606 research outputs found

    Efficient channel equalization algorithms for multicarrier communication systems

    Get PDF
    Blind adaptive algorithm that updates time-domain equalizer (TEQ) coefficients by Adjacent Lag Auto-correlation Minimization (ALAM) is proposed to shorten the channel for multicarrier modulation (MCM) systems. ALAM is an addition to the family of several existing correlation based algorithms that can achieve similar or better performance to existing algorithms with lower complexity. This is achieved by designing a cost function without the sum-square and utilizing symmetrical-TEQ property to reduce the complexity of adaptation of TEQ to half of the existing one. Furthermore, to avoid the limitations of lower unstable bit rate and high complexity, an adaptive TEQ using equal-taps constraints (ETC) is introduced to maximize the bit rate with the lowest complexity. An IP core is developed for the low-complexity ALAM (LALAM) algorithm to be implemented on an FPGA. This implementation is extended to include the implementation of the moving average (MA) estimate for the ALAM algorithm referred as ALAM-MA. Unit-tap constraint (UTC) is used instead of unit-norm constraint (UNC) while updating the adaptive algorithm to avoid all zero solution for the TEQ taps. The IP core is implemented on Xilinx Vertix II Pro XC2VP7-FF672-5 for ADSL receivers and the gate level simulation guaranteed successful operation at a maximum frequency of 27 MHz and 38 MHz for ALAM-MA and LALAM algorithm, respectively. FEQ equalizer is used, after channel shortening using TEQ, to recover distorted QAM signals due to channel effects. A new analytical learning based framework is proposed to jointly solve equalization and symbol detection problems in orthogonal frequency division multiplexing (OFDM) systems with QAM signals. The framework utilizes extreme learning machine (ELM) to achieve fast training, high performance, and low error rates. The proposed framework performs in real-domain by transforming a complex signal into a single 2–tuple real-valued vector. Such transformation offers equalization in real domain with minimum computational load and high accuracy. Simulation results show that the proposed framework outperforms other learning based equalizers in terms of symbol error rates and training speeds

    Hybrid solutions to instantaneous MIMO blind separation and decoding: narrowband, QAM and square cases

    Get PDF
    Future wireless communication systems are desired to support high data rates and high quality transmission when considering the growing multimedia applications. Increasing the channel throughput leads to the multiple input and multiple output and blind equalization techniques in recent years. Thereby blind MIMO equalization has attracted a great interest.Both system performance and computational complexities play important roles in real time communications. Reducing the computational load and providing accurate performances are the main challenges in present systems. In this thesis, a hybrid method which can provide an affordable complexity with good performance for Blind Equalization in large constellation MIMO systems is proposed first. Saving computational cost happens both in the signal sep- aration part and in signal detection part. First, based on Quadrature amplitude modulation signal characteristics, an efficient and simple nonlinear function for the Independent Compo- nent Analysis is introduced. Second, using the idea of the sphere decoding, we choose the soft information of channels in a sphere, and overcome the so- called curse of dimensionality of the Expectation Maximization (EM) algorithm and enhance the final results simultaneously. Mathematically, we demonstrate in the digital communication cases, the EM algorithm shows Newton -like convergence.Despite the widespread use of forward -error coding (FEC), most multiple input multiple output (MIMO) blind channel estimation techniques ignore its presence, and instead make the sim- plifying assumption that the transmitted symbols are uncoded. However, FEC induces code structure in the transmitted sequence that can be exploited to improve blind MIMO channel estimates. In final part of this work, we exploit the iterative channel estimation and decoding performance for blind MIMO equalization. Experiments show the improvements achievable by exploiting the existence of coding structures and that it can access the performance of a BCJR equalizer with perfect channel information in a reasonable SNR range. All results are confirmed experimentally for the example of blind equalization in block fading MIMO systems

    Robust Blind Equalization for NB-IoT Driven by QAM Signals

    Get PDF
    The expansion of data coverage and the accuracy of decoding of the narrowband-internet of things (NB-IOT) mainly depend on the quality of channel equalizers. Without using training sequences, blind equalization is an effective method to overcome adverse effects in the internet of things (IoT). The constant modulus algorithm (CMA) has become a favorite blind equalization algorithm due to its least mean square (LMS)-like complexity and desirable robustness property. However, the transmission of high-order quadrature amplitude modulation (QAM) signals in the IoT can degrade its performance and the convergence speed. This paper investigates a family of modified constant modulus algorithms for blind equalization of IoT using high-order QAM. Our theoretical analysis for the first time illustrates that the classical CMA has the problem of artificial error using high-order QAM signals. In order to effectively deal with these issues, a modified constant modulus algorithm (MCMA) is proposed to decrease the modulus matched error, which can efficiently suppress the artificial error and misadjustment at the expense of reduced sample usage rate. Moreover, a generalized form of the MCMA (GMCMA) is developed to improve the sample usage rate and guarantee the desirable equalization performance. Two modified Newton methods (MNMs) for the proposed MCMA and GMCMA are constructed to obtain the optimal equalizer. Theoretical proofs are presented to show the fast convergence speed of the two MNMs. Numerical results show that our methods outperform other methods in terms of equalization performance and convergence speed

    Blind equalization based on pdf distance criteria and performance analysis

    No full text
    In this report, we address M-QAM blind equalization by fitting the probability density functions (pdf) of the equalizer output with the constellation symbols. We propose two new cost functions, based on kernel pdf approximation, which force the pdf at the equalizer output to match the known constellation pdf. The kernel bandwidth of a Parzen estimator is updated during iterations to improve the convergence speed and to decrease the residual error of the algorithms. Unlike related existing techniques, the new algorithms measure the distance error between observed and assumed pdfs for the real and imaginary parts of the equalizer output separately. The advantage of proceeding this way is that the distributions show less modes, which facilitates equalizer convergence, while as for multi-modulus methods phase recovery keeps being preserved. The proposed approaches outperform CMA and classical pdf fitting methods in terms of convergence speed and residual error. We also analyse the convergence properties of the most efficient proposed equalizer via the ordinary differential equation (ODE) method

    Efficient Adaptive Filter Algorithms Using Variable Tap-length Scheme

    Get PDF
    Today the usage of digital signal processors has increased, where adaptive filter algorithms are now routinely employed in mostly all contemporary devices such as mobile phones, camcorders, digital cameras, and medical monitoring equipment, to name few. The filter tap-length, or the number of taps, is a significant structural parameter of adaptive filters that can influences both the complexity and steady-state performance characteristics of the filter. Traditional implementation of adaptive filtering algorithms presume some fixed filter-length and focus on estimating variable filter\u27s tap-weights parameters according to some pre-determined cost function. Although this approach can be adequate in some applications, it is not the case in more complicated ones as it does not answer the question of filter size (tap-length). This problem can be more apparent when the application involves a change in impulse response, making it hard for the adaptive filter algorithm to achieve best potential performance. A cost-effective approach is to come up with variable tap-length filtering scheme that can search for the optimal length while the filter is adapting its coefficients. In direct form structure filtering, commonly known as a transversal adaptive filter, several schemes were used to estimate the optimum tap-length. Among existing algorithms, pseudo fractional tap-length (FT) algorithm, is of particular interest because of its fast convergence rate and small steady-state error. Lattice structured adaptive filters, on the other hand, have attracted attention recently due to a number of desirable properties. The aim of this research is to develop efficient adaptive filter algorithms that fill the gap where optimal filter structures were not proposed by incorporating the concept of pseudo fractional tap-length (FT) in adaptive filtering algorithms. The contribution of this research include the development of variable length adaptive filter scheme and hence optimal filter structure for the following applications: (1) lattice prediction; (2) Least-Mean-Squares (LMS) lattice system identification; (3) Recursive Least-Squares (RLS) lattice system identification; (4) Constant Modulus Algorithm (CMA) blind equalization. To demonstrate the capability of proposed algorithms, simulations examples are implemented in different experimental conditions, where the results showed noticeable improvement in the context of mean square Error (MSE), as well as in the context of convergence rate of the proposed algorithms with their counterparts adaptive filter algorithms. Simulation results have also proven that with affordable extra computational complexity, an optimization for both of the adaptive filter coefficients and the filter tap-length can be attained

    Adaptive Blind Channel Equalization

    Get PDF

    Multiuser MIMO-OFDM for Next-Generation Wireless Systems

    No full text
    This overview portrays the 40-year evolution of orthogonal frequency division multiplexing (OFDM) research. The amelioration of powerful multicarrier OFDM arrangements with multiple-input multiple-output (MIMO) systems has numerous benefits, which are detailed in this treatise. We continue by highlighting the limitations of conventional detection and channel estimation techniques designed for multiuser MIMO OFDM systems in the so-called rank-deficient scenarios, where the number of users supported or the number of transmit antennas employed exceeds the number of receiver antennas. This is often encountered in practice, unless we limit the number of users granted access in the base station’s or radio port’s coverage area. Following a historical perspective on the associated design problems and their state-of-the-art solutions, the second half of this treatise details a range of classic multiuser detectors (MUDs) designed for MIMO-OFDM systems and characterizes their achievable performance. A further section aims for identifying novel cutting-edge genetic algorithm (GA)-aided detector solutions, which have found numerous applications in wireless communications in recent years. In an effort to stimulate the cross pollination of ideas across the machine learning, optimization, signal processing, and wireless communications research communities, we will review the broadly applicable principles of various GA-assisted optimization techniques, which were recently proposed also for employment inmultiuser MIMO OFDM. In order to stimulate new research, we demonstrate that the family of GA-aided MUDs is capable of achieving a near-optimum performance at the cost of a significantly lower computational complexity than that imposed by their optimum maximum-likelihood (ML) MUD aided counterparts. The paper is concluded by outlining a range of future research options that may find their way into next-generation wireless systems

    Algorithms for Blind Equalization Based on Relative Gradient and Toeplitz Constraints

    Get PDF
    Blind Equalization (BE) refers to the problem of recovering the source symbol sequence from a signal received through a channel in the presence of additive noise and channel distortion, when the channel response is unknown and a training sequence is not accessible. To achieve BE, statistical or constellation properties of the source symbols are exploited. In BE algorithms, two main concerns are convergence speed and computational complexity. In this dissertation, we explore the application of relative gradient for equalizer adaptation with a structure constraint on the equalizer matrix, for fast convergence without excessive computational complexity. We model blind equalization with symbol-rate sampling as a blind source separation (BSS) problem and study two single-carrier transmission schemes, specifically block transmission with guard intervals and continuous transmission. Under either scheme, blind equalization can be achieved using independent component analysis (ICA) algorithms with a Toeplitz or circulant constraint on the structure of the separating matrix. We also develop relative gradient versions of the widely used Bussgang-type algorithms. Processing the equalizer outputs in sliding blocks, we are able to use the relative gradient for adaptation of the Toeplitz constrained equalizer matrix. The use of relative gradient makes the Bussgang condition appear explicitly in the matrix adaptation and speeds up convergence. For the ICA-based and Bussgang-type algorithms with relative gradient and matrix structure constraints, we simplify the matrix adaptations to obtain equivalent equalizer vector adaptations for reduced computational cost. Efficient implementations with fast Fourier transform, and approximation schemes for the cross-correlation terms used in the adaptation, are shown to further reduce computational cost. We also consider the use of a relative gradient algorithm for channel shortening in orthogonal frequency division multiplexing (OFDM) systems. The redundancy of the cyclic prefix symbols is used to shorten a channel with a long impulse response. We show interesting preliminary results for a shortening algorithm based on relative gradient
    • …
    corecore