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Abstract 

Future wireless communication systems are desired to support high data rates and high quality 

transmission when considering the growing multimedia applications. Increasing the channel 

throughput leads to the multiple input and multiple output and blind equalization techniques in 

recent years. Thereby blind MIMO equalization has attracted a great interest. 

Both system performance and computational complexities play important roles in real time 

communications. Reducing the computational load and providing accurate performances are 

the main challenges in present systems. In this thesis, a hybrid method which can provide 

an affordable complexity with good performance for Blind Equalization in large constellation 

MIMO systems is proposed first. Saving computational cost happens both in the signal sep- 

aration part and in signal detection part. First, based on Quadrature amplitude modulation 

signal characteristics, an efficient and simple nonlinear function for the Independent Compo- 

nent Analysis is introduced. Second, using the idea of the sphere decoding, we choose the 

soft information of channels in a sphere, and overcome the so- called curse of dimensionality 

of the Expectation Maximization (EM) algorithm and enhance the final results simultaneously. 

Mathematically, we demonstrate in the digital communication cases, the EM algorithm shows 

Newton -like convergence. 

Despite the widespread use of forward -error coding (FEC), most multiple input multiple output 

(MIMO) blind channel estimation techniques ignore its presence, and instead make the sim- 

plifying assumption that the transmitted symbols are uncoded. However, FEC induces code 

structure in the transmitted sequence that can be exploited to improve blind MIMO channel 

estimates. In final part of this work, we exploit the iterative channel estimation and decoding 

performance for blind MIMO equalization. Experiments show the improvements achievable by 

exploiting the existence of coding structures and that it can access the performance of a BCJR 

equalizer with perfect channel information in a reasonable SNR range. All results are confirmed 

experimentally for the example of blind equalization in block fading MIMO systems. 
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Chapter 1 

Introduction 

1.1 Motivation 

For communications, the ultimate aim is to design a system which can carry information from 

one place to other places with reliability, effectivity, celerity, safety and high capacity. Different 

applying environments take people various communication systems. In wireless communi- 

cation, the transmission is impaired by the channel due to the complicated surroundings as 

illustrated in the figure 1.1. Among them, three factors have an influence on final performance. 

1. Path loss, which is a natural phenomenon of decreasing received power with increasing 

distance. 

2. Slow fading, which is caused by obstruction of buildings, hills, trees and foliage. 

3. Fast fading, which is caused by multipath reflection of a transmitted wave by objects. 

Moreover, the mobility and flexibility of wireless transmitters and receivers leads to the re- 

ceived signals variable, the multiple access leads to new interferences and present a significant 

problem if the power level of the desired signal is significantly lower than the power level of the 

interfering. The trend of low power design increases all of these challenges above and makes 

realistic design more complex and intricate. 

Even though people have to confront these difficulties in wireless media, it is still appealing. 

In comparison with wired communications, wireless communications has no cables and pro- 

vides mobility, flexibility, scalability and many other environments that cable can not reach 

easily, such as in the rural, deep space and in emergency cases. Then, variety of commercial 

and government innovations and inventions had been invented, discovered and developed and 

such contributions led to an information based modern society. More demands for high quality 

service in such areas as mobile phone, the internet and multimedia is rapidly and constantly 

increasing. Consequently, this growth brings out more demands for channel capacity in wire- 

less communications. In order to maintain high data rates over wireless channels, people have 
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Introduction 

Figure 1.1: Typical wireless communications. 

resorted to the equalization which is essentially a signal processing procedure to restore the 

distorted signals introduced by the channels. If the channel state information (CSI) is known, 

compensations for the intersymbol interference (ISI) or co- channel interference (CCI) is rela- 

tively easy to design at the receivers. However, in practice, channel information is usually not 

available in wireless systems. The receiver has to estimate the channels response, then equalize 

the received signal based on the estimated channel. 

1.2 Channel Equalization 

The conventional and most important equalization is the training based method and this kind of 

method is well developed in practice. Pilot signals are inserted periodically in the transmitted 

block along with data symbols. Receivers estimate the channel response based on these pilot 

sequences. In the presence of noise, more pilots are needed to improve the estimation accuracy. 

As stated above, the wireless channel is a natural resource where the rate of communication 

is restricted by bandwidth and noise, with radio spectrum a scarce and expensive resource. 

To increase the data rate, one way is to explore methods approximating the channel capacity, 

such as two advanced channel coding techniques: turbo codes [5] and low density parity check 

codes [6]. Both of them make it possible to approach the Shannon capacity limit [7] for a 

single antenna link. Further advances are available through increasing the number of antennae 

at both the transmitter and the receiver. Recent research [8] in information theory has shown 

that large gains in capacity of communication over wireless channels are feasible in multiple - 

input multiple output (MIMO) systems, which grows approximately linearly with the number 
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Introduction 

of antennae. It has been demonstrated that the Bell laboratories Layered Space -Time (BLAST) 

coding technique [9]. It can attain the spatial efficiencies up to 42 bits /sec/Hz at a SNR of 20 

dB in a 8 x 8 MIMO system. This represents an increase compared to current spectral efficien- 

cies of 2 -3 bits /sec/Hz, in cellular mobile and wireless LAN systems. These channel capacity 

limits highlight the bandwidth efficiency of MIMO channels. A typical way of improving this 

bandwidth efficiency is the blind channel estimation and decoding. This kind of methods allow 

us to calculate channel parameters and acquire operational conditions using only information 

symbols. Blind equalization (BE) became an interesting research area in digital signal process- 

ing because of particular features and it has received tremendous attention in the recent years. 

However, if any explicit prior knowledge is available about the transmitted sequences, such 

information should be exploited. Training data or pilot signals are generally available for other 

purposes, such as synchronization, in practical communications systems. 

Using the knowledge of such signals, in conjunction with blind algorithms, leads to semi - 

blind methods. This hybrid method, using short training sequences and other mature methods 

to execute channel equalization, can achieve faster convergence and resolve some ambiguity 

problems that are typical in blind methods. Semi -blind methods are therefore potential solutions 

for near future practical wireless systems. 

Another channel equalization technique uses the detected data to enhance the channel estimate 

giving rise to an iterative scheme for channel estimate and data detection. This kind of data 

aided channel equalization technique jointly estimates channel and detects data and provides 

more promising performance of achieving better spectral efficiency in fading channel in wire- 

less communications. We will explore this in depth in the chapter 5. 

1.3 Exploring Signal Properties 

Blindness refers to the fact that there are no or little known pilot signals or training data. Only 

some statistical or structural properties of the transmitted and received signal are exploited in 

the process of adapting the equalizer. The developed algorithms depend on some statistical and 

structure properties of the transmitted signals. Temporal and spatial characteristics are often 

considered. Other information widely used in blind estimation include, finite alphabets, Buss - 

gang statistics, cyclostationary, high order statistics (HOS), independence, shaping statistics 

(pre -coding) and matrix structure, such as Vandermonde or Toeplitz structure of the channel. 

3 



Introduction 

Blind receivers typically exploit one or a combination of these properties in order to acquire or 

track channel information for equalization and detection. Based on these characteristics, many 

algorithms for the solution of blind equalization have been proposed over the years. 

1.4 The Channel Model 

In the sense of wireless MIMO channel modeling, both the short-term effects caused by mul- 

tipath propagation and the typical long -term effects, like path loss variations due to shadowing 

are considered in this thesis. 

Multipath propagation causing spreading of the received signal in the angular and time domains 

are called frequency selective fading and time selective fading respectively. These components 

also are significant and meaningful in practice, but in this work, we only focus on the fundamen- 

tal instantaneous narrow band MIMO systems. In narrow band environments, the bandwidth of 

the message does not significantly exceed the channel coherence bandwidth. Then the channel 

propagation does not cause significant spreading in the delay, angular and frequency domains. 

The wireless channel in this work concentrates on the instantaneous MIMO channel. This 

channel model is basic for MIMO systems and has attracted many studies [9][8]. 

In wireless communications, even if the channel changes frequently, it is assumed to be in- 

variant during the whole block period. Then most algorithms in this thesis are based on a 

transmission block, where a group of symbols is transmitted as a unit and may be encoded 

for error control purposes. We have concentrated on the linear time -invariant (LTI) systems 

which are widely exploited in wireless community since the wireless propagation channel can 

often be modeled by linear systems. These LTI channel models actually are common flat fad- 

ing (Rayleigh) channels. The entries in these channels are independent, identically distributed 

(i.i.d) circular symmetric complex Gaussian. Such a model is suitable for scenarios under the 

following conditions. First , received signals are a combination of multipath. These typically 

happens in wireless communications where the surrounding environments of both transmitter 

and receiver arrays possess some scatterers. Secondly, each antenna within both array needed 

to be widely separated which is usually greater than 2 radio wavelength and then spatial cor- 

relations do not exist. Lastly, the line -of -sight (LOS) path is absent. Mathematically, these 

conditions guarantee that the elements within the channel matrix are zero mean complex Gaus- 

sian with unit magnitude variances. Then, the envelopes of the channel entries satisfy the well 

4 



Introduction 

known Rayleigh distribution. In wireless communications, this Rayleigh i.i.d channel is always 

used to model urban and indoor environments. 

1.5 Contributions and Thesis Outline 

This work focuses on blind equalization in large constellation MIMO systems with block trans- 

mission. The contribution of this study is mainly addressed in five aspects. 

Firstly, based on the probability density function of modulation signals at digital transmitters, 

a simple and efficient nonlinear blind equalization method is proposed. Good separability and 

BER performance are obtained. The stability, convergence properties are also explored. 

Second, for MIMO systems with high dimensional transmitter and receivers, eg. 4x4 and 

8x8 systems, and dense constellation modulation such as 4 -QAM and 16 -QAM systems, an 

accurate blind detector are presented. This detector makes use of a maximum likelihood (ML) 

estimation to outperform the traditional linear MIMO detectors with affordable complexity. 

Third, the Newton -like convergence property of this ML estimation are shown mathematically, 

the proof and its derivation are given in detail. 

Furthermore, we explore the error correct code in this blind equalization system and design 

an iterative blind separation and decoding architecture for MIMO systems correspondingly. 

Simulations show that the coding structure in the transmitter can improve the finial performance 

significantly. 

In the last part of this study, with coding structure for multiple blocks, we can recover informa- 

tion effected by the deep fading or a very singular channel matrix. 

The thesis is organized as follows: 

Chapter 2 : A brief review of blind equalization is given. Major and popular algorithms are 

introduced, including single input single output and multiple input multiple output techniques. 

The performance of these algorithms are shown by explicit simulations. The independent com- 

ponent analysis (ICA) method is emphasized in detail for the foundation of this work and the 

suitability of ICA for MIMO systems is highlighted. 

Chapter 3 : A simple nonlinear function based on QAM modulation is proposed. The gradient 
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form is developed first. The fixed point algorithm based upon this nonlinearity is also derived 

and the bias removal update is given as well. Stability analysis reveals this nonlinearity of 

the proposed algorithm is robust. Furthermore, this nonlinearity is flexible for many QAM 

distributions. We emphasize that this system can be easily implemented and integrated into real 

hardware systems. 

Chapter 4 : A hybrid solution to MIMO blind separation and decoding is presented. This 

scheme provides good performance with an affordable complexity for large constellation MIMO 

systems. Computational savings happen both in the signal separation part and in the signal de- 

tection part. By utilizing a list sphere decoding and then obtaining the small set of symbol 

candidates, the so- called curse of dimensionality of the Expectation Maximization (EM) algo- 

rithm can be overcome. The Newton -like convergence of the EM algorithm is demonstrated 

mathematically. All these properties make a practical implementation feasible. 

Chapter 5 : A coding assisted MIMO blind separation and decoding scenario is proposed. By 

using a- posteriori information, substantial gain over the uncoded system is shown. Moreover, 

the existence of coding structures appears to partly solve the problems of the EM getting trapped 

in a local minimum when the channel is close to singular or when the SNR is low. This new 

scheme appears to avoid local minimum and converge to the global minimum and then offer a 

good BER performance in a reasonable SNR range. 

Chapter 6: Conclusions and future work base on this study are given. We point out main 

contributions of this thesis and the potential research such as, convolutive channel estimate, 

semi -blind methods and complexity reduction are emphasized. 
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Chapter 2 

Review of Blind Equalization 

2.1 Introduction 

Blind equalization can be traced back to 30 years since the self- recovering equalization [10] 

appeared. A decision direct algorithm [1 1 ] is regarded as pioneers of the BE methods. Blind 

source separation (BSS) is a younger topic than BE since the seminal paper [12]. The corre- 

sponding separation technique can naturally applied into MIMO system in wireless commu- 

nications. In this chapter, a history of BE and BSS are provided briefly. From the original 

single link to the multiple links. Both second order statistics and high order statistics methods 

are presented. Several simulations based on some popular BE and BSS approaches are given. 

First, we note the definitions used in this chapter at the beginning of this section. 

2.2 Notation and Statistical Prerequisites 

Statistical quantities play an important role in signal separation and equalization. It is necessary 

to introduce some related concepts used in this thesis. 

Definition 1 (Expectation) The expectation of a random variable s is given by 

E{s} = r sp(s)ds 
J 

(2.1) 

Definition 2 (Wide -sense cyclostationary) A random process s[k] is defined as wide -sense 

cyclostationary (WSCS) with period M when it satisfies the following: The mean of s, ms[k] = 

E {s[k]} obeys 

ms[k - TM] = ms[k], (2.2) 

and the autocorrelation function rs[k, I] = E {s[k]s "[l]} satisfies, 

r,,.[k- TM, k- l- -rM]= rs[k,k -l] (2.3) 
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for all k and any integer T. 

Suppose a random process s[k] is WSCS. It can be expanded as a Fourier series since its au- 

tocorrelation function rs[k, k - l] is periodic in k with period M, we can expand it as a Fourier 

series with the ath Fourier coefficient, 

M-1 

r[Z] = M rs[k, k - Z]é J274 
k=0 

and its spectrum, the cyclic spectrum, is given by 

00 

(2.4) 

sc:(W) = F(rr:[Z]) = rs [Z]é , a = 0, 1, ..., M - 1. (2.5) 
1- co 

Where rs [l] is said to be the cyclic autocorrelation function indexed by the cycle frequency 

parameter a. 

Definition 3 (Bussgang process) A stochastic process is said to have Bussgang statistics if 

its autocorrelation function equals the cross -correlation function between the process and the 

output of a zero- memory nonlinearity, g, i.e. 

E{s(k)s(k - i)} = E(s(k)g[s(k - i)]}. (2.6) 

Let si, 52, ... , sk be k complex random variables and s = (si, s2, , sk)T , SI= 51,R + jst,J, l = 

1,2,...,k. 

Definition 4 (The first joint characteristic function) The first joint characteristic function of 

sl, s2, .. , sk is defined as 

(NC I,R, (02,R, Cilk,R, W1,1, W2,1, Wk,¡) ° o(cl) = E{ exp (J E(Wl,RsI.R + l.I sl,t))} (2.7) 
t=1 

where Wl, w2, , Wk are complex variables defined as tut = Wt,R + j(1)t,j, l = 1, 2, ... , k , -nd 

= (cot, W2, , (0'k)T It leads to the kth -order joint moment 
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Definition 5 (The kth -order joint moment) 

ao kC(wl , (02, + wk) E{sl sisl*+1 S* k} = 
i au. aw k ,=o' aw. . awt+l (2.8) 

The second joint characteristic function is logarithmic function of the first joint characteristic 

function and is given as 

Definition 6 (The second joint characteristic function) 

s(w) = In '1(w) (2.9) 

The kth -order joint cumulant of variable s = (s1, s2, , sk)T is the partial derivative of the 

second joint characteristic function, this leads to the definition of cumulant, 

Definition 7 (Cumulant) 

cum{si, S2+ , sk} _ a*wk(wi, w2, . . 
, wk) 

aWl 49a/1'8(14+1' awk I6=O 

and the p + qth -order cumulant of a random variable s is denoted by 

Definition 8 (Kurtosis) 

Cp,q(s) = cum{ s 

p terms 

S* S* }. 

q terms 

K(s) = - 2E2{Is(k)21} - 1E{s(k)2}12 

(2.10) 

(2.11) 

(2.12) 

Kurtòsis is a fourth order cumulant and is a key statistical tool in blind signal processing area 

and a typical application is introduced in section 2.4.6. 

Definition 9 (Circular) A complex random variable is defined as circular if for any real - 

valued number a, the probability density function (pdf) of p(s) and p(elas) are the same (i.e, 

p(s) is phase invariant). p(s) = p(ef's). 

Quadrature amplitude modulation (QAM) signals are not circular. 

9 
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Definition 10 (Mutually Independent) Two complex random variables si and s2 are said to 

be mutually independent if p(sl, s2) = p(sl)p(s2). 

2.3 Present Pilot Assisted Wireless Transmissions 

Traditional digital communication systems use training sequences or pilots for channel estima- 

tion. Generally, these pilot assisted transmissions multiplex known symbols with information 

data and then transmit these though antennae. Receivers know these pilot symbols according 

to the wireless protocols and employ this information to calculate the channel coefficients for 

processing. Some of the earliest studies on pilot assisted transmission focused on fast varying 

channels [13][14]. In paper [13], the author called the scheme Pilot Symbol Assisted Modula- 

tion (PSAM) and provided an analytical method for the design of pilot assisted transmissions. 

Thereafter, there has been continuing studies and research in the signal processing and digital 

communications communities. Some standardized schemes are illustrated in Figure 2.1 [14]. 

The GSM system [15], includes 26 pilot bits in the middle of each frame with some starting 

and tail bits. The North America TDMA standard [16] puts pilot symbols at the beginning of 

each frame. Third generation systems such as WCDMA [17] and CDMA2000 [18] transmit pi- 

lots and data simultaneously using separate spreading codes. Pilots are also used in broadband 

systems such as HiperLAN II [19], the IEEE 802.11 [20] and Long term evolution (LTE) [21]. 

LTE is considered as part of the fourth generation wireless systems. Wireless broadcast also has 

pilot sequences. The DVB -T [22] inserts different types of pilots in a periodic manner whereas 

the ATSC [23] sends pilots in the data stream with synchronization pilots. PSAM strategy is 

also successfully applied into wire communications, such as xDSL [24], cable modem [25] and 

voice band modems. 

Generally speaking, equalization based on training sequences can estimate the channel state 

information with simple calculations and obtain desirable performances. Usually, the receiver 

applies zero forcing (ZF) or minimum mean- square error (MMSE) criteria to obtain channel 

information for further decoding operations. Receiver performance can be improved by in- 

creasing the length of pilot. 
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Figure 2.1: Pilot placement patterns in existing wireless systems. Left: packet transmissions. 
Right: continuous transmissions. Shadow areas are pilot symbols. 

2.4 Brief Survey of Blind Equalization 

The performance of equalizers with the assistance of PSAM is excellent so training based meth- 

ods are widely applied in practical applications in present communication systems. With the 

aid of the pilot sequence, various approaches to the optimization and estimation of channel 

equalizers have been investigated and feasible strategies have been obtained in practice. Why 

bother with blind equalizations? Answers come from two sides. Firstly, in some cases, the 

channel response is unknown, time -varying, non -linear, and may also be not invertible, acquir- 

ing channel information is difficult in such environments. Secondly, in digital communications, 

bandwidth is scarce. The drawback of using training sequences (pilots) for channel estimation 

is obvious since pilots occupy an amount of channel resources. To struggle with limited band- 

width is an important part of communication systems. As we know, capacity is related with 

three parameters: numbers of channel, transmitted power and bandwidth. In consideration of 

human safety, the transmitted power is always constrained in wireless communications, thus 

saving bandwidth and multichannel transmission are important developing trends of further 

digital communications. Consequently, the multiple input multiple output (MIMO) system and 

BE have received lots of attention in this decade. 

The current mobile network bears a lot of overhead for the equalization operation. Such as in 

GSM system, 18% of pilot bit in each slot. By eliminating this pilot sequence, BE would 
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present a bandwidth efficient solution. This is appealing since high data rate applications are 

needed in the future communications. In a broadcast network where a transmitter broadcasts to 

many receivers, if one receiver can not estimate its channel correctly, it must wait for the next 

pilot sequence, which means it loses all the data while it is waiting. An alternative strategy is 

that the transmitter send the current data again as the request. However, other receivers wait for 

this duration without any gain. If this happens too often, the data rate may be serious reduced 

when the network capacity (subscriber) is large. Moreover, in some special applications, such 

as the radar signal detection or sonar detection, the only thing available is the received signals 

and blind equalization is the only applicable method. Generally, a BE scheme operates without 

channel input; only the channel output is available and as such makes the BE challenging 

in theory and practice compared to traditional equalization. BE has importance in broadcast 

channels or in any application where transmitter cooperation is impractical, e.g., satellite [26] 

and microwave radio [27][28]. A single chip demodulator for 64 -QAM and 256 -QAM digital 

television has been successfully implemented [29]. 

However, despite the fact that much work has been done in this area, applications of BE in 

commercial communication systems still are not widespread. Possibly one of the main reasons 

is that communication engineers are more inclined to use the mature techniques rather than 

new ones. Moreover, the application service providers and the carriers of wireless network do 

not want to expend the large amounts of capital required to change the existing wireless infras- 

tructure. Another major reason for the insufficiency of broad uses of blind equalization to date 

is the fact that blind equalizers are, in general, more complicated than their counterparts such 

as training or pilot based systems. Usually, BE needs a larger sample size, lower convergence 

speed and higher complexity. Furthermore, ambiguities always remain. As a result, more effort 

is necessary to develop faster, simpler and more robust BE algorithms which can be widely 

applied to the practical applications. 

In this chapter, we focus on various blind algorithms and architectures of single input single 

output (SISO), single input multiple output (SIMO) and MIMO systems. Many previous works 

[30] [31] [29] [32] have provided a thorough overview of the BE methods which focus on the 

single input and single out case. At the beginning, we briefly review the history of BE. 

The basic blind SISO system is illustrated in Figure 2.2, 
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Source 
s[k] 

Overall system g[k]= w[k] *h[k] 

SISO LTI 
system 

h[k] 

x[k] Data y[k] 
Blind SISO 
equalizer 

w[k] 

Noise 
n[k] 

Equalized signal z[k] 

Figure 2.2: Architecture of the SISO blind equalization. 

The system model is given as 

y(k) = Z h(k - t)s(t) + n(k) 
t=o 

(2.13) 

u(k) = wry(k) (2.14) 

where y(k) is the received signal at time index k and vector y(k) is the received signal sequence 

and is denoted as 

Y(k) = [3'k, yk-I , yk-d. (2.15) 

s(t) is the digital source sequence and n(k) is the additive white Gaussian noise. u(k) is the 

output of the equalizer and w is the equalizer coefficients and is denoted as 

w = [wo, mil , wll T , (2.16) 

where l is the equalizer length and l < oo. h(k) is the linear time invariant system with bounded 

in bounded out stability. 

The ultimate aim of blind equalization is to recover the input sequence without knowledge of 

the channel and any input sequence. 
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2.5 Implicit HOS - Bussgang Type Methods 

The first BE algorithms proposed in the communication community were Bussgang type meth- 

ods where the higher order statistics were utilized implicitly. Among them, the Sato algorithm 

[10], the BGR algorithm [33], the Godard algorithm [34], and the constant modulus (CM) al- 

gorithm are distinguished and well studied. They are referred to as Bussgang -type algorithms 

because the equalized signal is approximately a 'Bussgang process'. 

BE algorithms are often designed by minimizing non -minimum square error (non -MSE) cost 

functions. These show the level of intersymbol interference (ISI) in the equalizer output, but do 

not require the original inputs. Define the mean cost function as 

J(w) = E['F(u(k)}, (2.17) 

where 11(.) is a scalar function of u(k). J(w), the mean cost function, is specified such that 

its minimum point w corresponds to a minimum ISI or MSE condition. A stochastic gradient 

descent minimization algorithm is given as [35]. 

w(k + 1) = w(k) - µa 'F(u(k)) 

= w(k) - piv[yH(k)w(k)]y`(k) 
(2.18) 

This equation is usually called the `standard form'of the blind equalization algorithm. Then, 

the coefficients of a blind equalizer can be obtained by the mean cost function'F(u). The design 

of the blind equalizer is converted into seeking a function such that the local minima of J(w) 

is the equilibrium of the algorithm (2.18). In the following sections, some selections of If are 

introduced. 

2.5.1 Sato - Birth of BE 

It is Sato who proposed the concept of blind equalization (self -recovering equalization) in his 

original work in 1975 [10]. It is one of the first widely used recursive identification schemes 

for discrete time system. This algorithm is suitable in a pulse amplitude modulation (PAM) 

system, in which the input symbol is uniformly distributed in M levels, 

{f(M- 1)d,t(M-3)d,...,t3dtd} (2.19) 
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PAM can be easily extended to QAM (complex value) straightforward. The corresponding error 

function is defined as, 

sato(u(k)) = u(k) - Rssgn(u(k)). 

In which R,5, the gain of the equalizer, is defined as, 

E{is(k)21} 
RS 

Ells(k)11 

(2.20) 

(2.21) 

The Sato algorithm replaces the channel input, s(k - d), with Rssgn(u(k)), called the slicer 

output, where d is the group delay. This algorithm takes the PAM signals as binary inputs and 

is based on an experimental formula instead of a theoretical one. Later researchers showed that 

local minima exist in the mean cost function of the Sato algorithm for M -ary PAM input and 

the size of the attractive region of these local minima decreases as the number of channel input 

levels increases [36]. 

2.5.2 BGR Algorithm 

The first analytical study of blind equalization was develop by Benveniste, Goursat and Ruget 

in 1980 [33]. They extended the Sato algorithm by taking QAM signals as two mutually inde- 

pendent PAM signals. And then, applying the Sato algorithm to the two streams, the real and 

imaginary parts, respectively. The cost function is defined as, 

'Pb(u(k)) = '(Re[u(k)]) - Rbsgn(Re[u(k)]) + j {`iflm[u(k)] - Rbsgn(Im[u(k)]) }. (2.22) 

'if {.} is an odd and twice differentiable function of, it also satisfies, 

e(x) >- 0 V > >- 0, (2.23) 

where'Pb(x) is the twice differential function of'Fb(x). This algorithm has been shown to be 

convergent if two conditions are satisfied [37], 

1. Signals have a sub -Gaussian. 

2. The channel is a constant with no dynamics or for dynamical channels, a noncausual and 

infinitely parametrized equalizer is updated by the BGR algorithm. 
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If the odd function Wb(x) generalizes the linear function Jb(x) = x, it is the same as the Sato 

algorithm. Generally, both Sato and BGR algorithms are call as Generalized Sato Algorithm 

(GSA) [37]. 

2.5.3 Godard Algorithm 

In 1980, Godard proposed a new blind equalization algorithm using the cost function [34] 

Tg(u(k)) = 2(l u(k)I - R)2. 

This cost function was subsequently generalized to, 

where 

(2.24) 

T(u(k)) = 2 (l u(k)I q - Rq)2 q = 1,2..., (2.25) 
q 

R 
E {I s(k)2g1 } 

(2.26) q = 
{Is(k)lq} 

This family of algorithms is distinguished by the integer q. Using the stochastic gradient de- 

scent, the update of the Godard algorithm is given by, 

w(k + 1) = w(k) - u(IY(k)Hw(k)Iq - Rg)IY(k)Hw(k)I g-2Y (k)T WRY (k) (2.27) 

We will see, when q = 1, the Godard algorithm is essentially the Sato algorithm. When q = 2, 

the Godards algorithm is equivalent to the constant modulus algorithm (CMA) of Treichler[38] 

which will be introduced in details in the next section. The local convergence of this algorithm 

is accurately analyzed in [39]. There is no guarantee to converge to the desirable minima of the 

cost surface even for a noiseless channel. 

2.5.4 Constant Modulus Algorithm 

Constant Modulus Algorithm (CMA) was developed independently of the Sato and Godard 

algorithms and attracted a lot of attention in digital communications because its cost function 

is easy to analyze. For a channel input signal that has constant modulus, the CMA equalizer 

penalizes the equalized signals z(k) that do not have the constant modulus characteristics. The 
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(a) Received signals 

modulus error is simply 

(b) Equalized signals 

Figure 23: CMA blind equalization. 

e(k) = I u(k)12 - R2 (2.28) 

And its cost function is defined as, 

PcMA(u(k)) = 4(Iu(k)I2 -R2)2> 

where 

(2.29) 

E {Is(k)41} 
R2 = (2.30) 

{Is(k)12 }. 

Obviously, R2 is a constant when QAM modulations are employed in a digital system. In some 

sense, R2 involves high order statistics (HOS). We can take it is as the first expression using 

HOS tools to equalize the output of signal. In particular, CMA has been proven to be useful 

not only in blind equalizations but also in blind array signal processing systems [35]. For finite 

length baud rate sampled equalization, the constant- modulus criterion has been shown to have 

many local minima, thus, global convergence is not guaranteed [39]. Figure 2.3 illustrates the 

equalized signals after the CMA algorithm. This system is set up with a 4 -QAM modulation, 

a single complex channel with 6 taps, the convergence step p = 0.001 and 3000 symbols were 

transmitted. As shown in the Figure 2.3(b), equalized signals converge to a constant circle, R2. 

CMA and HOS techniques are not distinguished much since the CMA algorithm applies kurto- 

sis implicitly. The CMA was developed and improved in the 90' s last century. For improving 

stability and robustness, Lin and Lee proposed a method to avoid the gradient noise [40]. This 
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Figure 2.4: Performance of MMA algorithm with different learning rates. 

method can not only accomplish blind equalization and carrier phase recovery simultaneously, 

but choose a nonlinear gain with a least squares algorithm. 

The algorithm [41] combining CMA and the benefits of the reduced constellation algorithm 

(RCA) [42] was proposed and always was called multimodulus algorithm (MMA). The cost 

function RCA algorithm is simply defined as averaged distance between the received signals 

y(k) and reference corner points, e.g., QAM points in the constellation. The MMA algorithm 

is suitable for certain types of signal constellations, such as non -square constellations and very 

dense constellations [41]. 

Figure 2.4 was implemented using the MMA. Experiments show that the equalized signal con- 

verges to some fixed point we desire. Simulation results were performed with SNR = 20 dB, 

learning rates of 0.005 and 0.002 respectively, and the number of iterations were 200 and 500 

respectively. 

From the simulations above, both CMA and MMA might converge to the desirable point. These 

algorithms try to minimize the cost function defined by the CM criterion. The CM criterion 

penalizes deviations in the modulus of the equalized signal away from a fixed value and it can 

successfully equalize signals characterized by source those possessing a constant modulus. 
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2.5.5 Stop- and -Go Algorithm 

From the standard form of the blind equalization algorithm 2.18, the convergence characteris- 

tics of these algorithms are mainly effected by the sign of the error signal. In order to force 

the coefficients of a blind equalizer to move to the optimum solution, the sign of its error sig- 

nal should be associated with the sign of the LMS prediction error. The so- called stop -and -go 

method was proposed by G.Picchi [43] to improve the convergence of blind equalizers. The 

idea behind this algorithm is to stop updating the coefficients of equalizer when the error sign 

is not sufficiently reliable. This happens when the error function is less likely to have the true 

sign for the gradient descent direction. Updating the coefficients of the equalizer is determined 

by the error signs. Consider two algorithms with error functions W501 (u) and W srop2 (u). The 

stop -and -go algorithm can be written in the following forms: 

w(k)+p'Ilsrop(u(k))Y*(k), if sgn['Ifsropt{u(k)}] = sgn['I`srop2{u(k)}] 
w(k + 1) = (2.31) 

w(k), if sgn['Ysropl{u(k)}] # sgn[`I`stop2{u(k)}] 

where the error function 'I' stop {u(k)} is given as 

'I`srop{u(k)} = 2(u(k) - §'(k)) + 21u( k) - s"(k)Isgn[u(k) - Rssgn(u(k))]. (2.32) 

The s(k) = O(u(k)) is the quantization of the equalized signal z(k). This algorithm constructs the 

update by employing the difference between the quantizer output and equalizer output, l u(k) - 
. (k)I. Obviously, this error function combines the Sato and the decision -directed algorithms to 

improve convergence speed. And the final performance depends on the accuracy of the estimate 

s(k) for the true symbol s(k). 

2.5.6 Shalvi and Weinstein Algorithm 

Even though we try to partition HOS methodology with Bussgang methods clearly, it is not easy 

because of strong connections between them. The method of Shalvi- Weinstein [44] is based 

on higher order statistics of the equalizer output but this algorithm essentially keeps up with 

a form of Godard algorithms. It is the bridge between implicit HOS methods and the explicit 

kind of methods. The kurtosis of the equalizer output signal y(k) is defined as equation (2.12), 

K(Y) = Ely(k)41- 2E2{1y(k)21} -1E67(02)12 
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The Shalvi- Weinstein algorithm maximizes K subject to the constant power constraint, 

Elu(k)21 = Els(k)21 (2.34) 

Define B as the combined channel equalizer impulse response given by, 

,» 

8=hk 
t=0 

If s(k) is i.i.d., it can be shown that, 

So that 

k-t -co < n < co (2.35) 

El u(k)21= EIs(k)21 E IBi12 
i=1 

K(y) = K(s) Z IBil4 

The Shalvi- Weinstein equalizer is therefore equivalent to, 

(2.36) 

(2.37) 

maximize E IBi14 subject to E IBil2 = 1 (2.38) 
i=-00 i=-oo 

It easy to be shown that Shalvi- Weinstein criterion reduces to the Godard cost function under 

special cases: a linear channel, no noise, an i.i.d. source. 

We summarize the general properties of the algorithms based on Bussgang statistics. In digital 

communications, Bussgang type algorithms are popular for the blind equalization. Except for 

S halvi - Weinstein criterion, all the algorithms proposed in the early stage actually belong to a 

generalized class, Bussgang blind equalization. They employ higher -order statistics implicitly, 

through zero -memory nonlinearities. They use a cost function whose corresponding minimum 

reflects the optimum solution of equalizer. The derivation of the cost function has the following 

general form, 
ôJ(W(k)) 

(2.39) 
aW(k) 

Where e(k) is the error between the output signal of equalizer and the estimated signal. z(k) 

is output signal of equalizer. Early studies utilize a variety of combinations of purely blind 

methods and decision -directed approaches. Many local stability conditions and initialization 

selection have also been investigated [31] for the standard Bussgang -type algorithms. 

20 



Review of Blind Equalization 

Although there have been many extended equalization methods, The main drawback suffered by 

the mentioned blind equalizers is typically the slow convergence to the unknown CSI. Usually, 

several thousand observation samples are necessary to achieve channel identification. More- 

over, the utilization of nonconvex cost functions can lead to estimates of the channel affected 

by high residual mean square errors (MSE) [45] [46]. 

2.6 Multiple Input Multiple Output Systems 

Generally, MIMO systems are realized by multi -element array antennae. Channel capacity 

grows approximately linearly with n = minNT, NR, where NT and NR are the number of trans- 

mitted antenna and receive antenna respectively. Thus MIMO systems have attracted the atten- 

tion of scientists and engineers. 

In this work, we are interested in the transmit and receive antennae connected by an independent 

flat Rayleigh fading process, as introduced in the first chapter. In channels with independent 

Rayleigh fading, a signal transmitted from each transmit antenna is uncorrelated at each of the 

receive antennae. As a result, the signal corresponding to every transmit antenna has a differ- 

ent spatial signature at a receive antenna. We note that this channel model does not exactly 

represent the real radio environment in all cases. In practical channels, the fades are not in- 

dependent, and the channel capacity is reduced because of the spatial correlation among the 

receive antennae. However, this independent Rayleigh fading model is conventional model and 

provide fundamental research in academic society. It can be approximated in MIMO channels 

where antenna element spacing is larger than the carrier wavelength or the incoming wave in- 

cidence angle spread is relatively large, e.g. larger than 30 degrees [47]. An example of such 

a channel is the down link in cellular radio. In base stations placed high above the ground, 

the antenna signals get correlated due to a small angular spread of incoming waves and larger 

antenna separations are needed in order to obtain independent signals between adjacent antenna 

elements than if the incoming wave incidence angle spread is large. The displacement of re- 

ceive antenna is needed to be widely separated which is usually greater than half wavelength to 

guarantee that spatial correlations do not exist. 

For a channel matrix H in which each element represents the attenuation of a radio path. Define 

a time delay matrix T with the element of Tip representing the time delay of a particular path 
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from jth transmitted antenna to ith received antenna. The received signal vector y is given, 

y = (H O exp(- jcoRFl))s + n (2.40) 

where o is the element -wise multiplication of two matrices and wRF s the frequency operation. 

s and n are signal and noise vectors respectively. The amplitude and phase information can be 

combined into the matrix H with the element hi,je WRFT J. Then the channel matrix H can be 

considered as a matrix of complex scalars. In this work, the blind equalization and separation 

focus on instantaneous MIMO channels. Previous studies of BE have been concentrated on 

SISO systems, where people focused on the temporal distortion and inter -symbol interference 

cancelation. In the following, we pay more attention to MIMO systems. 

Source Data 

IlN /yNR. 

IINR yNR 

Reciever Equalized signals 

(Blind 

Equalization) 

Figure 2.5: Architecture of Blind Equalization of MIMO system. 

As illustrated in Figure 2.5, the MIMO system model is given by, 

Y = HS + N (2.41) 

Where Y E CNRxT is the observed matrix containing T observed signals from the NR sensors, 

and S E CNRxT is the complex discrete source signal matrix. T is the number of symbols in a 

block and H is assumed constant for a coherence interval of a block, and change independently 

in the following block. N E CNRxT is the matrix of the noise with covariance, E, which is 

uncorrelated with source signals. H E CNRxNR is an unknown linear square matrix whose 

elements are drawn independently from a Rayleigh distribution and which satisfying circular 

symmetric complex Gaussian distribution. We assume that it is invertible. Note that, we do 

not guarantee H is orthogonal. The square channel matrix can be expanded into the non- 

square overdetermined MIMO systems where the number of receive antennae is greater than the 
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number of transmitted antennae. The principal components analysis (PCA) or singular value 

decomposition (SVD) operations are needed as preprocessing at receivers to make NR = NT. 

This instantaneous MIMO model is very fundamental in communication systems, and can be 

extended to other popular models, such as MIMO OFDM systems. Since the number of transmit 

antennae and receive antennae are equal, we define the channel matrix as 

hii(k) ht2(k) ... htNR(k) 

h2t(k) h22(k) ... h2NR(k) 
H(k) = (2.42) 

ho(k) h4,2(k) ... 
hNRNR(k) 

where h,,j(k), CN(0, 1)1 < i, j < n is the channel impulse response of the SISO system from 

the jth input si [k] to the ith output yi [k],1 < k < T. 

Most MIMO detection and decoding research assume perfect CSI at the receiver. The optimum 

MIMO equalization is studied in [48] when people know CSI information. It is a popular 

assumption for very slow fading channels with good channel estimation technique. However, 

this is not the case if the channel is fast fading. A pilot based channel estimation fails to 

fully exploit the channel information contained in the detected and decoded data symbols. The 

capacity is degraded when strong spatial correlation exists among antennae. Also, as stated 

in [49], imperfect CSI reduces the capacity gain and causes impairments of signal detection. 

Therefore, this makes it important to the blind channel estimation to MIMO detector studies. 

When the channel parameters are not available, blind techniques have to be used to identify 

MIMO systems explicitly or implicitly to separate sources and equalize system distortion. 

Many BSS techniques for MIMO systems have been studied [50] [51][52][45][53]. Usually, 

for different applications with various source properties, there have been many different blind 

source separation and equalization algorithms which can be classified into four categories [54]: 

1. HOS algorithms: The most popular approaches to solve BSS and BE problems if the 

sources are statistically independent without any temporal structure. Note that, in such a 

case, these methods do not allow more than one Gaussian source. 

2. SOS algorithms: Utilizing the temporal correlation of sources, then second order statis- 

tics (SOS) are sufficient to estimate the mixing matrix and sources [55][56]. 

3. Non -stationarity algorithms: Approaches exploiting non -stationarity properties whose 
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joint probability distribution change when shifted in time or space, i.e. the second -order 

non -stationarity where source variances vary in time. The non - stationarity information 

methods allow the separation of coloured Gaussian sources with identical power spectra 

shapes [57][58]. This property attracts a lot research in blind speech separation since 

frequencies vary over time depending on pronouncing words. 

4. Diversity algorithms: Approaches exploiting the various diversities of the sources, typi- 

cally, time, frequency, and the time -frequency diversity. More generally, they make use 

of the joint space- time -frequency (STF) diversity [59] [60]. 

More advanced methods use combinations of all properties mentioned above, but further dis- 

cussion is out of the scope of this thesis. Interested readers can look at the book [52] for details. 

In following sections in this chapter, some popular MIMO blind separation and equalization 

methods are reviewed. From SIMO to MIMO systems, both SOS and HOS techniques are 

introduced. Since the significance of separating MIMO signals in this thesis, the independent 

component analysis (ICA) is emphasized in details. 

2.6.1 Second Order Statistics 

The methods and algorithms introduced previously focus on single input and single output sys- 

tems. In this section, we concentrate on another important part of BE, single input and multiple 

output systems. SIMO channels arise in wireless communications from radio propagation be- 

tween a single transmitter and multiple receivers or using oversampling technique when the 

outputs are sampled faster than the symbol rate at receivers. Such methods can be extended to 

this sort of MIMO system where the number of receive antennae is greater than that of the trans- 

mitted antennae. Second -order statistics (SOS) is an important statistics and is widespread used 

in digital signal processing. In a symbol rate sampling, SOS of a wide -sense -stationary (WSS) 

process do not retain phase information, and cannot distinguish between minimum -phase and 

non -minimum -phase systems. As a consequence, the SOS can not be applied to equalization 

of non -minimum phase systems in this case. Hence, people have to exploit other statistical 

properties to extract the phase information, such as high order statistics. 
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2.6.1.1 Fractionally Spaced Equalization 

In 1991, Tong, Xu and Kailath [61] proposed the blind identifiability of SIMO LTI systems in 

which they utilized only the second order statistic (SOS) of system outputs with oversampling 

techniques. This work led to a number of SOS based SIMO blind system estimation and equal- 

ization algorithms such as the subspace and least -squares (LS) estimation approaches reported 

in [62]. 

Transmitted symbol 

sequence 

S[k] 
(Symbol period T) 

SISO LTI 

system 

h[t] 

Continuous time Discrete time 

Received signal y [ t ] received signal y [ k ] _ 

y[kTIM] 

Noise 

n[ t] 
Sampling at 

t =nT/M 

Figure 2.6: Architecture of a fractional sampling system. 

In general, the autocorrelation function rá[f] in equation (2.4) and its spectrum Sas(co) in equa- 

tion (2.5) like second -order statistics are phase blind as a is set to zero. But this is not true 

when a > 1. Consider a digital communication system illustrated Figure 2.6, the source s[k] 

drawn from a finite alphabets is transmitted at time kT where T is the symbol period, and the 

discrete -time received signal is given below. 

CO 

y[k] = y(kT) = s[t]h([k - tM]T) + n(kT), (2.43) 
t=-03 

where 1/T is called the symbol rate and T is called the sampling rate. T = TIM is the sampling 

period and M >_ 2 is an integer refereed to the oversampling factor. h[k] is the discrete -time 

SISO linear time -invariant channel. We can express the noise -free received signal as y[k] = 

Zr__ s[t]h([k - tM]) and its autocorrelation function is given by 

ry[k, k - 1] = E E h[k - tM]h'([k - 1- mM]rs[t - m] (2.44) 
t=-00 m=-CO 

The source signal variance of s[k] is equal to o s and its autocorrelation function rs[t - m] = o s 
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when t = m. Then the equation 2.44 can be simply expressed as 

CO 

ry[k, k - l] = S h[k - tM]h*[k - 1 - tM]. (2.45) 
t=-0. 

Substituting (2.45) into (2.4) and using similar simplifications above, we get the ath Fourier 

coefficients 

oo M-1 

rÿ in = 
M 

h[k - tM]h*([k - 1 - tM]e12'k/M 
t=-oo k=0 

00 

= s h[m]h*[m - , 

m=-oo 

a=0,1,...,M-1. (2.46) 

And the cyclic spectrum correspondingly is given by taking the Fourier transform with respect 

to l: 

ai o0 00 

Sc:(w) M 
h[m]e.12"k/M h* i',t 

k=-co t=-oo 

vs 2na 
= H(w + 

M 
)H* (cd), a = 0, 1, ..., M - 1. (2.47) 

Obviously, we can obtain phase information from the equation (2.47), in which a * 0, while 

4(w) = S S(ú4 /M is phase blind, in which a = 0. In digital communication system, such equal- 

ization is referred to a fractionally spaced equalization when sampling period T is less than the 

symbol rate. This means that the SISO multirate channel model is converted to an equivalent 

SIMO channel model. From (2.47), one can see that both the magnitude and phase information 

about the channel h[k] are contained is this equation. This SOS technique led to a number of 

second order cyclostationary statistics (SOCS) based SISO blind system estimation and equal- 

ization algorithms. The most important advantage of such algorithms is that they are insensitive 

to additive noise as a >_ 1. These SIMO second -order methods have been extended to other 

families, such as linear prediction techniques [63], subchannel response matching (SRM) ap- 

proach [64] and subspace methods which we will introduce in the next section. In comparison 

with SISO methods where people conventionally resort to HOS techniques, SIMO only used 

the SOS and assume that the channels do not share common zero. In this sense, it is considered 

to be easier. On the other hand, blind equalization of SIMO systems using HOS was exploited 

by Treichler [65] as an extension of the CM algorithm. 
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2.6.1.2 Subspace Methods 

Many recent blind channel estimation techniques have exploited subspace structures of the 

observation signals since the seminal paper [66]. The key idea behind this type of algorithm 

is that the channel vector is in a subspace of the observation statistics and is orthogonal to the 

noise subspace. People can decompose the observation matrix to the signal subspace and noise 

subspace and these two spaces are orthogonal. Taking advantage of this orthogonality allows 

us to identify the channel- coefficient vector. These methods have the attractive property that 

the channel estimates can often be obtained in a closed form. 

Let us look at a SIMO system model n > m = 1 at time slot k, 

y(k) = hs(k) + n(k) (2.48) 

Where y(k) is the n x 1 vector, h = (hl, h2, ... , h )T is an n x 1 channel of order equal to 

0 for simplification. n(k) is a n x 1 vector noise and it is the white Gaussian noise which is 

independent of s(k) and its covariance matrix is En = o-2I. After stacking T received signals, 

we have the following, 

Y = (Y(1)T,Y(2)T,...,Y(T)T)T 

s = (s(1), s(2)), . . . , s(T))T 

N = (n(1), n(2), . . . , n(T))T 

So, we obtain the system matrix form 

(2.49) 

Y= K-ls +N =X +N (2.50) 

where X = 9-ls and 14 is the MT x T channel matrix, given as, 

h 0 0 

0 h 0 

0 

0 0 h 

Obviously, this channel matrix has block Toeplitz structure. And the second order statistics of 

Yk are 

H= 

E{YYH} = Ry = 11Rs71H + En, (2.51) 
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where RS = E(ss"} is the source signal covariance matrix. By eigendecomposition, we get 

R -QyAyQÿ (2.52) 

The eigenvectors corresponding to T largest eigenvalues span the signal subspace,Qy, which is 

the same space as the channel vector, 11, spans. The other eigenvectors, noise subspace vectors 

Qn, span the noise subspace which is orthogonal to the signal subspace. So we can obtain the 

following equation, 

Q,t'N = 0. (2.53) 

By solving equation (2.53), the channel matrix `H [66] can be uniquely identified. The or- 

thogonality of the signal and noise subspace provides the identification of the channel state 

information. Figure 2.7 illustrates the equalized 16 -QAM signal resulting from the subspace 

method. 

Estimated Symbols 

Figure 2.7: Equalized signals by subspace blind equalization. 

As stated before, subspace methods are attractive because they can be identified by a closed 

form solution. From another point of view, since they depend on the property that the channel 

lies in a unique direction, they may not be robust against noise and modeling errors, especially 

when the channel matrix is close to being singular [67]. Then in practice, channel model 

mismatch should be considered carefully. 

The other disadvantage of subspace methods is that they have an expensive computational load 
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when calculating a closed form solution. Fractionally spaced equalization and subspace meth- 

ods utilize the SIMO model and the SOS signal property to blindly identify channels. They 

show two distinct features [68][45]: first, SOS can blindly identify non -minimum phase chan- 

nels; second, finite impulse response (FIR) channels can be perfectly equalized in the noiseless 

case. 

Some other methods based on the SOS characteristics assume that system inputs are tempo- 

rally coloured such as AMUSE algorithm [55] and SOBI algorithm [56]. By exploring different 

power spectra, the identifiability of an instantaneous MIMO system using SOS of the system 

outputs has been proven by Hua and Tugnait [69]; meanwhile, some SOS based blind equal- 

ization methods have been reported such as minimum noise subspace method [53], the matrix 

pencil (MP) method [70], the blind identification via decorrelating subchannels approach [71], 

so on and so forth. However, these methods make the further assumption that the power spec- 

tra of the driving inputs are sufficiently diverse [71]. Such assumption are invalid in wireless 

communications. Therefore, we neglect this kind of SOS methods in this section. 

2.6.2 HOS Methods 

Most present methods use HOS for separating signals[72], because the HOS of the non -Gaussian 

signal contains not only the magnitude but also phase information of the unknown channel. BE 

of MIMO channels using HOS has been reported broadly in recent years [73][74][75]. 

In this section, considerations are focused on the problem of blind equalization of Linear Time 

Invariant MIMO systems as formulated in equation (2.41). MIMO systems are expected to 

equalize the observed signals both in spatial and temporal domains. In detail, MIMO equaliza- 

tion aims at eliminating inter -symbol interference due to possible delays introduced by multi - 

paths propagation, and co- channel interference due to the possible presence of simultaneous 

users in the same band. A particular instance of the problem is the static mixture, often referred 

to as the source separation problem in which no inter -symbol interference is considered but 

only co- channel interference. The latter problem is relevant and formulated in narrow band 

communication system when the time delays are smaller than the symbol period, for example. 

Methods based on SOS require the number of received antennae to be greater than the number 

of transmitted antennae or the source have distinct power spectra. When the number of receive 

antennae and transmitted antennae are equal and the sources are temporally i.i.d inputs, BE of 

29 



Review of Blind Equalization 

MIMO system usually use HOS technique as powerful tools. Some well -known blind MIMO 

methods are direct extensions of SIMO methods. Some MIMO methods employing higher - 

order statistics, cyclostationarity, subspace estimation, special matrix structures, and a constant 

modulus cost have been proposed. Blind source separation methods, assuming statistical inde- 

pendence among the transmitted sources, may also be used for solving the equalization problem 

in instantaneous MIMO channels. 

Signals for digital communications are typically non -Gaussian and the higher -order statistics 

of these signals are therefore usually non -zero. This property can be applied in the construction 

of blind equalizers. Since the 1980s, the problem of SISO blind equalization has been tack- 

led using HOS using the fact that cumulants and polyspectra contain both system magnitude 

information and system phase information. Algorithms using HOS exploit the non -Gaussian 

nature of transmitted signals. Gaussian signals are completely defined by their first and second 

moments. Consequently, higher -order cumulants and moments can be take as an measurement 

of being Gaussian. However, HOS and spectra have a large variance and, consequently, large 

sample sets are needed in order to obtain reliable estimates. 

First, we make some assumptions for explicitly HOS algorithms. 

1. The source signal s[k] is statistically independent of the noise n[k]. 

2. The SISO LTI system h[k] is stable and the z- transform of its inverse system h-' [z] is 

also stable. 

3. The source signal 4k] is a zero -mean, i.i.d., stationary non -Gaussian process with (p + 

q)th -order cumulant Cp,q{s[k] I # 0, where Cp,q {s[k]) is defined as Eq. 2.11. 

4. The noise n[k] is a zero -mean, white or coloured, WSS Gaussian process with autocor- 

relation function r [l]. 

In the following, we briefly introduce two basic and popular HOS based equalization algo- 

rithms utilizing HOS explicitly, the maximum normalized cumulant (MNC) equalization algo- 

rithm and the superexponential (SE) equalization algorithm. Both MNC and SE algorithm use 

cumulants as their criteria since cumulant can measure the independence and they are popular 

for their simplicity. 
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2.6.2.1 Maximum Normalized Cumulant Equalization Algorithm 

As the name of Maximum Normalized Cumulant algorithm, MNC is designed through maxi- 

mizing objective function [75], 

ICp,q{u[k]}l 
Jp,q(WMNC) = (2.54) 

where z[k] = wMNcy[k] is the equalized signals and y[k] is the received signal vector. Cp,q {u[k] } 

is (p + q)th - order cumulant of z[k] as defined as equation (2.11) and p, q are nonnegative 

integers, p + q > 3. This objective function is, in fact, the normalized cumulant of equalized 

signals. In MIMO case, the optimum z[k] can be an estimate of any one of inputs and the 

are n stable local maxima [75] when (p + q) >_ 2. There proof is lengthy and omitted here. 

Equation (2.54) is highly nonlinear function, leading to the difficulty of derivation of a closed 

form solution. Therefore, people resort to gradient -type optimizations to deal with the MNC 

equalization algorithm for finding the local maximum of Jp,q(wMiyc). The following table 

summarizes the steps of the MIMO -MNC algorithm. 

Parameter choose p + q > 3 and a convergence tolerance ç > O. 

Initial setting The iteration number i is set to O. And set the initial value of wM. 

Iteration i = 1, 2, ... Calculate the i - th approximation to the parameter w[i] using the 

efficient Broyden -Fletcher -Goldfarb -Shanno (BFGS) method [76] 

such that Jp,q(w[i+1]) > Jp,q(w[i]) 

(w[`+1]) 
Jp,q(w[`])1 

Conver g ence If p'q ç, step into the next iteration; 
Jp,q(wi) 

otherwise, obtain the optimum WMNC = 

The MNC method works well and shows good performance in the case of high SNR and the 

equalized coefficient wMNC is equivalent to the inverse system except for a scale and a time 

delay. For this reason, this criterion is refereed to as the inverse filter criteria (IFC) [77] [78]. 

2.6.2.2 Super -Exponential Equalization Algorithm 

Another algorithm which uses the cumulant technique for finding the blind equalizer w[k] is 

the super- exponential equalization algorithm. This iterative algorithm was proposed by Shalvi 

and Weinstein [79]. Consider the overall system g = w * h in a SISO case, at iteration i, the 
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update of the overall system is given by [79], 

8i+1[k] = (g`[k])P(g`[k]*)q-1 

gi+' gi+1 
[ki/IIg`+1 

[kill 

where p and q - 1 are nonnegative,p + q ?, 3, and 

Consequently, 

gi+i [k] g g<<+1] [o]> '+11 [ 1] . . .) 

Ig'+1[k] g`[k] p+q-1 go[k] (p+q-1)r+i 

gi+1 [m] - I 

gi [m] 
I 

= . ..= 
I g° [m] I 

(2.55) 

(2.56) 

(2.57) 

(2.58) 

(2.59) 

The coefficients of g` +1 [k] decrease more rapidly when its has smaller amplitudes. This im- 

plies gi +1 [k] approaches a delta function as i co. This indicates that gi+1 [k] approaches a 

delta function more closely than g`[k]. Then, the i + lth interference,gi +1 [k] is less than ith 

interference g`[k]. 

The SE algorithm was first extended to the MIMO case [80], where authors assumed that all the 

system inputs have the same cumulant. Further research based on SE algorithm can be found 

in [81]. The following table summarizes the steps of the MIMO -SE algorithm [79]. 

Parameter choose p + q > 3, and a tolerance 4- > 0. 

Initial setting 

Iteration i = 1.2 

Convergence 

The iteration number i is set to 0. Set the initial value of wool and 

calculate the inverse correlation matrix of the received signals 

Ry = (E(yy " }) -1 

Update the equalized coefficients w by 

wi +i (Rÿ) -1dsE 

II(Ry)- 14Ell 
where ds`E is the corresponding search direction and is defined as 

ds'E = cum(u`[k] : p, (ui[k])* : q - 1, y *[k]} 

and u[k] = wTy[k] is the received signals. 

If I(wt +1)xw' 
I < 1 -i , step into the next iteration; 

otherwise, obtain the optimum wsE = 

The major advantages of the SE are its faster convergence, a super -exponential rate. It need 

32 



Review of Blind Equalization 

smaller computational complexity over gradient type algorithms, such as the MNC algorithm. 

However, the SE equalization algorithm sometimes converge to an unfeasible solution if the 

initial wSE[0] is inappropriate, or when the data length N is not sufficient large and the SNR 

is low. Some improvements of the convergence rate and final reliability can be obtained if we 

use whitening preprocessing. The full details are not expanded here, the interesting reader can 

make reference to the book [51]. 

Some other methods are also use the HOS technique directly in MIMO cases. Extensions 

of the CMA algorithm to a general MIMO case were investigated [74]. The Least -squares 

constant modulus algorithm (LSCMA) was first proposed in [82] for a two - sensor array. The 

essence of the LSCMA is to combine the well known least - squares estimator and constant 

modulus properties to blindly extract communication signals. This algorithm extends the CM 

algorithm to the MIMO system with fast convergence speed and good stability performance for 

any linearly independent set of input signals [82]. 

One of HOS measurement, kurtosis, also can be applied to blind MIMO separations directly, 

both in instantaneous mixtures and convolutive mixtures. To prevent the same source to be 

extracted at different outputs, the kurtosis based blind source separation algorithm (MUK) was 

proposed [83]. Papadias used a Gram -Schmidt orthogonalization approach to prevent this sit- 

uation and he also proved the global convergence of the MUK algorithm in the noiseless case. 

The Gram -Schmidt orthogonalization was also developed in [84], where the authors apply idea 

of MMA algorithm to update real and imaginary parts of the equalizer matrix individually and 

then use the Gram -Schmidt orthogonalization to each part. Simulations show better perfor- 

mance than the MUK method. If the sources have distinct kurtosis, Cardoso proposed a simple 

and elegant algorithm, called Fourth -Order Blind Identification (FOBI) [85]. This method iden- 

tifies the unknown matrix by eigen- decomposing the kurtosis matrix of observed data. Tong 

extend this method to the noisy case [86] and developed the EFOBI algorithm with good per- 

formance in noisy environments. In order to separate sources with identical kurtosis, FOBI 

was later generalized to JADE algorithm [87] which is based on joint diagonalization of several 

cumulant matrices. All these belong to the subject of ICA and will be introduced in detail in 

the following section. 
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2.7 ICA for Blind Instantaneous MIMO Separation and Equal- 

ization 

The concept of BE is related to the problem of BSS in the signal processing community. Knowl- 

edge of the statistical and structural properties of the sources or mixing parameters is exploited 

in the blind separation process. Recent texts on the principles of source separation can be found 

in [52] [88]. Typically, source signals are assumed to be statistically independent, and the mix- 

ing system is assumed to be linear even though the mixing may be convolutive. Convolutive 

mixing with FIR filters may be described using FIR -MIMO model. Many ICA [89] algorithms 

[52][54][90][91] have developed for blind separation and equalization since it is implicitly con- 

nected with blind equalization and identification. 

ICA has received a lot of attention and plays a very a important role in the signal processing 

community. Utilizing only the independence of the original signals, ICA identifies an unknown 

channel or mixing matrix and then estimates source signals typically by using some a priori 

information about the system and applying a suitable optimization procedure. It is essentially 

a statistical technique and can usually estimate the source signals up to certain indetermina- 

cies,e.g. arbitrary scaling, permutation. 

In a noisy ICA model, the observed data are typically expressed as a linear combination of 

sources such that 

Y =AS +N (2.60) 

where S is the source matrix, N is noise matrix, Y is the observations and A is the mixing 

matrix. Obviously, this form is equivalent to the instantaneous MIMO system (2.41). For this 

ICA model, the following assumptions are adopted[52]: 

1. Sources have to be statistically independent and Non -Gaussian. 

2. Mixing matrix A is of full rank with the number of received sensors equal to or greater 

than the number of sources. 

3. Each source has zero mean with unit variance. 

All the above assumptions are very realistic and are almost automatically fulfilled in digital 

wireless telecommunication systems. 
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In digital wireless communications, assumptions (1) and (3) are very realistic and almost au- 

tomatically fulfilled. Assumptions (2) can be satisfied when people design a MIMO system. 

Then, ICA drew the eyes of researchers and engineers, especially with the appearance of the 

fastlCA algorithm [92]. This popular algorithm based on a fixed point iteration save a lot of 

computational loads, then make practical applications of ICA feasible. More and more ap- 

plications combining ICA with other techniques have appeared recent years. Operations of 

the complex fastICA has been implemented by FPGA [93] in MIMO communication systems. 

ICA is a potentially useful tool in signal estimation and extraction, in particular in such fields 

as : Interference (ISI, CCI, MAI) cancellation [94] [95] [96]; signal separation in CDMA mo- 

bile communications [52]; Multiuser detection [94] [97] [98]; Radar detection [99]; Orthogonal 

frequency division multiplexing (OFDM) receiver design [100][91]; Blind separation of convo- 

lutive mixtures [101][102][103]; Refinement and improvement of the channel estimation [ 104]. 

2.7.1 Contrast Functions and Basic Algorithms 

ICA usually operates by formulating a criteria (contrast) function and then optimizing it. The 

performance of separateness depends on both the contrast function and the algorithm optimiz- 

ing it. The former determines the statistical properties of ICA, e.g., consistency, robustness and 

asymptotic variance. The latter determines the algorithm properties. e.g., convergence speed, 

numerical stability and memory requirements. In the following subsection, some popular con- 

trast functions and basic optimizing algorithms are introduced. 

2.7.1.1 Contrast Function 

ICA separate mixtures by exploring the statistical independence of source signals. So the nat- 

ural question is which tools should be used to measure the independence? Some basic contrast 

functions are listed below [52], 
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Normalized Kurtosis K4(s) = E {s4} - 3(E {s2 })2 -3 

Differential entropy H(s) = - 
J 

p(s) log p(s)ds 

Mutual information I(s) = J(s) - J(si) 
i =t 

Negentropy J(s) = H(sgauss) - H(s) (2.61) 

The normalized kurtosis K4(s) is commonly defined for a random vector s and is simply the 

normalized fourth order cumulant. The second part at the end of kurtosis formula is explained 

as a correction to make the kurtosis of the normal distribution equal to zero. Then, for s with 

unit variance the kurtosis becomes a normalized fourth moment E {s4 }. s is called sub -Gaussian 

and super- Gaussian for K4(5) < 0 and K4(s) > 0, respectively. In digital communication, sources 

are discrete, thus the probability mass function (pmf) is equals a discrete value. For binary 

sequences, s is sub -Gaussian, the kurtosis, K4(s) = -2. For complex sources, the normalized 

kurtosis of a zero -mean random variable is given as equation [44], 

K4(s) = E {1s14} - 2(E {Is12 })2 - lE {s2 }I2 -3 (2.62) 

A high kurtosis shows a sharp peakedness in pdf or pmf. 

The differential entropy Hen(s) is defined as Hen(s) = -f p(s) log p(s)ds for a given random 

vector s = [si s2 ... sn]T with probability density function p(s) [52]. 

The mutual information I(s) between the random variables si, i = 1, ... , n is an information 

theoretic measure for the independence of random variables. It can be defined using the 

Kullback Leibler (KL) divergence between the joint density p(s) and the factorized density 

pf(s) = p(si)p(sn) according to 

-f p(s) log 
p(s) ds. 

pf(s) 
(2.63) 

The negentropy J(s) is defined by normalizing the differential entropy II en(s), where sgauss is a 

Gaussian random vector with the same covariance matrix as s. 

To reduce the computational complexity, approximations of non -Gaussianity measures are 
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often used in most cases. As an example, in the case of the negentropy, approaches use 

higher -order moments [52] and the maximum -entropy principle [90] to approximate the non- 

Gaussianity. Note that, the intuitive interpretation of the cost functions is that they are measures 

of non -Gaussianity [89]. A family of such measures can be constructed by using practically any 

non - quadratic function G and then consider the difference between the expectation of G for the 

actual data and expectation of G for Gaussian data with the same variance as the actual data. 

Usually, people can measure the non -Gaussianity of a zero -mean random variable, u, using any 

even, non -quadratic, sufficiently smooth function G as follows [ 105]. 

J(u) = I Eu{G(u)} - Ev{G(u)}I P, (2.64) 

where y is a standardized Gaussian r.v.. u is assumed to be normalized to unit variance and the 

exponent p = 1,2 typically. The subscripts denote expectation with respect to z and v. 

Obviously, J(u) is a generalization of kurtosis -based approximation. The point is that by choos- 

ing G, one want to obtain the approximation of negentropy. Some commonly used functions G 

are [52]: 

Gl(u) = log cosh(aiu), 

G2(u) = exp(-a2u2/2) 

G3(u) = 1u2. 

(2.65) 

where al, a2 >- 1 are some suitable constants, often taken equal to one. In particular, one 

can obtain more robust estimators by choosing a G that does not grow too fast and to prevent 

overflows. G3 is motivated by kurtosis. G1 and G2 grow more slowly than G3 and thus they 

give more robust estimators. 

These approximations of negentropy offer a very good compromise between the properties of 

the two classic non -Gaussianity measures given by kurtosis and negentropy. When we use 

the simple kurtosis function G(u) = i u2 to measure the non -Gaussianity, the cost function is 

defined as 

hcA(w) = E{lwHx14)} - 2. (2.66) 

Recall the CMA cost function equation (2.29), which can be written as, 

JCM(w) = E{awHx12 - R2)2} 
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where R2 is constant dependent on the signal constellation and can be normalized R2 = 1. 

Assume the signal was first prewhitened then the CMA cost function is 

iCM(W) = E{(lwHx14 - 1 }. (2.68) 

As we see, it has the same form to the kurtosis -based ICA function. 

2.7.1.2 Basic Algorithms 

Before various ICA algorithms, people transform the observed vector,y, to a new white vector,x, 

which components are uncorrelated and their variances equal unity. 

E{xxH} = I (2.69) 

This common data preprocessing method is generally called pre -whitening or data whiten- 

ing. The principal component analysis processing simplifies the following processing and is 

one popular method for whitening. PCA finds an orthogonal basis for given data and can be 

implemented by singular value decomposition. The components of the received signals are 

uncorrelated and have unit variances after the process of data whitening. In digital communica- 

tion, whitening can improve the separation performance and the convergence speed [52] since 

it reduces the dimension and randomness of the data, then prevents overlearning introduced by 

noise. 

There are many algorithms to deal with ICA. It depends on variations of the basic problem 

and domains in which the algorithms are derived and their corresponding problems are posed. 

The problem variations include instantaneous and convolutive mixtures. The problem domains 

include the time domain and the frequency domain. Furthermore, algorithms based on adaptive 

or block methods can be used. ICA can be carried out with the help of on -line iterative algo- 

rithms, some of them extracting one source at a time (deflation). However, methods based on 

blocks (batch) become more attractive when computer power no longer appears to be an imped- 

iment. The use of block algorithms presents a number of advantages, such as improvements on 

the convergence speed (both estimation of statistics and optimization), and increased facility to 

deal with spurious local extrema. In the following, we list some important algorithms. 

Four popular time domain algorithms are described: the Infomax [ 106], the natural gradient 
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[107], the equivariant adaptive separation via independence (EASI) [88] and the FastICA algo- 

rithm [90]. The iterative determination of the separating matrix W according to oW = W+ -W 
that defines each algorithm is listed below, 

Infomax A = (Wt)-1 - g(u)xT (2.70) 

Natural gradient oW = µ[I - g(u)uT ]W (2.71) 

EASI oW = µ[I - uuT + g(u)uT ]W (2.72) 

FastICA oW = diag(ai)[diag(ißi + E{g(u)uT})] W (2.73) 

where p is the learning rate and I is the identity matrix, g is a given nonlinearity and g(u) applies 

the given scalar nonlinearity g to each component of the vector u,u = Wx. 

The principle of the EASI algorithm is to cancel nonlinear cross correlations in output signals. 

Compared to the famous Jutten- Herault method [ 12], it reduces the computational load and 

improves the stability. 

Using the Infomax principle which tries to maximize the mutual information between input and 

output, the Infomax algorithm [ 106] is a stochastic gradient algorithms intended to maximize 

log likelihood. It is the simplest method but it converges very slowly. The convergence can be 

improved by using the natural gradient or relative gradient methods, as given in Eq. 2.71. Natu- 

ral gradient is based on the geometrical structure of the parameter space to correct the direction 

of stochastic gradient and then speed up the convergence speed. However, its convergence 

speed is still dependent on the choice of learning rate, p. To overcome this problem, FastICA 

[90] uses a block algorithm with a fixed -point iteration. These two matrices diag(ai), diag(/3i 

given in 2.73 provide an optimal step size. This algorithm is a fast and reliable maximization 

method which originally is designed to maximize the measures of nongaussianity. Also, the 

FastICA algorithm can be directly applied to maximization of the likelihood [52]. We will 

describe its complex version in section 2.7.2.1. 

2.7.2 Typical Complex ICA Algorithms for Blind Separations 

Since a common modulation scheme in wireless communications is 4-QAM or 16 -QAM which 

represent information in a complex domain, the introduction of ICA for separating complex 
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valued signals is needed. A complex variable s is defined in terms of two real variables sR and 

sj as s = sR + jsl, where j = V=1. The statistics of a complex random vector s = sR + jsj are 

defined by the joint pdf or pmf ps(sR, sj) provided that it exists. The expectation of a complex 

random vector s is then given with respect to this pdf and is written as E {s} = E {sR} + 

The covariance matrix is written as Rss = cov {s} = E {s -E {s } }E {s -E {s } }H, where H denotes 

Hermitian transpose. The pseudo -covariance matrix is defined as Pss = E {s -E {s } }E {s -E {s } }T 

[108], where T denotes transpose. These two quantities together define a complex random 

vector. 

In noiseless cases, the closed -form solutions to ICA in the complex -mixture scheme can be 

found in [ 109]. For other approaches to ICA, for example when using cumulants as in joint 

approximate diagonalization of eigenmatrices (JADE) [2] or full second order structure as in 

strong-correlating transform [108], the extension to the complex case is straightforward. How- 

ever, in approaches that use nonlinear functions to implicitly generate higher order statistics, 

such as Infomax [106] and FastICA, this is not the case. Methods using nonlinear updates pro- 

vide simple and efficient solutions to the ICA problem and thus it is desirable to extend them to 

complex -valued data as well. 

Usually, ICA has its limitations of blind separations in the complex domain, . There are three 

types of indeterminacies which can arise: 

1. Permutation indeterminacy; 

2. Sign and scaling indeterminacy; 

3. Phase indeterminacy. 

The second and third indeterminacies, when combined together, are referred to as the complex 

scale ambiguity. In consideration of noise, some popular complex ICA scenarios for digital 

communications are investigated below. 

2.7.2.1 Complex Fast Fixed -Point ICA 

The complex fast fixed -point ICA algorithm is the direct extension of Fast ICA [92]. Bingham 

et al. [I] focus on sources having circular distributions in order to simplify their derivations. 

Its contrast function is 

JG(w) = E{G(IwHx12)} 
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where G : R+ u {0} -* R is a smooth even function, w is an n- dimensional complex weight 

vector and 

E{IwHx12) = 1 (2.75) 

where x is the received signal after pre -whitening processing. Notice that finding the local 

or global maximum of a contrast function is a well defined problem only if the function is 

real. Consequently, people prefer to operate contrast functions on absolute values rather than 

on complex values. According to the Kuhn- Tucker conditions, the optima of (2.74) under the 

constraint (2.75) are obtained at points [1] where: 

vE{G(IwHxI2)} -ßVE{IwHx12} = 0 (2.76) 

whereß is a constant and the gradient is computed with respect to real and imaginary part of w 

separately. Using a Newton method to solve (2.76), 

one obtains the following approximating Newton iteration: 

w+ = E{x(wHx)*g(IwHx12)) 

-E{gQwHx12) + g/(IwHxI2)}w 

w =w+/IIw+II 

of which the non -linear function g(u) is suggested [ I ]: 

gt(u) = 
2 a1 + u' g2(u) = a2 + u' 

g3(u) = u, 

where g is the first derivative of the G and ai, a2 are some constants. Maximizing JG(wi) can 

estimate one independent source. n independent sources can be estimate by using a sum of n 

contrast functions, and a constraint of orthogonality. Thus one obtains the following optimiza- 

tion problem 

Maximize: Z.7_1 Jj(wi) with respect to wi 

j= 1,...,n 

Subject to: E {(wHx)(wk x) *} = Sik 

where 8ik = 1 for i = k and Sik = 0 otherwise. 
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Figure 2.8: Received and separated signals by circular complex fast ICA in a 4x4 system with 
16 -QAM modulation. 

Note that the contrast function defined in (2.74) does not preserve phase information and specif- 

ically uses the signal's modulus for source separation. Because of this property, complex Fas- 

tICA assumes source distributions to be circular and its performance significantly suffers when 

the sources are not circular. Despite the circularity assumption, this form of complex FastICA 
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Figure 2.9: BER and separability performances of circular complex fast ICA in a 4x4 system 
with 4 -QAM and 16 -QAM modulations. 

is a fast fixed point algorithm that works well when the sources are primarily circular because 

there is an additional ambiguity. Figure 2.8 shows the rotation of the estimated signals by 

this Complex Fast Fixed -Point algorithm. Where the source signals are 16 -QAM modulation. 
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Clearly, it indicates the phase rotation. In this simulations, 1 symbol is inserted at the begin- 

ning of transmitted burst to indicate a phase information. Figure 2.9 illustrates the BER and 

separability performance which is defined (3.44) in detail. This circular fast ICA is set up in a 

4 x 4 system with 4 -QAM and 16 -QAM modulation over variant SNR. 

2.7.2.2 JADE 

JADE algorithm [87] is another popular optimization method for ICA. The contrast function of 

JADE measures the mutual information by the fourth order statistics, cross -cumulant. Cardoso 

realizes that making the source independent can be translated as making the cumulants matrices 

of equalized signals as diagonal as possible. The cumulant matrix with elements, [Q(x)(M)]ij, 

is defined in [ 110] as: 

[Q(x)(M)]ij = E cum(x;.xl, xk, xl)Mkl 
k=j=1 

(2.77) 

where M is an n x n matrix and x is the received signal after pre -whitening processing. The 

contrast function is the sum of squared cross cumulants form equation (2.77), 

jade(X) _ (Qijkl) 
ijkl#ükl 

2 (2.78) 

Instead of optimizing directly with respect to all dimensions of data, one optimizes the function 

iteratively in a pairwise manner. JADE finds out the optimum of two dimensional data and 

transforms the data accordingly. This finally leads to the global optimum by iterating this 

several times to each pair. The optimization procedure is carried out by orthogonally jointly 

diagonalizing a set of forth -order cumulant matrices and trying to minimize the off -diagonals 

in a mean square sense. However, the off -diagonals of different matrices do not usually vanish 

simultaneously for any parameter value. An advantage of operating on cross -cumulants is that 

JADE does not require gradient descent and thus avoid problems of converge to local minimum 

. However, JADE requires storage of 0(n4) cumulant matrices to calculate a complete set of 

fourth order cumulants. 

Figures 2.10 and 2.11 show an estimation of the received signal by the JADE algorithm and 

illustrate the BER and separability performance of the JADE algorithm in a 4 x 4 system with 

4 -QAM and 16 -QAM modulation over variant SNR. Again, 1 symbol is inserted at the begin- 

ning of transmitted burst to indicate the phase information for the decoding procedure. 
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Figure 2.10: Received and separated signals by JADE method in a 4x4 system with 16 -QAM 
modulation. 
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Figure 2.11: BER and separability performances of the JADE algorithm in a 4x4 system with 
4 -QAM and 16 -QAM modulations. 

Either complex FastICA or JADE algorithm can separate the QAM signals successfully. When 

SNR is greater than 20dB, the BER performance is nicely below 10 -2 for 4 -QAM modulation 

and a little higher SNR requirement is needed for 16 -QAM signals. Both algorithm show reli- 

able performance of separating QAM signals. However, they also have disadvantages. JADE 

estimates a complete set of fourth order cross -cumulants and requires storage of 0(n4) cumu- 

lant matricesis. This is not problematic and efficient in low dimensional problems. But its 
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convergence speed becomes increasingly slower as the number of sources increases [111]. The 

complex FastICA has no such question but the cost function is designed for circular sources 

[1]. It produces a biased result [ 112] when the mixture contains some real valued sources, such 

as BPSK signals. 

As we have shown above, the mutual statistical independence of source streams in transmitted 

antennae exist in a MIMO system, thus this can be exploited through the use of ICA [89] 

which essentially is a specific HOS technique. As a statistical technique, ICA uses only the 

independence of the original signals to identify an unknown channel or mixing matrix first and 

then estimates source signals. As such independence among transmitted signals exists, it is 

very suitable for the separation of MIMO systems. ICA can usually estimate the source signals 

up to certain indeterminacies: arbitrary scaling, permutation. One of the advantages of an ICA 

aided approach is that the signal can be recovered regardless the constant modulus requirement 

and the spectral characteristics [113]. The ICA based estimation has also proved useful in 

refining linear detection [94]. This refinement comes from the alleviation of the error estimation 

of the channel. In more general MIMO models, there is evidence that the performance of 

ICA based Minimum Mean Square Error equalization is better than the conventional MMSE 

receivers[ 104]. 

2.8 Chapter Summary 

As is well known, the radio spectrum is a scarce resource. The use of blind equalization in 

wireless communication system provides a potentially powerful tool for improving spectral 

efficiency, such as 18 %in GSM systems. Hence, there is a need for intelligent receiver structures 

that use limited resources efficiently. In high data rate communications, high quality channel 

estimates are necessary. Blind and semi -blind methods can estimate channel and facilitate the 

mitigation of ISI with none or limited training data, so they are important and meaningful. 

Blind receivers further improve the performance by cancelling interference caused by the other 

users using the same frequency band. In addition, the use of multiple transmitters and receivers 

allows the systems to take advantage of properties such as spatial diversity in order to exploit 

existing the channel capacity better. 

A brief review on blind equalization and separation is introduced. Both SISO, MIMO systems 

and SOS, HOS techniques were presented. For conventional blind equalization in SISO links, 
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Bussgang family were exploited, this techniques is iterative equalization that usually employ 

stochastic gradient descent algorithm to minimize an non- convex cost function of the equalizer 

output. In the MIMO systems, techniques based on SOS and HOS are introduced. The popular 

fractionally spaced equalization and subspace method are presented in detail. Methods use 

explicit HOS for separating signals, such as MNC and SE are also given. They directly employs 

the minimization of higher order cumulant based nonlinear cost function. 

ICA was exhibited mathematically. The corresponding cost function and some basic algorithms 

were shown. Simulations using the Fast ICA and JADE were illustrated. They all show the 

ability and feasibility of blind equalizations and separations. The underlying cost functions 

of BE are multimodal, then the convergence behaviour of these BE algorithms is difficult to 

converge to the global minimum. In order to avoid convergence to the local minima, a good 

initial value should be provided. However the good initialization is not always possible or 

successful. Theory analysis of these convergence properties concern a lot of mathematics, they 

are not summarized here for simplifications. 
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Chapter 3 

An Efficient Nonlinearity for QAM 
signals 

3.1 Introduction 

From the beginning of blind equalization, nonlinearity has played an important part in digital 

communications. Approaches developed in the early stage utilized Bussgang nonlinearities, 

where the nonlinearities are memoryless. The statistical properties of Bussgang type algo- 

rithms used is that for the separated signal the expectation of the product of input and output 

of the Bussgang nonlinearity g(.) is equal to the squared input to the Bussgang nonlinearity, 

E {g(s)s} = E {s2 }. The role of nonlinearities is defined by contrast functions, which can be 

viewed as a probabilistic descriptor, i.e. likelihood, entropy or mutual information. Since then, 

blind separation and equalization methods based on nonlinearity attracted research interest. 

Such kind of ICA methods has two advantages: First, they provide simpler solutions to the 

ICA problem than joint approximate diagonalization of eigenmatrices (JADE)[2] or full second 

order structure as in the strong -correlating transform [ 114]; Second, these nonlinearities can re- 

veal the high order correlation among the signals. Such high order correlations indicate mutual 

dependence, which then forms an error signal to drive the output signals to a state of higher 

independence. These high order statistics are produced by the nonlinear functions implicitly. 

An important point used in this chapter is that good nonlinear functions, in terms of separability 

performance, are essentially defined by the probability density function of the original source 

signals. In this chapter, a simple nonlinearity for QAM signals is proposed. 

3.2 Optimum Nonlinear Functions 

For blind channel identification that use nonlinearities to generate the higher -order statistics, 

such as complex infomax, maximum likelihood, and negentropy, the optimal choice of nonlin- 

earity is based on the source distribution either through the score function in a likelihood frame- 

work, or through entropy in maximization of negentropy [ 115]. So, when using entropy /non- 
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Gaussianity as the cost function in ICA, a measurement of non -Gaussianity is negentropy de- 

fined for a vector y as, 

Jneg(Y) = H(YGauss) - H(Y) (3.1) 

where H(y) = -E {log(p(y))} is the differential entropy, p(y) is the pdf. Since yGauss is a 

Gaussian random variable with the same covariance matrix as y, H(yGauss) is constant, this cost 

function then is determined by E {log(p(y)) }. Also, this can be connected to ML estimation. 

Observe a noiseless ICA model, 

y = Hs (3.2) 

The pdf of the received signal p(y) can be written 

Py(Y) = I det WI Ps(s) = I det WI 
1 1 Pi(Si) (3.3) 

where W = H -1 is the demixing matrix and pi(si) is pdf of ith source signal. Given W = 

w1, w2, ... , wn, equation (3.3) can be written as 

Py(Y) = I det Wlps(s) 

= I det WI jliPs;(w;TY;) 

The likelihood can be considered as the probability density of the received signal y. The log - 

likelihood function L(W) is then given by 

L(W) = log I det WI + log {I Ps;(w;TY;) = log I det WI + logPs;(w ;Ty;) (3.4) 
i =; 

The equation above expresses the likelihood as a function of the source pdf,ps;. To find the 

maximum likelihood, the knowledge of source density is necessary. 

To achieve ICA, both negentropy and ML require the nonlinearity to match the source density. 

Many source density adaptation methods have been proposed for performing ICA [116][117]. 

3.3 PDF of QAM modulations 

M -ary quadrature amplitude modulation is an important digital modulation systems. It can be 

regarded as the extension of pulse amplitude modulation to the complex baseband representa- 
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Figure 3.1: MoG PDF of 16 -QAM with different variances. 
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tion. For the common case, in terms of I -Q balance, people always take M as an even power 

of two, e.g., M = 4, 16, the I and Q parts are independent of each other. Generally, QAM 

distribution is sub -Gaussian. For noiseless complex valued M -QAM sources, the probability 

mass function is 

p(s) = 
M ifsEA 

0 otherwise 
(3.5) 

where A is the set of complex points in the constellation, e.g. A = [ 1 + j, l -j, -1 + j, -1 - jI 
for the 4 -QAM source. 

A mixture of Gaussian (MoG) model can provide a flexible alternative to source density match- 

ing. In reality, the system assumes the existence of noise, hence with the addition of complex 

white Gaussian noise to the sources, a MoG kernels is appropriate for representing the discrete 

source. Then we model the pdf in equation (3.7) for an M -QAM source with the Gaussian 

mixture model: 
1 M 

PQAM(s) - 
v 

M2n2 
i=1 

e( 2v'- 
'- ((sR-AR)+(si-Af )2)) (3.6) 

where o-2 is the variance of the Gaussian mixture. Figure 3.1 give us an illustration of MoG pdf 

with different variances. The noise covariance in Figure 3.1(a) is set to 0.2 and in Figure 3.1(b) 

is set to 0.4. With the increase of covariance, the source pdf change form a discrete distribution 

to a continuous probability distribution that approximates a pdf with a uniform distribution in 

the middle part and Gaussian distribution both sides. Different noise variances cause various 

separability. In following simulations, the noise variance, o-2 , is fixed to .16 for 4 -QAM and 

16 -QAM since this provides the good performance empirically. Note that for convenience we 

are treating the noise as being isotropic in the source domain as was also done in [ 118]. We 
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note, however a more realistic model is isotropic noise in the sensing domain. 

This kind of density modeling method is widely used throughout the fields of machine learning 

and statistics [119] [120]. It also enable us to maintain the classical ICA model when using the 

MoG pdf. 

3.4 A Simple Nonlinear Functions Based On The QAM modula- 

tion 

Consider MoG pdf of QAM modulations, when the size of A increases, eg. 16 -QAM or 64- 

QAM, solving the equation (3.6) need heavy calculations. The system computation load then 

becomes huge and it is prohibitive for real time operation. To reduce this unaffordable com- 

plexity, a simple nonlinear function to approximate this MoG pdf is desirable. 

As emphasized above, the optimum nonlinear function for blind source separation is directly 

related to the source pdf. Furthermore, in terms of the Fisher information of a density, the 

optimum nonlinearity for given source distributions, p'(s) /p(s), were found by applying ML 

methods. Further research shows that the exact curve of the nonlinearity did not matter too 

much [121]. These conclusions inspire the simple nonlinearity of the original optimum nonlin- 

ear function. 

According to equation (3.1), the cost function for QAM signals is 

J(w) = E{log pQAM(wHx)} (3.7) 

where w is the row of the unmixing matrix W and x is the whitened received signal, which 

satisfies E {xx "} = I, the identity matrix. 

Figure 3.2 illustrates the real part MoG 16 -QAM pdf, its approximation and the corresponding 

nonlinear function based on this approximation. Here, for simplicity, we give the 1 dimensional 

illustration in Figure 3.2. The top figure is obtained by the real part of the combination of 

discrete QAM pdf and 4 AWGN noise with covariance 0.25. The middle figure flare -out the 

curve of the top figure. And the bottom one is the score function with a pdf of middle figure. 
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Figure 3.2: Nonlinear approximation of MoG. 

3.4.1 Split Complex Nonlinearities 

2 

In square QAM systems, the real part and the imaginary parts of the signal are statistically in- 

dependent. So one can apply the same nonlinearity independently to the real and the imaginary 

parts of the signal s = sR + jsr. Such a nonlinearity is strongly motivated by the interpretation 

of the score function as the negative log likelihood of a distribution whose real and imaginary 

parts are independent. For QAM components, the joint pdf can be written as the product of 

marginal pdf of real and imaginary parts. And it can be written as 

PQANr(s) = pSR(sR)Ps,(sr) (3.8) 

pQAM : R x R -R is the joint pdf of the QAM source. Hence, the nonlinearity becomes 

S(s) = 

aPsR(s'R)Ps,(sr) aPsR(sR)Psi(sT) 
aSR + as, 

PSR (sR)PS, (sr) 

PSR(sR)Ps,(sr) + jPSR(sR)PS,(sr) 

PSR(sR)PS,(sr) 

psR(SR) PSr(Sr) 
_ 

(PSR(sR) +Ps,(Sr)) 

= g(sR) + j8(sr) (3.9) 
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Nonlinearities of the form given by (3.9) rotate the constellation of a complex signal such that 

the real and imaginary parts become independent of each other. 

Let us look at the equilibrium of the separation point, 

E{1 - g(s)s'} 

= - (g(sR) + Jg(s1))(sr - ist)) 

= Ell - [g(SR)SR + g(SI)S1] +.l[g(SR)SI - g(s1)SR]} 

=0 

Two equations can be built from this, 

(3.10) 

E{g(sR)sR + g(sl)sl} = 1 (3.11) 

E{g(sR)sl - g(sl)sR} = 0 (3.12) 

Equation (3.11) shows that the signals are separated by using both real and imaginary parts. 

Equation.(3.12) enforces the constellation rotation. So, this IQ independent nonlinearity could 

correct the phase ambiguity up to kr /2. It can therefore partly solve the question of phase 

ambiguity. We will call such nonlinear function, Split Complex Nonlinearities. 

Obviously, we can describe this kind of Nonlinear function and the corresponding Split Non- 

linear Threshold Function is given by 

g(u) = 

0, 

a[(uR - sgn(uR)v)+ 

J(ut - sgn(ut)v)], 

a(uR - sgn(uR)v), 

Ja(u1- sgn(u1)v), 

IuRI < < v 

IuRI ? v; I u1I >- v 

IuRI >- v; Iutl < V 

IuRI < v; Iu1I >- v 

(3.13) 

where y is the threshold and a is the slope of the nonlinearity and it affects the convergence ca- 

pability and stability. The proposed I/Q independent nonlinearities, apply the same nonlinearity 

independently to the real and the imaginary parts of the signal u = uR + ju1. 

The key advantages of this nonlinearity over the MoG kernels are: 

Simplicity - The nonlinearity only requires a small number of simple bit -level sign oper- 
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Figure 3.3: Nonlinear approximation of MoG. 

ations which can take the place of a large amount of multiply and add operations. 

Unimodel density model - It avoids potential problems of introducing spurious local min- 

ima. 

Flexible - The single nonlinear activation function is applicable to all QAM modulation 

schemes irrespective of constellation size. 

Another very attractive nonlinear function in the form of a threshold nonlinearity is developed 

by Mathis in [122] [123]. This universal nonlinearity introduces a parameter into three level 

quantizer and can separate any non -Gaussian distributions, symmetrically distributed signals. 

As illustrated in Figure 3.3, it is a clipped version of the score function for the source with 

uniform distribution with two parameters, the threshold y and the gain a. This threshold non - 

linearity works directly for sub -Gaussian signals. Moreover, it can separate any non -Gaussian 

signal by adjusting the threshold v. The stability criteria for continuous and discrete distribu- 

tions are also provided. It has the advantageous feature of low computational complexity. On 

the contrary, our proposed nonlinearity is not a simplification of polynomial function but an 

approximation of the true score function for Gaussian noise contained discrete sources. As 

illustrated in Figure 3.3, the slope in nonlinearity is coming from the sidelobe of Gaussian dis- 

tribution. This property is more suitable for digital modulation with AWGN, as we will see in 
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Figures 3.8 and 3.9. 

3.4.2 Gradient Algorithm of Threshold Nonlinear ICA 

Generally, in order to identify a channel or mixing matrix, it is popular to resort to a stochastic 

gradient algorithm, where the update equation is given as 

Wn+1 = Wn +p[(Wn)-H - g(u)yHl, (3.14) 

where u = wHy is equalized signals. p is the learning step and g(u) = [gt(ut), ..., gN(uN)]T 

is the vector of score functions. Here g;(u;) is the threshold nonlinearity mentioned above. To 

accelerate the convergence, the update equation can use the natural gradient method [ 107]. The 

separation matrix W can be formulated as 

Wn+t Wn 
g(u)uH) Wn (3.15) 

Computer simulation Figure 3.7 will illustrate the separated performance of this split complex 

nonlinearity based on the gradient algorithm. 

3.4.2.1 Steady State Error 

Generally speaking, the convergence behavior is tradeoff against convergence speed by the 

stepsize p if the useful observed data is fixed. [ 124] give a measurement of steady state error. 

Here if we define 

K+ = E{g (u)}E{u2} + E{g (u)u} 

K_ = E{g (u)}E{u2} - E{g (u)u} 

y+ = E{g2(u)}E{u2} + (E{g (u)u})2 

y_ = E{g2(u)}E{u2} - (E{g (u)u})2, 

where g is defined as 3.13. Then, the steady state error is proportional to 

1 Y+ Y- =2(K++K_) 
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3.4.3 Fixed -Point Algorithm for Threshold Nonlinear ICA 

The gradient method can suffer from slow convergence speed and introduces the difficulty of 

selecting of the learning step size. So, a Newton -like approach is preferred to overcome these 

difficulties if an appropriate cost function can be defined for which the second derivative exists. 

Given the cost function (3.7), and additionally under the unit power constraint E {u;u, } = 1, 

and constraining the weights to 11w112 = 1 due to the whitening transform, the optimal weight is 

[118] 

wopt = arg max E {log pQAM((wHx)) }, (3.17) 
IIWII -- =1 

where x is whitened the received signal. The fixed point algorithm [92] for the constrained 

optimization problem defined in (3.17) uses a Newton method based on the Lagrangian function 

L(w, A) = J(w) + d(wHw - 1) (3.18) 

where A is the Lagrange multiplier. Using the complex gradient and Hessian in [125], the 

Newton update is defined as, 

AO" = 
( 

l 

a2J -' aJ 
aW*WT aW* 

J J 

(3.19) 

(3.20) 

where 1-1 is the complex Hessian, v* is the conjugate gradient to the Lagrangian function and 

is of the form 6 E C2N = [Wi, wi, ..., wN, wN]. We follow the style of Novey and Adali [126], 

the update of (3.18) is written as 

After expanding, 

My = -(`í-lJ +AI)-1(rj +.1Wn). (3.21) 

(14J + AI)-11r+1 -v + %(,/*n (3.22) 

where ow = wn+1 - W. This equation is updated as [126][1 18] 

wn+1 
ZE{xg*(u)} 

+ E{gQ(u)}wn + E{xxTgb(u)}(wn)*. (3.23) 

Further details can be found in [126]. The above equation considers the noncircular nature of 
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Figure 3.4: Nonlinear threshold function and nonlinear selective function. 

the sources through E {xxT }. In the light of (3.23) and equations in [126], the split threshold 

nonlinear update equations are 

g(u) = z a{gv(uR)[uR - sgn(uR)v]+ 

Jgv(ui)[ur - sgn(ur)v]} 

io(u) = 4a[gv(uR) + gv(ut)] 

gb(u) = 4a[gv(uR) - gv(u!)] 

Where we define the nonlinear selective function, gv(s), as 

0, lul <v 
gv(u) = 

a, lul 

(3.24) 

(3.25) 

Fig. 3.4 illustrated the nonlinear threshold function and the corresponding nonlinear selective 

function, where v = 1 and a = 1. 

3.4.4 Local Stability Analysis 

The stability property of ICA was well studied for the real case by Amari [ 127], by analyzing the 

second order statistics of ICA for real symbols. Also, Cardoso subsequently proposed a similar 
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solution in [ 128]. In this section, similar to Amari's analysis, we explore the local stability of 

the proposed complex nonlinearity for complex valued signals. We study the stability of J(w) 

under the constraint that ¡1w112 = 1. We apply an orthogonal change of coordinates q = wHH and 

assume an optimum solution is q; = [0, ... , i, ... , 0] T without consideration of permutation and 

scalar ambiguity problems. Also, without loss of generality, we consider ql = [ 1, 0, ... , 0] T. 

Therefore, the Lagrangian function of the constrained optimization is, 

L(q, À) = J(q) + A(gHq - 1)I (3.26) 

The second order necessary and sufficient conditions for a local minimum are 

vgL(gi) = 0, v,1L(a.) = 0 (3.27) 

and 

zHV9L(gilz >_ 0 

where z is a feasible direction {z1(v(gHq - 1)Hz = 0) [ 129]. 

(3.28) 

The first condition (3.27) can be obtained by equation (13) in [118] at ql . Since the sources are 

mutually independent, 

sig*(s1) 

sIg(sl) 

vqL(qi) = 
21 E 

0 +.il 0 

0 0 

Setting either of the top two rows of equation 3.29 equal to zero and leads to 

1 
AI = -2E{slg*(s1)}. 

The second condition (3.28) can be obtained from paper [ 126], we find 

a2 J(w) 
= E {s;s*.ga} 

82j(w) 
= E {s,sgb} 

aqt aq.i f ae aqi 

q oq, -E {s; sag'1 } 132'4W) = E {s,sga} 
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In terms of our specific complex split nonlinearity, substituting (3.31) into the Hessian form of 

v2L(gi) defined in [118], we obtain 

oL(qi) = E 

A 0 ... 
0 ... 0 

0 0 BN 

+ A1I. (3.32) 

This Hessian matrix is a block diagonal matrix with 2 x 2 submatrices A and Bi, 

A = 
slsiga(si) 

(si)2g6 (si) 

sigb(si) 

slsiga(sl) 

4(sl) s2gb(s1) 
BE _ 

(s; )2g6 (si) ga(si) 

(3.33) 

(3.34) 

We now examine the behaviour through the submatrices A and B. The stability condition (3.28) 

requires (A + A1I) and (Bi + A1I) to be positive definite. Noting that the form of A and Bi is 

Hi i H12 

H1e HII 
H = (3.35) 

The eigenvalues of H, Kt, can be found, 

Kf = H11 ± 1H121. (3.36) 

For submatrices A and Bi, H11 is equal to A11 and Bill respectively. Substituting (3.33) and 

(3.34) into the equation (3.36), the stability conditions can be obtained as: 

and 

E{slsigQ(s1)}+A1 f IE{sigb(s1)}I > 0 (3.37) 

E{ga(s1)} + A1 t IE{s2gb(s1)}I > 0. (3.38) 

For QAM modulations, simplifications occur when the threshold value is set to the outermost 

symbol amplitude, either the real or imaginary part, e.g. y = IRe(si)I. Under this constraint, 
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g6(si) = 4[g' g"] = 0, and 

i = -2E {Sig *(si)} 

= --2E {g' (si)sR + g'(sl)si} + jE {g' (si)si - g'(sl)sR} 

= - 2E {gR(si)$ + g'(si)si} 

= 0 (3.39) 

where gR(si) = g'(si) = O. Then stability conditions (3.37) and (3.38) can be simplified as 

E {Is1I2ga(si)} > 0 (3.40) 

and 

E{ga(si)} > 0. (3.41) 

A closer look at equation in [118] reveals that E {ga(si)} is always greater than 0, So the stability 

conditions are set up when we select the threshold value appropriately, such as around the 

outermost symbol amplitude. 

3.5 Nonlinear Threshold ICA With Bias Removal 

An algorithm of the form given by the equation (3.23) will cause a biased estimate when AWGN 

is added at the receiver. The linear operations of ICA try to find the inverse of the channel ma- 

trix and multiplied by observed signals contaminated by AWGN. Therefore this operation'in- 

troduces noise to the output. However, if the noise covariance of AWGN is known, an unbiased 

form can be designed. 

This new complex bias removal for robust estimations extends the previous work [ 130] to com- 

plex domain. Using the known noise covariance, [ 130] take this into account to correct the 

second order statistics of the observed data. Then, he used the one -unit contrast functions in 

noise cases. These process can be considered as removing the asymptotic bias and are roust 

against noise. Generally, the data whitening, as mentioned in section 2.6.1.2, is not robust 

with respect to noise when the channel is near singular and then degrade the final separation 

performance. 
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Similar to data preprocessing operations in ICA, in the preliminary whitening, the effect of 

noise must be thought over, this is called quasiwhitening [ 130]. Then we apply the quasi - 

whitened data to Fast fixed ICA with little modification (refer appendix B). The unbiased form 

of the equation for fast fixed ICA in complex domain is given as 

w+ = E{z+(wHZ+)*g(IwHZ+12)} 

(I + cr2(A - E)-I)wE{g(IwHZ+12) IwHZ+I2g (IwHz+12)) (3.42) 

where z+ is the quasi- whitened data. A detailed derivation is given in appendix B. A is a 

diagonal matrix of eigenvalues from the eigendecomposition of the covariance matrix E {YYH} 

and E is the noise covariance. This equation is the corresponding unbiased form of nonlinear 

complex fast ICA. Element (1 + o-2(A - E) -I) can be considered as a correct factor which 

modifies the covariance matrix shape by the noise. Then, the corresponding fixed algorithm 

update equation (3.23) is given as, 

w"+1 = -ZE{xg*(u)} + {I + o-2(A - E)-1 }{E{g(u)}w" + E{xxTg(u)}(w")*}. (3.43) 

This bias removal technique inherit from the noise free fixed point algorithm the advantage of 

being simple computationally. 

3.6 Simulations 

In this section, we first provide an example to illustrate the kjr /2 rotated signal recovered by the 

Split Threshold nonlinearity. The following figure shows the phase ambiguity improvement by 

our nonlinear function compared with other popular complex ICA methods [1][2][3] in a 4 x 4 

MIMO system with independent Rayleigh channels. 

60 



An Efficient Non linearity for QAM signals 

t' 

1.5 

0.5 

-0.5 

.)4: 

".# 

-0.5 0 
Real 

(a) 

0.5 

15 

05 

-05 

44, 

-05 0 
Real 

(b) 

05 15 

Figure 3.5: Separated signals. (a) : The complex fixed fast ICA algorithm [1]; (b): the JADE 
algorithm [2]. 
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Figure 3.6: Separated signals. (a): the Douglas [3] algorithm [3]; (d): The proposed nonlin- 
ear threshold ICA algorithm. 

We can see that in the figures 3.5 and 3.6, all algorithms have successfully separated the sources. 

There is full phase ambiguity in subfigures of 3.5 (a), (b) and 3.6 (a) while in subfigure 3.6 (b), 

the phase ambiguity is only integers of 71-/2. Consider cost functions of complex fast ICA, Eq. 

2.74 and JADE, Eq.2.78, the argument of their cost functions are both operated on a absolute 

value. Thus the phase ambiguity then remains. On the contrary, our nonlinearity have not 

this limitation and can partly solve the phase ambiguity up to kir/2. The following kir/2 phase 

ambiguity can also be solved by further differential encoding techniques, as pointed out in 

[131]. 

Figure 3.7 shows the performance of gradient algorithm of the proposed threshold nonlinear 
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function and the threshold nonlinear function [122][123]. A 4 transmitter and 4 receiver MIMO 

system with 16 -QAM modulation and flat Rayleigh channels was set up and 100 runs were 

taken. The optimum values according to Eqs. (5.39) and (5.40) in [ 122] are y = 0.95 and 

a = 2.1, and the learning step is fixed, p = 0.001. Our threshold and gain are y = 1 and a = 1 

respectively. 

Both nonlinearities convergence designed points with increasing the sample points. Our method 

is little better than the Mathis method in noiseless cases. 
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Figure 3.7: Convergence Properties of the Threshold Nonlinearity. 

In this simulation, the SNR is set to 20dB, the sources are 64 -QAM modulation. For Mathis 

nonlinearity, the optimum values according to Eqs. (5.39) and (5.40) in [ 122] are y = 1.08 and 

a = 3.7. Again, our threshold and gain are set to y = 1 and a = 1. The learning steps of both 

nonlinearities are equal top = 0.001 and a total of 100 runs were taken. The separability perfor- 

mance is defined as Eq. 3.44. Figure 3.8 show that our method is better than Mathis threshold 

ICA. As we sated before, the threshold nonlinearity function [123] is a general function. Our 

proposed nonlinearity function is specifically designed for QAM signals with noise. It is an ap- 

proximation of the true score function for Gaussian noise contained discrete sources. The slope 

in nonlinearity is coming from the sidelobe of Gaussian distribution. Our source model matches 

the noise model and then leads to good separability performances. Again, this explains that our 

accurate nonlinear function based on the score function can ameliorate separation qualities. 
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Figure 3.8: Comparison of different threshold nonlinearities in noisy cases. The clipped ver- 
sion of pdf Vs. approximated version of pdf. 

The performance of our algorithm (Threshold ICA) is compared with complex FastICA (Cir- 

cular FICA) [1] with nonlinearity G(y) = log(0.1 + 1y12). Also we compare performance with 

a recent fixed -point algorithm (Douglas FICA) proposed in [3] that showed excellent perfor- 

mance for this kind of problem. Also, we compare it with the MoG pdf in [ 118] and the simple 

nonlinear function [ 123]. In this simulation, a 4 transmitter and 4 receiver MIMO system with 

16 -QAM modulation is employed and we fix the noise variance o2 = 0.16 which we found 

empirically provide the good performance in terms of separability. The channel .H is a 4 x 4 

complex instantaneous matrix, which is constant for each block interval (512 symbols), and it 

follows a Rayleigh Fading distribution. N is complex additive white and follows a Gaussian 

distribution. A total 1000 Monte Carlo runs were taken. We set v = 1 and a = 0.5 in the 

following simulations. The separability performance of the Split Threshold nonlinear function 

can be further evaluated by measuring the distance of the estimated value from the true value. 

We define it as: P = W HHreal 

ICI(P) = 
n 
EZ[( 

maxlpiil)2 
1], (3.44) 

where ICI stands for inter component interference. 

Figure 3.9 shows that the split threshold nonlinear has the same capability as the true MoG pdf 
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for various SNR but the complexity is . Again, our method is much better than Mathis threshold 

ICA especially in low SNR region. And obviously, its separability performance is superior to 

all other methods. 
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Figure 3.9: Separability of the Threshold Nonlinearity ICA vs. other complex ICA methods in 

a 4x4 system with 16 -QAM modulation. 

Such performance happens not only in low dimensional systems, but also with a large number 

of transmitters and receivers, such as in a 9 x 9 system. A test is set up by multi -modulation 

system with the sources: 3 4 -QAM, 3 16 -QAM and 3 64 -QAM respectively. Figure 3.10 shows 

that the separability performance is always better than other methods. For fixed SNR = 15dB, 

Figure 3.11 shows the performance as a function of the number of samples and the Nonlinear 

Threshold Function achieves the better performance over all sample sizes. Figure 3.12 com- 

pares the performance for different numbers of transmitters and receivers. Note that although 

this measurement is unaffected by phase ambiguity, the separability performance based on our 

algorithm is still better than others. 

The results indicate that implicitly matching the nonlinear function to the source distribution 

provides significant improvement over non -matching score functions. The updating equation 

(3.23) is essentially a complex version of FastICA [92] without phase ambiguities. So it should 

enjoy the properties of the FastICA, eg. convergence speed, stability. 

Furthermore, the complexity is very important in real time wireless communication systems. 
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Figure 3.12: SNR = 20 dB; ICI vs. Number of sources 

Compared with the nonlinear function based on the MoG pdf, the hyperbolic nonlinearities 

such as tanh, sinh, and the inverse circular nonlinearities such as arctan, arccos, this nonlinear 

threshold function requires only a small number of bit -level sign operations As we know, sign 

operations always exist in real time processors such as digital signal processor(DSP), FPGA 

and avoids many multiply and add operations. Such a property is important for any real time 

implementation. 

In addition, the nonlinearity is also suitable for adaptive QAM modulation schemes and com- 

binations of various modulation schemes such as in WiMAX standards [ 132], where based on 

the received signal quality, the receiver can take into account the channel condition, and make 

the decision of the modulation scheme in the transmitter to maximize the throughput for the 

available signal -to -noise ratio. 

In the final simulations, the unbiased scheme is investigated. A 4 transmitter and 4 receiver 

MIMO system with 16 -QAM modulation is employed. The SNR is fixed at 15 dB and inde- 

pendent Rayleigh channels. The x axis is the sample index and separability performances are 

measured by Eq. 3.44 too. Figure 3.13 shows that bias removal algorithm can improve esti- 

mation when the sample length is large enough. However, the improvement is not significant 

when the data length is small as Figure 3.14 illustrated for a sample length of 256 symbols. 
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Although we proposed an efficient nonlinearity for QAM signals in this chapter, there is some 

previous research which has been designed for blind separation of QAM signals in a MIMO 

narrow band channel. For example, in [133], a discrete alphabet of sources is known. The au- 

thors take additional advantage of the alphabet knowledge, an intermediate contrast is designed 

and investigated. knowledge brings a significant improvement to the steady -state achievements 

of the adaptive separation system. 

In another work [134], a maximum a- posteriori probability criterion for instantaneous BSS 

with a finite alphabet is implemented by minimization of a polynomial criterion. An efficient 

algorithm dedicated to this polynomial criteria is then proposed. In [135], for QAM pdf, each 

symbol is represented as a point and they construct a smoothed version of the ideal QAM pdf 

using the tanh function and apply maximum likelihood blind source separation to QAM sig- 

nals. By contrast, QAM signal is represented as a mixture of Gaussian (MoG) in our proposed 

scheme. 

Based on the robust estimation and statistics technology, the authors introduced the Huber 

M- estimator cost function as a contrast function for use within the FastICA algorithm [136]. 

Similar to our method, this algorithm obtained from Huber M- estimator cost is particularly 

simple to implement and works well. 

For complex signal separation, [ 137] proposed an adaptive nonlinear algorithm which maxi- 

mized the joint entropy of the outputs. To avoid the restriction due to the Liouville's theorem 

[138], the authors used a splitting nonlinearity, one for the real and one for the imaginary part 

of the input. This splitting nonlinearity are bounded and locally analytic and works well in 

separating QAM signals. 

3.7 Chapter Summary 

A simple nonlinearity function based on the pdf of QAM modulation was proposed. This is an 

approximated version of the true score function for large dimensional QAM signals. The gradi- 

ent form was given and its steady state performance was shown. A fixed point algorithm based 

upon this nonlinearity was also derived. The stability analysis is given and the bias removal 

update designed. Simulations show a good performance in terms of ICI both in large constel- 

lation QAM modulation system and few short block size wireless communication in various 

channels. Since the output of this proposed nonlinearity only has three values, the threshold 
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operation can be easily implemented in hardware by two comparators. Such a property makes 

implementation feasible for real time communication systems. 
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Chapter 4 

Blind MIMO Equalization and 
Decoding for Square QAM 

Modulation 

4.1 Introduction 

In communication systems, system performance and computational complexity play key roles. 

Reducing the computational load and providing accurate performance are the main challenges 

in current systems. In this chapter, a hybrid method which can provide an affordable com- 

plexity with good performance for Blind Equalization in large constellation MIMO systems 

is proposed. Saving computational cost happens both in the signal separation part and in the 

signal detection part. Based on an efficient and simple nonlinear function for ICA introduced 

in the previous chapter, an initial channel estimate is obtained. Then the idea of the list sphere 

decoding (LSD) is used to acquire the channel soft information which is conditioned on the re- 

ceived data. This approach overcomes the so- called curse of dimensionality of the Expectation 

Maximization (EM) algorithm and enhances the final results simultaneously. Mathematically, 

we demonstrate for digital communication cases that the EM algorithm shows Newton -like 

convergence. All results are confirmed experimentally for the example of blind equalization in 

a block fading MIMO channel. 

Although ICA can blindly equalize MIMO systems and has attracted enormous research inter- 

est, the performance is typically not good enough for communication applications. According 

to the common demands in digital communications, the BER performance should be below 

10 -2 in a reasonable range of power without any channel code. Therefore original ICA algo- 

rithms would need to be improved if it was to be used in realistic scenarios. Researchers and 

engineers always use Maximum likelihood estimator to make further improvements. However, 

to the authors knowledge, there is no efficient ML solution for high dimensional applications, 

particularly for large (greater than 16 -QAM) constellation QAM modulation. The primary 

difficulty is the high complexity of the demanded computations. Such constraints make real 
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applications infeasible in practice. For this reason, we propose a solution to this problem with 

feasible complexity while maintaining good performance. In this chapter, this method is based 

on an ICA method as an initial estimation of channel and refined by the expectation maximiza- 

tion method, which can provide a significant improvement both in terms of mean square error 

and bit error rate (BER). More useful is that the signal detection based on the channel iden- 

tification can improve the estimation performance compared with estimating signals directly 

[13911140]. However, we point out that the main drawback of this method is that the inac- 

curacies of the channel estimation by BE methods will effect the following signal detection 

stage. 

In this chapter, our work also concentrates on the same narrow band system model, as we used 

in chapter 3. 

Y = HS + N (4.1) 

This instantaneous ICA model is fundamental in communication systems [89][52], and can be 

extended to other popular models, such as MIMO OFDM systems[ 141 ] [ 142]. The goal of this 

chapter is to develop a simple and efficient blind method for high dimensional QAM systems 

that can fully exploit the known QAM structure. 

4.2 The EM Algorithm 

As mentioned before, channel estimation by ICA does not produce a satisfactory performance 

in all circumstances. ICA, like most blind or semi -blind methods such as those based on 

Godard's method or the constant modulus algorithm, typically employs a linear equalization 

structure, even though the mechanism to adapt the equalizer coefficients is nonlinear. This 

restricts the ability to accurately estimate the signal in the presence of noise since the linear 

estimate amplifies the measurement noise and estimated signals maybe grossly inaccurate. For 

this reason, we resort to an efficient ML estimator. 

Blind ML channel estimators and equalizers have been developed for deterministic signal and 

stochastic signal models, respectively. The noise is commonly assumed to be white Gaussian 

and the form of the pdf is assumed to be known. 

The corresponding techniques are called deterministic maximum likelihood (DML) and stochas- 

tic maximum likelihood (SML) methods, respectively. When applying the stochastic maximum 
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likelihood method, the input is assumed to be a random i.i.d sequence and its distribution is also 

known. For example, the samples of a 16 -QAM signal can take 16 different values, each one 

with probability 1/16. The channel provides the only unknown parameters. Our method in fact 

is a kind of SML method, the probability density is parameterized only by the channel state 

information, and the estimate is expressed as 

[HAIL] = arg max L(y, H) (4.2) 

where L(.) is the likelihood function of the observed signals. Although ML methods provide 

excellent performance, they suffer from a high complexity since the ML complexity increases 

exponentially with the number of transmitted antennae and the number of bits per modulation 

symbol Thus finding the ML estimate with acceptable complexity is usually difficult. Typically, 

an iterative algorithm is applied to access a ML result, such as the EM [ 143] algorithm. The 

following figure given below is to illustrate the ML detector is much better than other linear 

and decision feedback detectors. 
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Figure 4.1: BER performance of different MIMO detectors. 

Figure 4.1 shows the BER performance of the different MIMO detection algorithms in a 4 x 4 

system with 16 -QAM modulation. The linear ZF and MMSE detectors use ZF MMSE crite- 

ria for the decoding procedure. The V BLAST ZF and V -BLAST -MMSE [9] schemes use ZF 

and MMSE detections followed by nulling, cancellation and ordering operations. This kind of 
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equalizer is a decision feedback detection with the complexity lying between the linear and the 

ML detectors. The ML approach is implemented by an SD method [ 144] and has the best BER 

performance. Consequently, this BER improvement explains the interest in finding a counter- 

part to the blind MIMO detection while providing an approximation to ML performance. All 

detections mentioned here have perfect CSI at receivers. Obviously, from linear detection to 

the ML detection, the BER performance improves as the decoding complexity increases. 

4.2.1 The EM Principal 

In this section, a brief review of the EM algorithm is provided since it plays an important role 

in this dissertation. The contents presented can help the reader's understanding of subsequent 

material. 

Denote Y E CNRxT as the observations form a system that relies on some unknown parameters 

which are denoted as O E OE For our blind system, Y is the baud sampled signals from NR 

receive antennae and T is the number of observations. O represents channel state information, 

H, and the noise covariance matrix E. Assume knowing E, the ML estimate is defined as: 

H = arg max p(YIH) (4.3) 

where p(YIH) is the pdf of p(Y) conditioned on H. Equation (4.3) looks brief but maximizing 

it may be intractable in some applications. In MIMO systems, the likelihood p(YIH) of the 

received signals is the marginal distribution since we do not know the transmitted signal matrix 

S. 

P(YI H) = E P(Y S 110 = E P(YI S, H)P(S) (4.4) 
s s 

where p(Y, S 1H) is the joint likelihood of S and Y. p(S) is the prior probability of source signal 

S . With the assumption of the independence, the sum over IS IT terms reduce to T I S I terms. IS I 

denotes the number of signal configurations. The log likelihood function of received signals 

then is given as 

with the first derivative 

L(H) = log p(YIH), (4.5) 

ôL T IsI 

ôH - E E p(Silyk, H)aH log p(yklsi, H) 
k=1 i=1 
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Then, the first part in the summation above can be calculated by 

P(stlYk, H) -_ 
P(Yklsi, H)p(st) p(Yklst, H)p(si) 

p(Yk, H) P(Yklsi, H)p(si). 

Then, the log likelihood function can be computed by p(yklsi, H) and its log derivative. 

(4.7) 

The EM algorithm maximizes this log likelihood function by the auxiliary function in the E- 

step[143]: 

Q(H, H') = E log p(YI S, H)p(S I Y, H'). (4.8) 
IsIT 

In a M -step, the EM iteratively computes 

It can be shown [143] that 

then, this indicates 

H` +1 = arg max Q(H, Ht +1). (4.9) 

Q(H, H') >_ Q(H', H'), (4.10) 

L(H) >_ L(H'). (4.11) 

and the EM update produces a monotonic increase in the likelihood. 

The EM algorithm has been applied to various applications, often with great success. However 

EM is very sensitive to the initial value and poor convergence properties have been reported in 

many papers. In this section, we investigate the convergence properties of the EM algorithm 

used for linear mixture models elaborated as defined by (4.1). We point out that different source 

domains give us very different convergence performances. Mathematically, we demonstrate in 

the discrete case, eg.digital modulation systems, the EM algorithm shows Newton -like con- 

vergence. The results are confirmed experimentally for the example of blind equalization in a 

digital communication system. 

4.3 EM Algorithm for Noisy ICA 

For a linear system, 

Y = HS + N (4.12) 
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When the sources, S, are continuous and distributed according to some prior p(S). H is a linear 

matrix with full rank and the noise N is zero mean Gaussian, we get a Gaussian observation 

model as follows: 

p(YIS ) (27rIEDN exp{-Tr(Y - HS )11E-1 (Y - HS)} (4.13) 

We focus on estimating the parameter H. Using the EM algorithm with the source priors, we 

can write p(Y) using the hidden variables S . The parameters are estimated as the optimal points 

of the log likelihood: 

and the solution to the M -step is: 

á ln p(YIH) 

8H* 
(4.14) 

H = (YSH)(SS11)-1 (4.15) 

where the angle bracket () denotes average with respect to the source posterior p(S IY, H). 

4.3.1 Convergence in Continuous Domains 

In [ 145], the authors used a saddle point approximation to get the first and second moments of 

the sources with respect to the source posterior. The EM updating expressions for the mixing 

matrix H can be written as: 

Hi+1 = H` + EÑ` + O(E2) (4.16) 

Ri = H-H 
N p(S) 

(HH + 1 
p/(S ) 

YH)H (4.17) 

Consider Eq.(4.16), to the zeroth order, the new estimated mixing matrix is identical to the 

previous one. The first order correction Ñ` is proportional to the gradient of the noiseless 

model's likelihood [106]. The second order is scaling with square of noise covariance, E2, 

which makes the change in the estimated noise extremely slow to converge when the noise 

level is small. We see that the update of the mixing matrix is 'frozen' in the low noise case. 

This conclusion is also mentioned in [ 146]. 

Even though many proposals for accelerating the EM algorithm exist, such as Aitken acceler- 
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ator [ 147], quasi- Newton approach [ 148] and conjugated gradient acceleration [ 149], they all 

require further analytical computations. In contrast, two new optimization alternatives were 

recently proposed which can accelerate EM in low noise. The first [150] is called adaptive 

over relaxed EM. This method appears to speed up the convergence but without further analyt- 

ical computation and it introduces the increasing cost function. The second method is called 

UCMIF [151] and is a Quasi- Newton method with Broyden -Fletcher -Goldfarb -Shanno update 

to the inverse Hessian matrix and soft line search. However this needs extra work on calculation 

of the gradient. 

4.3.2 Convergence in Discrete Domains 

In the discrete domain, the convergence property of the EM algorithm is very different. It 

provides good convergence performance. Considering (5.1) again, we rewrite it in a vector 

form rather than matrix form, 

Yk=Hsk+n (4.18) 

where we express yk = y[k] and sk = s[k] for the sake of simplicity in the following derivations. 

4.3.2.1 Gradient of Log likelihood 

We estimate the mixing matrix H as the optimal points of the log likelihood: 

a ln p(ykI H) 
OH* 

a 's' 
_ ln E P(Yk, si 

I H) 
i=1 

1 a 's' 

P(Ykl H) aH* P(Yk, stlH) 

P(YkI H) aH* P(Yklsi, H)P(si) (4.19) 

where IS I denotes the number of configurations in the source vector space, sk, e.g., for a 4 x 4 

system with 16 -QAM modulation, IS I = 164. si is one instance of source vector at time index 

k, we omit time index k for simplicity. Since 

1 P(si I Yk, H) 

P(YkIH) P(Yklsi,H)P(si)' 
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using the properties of the derivative of a logarithm, we get: 

alnp(YkIH) Is a 
aH* L P(silYk, H)-[in in P(Yklsi, N)l 

i=1 

Define log likelihood L 

L = ln p(YI H) 

= In P 1 1 P(Y kV!) 
k=1 

_ InP(YkIN) 
k=1 

(4.21) 

where T are the number of the observed signals, Take the first derivative of log likelihood, we 

get: 

oH*L 
a ln p(YIH) 

alp 
a 1n P(YkIN) 

k=1 
alp 

T IS a lnp(yklsi, H) 
= P(silYk, H) 

aH* 
k=1 i=1 

Given the system model in equation (2.41), p(yklsi, H) can be expressed as 

1 

P(Yklsi, H) _ IEI exp{-(yk - Hsi)HE-1(Yk - Hsi)} 

(4.22) 

(4.23) 

After ignoring the effect of the constant V since it is trivial in the following derivations, we 

then get, 

aP(Yklsi,N) -E-1(YksH - HsisH). 
ax* i 

Substitute it into equation (4.22), we obtain: 

aL a ln p(YIH) 
E_1((YSH) - H(SSH)) 

VH*L = aH* aH* 
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where () denotes conditional sample average with respect to the source posterior p(S IY, H). 

Generally, the channel update is written as 

Hk+1 Hk + oHk (4.26) 

In noisy ICA cases, from equation (4.15), the EM updating for channel Hk at kth iteration can 

be expressed 

Then, 

The EM update is 

oHk 

Hk+l = (YSH)(SSH)-1 (4.27) 

Hk+1 Hk 

(YSH)(SSH)-1 Hk 

= EE-1(07S11) - Hk(SSH))(SSH)-1. (4.28) 

Hk+1 Hk + EE-1((YSH) - Hk(SS 
rims SH)-1 

Substitute Eq. 4.25 into Eq.4.30, the EM update for channel is written as 

Hk+i =Hk+E *(SS11)-1. 

For clearly, we write this gradient form in vector expressions, 

vec(Hk+1) = vec(Hk+1) + vec(EaH* (SSH)-1), 

(4.29) 

(4.30) 

(4.31) 

(4.32) 

where vec[H] denotes the stacked columns of the matrix H. Since vec(ABC) = (Cr 0A)vec(B) 

[ 152], we get: 

vec(Hk+1) = vec(Hk) + (SSH)-1® E 
ôL 

ôvec(H*)' 

where ® denotes the Kronecker product [ 152]. 

(4.33) 

In a concise form, the EM updating expressions for the mixing matrix H in gradient form is: 

vec(Hk+1) = vec(Hk) + P(Hk) 
âL 

78 

ôvec(Hk)*' 
(4.34) 



Blind MIMO Equalization and Decoding for Square QAM Modulation 

where 

P(Hk) _ (SSH)-1 0 E. (4.35) 

4.3.2.2 Hessian matrix of Log likelihood 

Let us consider the second statistical property of the log likelihood: 

Since 

á2L 
= 

a aL 
mg alp aHT (ôH* ) 

ô{ f (H)g(H)} a f (H) ag(H) 
ax - g(H) ôH + f(H) aH 

from (4.19) and (4.21)we get: we get: 

a 2 L 

aHT aH* 
T ISI 

= Z E 
ôH* 

ln p(Yx 
I si, H) x 

ôHT p(Si IYk, H) 
k=1 i=1 

T 
a 

+ E x 
óHT aH* 

ln p(Yklsi, H) 
t=1 i=1 

(4.36) 

Consider the first term on the right hand side of (4.36). In the low noise case where H is 

sufficiently close to the local minimum, the posterior probability is dominated by its nearest 

point, therefore: 
a 

ôHT P(S = Or, H) -0 

The mathematical derivation can be found in appendix C. 

Consider the second term on right hand side of (4.36): 

We denote 

T ISI 

E Z p(silYk, H)aHTaH* thp(Yklsi, H) 
k=1 i=1 

.f(H) = ln{p(Yklsi, H)} 

= th(274I) + {-(Yk - HSi)HE-1(Yk - Hsi)} 
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In trace form: 

f(H) = tr {c + [ -(Yk - Hsi)11E -1(Yk - Hsi)]} 

Since f(H) is twice differentiable, we take the second derivative with respect to H* and H, 

respectively: 

d2.f(H) = da[da.f(H)] = tr[sisHd(H)TE-1dHl, 

where d2(.) is the second differential operation. From [153], we know: 

d2 f(H) = tr(B(dH)T CdH) <=> 

`x(.f (H)) = -2(13' 
, 

0C + B ® CT) 

where i-( is the Hessian operator. Thus, 

a 
aHTaH* 1nP(Yklsi, 

H) = (sis¡i) 0E-1 

Substitute this equation into equation (4.38), we get 

2 

14(H) 
= aHT aH* 

= (SO) H) ® E-1 

(4.39) 

(4.40) 

(4.41) 

According to (A ® B) -1 = A -1 0 B -1, we can get: 

1--í(H1) -I = (SS H) -I ®E. (4.42) 

Recall the EM update for channel matrix Hkin the noisy ICA, equations (4.34) and (4.35), we 

find that, 

1-1(Hk)-1 = P(Hk), (4.43) 

In discrete case, it is worthwhile to emphasize that the EM update for channel matrix in noisy 

ICA cases can be written as a Newton -Raphson method, 

vec(Hk+1) = vec(Hk) + `H(Hk)-1 
ôL 

(4.44) 
avec(Hk)* 
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This phenomenon can been explained as follows: In discrete cases, the log likelihood L p(YIS, H) 

is not continuous anymore when the mixing matrix H approximate the true value and noise is 

low. Then aveáHk), is very large and is determined by the inverse of noise covariance,E -1, 

goes to infinity as the noise covariance approaches zero. This factor happens to e.g. ôveáHA 

compensate the freezing factor E which is the step size in the gradient form of the EM update. 

Note that we do not use simplified summation operations for the EM algorithm. We stress 

again, in the discrete domain, the EM iteration approximates the Newton -Raphson method in 

low noise. This implies us that the EM algorithm guarantees fast convergence. The result is 

consistent with [154], which states that, when the missing information is small compared to the 

complete information, EM exhibits approximate Newton behaviour and enjoys fast, typically 

superlinear convergence in the neighbourhood of the local minima and suggests the use of the 

EM algorithm as a refinement of the previous ICA results for digital signal estimations. 

4.3.3 Limitations of EM 

Figure 4.2: EM likelihood surface. 

Although the EM algorithm has gained popularity in mixture analysis, it has limitations: 

Limitation 1: The EM algorithm can be sensitive to its initial values. 

Limitation 2: The computation cost is exponential in the number of sources. 
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The limitation 1 can be explained by the fact that the EM likelihood function can be multimodel 

and the EM is a local optimization method only [ 155]. Figure 4.2 show a sample of EM like- 

lihood surface. Many local minimum and saddle points make the global convergence difficult. 

In wireless communications, mobile radio channels are complicated. This causes many local 

minimum in the likelihood surface, and EM is more liable to converges to a local optimum of 

the likelihood function. We will clarify this difficulty in detail later. 

The limitation 2 is the curse of dimensionality which is a well known problem with the EM 

algorithm. The EM algorithm has computational cost that grows exponentially with the number 

of sources. Because the EM algorithm make uses of the full and whole hidden sources to build a 

functional whose maximization yields the ML estimate. When the number of sources increase, 

both the E -step and the M -step are difficult to solve. In digital MIMO systems, since the M -step 

is obtained from formula (4.15), the problem of high dimensions is due to the E -step, especially 

for large constellations. For example, in the case of 4 transmitters and 16 -QAM signals, there 

are 164 = 65536 different configurations for the source symbols at each sampling. Then, 

each iteration of the E -step requires the computation of 65536 x T conditional probabilities. 

Where, T is the frame length of each transmitted block. Hence, for high -rate systems with 

large number of antennae, direct calculation proves to be infeasible. One solution is to use 

a stochastic algorithm and replace the summations over all the possible hidden source states 

by Monte Carlo integrations [ 156]. However, this is still not efficient enough for real time 

operations. We consider a deterministic approximation which we describe next. 

4.4 Sphere Decoder for MIMO Detection 

As illustrated in Figure 4.1, a optimum detector for a large constellation MIMO system is the 

ML detector. However, this sort of detector exhibits exponential complexity in the number of 

received antennae and this makes it impractical for real time communication systems. In order 

to overcome this difficulty, we propose the use of a soft sphere decoder. The principal spirit of 

the sphere decoder is to reduce the computational load of the maximum likelihood detector by 

only searching over the received signals that lie within a hypersphere of radius R around the 

received signal (Figure 4.3). This is reasonable since most of the constellation points located 

outside the sphere have vanishingly small probabilities since its probably is related to minus 
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exponentiation of distance. When the distance is relatively large, the contribution of points 

outside the sphere are negligible. The basic premise in the proposed algorithm is rather simple: 

In the case of digital modulations, it is reasonable to search over only the most probable hidden 

source points s E AT that lie in a certain sphere of radius R around the received vector, where 

AT denotes the n- dimensional hidden source points spanned by a q -QAM constellation in each 

dimension. Thereby reducing the search space and hence the required computational effort (see 

Figure 4.3). Clearly, the closest point inside the sphere, assuming there is one, will also be 

the closest point for the whole hidden source space. So this complexity reducing searching is 

rational. 

Figure 4.3: Idea of choosing the admissible set. 

The summation over the points inside the circle. Figure 4.3 takes the place of the summation 

over the points lying in the entire source space. The points inside the sphere are good in a 

likelihood sense and their collection builds up a set called as the admissible set and its number 

is called the size of the admissible set. Closer scrutiny of this idea leads to two questions. 

How should we choose the size of the admissible set? Obviously, it connects with the radius 

R directly. If R is too large, we may obtain too many points and the algorithm will remain 

exponential in size, whereas if the radius R is too small, we may not obtain enough points 

inside the sphere to accurately approximate the expectation sum. Choice of the radius R plays 

an important role in the final performance and the reduction of the complexity. Informally, 

when SNR is large, the size of the admissible set is selected to be small. Otherwise, the size of 

the admissible need to be large with increasing the sphere radius to guarantee that at least one 

point in the hypersphere. To assure the lattice point Hs lies inside the hypersphere, radius R is 

required to R > -II y - Hs 112, which is directly depends on noise covariance or SNR. 

How can we determine which points are inside the sphere? Sphere decoding (SD) [ 157] pro- 
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vides a constructive answer this question. Figure 4.3 shows the basic aim of the SD algorithm. 

The dot points represent the noiseless constellation Hs and the cross stands for the actual re- 

ceived signal contaminated with noise. SD calculates the closest point by: 

SSD = arg min II y - Hs 112< R2. 
sEA9 

(4.45) 

The main SD principals are revised here briefly for the reader. The SD optimization takes 

the place of ML solution and the source s E AT is limited in the constellation. Define the 

unconstrained least square estimate, "g = H -1y , via a mathematical matrix decomposition, 

equation (4.45) can be given as 

IIY-Hs112 

= II H(s -s)112 

= 11 QUO -s)112 

= 11 U(s-S)112-<R2, (4.46) 

where Q is an orthonormal matrix and U is an N x N upper triangular matrix, H = QU is the 

QR decomposition of H. Also U can be obtained by Cholesky decomposition of a Gram matrix 

G = HHH. To solve the equation (4.46), we can use a depth -first constrained tree search over 

M levels. The search is recursive from top layer, i = M, down to the bottom layer, i = 1. Each 

layer in the search represents signal from one transmit antenna. Each node in a layer, except 

for the bottom layer, i = 1, has q child nodes lying in the next layer, and has a parent node on 

the tree, except for nodes on the top layer, i = M. The SD searches from the top layer of the 

tree, along the branch in which the child nodes satisfy 

Ist -zi12 < 21, 
uü 

where u2. is the element of decomposition matrix U and zi 

M uij 
Zi = St - (s,jS,j), 

j=i+1 uii 
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and 

T;= R2- 

with TM = R2. 

uiIsi - Zi12, (4.49) 

At any level i, when Ti < 0, no nodes satisfy equation (4.46), which means this branch exceeds 

the radius constraint, the SD remove that part of the tree from further considerations. In com- 

parison with exhaustive ML search, such operation reduce the complexity. At that point, the 

SD trace back to its parent node for further continuous search. The last path found corresponds 

the SD solution. Figure 4.4 illustrates a simplified diagram of a tree search of a 4 x 4 system 

with a 16 -QAM modulation [4]. The dashed line is the paths discarded due to the constraint, 

equation (4.47). 

ro 
DS=O 

D4 = d,+Ds 

D,= d3+D4 
d rt , 

l i i LR D,=d,+D3 
//1 1\ di - 

--------- --------- 

1y / 1\y Di 
= d)+D, 

Figure 4.4: Illustration of tree search of SD in a 4 x4 system with 4 -QAM modulation, from 
[41. 

4.4.1 List Fixed Sphere Decoder 

Since the introduction of the SD for solving the ML question, many studies have been proposed 

to reduce its complexity. The most famous contribution is the Schnorr- Euchner (SE) [ 158] 

enumeration, in which the search visits the nodes in increasing distance to Z;, in equation 4.48. 

This kind of search can make the probability of finding the ML solution larger in the first 

layers search. The SE and its variants have attracted a lot of attention since they are widely 

considered as the most effective way of reducing SD complexity [159]. Another complexity 

reduction had been proposed by modifying the characteristics of the channel matrix [ 160] [ 159]. 

This lattice reduction approach can cut down the average computational load of the search 

stage. On other hand, some methods utilize channel statistics to improve the search stage [161]. 
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Therefore, they need more calculation for limiting the threshold. All methods above suffer from 

requiring variable complexity depending on the noise level and the channel conditions and this 

has obstructed the integration into real time wireless communication systems. 

Another approach of fixed complexity is the k -best lattice decoder [ 162]. It fixes the number 

of visiting nodes at each layer to guarantee the fixed complexity, but it neglects the statistical 

distribution of the visiting nodes. Furthermore, the computational burden is always higher than 

the computational burden of the SD. 

To overcome the main drawback stated above, we resort to a fixed complexity sphere decoder 

(FSD) [144]. Figure 4.5 illustrates the idea of the fixed tree search following predetermined 

paths down the tree. This approach combines a novel channel matrix ordering technique and a 

search through a small subset of the received constellation. 

The FSD channel ordering is operated as follows, in every iteration i = M, ... , 1, 

1. The pseudoinverse of the channel, Hi = (H'Hi) -1H' is calculated, where Hi is the 

channel matrix with the columns selected in previous iterations zeroed. 

2. The detected signal sk is chosen as 

arg maxi lI(Hi )jI12, if ni = P 
k= 

arg mini if ni * P 
(4.50) 

where P is the number of points in QAM constellations and ni is the number of visiting 

points at ith level, and (HH) j is the jth row of (Hit.). 

The purpose of the channel matrix ordering is to make sure that more points are visited in the 

first level while the number is reduced in the last levels. The channel matrix ordering proposed 

is such that makes it more probable to have a detection error in the levels where more points are 

searched. Generally known, the estimate of signals is more robust when more points are visited 

in a level. For the level where noise amplification is large, this scheme assigns more points at 

that level. Such assignment can guarantee the ML performance of the SD. 

The other innovation is that the FSD exploits the distribution of the nodes. This distribution 

determines the final performance and the complexity reduction. Even though the distribution of 

nodes cannot be analyzed mathematically for any number of antennae and constellation sizes. 

86 



Blind MIMO Equalization and Decoding for Square QAM Modulation 

In [144], the author conjectured that for an uncoded spatially multiplexed M x N system with 

P constellation points per transmit antenna, there always exists a distribution of nodes ES in the 

form 
h iP 

Ey.=(1,...,1P,...,P)T. (4.51 

where 11 is the number of levels where only one node is considered and 1p is the number of levels 

where the maximum number of nodes are considered. Such an assignment allows the FSD 

detector to approximate to ML performance with a fixed complexity [ 144]. At the bottom layer, 

Pip point remain and build up a list of candidate. This method is called list fixed -complexity 

sphere decoder(LFSD). 

Figure 4.5 below shows a system in 4 transmit antenna, 4 receive antenna with 4 -QAM constel- 

lations used at each transmit antenna. The number of points considered per level is (El, 2, 3, E4) = 

(1, 1, 2, 3). 

root 

1+j i=4 n4=3 

i=3 n3=2 

i=2 nZ=1 

i=1 n = 1 

Ns= 1.1.2.3 =6 «256 

Figure 4.5: Tree Structure for the List Fixed Sphere Decoder 

BER performance was shown in Figure 4.6. A 4x4 system with 4 -QAM and 16 -QAM modula- 

tions. The node distributions are (el, E2, E3, E4) = (1,1, 1, 4) and (1, 1, 1, 16), respectively. Thus, 

there produce 4 and 16 candidates, a selection is on the basis of minimum distance used in this 

simulation. 

4.5 SD EM algorithm 

As stated above, the LFSD is integrated into our blind system. By searching a very small 

subset of the complete transmit constellation and a specific channel matrix ordering, the LFSD 

obtains a list of candidates that can be used to calculate symbol likelihood information. This 
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10° 
M= 4, N =4, DAM -16 Threshold Nonlinear Function ; SD EM algorithm 

10': 

-e- FSD OAM4 -e- FSD OAM18 

100 
4 6 8 10 12 14 16 
SNR (db) Trials 1000 Framelength = 258; EM iteration =2 

18 

Figure 4.6: BER performance of fixed sphere decoder in a 4 x 4 system with 4 -QAM and 16- 
QAM modulation. 

fixed complexity is especially suited for real time implementation. With the introduction above, 

we can specify our SD -EM algorithm: 

Algorithm 1 SD -EM algorithm 
Input: received signals Y; The size of the admissible set; Iteration number of the EM algorithm. 

1. Get the initial value of the channel state information, 14, by our Threshold Nonlinear ICA 

algorithm or any standard ICA. 

2. Using LFSD approach with H to construct the admissible set A. 

3. Updating the 14 by the EM algorithm. The posterior is approximated by the points within 

the admissible set A. 

4. Go back to step 3 with new R until the iteration ends. 

Output: Estimate signals S ; H. 

Unlike the Monte Carlo EM (MCEM) algorithm, which approximates the conditional expecta- 

tion in E -step by the Monte Carlo average, the essential idea behind this algorithm is that the 

SD -EM approximates the conditional expectation by the important samples which lie around 
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the received signal vector. This necessarily optimizes a lower bound to the likelihood at each 

iteration. Similar ideas can be found in [ 163] and [ 119]. 

4.6 Simulations 

In this section we provide simulations to illustrate the convergence of the EM algorithm for 

4 -QAM signals. In the simulations, the mixing matrix H is 2x2 complex instantaneous matrix, 

which is constant for each block interval, and it follows a complex Gaussian distribution. N fol- 

lows the complex additive white Gaussian distribution with diagonal covariance matrix. Here, 

the separation matrix W is initialized with the Threshold ICA method, and we take its inverse 

as a rough estimate of channel matrix H. In this and following chapters, the noise standard 

deviation is assumed to be known; however, with some additional work, it may be estimated 

using EM [ 164]. 
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Figure 4.7: EM Log likelihood VS. True likelihood. 

Figure 4.7 shows us that the log likelihood converges to the global minimum after 5 iterations 

of EM updating when SNR is 20 dB. For 50 experiments, the dotted line is the average true log 

likelihood curve with exact channel state information and the star line is the average EM log 

likelihood with the estimated channels. It exceeds the true value after only 2 iterations which 

shows us that the log likelihood converges to the local maximum after small iterations of EM 
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Figure 4.8: Likelihood of EM iterations and standard Gradient method. 

updating. The margin between the true value and estimation is caused by the estimated bias of 

channels. 

Figure 4.8 displays the inter component interference level, defined by (3.44). For an SNR of 

20dB, we can observe the fast convergence speed compared to the standard gradient method 

with the step size = 0.001. 

Figure 4.9 show the difference in BER between using ICA alone and the ICA +EM algorithm. 

Both of them use 4 -QAM modulation and the Rayleigh channels. It indicates that using the 

ICA algorithm alone is not good enough for the digital communication system since, usually, 

the BER performance needs to be in the order of 10 -2 when SNR is in the range of 10 -20dB. 

We can see the significant improvement achieved by the EM algorithm. Here, we ignore the 

intrinsic permutation phase ambiguity problem in this simulation. The correct channel order 

by comparing the decoding sequence of EM with the true transmitted sequence. We choose the 

most likely order according to the minimum BER criteria. The phase ambiguity can be solved 

by further using a differential amplitude phase encoded (DAPE) QAM [ 165]. 

We next examine the SD -EM algorithm. The simulation setup is the same as the first simula- 

tion: 4x4 system, 16 -QAM. 512 symbols in each block with slow Rayleigh fading channel and 

1000 trials were run. First, we use the threshold nonlinear ICA to obtain rough estimations of 
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Figure 4.9: BER Performance of ICA + EM method in a 2x2 system with 4 -QAM modulation. 

channel, using this as initial values, we apply the SD -EM algorithm to further improve estima- 

tions. Here only 2 iterations of the EM algorithm are used. To maintain a low computational 

load, the size of the admissible set D is fixed at 16 which is much smaller than the entire 65536 

The number of points considered in each level is (1, 1, 1, 16). Figure 4.10 shows 

substantial improvements by the SD -EM algorithm in terms of Inter -Component Interference 

(ICI). As we know, the performance can be improved by increasing the size of the admissible 

set. It is a tradeoff between the performance and complexity. 

In digital communication transmission, the final performance is BER. In Figure 4.11, we com- 

pare our method with zero forcing detector with exact channel state information and the thresh- 

old nonlinear ICA using the ZF decoder. Also, we present the bound of the SD -EM method in 

which we apply the exact CSI to the SD algorithm. Using the same system configuration of the 

last simulation, we observe that the threshold nonlinear can reach similar performance of the 

ZF detector and the SD -EM algorithm improve it significantly over all SNR. 

For more large QAM constellations, Figure 4.12 provides the BER performance of the SD -EM 

for 64QAM modulation. But the size of the admissible set D is fixed at 64 which is much 

smaller than the entire 644 = 16777216 configuration. The number of points considered in 

each level is (1, 1, 1, 64). Other setups are the same as the previous 16 -QAM system. 
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modulation. 
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Figure 4.12: BER performance of the ZF algorithm, Nonlinear Threshold ICA algorithm, the 
SD -EM algorithm and SD with perfect CSI in a 4x4 MIMO system with 64 -QAM 
modulation. 

Although the proposed SD -EM algorithm makes the channel estimate better than other blind 

methods and thus improves the estimated signals in terms of BER, there is still a performance 

gap between the SD -EM algorithm and the optimal (with known CSI) SD solution, as shown 

in Figure 4.11. We speculate that the gap is due to the fact that the EM algorithm occasionally 

gets trapped in a local rather than global minimum, and that this occurs when the channel is 

close to singular. Informally speaking, the number of local minima depends on the number of 

mixtures, the size and the dimension of the data. 

The last simulation emphasizes the improvements introduced by the EM update. The system 

setting is the same as the previous simulation. First the channel estimate blindly via the non- 

linear threshold ICA algorithm. Note that, to apply the SD algorithm correctly, the intrinsic 

permutation problem must be removed. Again, we judge the correct channel order by com- 

paring the decoding sequence of ICA with the true transmitted sequence. We choose the most 

likely order according to the minimum BER criteria and re -order the channel row correspond- 

ingly. Then, we put it into the SD algorithm and the SD -EM respectively. The EM channel 

update can contribute to channel estimation with iteration going on and then improve the BER 

performance, as Figure 4.13 illustrated. 
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Figure 4.13: BER performance of the ICA -SD algorithm and the SD -EM algorithm in a 4x4 
MIMO system with 16 -QAM modulation. Left : 256 symbols in each block; right 
: 512 symbols in each block. 

4.7 Chapter Summary 

In this chapter, we first have presented the general mechanics of the EM principle and shown the 

convergence properties of EM exhibits dramatically different appearance. In digital communi- 

cation cases, we point out that the EM updating algorithm has a fast convergence behaviour in 

the low noise limit. Moreover, to keep computational costs fixed, the E -step can be approxi- 

mated by a fixed complexity sphere detector. Based on these findings, an efficient hybrid system 

for blind equalization of large constellation MIMO systems was presented. The proposed ap- 

proaches for the signal separation and the signal detection reduce the computational complexity 

while maintaining the acceptable performance. Such an efficient combination makes this poten- 

tially feasible for a real time communication system. The numerical simulations demonstrate 

the effectiveness of this combined technique. Another benefit of such a hybrid system is that it 

utilizes soft decisions on the decoded symbols which could be further improved in an iterative 

error correcting decoder. This will be explored in the next chapter. 

94 



Chapter 5 

Coding Assisted Blind MIMO 
Separation and Decoding 

5.1 Introduction 

Despite the widespread use of forward -error coding (FEC), most MIMO blind channel estima- 

tion techniques ignore its presence, and instead make the simplifying assumption that the trans- 

mitted sequences are uncoded and i.i.d. However, FEC induces code structure in the transmitted 

sequence that can be exploited to improve blind MIMO channel estimates. In this chapter, we 

exploit the iterative channel estimation and decoding performance for blind MIMO equaliza- 

tion. Experiments show the improvements achievable by exploiting the existence of coding 

structures and that it can approach the performance of a BCJR equalizer with perfect channel 

information in a reasonable SNR range. 

All methods and algorithms referred and introduced in the previous chapters are based on es- 

timates of the channel by a -priori soft information which is directly coming from the symbol 

detection techniques, even though some iterative procedures were introduced. However, if the 

channel is impaired by the deep fading, obtaining a precise estimation can be problematic. Con- 

sequently, the following symbol decisions are not so accurate and reliable. The natural question 

is how to improve the reliability of the channel estimation and symbol decoding in such a case. 

In the last decade, joint channels estimation and symbol detection techniques have been pro- 

posed for the purpose of solving ISI problem in the SISO system. Channel codes, were orig- 

inally designed for reliable transmission of digital communication in the noise environment. 

In this process, an information bearing sequence of length K, called the message, is encoded 

into a sequence of length N > K, called the codeword. Then, this codeword is modulated and 

transmitted through the communications channel. Such forward error coding, which restricts 

the transmitted sequence to a limited coding space so as to increase the minimum distance, 

can correct potentially wrong decoding due to noise contamination. Using the FEC code, the 

decoder at receiver can feedback a- posteriori information to the equalizer. The practical chal- 
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Figure 5.1: Joint channel estimation and symbol detection: Uncoded diagram vs. FEC dia- 
gram. 

lenge, nonetheless, is the tremendous complexity demanded by this joint optimal ML decod- 

ing. To solve this problem, the iterative soft decoder has been studied and has been found to 

approach the optimal ML decoding performance at a practical and reasonable computational 

burden [ 166]. Furthermore, with powerful digital processors in the last decade, contributions 

of FEC to decoding with affordable complexity were explored in [167] [168]. Looking from 

a broader angle, we can take blind equalization as part of the decoding process. Thus, we can 

try to find a blind equalization and channel correcting scheme that together approximate the 

Shannon bound. Such methods combine the blind iterative channel estimation and turbo equal- 

ization. As illustrated in the block diagram of Figure 5.1(a), the equalizer uses the channel 

estimates to compute soft information of the transmitted symbols. The channel estimator then 

applies these soft symbols to improve the channel estimates, which in turn yields better symbol 

estimates, and so forth. In contrast, the FEC aware channel estimator based on soft symbol, 

a -priori information, feeds this information into the decoder in order to get more reliable soft 

bit information. Next, this posterior information is fed back to the channel estimator, and so on, 

as illustrated in the block diagram of Figure 5.1(b). Such a scheme utilizes FEC information 

in blind equalization. Nevertheless, there has been little work relating FEC to MIMO channel 

estimations. Although the independent, identically distributed (i.i.d.) assumption usually made 

in MIMO blind separation [51][52] no longer holds (due to the FEC coding), it has been shown 

that FEC does not impair the performance of some blind equalization techniques [ 169]. 

Some previous research has explored the FEC property on blind channel estimation. In [168] 

combined blind channel identification and turbo equalization, they used the EM algorithm to 

update channel state information. The covariance matrix was computed as a sample average 
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in which the likelihood of the received symbols weights the data. In contrast, in this chapter, 
pairwise joint probabilities are used to measure expectations in the E -step. 

In another work [170], they exploited the turbo equalization of unknown ISI channels using a 

trellis to represent the channel. This develops a hidden Markov model (HMM) [1711 for the 
noisy channel output, and the Baum Welch algorithm , a specific instance of the EM algorithm, 
is applied to estimate the HMM parameters including the observations before adding noise. 

This approach need not estimate an explicit channel directly but can be calculated using the es- 

timated symbols. In this chapter, the soft -output BCJR equalizer depends on a channel estimate 

that is obtained from the EM algorithm iteratively. 

In [ 172] [ 173] a blind iterative channel estimator is used that is also based on an EM algorithm. 

They applied a turbo equalizer loop with a decision feedback equalizer. Such schemes enjoy a 

low complexity. In the development of the EM channel estimator, they used a sample average 

to replace the ensemble average. In our work, the marginal and joint probabilities of each 

symbol are used to evaluate ensemble averages and this computation generates more accurate 

information. 

In [174] [175], the author presented a generalized BCJR and LDPC algorithm to compute joint 

posteriori probabilities of symbols given noisy observations of those symbols to suppress at the 

output of an intersymbol interference channel. The pair -wise joint posterior probabilities are 

applied into the EM channel estimator. Both schemes are suitable for a single channel with 

a small number of channel taps since, in such a case, the surface of likelihood is simple and 

smooth enough to allow the EM algorithm will converge to a desirable point. Otherwise, the 

LDPC or the so call generalized BCJR may not converge to the correct state. In [175], for a 

single channel, 30 EM iterations were used to evaluate the system performance. This number 

of operations introduces a considerable computational burden. 

Per -Survivor Processing (PSP) [ 176] is a seminal work in joint channel estimation and symbol 

detection. The PSP method embeds the data -aided channel estimation into the Viterbi algo- 

rithm. Each state has a separate channel estimate which is based on the survivor path leading 

to that state. PSP performs an ML estimation of the channel parameters. Then it estimated the 

candidate channel by applying a LMS algorithm or a Kalman filter to each survivor path. This 

kind of method was subsequently developed as an approximate minimum variance channel es- 

timatór. A similar but simplified approach was proposed by [ 177], where the author maximizes 
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the data log likelihood by weighting a quadratic function associated with each survivor path by 
the path probability. The authors then used an EM algorithm to update the channel estimate 
iteratively. To avoid initialization problem, they enumerated many initializations for the EM 
and select the most probable one in terms of the likelihood. Without an efficient proposal for 
initialization of the EM, this scheme is not feasible for high dimensional systems. 

The methods described above were employed in single input single output channels and small 

constellations and these techniques simply do not extend to multi- antenna systems and large 

constellation QAM systems. In these cases, the increased dimensionality of the MIMO channel 

can make the convergence problematic. 

In the last chapter, an efficient hybrid system for blind equalization of large constellation MIMO 

systems was proposed [ 178], in which the SD algorithm is integrated into the EM algorithm for 

the large multi -dimensional channel estimate. The initialization of the EM is provided by a fast 

and simple nonlinear ICA method which is specifically designed for QAM modulation. Such an 

efficient combination makes this feasible for a real time communication system. The numerical 

simulations demonstrate the effectiveness of this combined technique. However, it still suffered 

a loss of performance when the channel was close to singular or the noise was large. 

In this chapter, a blind MIMO receiver that combines a soft channel estimation and a soft 

MIMO equalizer and decoder is proposed. A similar idea appears in [179], where the authors 

used a pilot sequence and a Wiener filter to initialize and update the channel respectively. This 

Minimum Mean Square Error based iterative channel estimator uses soft information from the 

output of the decoder to improve the mean square error of the channel estimates. However, 

taking the mean values of the data symbols calculated by the posteriori probabilities, is not an 

accurate way to improve the channel estimates. In our hybrid design, we improve the receiver's 

performance through efficiently incorporating the soft bit information from the decoder into 

the EM channel estimator. This enable us to exploit the a -priori knowledge imposed by the 

code. The system includes an efficient independent component analysis method which we 

mentioned in chapter 3, a selective sphere decoder process that computes the likelihood values 

(soft information) as stated in chapter 4 and a simple error correcting operation. This scheme 

has low complexity and improved convergence, being more likely to converge to the desirable 

stationary point. Moreover, through sending the bit interleaved coded modulation (BICM) bits 

on differently fading channels, we further make use of the temporal diversity. Combining this 

with the spatial diversity due to the statistical independence of transmitted sequences, blind 
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estimate and adjustment of the channel matrix can be performed simultaneously. Empirically 
this provides us with outstanding performance of MIMO blind equalization and decoding. This 
idea can also be easily extended to an MIMO -OFDM system, especially for the fast fading 
channel acquisition and tracking. 

Again, we consider the NR X NR MIMO narrow band system model, 

Y=HS+N, (5.1) 

where Y E CNRxT is the matrix containing observed signals from the receiver antennae, and 

S E CNRxT is the complex discrete source signal matrix. N E CNRxT is the noise matrix 

with covariance, E, which is assumed to be uncorrelated with the source signals and T is the 

sampled points of observations. H E CNRxNR, the Rayleigh channel, is the unknown linear 

square channel matrix whose elements are assumed to be drawn independently from a complex 

Gaussian distribution and we assume that it is invertible. Note that, H is instantaneous but we do 

not guarantee it is orthogonal. For the transmission of a frame of Kb bits, the transmitter encodes 

the K information bits using a convolutional code of rate r, where K = Kb x r. The coded 

bits are interleaved and mapped into QAM symbols, forming a sequence of KS = Kb/ loge P 

symbols, where P is the number of possible symbols in the QAM constellation. Then the QAM 

sequence of symbols is split into NR substreams corresponding to one Rayleigh fading channel, 

and is transmitted in parallel from each one of the NR antennae. The problem above arises 

not only in MIMO systems, but also in multiuser DS /CDMA systems [ 180]. It further reduces 

to SIMO blind equalization when there is only one source signal or when fractionally spaced 

equalization is employed in single antenna communication systems. 

5.2 The Proposed Iterative Procedure 

In this work, a blind MIMO channel equalization algorithm is designed in which the BCJR 

and EM algorithms are iterated. Given initial estimates H"" from the efficient nonlinear ICA 

method we introduced in chapter 3, the SD -BCJR algorithm computes the signal a- posteriori 

probabilities p(skIY, H', E) by utilizing the code structure and then feeds these to the EM al- 

gorithm. The EM algorithm uses these a- posteriori probabilities to evaluate the conditional 

expectations in (5.19) and (5.20). Thus we update new channel state information by (5.21) and 

pass this back to the SD -BCJR algorithm again. As the iterations proceed, estimates become 
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Figure 5.2: Receiver architecture of the proposed coding assisted system. 

more accurate and the a- posteriori symbol probabilities become more precise. 

Figure 5.2 shows the receiver structure using iterative equalization, whereby a soft equalizer 

interacts with a soft -input- soft -output error control decoder. 

In MIMO channels, this soft decoding strategy for blind equalization consists of four stages: 

1) Blindly estimate the channel state information from the statistics of the received signals. 

Here, we use an efficient nonlinear ICA approach to get the initial channel state information 

estimate. 

2) Estimate the soft bits, i.e., the LLR of each transmitted bit, using the list version of the sphere 

decoder or its variants and the current channel state information estimate. 

3) Make the soft bit information more reliable through a simple BCJR soft decoder. 

4) Update the channel state information by the EM algorithm with the soft bit information input 

and feed it back to the channel estimator for further improvement. 

Note that, this hybrid architecture does not calculate the full symbol probabilities in order to re- 

duce the system complexity. It uses a number of approximations during the iterative procedure, 

i.e. in the list sphere decoder, the soft mapping and de- mapping parts and the details which are 

described in the following. 

5.2.1 Soft MIMO Likelihood and The BCJR Decoder 

The optimal ML receiver has exponential complexity with the signal modulation size and num- 

ber of transmitted antennae, thus limiting its real time application. The sphere decoder, on 
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the other hand, is capable of achieving near ML performance [181] and can be designed to 

provide the soft (likelihood) output information [182]. Thus, we propose a blind soft equal- 

izer and decoder architecture combining the SD decoder and a simple error correcting operator 

with low complexity. The low -complexity may enable iterative equalization for fast wireless 

Rayleigh channels. An important requirement for the proposed blind MIMO equalization is the 

calculation of soft information both for the channel estimation and the soft MIMO detector and 

decoder. 

Channel coding has been extensively researched in the literature, we now introduce the tech- 

niques used in this chapter. The well known Bahl -Cocke -Jelinek -Raviv (BCJR) algorithm 

[183] is used to compute a- posteriori probabilities (APP) of inputs to a finite state machine for 

received signals. It has been applied to many channel correcting codes such as, turbo code [5]. 

Define th E {0,1,..., Q - 1) the state of the channel trellis at time index k, where Q = IAI 

is the number of points in the constellation A. There is a one -to -one correspondence between 

symbols and the state value ifrk. Let sim be the symbol input which indicates the state transition 

from p to q, then, the APP P(sk = ily) is given as 

P(sk = ilY) _ E Nth = P,tif k+1 = gIY) (5.2) 
¡J,Q:sPA=i 

Note that the term in the summation in (5.2) can be factorized into three parts, as (5.2) shown. 

One, a forward metric, which relies on the previous channel outputs and which is composed of 

a vector, yi<k, and a backward metric, which relies only on future channel outputs and which is 

composed of a vector yl,k. The branch metric, depends on the current channel output yk. After 

some mathematical manipulations, 

where 

P(tfrk = R tfrk+1 = gIY) = ak(p)Yk(P,g)ßk+1(g)lAY) (5.3) 

ak(P) = P(0 = 12,Y kk) (5.4) 

ßk+l(q) = P(Y!>kkGk+1 = q) (5.5) 

Yk(R q) = P(+frk+1 = YkI fl/k = P) (5.6) 
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Now, equation (5.4) can further be rewritten for the probability ak +1(P), 

ak+1(g) = Yk(P,q)ak(P) 
PErrk 

(5.7) 

where vk is the set of all states at time k. Thus, we can compute a forward metric ak +1 (9) for 

each state q at time k + 1 using the forward recursion. Similarly, equation (5.5) can be written 

for the probability ßk(q) as 

ßk(P) _ Yk(P,q)ßk +1(9) (5.8) 
9Eok +I 

where o-k +1 is the set of all states at time k + 1. To avoid the underflow on finite precision 

computers during recursion in (5.7) and (5.8), people commonly normalize ak and ßk at each 

time k, so that ZgE,k ak(q) = 1 and > pEakßk(p) = 1. Finally, the branch metric is given as 

Yk(P, 9) = P0,4+1 = q,ykl+frk = P) 

= P(yklh = P, Ifrk+1 = g)P(Oc+1 = = P) 
(5.9) 

If a state transition from state p to state q at time k. p -> q, is a valid state transition, for a 

continuous output AWGN channel, the first term in equation (5.9) can be written as, 

1 `- Y IIk-Y°AII'- 
P(Y P kIGk = , k+1 = q) = 

22 
exp- (5.10) 

where yP,9 is the noiseless channel output associated with the state transition from p to q. 

While a full complexity BCJR soft decoder is used in this chapter, an efficient sliding window 

type scheme [184] can be applied in practical applications, which leads to suboptimal perfor- 

mance with a much lower complexity. 

For a BPSK modulation scheme, the log- likelihood ratio (LLR) takes the form (LLR): 

L(bk) = ln 
p(bk 

= 
11Y, 

H), 
P(bk = 01Y, H) 

(5.11) 

where H is the channel estimate. This LLR value shows the reliability of the information bit. 

Given a convolutional code at the transmitter, the well known BCJR algorithm calculates the 

APP exactly if we know the true channel state information. 
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5.2.2 Soft Mapper and Demapper 

The BCJR algorithm is designed for the convolutional bit sequence. Then, in a large constella- 

tion QAM modulation, the soft symbol information needs to transfer to the soft bit information 

for the following BCJR operations. In this section, a description of the QAM soft mapper and 

demapper employed in our proposed decoding scheme is given. Thanks to the bit interleaver in 

both the transmitters and receivers, the marginal posteriori probabilities of the coded symbols 

can be expressed as the product of the bit a- posteriori probabilities. 

The soft demapper and mapper take the following three steps to compute the output symbol - 

wise APP to be fed back to the EM channel estimator. 

1. Demapping with a -priori probabilities. 

Define a coded symbol s, with m bits, as s = {b0, ... , b j, ... , bin_1 }. The demapper 

extracts a soft value of each coded bit for following decoding according to the encode 

scheme. The following gives a description of this demapper. 

For a number of m coded bits, the L -value of bit bi is given as 

ZSkESiO P(371. 
k)eusk) 

L(bJ) = La(bj) h1 
GSkESg, AYI sk)eLíSk)' 

(5.12) 

where ST and S ó define the subsets of S in which the bit bi takes the values 1 and 0, 

correspondingly. sk is the mapping symbol with the bit bi taking the values 1 and 0. L(sk) 

is the likelihood of symbol point sk at time index k. The a -priori L- values are , 

La(b0) = In p(bo 1), La(bi) = ln 
P(bt = 1) 

P(bo = 0), = 0) (5.13) 

For m = 2, 4 -QAM modulation, the channel decoder calculates LLR on the coded bits 

bo, b1 for each received symbol. The L -value of bo can be computed as 

L(boly) = ln P(bo = 11Y) 

P(bo = 01Y) 

- ln P(bo = 1,b1 = OIY) + p(bo = 1, b1 = 11y) 

p(bo = O,bi = OIY) + p(bo = 0,b1 = 1IY) 
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Using Bayes's rule it further can be expressed as 

L(bolY) = La(bo) 

+ ln P(Ylbo = 1, b1 = 0) + P(Ylbo = 1, b1 = 1)eub1) 

P(Ylbo = 0, b1 = 0) + P(Ylbo = 0, bi = 1)eLa(b, )' 

(5.15) 

This probability of each mapping point sk is computed from the equalizer output. From 

equation (5.12), this soft demapper is calculating marginal probabilities and we ignore 

the bit dependencies within the codeword. 

2. Uses BCJR algorithm (or other FEC algorithms) to calculate bit -wise posterior probabil- 

ities based on the marginal probabilities obtained in last step. 

3. Maps bit APPs to symbol APPs. For each symbol sk, the channel joint symbol -wise 

posterior p(sk) can be written as the product of the input marginal bit -wise posterior 

p(bi). It is given as 

P(sk) = 
1 1 P(bi), 
i=1 

where 

(5.16) 

cub]) 
P(b1) = 

1 + eUkd' (5.17) 

denotes the input bit -wise priors offered by the channel decoder in last step. Generally, 

LLR clipping techniques [185][186] can be applied to reduce complexity. Here, we fix 

the LLR clipping level Lau, = 3 as used in [ 187]. 

Note that, a Gray mapping was employed in this work and the optimized symbol mappings for 

BICM with interleaved decoding were researched in high order constellations, the interested 

reader is refereed to [ 188]. The soft mapper used in step 3 may lose some information since the 

joint symbol probability is set equal to the product of marginal bit probability. This assumption 

is only exact when the bit stream probabilities are strictly independent. 

5.2.3 EM Channel Estimation with a- Posteriori Probability 

Most prior work in blind iterative channel identification can be tied to the EM algorithm [143]. 

It is a general methodology for maximum likelihood or maximum a- posteriori estimation. The 

first use of EM with soft symbol estimates was proposed in [ 189]. An adaptive version of 

EM was applied in the identification problem in [190] and some modified EM algorithms were 
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proposed in [164][191]. The EM algorithm updates are analytically simple and numerically 
stable for distributions that belong to the exponential family. Similar to the EM application of 
the EM channel update in previous chapter, we explore EM Channel Estimation that exploits 
a- posteriori information. 

Considering the system model described in equation (5.1), the EM algorithm estimates the 
channel H based on received signals Y = {yk }i . It maximizes the log likelihood, log P(YIH) 

with an initial channel Hi"i, by iteratively calculating, 

Hi +1 arg In E {- log P(YIH', S')P(S ̀ IY, He)), (5.18) 

where Hi is the ith estimate of the channel and S i is the ith estimate of the symbols. As we 

know, the EM iteration in (5.18) only guarantees convergence to a local maximum of P(YIH) 

[ 192]. 

Again, as stated in the last chapter, the update of the equation (5.18) can be written in a closed - 

form solution [ 146] as follows, 

ri = E ykE{siklY, Hk} 

k=1 

(5.19) 

R` = Z E{sik(sik)1Y, H`} (5.20) 
k=1 

Hi+1 (Ri)-1 r' (5.21) 

Equations (5.19) and (5.20) depend on first -order statistics and the second -order statistics of 

the symbols respectively. Note that the computation of (5.19) and (5.20) also require the a- 

posteriori probabilities P(skI Y, H) and P(sksk*IY, H), which are approximated in equation (5.16). 

It is generated by the BCJR algorithm or other error correcting code instead of from the symbol 

estimators directly when using an error correcting code. We emphasize that the EM algorithm 

can make full use of the soft a -priori information of the coded bits from the BCJR decoder and 

these posterior probabilities exploiting the coding structure can provide more accurate channel 

estimates. 

An important problem in the performance of the EM algorithm is the appropriate selection 

of the initial estimate. In the case of low order constellation modulations and small number 

of received antennae, the EM algorithm may converge to the desirable point after several re- 
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initializations of iterative algorithm [193], we show this in the simulation section with 2 x 2 

MIMO system with BPSK modulations. The experiments illustrate convergence to the global 
minimum in a uncoded system. However, if the likelihood surface is complicated, which hap- 
pens in high order modulation and with a large number of receive antennae, the EM algorithm 
is liable to converge to a local minimum rather than a global minimum. Such convergence 
behaviour has been studied by many researchers, see [155] and references therein. 

In the last chapter, the EM algorithm was shown to have a Newton -like convergence locally in 

digital communication systems. This potentially makes the EM algorithm suitable for real time 

applications in wireless communications. However, there is still the important but unsolved 

problem of whether the EM algorithm can converge to the correct solution, i.e., the consis- 

tent solution of the true channel parameters. An iterative joint channel estimation and symbol 

decoder with coding assist can partly solve such difficulty. 

5.3 Codeword Over Multiple Blocks 

In blind MIMO separation, poor estimates principally occur when the SNR is low or the channel 

is singular [ 178]. The latter is related to the channel matrix condition number, y, which is the 

ratio of the largest singular value over the smallest singular value. It is a measure of how 

ill- conditioned the matrix is at receiver. When the channel is very singular, a precise blind 

estimate may be problematic and the information carrying capability is small with a reasonable 

SNR in wireless communications, e.g. 15dB. However, for a well- conditioned channel matrix, 

blind separation can usually provide good estimates. Here we utilize this reliable information 

to rescue the information in singular channel. The singular channel matrix appears with a small 

probability as we will see below, and the information received from good the channel estimates 

can be used to correct the bad information from singular channels. 

One potential problem is that the long codeword will effect the system complexity and the 

decoding delay. Thus the next question is how many blocks are needed to form a codeword. 

Roughly speaking, this is a function of many parameters, such as : the SNR, the performance of 

blind separations and the frequency of the singular channels. For a fixed SNR and a particular 

blind separation method, the system performance is always affected by the condition number 

of channel matrices. 

The condition number is determined by the size of channel and channel statistical properties. 
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For an NR x NR MIMO system, the Rayleigh fading channel assumption satisfies, H - CN(0, 1) 

and the pdf of the normalized condition number = y /NR is given by [ 194] 

8 4 
p (x) = 

x3 
exp( - 

xz 
) (5.22) 

With this equation, we can calculate the probability that the condition number will be greater 
than a specific value, yl as: 

8 4 
P{x > yl } = 

x3 
exp(-)dx f 

which by the change of variable y = 4/x2 can be simplified to: 

P{x > yi } = I - exp(-y)dy 
4/yi 

4 
= 1 - exp(- z ) 

(5.23) 

(5.24) 

This can help us to find a reasonable block length within a codeword. For example, in a 4 x 4 

MIMO system, if the blind separation algorithm can not provide satisfactory performance when 

the channel condition number y > 20 under practical SNRs, we can calculate its probability by 

pÿ(x>20)=1-exp( 
4 ,)0.15 

(20/4)- 
(5.25) 

Assume that singular channels appear uniformly, then, the expected frequency of a singular 

channel is 0.15 in a block. So, an appropriate block length takes the reciprocal of 0.15, approx- 

imated 7. 

Note that, we just give a simple example to state that the long codeword with different fading 

factors can make use of the temporal diversity, then increase the error correction capability. 

Such an advance is applied to the blind channel estimation iteratively and improves the final 

performance both in the channel estimate and the BER significantly. 

5.4 Simulations 

As stated in [ 143], each local maximum has a domain of convergence. Near a local maximum, 

the EM algorithm converges linearly to that local maximum. If the likelihood is unimodal. any 
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EM converges to the global maximum starting anywhere in the parameter space [ 155]. In digital 

communications, we test the simple case where a 2 x 2 uncoded instantaneous MIMO system 
with BPSK modulation and Rayleigh channels. In Figure 5.3, a ZF detection with perfect CSI 

and a blind ICA approach [3] are run for comparison. The ML result come from a EM algorithm 

with exact CSI. The initial value of EM comes from the previous douglas ICA method. There 

is only a very small gap between the EM performance and the optimal ML solution. Through 

the empirical observations, we may speculate the EM may converge to the desired point if the 

likelihood surface is simple. 

M=2,N=2, BPSK 

a 

Douglas ICA 

-e-ZF 
EM 

-o- ML 

2 8 8 10 12 14 

SNR (ml Tiefs 10000 FramelenQN =512 
18 

Figure 5.3: BER performance of a 2x2 uncoded MIMO system. An EM channel estimation 
with BPSK modulation. ML is obtained by the EM with perfect CSI. 

Next, we consider high dimensional systems. A MIMO system with four transmitters, four 

receivers and 16 -QAM modulation are employed. The Rayleigh fading channel H is a 4 x 4 or 

8 x 8 complex instantaneous matrix, which is constant for each block interval (256 symbols). 

N follows the complex additive white Gaussian distribution. The results have been obtained for 

transmitting blocks of Kb = 4096 bits in a 4 x 4 system and Kb = 812 bits in a 8 x 8 system. 

For the error correcting system, a rate of r = 1/2 parallel concatenated convolutional code of 

memory 3 with two nonsystematic convolutional (NSC) code has been used. The generator 

polynomials are G1(D) = 1 + D + D3 + D4, G2(D) = 1 + D3 + D4 and the interleaver is set 

to pseudo random. The SD [ 195] is employed first to get soft information. Only two iterations 

of the channel estimation are employed in EM updates since the EM has a fast convergence 
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behaviour. In order to explore the full contribution provided by FEC, this work computes the 

symbol likelihood based on 16 points on each dimension. This calculation could be simplified 

by a list sphere decoder [ 185] or list -fixed -complexity sphere decoder [ 196] but with a potential 

performance degradation. 

To explore the error correcting code correctly, the permutation problem of ICA should be over- 

come. The channel re- ordering technique is used in our simulations. Given initial estimates 

HIGA, we try to calculate the channel permutation matrix, P, by making the H7,'AH = DP = I, 

where D is a diagonal matrix. Then, the channel estimates H`n' = HIGAP is ordered with P. 

This kind of operation is called ordered ICA in Figure 5.2 and it can guarantee the correct order 

of the coded sequence. In practice, a small pilot can be inserted into data block to indicate 

the correct permutation or in CDMA systems, distinct unique codes (spread code) are applied 

into transmitted data steam in each antenna, then correct permutation can be identified at the 

receivers. 

In comparison with other effective methods of blind MIMO equalization, such as the Split 

Threshold nonlinear function and the SD -EM approach [178], our scheme shows promising 

performance for this type of problem. The former used an efficient score function which is 

specified for QAM signals to obtain a good separability, as shown in chapter 3. The latter 

proposed an efficient hybrid blind MIMO equalization and decoding scheme as stated in chapter 

4. It used soft information in the EM channel update, ignoring any additional information due 

to FEC. Figure 5.4 and 5.5 illustrate the separability improvements with the aid of channel code 

in 4x4 and 8x8 MIMO systems. This performance is measured by the distance of the estimated 

channel from the true value as defined by equation (3.44). 

In digital communications, the ultimate goal is to obtain the optimum BER performance, these 

are shown in figures (5.6) and (5.7). Comparisons are set up with a ZF scheme and the two blind 

methods mentioned above. In order to illustrate the benefits form the channel improvement 

rather than the FEC, the BER is measured before the error correcting operations. Obviously, the 

coding assisted iterative structure improves the system performance significantly since it can 

help avoid the EM algorithm from becoming trapped in a local minimum. The performance 

of 8x8 system is better than those of 4x4 system since it can provide more useful channel 

estimates within a singular channel matrix, therefore more useful information can be fed to 

the FEC decoder. Although, the BER performance is improved, there is still a performance 

gap between the SD- BCJR -EM algorithm and the optimal (with known CSI) SD solution in 
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Figure 5.4: Channel separability of the split threshold nonlinear ICA, the SD -EM and the cod- 
ing assisted SD -EM algorithm with a rate r = 1/2 convolutional code over different 
SNR in 4x4 MIMO systems. 
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Figure 5.5: Channel separability of the split threshold nonlinear ICA, the SD -EM and the cod- 

ing assisted SD -EM algorithm with a rate r = 1/2 convolutional code over different 

SNR in 8x8 MIMO systems. 
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both figures. Such phenomenon is introduced by some very singular channel estimates within 
a block, in which the amplitudes of one or two channels are so weak that blind estimation can 
not identify them accurately in noisy environments. 

10° 
4.N. 4, OAM-16; SD-BWR-EM F2nele0yli=256 

10 12 14 16 

SNRImI Thais 0000: Chan* °póLe =s 

Figure 5.6: BER performance of the ZF scheme, the split threshold nonlinear ICA, the SD- 
EM, the coding assisted SD -EM algorithm and known CSI SD with a rate r = 1/2 
convolutional code in 4x4 MIMO systems. 

For a setup similar to the system above but which provides an increased time diversity, we apply 

a codeword to 2, 4 and 8 channel realizations in which the channel realizations are independent. 

The BER performance is measured after the BCJR algorithm. Figure 5.8, 5.9 and Figure 5.10, 

in the next page, show us that the performance is also improved by the time diversity. Through 

the interleaving operation, poor channel estimates can be set right with high quality information 

from the well conditioned channel estimate, then the channel estimate can be adjusted to be 

more reliable with further iterations. Obviously, we can see the contribution of time diversity 

with the channel coding to the blind MIMO separation and decoding. In the case of 2 blocks 

forming a codeword, the gap between our solution and the optimum solution is still large. 

However, in 4 blocks and 8 block cases, the proposed coding assisted blind separation and 

decoding system can move towards solutions with perfect CSI and approximate the optimum 

solutions at 20 dB and 12 dB, respectively. On the whole, a better performance can be obtained 

by further utilization of the time diversity. However, a codeword combining 4 blocks or more 

increases system computational loads and takes a long decoding delay, so there is a tradeoff 

between the complexity and BER performances. 
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Figure 5.7: BER performance of the ZF scheme, the split threshold nonlinear ICA, the SD- 
EM, the coding assisted SD -EM algorithm and known CSI SD with a rate r = 1/2 
convolutional code in 8x8 MIMO systems. 
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Figure 5.8: BER improvements by utilizing time diversity and channel coding. Triangle line is 

the performance of the SD -EM algorithm following the BCJR algorithm and the 
square line is the performance of the coding assisted SD -EM algorithm. 2 blocks 
form a codeword. 
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Figure 5.9: BER improvements by utilizing time diversity and channel coding. Triangle line is 
the performance of the SD -EM algorithm following the BCJR algorithm and the 
square line is the performance of the coding assisted SD -EM algorithm. 4 blocks 
form a codeword. 
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Figure 5.10: BER improvements by utilizing time diversity and channel coding. Triangle line is 
the performance of the SD -EM algorithm following the BCJR algorithm and the 
square line is the performance of the coding assisted SD -EM algorithm. 8 blocks 
form a codeword. 
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Our final simulation indicates the iterative gain of the coded soft channel estimation measured 

over 20, 000 Monte Carlo runs. Similar to the setup above with 4 fixed channel realizations. 

One channel matrix is constrained to be very singular with a condition number over 25 so 

that it is difficult to estimate with a linear estimator blindly. The other channels are typically 

good in terms of the channel condition number and the parameters can be found in appendix 

D, eight iterations performance are studied. Clearly, from Figure 5.11, we can see that the 

performance progresses towards the optimal curve with CSI known at the receiver. The first 

singular channel matrix separability is illustrated in Figure 5.12 and the iterative improvements 

show the same trend of convergence. In this channel case, this is still a gap to the performance 

with the perfect CSI since there is only 256 symbol each block to estimate the channel through 

the EM update. We speculate that the gap is going to small as the block length going to large. 

As shown in Figure 5.11, for the 5 -8th iterations, the convergence properties of the decoding 

process improves rapidly when SNR is greater than 18 dB. 

The system complexity is high when we iteratively update the channel with the aid of a channel 

code. In practice, we can switch to only one or two iterations when the channel condition is 

good. A trade off can be built up flexibly between the performance and the complexity. 
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Figure 5.11: Iterative BER improvements of the coding assisted SD -EM algorithm in a 4 x 4 

system with 16 -QAM modulation, eight iterations are used. 
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Figure 5.12: Iterative channel improvements of the coding assisted SD -EM algorithm in a 4 x 4 
system with 16 -QAM modulation. 

5.5 Chapter Summary 

In this section, a coding assisted MIMO blind equalization and decoding scheme is proposed. 

Three techniques of equalization, diversity and channel coding are used to improve fading link 

performance (BER). By utilizing a- posteriori information, a substantial gain over the uncoded 

system is provided. The existence of coding structures partly solves the problems of EM getting 

trapped in a local minimum when the channel is close to singular or the SNR is low. This 

happens frequently when the number of receive antennae, the size and the dimension of the 

data are large. The new scheme appears to avoid local minima and converges to the global 

minimum or at least a good approximation of it. Moreover, this system extends FEC to the 

multiple blocks in order to form a large codeword and then exploits the temporal diversity. This 

extension also improved system performance. 
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Chapter 6 

Conclusions and Future Work 

6.1 Conclusions 

Future wireless communications are desired to support high data rates transmission when con- 

sidering the growing applications. Traditional equalization sends pilot on training sequences 

periodically, which make a poor use of the available bandwidth resources. Blind equalization 

can detect the transmitted symbols without the aid of a training sequence thus saving the lim- 

ited bandwidth, therefore, blind equalization is an active research area in practice and can be 

verified by potential theory. In the recent two decades, with the appearance of MIMO systems, 

the blind MIMO channel estimation and equalization become an interesting and challenging 

research field. 

For blind channel separation, ICA is very suitable for the identification of MIMO channels 

since the transmitted data on each antenna can be considered to be approximately independent. 

However, typical ICA algorithms can not provide accurate enough channel estimates to achieve 

good BER performance. In this work, based on the probability density function of modulation 

signals, we have proposed a simple and efficient nonlinear threshold function to separate the 

mixed MIMO signals. This simple but powerful function can provide good separability and 

BER performance as we have shown. The gradient update and the fixed point algorithm based 

upon this nonlinearity are also derived. The bias removal update is also presented and the 

corresponding stability and convergence properties of this nonlinear function are given. This 

nonlinear function is appropriate for large constellation QAM modulation systems in wireless 

communication as experiments have shown. A key advantage of this method is the threshold 

operation can be operated by two comparators. This easy implementation makes it feasible for 

application to a real time communication system. 

For MIMO systems with a large number transmitter and receivers, a more accurate blind detec- 

tor is presented. This detector makes use of EM estimation to update the channel estimates. We 

have demonstrated mathematically, in the digital communication cases, that the EM updating 

algorithm has a fast convergence behaviour in the low noise limit. Moreover, to save computa- 
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tional costs, the E -step can be approximated by a fixed complexity sphere detector. Based on 

these findings, an efficient hybrid system for blind equalization of large constellation MIMO 

systems was presented. Such a scheme outperforms the traditional linear MIMO detectors with 

affordable complexity. 

A potential problem of the EM algorithm is that it is liable to get trapped in a local minima 

when the channel is close to singular or the SNR is low. This happens frequently when the 

number of receiver antennas, the dimension of the data are large. In order to overcome this 

problem, we explore the use of error correcting codes to enhance blind source separation. A 

coding assisted MIMO blind separation and decoding scheme has been proposed. By utilizing 

a- posteriori information, the channel update and soft symbol detection are operated iteratively. 

The existence of coding structures appears to avoid local minimum and converges to the global 

minimum. This design provides substantial gain over the uncoded system and improves the fi- 

nal performance significantly. In the last part of this study, the three techniques of equalization, 

diversity and channel coding are used to improve fading link performance (BER). Applying a 

error correcting codeword to multiple blocks, we can utilize the temporal diversity to compen- 

sate poor channel estimates introduced by the deep fading or very singular channel matrix and 

then recover information correspondingly. 

6.2 Future Work 

This thesis has focused on a general narrow band case where the non -time dispersive linear 

channel is modelled. For this popular wireless system, we have provided a simple and flexible 

blind receiver for large constellation modulation and there are several probabilities of future 

work based on this work. 

6.2.1 Convolutive Channel Estimate 

As an extension of linear channels, wireless channels can be represented as a linear time - 

dispersive system in broadband communications. The channel can be modelled as a convo- 

lutive mixing. This is always called blind wide band source separation in signal processing 

areas. Such problem is more complicated than instantaneous ICA when the various time delay 

in different wireless channels are considered. Generally, a popular solution is to reformulate it 

as an ordinary ICA problem by mapping it into the Fourier (frequency) domain. However, the 
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frequency permutations problem still exist [197]. Some methods directly extend instantaneous 

BSS methods to the convolutive case in the time domain, such as methods based on natural 

gradient [ 198], minimization of Kullback- Leibler divergence [ 199] and joint -diagonalization 

criterion [200]. In time domain, the permutation problem can be avoided and then these meth- 

ods could be used to solve the convolutive channel estimate problem. 

6.2.2 Semi -Blind Methods 

Semi -blind approaches send a small amount of pilot in the transmitter and provide good ini- 

tialization. Then by switching to a blind method, they use both the pilot and the information 

symbols to update the channel [201]. The initialization based on the pilot sequences allow 

for fast convergence of the channel estimates. Further, the training data could be designed to 

solve the phase ambiguities and permutation problems that always remain in blind approaches. 

Fast convergence is needed in fast time -varying channels, so, semi -blind methods will prob- 

ably be more appropriate in practice. Further systematic research can be developed based on 

the our blind architecture of both coded and uncoded systems, e.g., how best to integrate pilot 

sequences into the current blind estimate framework; what is the most appropriate length and 

location of pilot sequences across different SNR? 

6.2.3 Complexity Reduction 

For blind MIMO channel estimation and equalization, fast real time batch and on -line signal 

processing with low complexity is still challenging. A simple and efficient real time imple- 

mentation is desirable for practical applications. Although the complexity of our blind method 

is reduced when compared to ML methods, it is still large if the coding assisted estimation 

and decoding are applied. Generally speaking, our SD -EM and SD- BCJR -EM algorithm are 

designed in order to correct the inaccurate estimation of ICA when the SNR is low and the chan- 

nel is singular. The improvement is insignificant when the channel is good. We could therefore 

reconfigure the iteration number of channel update in coding assisted systems through the unbi- 

ased threshold ICA. We observe that it can obtain good condition number estimates even when 

the specific channel estimates is poor. Further research can be opened up for the purpose of 

complexity reduction. 
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Appendix A 
Derivation of equation (3.42) 

A brief review of the complex -valued FastICA algorithm is introduced here for completeness. 

The cost function of ICA is: 

JG(w) = E{G(IwHxI2)} (A.1) 

where G :R+ u {0} -* R is a smooth even function, W, de- mixing matrix, is an n- dimensional 

complex weight vector, w is a column of W and 

E{IwHxI2} = 1 (A.2) 

where x is the received signal after pre- whitening. Notice that the extreme of a contrast func- 

tion is a well defined problem only if the function is real. For this reason our contrast functions 

operate on absolute values rather than on complex values. According to the Kuhn- Tucker con- 

ditions, the optima of equation (A.1) under the constraint A.2 are obtained at points where: 

vE{G(IwHxI2)} -ßvE{IwHxI2} = 0 (A.3) 

where ß is a constant and the gradient is computed with respect to real and imaginary part of w 

separately. Using Newton method to solve (A.3), the following approximating Newton iteration 

can be obtained, 

w+ = E{x(wHx)"g(IwHX12)} 

-E{g(IwHXI2) + IwHXI2g (IWHx12)}w 

w=w+/IIw+II 

Recall system model equation (2.41), the covariance of received signals is given as 

(A.4) 

C = E{YYH} = E{(HS + N)(HS + N)H} = HHH + E (A.5) 

119 



Derivation of equation (3.42) 

The noise is independent of the sources, Then, 

E {SSH} = I EIS Si = O 

and the noise covariance is given as 

(A.6) 

E{NNH} = o2I = E. (A.7) 

After eigenvalue decompositions, the covariance of received signal C follows the form 

C = UAUH 

and 

z = A-1/2UHY 

is the pre- whitened data. Similarly, 

_ (A - E)-1/2 UHY 

(A.8) 

(A.9) 

(A.10) 

is quasi- whitened data. By defining C -1/2 = (A - E) -1/2 [130], the pre -whitened data is given 

as 

Z+ = C-1/2UHY. (A.11) 

The quasi -whitened data do not have the identity covariance matrix. The proof is given below, 

E{Z+(Z+)H} = E{C-112 UHY(C-1/2 UHY)H} 

= Etc-I/2 0w + N){C-1/2 UH(HS + N)}H} 

C-1/2UHHHHU(C-1/2)H C-1/2UHEU(C-1/2)H (A.12) 

Since C -1/2 = (A - E)-1/2 is a real dialogue matrix, then (C -1/2)H C -1/2, and it follows: 

E{Z+(z+)H} C-1/2UHHHHUC-1/2 + C-1/2UHEUC-1/2 
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Derivation of equation (3.42) 

By defining = C -1/2 UHEUC -1/2 and knowing HHH = C - E, we achieve: 

C-1/2UHHHHUC-1/2 = A(A - E)-1 - C-1/2UHEUC-1/2 

Taking the second part of equation (A.5) into this equation, we obtain: 

E {z +(z +)H} 

= A(A - E)-1 -C -1/2 UHEC -1/2 + C -1/2 UHEUC -1/2 

= I + cr2(A - E)-1 

(A.14) 

(A.15) 

Obviously, the quasi - whitened data is not white. Then we modify the complex FastICA algo- 

rithm with quasi -whitening data input, the Newton method can be approximated by: 

V2E{G(IwHx12)} 

(I + o-2(A - E)-1){2E{g(IwHz+I2)} + 
I wHz+I2g (IwHZ+I2)} 

and 

3VE {IwHx12} = 24-3(I + o-2(A - E)-1) (A.16) 

Then the following new complex approximate Newton iteration can be achieved: 

w+ = E {z+(wHZ+) *g(IwHz+12)} 

-(I + az(A - E)- 1)wE {g(IwHz+12) + IwHZ+I'`g (IwHz +I'`)} (A.17) 
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Appendix B 

Proof of Equation (4.36) 

Taking the first term of equation (4.36). Since 

From 

thus: 

P(Si IYk, H) 
P(Yk l si, H)P(si I H) 

P(YkI H) 
P(YkI si, H)P(si I H) 

EI; Ii P(Yk,sjlH) 

P(Yk Isi, H)P(si I H) 

E j 11 P(YkI sj, H)P(sjI H) 

a[.f(H)lg(H)l 1 a f(H) 8g(H) 

ôH g2(H) [g(H) ôH Î(H) ôH 

ôHT P(St 
I Yk, H) 

a P(Yk I si, H)P(si I H) 
ôHT j 11 P(Yklsj, H)P(sjiH) 

Is l 

= 
g2(H) 

{L P(Yklsj, H)P(SjI H) X ôHT 
[P(Ykl si, H)P(siI H)l 

i=1 
Is' 

-P(Yklsi, H)P(silH) X 
ôHT 

[Z P(Ykl sj, H)P(sjlH)]} 
j=1 

where g(H) = E j l l P(Yk l sj, H)P(sj l H) and f(H) = P(Yk l si, H)P(sil H) 
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Proof of Equation (4.36) 

Since p(ykls j, H) = c exp(k(yk, si, H)) is an exponential function, we can obtain: 

a 
aHT p(Yklsi, H 

= P(Ykls.¡, H)aHT k(Yk, si, H) 

Denote á. k(yk, si, H) as kk i(H) then 

a 
kk,J(H) = 

âH* [-(Yk - Hsi)HE-1(Yk - Hs" 

which is finite. Therefore in equation (B.4), the first part in the bracket is 

Is! 

EP(Yklsi,H)P(sjlH)aHT [P(Yklsi,H)P(silH)] 
i=1 

1,51 

=E P(yklsi, H)P(siI H)P(Ykl si, H)P(sil H)kk i(H). 
j=1 

When noise is low and k is sufficiently large, 

o i 
P(Ykl si, H) _ 

PVkISi,H) 1=J 

where si is the local minimum. Then the equation (B.6) is equal to 

(B.5) 

(B.6) 

P(Yklsi, H)P(siIH)P(Yklst, H)P(sil H)kk i(H). (B.7) 

Consider the second part of equation (B.4) in the bracket and useing the same idea, we obtian 

P(Yklsi, H)P(sil H)P(Ykl si, H)P(siI H)kk,i(H). (B.8) 

Thus 

the equation (4.37) follows. 

a 
aHT P(si lYk, H) = 0. 
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Appendix C 

Channels Used in Chapter V 
Simulations 

The linear square channel matrix, H, used in chapter 5. Its elements are assumed to be drawn 

independently from a Rayleigh distribution, where h,,j(k), - CN(0, 1)1 < i, j < n. The square 

channel matrix can be expanded into the non -square overdetermined MIMO systems wherethe 

number of receive antennae is greater than the number of transmitted antennae, NR > NT. 

Further principal components analysis or singular value decomposition operations are needed 

as preprocessing to make NR = NT. 

We randomly draw 4 channel matrix and fixed them for 20,000 Monte Carlo runs. The con- 

dition numbers of 4 block channels in a codeword is 26.1580, 11.5966, 5.7314 and 5.9095, 

respectively. 

H1 = 

H2 = 

F13 = 

-0.2636 - 0.2704i -0.9062 + 0.0505i -1.5601 + 1.2145i 

0.9924 - 0.3147i 0.2392 - 0.7332i -0.0598 - 0.4830i 

1.1831 + 1.0356i -0.9521 + 0.3823i 0.2636 - 0.4605i 

-0.1860 + 0.7397i -0.0076 - 1.0483i 1.4912 + 0.0384i 

-0.3762 + 0.1472i 

-0.1766 - 0.7189i 

-0.1121 - 0.3579i 

1.2193 + 0.4520i 

-0.0297 - 0.0818i 

-0.7723 + 0.3704i 

-0.0424 - 0.1636i 

0.1219 - 0.8974i 

-0.3494 - 0.6691 i 

-0.6317 + 0.2621i 

-0.5293 + 0.4152i 

-1.2945 + 0.7046i 

-0.8255 - 0.4025i 

0.0749 - 0.8959i 

0.4734 + 1.5803i 

0.0316 - 1.7762i 

124 

0.3680 - 0.5868i 

0.2478 + 1.7522i 

0.0630 - 0.O100i 

-0.4279 + 1.1214i 

0.5528 + 1.2157i 

-0.5666 + 0.0317i 

-0.1489 + 0.2011i 

0.4480 -0.9119i 

-0.4904 + 0.1816i 

0.3358 + 0.5572i 

0.2988 + 0.9400i 

0.1939 + 0.5999i 

-0.4538 - 0.6661i 

0.0272 - 0.1648i 

0.3058 - 0.2477i 

-0.0101 + 0.9134i 

0.1723 + 0.2118i 

-1.3159 + 0.6531i 

0.8763 + 0.4389i 

-0.0463 + 0.2618i 



Channels Used in Chapter V Simulations 

H4 = 

0.1778 - 1.9344i -1.5282 + 0.4596i 0.5841 - 0.5065i -0.3552 - 0.1945i 

-0.5536 + 0.2296i -1.2708 - 0.1256i -0.5353 - 0.4438i -0.3936 + 0.0086i 

0.2110 + 0.1353i 0.4025 - 0.5441i 0.4851 - 0.1228i -0.5507 - 0.3385i 

0.7893 - 0.6173i -0.1968 - 0.8766i 0.4738 + 0.6765i -0.4482 + 0.3673i 
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