex combination of elements in 
S corresponding to these incidence vectors. 0 

Let C be a finite set of generators of the cone { (u, v) IA Tu+ BT v ;s;.O}. Then 
applying Theorem 1 we find that 

(2.27) 

Let us now apply this to the economic lot-sizing problem. As mentioned in 
Section 1 an element of S is characterized by two subsets I,J ~ { 1,2, ... ,n} with 
1 e/ ~J. Here I corresponds to the production periods and J corresponds to 
set-up periods. H i and j are two consecutive production periods, then 
X; = d;J-1• 

We shall now construct the graph G = (CV,~ such that there is a one-to-one 
correspondence between solutions of the economic lot-sizing problem, and 
paths between two given vertices s and t of CV'. The vertex set CV' is defined by 

CV'= {(i,j)li,j = 1,2, ... ,n+l, i<.j}. 

The arc set El is defined by 

El= {((i,i),(k,j))li,k,j = 1,2, ... ,n + 1, i <k<.j} U 

{ ((k,j),(m,j)) I k,m,j = 1,2, ... ,n + 1, k <m <.j}. 

The two vertices s,t eCV' for which the paths are considered are given by 
s = (1,1) and t = (n +1,n +l). 

Let us now convince ourselves that there is a one-to-one correspondence 
between a path from (1,1) to (n + 1,n + 1) and a feasible solution of the 
economic lot-sizing problem characterized by subsets l,J ~ { 1,2, ... ,n}. H the 
path uses the arc between (i,i) and (k,j), then the interpretation is that we 
start production in period i and X; = d;,j- I· H k <j, then there is a set-up in 
period k without production. Note that vertex (k,j) with k <j is only con
nected by an arc to vertices (m,j), k <m <.j. H m <j, then there is another 
set-up in period m without production. Eventually the path starting with the 
arc ((i,i),(k,j)) will arrive in vertex (j,j). From there the above argument can 
be repeated starting with (j,j). We have shown that a path from (1,1) to 
(n + ~.n + 1) can be interpreted as a feasible solution for the economic lot
sizing problem. It will be clear from the above argument that to every feasible 
solution there alsO corresponds a path from (1,1) to (n + 1,n + 1). 

The graph for n = 3 is given below. 



Valid inequalities for combinatorial optimization problems 

(2,2) (3,3) 

The path (1,1), (2,3), (3,3), (4,4) corresponds with 

X1 = d12. X3 = d3, YI = Y2 = Y3 = 1. 

The solution x 1 = d 13 ,y1 = y 3 = 1 corresponds to the path 

(1, 1),(3,4),(4,4). 
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From the above argument it is also clear how to express X; and y; in terms of 
the incidence vectors of paths from (1,1) to (n + l,n + 1). Let z(a) be one if arc 
a ECi is used in the path, and zero otherwise. We start production in period i 
only if vertex (i,i) is on the path. The amount we produce is determined by the 
next vertex on the path. If this is vertex (k,j), then x; = d;,j - I· A path visits 
(i,i) if and only if one of the outgoing arcs of (i,i) is used. Furthermore since 
(i,i) is visited at most once we have the relation 

X; = ~ d;,j- 1z((i,i),(k,j)), i = 1,2, ... ,n. (2.28) 
(k,j):i <k <.j 

Similarly we set up production in period i if vertex (i,i) or a vertex (i,j), i <j 
is on the path. Also note that at most one vertex with first component i can be 
on a path from (1,1) to (n + l,n + 1). A vertex is on the path if and only if one 
of the outgoing arcs is on the path. Hence we have the relation 

y; = ~ z((i,i),(k,j))+ (2.29) 
(k,j):i <k <.j 

~ z ((i,j),(k,j)), i = 1,2, ... ,n. 
(k,j):i <k<.j 

In order to describe the cone related to this problem let the variable A.ij 

correspond to the constraint of Az = f related to vertex (i,j), the variable a; 
correspond to constraint i of (2.28), and the variable /1; correspond to con
straint i of (2.29). In the cone (see definition of C in (2.27)) we have a con
straint for each arc in the graph. The constraint are given by 

A.;; -A.kj + d;,j- I a;+ /1; ;;;i:o, for all i,k,j, i <k :s;;.j, (2.30) 
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for all i,k,j, i <k,.:;;,.j, (2.31) 

where (2.30) corresponds to the arc ((i,i),(k,j)) and (2.31) to the arc 
((i,j),(k,j)). 

According to (2.27) every element ('A.,a,/I) of the cone will generate the ine
quality 

n n 

~a;x;+ ~/JJ';;;;a.:An+l,n+J -A11 (2.32) 
i=I i=l 

for the economic lot-sizing problem. 
Although a finite set of generators for this cone has been conjectured no 

proved finite set of generators is known. It would be interesting to find a proof 
because the dynamic programming technique can also be applied to extensions 
of the economic lot-sizing problem such as the problem with start-up cost 
(Wolsey (1988)). For this problem a complete linear description and dual 
algorithm is described by Van Hoesel, Kolen, Wagelmans and Wolsey (1989). 
We finish this section by giving the element of the cone leading to an (S,/)
inequality: 

a; = 1, iES 

/J; =di/, iE{l, ... ,/}\S 

>i.ki = -djl, 1,.:;;,.k,.:;;,.j,.:;;,./ 

all other values are zero. 

3. THE POLYHEDRAL METHOD 

In order to understand the polyhedral method we first need some basic results 
about polyhedra. For more details and proofs we refer to Nemhauser & Wol
sey (1988) or Schrijver (1986). 

The dimension of a polyhedron P is k if the maximum number of affinely 
independent points in P is k + 1. Let ax ,.:;;,.txo be a valid inequality for P, i.e., 
ax,.:;;,.ao for all xeP. Then F = {xePlax = ao} is called a face of P induced 
by ax,.:;;,.ao. Fis a proper face if F# and F=j::P. If dim(F) = dim(P)-1, then 
the face F is called a facet. As we will see facets play an important role in a 
minimal description of the polyhedron, i.e., minimal with respect to the 
number of linear inequalities. Given a description of a polyhedron P as the 
solution set of a number of linear inequalities an inequality is an implicit equa
tion if it is satisfied with equality for all points in P. Theorem 4 describes how 
to find a minimal description of a polyhedron P. 

THEOREM 4. Let P {;;;Rn be a polyhedron defined by the equations 
d;x = c;,i = 1,2, ... ,k and the inequalities a;x,.:;;,.b;,i = 1,2, ... ,p where none of 
the inequalities is an implicit equation. Then this is a minimal description of P if 
and only if 
(1) The dimension of P is equal ton -k. 
(2) Every inequality a;x,.:;;,.b; induces a distinct facet, i = 1,2, ... ,p. D 
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It follows from Theorem 4 that in order to find a linear description of a 
polyhedron P we need to find the implicit equations and for each facet one 
inequality inducing this facet. It is well known that the inequality inducing a 
facet is unique up to multiplication by a positive scalar and addition of any 
linear combination of the implicit equations. 

The polyhedral method for obtaining valid inequalities for our combinatorial 
optimization problem proceeds in the following way. We assume that the set of 
implicit equations is known. For most combinatorial optimization problems 
the set of implicit equations is indeed trivial to find. Next we assume that 
ax,,..;ao is a facet inducing inequality. We are going to partition the set of all 
facet inducing inequalities into classes, where each class is characterized by 
some properties of the vector a. An example would be the class of facet induc
ing inequalities ax,,..;ao with a;<O for some i. The properties of a given class 
are chosen in such a way that we are able to prove that ax = ao implies 
bx = {30 , where bx,,..;{30 is an explicitly known valid inequality, not an implicit 
equation, for P. Therefore we have proved that F = { x eP I ax = ao} 
<;;;; F 1 = { x eP I bx = {30 }=:j=.P. Since F is a facet, i.e., a proper face of maxi
mal dimension, it follows that F = F 1• Hence we have been able to find an 
explicitly known valid inequality inducing the facet. By applying this to all 
classes of the partition we find a linear description of P, which however is not 
necessarily minimal. The reason is that some of the properties assumed in the 
facet inducing inequality ax ,,..;ao need not occur. However by considering all 
possible properties we obtain a complete linear description of P. 

Let us now demonstrate the polyhedral method on the economic lot-sizing 
problem. The polyhedron P is the convex hull of feasible solutions where each 
feasible solution is characterized by subsets I,J <;;;; { 1, 2, ... , n } , 1 e/ <;;;;J as 
described in Section 1. The implicit equations of the economic lot-sizing prob
lem (Barany, Van Roy & Wolsey (1984)) are given by l:i=ix; = d 1n and 
y 1 = 1. Let ax+by,,..;c be a facet inducing inequality which is different from 
the inequalities we already know for the economic lot-sizing problem, i.e., 
x;;;;a.O, y;;;;a.O, y;,,..;l, x;,,..;d;,J'; and l::= 1x,;;;a.du, i = 1,2, ... ,n. By adding a suit
able linear combination of the implicit equations we can assume without loss 
of generality that a ,,..;o, max; {a;} = 0 and b 1 = 0. Define F = { (x,y) eP I ax 
+by= c}. 

In order to prove that x eF implies bx = {30 for some valid inequality 
bx ,,..;{30 for P it is necessary and sufficient to prove this for every extreme point 
of P belonging to F. This follows from the fact that every element in F can be 
written as a convex combination of extreme points of P belonging to F. The 
proof always follows the same line. We assume that there exists an extreme 
point (x,y)eF for which bx</30 • Next we show that in this case we can find 
an (x,y)eP such that a.i +by>c, contradicting the validity of ax +by,,..;c for 
all (x,y)eP. Hence for every extreme point (x,y)eF we have bx = {30 thereby 
proving the desired result. 

We will now present the partitioning of all facet inducing inequalities, 
different from the given inequalities, into classes such that an explicit descrip
tion of these inequalities can be found. We leave it to the reader to verify that 
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the solution (x,y) constructed belongs to P and satisfies a.i+by>c. 
(i) Consider the class of facet inducing inequalities ax +by ::s;;;;c with bj >0 for 

some}. 
Claim: (x,y)EFimpliesyj = I. 
Proof: Assume there exists an extreme point (x,y)EF with Yj = 0. Then 
(x,y) can be obtained from (x,y) by increasingyj to one. D 

We conclude that this class does not lead to a new inequality. For the remain
ing classes we may assume that bj ::s;;;;O for all j. 
(ii) Consider the class of facet inducing inequalities ax +by ::s;;;; c 

with a = 0 and bj<O for some j. 
Claim: (x,y)EFimpliesyj = 0. 
Proof: Assume there exists an extreme point (x,y) EF with Yj = 1. Then 
(x,y) can be obtained from (x,y) by increasing x 1 with xj and decreasing 
xj and Yj to zero. D 

Again this does not lead to a new inequality. 
(iii) Consider the class of facet inducing inequalities ax +by ::s;;;;c with b = 0 

and a::s;;;;O,a=;60. Define S = {i la;<O}. 
Claim: S = {1,2, .. ,/} for some/, l::s;;;;/<n. 
Proof: Since max;{a;} = 0 it follows that S*{l,2, ... ,n}. 
Assume that there exist indices i,j,i <j such that a; = 0 and aj<O, i.e., 
assume that S is not of the desired form. Because we assumed that 
F*{(x,y)EP lxj = O} there exists an extreme point (x,y)EF with xj>O. 
Then (x',y') obtained from (x,y) by increasing x; with xj, increasingy; to 
one if necessary and decreasing xj to zero, is a feasible point in P for 
which ax'+by'>c. As this contradicts the validity of the inequality 
ax +by ::s;;;;c for P the claim follows. D 
Claim: (x,y)EFimplies ~:=ix; = d 11• 

Proof: Assume there exists an extreme point (x,y)EF with ~:=ix;>d11 
and let p, p::s;;;;/ be the largest index for which xp>O. Then (x,y) can be 
obtained from (x,y) by decreasing Xp with £>0, increasing x1+1 with £ 
and increasing y1+1 to one if necessary, where £.:s;;;;min{xp,~:=ix;-d 11 }. 
D 

So far no new inequality has been obtained. This will change when we con
sider the last class of facet inducing inequalities. 
(iv) Consider the class of facet inducing inequalities ax +by ::s;;;;c with 

a::s;;;;O, a*O, b::s;;;;O, b=j60. Define S = {ila;<O} and T = Ulbj<O}. 
Claim: SUT = {1,2, ... ,/} for some/, l::s;;;;/::s;;;;n. 
Proof: Assume a; = b; = 0 and aj<O, i<j. Because we assumed that 
F*{(x,y)EPlxj = O} there exists an extreme point (x,y)EF with xj>O. 
Then (x',y') obtained from (x,y) by increasing x; by xj, increasing y; to 
one if necessary, and decreasing xj to zero, is a feasible point in P for 
which ax'+by'>c. As this contradicts the validity of the inequality 
ax+by=:s;;;;c for P we conclude that our assumption does not hold. 
Assume a; == b; = 0 and bj<O,i <j. Because we assumed that 
F*{(x,y)EP lyj = O} there exists an extreme point (x,y)EF with 
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Yj = I. Then (x',y') obtained from (x,y) by increasing x; by xj, increasing 
y; to one if necessary and decreasing xj and yj to zero, is a feasible point 
in P for which ax' + by'>c. As this contradicts the validity of the inequal
ity ax +by ~c for P the claim follows. 
Claim: For all (x,y) eF there is at most one j ET\ S with yj = 1. 
Proof: Assume there exists an extreme point (x,y)eF with 
yj = Yk = l,j,keT\S, j<k. Then (x',y') obtained from (x,y) by 
increasing xj with xk and decreasing xk and Yk to zero, is a feasible point 
in P for which ax' + by'>c. As this contradicts the validity of the inequal
ity ax +by ~c for P the claim follows. D 
Claim: (x,y)eFimplies l':;esx;+l:;e{l,2, ... ,/}\sd;£Y; =du. 
Proof: Assume there exists an extreme point (x,y)eF with 
l':;esx;+l:;e{l,2, ... ,l}\Sd;£Y;>du. Note that {1,2, ... ,l} \S = T\S. We dis
tinguish two cases. 
(i) There is no j ET\ S with Yj = I. 

Then l:; esX; >d II· Therefore / <n. Let p Es be the largest index for 
which xp>O. Then (x,y) can be obtained from (x,y) by decreasing xP 
with £>0, increasing x1+ 1 by£ and increase y1+ 1 to one if necessary, 
where £~min{xp,l:;esx;-d11}· 

(ii) There is exactly one index j ET\ S with Yj = I. 
Then l':;esx;+dj1>du, i.e., l':;esx;>d;,j-l· Let p ES be the largest 
index for which xp>O. H p<j, then (x,y) can be obtained from (x,y) 
by decreasing xP with £>0 and increasing xj with £, where 
£~l:; esX; - d l,j - I· If p > j, then (x,y) can be obtained from (x,y) by 
decreasing xP to zero and increasing xj with x,. 

This completes the proof of the polyhedral method applied to the economic 
lot-sizing problem. D 

Until now the polyhedral method has mostly been used in those cases where a 
linear description was conjectured to be complete. The polyhedral method has 
less frequently been used to find yet unknown valid inequalities. Polyhedral 
method proofs of the completenes of a linear description have for example 
been given for the matroid intersection problem (Pulleyblank (1983)) and the 
matching problem (Lovasz (1979)). 

4. CONCLUSION 

We have formulated the projection method and the polyhedral method for 
constructing valid inequalities for combinatorial optimization problems and 
demonstrated the usefulness of these methods by applying them to the 
economic lot-sizing problem. 
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In this paper differentiability properties of the set of efficient (µ,a2) combina
tions are discussed. After a review of statements made in the literature, two 
conditions for nondifferentiable points are derived and illustrated with some 
numerical examples. 
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1. ~NERAL 
Markowitz studied the following investment problem, cf. H.M. Markowitz 
(1956), (1959). An investor wants to invest an amount bin the securities l, ... ,n. 
If he invests an amount xi in security j, then 

n 

~Xj =b. 
j=l 

There may be more linear constraints; suppose 

U = B 

and 

(1.1) 

(1.2) 
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x;;;.e (1.3) 

should be satisfied with lt an (m Xn)-matrix, B an m-vector and 
X' = (xh···•Xn)· 

The yearly revenue on one dollar invested in security j is a random variable 
r1 with © r1 = p.1; the covariance matrix of the r1 equals e. Denote the yearly 
revenue of a portfolio X = (xh···•xn)' by r(X), the expected value of r(X) by 
µ.(X), its variance by a2(X) and let M' = (p.h····P-n>· Then 

µ.(X) = M'X (1.4) 

and 

a2(X) = X'ex. (1.5) 

In order to find 'good' solutions of the problem, a risk averse investor may put 
a restriction on µ.(X) and then minimize a2(X), or put a restriction on a2(X) 
and next maximize µ.(X). Markowitz studies the problem from a more general 
point of vi!:_W and introduces the notion of efficient portfolio. A feasible port
folio X = X is efficient if: 
(a) no feasible portfolio has a revenue with larger or equal expected value and 

smaller variance, and 
(b) no feasible portfolio has a revenue with smaller or equal variance and 

larger expected value; 
cf. H.M. Marko_!'itz (1959), p. 310. In the (p.,a2)-plane this means that if a 
portfolio X = X is efficient, there do not exist feasible E_Ortf olios w.!_th 
corresponding (µ.(X),a2(X)) points in the closed rectangle oe;;a2(X) and ';;a.µ.(X), 
cf. fig. 1.1. 

a2(X) 

µ.(X) 

FIGURE 1.1. No feasible portfolio with (µ.(X),a2(X)) in the shaded area. 

According to Markowitz all efficient portfolios can be derived by solving 

min{X'eK-AM'XIU = BAX;;a.e} (1.6) 
x . 

for all A;;a.O, cf. H.M. Markowitz (1959), p. 315-316. A precise and more gen
eral statement of the theorem underlying the algorithm is given by J. Kriens en 
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J.Th. Van Lieshout (1988). In our case their theorem reduces to: 

THEOREM. A feasJ.ble portfolio X = X is efficient if and only if 
(a) there exists a A>O such that 
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min{X'ex-A:M1x1u = BAx;;;ioe} = x'ex-Ml'x, (I.7) x 
or (b) 

m~M'XIX'eK = min{Y'eYllfY = BAY;;;ioO}] = M'X, (1.8) 
x y 

or (c) 

min[X'eKIM'X = max{M'YllfY = BAY;;;ioO}] = X'eK. (1.9) 
x y 

Note that strictly speaking condition (c) can be omitted because M'X is a 
linear function of X. 

Usually one starts with setting >. = 0 in (1.7), thus with determining the 
minimum value possible of the variance. Next >. is raised to get new efficient 
portfolios. F.Qr specifi_E values of>. there is a change in the basis; suppose these 
y_alues_are >.., ... ,>.k and that the CO,E'espOEding efficient ~lutio~s are 
x., ... ,Xk. We form the (sub)sequence }{_j,, ... ,}{_j, (/~k) from x., ... ,Xk for 
which the (ii.,i) combinations are different. This (sub)sequence is the set of 
comer portfolios. _ _ 

The set of all ~X),a2(X)) points in the (µ,a2)-plane corresponding to 
efficient portfolios X is the set of efficient (µ,a2) combinations of the problem. 
Between the (µ,a2) points of two adjacent comer portfolios it is part of a 
strictly convex parabola, cf. J. Kriens and J.Th. van Lieshout (1988), p. 185. 

The question discussed in this paper concerns the differentiability properties 
of this set in the (µ,a2) points corresponding to comer portfolios. Section 2 
reviews some statements made in the literature, section 3 summarizes the 
expressions given by J. Kriens and J.Th. van Lieshout (1988) for the values of 
the basic variables in a basic feasible solution and section 4 presents an exam
ple of nondifferentiability. Next necessary and sufficient conditions are derived 
for getting points of nondifferentiability, which conditions are verified for some 
numerical examples in section 6. 

2 . .!ZJiuvrno THROUGH THE LITERATURE ON DIFFERENTIABILITY PROPERTIES 
Markowitz himseH is not very clear in his statements on differentiability pro
perties of the set of efficient (µ,a2) combinations. In his book he writes, cf. 
H.M. Markowitz (1959), p. 153: The set of points representing efficient port
folios turns a comer, forms a sharp kink, as our passenger transfers from one crit
ical line to another. There is typically no such kink, however, in the curve describ
ing the relation between E and V for efficient portfolios. .... The relationship 
between V and E transfers from one parabola to the other without discontinuity or 
kink (E is in our notation µ. and Vis a2). 
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And then two paragraphs further down: It is, however, possible for the curve 
relating efficient V to efficient E to have a kink. ..... Whenever a kink occurs, it 
must be of this nature) rather than of this nature/ 

Markowitz does not give a numerical example with a point in which the set 
of efficient (p..a2) points is not dift'erentiable. 

After the book by Markowitz many articles and books appeared with state
ments on the dift'erentiability properties of the set of efficient (p..a2) combina
tions. It is not planned to rewe them all but just to mention a few of the 
'highlights' in the literature. Keep in mind: the function in question is not 
necessarily dift'erentiable everywhere, cf. the example in section 4. 

An amusing mixture of mathematical and economic arguments is given by 
E.F. Fama and M.H. Miller (1972), p. 243. In a footnote they remark: We 
should note, for the mathematically more sophisticated, that the efficient set curve 
need not be differentiable everywhere, so that, strictly speaking, the representation 
of equilibrium in terms of a •tangency• could be inco"ect. It can be shown. how
ever, that the maximum number of points at which the efficient set curve is not 
differentiable cannot be greater than the number N of available assets. With 
infinitely divisible assel8, the number of efficient portfolios is infinite,· that is, the 
efficient set curve is continuous. Thus these nondifferentiable points do not greatly 
detract from our conclusions; in mathematical terms, they constitute a set of 
measureO. 

As stated at the end of section l, between two comer portfolios the set is 
part of a convex parabola (as already shown by Markowitz); from the algo
rithm based on (1.6) it follows directly that the number of comer portfolios is 
finite, so Fama and Miller's conclusion is trivial and not very informative. 

G.P. SzegO (1980) devotes chapter 12 to the investment problem with only 
the constraints (1.1) and (1.3). He introduces the notion region of admissable 
portfolios ~n in the (p..a2) plane, defined parametrically by the equations (1.4) 
and (1.5) subject to (1.1) and (1.3). The boundary in of this region is defined 
by the minimal values of (1.5) subject to (1.1). (1.3) and (1.4) and therefore 
coincides with the set of efficient (p..a2) points. His conclusion about the 
dift'erentiability of this se1 runs (cf. p. 135): In all circumstances, however, it fol
lows that •The boundary fiin of the region of admissable portfolios with nonnega
tivity constraints on the allocation vector ... is represented on the plane (v,tr) by a 
continuously differentiable curve composed of a sequence of arcs of parabolas each 
of which belongs to the boundary of the region of admissable portfolios of a subset 
of the set of n investments'. (The plane (v,tr) is our (p..a2) plane.) _ 

The 'proof is based on SzegO's ~ysis of the properties of fiin. He also 
developes an algorithm to identify fiin. The argument is rather lengthy and 
will not be repeated here. Moreover his conclusion on p. 135 that their common 
points ... are true tangency points is not generally correct as is shown by the 
example in section 4. 

The last author to be quoted is 1. Voros. He states: It can easily be seen that 
parabolas describing efficient return-variance connection at intervals [c1-.,c;] and 
[c;,C;+tl respectively have the same values at c; and do not intersect each other. 
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Otherwise the solution would not be optimal at interval [c; - i.cJ Thus we can 
state the following theorem. The function Z + ( C) is continuously differentiable 
and convex, cf. J. Voros (1986), p. 298 (c is in our notationµ. and z+(c) is 
a2(µ.)). 

To be sure he modifies this statement in a subsequent contribution, cf. J. 
Voros (1987), p. 305. The theorem now runs: The efficient frontier z;. (c) is 
continuously differentiable except in points where a; = aj for all i,j EM (a; is P.; 
in our notation, z;. (c) is again a2(µ.) and Mis the set of xrvariables being in 
the basis). Because the condition a; = aj for all i,j EM only makes sense if M 
contains at least 2 elements, as Voros assumes indeed, the restriction in the 
theorem relates to efficient (µ.,a2) points with 2 or more xj variables in the 
basis. The proof does not take into account cases in which M contains only 
one element, and then the set may be indifferentiable as the example in section 
4 shows. So, this mere point already implies that the formulation as well as the 
proof of the theorem is not correct. 

Voros develops the same algorithm for identifying the efficient (µ.,a2) points 
as Szego did, but both do not prove that all efficient points are actually found 
in this way. Note that this algorithm is different from the algorithm based on 
(1.6). As a matter of fact the solution presented for the second problem in J. 
Voros (1986) is incorrect; the efficient point with minimum variance is the 
point (8.3 X 103 ; 10.53X106) and not the point shown in Voros' figure 2. 

3. hucrr EXPRESSIONS FOR EFFICIBNT PORTFOLIOS 
Starting from the Kuhn-Tucker conditions for the optimal solution of (1.6), 
Kriens and Van Lieshout (1988) derive an expression for the values of the 
basic variables which, if e is positive definite, holds for every efficient portfolio. 
With constraints 

U<.B 

rather than (1.2), the Kuhn-Tucker conditions run 

-2ex-lt'U+V = -AM, 

U+Y = B, 

V'X = 0, U'Y = 0, X,Y,u,v;;;i.e; 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

Y contains the values of the slack variables, U and V the values of the vectors 
of Lagrange multipliers. 

Omitting bars to get variables X, Y, U and V, the equations (3.2) and (3.3) 
can be summarized as 

X' Y' U' V' 

-AM 
B 

(3.5) 
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If 

Z'b = (X'b• Y'b• U'b• V'b) (3.6) 

denotes the set of basic variables for a given efficient portfolio, (3.5) can be 
partitioned into 

X'b X'nb Y'b Y'nb U'b U'nb V'b V'nb 

-2e,,, -iew. e e -<?b, <?b, e g -~b, 
- 2e,,, - 2em,, e e -<?nb, @:nb, g e -AMb, 

&.,,, @ni,, e g e e e e Bb, (3.7) 

&.,,, @ni,, g e e e e e Bb, 

The matrix - 2e is partitioned into the square matrices - 2e,,, and - 2em,2 

corresponding to basic and non-basic variables xj and into - 2e,,2 and - 2em,, 
with e,,, = e nb, ·&.,,, ,@m,1 and Bb, represent the active constraints, &.,,,. @m,2 and 
Bb, the non-active constraints. Therefore there are identity matrices in the 
fourth place of the Y' b column and in the third place of the Y' nb column. The 
matrix of coefficients of basic variables is 

-2e,,, e -<?b, e 
-2e,,, e -@:nb, g 

~= &.,,, e e e 
&.,,, g e e 

To facilitate computations Kriens and Van Lieshout reshuffle (3.8) into 

-2e,,, -<?b, e e 
a,,, e e e 

(3.8) 

~v = -ie,,, -<?nb, g e (3.9) 

e g 

The values of the basic variables are 
e Mb, 

Zbv =~;I 
Bb, 

-~~-! 
e 

e v Mb, 
(3.10) 

Bb, e 
with Z' bv = (X' b• U' b• V' b• Y' b)· Explicit expressions for the values of the basic 
variables are found by computing ~; 1 : 
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~;I = (3.11) 

with 

[
-2<?t,, -~b·]-I 
~. e 

[
-...le-I +...le-I~ <~- e-I~ )-I~_ e-I 2 b, 2 b, b, "11, b, b, "11, b, e;,I~b.<~.e;,I~b)-I 

-(~- e-I~ >-I~_ e-I -2c~- e-I~ )-I (3.12) "11, b, b, "11, b, "11, b, b, 

Substituting (3.12) into (3.11) and the result into (3.10), they find 

Xb =A +DA (3.13) 

with 

and 

D = .!.[e-I -e-I~ (~- e-I~ )-I~_ e-Ius . 2 b, b, b, "11, b, b, "11, b, ....... b, 

The corresponding values µ(Xb) and a2(Xb) are 

µ(Xb) = M'b,A +M'b,DA 

a2(Xb) = A '<?t,,A + 2A '<?t,, n};. + D'<?t,, D};.2• 

For the proofs, see appendix A of their contribution. 

4 . ..2'6oKING AT AN EXAMPLE OF NONDIFFERENTIABILITY 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

The following example has a point of nondiff erentiability; it originates with 
Markowitz and was handed to me by Voros. The data are 

[I] [ 3 3 - Ii M = 3 ,e = 3 11 23 , lt = (1 1 1), B = (1). 
5 -1 23 75 

(4.1) 

For this problem conditions (3.2), ... ,(3.4) reduce to 
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-6x1 
-6x1 

2x1 
Xt 

-6x2 +2x3 -ui +v1 
-22x2 -46x3 -ui +v2 
-46x2 -150x3 -ui 

+x2 +x3 +yj-l 

3 
~ VjXj = 0, UJY1 = 0, X,Y,u,v;;;i.e; 
j=l 

the bars denoting optimal values are omitted. 

=-A 
= -3A 

+v3 =SA 
= I 

J. Krlens 

(4.2) 

(4.3) 

(4.4) 

In order to perform the portfolio solution analysis a user written subroutine 
has been linked to the linear optimization package LINDO. In that subroutine 
special features of LINDO like the parametric analysis option have been used. 

TABLE 4.1. Basic solutions of the example . 

A 
....2 

Xt X2 X3 µ. a 

0 0.950 0 0.050 1.20 2.80 
3 0.875 0 0.125 1.50 3.25 
4 0.500 0.500 0 2.00 5.00 
8 0 I.OOO 0 3.00 11.00 

12 0 I.OOO 0 3.00 11.00 
52 0 0 I.OOO 5.00 75.00 

W:ith_formulae (3.16) and (3.17) the relationships between J!5.Xb),A and 
a2(Xb),A _sari be derived. It is found that for the comer portfolio X' = (0 I 0) 
with (ji,a ) = (3, 11) the left hand side derivative of the efficient (p.,a2) set 
equals 8 in (3,11) whereas the right hand side derivative equals 12. So the set 
of efficient (p.,a2) points is not differentiable in the point (3,11). In the compu
tations this property_ is revealed by the produ~on of two successive bases with 
different values of A but the same optimal X-vector. The results are also in 
agreement with 

da2 -
[ dµ. )(ii.f> = A (4.5) 

if the set is differentiable, lim dda2 = 8 and lim dda2 = 12. 
l't3 µ. l'l3 µ. 

However, the algorithm does not show any computational problems, this as 
opposed to a conjecture by Voros concerning his own algorithm: This coun
terexample shows that the procedure suggested by SzegiJ and of the author may 
not be valid so generally as it is stated ... , cf. J. Voros (1987), p. 305. 

5. 4\rmENT NECESSARY AND SUFFICIENT CONDmONS FOR 

NONDIFFBRENTIABiLITY 

Inspection of the example in section 4 makes clear that a point of 
nondifferentiability in the set of efficient (p.,a2) points comes into being if for a 
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range of>. values the vector Xb remains the same. From (3.13) it follows that 
this is the case if and only if D equals e. Define P-min : = min; µ.; and 
~ : = max; µ.;; then for an efficient (p.,a2) point with µ.e(p.mim~) a neces
sary and sufficient condition for nondifferentiability runs D = e. The next two 
theorems exploit this property for the problem with only the restrictions (1.1) 
and (1.3). 

THEOREM 5.1. If in the investment problem subject to (l.1) and (1.3) e is positive 
definite and a comer portfolio with µ.e(Jl.min,~) contains only one x-variable > 
0, then the set of efficient (p.,a2) points is nondifferentiable in that point. 

PROOF. Suppose i;>O, then i; = b, ~. = (c;;), ~. = (1), Mb, = {Ji.;). From 
(3.15) it follows 

D = ~e;;; 1 li-<f'b,(~.e;;; 1 ~b)- 1 ~.e;;; 1 JMb,· 
Substitution of the values of ~. and e;;; I shows 

i-<f'b,(~.e;;; 1 ~b,)- 1 ~.e;;; 1 = e, 
so D = e and Xb = A, cf. (3.13). D 

(5.1) 

(5.2) 

Now suppose a comer portfolio contains as basic variables 
X'b = (xi. ... ,xk) (k>l). Define 

~ = (m;j) : = e;;; 1 

k k 

f := ~ ~ mij 
i=lj=I 

k k 
d := ~(~ mijµ.j). 

i=I j=I 

(5.3) 

(5.4) 

(5.5) 

THEOREM 5.2. If in the investment problem subject to (1.1) and (1.3) e is positive 
definite and a comer portfolio with µ.e(Jl.min,~) contains k(> 1) variables > 0, 
then the set of efficient (p.,a2) points is nondifferentiable in that point if and only 
if all corresponding µ.-values are equal to di f 

PROOF. Let 

X1 Cll···Clk 1 P.1 

Xb= .~.= .~b, = ,Mb,= 

Xk Ckl···Ckk 1 P.k 

then 

<~ e-1~ )-1 1 
(5.6) I b, b, f 
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and D = f) can be reduced to 

P.1 d 0 

I: . = ~~ 

or 

P.k d 0 

d 
'1;e{l, ... ,k} p.; = J" 

So D = f) if and only if (5.8) holds. D 

(5.8) 

REMARK. As a consequence of these theorems, D may be a zero vector and 
therefore the statement by Kriens and Van Lieshout (1988) that M'b 1 ·D is 
always :#{) (p. 187) cannot be generally correct. In their 'proor, see appendix 
B of the article, the matrix 'iS; does not necessarily have an inverse as is illus
trated by the example in section 4: for the efficient portfolio (0 I 0) their 
matrix 'iS; equals 

-22 -1 0 0 3 
1 0 0 0 0 

-6 -1 l 0 1 
'iS* = v -46 -1 0 1 5 (5.9) 

3 0 0 0 0 

6. 1"°ERIFICATION OF THE CONDITIONS IN SOME EXAMPLES 

In this section forementioned formulae and conditions are illustrated with the 
help of some examples. 

~LE 6.1. For the data, see section 4. In the case of comer portfolio 
X' = (0 1 0) there is only one x-variable > 0 and the set of efficient (µ.,a2) 
points is indeed nondifferentiable in the corresponding point (ji.,c/') = (3, 11). 
Substitution of the data in (3.15) leads to D = e. 

The behaviour of the dual variables is also clear. If (3.12) is substituted in 
(3.11) and the result into (3.10), we get 

For A = 0, x 1 and x 3 are basic variables and then 

il1 = 2(lit,1eb, 1<!'b,)- 1Bb, = -5.6; 

(6.1) 

if we look at the comer portfolio X' = (0 1 0), then only x 2 is basic variable 
and from (6.1) it follows 
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u1 = -44+3>., 

so if X rises from 8 to 12, the value of u 1 rises from - 20 to - 8. 
In the same way the values of vb can be derived from the third 'row' in 

(3.10). Therefore we need the elements in the third 'row' of (3.11 ). The first 
two elements in this 'row' of <if>; 1 are 

(J_ {-e-1 +e-1~ (0- e-1€' )-10_ e-1} '-112 b, b, b, "'11, b, b, "'11, b, (6.2) 

and 

(6.3) 

the third element equals i and the fourth e. So 

Vb = (2e,,2 {eb, 1ct'b, (@,,,, e,;; 1~ b)-I} +et' nb, { -2(@,,,, e,;; 1€' b)-1} 1·Bb, 
_).r{fJ- {-e-t+e-I~ (0- e-Ict' )-lo_ e-I}- (6.4) "l '-112 b, b, b, "'11, b, b, "'11, b, 

~nb, (@,,,, e,;; 1 ~b,)- 1 ·@,,,, e,;;1 }Mb, +g·Mb2 1. 
If conditions (1.2) only consist of };j=ixj = I, then, using (5.4) and (5.6), (6.4) 
can be simplified to 

Vb = ~(e,,2 e,;; 1 ~nb, -~nb,) (6.5) 

-~{e,,2 e,,, { -g+ ~ct'b,@,,,, e,;; 1 }- ~~nb,@,,,, e,;; 1 }·Mb, +gMb2 1. 

In the case of the efficient portfolio (0 1 0) in the example, (6.5) reduces to 

v. = [;:] = [-:~~] (6.6) 

If X is raised, f_Qr X = 8, x 1 leaves the basis and v 1 comes in and for X = 12, 
v 3 = 0, so for >.> 12, v 3 leaves the basis and x 3 comes in; cf. also table 4.1. 

E.xAMPLE 6.2. Assume 

1.4 1.5 16 
5 1.4 4 0 32 

M= 5 ,e = 1.5 0 8 6 , (f, = (I I I I), B = (I). (6.7) 

10 16 32 6 400 

Starting from the conditions (3.2), ... ,(3.4) the LINDO optimization routine 
generates the basic solutions presented in table 6.1. 

The set of efficient (p.,a2) points is not differentiable !!1 the point (ji.,cf) = 
(5.00,2.67) corresponding to the efficient portfolio X' = (0 0.67 0.33 0). 
According to theorem 5.2 this behaviour was to be expected. The set of 
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TABLE 6.1. Basic solutions of example 6.2. 

A 
-2 

X1 X2 X3 X4 µ. (J 

0 1.00 0 0 0 1.00 1.00 
0.200 1.00 0 0 0 1.00 1.00 
0.227 0.98 0.02 0 0 1.10 1.02 
0.617 0 0.67 0.33 0 5.00 2.67 
8.267 0 0.67 0.33 0 5.00 2.67 

36.471 0 0 0.76 0.24 6.18 28.98 
157.600 0 0 0 1.00 10.00 400.00 

- -
corresponding A values equals [0.6I7:s;;;>.:s;;;8.267]. Substitution of 

M,, ~ [~].~ = [~ ~].~. = (11),Mb, = [~] (6.8) 

in (3.15) results in D = e. 
The values of the dual variables can be derived by substituting (6.8) into 

(6.1) and (6.5) respectively. In the latter case we find 

_ [v1] [-2.467+4X] 
vb = v4 = 41.333-5X ; (6.9) 

- -
so for A = 0.617, v1 is > 0 and enters the basis, whereas for A = 8.267, v4 

becomes < 0 and leaves the basis. 

The last example is due to H. Geerts; in this case the theorems of section 5 do 
not apply because besides condition (1.1) there is one more constraint. 

ExAMPLE 6.3. Let 

(6.10) 

Using the conditions (3.2), ... ,(3.4) the basic solutions presented in table 6.2 are 
found. 

'!je set of efficient (µ.,a2) points is _ nondifferentiitble in 
(ji.,a ) = (1.500, 1.250), the corresponding values of A are [3.000:s;;;>.:s;;;3.333]. 
The value of D equals e because as all reciprocals exist the expression between 
square brackets in (5.1) is_the zero matrix. There are no basic variables vj 

whereas the expression for Ub follows from (6.1) and runs 

_ [u1] [ 20 - 6Xl 
ub = u2 = -21 + 1x · (6.11) 
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TABLE 6.2. Basic solutions of example 6.3. 

~ - -2 
Xt X2 µ. a 

0 0 0 0 0 
1.333 0.333 0.667 1.333 0.889 
3.000 0.500 0.500 1.500 1.250 
3.333 0.500 0.500 1.500 1.250 
8.750 0.938 0 1.875 3.516 
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Probabilistic analysis of algorithms for combinatorial optimization problems has 
only recently become an active research area. The nature of mathematical 
techniques used in the analysis and of the results obtained is illustrated by a 
selection of examples from the literature. The selection is made in such a way 
that various problem classes in combinatorial optimization are represented. At 
several points, challenging open problems are mentioned as an encouragement 
for further research in this area. 

1. INTRODUCTION 

Suppose that two thieves meet on a regular basis to divide the proceeds of 
their joint effort. Each stolen object has a specific value and has to be 
assigned to one of the two. For obvious reasons, they are interested in a quick 
and fair partitioning scheme. 

In spite of its apparent simplicity, the above combinatorial problem is not 
easy to solve if we insist on an optimal solution, i.e. one in which the 
difference between the values assigned to each thief is as small as possible. 
According to the theory of computational complexity this problem belongs to 
the class of NP-complete problems. This implies that any optimization method 
for its solution can be expected to perform very poorly on some occasions: 
more formally, its worst case running time is likely to grow exponentially with 
problem size. 

Hence, in choosing a solution scheme, the thieves will be forced into a 
trade-off between two features of algorithmic quality: the computational effort 
(the smaller running time, the better) on one hand and the computational result 
(the smaller deviation from optimality, the better) on the other hand. As men
tioned above it is very unlikely we can obtain an algorithm that simultaneously 
guarantees a fast (polynomially bounded) running time and a zero deviation 
from the optimal solution value. 

One possible way out of this dilemma is to insist no longer on an absolute 
guarantee. For practical purposes an algorithm that, with respect to both effort 
and result, does well in the majority of cases or even on average might be per
fectly acceptable. 
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Probability theory provides the natural setting for such an analysis of algo
rithms. This analysis starts from a specification of a probability distribution over 
the class of all problem instances. The running time and the solution value of a 
particular algorithm are then random variables, whose behaviour can be studied 
and evaluated. This approach can therefore be viewed as the analytical coun
terpart to the familiar experimental analysis in which an algorithm is tried out 
on a set of supposedly representative test problems and evaluated statistically. 
Here, we obtain the rigor of mathematical analysis. However we do so at a 
price; at the current state of the art, only relatively straightforward solution 
methods have admitted a detailed probabilistic analysis. More intricate algo
rithms usually give rise to probabilities that are conditioned on the outcome of 
certain algorithmic steps, which complicates a direct analysis dramatically. 

Although the probabilistic analysis of algorithms has only recently become 
an active research area, it has already generated an impressive number of pub
lications. A concise survey of this area would require the prior introduction of 
many techniques from probability theory so as to encompass the diversity of 
ideas and approaches that one finds in the literature. A recent annotated 
bibliography [26] provides an up to date survey of the available publications. 
In this paper we will illustrate the nature of the analysis and of the results by 
a selection of examples from the literature. 

In Section 2 we consider the problem of the two thieves, which is known as 
the PARTITION problem in which one seeks to minimize the size of largest 
share. This problem is an example of a number problem, a problem whose 
input consists primarily of numbers. In Section 3 we review some representa
tive results that are known for geometric problems in Euclidean space. In Sec
tion 4, we examine combinatorial optimization problems defined on graphs and 
networks. Finally, concluding remarks and directions for future research are 
given in Section 5. 

We conclude this introduction by a short digression on modes of stochastic 
convergence, an essential concept if we want to analyse the behaviour of ran
dom variables such as the error of an approximation algorithm with increasing 
problem size. 

Almost sure convergence of a sequence of random variables yi.y2, ••• to a con
stant c means that 

Pr{ limyn=c}=l. 
n-+oo 

It implies the weaker convergence in probability, which stands for 

limPr{lyn-cl>£} =O 
n-+OO 

for every £>0. The reverse implication holds if the latter convergence is fast 
enough to have for every £>0 

00 

~ Pr{lyn-cl>£}<oo. 
n =I 

Similarly, convergence of Yn to c in expectation, i.e., 
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lim IEYn -cl =O, 
n-co 

also implies convergence in probability, with the reverse implication holding 
under additional integrability conditions on Yn· 

2. THB PAllTITION PROBLEM 
Perhaps the simplest way to solve the PARTITION problem of the two thieves is 
to allow each thief to choose a particular item in turn until they have all been 
assigned. H the j-th item has value ai (i= 1,2, ... ,n), then this amounts to ord
ering the items accordin~ to decreasing ai values a<n>;;;;a.a<n-I>;;;;a. ••• ;;;;a.a<l), one 
thieve receives a<n>+a<n- >+ ... ,the other a<n-l)+a<n-3>+ •••• 

This is clearly a fast approximation algorithm (O(nlogn)) for sorting the 
items) that may, however, produce a very inequitable result: in the worst case, 
the first thieve may receive up to 50 percent more than the optimal partition 
would grant him. (Take a 1 =2, a21 =a21 +1 =2-1(i;;;;a.l).) How about the aver
age case behaviour? To answer that question we specify a probability distribu
tion over all problem instances. Let us assume that the ai are independently 
identically distributed random variables that have a distribution with finite first 
moment. 

Under this assumption the optimal solution value z':PT of the partition 
problem (i.e. the smallest possible size of the larger share) is a random variable 
that turns out to be almost surely (a.s.) asymptotic to the expected value of the 
lower bound ~j =iaj/2: 

z':PT z':PT 
--- = ----+l (a.s.). 

n n 
El-:ai/2 2Ea1 
j=i 

(2.1) 

This result provides a first example of asymptotic probabilistic value analysis: 
for n large enough the optimal solution value can be guessed with increasing 
(relative) accuracy. What about the size of the larger share z: produced by the 
approximation scheme proposed? We have that 

z:- ~ j: aj + ~[(a<n>-a<n-1>) + (a<n-2>-a<n-3>)+ ... ], 
j=l 

1 n 1 
E0.;2 l: aj+2a<n>. 

j=l 

Under the assumption of the finite first moment for the distribution of the ai, 
we have that the strong law of large numbers implies that 

n 

l:ai 
j=l 

E -+l (a.s.) 
n a1 

and that a<n>=o(n) (a.s.), so that 

z: 
-- -+l (a.s.). 
n 
2Ea1 

(2.2) 
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(2.1) and (2.2) together imply that 
zH 
o~T --+I ( a.s. ). 

Zn 

107 

The ap&roximation algorithm is called asymptotically optimal: its relative error 
(z:f-zn PT)/z~PT a.s. goes to 0. Hence a probabilistic analysis leads to a much 
more optimistic conclusion than a worst case one. 

What about the absolute error z:{-z<;PT or the absolute difference between 
the two shares? Neither of these two quantities goes to 0 for the above heuris
tic, so there is room for improvement. A slightly more sophisticated scheme 
would be to allow each thief in tum to select items until the value of his share 
exceeds the value of the current share of his colleague. From a worst case 
point of view this is a much more reasonable approach: the larger share never 
exceeds its smallest possible size by more than 16.6 ... percent [16]. (For a worst 
case example take a 1 =a2 =3, a 3 =a4 =a5 =2.) In a probabilistic sense the 
difference is even more impressive. Of course, the relative error again goes to 0. 
However, if we assume that, next to finite first moment, the distribution of the 
aj is strictly increasing over an interval [O,b] with b>O, then also the absolute 
difference between the two shares d:[ (which is clearly an upper bound on the 
absolute error) satisfies 

d:f-+0 (a.s.) 

[11). To prove this result one observes that 

d:{ ~max 1 <.k<.n { d:f-1 - a<1>, a<1>} 
[Bn] 

~a([BnD + max{ a<n) - ~ a(i) ,O} 
j=i 

for any 8>0. The first term converges to 8 a.s. and can therefore be made 
arbitrarily small; for any fixed 8, the second term converges a.s. to 0 since 
l:J8~lai=O(n), whereas a<n>=o(n) as mentioned before. 

The two results presented so far demonstrate the importance of the theory of 
order statistics for the analysis of approximation algorithms that involve the 
sorting of numbers; priority rules generally fall into this class. 

One weakness of the type of results presented above is its asymptotic nature, 
i.e., its validity only for sufficiently large values of n. Ideally one would like to 
have a precise indication of what values of n are sufficiently large. 

At the very least, one could be grateful for information on the rate at which 
d:[ converges to 0. It can be shown [12) that 

dH 
limsup 1 gl n = 0(1) (a.s.). 

n-+oo o ognln 

However, it is also known that d~PT, the smallest possible difference, satisfies 
dOPT 

limsup 2n _ = 0(1) (a.s.) 
R-+00 n 2 n 
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(23). Hence, the exponential effort that may be required for the computation of 
the optimal partition is at least rewarded by an exponential decrease to 0 of 
the difference between the two shares. Can this also be achieved a.s. in polyno
mial time? 

The answer to this question is unknown, but an improvement on the rate of 
convergence of the previous heuristic is obtained by a differencing method. 
Essentially, two items are assigned at a time and their difference is compen
sated for. More precisely, in the first iteration a<n> will be assigned to one thief, 
and a<n - 1> to the other. The items will then be replaced by a single item with 
value a<n>-a<n-l) and the process is repeated on the set of n-1 items until 
only one item remains; its value represents the difference between the two 
shares. A simple backtracking procedure establishes the partition in terms of 
the original items. 

In the worst case this method is not better then the previous one. The pro
babilistic analysis of its performance is difficult: each step in the algorithm 
conditions the probability distributions of events encountered in the succeed
ing steps in a complicated fashion. 

In (22) this obstacle is overcome by changing the algorithm so that (with 
high probability) the value produced will not be affected but its modified 
behaviour can be analyzed rigorously. Through this approach it was esta
blished that 

dH 
limsup n = 0(1) (a.s.). 

n-+oo n -logn 

Thus, in O(nlogn) time this method guarantees a rate of convergence that is 
superpolynomial, yet subexponential. It is tempting to conjecture that this is 
best possible for a polynomial time heuristic. 

We have dealt with this simple example since it exhibits many of the 
ingredients typically encountered in a probabilistic analysis: 
- a combinatorial problem that may be difficult to solve (the PARTITION prob

lem is NP-complete); 
- a probability distribution over all problem instances to generate problem data 

as realizations of independent and identically distributed (i.i.d.) random 
variables; 

- a probabilistic value analysis that yields an asymptotic characterization of the 
optimal solution value as a simple function of the problem data 
(zt;PT /(nEa1/2)-+1 (a.s.)); 

- a probabilistic e"or analysis of a fast heuristic to prove that its relative or 
absolute error tends to 0 with increasing problem size in some stochastic 
sence: 

- a rate of convergence analysis that yields some indication of how large prob
lem sizes might have to be in order to demonstrate asymptotic behaviour in 
practice. Moreover, it allows for further differentation among the heuristics. 

Similar analyses have been carried out for many other combinatorial problems. 
An example is provided by the MULTIKNAPSACK problem: 
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n n 
max{ ~ cjxjl ~ a;jX/~b; (i = l, ... ,m),xjE{O, I} (j = l, ... ,n)}. 

j=l j=l 

Let us assume that the (m +I)-dimensional vectors (cj,alj•···•a,,.j) are i.i.d. with 
bounded support and that b; = n/3;, with /3; fixed. As above we are interested 
in the optimal solution value as a function of P=<Pi.···•Pm) and in heuristics 
whose error vanishes asymptotically with high probability. 

The analysis of this problem in (38) and [15) is of interest in that it exploits 
the close relationship (in a probabilistic sence) between a difficult nonconvex 
combinatorial optimization problem and its convex LP relaxation, obtained by 
replacing the constraints xjE{O,l} by O~xj~l (j=l, ... ,n). It is easy to verify 
that the absolute difference between the solution values of these two problems 
is bounded by (maxj=l, ... ,ncj)m, so that the relative error that is made by 
focussing on the LP relaxation goes to 0. But the LP relaxation (or rather, its 
dual) is much easier to analyze: its value is given by 

min>.Ln{A), 

with A={Ai. ... ,Am) and 
m m 

Ln{A)= ~A;b;+max{~1.(cj- ~A;aij)xjlO~xj~l}. 
i=l i=l 

The maximization problem in (2.3) is solved by setting 
m 

{
I if cj - ;:;

1 
A;aij >0, 

xj=xj(A)= 0 otherwise. 

(2.3) 

The strong law of large numbers implies that Ln(A)/n is asymptotically equal 
to its expectation 

m m 
L{A)= ~A;/J;+Ec1 x1 (A)- ~A;Ea; 1 x1 {A), 

i =l i =l 

for every value of A>O. To establish the asymptotic characterization of the 
optimal solution value the above convergence must be shown to hold uni
formly over the class of functions Ln{A) induced by all possible (interesting) 
values of A. 

In [15] such a uniform strong law of large numbers is obtained by using ele
ments from empirical process theory that essentially relate uniform conver
gence to combinatorial properties of the class of functions studied. It then fol
lows almost immediately that the optimal solution value z~PT satisfies 

ZOPT 
_n_~min>.L{A) (a.s.). 

n 

The minimum of L{A) can actually be computed in closed form in some simple 
cases (e.g. form= 1). 

A particularly nice feature of the above use of empirical process theory is 
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that it yields, next to a uniform . law of large numbers under slightly stronger 
conditions on the probability distribution, a uniform law of the iterated loga
rithm, which establishes a rate of convergence: 

OPT 
n 1121zn · 'I- ( ( 1 gl ) -- - m.tn>.L(I\) -0(1) a.s.), 

o ogn n 

[15]. 
The type of argument used suggests that it might be applicable to other 

combinatorial optimization problems with a minsum-objective and a continu
ous relaxation whose optimal solution value is relatively close to the integer 
one. And indeed, the approach has been successful in analyzing the SETCOVER 
problem [41], the k-MEDIAN location problem [45] and the UPWARD MATCH
ING problem [43]. 

A heuristic to solve the MULTIKNAPSACK problem, which is suggested by the 
above analysis , is the generalized greedy heuristic in which x/s are set equal to 
1 in order of nonincreasing ratio's c/'l:.'f'= 1>..1aij. H the >..;'s are chosen to be 
equal to the values minimizing L()..), then the relative error of this greedy 
method goes to 0 a.s. A heuristic whose absolute error vanishes asymptotically 
is not known for the MULTIKNAPSACK problem, however, and further analysis 
of the model reveals puzzling differences between the minimization and max
imization version of MULTIKNAPSACK that still have to be resolved. Nonethe
less, the probabilistic analysis of this model yields surprisingly high returns. 

For another famous number problem, the BIN PACKING problem, a different 
type of probabilistic analysis has been carried out. The problem is to find the 
minimum number of unit size bins required to pack a collection of items with 
sizes ah···•an. Under the assumption that the items sizes are i.i.d. uniform on 
[O, 1 ], probabilistic analysis from the perspective illustrated above has yielded 
many beautiful results (see e.g. [8], [29]). In [44] the question is considered 
which probability distribution on (0,1] from which the item sizes are drawn 
independently allow perfect packing of the bins. More formally, let z<;PT denote 
the optimal number of bins required to pack items of size ah····~· which are 
i.i.d. random variables with distribution µ. on (0, 1 ]. Since z<;PT is subadditive, 
in the sense that 

zf~~(a1 , ... ,akt9k +I •····9k+1)E;;zf PT(a1 , ... ,ak)+zPPT(ak + J , ••• ,ak +1), 

it is known (cf. [28]) that there exists a constant c(p.), depending on the distri
bution µ., such that 

zOPT 
_n_~c(p.) (a.s.). 

n 

It is clear that z</PT;;,•'l:.j= 1ai, and that 'l:.j= 1 ai/n~Ea1 (a.s.) by the strong law 
of)arge numbers. Thus c(p.)-;;;i.Ea1• Now, answering the question which distri
butions µ. allow perfect packing, amounts to characterizing the class of distri
butionsµ. for which c(p.)=Ea1• 

Necessary and sufficient conditions on µ. have been derived in (44]. We 
present here the implications of this general result for the intervals of uniform 
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distributions, thereby answering a question posed for the first time in [21 ]. 
Consider the uniform distributions P.a,b over intervals [a,b] with Oo;;;;a <b.;;;; 1. 
Let us assume first that Oo;;;;a <b.;;;; 1/2. Then P.a,b allows perfect packing of 
items whose size are drawn independently from it if and only if either 
a +b=2/p for some integer p~3, or if there exists an integer p~3 such that 
ao;;;;l!(p + l)<l!po;;;;b and b -a~2/(p(p + 1)). If Oo;;;;a<bo;;;;l and b> 112 
then P.a,b allow perfect packing if and only if a +b.;;;; 1 and P.a. 1-b does (see 
[46]). 

So far, all examples of number problems focused on the solution value and 
not on the running time of an algorithm as the random variable to be 
analyzed. However, one of the first results in this field of research involved the 
latter type of analysis. The problem in question is a number problem, and 
indeed probably the most famous number problem, LINEAR PROGRAMMING. 
This problem is well known to be solvable in polynomial time. Probabilistic 
analysis played a vital role in understanding the excellent practical perfor
mance (as compared to the exponential worst case performance) of the simplex 
method. The venerable history of the average case performance analysis of the 
simplex method illustrates the importance of an appropriate probabilistic 
model: ultimately, the concept of a random polytope being generated by m 
fixed hyperplanes in Rn and m coin :flips to determine the direction of the 
corresponding inequalities reduced the computation of the average number of 
pivot steps to a combinatorial counting question. Within this model, various 
simplex variants admit of a quadratic upper bound on the expected number of 
iterations (including those in Phase I), which takes us very close to the 
behaviour observed in practice ([18,1,2,49]). 

In the next section we turn to problems with a geometric flavour, whose pro
babilistic analysis involves random sets of points in Euclidean space. 

3. GEOMETRICAL PROBLEMS 

In this section we consider problems, whose input includes n points in some 
finite dimensional metric space. We restrict ourselves here to problems in the 
Euclidean plane. The most famous problem of this type is surely the TRAVEL
ING SALESMAN problem, which is to find the shortest tour connecting n points. 
It has a respectable history, of which its probabilistic analysis forms one of the 
most recent chapters (see [33]). 

To facilitate the exposition we assume that the points are uniformly distri
buted over a fixed region, e.g. the unit square. Under such an assumption it is 
not difficult to arrive at an intuitive probabilistic value analysis of the TRAVEL
ING SALESMAN problem. For large n, an optimal tour through the 2 X 2 square 
with 4n points will be approximately 4 times as long as an optimal tour in a 
unit square with n points. Scaling back the 2 X 2 square to a unit one, we con
clude that the optimal tour length z~PT is likely to grow proportionally to Vn. 
Indeed, a heuristic from [7] shows that its value is bounded deterministically 
from above by V2n. And an argument based on expected nearest neighbour 
distances easily shows that there exists a positive constant c such that z<jPT is 
a.s. bounded by cVn from below. 
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The actual convergence argument is much more difficult and was first pro
vided in [5]: as expected 

z<jPT/Vn~fJ (a.s.), (3.1) 

where fJ is a constant that has been estimated empirically to be equal to 0.765. 
This result has been rederived by other researchers. A recent proof in [47] 

simplifies a proof in [48] considerably. It involves a technique useful in a 
broader context. Martingale inequalities are used as a basic ingredient. First, 
the asymptotics of the expectation Ez';PT are determined. In particular, it is 
shown that 

Ez';PT =cf>(n),...,{JVn. 

The argument for this result relies on subadditivity and self-similarity proper
ties of the functional z';Pr, and embody the intuitive insight mentioned above. 
The unit square is divided into m2 equal size subsquares. The expected length 

of the shortest tour in each of the subsquares is approximately ...!_et>(-;-). Sew-
m m 

ing together all these shortest subtours can be done at an incremental cost of 

at most 3m, so that cf>(n) is bounded by mcf>(-;-)+3m. Letting n and m go to 
m 

infinity in a suitable way it can be proved that 

liminf cf>(n )! Vn = limsup cf>(n )I Vn 
n~oo n-+ex> 

and that this limit exists [48]. 
Once convergence has been established, the next step is to prove that 

1z<:PT - Ez';PTI! Vn ~o (a.s.). 

Let ~; denote the a-field generated by the first i points {X1>····X;} from an 
infinite sequence, i = 1,2, ... ,n and let z~ denote the length of the shortest tour 
through the points {XJ. ... ,X;-1>X;+1>···•Xn}· Two nice properties of z~ are 
that E(z~l~;)=E(z~l~;- 1 ) and E(z~l~;- 1 )=E(z';PTl~;- 1 ). Thus we have 

d; = E(z':PTl~;)-E(z';PTl~;- 1 ) 

= E(z<jPT -z~l~;)-E(z';PT -z~l~;-1) 

= E(z';PT -z~I~;). 

The s,,uence { d;} 7 = 1 is called a martingale difference sequence, and we can 
write Zn PT - Ez';PT = ~7= 1 d;. For any such a sequence the following inequal
ity holds: 

n 

Pr ff~::= 1 d;l>t }:i.;;;;2exp(-t2 /(2 ~ lld;ll~)), 
i =l 

(3.2) 

for each t>O, where lld;ll 00 is the supnorm of d;. We bound lld;ll 00 by 
2minj~d(.Xj,Xj) by considering the insertion of X; in a shortest tour through 
{X1>···•X;-1>X;+1>···•Xn}· An appropriate analysis of the bound, conditional 
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on the a-fields, yields 

lld;ll 00 E>;2C(n -i -1)- 112 

for some constant C. This together with inequality (3.2), with t =£Vn, yields 

Pr{lz~PT -Ez~PTl>EVn}E>;2exp(-~n/(Clnn)) 
for any E>O. The Borel-Cantelli lemma concludes the argument, since obvi
ously 

~:=IPr{lz~PT -Ez~PTl>EVn}<oo. 
In [48] the result (3.1) is generalized to problems of arbitrary dimension, 

whose objective function can be viewed as a functional that is subadditive and 
has Euclidean properties (provided that a few other technical conditions are 
satisfied). The TRAVELING SALESMAN problem is one example, the MATCHING 
PROBLEM is another one. 

Given the result of this probabilistic value analysis it now becomes attractive 
to search for heuristics whose absolute error is o(Vn); their relative error then 
goes to 0 almost surely. As in the case of other Euclidean problems, partition
ing algorithms do precisely that. Generally, in these heuristics, the region is 
appropriately partitioned into subregions, subproblems defined by the points 
in each subregion are analyzed separately, and a feasible solution to the prob
lem as a whole is composed out of the separate results. 

For the TRA VELING SALESMAN problem in the square, one partitioning 
approach is to execute an alternating sequence of horizontal and vertical cuts 
through the point with current median vertical and horizontal coordinate 
respectively, until the resulting rectangles contain no more than ~n points. 
Each of these subproblems is solved to optimality by some enumerative tech
nique (say, dynamic programming) which takes O(n() time per rectangle, and 
hence O(n 1+() time overall, for some £>0. The resulting tours define a con
nected graph with even degree at each point; the Euler walk that visits each 
edge of this graph can be converted into a simple cycle of no greater length by 
eliminating all multiple visits. The difference between the length of this tour 
and the optimal one can be shown to be of the same order as the total perime
ter of the subrectangles generated, which is easily seen to be 0 ( Vn) in this 
case. Thus, the relative error of the heuristic goes to 0 a.s. ([24,27]). 

Not much is known about the rate of convergence to optimality of this 
heuristic, nor is any heuristic known whose absolute error goes to 0 asymptoti
cally. 

We close this section by discussing an interesting class of problems that can
not quite be handled by Steele's techniques. LocATION problems are problems 
in which k depots have to be located so as to minimize the average distance 
between points of a fixed set and their closest depot (the k-MEDIAN problem) 
or the maximum of these distances (the k-CENTER problem). The probabilistic 
value analysis for· both problems, leads, surprisingly, to similar results: pro
vided that k =O(n/logn) both optimal solution values are asymptotically 
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proportional to 1 I Vk, albeit for different constants of proportionality 
(120,51D. 

The analysis leading to these results is of special interest, since it relies on 
the similarity between the original (discrete) problem for large n and the con
tinuous problem in which customer demand is not concentrated in a finite 
number of points but spread uniformly and continuously over the entire 
region. For the k-MBDIAN problem, a rate of convergence has been established 
using empirical process theory (cf. Section 2) as a technical tool ([45)). 

A simple partitioning heuristic in which a depot is located in each of k 
nonempty subsquares of size l/Vk by l/Vk already provides an 0(1/Vk) 
upper bound on the optimal solution values of both problems. An asymptoti
cally optimal heuristic, however, is only obtained by partitioning the region 
into regular hexagons (the honeycomb heuristic), with the constant of propor
tionality being determined by the optimal solution value of the continuous 
problem with k = 1 over one such a hexagon. This heuristic actually solves the 
continuous problem to optimality, and a detailed error analysis shows that, for 
n sufficiently large, its relative error in the discrete case becomes vanishingly 
small (119,51)). 

4. GRAPHS AND NETWORICS 

We now tum to the rich area of combinatorial optimization problems defined 
on graphs and networks. One of the reasons for the wide variety of probabilis
tic results for this class of problems is the existence of a substantial theory 
dealing with random graphs. There are two definitions of this concept: Gn,p is 
defined to be the (undirected) graph on n vertices for which each of the 
n (n - 1 )/2 edges occurs independently with equal probability p ; G~ is defined 

n(n -1)/2 
as the graph on n vertices with N edges where each of the ( N ) 

undirected graphs occurs with equal probability. We refer to [39] for a survey 
of the theory. Especially for structural graph optimization problems, in which 
we are interested in graph properties that depend only on the node-edge 
incidence structure, random graphs provide a natural distribution over the set 
of all problem instances of size n. 

Continuing in the spirit of the previous two sections we again refer to [26) 
for a list of references in the area and review only a few typical probabilistic 
analyses of heuristics for NP-complete problems. In doing so, we (reluctantly) 
exclude many beautiful results on problems of CONNECTIVITY and MATCHING 

that can be solved in worst case polynomial time. 
A typical example of a difficult structural problem is the CLIQUE problem of 

finding a complete subgraph of G that has maximal size c.>(G). To carry out a 
probabilistic value analysis of c.>(Gn,p) for fixed p, we observe that the expected 

n 
number of cliques of size k in such a graph is equal to (k)pk(k - I) 12. We would 

expect the maximal clique size k to occur when the expected number is 
approximately equal to 1, i.e. when (from Stirling's approximation of k!) 
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I nep<k-1)12 
v:£;;k ( k )k ~I. 

The left-hand side decreases very rapidly as k increases and passes through the 
value 1 when 

nep<k-1)12 

k 
1, 

i.e., when 

k =2log11pn +2log11pe -2log11pk +I, 

so that, approximately, k~k(n,p) with 

k(n,p)=2log11pn -2log11plog11pn +2log11p(e/2)+ 1. 

This estimate turns out to be very sharp indeed. In [36] it is proved that for 
every t>O, 

1im Pr{[k(n,p)-t]E;;z~PT =<o>CGn,p)E;;[k(n,p)+t]} = 1, 
n~oo 

so that, for large enough n, the size of the largest clique can be predicted to be 
one of two consecutive integers with high reliability. 

This precise probabilistic value analysis again encourages the search for a 
fast heuristic whose absolute error compares favorably to 2log11pn. Consider, 
for instance, the sequential greedy algorithm, which considers the vertices of G 
in arbitrary order and adds a vertex to the current clique if it is adjacent to all 
its members. For an analysis of the performance of this method, one observes 
that. the expected number of trials to increase the clique size from j to j +I is 
lip', so that we might guess the ultimate clique size z!' to satisfy 

~z.s-111 j= l-llpzs 
~,=o p I-lip = n, 

i.e., 

zH ~logvpn. 
A more precise analysis shows that, indeed, this greedy approach a.s. yields a 
clique of size (ll2-t)z~PT [17]. Thus, the relative error does not go to 0, but is 
almost surely close to 50 percent. (There is no known polynomial time heuris
tic with any constant worst case bound on the relative error.) 

The above result has immediate implications for the problem to find the 
INDEPENDENT SET of G of maximal size; it coincides with the maximal size 
clique in the complement of G. Again the sequential greedy approach, which 
picks up each successive vertex that is not adjacent to any member of the 
current independent set, produces an independent set whose size is a.s. close to 
50 percent of the optimal value. The CoLORING problem, which is to partition 
the vertices of G into the smallest possible number x( G) of independent sets, is 
much harder to analyze: the asymptotic optimal solution value z~PT = x(Gn,p) 
is known for p = ll2 ([31], though this (Russian) announcement has not been 
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verified). The heuristic method, which greedily finds an independent set as 
above, deletes it and repeats on the remaining graph, does poorly ([37D but 
well enough to get within a factor 2 +€ a.s. ([l 7D. 

Another class of structural graph problems for which probabilistic analysis 
has been successful is the IIAMILTONIAN CillCUIT problem of searching for a 
simple cycle containing all vertices. In [30) the conditions under which such a 
cycle exists have been established: in particular it was proved that for random 
graphs G: there is a threshold value for the number of edges 

N - inlogn+ inloglogn+cn above which a Hamiltonian circuit exists in G: 

with high probability and below which it does not exist with high probability. 
A heuristic that is successful in finding a Hamiltonian circuit with high pro

bability, if one exists, within polynomial time is presented in [3). The general 
idea of this so-called extension-rotation algorithm is as follows. Given a path of 
vertices {v0, ... ,vk} one of the neighbours of vk, say w is selected at random and 
the edge (vkt w) is added to the path. If w is not in the path, it is adjoined to 
it, so that we obtain a path that contains one edge more than the previous one 
(extension}, and the method is applied to w. If we{v0, ... ,vk-il• say w =v1, 

then the edge (v1,v1+1) is removed from the path and the method is applied to 
v1+I (rotation). If N exceeds the threshold presented before by a sufficient 
amount (e.g. N =cnlogn for large enough c) this method will be successful 
with high probability. We notice that the above heuristic is different from 
those considered before in that here the steps are partially dictated by a ran
dom mechanism. We will return to these so called randomized algorithms in 
the following section. 

We now turn briefly to number problems on weighted graphs, i.e., graphs 
with weights on the edges, an area which mixes features addressed in Section 2 
with the theory of random graphs. Here most results refer to problems that 
admit a worst case polynomially bounded algorithm like the LINEAR ASSIGN

MENT problem ([50,10)), the MINIMuM SPANNING TREE problem ([13D and the 
SHORTEST PATH problem ([40D. 

An NP-complete problem that belongs to this class is again the 1'RA VELING 

SALESMAN problem this time defined on an undirected graph. In [14) a random 
weighted graph model is presented together with an algorithm that solves 
problems generated from this model exactly with high probability. The prob
lems are defined on a complete graph with n vertices, and for each edge a 
weight is drawn independently uniform from the integers in the interval 
[O,n/v1ogn]. By choosing the weights in this way, the graphs will have (with 
high probability) enough edges with weight 0 to make the algorithm work 
optimally but on the other hand not enough to have a Hamiltonian cycle of 
length 0. The algorithm works in two steps. The idea of the first step is to 
select the set v 0 of vertices that have a low degree of incidence to edges with 
weight 0, and then to construct a partitioning of the graph into vertex disjoint 
paths of smallest possible total length such that each of the vertices in v 0 is an 
inner point of one of these paths. Th.at this is a lower bound on z~PT is shown 
simply by deleting from an optimal tour all those edges that join two vertices 
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not in v0• An optimal set of paths can be constructed in polynomial time if the 
graph generated satisfies certain conditions. But these conditions are satisfied 
by the class of random graphs defined with high probability. Thus, the end
points of the paths are vertices, each of which is incident to enough edges with 
weight 0 to allow the transformation of the paths obtained into a Hamiltonian 
tour in the second step, using only edges of length 0. This phase is performed 
by a deterministic extension-rotation algorithm; it will (with high probability) 
produce such a Hamiltonian circuit in polynomial time. Since for this phase 
only edges of weight 0 are used, the value produced in the first phase, which 
was a lower bound on z~PT, must be optimal. 

For the AsYMMETRic TRAVELING SALESMAN problem defined on a complete 
directed graph a heuristic that patches the subcycles appearing in the linear 
assignment relaxation together, achieves a relative error going to 0 in expecta
tion (see [25]). 

Perhaps the most peculiar result has been obtained for a generalization of 
the above problem, the QUADRATIC ASSIGNMENT problem; 

n n n n 

max{ ~ ~ ~ ~ cijdktxijxkll 
i=l j=lk=ll=l 

n n 
~xij= 1 (j= l, ... ,n), ~ xij(i = l, ... ,n},xijE{O, I}}. 
i=I j=I 

In [6] and in [9] it is shown that for this problem with C;j and dkt i.i.d., the 
ratio of the best and the worst possible solution value tends to 1 in probabil
ity. It shows an unexpected side benefit of probabilistic analysis, in that it 
clearly indicates how not to generate test problems for an empirical analysis of 
heuristic solution methods! 

5. CONCLUDING REMARKS 

Our first conclusion has to be that many topics of interest in this area have 
hardly been covered. A good example, announced in the previous section, is 
the work on randomized algorithms. These algorithms contain random steps; 
i.e. steps whose result depends partially on a random mechanism. Therefore, 
the solution value and the running time become random variables, even on 
fixed problem instances. An example of such an algorithm, presented before 
(cf. Section 4) is the extension-rotation algorithm for finding a Hamiltonian 
circuit in a graph. 

Historically, PRIMALITY TESTING was the first successful algorithmic applica
tion of randomization. In [42], a number is submitted to k tests and declared 
to be prime if it passes all of them, with the probability of it being composite 
none the less being equal to 2-k. Such an algorithm is called a Monte Carlo 
method, in contrast to a Las Vegas method in which the algorithm never pro
duces an incorrect answer, but may, with small probability, produce no answer 
at all. The method for GRAPH ISOMORPHISM in [4] is of the latter type. These 
two examples are of special interest in that they concern two problems whose 
computational complexity (polynomially solvable or NP-complete) is still 
unknown. 
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The formal study of randomized algorithms is far from complete, and in 
particular the real power of randomization techniques remains a mysterious 
issue; for instance, it is not clear to what extent (if any) the class of problems 
that can be solved in randomized polynomial time (i.e. fast with high reliabil
ity) strictly includes the class of problems that can be solved in worst case 
polynomial time. A recent annotated bibliography ([35]) provides a useful sur
vey of the area. 

It should be clear by now that the area of probabilistic analysis still harbors 
many interesting research challenges. The purpose of the preceding sections 
has, again, not been to provide an exhaustive review, but to provide some typi
cal examples that convey the flavour of this area. They have ranged from the 
very complete insight we have into various solution methods for the PARTI
TIONING problem to the less satisfactory state of the art for the CLIQUE and 
the COLORING problems. Clearly a lot of problems and a lot of algorithms 
await investigation. It is not hard to formulate open questions for probabilis
tic analysis; so far, however, it has turned out to be quite hard to come up 
with satisfactory answers for any but the simplest heuristics. 

A particularly fascinating possibility is the development of a complexity 
theory that would lead to a class of problems for which solution to optimality 
in polynomial expected time is as unlikely as the equality of P and NP. A first 
step in that direction can be found in [34), where a TILING problem is intro
duced, together with a probability distribution over its problem instances, such 
that any other problem with a (mildly restricted type of) probability distribu
tion is reducible to the TILING problem. 

To establish completeness for other problems in this class is a major chal
lenge of considerable interest. After all, the reasonable average behaviour of 
enumerative methods (and the remarkable success of a nonenumerative method 
based on computations in an integer lattice ([32))) to solve some NP-complete 
problems, and the apparent impossibility to find such algorithms for other 
NP-complete problems still defy theoretical explanation! 
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We show that the strong connectivity problem is solvable in polynomial time in 
case each value a in the distance matrix with O<a<oo is contained in a sub-

matrix of form [~ ~] (up to permuting rows or columns), thus extending a 

result of Lucchesi. 

The strong connectivity augmentation problem is: 

(l)given: a directed graph G = (V,A), a length function l:VX v~.l+ and an 
integer B, 

find: a set A' CV X V so that the graph ( V,A U A') is strongly connected 
and so that ~aEA'l(a)<B. 

(cf. Garey and Johnson [3]). This problem is easily seen to be NP-complete, 
since the problem of finding a Hamiltonian cycle in a directed graph ( V,A ") is 
reducible to (1): just take A : = 0, 1: VX V ~.l+ defined by: 

(2) l(u,v) := 0 if (u,v)EA", 

: = 1 if (u, v)gA", 

and B : = 1 (cf. Eswaran and Tarjan [l]). 
In fact the traveling salesman problem: 

(3)given: a length function /':VX v~.l+ and an integer B', 
find: a Hamiltonian cycle of length less than B' 

is a direct special case of (1) (take A:= 0, l(u,v) := l'(u,v)+B' and 
B := B'I VI +B'). 

Another application of the strong connectivity augmentation problem is the 
planar feedback arc set problem (see below). 

The strong connectivity augmentation problem is trivially equivalent to the 
strong connectivity problem: 

(4) given: a length function 1: VX v~.l+ U { oo} and an integer B, 
find: a subset A' C V X V so that ( V,A ') is strongly connected and so that 

~aEA'l(a)<B. 

Indeed, (4) is just the case A = 0 in (1). Conversely, (1) can be reduced to 
(4) by resetting l(a) := 0 whenever a EA. Allowing l(a) = oo in (4) is 
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irrelevant: we could replace any oo by the value B. 
We may assume in (4) without loss of generality that for all i,j,k E V: 

(5) (i) /(i,i) = 0 
(ii) if /(i,j) = 0 and l(j,k) = 0 then l(i,k) = 0. 

It was shown by Lucchesi [5] (cf. Frank [2] and Lucchesi and Younger [6]) that 
the strong connectivity problem (4) is solvable in polynomial time if the fol
lowing condition on the length function holds: 

(6) for each i,jEV: if 0</(i,j)<oo then /(j,i) = 0. 

Equivalently, the strong connectivity augmentation problem is solvable in 
polynomial time if: 

(7) for each i,j E V: if O<l(i,j)<B then (j,i)EA. 

So problem (I) is solvable in polynomial time if in the distance table we have 
that for each value a: with O<a:<oo, the symmetric value is equal to 0: 

0 

. 0 ...• 0 
(8) 

Oc· •• : 0 

·a 
Lucchesi showed that this implies a polynomial-time algorithm for the follow
ingfeedback arc set problem, in case G is planar: 

(9)given: a directed graph G = (V,A), a length function /:A--".>Z+ and an 
integer B, 

find: a subset A'CA so that (V,A') is acyclic and so that ~aeA'l(a)>B. 

In general, this problem is NP-complete (Karp [4]). 
To see that (9) is solvable in polynomial time if G is planar, we consider the 

planar dual graph G* = (F,A *) of G, directed in such a way that each arc of 
G crosses its dual arc in G* 'from left to right': 

(10) • ---- ---.)oe 

(where the uninterrupted arrow is an arc of G, and the interrupted arc is the 
dual arc in G*). Define for each pair (f,g)EFXF: 
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(11) /* (j,g) : = 0 ~ 
/*(g,f) : = /(a)5 
/*(j,g) : = 00 

Sif (j,g) = a• EA•, where 
~a• is the dual arc of a EA, 
for all other pairs (j,g). 

Let B* : = ~aEAl(a)-B. Then for each subset A' of A one has: 

A. Schrijver 

(12) (V,A ') is acyclic tj (F,A * U [(A \A ')*]- 1) is strongly connected 

(here C - I denotes the set of inverse arcs of C). Moreover, 

(13) :2: /(a)>B tj :2: l*(g,f)<B*. 
a EA' (g,/)E[(A \A'fr' 

This reduces the planar feedback arc set problem to the strong connectivity 
problem satisfying (6). Hence it is solvable in polynomial time. 

Lucchesi's algorithm can also be used in a branch and bound method to 
solve the general strong connectivity problem. Typically, during the branching 
process, a node of the tree is labeled by a set R of 'required' arcs and a set F 
of 'forbidden' arcs. That is, the node only considers those subsets A' of VX V 
for which R <;;;;A' <;;;; ( V X V) \ F and for which ( V,A ') is strongly connected. So 
the bound corresponding to the node should be a lower bound on the 
minimum length of these subsets A'. 

In order to find such a bound, we can assume that R is reflexive (i.e., 
(i,i)ER for all i) and transitive (i.e., if (i,j) and (j,k) belong to R, then 
(i,k)ER). Moreover, we can reset 

(14) /(a) : = 0 
/(a):= oo 

if a ER, 
if aEF. 

If after this resetting, Lucchesi's condition: 

(15) for all i,jEV: if O<l(i,j)<oo then l(j,i) = 0 

is satisfied, Lucchesi's algorithm gives us the exact minimum value (instead of 
a lower bound) in polynomial time. This suggests that in our branching stra
tegy, we should strive for a situation where (15) holds. That is, for choices of 
R and F satisfying: 

(16) for all i,JEV:(i,j)ER, or (j,i)ER, or both (i,j)EF and (j,i)EF. 

We show that the strong connectivity problem can also be solved in polyno
mial time if we weaken Lucchesi's condition (15) to: 

(17) for all i,j E V: if O<l(i,j)< oo then 3i', j' E V with 
/(i,i') = l(j',i') = l(j',j) = 0. 

This is indeed weaker than Lucchesi's condition, since if (15) holds we can 
take i' = i and j' = j in (17). 

Condition ( 17) means that in the distance table we have that any value with 

O<a< oo is part of a 2 X 2-matrix [~ ~] as in: 
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0 0 
(18) 

r:I. 0 

So the difference with Lucchesi's condition is that the diagonal elements of 

[~ ~] need not be diagonal elements of the distance matrix. 

THEOREM. The strong connectivity problem is solvable in polynomial time if ( 17) 
is satisfied. 

PROOF. Let / satisfy (18). We may assume furthermore that l(i,i) = 0 for all 
iEV, and if l(i,j) = l(j,k) = 0 then l(i,k) = 0 for all i,j,kEV. 

Suppose now that O<l(i,j)< oo for some i,j E V while l(j,i)=/=O. By (17) 
there exist i',j'EV so that l(j',i) = l(j',i') = l(j,i') = 0. We introduce two 
new points, i" and j" say. Let V : = Vu { i",j"}, and 

l(a,b) := l(a,b) if a,bEV,(a,b)=/=(i,j), 
-

(19) 
l(i,j) : = 00 
- - - - -
l(i,i") : = l(i",i') : = l(j',j") : = l(j',j") : = l(j",j) : = 0, 
-
l(a,b) : = oo for all other a,b E V. 

We show that the strong connectivity problem for V,l is equivalent to that 
for V,I. First, let A be a minimum length subset of VX V with (V,A) strongly 
connected. Let: 

(20) ~ : = AU {(i,i"),(i",i'),(j",i"),(j',j"),(j",j)} if (i,j)f£A, 
A : = (A\ {(i,j)})U {(i,i"),(i",i'),(j",i"),(j',j"),(j",j),(i",j")} if (i,j)EA. 

Clearly, 

(21) ~ l(a) = ~_l(a). 
a EA a EA 

Moreover, ( V,A) is strongly connected. This follows directl:t_ from (20) if 
(i,j)f£A. If (i,j)EA, the1!.._ (bi"),(i",j"),(j",j) form a path in A from i to j. 
Hence also in this case, ( V,A) is strongly connected. 

Conversely, let A be a minimum length subset of VX V with (V,A) strongly 
connected. Without loss of generality, if l(a,b) = 0 then (a,b)EA. Let: 

(22) A : = A_ n(VX V) 
A : = (A n(VX V))U {(i,j)} 

if ( i ",j") €£1_, 
if (i",j")EA. 

Again (21) holds. Moreover ( V,A) is strongly connected. To see this, take 
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a,bEV. We~how that A contains a path from a to b. Since (V,A) is strongly 
connected, A contains a path P from a to b. Assume that P passes i" and j" as 
few as possible. If P does not traverse i" nor j", it is also a path in A. So sup
poses P traverses i" or j". Consider all arcs incident to i" or j" with finite 
length: 

i j 

(23) 

i' j' 

Since (i,i'),(j',i'),(j',j}EA, and since (i,j)EA if (i",j")EA, it follows that P 
does not intersect {i",J"l.:._ 

So replacing V,I by V,/ gives an equivalent problem, and decreases the 
number of pairs (i,j} with O<l(i,j)<oo and l(j,i)=/=O. Therefore, after at most 
I V 12 such replacements, we attain an equivalent strong connectivity problem 
satisfying Lucchesi's condition. This is solvable in polynomial time by 
Lucchesi's algorithm. D 

This theorem suggests that in a branch and bound process, our branching stra
tegy should strive for a situation where the following holds: 

(24) for all i,jEV: (i,j}EF, or {i,i'},(j',i'},(j',j}ER for some i',j'EV. 

(The second alternative includes the case (i,j}ER, by taking i' = j, j' = i.) 
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The applied fields of inventory and queueing lie at the heart of stochastic 
operations research. This paper deals with two typical problems from these 
fields and shows how they can be solved by using simple probabilistic 
methods. 

1. INTRODUCTION 

Operations Research is a rather young discipline. From the very beginning sto
chastic inventory and queueing problems have played a prominent role in the 
development of Operations Research. It is no coincidence that the develop
ment of Operations Research took place in the track of a greater acceptance of 
probabilistic and statistical methods for solving problems from daily life. 

Nowadays widely used tools in stochastic operations research are renewal
reward processes and Markov decision processes. The roots of these tools go 
back to the early sixties. In that time De Leve made already an extensive use 
of these probabilistic methods in his research and teaching. His approach was 
always very intuitive and usually led to surprisingly elegant solutions. This fas
cinated me as a student who was used to formal thinking in probability theory. 
Chance plays a great role in one's life. My choice for stochastic operations 
research would not have been made without the motivating education I had in 
applied probability. A main lesson I learned is that good probabilistic ideas 
are often simple. In the remainder of this paper I will try to support this claim. 

2. THE PERIODIC REVIEW (R,S) INVENTORY SYSTEM WITH RESTRICTED ORDER 
SIZE 

2.1. Model 
A widely used inventory control system is the periodic review system where at 
each review a replenishment order is placed for the cumulative demand since 
the previous review. This control rule assumes that there is no limitation on 
the size of the replenishment order. In practice this assumption is not always 
satisfied. In this section we will consider the case of a restricted order size. The 
inventory control model is as follows. The demands for a single product in the 
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successive periods t = 1,2, ... are independent random variables having a com
mon probability density f (x) with mean µ and standard deviation o. Demand 
in excess of the stock on hand is backordered until stock becomes available by 
the delivery of a replenishment order. The inventory position is reviewed 
every R periods, where R is a fixed positive integer. At each review the inven
tory position is ordered up to the level S provided that the order size does not 
exceed Q; otherwise, an amount of Q is ordered. Here Q is a given number, 
where it is assumed that 

Q > Rµ.. 

This prevents the inventory position drifting to minus infinity. The goal is to 
compute the order-up-to-level S so that the following service level constraint is 
satisfied: 

the fraction of demand satisfied directly from stock on hand ;;;;. a, 

where a is a prespecified value (e.g., a = 0.95). It will be shown in the next 
subsection how a computationally tractable method can be obtained using sim
ple and basic probabilistic tools. 

2.2. Analysis 
For ease the analysis will assume that the lead time of any replenishment order 
is negligible. The outline of the analysis is as follows: 
1. For a given control rule (R,S), it will be shown that the process describing 

the inventory position just after a review is probabilistically equivalent to 
the waiting-time process in the single-server DIG 11 queueing model with 
deterministic arrivals. The waiting-time distribution for the DIG I 1 queueing 
model can be explicitly given for the class of Coxian-2 service time distribu
tions. 

2. The smallest order-up-to-level Sa achieving the service level a when the 
demand distribution is general will be approximated by the corresponding 
order-up-to-level for the case of a Coxian-2 demand distribution having the 
same first two or first three moments as the original demand distribution. 
This approximation requires that the review-time demand has a squared 
coefficient of variation of at least 1h. Otherwise, the order-up-to-level Sa is 
approximated by linear extrapolation of the corresponding levels for two 
special Coxian-2 distributions (exponential and Erlang-2) with the same 
means as the original demand distribution. Here the extrapolation is with 
respect to the squared coefficient of variation of the review-time demand. 

Let us first show that the process describing the inventory just after a review is 
equivalent to the waiting-time process in a DIG/I queue. Fix an (R,S) control 
rule and define the random variable 

ll; = the difference between the order-up-to-level S and the 
inventory position just after the i-th review. 

Letting the random variable ~k be defined by 
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fk = the total demand between the k-th and (k + 1)-st review, 

it follows that the inventory position just prior to the i-th review equals 
S -A;-1 -f;- 1 and that an amount of min(Q,A;- 1 +f;-1) is ordered at the 
i-th review. It is now easily seen that 

A; = max(O,A;- 1 +f;- 1-Q) for i = 1,2, ... , 

where Ao = 0 (assuming that the initial stock equals S). The same recurrence 
relation arises for the single-server DIG I 1 queue in which the deterministic 
interarrival times of the customers are equal to Q and the service time of the 
k-th customer is distributed as fk· Assuming service in order of arrival, let 

W; = the waiting time of the i-th customer (excluding service time). 

It easily follows that W; = W;- 1 +f;-1-Q if W;- 1 +f;- 1 -Q>O and 
W; = 0 otherwise. This yields the famous Lindley equation, 

W; = max(O, W;- 1 +f;- 1 -Q) for i = 1,2, ... , 

where W0 = 0. Consequently, the probability distribution of the 'inventory 
deficit' A; is the same as that of the waiting-time of the i-th customer in the 
above DIG I 1 queue. This observation goes back to De Kok [ 1] who also dev
ised an interesting approximative method to solve the Lindley equation for the 
general GI I G I 1 queue. His method can also be used to obtain a useful 
approximation for the service level of an (R,S) policy when the demand has a 
general distribution. However, an alternative approach can be given using the 
special class of Coxian-2 distributions and the idea of extrapolation with 
respect to the squared coefficient of variation of the review time demand. A 
key observation is that the limiting distribution function 

W(x) = limP{W;:E;;x}, x;;;;.O, 
i-+OO 

allows for a simple explicit expression when the service times have a Coxian-2 
distribution. Before we proceed, let us describe the practically useful class of 
Coxian-2 distributions. 

Coxian-2 distribution 
A positive random variable S is said to have a Coxian-2 ( C 2) distribution 
when S can be represented as 

{
ul with probability 1-b, 

S = U 1 + U 2 with probability b, 

for some branching probability Ooe;;;boe;;;I, where U1 are independently distri
buted exponential random variables with respective means 11µ1 and l!J.t2. Any 
C 2 distributed random variable S can be shown to have a squared coefficient 
of variation of at least 1h, where the squared coefficient of variation c~ is 
defined by 

2-~ c - . 
s E2(S) 
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It is often convenient to fit a C2-distribution to a positive random variable by 
matching its first two or first three moments. Let X be a positive random vari
able with ci;;;i.Y.i and denote by m; = E(X1) the i-th moment of X. If a three
moment fit to X by a C rdistribution exists, the three parameters µ..,µ,_ and b 
of this unique fit are given by 

P.1,2 = 1(a1 + Vai-4a2 ], b = : {µ.1m 1 -1), 

where a 1 = (1 +Y.im2a2)/m1 and a2 = (6mi-3m2)/(3m~/2-m1m3). An 
infinite number of C rdistributions can be fitted to X by matching only the 
first two moments. An appealing and very useful two-moment fit is the one 
with parameters 

This particular C rdistribution has the same first three moments as a gamma 
distribution, cf. Tijms (4). 

Let us now return to the stationary waiting-time distribution function W(x) 
for the DIG/I queue. In case the service times~; have a C2-distribution with 
parameters µ.1,µ,_, and b, then 

W(x) = l -a 1e -.,,x -a 2e -.,,x, x;;;i.O, 

where 'lll and '112 with 0<'111 <min(µ.1 ,µ,_)~'112 are two real zeros of the equation 

x 2-{µ.1 + µ,_)x + P.11"1. - {µ.1µ,_ -(1-b )P.1X }e -xQ = 0, 

and the constants a 1 and a 2 are given by 

-'lli'll2 +'111'112{µ.1 + µ,_)-'112P.11"1. 

P.11"1.('111 -'112) 

'111'11~ -'111'112{µ.1 +µ,_)+'111P.11"1. 

P.11"1.('111 -'112) 

An elementary proof of this result can be found in Van Ommeren and Nobel 
(6). 

Let us next apply the above results to the periodic review inventory model 
with the {R,S) control rule. For any v~S, let 

IT(v) = µm.P{the inventory position just after the i-th review is ~v}. 
1-+00 

Assume for the moment that the review time demands ~; have a C r 
distribution with parameters µ..,µ,_, and b. It is no restriction to assume that 
µ.1 >µ,_ (otherwise, redefine µ.., µ,_, and b as µ.1 : = µ,_, µ,_ : = P.i. and 
b : = 1-(1-b)µ.1/µ,_; then, the same density arises). The probability density 
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of the f;'s is easily calculated as 

(x) = - x - x {
PP.1e -,..x +(1-p)Jltle -p.,x 

fR PP.1e ,.. +(1-p)p.~xe ,.. 

when P.1 > Jltl, 

when p.1 = Jltl, 

where p = 1 - b p.1 I (p.1 - Jlti.) when p.1 7'="'2 and p = 1 - b when p.1 = Jlt2. 
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Since the inventory position after the i-th review equals S - !::..; and the limit
ing distribution of the Markov process {!::..;} is given by the function W(x) 
above, it follows that 

{
a e - 11,(S-v) +a e - 11·<S-v) for v < S 

I 2 • 

Il(v) = 1 for v = S, 

where the constants "11> 112 , a I> and a2 are specified above. Note that the pro
bability distribution function Il(v) has a mass of l-a 1 -a2 = 1111121(µ.1Jlt2) at 
the point S. The distribution has a density w(v) for v<S. We can now give a 
formula for the long-run fraction of demand not satisfied directly from stock 
on hand. Since it is assumed that the lead time of any replenishment order is 
zero, the net stock ( = onhand stock minus backlog) is the same as the inven
tory position ( = net stock plus stock on order). Thus, using Markov chain 
theory, it holds true with probability 1 that 

the long-run fraction of demand not satisfied directly from stock on hand 
l s oo oo 

= -{Rµl(O)+ jw(v)dv J (x -v)fR(x')dx + (l-a1 -a2) J (x -S)/R(x')dx}. 
Rp. o v s 

To avoid technicalities, let us next assume that the parameters of the C 2 den
sity of the review time demand satisfy p.1 =FJltl as will be usually the case. Then, 
using the short-hand notation a(S) for the long-run fraction of demand not 
satisfied directly from stock on hand under the (R,S) policy, we find the 
analytical expression 

1 2 s 2 s 
a(S) = Rp. {Rp.;~1a;e - 11, +(l-a 1 -a2);~/P;lp.;)e -,., 

2 2 s s + ~ ~p;a/11j(e -,., -e 111 )1{µ.;("lj-p.;))}, 
i=lj=I 

where p 1 = p and P2 = 1-p. For any specified service level a, Newton
Raphson or bisection can be used to find the order-up-to-level S = Sa for 
which a(S) = 1-a. 

For the case of Coxian-2 distributed review time demand, we have a tract
able method for the computation of the order-up-to-level achieving a 
prespecifi.ed service level. What to do for the case of a generally distributed 
review-time demand? To answer this question, we distinguish between two 
cases with respect to the squared coefficient of variation, c~, of the review-time 
demand. 

(a) cl ;;i.~. Then we suggest to fit a Coxian-2 density to the review time 
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demand f using a three-moment fit whenever possible or using otherwise a 
two-moment fit. This approximation step is justified by the empirical finding 
that the service level of an order-up-to-level policy is rather insensitive to more 
than the first two moments of the review time demand f provided that cl is 
not too large, the review-time demand density has a 'reasonable' shape (e.g. a 
unimodal density) and RµI Q is not almost 1. 

(b) Cl <Y.z. Then we suggest to use the following approximation procedure. 
For a prespecified service level a, compute the order-up-to-levels Sa for the 
case of an exponentially distributed review-time demand and for the case of an 
Erlang-2 distributed review-time demand, where in both cases the mean of the 
review-time demand is equal to the mean Pf = Rµ of the original distribution. 
This gives the respective order-up-to-levels S 0 (l) and S 0 (1/z). Using the linear 
interpolation formula 

f =Jo X(x -x1)/(xo-x1)+ /1 X(x -xo)l(x1 -xo), 

the order-up-to-level Sa for the actual review-time demand distribution is next 
approximated by 

Sa ~ 2(1-cl)S0 (1/z)+2(cl -Yz)S0 (l), 

where the extrapolation is with respect to the squared coefficient of variation, 
Cl, of the review-time demand. It is an empirical finding that the linear inter
polation approach cannot be applied directly to the service level of a given 
policy, but works satisfactorily for the critical points Sa provided that Cl is not 
too small (say, Cl ~YJ). This interpolation approach using 'percentiles' rather 
than 'probabilities' is generally useful, cf. Tijms [4]. 

Numerical illustration 
Let us assume that the demand per period has a gamma distribution whose 
meanµ. and squared coefficient of variation c2 satisfy 

µ = 50, c2 e{l/2,1,l.5,2,3,4}. 

Further, take the length of the review interval equal to 

R = 2. 

The maximal order size Q and the service level a are varied as Q = 125, 200 
and a = 0.95, 0.99. The mean and the squared coefficient of variation of the 
review-time demand are given by Pf = 2µ and Cl = c2 /2. In the table we give 
for the various parameter combinations the approximate order-up-to-level Sa 
which has been calculated by the procedure sketched above. For the cases 
with Cl ~l/z a Coxian-2 density is fitted to the review-time demand by match
ing the first three moments. Also, we give in the table the actual service level 
of the Sa policy under the situation of gamma distributed demand. The actual 
service level and its 95% confidence interval are determined by computer simu
lation. The numerical results confirm that the approximative approach per
forms quite well, provided that Cl is not too small. 
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TABLE 2.1. Numerical results. 

c~ So.9s 
Q=l25 

act.service So.99 act.service 
114 234 .944( + .002) 342 .988( + .002) 
112 425 .952( + .002) 642 .990( + .002) 
314 615 .950( + .005) 941 .991(+.002) 

1 807 .952( + .005) 1240 .989( + .003) 
1.5 1194 .950( + .007) 1842 .990(+.005) 
2 1583 .950( + .009) 2444 .989( + .004) 

Q=200 
c~ So.9s act.service So.99 act.service 
114 153 .940(+.001) 209 .986( + .001) 
112 227 .950(+.001) 333 .991(+.001) 
3/4 300 .950( + .002) 455 .990(+.001) 

1 376 .948( + .002) 576 .990(+.001) 
1.5 534 .950( + .002) 828 .989(+.001) 
2 695 .950( + .003) 1081 .991(+.001) 

3. OVERFLOW PROBABILITIES IN BUFFERS WITH SERVICE INTERRUPTIONS 

3.1. Model 
Buff er overfiow in communication and production systems is an important 
problem, particularly when those systems may be subject to random break
downs. This section shows how simple probabilistic tools can be used to 
dimension the buffer size so that a very small overfiow probability is achieved. 

Let us consider a communication channel at which batches of packets arrive 
according to a Poisson process with rate >.. The batch size has a general 
discrete distribution 

P(batch size is j) = pj for j = 1,2, ... , 

where P = l: j Pj denotes the average batch size. The packets are temporarily 
stored in a finite buffer to await transmission. Overfiow occurs for those pack
ets from an arriving batch which are in excess of the remaining buffer capacity. 
The packet transmission is synchronous, that is, one packet is taken out of the 
buffer for transmission at discrete clock times t = 1,2, ... , provided that the 
transmission channel is available. The packets have all a fixed length and the 
transmission time of each packet is one time slot. The channel is subject to 
random service interruptions. The on-times of the channel are assumed to have 
a geometric distribution 

P(on-time is j) = (1-p)pj-I for j = 1,2, ... , 

while the off-time of the channel have a general discrete distribution 
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P(off-time is j) = qi for j = l, ... ,M 

for some finite M;;.1. The on-times and off-times form a sequence of indepen
dent random variables. In other words, the process of on- and off-times is 
modeled as an alternating renewal process in which the breakdowns occur 
according to a Bernoulli process. A special case of this model is the simple 
model of random independent interruptions, where the channel fails in each 
time slot with a same probability. This simplest model with service interrup
tions was first studied in Heines [21 and was generalized in Tijms and Van 
Ommeren (5) and Woodside and Ho (7). The analysis in these referencess will 
be refined and extended in this section. The goal is to find a computationally 
tractable method for the calculation of the buffer size so that the over.6.ow pro
bability of an arbitrary packet is less than a prespecified value a. In typical 
applications a is very small (e.g. a = 10-9). To achieve a very small over.6.ow 
probability, it must be assumed that the offered load to the channel is not 
excessively high. The precise assumption will be given in subsection 3.3. 

3.2 . .Analysis via an M"IG/1/K queueing model 
Assume for the moment that the buffer size is fixed and that the buffer has 
room for K packets including any packet in service. In this subsection it will 
be shown how the communication system with random service interruptions 
can be analyzed via an M"IG/1/K queueing model with exceptional first ser
vices. This translation step will be crucial in our analysis. In the M" I G I 11 K 
queueing model batches of customers arrive according to a Poisson process 
with rate A. The batch-size has the discrete distribution {/Ji}. There is a single 
server and a finite waiting room with capacity K including any customer in 
service. An arriving batch whose size exceeds the remaining capacity in the 
buffer is partially lost due to over.6.ow. The service times of the customers are 
independent random variables. The service of each customer is distributed as 
the generic random variable S, except for the first customer in each batch that 
finds upon arrival the system empty. The service times of those first customers 
are distributed as the generic random variable Sue (exceptional first service). 
In addition, there is a warming-up time W before the server can start actual 
service after an idle period. Hence we are in fact considering a variant of the 
standard M" I G I 11 K queueing model. In the next subsection we show how to 
compute the over.6.ow probability for the versatile model with exceptional first 
services. 

In the remaining part of this section we will translate the communication 
model with service interruptions to the M" I G I 1 I K queueing model with 
exceptional first services. To do so, we need to specify the 'normal' service S, 
the 'exceptional' service Sue, and the warming-up time W. The arrival rate A, 
the batch-size distribution {/Ji}, and the buffer capacity K are identical in both 
models. The translation step is easily understood by the following definition of 
the service time of a packet in the communication model: 

the service time of a packet = the number of time slots from the 
discrete clock time at which the packet comes in for its turn for 
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transmission until the moment at which the transmission of the 
packet is successfully completed. 

Further, we define for the communication model, 

the warming-up time = the time elapsed between the arrival of a 
batch finding the system empty and the beginning of the next time 
slot. 

Let us first specify the probability distribution of the warming-up time W. This 
requires the calculation of the conditional probability P{T1 >t I T1 <e;;;l}, where 
T 1 is the first arrival epoch in a Poisson arrival process. Thus we find 

e-A(l-x>-e->. 
P{W<e;;;x} = >. for O<e;;;x<e;;;l. 

1-e-

We have to distinguish between two types of services. First, the service time of 
a packet whose turn comes directly after the service completion of a preceding 
packet. Second, the service time of a packet which is served as first one from a 
batch finding upon arrival no other packets in the system. For the first type of 
service, the channel was necessarily on during the actual execution of the 
preceding service. Thus, at the beginning of the new time slot either the on
time continues for a next slot with probability p or an off-time starts with pro
bability 1-p. Since the probability distribution of the off-time is given by 
{ qj, 1 <e;;;j <e;;;M), it follows that the 'normal' service time S in the communication 
model has the probability distribution 

{
p fork =1, 

P{S=k} = (1-p)qk-I for 2:e;;;k<e;;;M+l. 

For the second type of service, the situation is more complicated. Then we 
need the distribution of the state of the system at the moment of the first 
arrival since the end of the last time slot at which a transmission was com
pleted and the system was left empty. Let To be the time slot just following the 
latter time slot. At the beginning of time slot To the system is either in state 
(0,0) with probability p or in state (k, 0) with probability (1-p)qk for 
k = l, ... ,M. Here state (0,0) means that the channel is on and no arrival 
occurred in the preceding slot, whereas state (k, 0) means that the channel is 
off with a remaining off-time of k time slots while no arrival occurred in the 
preceding slot. In addition, the system is said to be in state (0, 1) if the channel 
is on and one or more arrivals occurred in the preceding time slot, and the sys
tem is said to be in state (k, 1) if the channel is off with a remaining off-time 
of k slots while one or more arrivals occurred in the preceding slot. Some 
reflection shows that a Markov chain can be used to describe the behavior of 
the system from the beginning of the particular time slot To until the beginning 
of the time slot T1 at which one of the (absorbing) kstates (0,1) or (k, 1) for 
k = l, ... ,M -1 is reached for the first time. At the beginning of time slot T1 
the system is no longer empty and an 'exceptional' service Sac of a new packet 
is ready to start. Thus, 
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P{Sexc=k} = 'i>k-1 fork = l, ... ,M, 

where the (absorption) probability q,j for j = O, ... ,M -1 is defined as 

'i>j = the probability that the system is in state (j, 1) 
at the beginning of time slot T 1• 
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To calculate the f/>/s we define for j = O, ... ,M -1 the absorption probabilities 

Is. (j, I) = the probability that the Markov chain will be 
absorbed in state (j, 1) starting from states, 

where s eS0 = {(0,0},(l,O}, ... ,(M, O)}. Then 
M 

'i>j = Pfco,o)(j, 1) + (1-p) ~ q;fc;,o)(j, 1) for j = 0, 1, ... ,M -1. 
i=l 

Using standard arguments from Markov chain theory, it is easily verified that 
for any fixed j the absorption probabilities Is. (j, I) for s eS 0 can be calculated 
as the unique solution to a system of M + 1 linear equations. For j = 0, the 
linear equations are 

M 

fco.oxo.1) = (1-e-'-)p +e-'-pfco,oxo,1) +e-'-(1-p) ~ qJco,;xo,1)> 
i =I 

fc;,oxo,1) = (l-e-'-)U;-1 +e-"fc;-1,oxo.1) for i = l, ... ,M, 

where Um is an abbreviation for 

_ {l for m =O, 
Um - 0 for m*°. 

For any fixed j = 1, ... ,M -1, the linear equations are 

fco.o)(j, I) = (l-e-'-)(I-p)qj+e-'-pfco,o)(j, I) 

M 

+ e -A(l -p) ~ qJc;, O)(j, I)> 
i=I 

fc;,o)(j, I) = (l-e-'-)U;-j-1 +e-'-fc;-1,o)(j, I) for i = l, ... ,M. 

For any fixed j, the corresponding system of M + l linear equations is very 
easy to solve. Each system is upper-diagonal and can be simply solved by 
backwards substitution. The details are easily worked out. 

REMARK 3.1. Though the calculations of the absorption probabilities for the 
general case are not difficult, they become extremely simple for the geometric 
case. If the off-times have the geometric distribution 

P{off-time = j} = (1-r)rj-I for j = 1,2, ... , 

we can restrict to a Markov chain with four states (i,j) with i,j = 0, I. The 
component i = 0 (1) means that the channel is on (off), and the component 
j = 0 (I) means that no (one or more) arrivals occurred in the preceding time 
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slot. The states (0,1) and (1,1) are absorbing. Now we only have to solve two 
systems of two linear equations each. The absorption probabilities /co.oxo,1> and 
/(l,OXO. I) are the unique solution to 

/co.oxo.1> = (1-e-A}p +e-Ap/co.oxo.1) +e-A(l-p)/(l,oxo,1)> 

/(l,OXO,I) = (1-e-A)(l -r)+e-Aef(l,OXO,I) +e-A(l -r}/co.oxo.1)

Similarly, the other two absorption probabilities follow from 

/co,ox1.1) = (1-e->.)(1-p)+e->.p/co,ox1.1) +e-A(l-p)/c1.ox1,1)> 

/(l,ox1,1) = (1-e->.)r +e->.efc1.ox1.1) +e->.(1-r)/co.ox1,1)· 

The two systems of two linear equations each can be explicitly solved. The 
probability distribution of the 'exceptional' service time Sue is now calculated 
as 

P{Suc=l} = P/co.oxo.1)+(l-p)/c1.oxo.1)> 

P{Suc=j} = [p/co.ox1.1)+(l-p)/c1.ox1,1)Kl-r)rl-2 forj';;;.2. 

3.3. The overflow probability 
The overflow probability will be calculated using the method of regenerative 
processes. This intuitive and powerful probabilistic approach got its popularity 
in the OR community after the appearance of the book of Ross (3) in 1970. 
However, in the sixties, De Leve made already extensive use of the same 
approach under the name of 'herhalingsprogrammering'. 

Numerous stochastic processes arising, for example, in queueing and inven
tory systems have the property that they regenerate themselves at certain 
points in time. Then the behavior of the process after each regeneration epoch 
is a probabilistic replica of the behavior starting at time zero and is indepen
dent of the behavior before the regeneration epoch. It will be intuitively clear 
that the long-run behavior of a regenerative stochastic process can be studied 
in terms of its behavior during a single regeneration cycle. 

For the communication model, let us say that a cycle starts each time an 
arriving batch finds the system idle. For the model with a buffer capacity of K 
packets, define 

N (K) = the number of packets served during one cycle. 

In particular, N ( oo) denotes the number of packets served during one cycle for 
the model with K = oo (i.e., the infinite capacity model). To ensure that 
N ( oo) has a proper probability distribution, we need the assumption 

p = >./JE(S}<l, 

where E(S) = 1 +(1-p)l':kkqk denotes the mean of a 'normal' service. 
Without this assumption we cannot guarantee a very small overflow probabil
ity. Also, for the colilmunication model with capacity K, define 

w1o.u(K) = the long-run fraction of packets that overflow. 
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We now derive the following lemmas. 

LEMMA 3.1. For any K;>l, 

fj-p+A/l{E(W)+E(Suc)}-(I-p)EN(K) 
'IT1o.u(K) = fj-p+'Afj{E(W)+E(Suc}+pEN(K) . 

PROOF. The proof is based on simple probabilistic arguments. First, 

the long-run average input of accepted packets 
- the long-run average output of accepted packets. 

Since the average arrival rate of packets is A/l, we have 
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the long-run average input of accepted packets = 'A/j(l-'1T1tm(K)). 

By the theory of regenerative processes, 

the long-run average output of accepted packets 

_ E[number of packets served during one cycle]. 
- E[length of one cycle] 

The numerator of this ratio is by definition equal to EN(K). Further, 

1 
E[length of one cycle] = E(W)+ E(Suc)+ {EN(K)- I }E(S)+ i°"' 

using Wald's equation to justify the third term in the right-hand side of this 
equation. Combining the above relations, the desired result follows. D 

LEMMA 3.2. For any K;>l, 
K-1 

EN(K) = ~ qi(oo)XEN(oo), 
j=O 

where for the infinite capacity model qi( oo) is defined as the long-run fraction of 
service completion epochs at which j packets are left behind in the system. 

PROOF. The assumption of a Poissonian arrival process of batches is crucial in 
the proof. Using the memoryless property of the Poisson process and the fact 
that the packets are served one at a time, it can be seen that for any fixed 
O<.j <.K - 1 the probability distribution of the number of service completion 
epochs at which j packets are left behind in one cycle for the model with finite 
capacity K is identical to the corresponding probability distribution for the 
infinite capacity model. In the latter model, the ratio of the expected number 
of service completions at which j packets are left behind in one cycle and the 
expected number of service completions in one cycle is equal to qi( oo ), by the 
theory of regenerative processes. Hence EN (K)I EN ( oo) equals ~f ; 01 qj( oo ), 
yielding the desired result. D 

As a consequence of the Lemmas 3.1 and 3.2, we have expressed the loss 
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probability 'IT1o.u(K) for the finite capacity model in terms of quantities for the 
infinite capacity model. The latter model is well~studied. We first note: 

LEMMA 3.3. 

EN(oo) = p-p+A/l{E(W)+E(SllJU:)} . 
1-p 

This result is also an immediate corollary of Lemma 3.1 and the fact that 
'IT1o.u( oo) = 0. The probability distribution { q1( oo)} is the equilibrium distribu
tion of an embedded Markov chain {Xn}, where 

Xn = the number of packets left behind at the n-th service 
completion epoch in the infinite capacity model. 

Using standard arguments from Markov chain theory, we have 

where 

Note that 

n+l n+l 
qn(oo) = l: qk(oo)an+I-k+qo(oo) l: flka:+l-k• n = 0,1, ... , 

k=l k=l 

ak(ai) = the probability that a total of k packets arrive during the 
normal service time S (during the sum of the warming-up time W 
and the exceptional service time SllJU:). 

1 
qo(oo) = EN(oo)' 

where an explicit expression for EN ( oo) is given above. Next we apply the 
basic technique of generating functions. It is a matter of routine algebra to ver
ify that 

~ qn(oo)zn = qo(oo) {A(z)-,8(z)A*(z)}, 
n=O A(z)-z 

where ,8(z ),A (z) and A* (z) are the generating functions of the probability dis
tributions {/l1},{a1} and {aj}. These generating functions can be calculated 
from 

00 00 

/l(z) = l:P1zl, A(z) = l:eAt{Jl(z)-I}p{s =t}, 
j=l t=l 

A*(z) = (eNll:z)_l)!_~A X ~eAt{Jl(z)-I}p{SflJU!=t}. 
,8(zX1 -e ) 1=1 

Note that A *(z) is the product of the generating functions of the probability 
distributions of the number of arrivals during W and the number of arrivals 
during SllJU:. Using the specific structure of the distributions of S and Sexc• the 
expressions for A (z) and A* (z) can be further simplified. 

A practically useful asymptotic expansion for the qj( oo )'s can be obtained 
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from the generating function under the following assumption: 

AssUMPTION. The convergence radius R of the power series fj(z) = "'2f= 1Pjzj is 
larger than 1. 

Loosely put, this assumption requires that the batch-size distribution has no 
extremely long tail. For example, the assumption is satisfied with R = oo 
when {Pj} has finite support. The generating functions above were originally 
defined only for I z I E;; I. However, under the assumption, they can be analyti
cally extended beyond the unit circle. From complex function analysis it is 
known that the smallest zero of A (z )- z in the domain beyond the unit circle 
determines the asymptotic expansion of qj( oo) for j large. A minor 
modification of the proof of Theorem 1 in Tijms and Van Ommeren [5] yields 
the important result: 

THEOREM 3.4. For large K, 

oo [/j(z 0)A*(zo)-A(zo)] -K 

j~//oo),...,qo(oo) {A'(z0)-l}(zo-l) zo ' 

where z 0 e(l,R) is the unique number satisfying 

~ eN{P<z.)-I} P{S =t} = zo. 
I =l 

We are now in a position to state our main result. Therefore, we first note that 
by the Lemmas 3.1-3.3, 

K-l 

(1-p)[l- ~ qj(oo)] 
·=o 

'IT1oss(K) = ----K~--l ---
1-p+ p ~ qj(oo) 

j=O 

Hence the following final result is obtained from Theorem 3.4. 

THEOREM 3.5. For a small enough, the minimal buffer size K satisfying 
w1oss(K)E;;a can be approximately calculated from 

K(a)l':::J-1-ln{ y(l-p+pa) }, 
/n(zo) a 

where the constant y is given by 

(l-p)[p(zo)A *(zo)-A (zo)] 

y = [fj-p+l\/j{E(W)+E(Sexc)}UA'(zo)-l](zo-1). 
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Christofides' lower bound for the Traveling Salesman Problem is based on solv
ing repeatedly a Linear Assignment Problem. In each step of the iterative 
method the subtours of the Linear Assignment solution are contracted to 
nodes. We consider the idea of partial contraction that contracts subtours one 
at a time. Together with already known improvements such as omitting cities 
and use of special dual solutions, it appears that for Euclidean problems of size 
100 the bound can be substantially improved. 
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1. INTRODUCTION 

Christofides (1972) introduced for the Traveling Salesman Problem (TSP) a 
lower bound that is computed by repeatedly solving the Linear Assignment 
Problem (LAP). The algorithm can be described in six steps. 

Step 1 Initialization: 

Step 2 

Step 3 

Step 4 

C becomes the start matrix with distances dij, i,j = 1,2, ... ,n, 
with n the number of cities; 
L:=O. 
Compute a lower bound: 
Solve the assignment problem (LAP), with value Z(C); 
L := L + Z(C); 
if the solution is a tour, then go to Step 6. 
Reduction: 
Reduce the distance matrix with the dual solution 
(u,v) cij := cij - U; - v1. 
Contraction: 
Replace the subtours by nodes with the distance between two 
subtours given by the minimum of the distances between the 
nodes of these subtours. 



Christofides' lower bound for the traveling salesman problem 143 

Step 5 

Step 6 

Compression: 
Check whether the new matrix (the relative cost matrix) obeys 
the triangle inequality; 
if not, replace the matrix by the shortest path matrix; 
go to Step 2. 
End: 
The TSP has a lower bound with value L. 

The correctness of the bound follows from the observation that on the con
tracted problem a 'semi' TSP has to be solved: the new 'cities' have to be 
visited at least once. When such a problem obeys the triangle inequality, it is 
equivalent to a standard TSP. Step 5 takes care of this property. 

For this lower bound a number of improvements are known. Kindervater, 
Volgenant, De Leve and Van Gijlswijk (1985) recommend to compute in the 
Reduction step a dual solution that is a weighted average of 2n dual solutions 
in order to suppress values for the duals that would give rise to small distances 
in the contracted matrix. This improvement is exploited in the computational 
results in the following sections. 

Volgenant and Jonker (1985) suggested partial contraction in the Contrac
tion step: instead of replacing all subtours of the LAP-solution, contraction 
can be done for an arbitrary choice from the set of subtours, e.g., one subtour. 
The correctness is based on the correlation between the partial contraction of a 
subtour and a constraint of the original TSP: 

~iES ~JElS Xij ;;;,_ l, 

with S the set of cities in the considered subtour possibly after one or more 
previous contractions. 

The compression step can be done simpler after a partial contraction. 
Assuming one subtour has been contracted with the largest index, say k, the 
related partial compression can be given as 

cij = min { cij, min { C;k + ckj I i,j < k} }. 

The direct purpose of partial contraction is to decrease the number of sub
tours. By the presence of many subtours the lower bound can be poor. The 
question is now how many and which subtours to contract partially. It may be 
best to contract only 2-subtours, as then the number of subtours is reduced 
best. 

Christofides' algorithm in its original version asks O(n 3) computations; 
applying partial steps does not change this order. The previous and the present 
cost matrix differ only a little, so that a simple adjustment of O(n 2) produces 
a new optimal LAP solution. Also partial contraction of one subtour and the 
related compression can be done in the same order, just as the solution of the 
LAP in step 2 of the next iteration. All the computational results are given 
without computer times, as we did not try to implement efficiently the con
sidered approaches. 
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We have restricted the computational results to the Euclidean type of prob
lem, as this type is known to be the most difficult one. The (ten) test problems 
are of size 100 with the coordinates drawn uniformly on the interval [I, 1000]. 
The presented approaches excluding the geometric based ones, however, can 
also be applied to other types, such as random table problems. Some of the 
approaches in the last sections are only valid for symmetric problems. 

One may argue that an assignment lower bound for the TSP is not the best 
there is. For many variants of the TSP, however, the bound is very suited, as 
shown by Volgenant and Jonker (1987) for the generalized TSP, defined as the 
problem in which the salesperson can visit every node at most once and some 
penalty cost is incurred for every unvisited node. 

In the following sections we will first consider partial contraction of the 
smallest subtour, then a less successful variation. In section 4 we will consider 
partial contraction in a later iteration of Christofides' algorithm, and finally we 
will treat the comparison and combination with omitting cities. 

2. PARTIAL CONTRACTION OF THE SMALLEST SUBTOUR 

We suggest first a simple rule for partial contraction: choose the subtour with 
the smallest length. This choice is intuitively appealing, as the contraction of 
such a subtour can involve only small reductions of distances in the compres
sion step. 

We have applied this rule to the ten test problems, both for contraction of 
the subtour with the smallest, as well as for contraction of the subtour with the 
largest length, in order to show the different influence on the value of the 
lower bound. 

After the modified first iteration, the algorithm has been applied without 
modification, i.e., in the next iterations the distance matrix has been com
pletely contracted and completely compressed. The computational results are 

· given in Table I. 
Clearly, one time partial contraction of the subtour with minimal length 

gives nearly always an improvement. Contraction of the largest subtour how
ever, yields on the average a worse lower bound. The question now remains 
how often partial contraction can be repeated with an increasing lower bound. 

After partial contraction (and especially after complete contraction) it is a 
disadvantage that the original distance matrix has been replaced with a relative 
cost matrix, as this disturbs in general the triangle inequality and makes 
compression necessary. After partial contraction the new matrix however is not 
very different from the original one. So we can do one or more times partial 
contraction without damaging seriously the quality of the lower bound. 

Encouraged by the improvement of the bound by one time partial contrac
tion we experimented with two times contraction of the smallest subtour. On 
the average the results are better; see Table 2 (in order to comfort the com
parison some columns of Table 1 have been repeated). It seems worth the 
trouble to apply partial contraction a few times before using complete contrac
tion. As a heuristic rule partial contraction has been applied until k + 1 times 



Christofides' lower bound for the traveling salesman problem 145 

Number Christofides Contraction on subtour Optimal 
problem lower bound largest smallest value 

1 95.0 93.9 95.l 7935 
2 92.2 91.9 92.4* 7893 
3 92.8 93.0 93.7* 8006 
4 93.1 93.1 93.3* 7820 
5 93.4 93.5 93.6* 7469 
6 93.9* 93.8 93.7 7217 
7 95.2 95.1 95.4* 7980 
8 94.9 94.8 95.7* 7436 
9 92.3 92.5 92.6* 7686 
10 91.9 91.7 91.9* 7372 

Average 93.5 93.3 93.7* 7681 

TABLE 1. 

Number 
problem 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Average 

TABLE 2. 

Relative lower bounds related to the optimal values ( = 100%) 
for partial contraction on the largest and the smallest subtour 
(best values marked with a star). 

Christofides Partial contraction of the smallest subtour 
lower bound 1 time 2 times k times k 

95.0 95.1 95.4 95.9 5 
92.2 92.4 92.5 93.o· 3 
92.8 93.7 94.8 95.o· 3 
93.l 93.3 93.4* 93.4* 2 
93.4 93.6* 93.3 93.6* 1 
93.9* 93.7 93.6 93.9* 0 
95.2 95.4 95.6* 95.6* 2 
94.9 95.7* 95.6 95.7* 1 
92.3 92.6 92.7* 92.7* 2 
91.9* 91.9 91.9 91.9* 0 

93.5 93.7 93.9 94.1 * 1.9 

Comparison of one and several times partial contraction of 
the smallest subtour. The best values have been marked with a 
star. 

gives no improvement over k times partial contraction, i.e., the value of L in 
step 2 no longer increases. The results have been reported in Table 2 together 
with the number of times that partial contraction has been applied. The results 
indicate that contraction of the smallest subtour several times is not always the 
best. 
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It is also interesting to see the results of partial contraction of two times the 
largest subtour. This repeated contraction however gives worse results than one 
time contraction of the largest subtour. It is clearly useless to continue with 
partial contraction of the largest subtour. 

After evaluation of the lengths of the contracted subtours, the conclusion 
must be that merely the length does not explain tile quality of the obtained 
lower bounds. Intuitively one can say that if a small subtour is in the center of 
the set of cities (nodes) in a Euclidean problem, the contraction of this subtour 
can exercise a larger negative influence on the lower bound than the contrac
tion of a larger subtour lying at the edge of the set. 

3. PARTIAL CONTRACTION OF THE SUBTOUR WITH THE LARGEST D-VALUE 

Volgenant and Jonker (1985) suggested to contract only those 2-subtours S, 
say with S = {1,2}, with non negative value of 

D = min { cil + c21 - c;1li,j = 3, ... ,n; i=/=j}. 

* 

* 
D= a+ {1- y. 

2 * 
j 

* 
FIGURE 1. Illustration of the D-value for a subtour S= {1,2}. 

In this way compression becomes superfluous and cannot cause loss of quality 
of the lower bound. 

A nonnegative D-value is a strong condition (see Figure 1): for large prob
lems (e.g. with 100 cities, as in the test problems), there exist often nodes i and 
j for which the quantity between accolades is negative. We think that the 
smaller the value of n, say after a number of iterations of Christofides' algo
rithm, the larger the chance to find a nonnegative D-value. 

An alternative choice for the D-value is the sum of the decrements in the 
compression step 

~ { Ci) + C21 - cijlc; I + C21 - cij < O}. 
i=FJ 

We did not (yet) consider this alternative. 
The comparison of partial contraction of the largest and the smallest sub

tour in Table 1 is in favor of the latter. This may be caused by the value of D, 
on the average - 8 for the smallest and - 81 for the largest sub tour. Now the 
question is whether the D-value gives a usable condition for the contraction of 
a subtour. 

In Table 3 one time partial contraction of the smallest subtour is compared 
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with partial contraction of the subtour with the largest D-value. We see, that 
the contraction of the 2-subtour with the largest D-value is not better than par
tial contraction of the smallest subtour. Apparently the D-value alone is not a 
good measure for the successful contraction of a subtour. 

The length of the subtour has also to be considered. The average length is 18 
for the smallest subtour and 122 for the subtours with the largest D-value. The 
average D-value of the smallest respectively largest subtours is - 8 and 55. 
One may think that partial contraction is successful on small subtours with 
large, nonnegative D-values. Examples as problem 4 in Table 3 show however, 
that the contraction of such a subtour can also yield a bound worse that the 
standard bound of Christofides. In this problem the largest D-value is 28 for a 
subtour with length 42. 

It remains difficult to under stand why it is better to contract partially the 
smallest sub tour than the sub tour with the largest D-value. We did not find a 
condition related to the D-value for the successful partial contraction of a sub
tour. 

Number 
problem 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Average 

TABLE 3. 

Christofides Partial contraction Partial contraction 
lower bound smallest subtour subtour largest D-value 

95.0 95.l 94.7 
92.2 92.4 92.7* 
92.8 93_7• 93.1 
93.1 93.3° 92.6 
93.4 93.6° 93.2 
93.9* 93.7 93.7 
95.2 95.4* 95.3 
94.9 95.7* 94.9 
92.3 92.6* 92.3 
91.9 91.9 92.3· 

93.5 93.7° 93.5 

Comparison of one time partial contraction smallest subtour 
with partial contraction subtour with largest D-value. The best 
values have been marked with a star. 

4. PARTIAL CONTRACTION IN A LATER ITERATION 

During the subsequent iterations of Christofides' algorithm the size of the 
problem decreases, with an increasing chance on nonnegative D-values, so it 
may be useful to do partial contraction after a number of standard iterations 
in Christofides' algorithm. 

To assess this idea, partial contraction of the smallest subtour has been done 
first, followed by respectively two and three times complete contraction and 
then partial contraction of the subtour with the largest D-value. The modified 
approach is completed by the standard steps of the algorithm of Christofides. 
After the second partial contraction the problem is much smaller. For the test 
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problems the size of 100 is reduced on the average to 19 after the third and to 
8 after the fourth iteration. 

It can also be useful to contract the smallest subtour in iteration 4 and 5 
instead of the subtour with the largest D-value as this approach was also suc
cessful in the first iteration (see Table 3). The results can be best compared 
with partial contraction of the smallest subtour in the first two iterations, 
because then also two subtours are contracted. The computational results are 
in Table 4 together with some columns repeated from Table 2. 

To illustrate this, the second column of Table 4 gives the result of two times 
partial contraction of the smallest subtour in the first two iterations; the third 
and fourth column give the results of contraction of the smallest subtour in the 
first iteration and contraction of the subtour with the largest D-value in itera
tion 4 and 5. The last two columns give the results of partially contracting two 
times the smallest subtour, in the first iteration and thereafter in iteration 4 or 
5. 

It is clear that partial contraction in a later iteration is less favorable than at 
the start. Furthermore it is clear that we can contract better the subtour with 
the smallest length than the one with the largest D-value. So the length of the 
subtour appears to be a better measure for the success of partial contraction 
than the D-value. 

Number Smallest subtour D-value in D-value in Smallest subtour in 
problem in iteration 2 iteration 4 iteration 5 iteration 4 iteration 5 

I 95.4 95.2 95.1 95.3 95.2 

2 92.5* 92.1 92.2 92.2 92.2 

3 94.8° 93.7 93.7 93.8 93.6 

4 93.4* 93.3 93.3 93.3 93.3 

5 93.3 93.2 93.6* 93.6* 93.6° 

6 93.6 93.4 93.7 94.o· 93.7 
7 95.6* 95.4 95.3 95.4 95.3 

8 95.6 95.6 95.7* 95.7* 95.7* 

9 92.7* 92.6 92.6 92.7* 92.6 

10 91.9 92.6* 91.7 91.9 91.9 

Average 93.9* 93.7 93.7 93.8 93.7 

TABLE 4. Results for partial contraction of the smallest subtour in itera-
tion I followed by several contraction strategies: smallest sub-
tour in iteration 2, the subtour with the largest D-value in 
iterations 4 respectively 5, and smallest subtour in these itera-
tions (best values marked with a star). 
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5. A COMPARISON WITH OMITIING CITIES 

Partial contraction resembles the principle of omitting cities, as exploited by 
Volgenant, Van der Sluis and Jonker (1987). In some cases, however, partial 
contraction gives better results. The example (see Figure 2) is the same as gives 
by Volgenant et al. (1987) to illustrate that omitting cities can improve the 
LAP lower bound. 

2 1 12 2 

5 5 5 

3 4 3 
4 

FIGURE 2. Omitting city 4 increases the LAP lower bound from 20 to 30. 

Partial contraction does something else. The left part of Figure 2 is given in 
a distance matrix in the left part of Table 5. In the example city 4 was omitted 
and the subtour S= {3,4} contracted. This subtour has length 10. After reduc
tion we obtain the distance matrix in the middle part of Table 5. The dual 
variables have the values u 3 = u4 = v3 = v4 = 2.5. After compression we obtain 
the distance matrix in the right part of Table 5. The solution now has the 
(optimal) value 10 + 5 + 9.5 + 9.5 = 34. Although for other choices of the 
dual values a less good result can be obtained it is useful to compare both 
methods for larger problems. 

The principle of omitting cities has been applied within an other method, 
the Many Routes Approach, because this approach (without omitting cities) 
produced better results that the original method of Christofides. Therefore we 
outline first this approach in the next section. 

2 3 4 2 3 4 2 3 

1 * 5 12 13 1 * 5 9.5 10.5 1 * 5 9.5 
2 5 * 13 12 2 5 * 10.5 9.5 2 5 * 9.5 
3 T2 13 * 5 3 9.5 10.5 * 0 3 9.5 9.5 * 
4 13 12 5 * 4 10.5 9.5 0 * 

TABLE 5. Partial contraction of subtour (3,4) increases the LAP lower 
bound from 20 to 34, the optimal value (underlined values 
indicate the LAP solution). 
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6. THE MANY ROUTES APPROACH AND PARTIAL CONTRACTION 

The Many Routes Problem is an extension of the Two Routes Problem (2-RP), 
introduced by Jonker, De Leve, Van der Velde and Volgenant (1980). The 2-
RP is the problem to find two paths of minimal total length that connect two 
given cities, both paths starting in the first and ending in the second city. All 
other cities must lie on exactly one of these paths. The problem is equivalent 
to the TSP in case of symmetry. 

Van Leeuwen and Volgenant (1983) generalized the problem to the Many
Routes Problem in the context of Vehicle Scheduling. Stewart (1985) applied 
it to lower bounds for the Euclidean TSP. Volgenant, Van der Sluis and 
Jonker (1987) improved these bounds and combined the MRP with the algo
rithm of Christofides. How many routes are considered in this approach 
depends on the problem instance; it varies from 4 to 10 for the used test prob
lems. 

In the previous section an example has been given illustrating that in some 
cases partial contraction is better than omitting cities. Therefore partial con
traction has been applied in them-RP lower bound, instead of omitting cities. 

The smallest subtour has been contracted as this, applied on Christofides' 
method, gave better results that other rules, for example the contraction of the 
subtour with the largest D-value. Further the subtour that is closest to the edge 
has been partially contracted. The results are in Table 6 just as that for one 
and two times partial contraction of the smallest subtour in combination with 
the Many Routes Approach (MRA). 

Number MRA and MRA and partial contraction 
problem omitting l x smallest 2 x smallest 1 x edge 

1 97.l 97.7 97.8 97.9 
2 95.4 95.8 95.9* 95.7 
3 95.5 95.8* 95.7 95.8* 
4 95.4* 93.8 91.4 91.4 
5 96.7 96.6 96.8* 96.4 
6 94.9* 94. l 94.6 94.2 
7 95.7 96.0* 95.9 94.9 
8 96.6* 95.4 95.3 95.3 
9 95.5* 94.0 94.3 93.9 
10 96.0* 95.2 95.4 95.0 

Average 95.8* 95.4 95.3 95.1 

TABLE 6. Comparison of omitting cities and partial contraction of one 
and two times smallest subtour and one time subtour closest 
to the edge of the set of cities (best values marked with a 
star). 

We see that in general partial contraction looses from omitting cities, 
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although for some individual problems better results are obtained. As two 
times partial contraction of the smallest subtour gives worse bounds than one 
time, there is no reason to continue with partial contraction of the smallest 
subtour. It is disappointing that partial contraction after the many routes 
approach, of the subtour closest to the edge is worse than the other results. So 
it seems useless to repeat partial contraction of the subtour closest to the edge. 

Although partial contraction instead of omitting cities is not more profitable, 
it may be useful to combine these approaches, e.g., first omitting cities and 
then partial contraction. Just as in the first sections the smallest subtour has 
been first contracted improving the original method. Therefore partial contrac
tion has been repeated a second time, yielding nearly the same results as for 
one time. Analogously to Section 2, partial contraction of the smallest subtour 
has been repeated until k + 1 times gives no improvement over k times. The 
results are in Table 7. 

We see that problem 7 is somewhat special in the sense that one time partial 
contraction of the smallest subtour gives no improvement, while two times 
gives a better lower bound than the original method. So the smallest subtour is 
not always the best choice for the subtour to be contracted. 

Finally, after omitting cities, partial contraction has been done of the sub
tour that is closest to the edge of the set of cities. The related results are better 
than the one of the original method with omitting cities, but on the average 
not better than partial contraction of the smallest subtour. The result was on 
the average 96.1 % of the optimal solution. Again problem 7 was special as the 
smallest subtour is also closest to the edge, while contraction of this subtour 
gave no improvement. Apparently also other factors influence the results. It 
remains open to find them. 

Number 
problem 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Average 

TABLE 7. 

MRA and MRA, omitting and partial contraction smallest subtour 
omitting cities 1 time 2 times k times k 

97.1 98.0 98.l 98.1 2 
95.4 95.8 95.9 96.1* 3 
95.5 96.0* 96.0 96.o· 1 
95.4 95.7° 95.7 95.7° 1 
96.7 96.9· 96.0 96.9* 1 
94.9 95.3 95.4 95.6° 3 
95.7* 95.7 95.8° 95.7 0 
96.6* 96.6 96.5 96.6* 0 
95.5 95.9* 95.6 95.9° 1 
96.9 96.3* 96.1 96.3* 1 

95.8 96.2 96.2 96.3* 1.3 

Partial contraction of the smallest subtour after MRA and 
omitting cities compared to MRA and omitting cities (best 
values marked with a star). 
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7. CONCLUSIONS 

The application of partial contraction of the smallest subtour during 
Christofides' method gives an improvement of the lower bound, both for the 
original method as well as for the Many Routes Approach with omitting cities. 
In both cases the gap for the Euclidean test problems is decreased with about 
10% compared to the best known improved Christofides' lower bound. 

The contraction of the smallest subtour is not always the best to do. The 
contraction of other subtours, such as the one with the largest D-value or the 
subtour that is closest to the edge of the set of cities, are on the average less 
successful. For some problems better results can be obtained. 

Our aim to show empirically the usefulness of partial contraction has been 
reached. Further research may give better rules for the choice of the subtours 
to be contracted. 
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We discuss the state of the theory of two-person zero-sum stochastic games 
with the total reward criterion. 

1. INTRODUCTION 

The theory of stochastic games started with the fundamental paper of Shapley 
(1953). These games are stochastic models of competitive behaviour in a 
dynamic setting. They include as special cases the static noncooperative games 
the repeated games with complete information and the Markovian decision 
processes. Strikingly, the theory of dynamic noncooperative games and the 
theory of Markovian decision processes evolved for many years along separate 
lines. The commonly used techniques in stochastic games in the early 
approaches stem from the theory of functions and from fixed point theorems. 
Only during the 1970's the interrelationship between these two fields was fully 
recognized. From that time on many new results in the theory of stochastic 
games emerged by combining techniques from these two research areas. 

Three dutch research centres served as pioneers in this respect. First, there 
was the game theory group around Stef Tijs at the Mathematics Department of 
the Catholic University at Nijmegen, which was mainly focussed on static non
cooperative games like matrix games and bimatrix games. Second, there was 
the Department of Operations Research around Gijs de Leve at the Centre for 
Mathematics and Computer Science in Amsterdam (at that time called 
Mathematical Centre). This Centre was viewed as world-wide leading in the 
field of Markovian decision processes. In fact the cross-fertilization of static 
noncooperative games and Markovian decision processes resulting in stochastic 
games started when De Leve invited Tijs to visit the Mathematical Centre dur
ing November 1977. Especially Vrieze and Federgruen were encouraged by 
Tijs visit to apply the techniques from Markovian decision processes to game 
theory and in particular to stochastic games (Federgruen (1978a, 1978b), Tijs 
and Vrieze (1980), Vrieze and Tijs (1980), Vrieze (1981)). The third Dutch cen
tre which ought to be mentioned is the school of Jaap Wessels at the 
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Mathematics Department of Eindhoven University of Technology. Also at this 
centre a strong group on Markovian decision processes was present and espe
cially Van der Wal was active in the field of stochastic games (Van der Wal 
(1977, 1980)). 

In later years more researchers on stochastic games used the theory of Mar
kovian decision processes as their point of view. The following papers are typi
cal examples of this approach: Hordijk and Kallenberg (1981), Parthasarathy 
et al. (1984), Raghavan et al. (1985), Filar and Schultz (1986), Thuijsman and 
Vrieze (1987), Thuijsman (1989) and Van der Neut (1989). 

In this paper we will discuss the state of the theory of two-person zero-sum 
with the total reward criterion. In Section 2 the model is explained. Section 3 
deals with criteria for stochastic games. In Section 4 we present some general 
theorems on total reward stochastic games Section 5 contains three subclasses 
of games which have been solved and in Section 6 we finish with some con
cluding remarks. 

2. THE STOCHASTIC GAME MODEL 

A two-person zero-sum stochastic game can be considered to be an extension 
of a matrix game in the following way: the game is played in periods, at each 
period the game is in one of finitely many states, in each state the players have 
to choose one action among finitely many. A pair of actions in a state deter
mine a competitive payoff and a probability vector according to which the next 
state is selected. Then a states of a stochastic game can be represented by a 
matrix M(s) in the following way. Let m5 (n5 ) be the number of actions avail
able to player 1 (player 2) in state s. Then M (s) is an m5 X n5 -matrix for which 
cell (i,j) contains the payoff r(s,i,j) (to player 1 from player 2) and the proba
bility vector ps(i,j)= (p(lls,i,j), p(21s,i,j), ... ,p(zls,i,j)), where z is the number 
of states. The interpretation is that p(tls,i,j) denotes the probability that the 
system moves to state t if in state s player 1 chooses i and player 2 chooses j. 
A stochastic game is defined by a finite collection of such matrices M(l), 
M(2), ... , M(z), also called states. Usually ~1p(t!s,i,j)= 1 but we will not 
require that in this paper. 

If in each state the same player has only one action available, the stochastic 
game reduces to a Markovian decision process We will consider games with 
infinitely many periods numbered 0,1,2, .... The specification of a starting state 
determines a specific play of the game. 

A strategy for a player (notation wk for player k, k = 1,2) is a scheme which 
tells him for each period and each state at that period what action to choose as 
a function of the history up to that period. As usual in game theory, randomi
zation (or mixing) is allowed. The subclass of stationary strategies (notation 
ak for player k, k = 1,2) makes no use of the history nor of the period number. 
Then ak has the form ak= (ak(1),ak(2), ... ,ak(z)) where ak(s) is a mixed 
action in states, s = 1,2, ... ,z. 

A pair of strategies determine a stochastic process dependent of the starting 
state. S,., A 1.,. and A 2.,. will denote the stochastic variables associated with 
respectively the state at period r, the action of player 1 at period r and the 
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action of player 2 at period r, r= 0, 1,2, .... A realisation of these variables is 
denoted bys.,, a 1T, a 2T. To each pair ('1Ti. '172) and for each period r, we can 
associate the well-defined stochastic variable H T• the outcome of which are 
possible histories (s 0,a 10 ,a20 ,si. ... ,a2T) up to period r. By the Kolmogorov 
extension theorem this sequence H.,, r=O, 1,2, ... can be uniquely extended to a 
stochastic variable H 00 defined on the set of "infinite" realisations of the 
game: s 0,a 10 ,a20 ,si.···· 

Now, a pair of strategies '171 and '172 determine a stochastic stream of payoffs 
associated to a fixed starting state s0 . Such a stream can be evaluated in 
different ways, leading to different criteria, making use of H.,, r=O, 1,2, ... or 
of H 00 • 

Let Cr(s, '1Ti.'1T2) denote the outcome of a certain criterion. Then a stochastic 
game is said to have a value if sup,,., inf"', Cr(s, '1Ti.'1T2)= inf,,.1 sup"', 
Cr('1Ti.'1T2)=: Vs for all sES. '171 is called t:-optimal if Cr(s,'IT1,'1T2)~vs-t: for all 
sES and 'IT~ is called t:-optimal if Cr(s,'ITi.'ITD~vs+t: for all sES (t:;;o.O). 0-
optimal strategies are called optimal. 

The expected payoff at period r will be denoted by Es,,,.,,,.,[r(S .,,A IT•A 2T)] 
and this payoff can be computed from HT. For a pair of stationary strategies 
we have an explicit expression for this expectation, namely (in vector notation) 

£,,.1,,.,[r(S .,,A 1.,,A 2T)]= PT(ai.a2) r(ai.a2 ) 

where 

r(ai.a2 ) = (r(1,ai.a2), r(2,a1 ,a2), ... , r(z,ai.a2 )) 

with r(s,a1,a2 ) being the expected payoff at states. P(ai.a2) denotes the sto
chastic z Xz-matrix with (s,t)-th element equal to the probability that the sys
tem moves to state t when in state s the players make their choices according 
to a1(s) and a2(s). PT(a2,a2) is the r-fold multiplication of P(a1,a2) and it can 
be verified that the (s,t)-th element of PT(ai.a2 ) equals the probability that at 
period r the system is in state t if it starts in state s and the players use a1 and 
a2. 

3. CRITERIA FOR STOCHASTIC GAMES 

Three criteria are commonly applied to stochastic games. The discounted 
reward criterion, for /3E(0, 1), based on H T• r=O, 1,2, ... gives 

00 

D p(s, 'ITJ. 'IT2): = ~ fJ' Es,,.,"', [r(S .,,A 1.,,A 2T)]. (1) 
T=O 

On the other hand, based on H 00 one can define 
00 

Dp (s, 'IT1 ,'IT2): = E';;,"', [ ~ {J' r(S .,,A 1.,,A 2T)]. (2) 
T=O 

Since the rewards are uniformly bounded and {J' ~o as r~oo it easily follows 
that Dp(s,'ITi.'172)= D'f (s,'ITi.'172) for all '171 and '172. In his initializing paper of 
1953, Shapley (1953) solved the stochastic game with the discounted reward 
criterion. 
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For the average reward criterion we have to take care of limit properties of 
sequences of payoffs. Viewed from a worst case point of player 1, one can 
define 

(3) 

and 

(4) 

In general (3) and (4) do not give the same outcome. However for stationary 
strategies the outcomes are the same. Moreover in 1980 Mertens and Neyman 
(1981) showed that stochastic games with the average reward criterion have a 
value which is the same for both the criteria (3) and (4). 

A third criterion in stochastic games is the total reward criterion defined by 

. . 1 T T 

T(s,7T1>7T2): = liminf -T l ~ ~ Ern,w, [r(Sn,A 1mA 2n)J (5) 
T-.oo + T=O n =O 

and 

T 00 (s,7T1,7T2): = E'::r,w, [liminf _l_ f ± r(Sn,A 1n,A2n)J 
T-.oo T + 1 T=O n =O 

(6) 

When lirnT-.oo "J:.°{=o Esw,w, [r(S PA IPA 2T )] exists, it can be verified in (5) that 

this limit equals T(s, 7Ti.7T2). The definition of the total rewards as the liminf 
of averages of partial sums is inspired by the fact that for stationary strategies 
the limit in (5) always exists as can be found in Vrieze and Thuysman (1987) 
(cf. also the second example below). Furthermore in that paper the applica
tion of the total reward criterion is motivated as a refinement of the average 
reward criterion. Consider for instance the trivial game 

I~ 
State 1 State 2 State 3 

with average reward value (0,0,0) and total reward value (1, -1,0). Hence 
starting state 1 is more favourable for player 1, which can not be deviated 
from the average reward. Another motivating example is 
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l//JIZ 
State 1 State 2 

Average reward (0,0), while starting in state 1 (in state 2) means that player 1 
(player 2) owns 2 half of the time and half of the time he owns 0. 

Two further remarks concerning the total reward value have to be made. 
Firstly, the meaning of criterion (6) is not clear. Consider the following exam
ple: 

State 1 State 2 

For all pairs of strategies (in fact there is only one pair) we have 
T 00 (1,'1Ti.'1T2)= T 00 (2,'1Ti.'1T2)= - oo, since with probability one a realisation 
will occur for which liminfr_,00 ~J°=o r(s'T,a 1'T,a 2'T)= - oo. The "normal" out
come for this game seems to be (1, -1). Secondly, for criterion (5) not every 
game needs to have a value. Consider for instance the famous "big match" of 
Blackwell and Ferguson (1968): 

State 1 State 2 State 3 

For state 1 the average reward value equals 0. It can be verified that 
-oo= sup.,,.1 inf.,,., T(l,'1Ti.'1T2):f:inf.,,., sup.,,.1 T(l,'1Ti.'1T2)= 0 

The next example shows that the total reward value may be infinite even if 
the average reward value is 0 for all states. 
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I~ 
State 1 State 2 

This phenomenon is due to the fact that for this game player 2 has no optimal 
stationary strategy (though there are t:-optimal stationary strategies and even 
optimal Markov strategies). 

The above remarks lead to the conclusion that criterion (6) is not applicable 
to stochastic games and that criterion (5) can be examined for games for which 
properties 1 and 2 below hold: 

PROPERTY I. The value of the stochastic game equals 0 for each starting state. 

PROPERTY 2. Both players possess optimal stationary strategies. 

These two properties combined induce that both sup,,.1 inf,,.2 T(s, '11'1, '11'2) and 
inf,,.2 sup,,., T(s, '11'1> '11'2) are finite for each starting state s ( cf. Vrieze and Thuijs
man (1987)). 

4. PROPERTIES OF TOTAL REWARD STOCHASTIC GAMES 
From now on we assume Properties 1 and 2 to hold. If one player fixes a sta
tionary strategy, then the other player has a pure stationary strategy as a best 
reply with respect to the total reward criterion. Most proofs of theorems in 
total reward games make use of this fact. 

The following theorem relates total reward games to discounted games 
(Thuijsman (1989), p. 73). 

THEOREM If for a zero-sum stochastic game the total reward value Vr exists and 
if both players have total reward optimal stationary strategies, then vr= limPt1 

v /J• where v /J• PE(O, 1), equals the P-discounted reward value. 

The proof of this theorem is based on the next inequality, which holds for any 
stochastic game: liminfPt1 Dp(s,'1Ti.'11'2 ) ~ T(s,'1Ti.'11'2 ). The theorem can be 
weakened in the sense that only the existence of t:-optimal stationary strategies 
are needed. 

The following theorem gives a sufficient (but not necessary) condition for the 
value of the total reward game to exist. 

THEOREM If for a stochastic game both players possess uniform /3-discounted 
optimal strategies ai and ai (i.e. P-discounted optimal for all /3 close to 1), then 
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the total reward value exists and ai and a; are total reward optimal. 

The proof of this theorem is based on the fact that uniform, discount optimal 
strategies are also average optimal. 

In Thuijsman and Vrieze (1987) an example is elaborated showing that 
analogous to average reward games, it may happen that history dependent 
strategies are needed to assure £-optimality. The game 

State 1 State 2 

State 3 State 4 

has similar properties as the big match mentioned above, and it turns out that 
in state 1 player 1 essentially needs history dependent strategies to assure him
self the total reward value 0 of that starting state. 

This similarity of complexity of total reward games and average reward 
games is also reflected by the fact that a total reward game can be reformu
lated as an average reward game by enlarging the state space (becoming 
infinite) in a suitable way and redefining the payoffs and transitions (cf. 
Thuijsman and Vrieze (1987) or Thuijsman (1989), p. 85). 

5. SOME CLASSES OF TOTAL REWARD STOCHASTIC GAMES 

5.1. Contracting stochastic games 
A contracting stochastic game is a stochastic game for which for each pair of 
stationary strategies (ai,a2) it holds that limn ..... oo Pn(ai,a2)= 0, related to the 
fact that the corresponding stochastic process is dying out. Usually this con
traction assumption is given as the requirement of the existence of a vector 
µElliF, µ>0, and a number aE(O, 1) such that ~1p(tls,ai,a2) µ1 ~ aµs, all s,a1 
and a 2• For games with a finite state space these two conditions are 
equivalent. Contracting stochastic games can be solved by using the contract
ing property of the value operator (cf. Van der Wal (1978)) leading to the 
existence of the value and of the existence of total reward optimal stationary 
strategies of the players. Two important subclasses of contracting stochastic 
games can be discerned. The first contain the stopping games, i.e. games for 



160 O.J. Vrieze 

which ~1p(tjs,ai.a 2)<I for all s,a 1 and a 2• For each cell there is a strictly 
positive probability that the game will stop if that cell occurs. In fact, already 
Shapley (1953) considered stopping games, though often his paper is referred 
to as an introduction to discounted stochastic games. Discounted stochastic 
games form the second subclass of contracting stochastic games that ought to 
be mentioned. A discounted stochastic game can be reformulated as a stopping 
stochastic game by redefining the transition probabilities as ,Bp(tls,a l>a 2) giv
ing constant stopping probabilities of I - ,B. 

5.2. Nonnegative stochastic games 
Consider the class of games for which r (s, a i. a 2) ~ 0 for all s, a 1 and a 2 and 
for which the properties I and 2 hold. We will give an abbreviated proof that 
games out of this class are solvable. 

Properties 1 and 2 ensure that v1(s):= Iimp11 vp(s) exists and is finite. The 
limit for .B to 1 of the value equation of the discounted version leads to 

v 1(s)= val [r(s,.,.) + ~p(tls,.,.)v1(t)] 
A,XB, I 

(7) 

Let o;(s) be optimal for player 2 in (7) and let o;= (0;(1),0;(2), ... ,o;(z)). 
By iteration we derive for each o1 from (7) (in matrix notation) 

v 1 ~ T(oi.a;) + Q(ai.a;)v 1 ~ T(ai.o;) (8) 

(here Q(oi.o;) is the Cesaro-limit of P(oi.a;)). The second inequality of (8) 
follows from the nonnegativity assumption which gives v p ~ 0 and hence 
VJ ~0. 

So o; assures player 2 that the payoff is at most v 1• Let aip be an optimal 
,8-discounted stationary strategy for player 1. Take a2 arbitrary. In the ergodic 
classes of P(aip,a2) the average payoff is either 0 or strictly positi~e. In the 
first case Dp(a 1p,a2)= 0 and hence vp= 0 and v 1 = 0 and also T(a 1p,a2)= 0. 
In the second case T(oip,o2)= oo. We may conclude that in the recurrent 
states o ip yields at least v 1 (s ). For the transient states, by using the value 
equation for the discounted version, we can show that for these states 
T(s,aip,a2)~v 1 (s)-t:, where t:~O if .B~I. It then can be concluded that aip 
for fJ close to 1 guarantees player 1 a payoff v 1 up to t:. Combining with (8) 
gives that v 1 is the total reward value of the game, that player 2 possesses 
optimal stationary strategies and that player 1 possesses £-optimal stationary 
strategies. 

An example in which player 1 for state 1 with total reward value 1 has no 
optimal stationary strategy is the following. 
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l~I~ 
State 1 State 2 State 3 

5.3. Recursive games 
The last class we will examine is the class of recursive games. Recursive 
games, introduced by Everett (1957) and reconsidered by Orkin (1972) are 
total reward games with stopping probability 1 in every cell where a nonzero
payoff comes up. In the cells with payoff 0 the stopping probability is 0. Two 
types of realisations can occur for such games. Either once there is a 
nonzero-payoff and the game stops at that period, or the play goes on for ever 
with payoff 0 as the total reward of that play. Notice that the nonnegative 
game above is in fact a recursive game, since from both the cells with nonzero 
payoff the play jumps to the absorbing state 2 with payoff 0 from that period 
on, which has the same effect as stopping. 

For recursive games Properties 1 and 2 always apply since for every pair of 
strategies the average payoff equals 0. 

Everett (1957) considered recursive games with arbitrary state space. Orkin 
(1972) considered our model with a finite state space, however his prove is 
incomplete and recently Van der Neut (1989) gave an alternative proof, mak
ing extensive use of the underlying Markov chain properties. He showed that 
an £-optimal stationary strategy fof player 1 can be constructed in the follow
ing way: if for a state s v 1 (s)>O, then take a ,8-discounted optimal action in 
such a state; if for a state s v 1 (s) ~ 0, then take an optimal action in the limit 
matrix game of the ,8-discounted value equation (cf. (7)). Analogously, £
optimal stationary strategies for player 2 can be constructed. 

7. CONCLUDING REMARKS 

In all the classes treated in section 5 it turns out that the total reward value 
equals the limit of the ,8-discounted reward value. Whether this is always the 
case is an open question. Also not solved is the question whether games for 
which Properties 1 and 2 hold always possess a total reward value. There are 
good indications that this will be the case. With the similarity between total 
reward games and average reward games ( cf. Section 4) in mind an approach 
could run along the same lines as the proof of Mertens and Neyman (1980). 
The main difficulty one has to master is that the reformulated total reward 
game becomes an average reward game with a countable number of states. 
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This contribution reflects a research development from an application of gen
eralized Markov programming to a quantitative comparison of production and 
inventory planning and control concepts in use nowadays. The first topic has 
been part of the research the author has done under direction of the jubilaris at 
the Mathematical Centre. The second topic was started by the author about 
five years ago at the Department of Mechanical Engineering at the University of 
Twente. Recently the first dissertation on this subject has appeared. 

INTRODUCTION 

The field of goods flow management or logistics has experienced a vastly 
increasing interest during the past decade due to the recognition of its contri
bution to the profitability of enterprises. This paper adresses the part of the 
goods flow in manufacturing enterprises, extending from the supply of raw 
materials up to and including final product inventories. The second part of the 
goods flow, distribution and transport to the customers is not considered here. 

In many manufacturing companies the goods flow is a complicated process 
involving a large assortment of final products with complex structures. During 
this process a product-dependent number of production facilities has to be 
passed in a product-dependent sequence. A well controlled goods flow is 
characterized by the way a compromise is obtained between conflicting goals 
as for example: low inventories, high service degree, smooth utilization of 
capacity, short throughput times, short reaction times and a fast realization of 
changes. These goals are extremely hard to achieve, mainly because of three 
reasons: 

the contrariety of the goals themselves, 
· the complexity of the product(ion) structures, 
· the uncertainties in market demand, production process and supply. 
Hence a proper choice of production (and inventory) control concept is an 
extremely difficult one. Insight in the consequences of the application of such 
concepts in specific production situations is more than required. 

The outline of this paper is as follows. Primarily, the compared production 
control concepts are reviewed. Secondly, a description of the basic production 
situations for the comparison is given. Thirdly the adopted method of 
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comparison is explained. Finally, the results of the simulation experiments are 
discussed within a framework of characteristics and conjectures. Some specific 
numerical results are presented in order to show the kind of numerical results 
obtained by the simulation experiments. For a complete picture of the results 
and the conclusions the reader is referred to the dissertation [2]. 

Although this paper is about concepts for planning and control of produc
tion and inventory, the term 'production control concept' will be used. 

THE COMPARED PRODUCTION CONTROL CONCEPTS 

The production control concepts investigated are specific versions of 
Statistical Inventory Control (SIC), 

· Base Stock Control (BSC), 
· Manufacturing Resource Planning (MRP). 
Mostly three types of production planning and control are distinguished with 
respect to the planning term they encompass. One may consider production 
planning and control in the long term, medium term or short term. Up until 
now, the comparison of the concepts has focussed on short term production 
planning and control aspects. 

Short term production control is associated with the determination of pro
duction orders for final products (factory order generation), for non-final pro
ducts (material order generation) and the assignment of production orders to 
capacity (scheduling). The three production control concepts differ among oth
ers in the way these three functions are performed. 

Another important aspect of production control concepts are protective 
measures against various types of uncertainty. Finally the role of the computer 
is important, because of the required investments in information technology. 

For the concept SIC, inventories are controlled independently. When to order 
and how much is specified by the replenishment policy, for example the well
known (s, Q)-policy. The values of the policy parameters for a given item are 
obtained in a way completely independent of the existing information about 
the inventory levels of other related items. For this reason, such a concept may 
be called a fragmentary control concept. It controls each inventory as though 
it is the only one in the world. The production control model for a single item, 
intensively studied in [I] may be called fragmentary for the same reason. A 
fragmentary inventory control concept like SIC implies also neglection of 
dependent demand relationships, existing between final products and their 
composing items. 

Since SIC is an inventory concept by nature, no attention is paid to the 
question how replenishment orders are going to be produced. Production 
scheduling criteria are unspecified. Usually a FIFO priority rule is tacidly 
assumed. Another shortcoming of SIC is the fact that protective measures are 
restricted to safety stocks. Safety stock is incorporated in the reorder level 
specified by the replenishment policy. 

Despite of these shortcomings SIC can be further 'dressed' to a more com
plete production control concept. It might even function quite reasonable, as 
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simulation results indicate. In any case, expenses in hard- and software are 
negligable compared with more sophisticated production and inventory control 
concepts. 

The major difference between BSC and SIC is the fact that inventory is 
replaced by the notion of echelon stock. The echelon stock of an item is 
defined as the number of units in stock of the item including the number of 
units of the item in successor stocks downstream the goods flow. The echelon 
position is defined to be equal to the echelon stock plus the number on order 
minus the number committed. The latter quantity includes final product 
demand received but not yet satisfied, multiplied by the multiplicity of the 
item in the final product. In this way, information on final product demand is 
not delayed as it is if SIC is applied. Moreover, BSC provides coordination 
between stock levels upstream the goods flow by means of the notion of 
echelon position. 

The meaning of the three initials MRP is twofold. Originally it stands for 
Material Requirements Planning, a planning technique by means of which size 
and timing of production and supply orders of the items composing a final 
product are computed, given the delivery times and sizes of customer orders 
for final products as specified by a Master Production Schedule (MPS). 

More recently Manufacturing Resource Planning has been developed. It is 
the integral planning and control concept most known. It encompasses plan
ning and control of the goods flow on different terms. Moreover, it aims at an 
improved coordination of all departments involved in the goods flow. The 
short term part of Manufacturing Resource Planning consists of the Master 
Production Schedule, Material Requirements Planning, Capacity Requirements 
Planning and Shop Floor Control. 

Contrary to SIC, and BSC to a less extent, MRP exploits dependent-demand 
relationships between final products and their composing items. The sizes of 
the item requirements are determined by explosion of final product demand. 
Their timing is obtained by backward scheduling, by means of which the 
release dates of the composing items are obtained by 'offsetting' the 
throughput time from their due dates. The gross requirements obtained by 
explosion, are balanced against the available stock of each item. This results in 
net requirements, which are compensated by planned orders, due to arrive at 
the appropriate time. 

Capacity requirements implied by the timing and size of planned orders are 
compared with the available capacity. If necessary, material and capacity 
requirements planning is repeated until capacity utilization is sufficiently bal
anced. 

Protection against uncertainties can be accomplished in MRP in three ways: 
including a safety stock in the net requirements, 
including a safety time in the throughput time by advancing due dates, 
overplanning of requirements on the final product level. 
Contrary to SIC and BSC the role of the computer is essential in using 
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MRP. The basic characteristics of the three concepts are summarized in table 1 
below. 

concept 

SIC 

BSC 

MRP 

basic characteristics factory order scheduling material protection role of 
generation order against computer 

generation uncertainty 

* assumes independent make-to-stock unspecified supply- safety stock optional 
demand to-stock 

* independently 
controlled stocks 

* upstream co-or- make-to- unspecified supply-to- safety stock optional 
dination by echelon echelon-stock echelon-stock 
stocks 

* exploits dependent make due to due date net calcula- safety time essential 
demand relation- expected net based tion safety stock 
ships (explosion) requirement overplanning 

* backward scheduling 
from due date on 
MPS 

Table 1. Basic characteristics of Statistical Inventory Control, Base 
Stock Control and Manufacturing Resource Planning. 

THE PRODUCTION SITUATIONS INVESTIGATED 

In this section the simulation model of the production situations is described 
on which the concepts are applied. Customer orders for final products arrive in 
accordance with a renewal process. The customer order sizes are mutually 
independent and identically distributed random variables. The· lead time 
desired by customers is also a random variable. However in the simulations 
performed so far, the customer ·order arrival process has been the only source 
of uncertainty. No uncertainty is assumed to exist with respect to customer 
order sizes, customer desired lead time, production process and supply. 

Although within limits of size, any product network structure can be con
structed by the simulation software. Sofar however, the experiments have been 
restricted to the structures depicted in figure 1. 

Each vertex in the network reflects a relation between an item and its prede
cessor. To each vertex an explosion factor is assigned, specifying the number of 
units of a predecessor in the item considered. Values may be assigned to sup
plied items. To each vertex an added value may be assigned. In this way a 
value structure to each product network can be established. In the simulations 
performed sofar, explosion factors equal one. Moreover, supplied items have 
value one and all added values are zero. Lot sizes are equal to average demand 
per control interval. 

The three network structures compared have some consequences regarding 
the uncertainty in the order arrivals. Primarily, the mean order arrival rates are 
taken to be equal for each structure. Since the convergent structure has only 
one final product, its mean arrival rate will be eight times those of the particu
lar final products in the divergent and mixed structures. Concerning the 
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variance in the arrival rate, one may take the view that this variance should be 
equal for the individual final products. This is guaranteed if the arrival times 
are Erlang 8-distributed for the single final item of the convergent structure, 
while for the other two product networks the arrival times of the particular 
final products are exponentially distributed. A serious alternative is to use one 
basic Poisson process for all three structures with identical random seed. For 
the divergent and mixed structure, an arrival of this basic process has proba
bility 1/8 being an arrival of a particular final product. Both ways have been 
investigated. 

An important consideration is the way non-supplied items are allocated to 
the production facilities. In most of the investigated production situations, the 
items on the same level in the network structure are assigned to one produc
tion facility as indicated in figure 2. The processing times are chosen such that 
the utilization of the production facilities are all equal. Set-up and transporta
tion times have been equal to zero in the simulations performed sofar. 

Although MRP has capacity utilization planning facilities only a rudimen
tary form of this kind of planning can be used in the simulation model. In 
make-to-order situations the release dates of the orders can be advanced by a 
fixed time interval in order to smooth short term capacity requirements. The 
corresponding time interval is called slack time. In make-to-stock situations a 
slack time is not appropriate since release dates are determined by the inven
tory policy. 

COMPARING CONCEPTS 

The main objective of this research is to quantify the benefits of the concepts 
as a function of the production situation. The concepts are compared for 
identical production situations by means of computer simulation. In order to 
garantee a fair comparison an optimization is carried out with respect to the 
control variables for each concept and situation. Control variables are the 
safety stocks of the composing items. Safety stocks are absent on final product 
level, since final products are produced on order. In the simulations performed 
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the data have been chosen in such a way that items on the same level have 
identical characteristics. As a consequence the number of control variables is 
restricted to three safety stock levels in the three investigated product net
works. 

Optimization is performed with respect to two criteria. These criteria are ser
vice level and aggregate stock. The selected performance indicator for service 
level has been the fraction of customer orders delivered in time, accounted 
over all final products. By aggregate stock is meant average stock on hand, 
expressed in units of average demand per control interval. The value of an 
item equals the sum of the values of the composing items and the added value. 

Since two performance indicators are involved, each simulation run with 
fixed sizes of the safety stocks results in a (performance) point in two
dimensional space. A performance point is called effective if neither a decrease 
in aggregate stock without decreasing the service level nor an increase in ser
vice level without increasing aggregate stock can be realized. For each concept 
and situation a set of effective points is obtained by enumeration. 

In order to compare the performance of the concepts by a single number, 
the stock ratio is introduced. It is defined as the ratio between aggregate stock 
averaged over five specific service levels respectively given by .9, .95, .98, .99 
and 1.0 for each concept. 

TOPICS AND CONJECTURES 

Sofar, the impact on the performance of the following topics has been investi
gated: 

control variables, like slack time, control frequency and priority rules, 
modifications in the market characteristics, like increased lumpiness in 
market demand, uncertainty in market demand rate and commercial lead 
time, 
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characteristics of the product network, like degree of convergence (diver
gence) and added value, 
uncertainty in supply lead time, 
production to stock on final product level. 

In order to provide a clear arrangement of results and conclusions, a frame
work of characteristics and conjectures has been developed. The results are dis
cussed in view of the conjectures. For a complete discussion of these matters 
the reader is referred to [2]. Concept characteristics summarize advantages and 
shortcomings of the concepts. The following concept characteristics are 
employed: 

upstream coordination, 
lateral coordination, 
futurity, 
state-dependent physical safety stocks, 
scheduling criteria. 

Upstream coordination is a form of coordination with the aim of tuning avai
lability and requirements between an item and its successor(s). MRP provides 
this type of coordination. BSC provides it to a smaller extent. It is absent in 
SIC. 

Lateral coordination is a form of coordination promoting simultaneous avai
lability of items with a common successor. Its presence in the control concepts 
is similar to upstream coordination. 

Futurity indicates to what extent information about the future is incor
porated in a control concept. Futurity is only present in MRP. 

State dependent safety stock reflects the dependence of the physical safety 
stock of an item on the stock levels of its successors. To a certain extent the 
stock of an item provides protection against stock-out of its predecessors. This 
concept characteristic is only present in BSC. 

Scheduling criteria for priority determination of production orders. In con
trast with MRP, scheduling criteria are not specified by SIC and BSC. For 
these concepts the FIFO priority rule is adopted. 

The most important conjectures are summarized below: 
The degree of upstream coordination will increase in sequence of SIC, BSC 
and MRP. The advantage of upstream coordination will increase for an 
increasing number of levels in the product structure, increasing lumpiness 
and increasing demand rate uncertainty. It is expected to decrease for 
increasing control frequency and increasing supply lead time uncertainty. 
The degree of lateral coordination will increase in sequence of SIC, BSC and 
MRP. The advantage of lateral coordination will increase for increasing 
degree of convergence. It is expected to decrease for increasing supply 
uncertainty. 
The advantage of futurity will increase for increasing lumpiness, increasing 
demand rate uncertainty and increasing commercial lead time. 
The combination of futurity and upstream coordination results in the possi
bility of using due date based priority rules. For increasing degree of capa
city sharing and decreasing control frequency, their impact will become 
more apparent. 
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SOME SPECIFIC RESULTS AND CONCLUSIONS 

In this section a restricted selection of numerical results are presented. For a 
complete overview, the reader is once again referred to [2]. The impact of 
modification in the market characteristic lumpiness has been chosen. 

Primarily the results of the basic production situation for the concepts SIC, 
BSC and MRP has been chosen. The basic production situation has been 
described above. It is shortly reviewed here. The three product(ion) networks 
depicted in figure 1 are investigated. The market characteristics are Erlang 8-
arrivals for the single final product of the convergent structure and indepen
dent Poisson processes for the eight final products of the divergent and mixed 
structures. Customer lead time and order size are deterministic and equal for 
each final product. The results for the basic production situations are 
presented in table 2. 

STR(SIC,MRP) 
STR(BSC,MRP) 

Convergent 
1.06 
0.84 

Divergent 
1.32 
1.26 

Mixed 
1.34 
1.25 

Table 2. Stock ratios for the basic production situations. 

The stock ratio STR(SIC,MRP) expresses the average aggregated stock for 
SIC, summed over five specific service levels, divided by the same quantity for 
MRP. STR(BSC,MRP) expresses the same quantity for BSC with respect to 
MRP. 

For the convergent product network the necessary stock for high delivery 
performance appears to increase in the sequence BSC, MRP, SIC. For the 
divergent and mixed product networks this sequence is MRP, BSC, SIC with 
the note that the difference between BSC and SIC is much smaller than the 
difference between MRP and the other two concepts. 

The explanation of the fact that BSC outperforms MRP in the convergent 
case, has to be considered very carefully. The grid unit used for the optimiza
tion procedure is partly responsible for this result. Stock levels are expressed in 
units of the demand lot size. For BSC the demand lot size for an item equals 
the customer lot size multiplied by its multiplicity in the final product, in 
agreement with the notion of echelon stock position. For MRP and SIC the 
demand lot size for an item equals its average demand per time unit. For an 
item on level 2 of the convergent product network, this means for example that 
the demand lot size for MRP and SIC is eight times larger than for BSC. This 
factor equals two in the divergent and mixed cases. Hence a better finetuning 
of the stock levels in the optimization procedure can be obtained for BSC, if 
its demand lot size is smaller than the demand lot size for SIC and MRP. 

In order to investigate the impact of increasing lumpiness in market demand 
the customer lot size has been multiplied by a factor eight. In order to keep 
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the mean demand rate unchanged the arrival rate of customer orders is 
decreased by a factor eight. In order to keep the variance of the demand rate 
also unchanged compared with the basic production situation, the Erlang 8 
arrival process for the convergent product network is replaced by a Poisson 
process. The Poisson process for customer orders arrivals in case of the mixed 
and divergent structure is replaced by an arrival process with hyper
exponentially distributed arrival times. The results for increased lumpiness are 
depicted in table 3. 

STR(SIC,MRP) 
STR(BSC,MRP) 

Convergent 
l.05 
0.91 

Divergent 
2.38 
2.29 

Mixed 
2.47 
2.31 

Table 3. Stock ratios for increasing lumpiness. 

Table 3 shows that for the convergent network, increased lumpiness does not 
result in a significant improvement for MRP compared with SIC. For MRP 
compared with BSC there is a small improvement for MRP, caused by the fact 
that the demand lot size and customer lot size are equal now, because of the 
enlarged customer order lot size. The concept characteristic of BSC, state
dependent safety stock, can be the only reason for the fact that BSC still out
performs MRP for increased lumpiness in case of the convergent product net
work. Since demand lot sizes are equal for both concepts, a better finetuning 
of stock levels is the optimization procedure for BSC is out of the question in 
this case. 

For the divergent and mixed product networks, the concept characteristics 
of MRP obviously garantee a better handling of lumpiness, compared with SIC 
and BSC. 

CONCLUSIONS ON THE CONJECTURES 

The degree of upstream coordination is expected to increase in sequence of 
ROP, BSC and MRP. The results for the basic production situation show an 
improvement in performance in sequence of ROP, BSC, MRP, except for the 
convergent network where BSC is slightly better than MRP, taking into 
account the already discussed lot size effect. 

Simulations with pure stock production instead of production on order on 
final product level, confirm the conjecture that an increasing number of levels 
favours upstream coordination. This is shown by the improvement of the per
formance of MRP. However an improvement of BSC with respect to SIC is 
absent. Hence BSC does not prove the expectations about its upstream coordi
nation with respect to SIC. The results for increased lumpiness, exhibited in 
the preceeding section, yield similar conclusions. 

The conjecture concerning the advantage of upstream coordination for 
increasing demand rate uncertainty, appears not to be monotonic. For increas
ing demand uncertainty the differences between the concepts increase, followed 
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by a decrease. This throws up the additional conjecture that for large demand 
rate uncertainty, no control concept prevails over the others. 

The conjecture that increasing control frequency reduces differences in 
upstream coordination, cannot be established. Increased control frequency 
causes similar stock reductions for the control concepts, resulting in an 
increase of the relative difference between the concepts. 

The simulation results with respect to increased supply lead time uncertainty 
do not support the conjecture of decreasing advantage of upstream coordina
tion. The performance of MRP shows a relative improvement with respect to 
SIC, a fact which can be explained by the difference between the replenish
ment mechanisms of MRP and SIC. However, the relative performance of 
MRP with respect to SIC increases in sequence of convergent, mixed, diver
gent. This confirms the conjecture that increased supply lead time uncertainty 
reduces lateral coordination. Indeed, joint availability of supplied items is 
reduced. The divergent product network with a single supplied item is in 
favour. 

Other simulation results do not sufficiently confirm the advantage of lateral 
coordination. For example, it is expected to increase with increasing degree of 
convergence in the product network. However, the results for the divergent and 
mixed product network do not differ significantly. 

Contrary to SIC and BSC, MRP has futurity. The advantage of futurity is 
expected to decrease for decreasing commercial lead time. This conjecture is 
confirmed by the simulation results, showing a relative improvement of SIC 
compared with MRP. 
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We describe a case study concerning the capacity analysis of a completely 
automated transport system in a flexible assembly environment. Basically, the 
system is modelled as a network of queues, however, due to its complex 
nature, product-form network theory is not applicable. Instead, we present an 
aggregation/decomposition procedure, i.e. we study a number of key elements 
of the system in detail after which the results are implemented in the overall 
model for the transport system. Among these key elements are a buffer transfer 
system (the bottleneck of the system), modelled as a sequence of deterministic, 
preemptive (identical) repeat priority queues, a set of elevators, modelled as 
vacation servers, and several conveyor belts, modelled as pure delays (infinite 
servers). In this short review, we focus on modelling aspects. In our view, 
modelling is an extremely important element of any practical application; 
nevertheless, the level of attention paid to modelbuilding in the literature is still 
limited. 

1. INTRODUCTION AND BACKGROUND 

Changing market requirements for consumer products in the last twenty years 
have had a dramatic impact on the design and control of manufacturing 
processes, as well as on the logistic control of the materials flow in an indus
trial organization while furthermore new marketing strategies had to be 
developed. The old mass production philosophy for a market with a low pro
duct diversity is now rapidly replaced by new production control concepts 
which caused fundamental changes in the layouts and the organization of 
manufacturing processes. A high product diversity and the ever decreasing 
commercial product life cycles rule out the traditional mass production con
cepts, characterized by large batch sizes and high work-in-process and final 
inventory levels. Instead, we design factory layouts which can be characterized 
by small workcell organization structures (instead of long, dedicated assembly 
lines) where material is supplied via highly flexible automated transport sys
tems which often are· completely computer controlled. Parts may be tran
sported one by one (i.e. we have transport batches of one single item), on 



174 W.H.M. Zijm 

product carriers which are coded; guided by a central control system each part 
follows its own route through the system. In this way, one attempts to avoid 
large stockpiles on the shopfioor. 

Complex automated transport systems however require a thorough analysis 
in the design phase, in order to make sure that a desired capacity can indeed 
be realized. Queueing and blocking phenomena may reduce this transport 
capacity considerably, leading to idleness of workstations and hence ultimately 
to a severe loss of manufacturing efficiency. Both discrete simulation tech
niques and queueing network analysis have proved to be valuable tools in 
analyzing these systems (e.g. Solberg [1981], Coffman et al. [1988]). 

In this paper, we describe a case study carried out in a vacuum cleaner fac
tory of Philips in the Netherlands in which an approximate queueing network 
model has been developed to analyze a materials transport system. The system 
discussed here is actually a simplication of the one studied in the course of the 
consultancy project carried out in the factory, but the main objective of this 
paper is to outline some basic ideas, without getting stuck in technical details. 
Therefore, we focus on modelling aspects, also because we believe that the 
choice of the right model, which on the one hand reflects the important aspects 
of the system appropriately and which still can be analyzed on the other hand, 
is the key element in any practical application. 

sub-assemblies 

FIGURE 1. Layout of the vacuum cleaner assembly system. 

In this section, we start with a brief description of the relevant transport and 
assembly operations in an assembly department for vacuum cleaners. The pro
duction environment can be characterized as follows. 
- Products. The product range may be grouped into several main types. 

Within one type, items may vary on minor details; these minor variations do 
not play a role in our study and are therefore ignored. 

- Production. Products are assembled in 40 workstations, grouped into four 
clusters or workce//s. Within specified time periods, each workcell is dedi
cated to the assembly of exactly one product type. 

- Flow of material. Material is supplied to the workstations in kits. A kit is a 
rectangular box, containing all the subassemblies (called components in the 
sequel) needed to assemble exactly one vacuum cleaner of a specific type. 
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Kits are loaded in a so called kit preparation department and then placed in 
a central buffer. Upon request of a workcell, a kit leaves the buffer system 
and proceeds, via a system of conveyor belts and elevators) on its way to 
that particular workcell. At the workcell, a kit waits in a small local buffer 
until one station in the cell is ready to serve the kit. After completing ser
vice, the vacuum cleaner is placed in the kit again which leaves the worksta
tion (via another conveyor system) on its way to the packing area. 

- Control mechanism. After completing an assembly operation, a kit leaves the 
system. At that moment, a signal is transferred to the central buffer area to 
release a new kit with components of a vacuum cleaner of the same type (an 
overall control mechanism assures that such kits are present indeed in the 
central buff er). If there are still kits waiting at the workcell, another assem
bly operation is started. 

We study the behavior of the kit transportation system from the moment kits 
have received a call until the moment their service is completed. This includes 
the central buffer area (as far as 'called' kits are concerned), the conveyor sys
tems and the elevators between central buffer area and workcells, and the 
workcells themselves (see Figure 1). Note that we are dealing with a closed 
loop system since each kit leaving a workcell is immediately 'replaced' by a new 
kit, containing components of the same product type. This situation leads in a 
natural way to a multiple type closed queueing network model, at least in prin
ciple (cf. Figure 2). 

Unfortunately, the classical product-form network theory (Baskett et al. 
[1975], Reiser and Lavenberg [1981]) is not applicable. The assembly worksta
tions operate according to a FCFS (First Come First Serve) discipline, with 
nonexponential service times. Transport times of the conveyor belts are deter
ministic while the elevators provide a kind of 'gated' service. Finally, certain 
traffic control rules imply (changing) priorities between several job types in the 
central buffer area. 

In the next sections, we show how to overcome these difficulties. We propose 
models for key elements in the system. By selecting the right model for the 
central buffer system, we show that a detailed analysis of that system is possi
ble, followed by a decomposition of the complete network into four cyclic 
queueing systems, one for each product type. Next, the elevators are handled 
after which an exponentialization approach completes the analysis. 

2. THE BUFFER TRANSFER SYSTEM 
Figure 3 depicts the situation in the central buffer system. Kits are stored in a 
number of buffer lanes such that to each lane only one product type is allo
cated. After having received a call, a kit may try to depart from the buffer lane 
to the 'main road' by means of a special transfer, which, as a part of the main 
road, is located in front of the buffer lane. This transfer acts as a deterministic 
single server, giving absolute priority to kits already on the main road. There
fore, in order to allow the first kit to leave a buffer lane, a sufficiently large 
zone must be free at the main road (Figure 3 shows a free zone of length x for 
transfer 3). 
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FIGURE 2. Queueing network model of the assembly system. 

Let D be the service time for lower priority kits (coming from the buffer 
lane) and d the service time for higher priority kits (already on the main road. 
Modelling a transfer now as a nonpreemptive priority server would lead to a 
service requirement for higher priority kits equal to the time to travel a dis
tance x, t(x) say, since this is the time during which the transfer is blocked for 
use by lower priority kits. Clearly, t(x);a.D +d. However, it is possible that 
two or more kits, already on the main road, to be in the free zone of length x 
at the same time. Moreover, free zones for subsequent transfers may overlap. 

In order to overcome these difficulties, we model each transfer as a preemp
tive (identical) repeat priority server (compare e.g. Jaiswall [1968)). Instead of 
considering free zones, let the first lower priority kit in the buffer lane, which 
has received a call, enter the transfer as soon as this transfer is free. If, during 
this service, the kit is interrupted (physically, such an event would represent a 
collision) then the kit is returned to the head of the queue of lower priority 
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kits and has to start its service all over again. Some reflection shows that this 
way of modelling yields exactly the same results, in terms of throughput times, 
etc., as the original (physical) model. In particular, if the control mechanism 
requires a free zone of length x, then the service times of higher priority kits 
(already on the main road) in our preemptive repeat priority model have to be 
chosen equal to t(x)-D. 

Now suppose that kits in buffer lane i receive calls according to a Poisson 
process (which was approximately true) with rate~, (i = 1,2,3,4). Clearly, the 
arrival of kits on the main road at transfer 2 is not a Poisson process (note 
that the departure process of the deterministic transfer 1 is not even a renewal 
process). However, observe that service of lower priority kits at transfer 2 is 
interrupted by time periods equal to a busy period of the preceding transfer, 
while the alternating idle periods of this transfer 1 are exponentially distri
buted with parameter ~;. Hence, when a service of a lower priority job at 
transfer 2 is interrupted Ni times, we may define an 'aggregate' service time Si 
(the time period starting with the first trial and ending with the final, success
ful, completion of the service of a lower priority job), which satisfies 

N, 

SilNi = ~(yij+BP1j)+D (1) 
j=l 

where the Yij are independent identically distributed random variables (the 
durations of the unsuccessful trials). The same holds for the BPlj which are 
busy periods of transfer 1 (cf. Figure 4). The first two moments of BPlj are 
easily calculated by taking derivatives in a well-known equation for the 
Laplace-Stieltjes transform of the random variable BP (see for example p. 229 
in Cooper [1981]). Also, first and second moments of Yij and Ni are easily cal
culated by exploiting the above mentioned exponentiality of the idle periods of 
transfer 1. It follows that the first two moments of Si can be calculated. Next, 
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a busy period of transfer 2 can be characterized completely (in terms of the 
first two moments) which determines in its tum the interruptions at transfer 3, 
etc. By iteration, we find aggregate service times for kits in each buffer lane. 

D D D 
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--,( --),---- •. ~---~ -- E -~ 

BP12 IP BP13 I 
I 

I I I 

: BP11 : IP, 

l( ~ 
I / 

1- - • 

:Y21 Y22 D 

t -+ 

FIGURE 4. Trials and interruptions, leading to the 'aggregate' service 
time~. 

The above analysis is only slightly complicated by the observation that the 
first lower priority kit in a busy period of transfer 2 has an aggregate service 
time somewhat different from (1), caused by the fact that such a kit, having 
just received a call, may have to wait for a period equal to the residual lifetime 
of a busy period BP1 of transfer 1, even before starting its first trial. Call this 
residual lifetime r1 then with probability ')\.1D the conditional aggregate service 
time of this first lower priority job equals 

N, 

~I N2 = r1 + ~ <Y2i + BP11)+ D. (2) 
j=I . 

A rigorous analysis can be found in Repkes and Zijm [1988). 

3. DECOMPOSITION OF THE NETWORK; MODELLING OF ELEVATORS AND 

WORK CELLS 

Recall that each buffer lane stores only kits with components of one specific 
product type. Figure 2 shows that different product types are interfering only 
at the central buffer transfer system (described in Section 2) and on the con
veyor belt thereafter. Since the latter one only acts as a pure delay (all arriving 
jobs start their, deterministic, service immediately) it is naturally modelled as a 
deterministic infinite server. This means in particular that also on the conveyor 
belt jobs do not interfere (which is clearly the case in reality). But the 
definition and subsequent analysis of the aggregate transfer service times 
implies in particular that all product types (kits coming from a certain buffer 
lane) can now be handled separately. For instance, note that, by incorporating 
busy periods of transfer 1 in the aggregate service times of kits in buff er lane 2, 
we only have to consider these latter kits in determining their average 
throughputtimes. Therefore, we end up with a decomposition leading to four 
cyclic networks (one for each product type) instead of the network depicted in 
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Figure 2. In the network for product type i, the transfer service time is taken 
equal to S;, which can be obtained from the analysis outlined in Section 2. 

transfer conv. syst. elevator conv. syst. 
work-

cell 

FIGURE 5. Queueing network for one product type after decomposition. 

The elevators are continuously moving chain-elevators with product carriers 
(each carrier can hold at most one kit) at a certain distance which determines 
the entrance cycle time c, i.e. every c seconds a kit is allowed to enter the 
elevator. However, since the chain is continuously moving, it may happen that 
an arriving kit finding no other waiting kits in front of the elevator still has to 
wait for a certain residual cycle time, before a carrier is positioned in front of it 
and entrance is allowed. Therefore, a vacation server model seems to be 
appropriate. We do not study these models here in detail, the interested reader 
is ref erred to Cooper [ 1981 ], see also Doshi [1986]. 

The continuous movement of the elevator chain is needed because several 
other kits, which already entered the elevator and are on their way downstairs, 
would otherwise be delayed. Typically, we see two or three kits in an elevator 
at the same time, each on a carrier, at a distance which, measured in seconds, 
is a multiple of c. Hence, actually only the entrance mechanism of the elevator 
is modelled as a (single) vacation server (operating according to a FCFS dis
cipline), the latter part of the elevator can be integrated with the next conveyor 
system and be modelled as a pure delay, i.e. a deterministic infinite server, 
again. 

Finally, we arrive at the workcells. Due to minor variations within one type 
range and to differences in speed between workers at the final assymbly work
stations (the vacuum cleaners are manually assembled), the service times are 
not deterministic but have a coefficient of variation typically between 0.1 and 
0.25. Since the call rate at each buffer lane is exactly the departure rate at the 
associated workcell, which stems from a superposition of 10 departure 
processes at the parallel workstations, we found that the assumption of the 
Poisson arrival process for the calls at the central buffer system is approxi
mately justified. The workcells are modelled as multi-server queueing systems 
with a correctly tuned Coxian distribution. 

4. ANALYSIS OF THE CYCLIC NETWORK: THE EXPONENTIALIZATION METHOD 
In the cyclic network of Figure 5 we have now characterized all service sta
tions. In particular, we have shown how to calculate aggregate service times for 
each product type at the central buffer transfer by incorporating the influence 
of other types. Besides a characterization of throughputtimes for each type 
separately (easily obtained from the Pollaczek-Khintchine formula) these 
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aggregate service times also enable us to decompose the system into four cyclic 
networks, one for each product type, thus saving much computational effort 
(to say the least). The problem left is the analysis of these networks, which 
still is non-trivial, in particular since the different stations do not have 
exponential service times. 

The problem is solved by applying an exponentialization method outlined in 
detail by Yao and Buzacott [1986] (similar methods have been proposed by 
Marie [ 1979]). The basic idea is to find a set of state-dependent exponential ser
vice rates at each station such that the marginal steady state probabilities at 
each workstation (workcell) equals the steady state probabilities which are 
obtained by analyzing that station (workcell) as an M /Glc queue (see e.g. 
Chapter 4 in Tijms [1986]). The network with state-dependent service rates is 
analyzed by exploiting a specialized Mean Value Analysis technique due to 
Reiser [1981). As a result, we obtain average throughputtimes and throughputs 
for all product types, dependent of the number of kits in the system (per pro
duct type). 

The analysis of the vacuum cleaner assembly/transport system is now car
ried out as follows. Given a number of kits per product type in the system, we 
start with an estimate for the call rates 7'.; to analyze the buffer transfer system 
( cf. Section 2). Next, we decompose and calculate performance indices for all 
four cyclic networks using the exponentialization method. The resulting 
throughputs for each product type are then taken as our next set of call rates 
A;, etc. We iterate until convergence occurs. 

5. CONCLUSIONS 
In this paper, it has been shown how a complicated assembly/transport system 
can be analyzed appropriately by exploiting a variety of queueing-theoretical 
models and techniques Numerical results justify the use of these models as a 
design tool for such systems. For details, see Repkes and Zijm [1988]. 
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