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Abstract

Today the usage of digital signal processors has increased, where adaptive filter

algorithms are now routinely employed in mostly all contemporary devices such as

mobile phones, camcorders, digital cameras, and medical monitoring equipment, to

name few. The filter tap-length, or the number of taps, is a significant structural pa-

rameter of adaptive filters that can influences both the complexity and steady-state

performance characteristics of the filter. Traditional implementation of adaptive fil-

tering algorithms presume some fixed filter-length and focus on estimating variable

filter’s tap-weights parameters according to some pre-determined cost function. Al-

though this approach can be adequate in some applications, it is not the case in more

complicated ones as it does not answer the question of filter size (tap-length). This

problem can be more apparent when the application involves a change in impulse

response, making it hard for the adaptive filter algorithm to achieve best potential

performance. A cost-effective approach is to come up with variable tap-length filtering

scheme that can search for the optimal length while the filter is adapting its coeffi-

cients. In direct form structure filtering, commonly known as a transversal adaptive

filter, several schemes were used to estimate the optimum tap-length. Among exist-

ing algorithms, pseudo fractional tap-length (FT) algorithm, is of particular interest

because of its fast convergence rate and small steady-state error. Lattice structured

adaptive filters, on the other hand, have attracted attention recently due to a number

of desirable properties.

The aim of this research is to develop efficient adaptive filter algorithms that

fill the gap where optimal filter structures were not proposed by incorporating the

concept of pseudo fractional tap-length (FT) in adaptive filtering algorithms. The

contribution of this research include the development of variable length adaptive filter

scheme and hence optimal filter structure for the following applications:
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(1) lattice prediction; (2) Least-Mean-Squares (LMS) lattice system identification; (3)

Recursive Least-Squares (RLS) lattice system identification; (4) Constant Modulus

Algorithm (CMA) blind equalization. To demonstrate the capability of proposed al-

gorithms, simulations examples are implemented in different experimental conditions,

where the results showed noticeable improvement in the context of mean square Error

(MSE), as well as in the context of convergence rate of the proposed algorithms with

their counterparts adaptive filter algorithms. Simulation results have also proven

that with affordable extra computational complexity, an optimization for both of the

adaptive filter coefficients and the filter tap-length can be attained.
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Chapter 1

Introduction

1.1 Structure adaptation

1.1.1 Evolution

Structure adaptation is a term used in literature to refer to optimizing the filter

structure via variable tap-length techniques [1–4], and hence improving adaptive fil-

ters efficiency by searching for the filter’s optimum length [5]. In direct form structure

filters, commonly known as transferal adaptive filter, several schemes were utilized to

pursue this task. According to the analysis in [6] and [7], underestimating the filter

length leads to an extra steady-state mean-square-error (MSE), on the contrary, [1], [8]

and [9] stated that, overestimating the tap-length can increase the computational

complexity and eventually result in higher excess mean square error (EMSE). Thus,

a variable tap-length is needed to find the optimum filter length that best balances

between the filter’s steady-state performance and complexity.

1.2 Motivation

Adaptive filtering plays a vital role in enormous number of applications ranging from

digital and wireless communications to biomedical systems, to name a few [10–12].

Improving the performance adaptive filter algorithms necessitate not only bringing the

algorithms up and running but also optimizing it in all aspects. One important aspect

that has a direct impact on adaptive filter algorithms implementation in hardware

such as VLSI, ASIC, FPGA . . . etc, is the filter size. This brings the question of

1



”how long the adaptive filter should be”, into attention. In practice there is no

general solution for this question and researchers used different approaches to solve

it. A cost-effective solution is to come up with a variable tap-length scheme that can

search for the optimal length while the filter adapting. Because of the advantages of

Fractional Tap-length (FT) algorithm, which will be discussed in more details in this

thesis, this research utilizes FT variable tap-length scheme to introduce new variable

adaptation strategies in widely used signal processing applications. Lattice structured

adaptive filters are well known by some characteristics including [13–15]:

• Stability

• Modularity

• Fast convergence rate

In the constant modulus algorithm (CMA) blind equalization algorithm [5,13], which

is used to compensate for signal distortion attributed to Inter-symbol Interference

(ISI) without restoring to training sequence. It is noted that, his capability comes with

high computational load which can make the equalizer alone is sufficient to drive the

design of quadratic amplitude modulation (QAM) signals demodulators. Therefore,

a new variable length CMA (VL-CMA) algorithm is proposed using a pseudo-FT

concept to estimate the optimal equalizers weights and tap-length simultaneously

and hence enhancing the equalization process in blind mode with extra efficiency.

1.3 Research purpose and challenges

The aim of this research is to investigate available variable tap-length strategies and

find an adaptive tap-length solution for the following applications:

• Adaptive prediction (LMS lattice structure)

• System identification (LMS & RLS lattice structure)

2



Figure 1.1 – Proposed combination of structure adaptation.

• Blind equalization (transversal structure)

To achieve this goal, two dimensional adaption algorithm, that optimizes the tap-

length and tap-weight is needed. This requires adjusting the proposed algorithms to

accommodate the change in filtering tap-length during iterations, which is achieved

by combining a variable tap-length algorithm with the adaptive filter algorithm in

the application under investigation Fig. 1.1 .

The parameters that make adaptation process challenging are the following:

• Adaptive filter application parameters

• Variable length algorithm parameters

• Associated application modeling

The last parameters, i.e., the associated application modeling, can include any sudden

change in the channel. The four major challenges burdening the realization of the

proposed scheme adaptation frameworks are as follows:

3



• Parameters selection is an application dependent.

• Concurrency of coefficients and structure adaptation processes.

• Identifying the error signal that contains characteristics suitable to update frac-

tional tap-length in different applications of this dissertation.

• Formulation of variable tap-length blind equalization modeling to accommodate

the multirate system.

1.4 Organization of the dissertation

Fig. 1.2, shows the proposed road map for this dissertation, as it deals with two

kinds of adaptive filtering structures, namely, lattice form and direct form. Fig.

1.2 shows the road map of this work. Two adaptive filtering structures are dealt

with, namely, direct-form, and lattice structures. LMS and RLS algorithms are re-

implemented using variable tap-length in the applications of adaptive prediction,

system identification and blind equalization and bring about structurally optimized

adaptive filter algorithms. The remainder of this dissertation is organized as follows.

Chapter 2 provides a brief literature review of variable tap-length algorithms in the

adaptive filtering applications of this research. Adaptive prediction using direct form

and reconstructing it using lattice form and optimizing this final structure using

forward and backward adaptive prediction are discussed in Chapter 3. Variable tap-

length adaptive filters using LMS and RLS algorithms in lattice realization of system

identification setup will be discussed in Chapter 4 and Chapter 5 respectively, where

a comparison between the two adaptation schemes will be discussed at the end of the

Chapter 5. The proposed optimum tap-length CMA blind equalizer for QAM signals

is discussed in Chapter 6. Finally, Chapter 7 will summarize the dissertation with

the presentation of conclusions and the suggestions of future works.

4



Figure 1.2 – Targeted adaptive filter structures and algorithms

1.5 Research contribution

The major contribution of this dissertation is to present new algorithms for optimizing

the adaptive filter in a variety of applications and structures using variable tap-length

scheme. The proposed algorithms are:

• Fractional Order Lattice Prediction Filter (FO-LPF)

• Fractional Tap-length Lattice LMS Filter (FT-LLMS)

• Fractional Tap-length Lattice RLS Filter (FT-LRLS)

• Variable Length CMA Blind Equalizer (VL-CMA)
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Chapter 2

Literature Review

2.1 Introduction

In the context of adaptive filtering, the filter tap-length problem is simply how to

optimize the conflicting requirements of filter’s parameters to determine the optimum

tap-length that balances performance and complexity that vary with scenarios [1–3].

FIR filter which is usually implemented using a tapped-delay-line (TDL) structure

with tap coefficients recursively updated by adaptive algorithms, such as least mean

squares (LMS) and recursive least squares (RLS) algorithms [4]. The number of

taps, is considered to be an important parameter that can influence the adaptive

filter’s performance [5, 6]. This is because, the tap-length needs to be long enough

to accomplish the desired performance and on the other front, the tap-length cannot

be too long, as this can cause the adaptation noise to become too high, because the

adaptive filter usually converges to a MSE level higher than the MMSE as a result to

the adaption noise [7]. Even without adaption noise, the filter should not be too long

as this will increase the computational complexity of the adaptive filter [8]. Various

variable length adaptive schemes are available in the literature; the most popular ones

are the segmented filter (SF) algorithm [9], the gradient descent (GD) algorithm [10]

and the fractional tap-length (FT) algorithm [6, 7]. By dividing the filter into k

segments and assigning each segment with ∆ coefficients, the SF algorithm compares

the difference between the accumulated square errors from the last two segments

and based on that, the filter tap-length is adjusted by adding or subtracting one

segment [9]. Thus, the GD algorithm is more flexible than SF algorithm. However,
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the GD algorithm suffers from ”wandering” problem, where the adaptive filter tap-

length keeps hovering in a range larger than the optimum tap-length [11].

2.2 Variable tap-length algorithms comparison

Table 2.1 provides a summary of comparison between the most popular variable length

algorithms in the literature.

Table 2.1 – Variable tap-length algorithms.

Algorithms
Segmented Filter

(SF)
Gradient Descent

(GD)
Fractional Tap-length

(FT)

Summary
The filter is partitioned

into k segments
each with length ∆.

No filter segmentation,
as the tap length is

updated using gradient
descent approach.

Filters tap-length
increment in each

iteration is not
restricted to fixed
value, and hence

Fractional Tap (FT).

Cons Inflexible

Wandering problem,
in which the filter
tap-length hovers

in a range larger than
the optimum.

With little
extra complexity,
(SF) and (GD)
disadvantages

can be overcome

Pros
Easy to

implement
Flexible

Easy to
implement and

flexible.
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FT algorithm uses the fractional tap-length during the instantaneous tap-length

update, and the integer value of the fractional tap-length remains unchanged until the

increment of the fractional tap-length accumulates to a certain extent compared with

the integer value [1, 6]. Therefore, the FT algorithm is considered to be an efficient

variable tap-length alternative that exhibits better convergence performance than the

previously mentioned algorithms [6,11]. Fractional tap-length is nominated to be the

guiding structure adaption strategy in this dissertation due to its advantages when

compared to other schemes. Therefore, in the following subsections FT algorithm is

discussed in details

2.2.1 Optimum tap-length

Based on the previous Section, It can be concluded that, there exists an optimum

tap-length that balances the conflicting concerns of performance and complexity. Ref-

erences [12] and [13] defined the the optimum tap-length to be the smallest integer

N0 that fulfills the following inequality

ξN−1 − ξN ≤ ε ∀ N ≥ N0 (2.1)

where ξN is the steady-state mean square error (MSE) when the tap-length is N , and

ε is some small positive value that is predetermined based on system requirements.

2.2.2 FT algorithm cost function

In LMS transversal adaptive filter, if wN and xN are the N -length corresponding

steady state tap-vector and regressor input vector, respectively. Then, the segmented

steady-state error can be defined as [6, 14,15]

e
(N)
G = d(n)−wT

N(1 : G)x(1 : G) (2.2)
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where N is the assumed tap-length, 1 ≤ G ≤ N , wN(1 : G), xN(1 : G) are the vectors

corresponding to first G coefficients of steady-state tap-vector and regressor-vector,

respectively, and d(n) is the desired signal. The segmented steady state MSE was

defined in [11] as ξ
(N)
G = E|e(N)

G |
2

and ideally ξ
(N)
N−∆ ≥ ξ

(N)
N , where ∆ is a positive

integer. Therefore the improved cost function was constructed by [6] as

min{N | ξ(N)
N−∆ − ξ

(N)
N ≤ ε

′} (2.3)

which have been used by [1, 7, 14–17] to search for optimal tap-length in different

adaptive filter applications. It can be noted that, in (2.3), if ε
′

= ε, the optimum

tap-length from cost function could be overestimated which means N
′
0 ≥ N0, and

because in practice, ξN and ξ
(N)
G are unknown in advance, the cost function of cost

function (2.3) gives a biased solution [6]. Because of its advantages that related to

the fractional variable tap-length, the cost function of (2.3) will be used throughout

the rest of this research.

2.3 Variable length blind equalization

The tap-length of the equalizer was discussed in the literature, and because no general

solution have answered the question of the equalizer’s tap-length, in practice different

approaches were proposed in attempt to solve it. In the first approach, a prototype

of the equalizer is built and then tested against a variety of actual channels [18]. The

second method applies rules of thumb that appears intuitively reasonable for length

selection depending on the type of communication channel and the transmitted signal

sampling rate [19], [18]. Both approaches are costly and does not deal with changes

in the channel behaviors which can compromise the equalizer’s performance. A cost-

effective approach is to come up with a variable tap-length scheme that can search for

the optimal length while the equalizer is adapting its coefficients. In [9], a segmented
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filter (SF) variable tap-length algorithm is employed to the equalizer. In SF algorithm

the equalizer is subdivided into k segments, each with fixed coefficients. Then, based

on the difference between the accumulated squared errors from the last two segments,

the tap-length of the filter is modified by adding or subtracting one segment, which

makes SF an inflexible option. Authors in [1] and [16] used a more flexible and robust

variable length technique that employs the fraction tap-length (FT) algorithm, for

trained mode adaptive equalizer. In the literature, authors in [16] , [9], and [1] utilized

the fractional variable tap-length toward linear equalizer. Therefore, the novelty of

this work is to search for the optimal tap-length of the blind equalizer using the CMA

algorithm with the FT technique. This is done by modifying a non-linear error e(n)

of the CMA equalizer output y(n) to update FT iterations.
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Chapter 3

Variable Tap-length Adaptive Lattice

Prediction

3.1 Introduction

In classic implementation of adaptive filtering applications, the filter’s length is kept

fixed, however, in several practical circumstances the optimal tap-length is unknown

and/or variable with time. According to the analysis in [1] and [2], underestimat-

ing the filter length leads to an extra steady-state mean-square-error (MSE), on the

contrary, [3], [4] and [5] stated that, overestimating the tap-length can increase the

computational complexity and eventually result in higher excess mean square error

(EMSE). Thus, there exists an optimum tap-length that best trades off between the

filter’s steady-state performance and complexity. Consequently, a variable tap-length

algorithm is needed to find the optimal filter’s length. Various variable length adap-

tive schemes are available in the literature, the most popular ones are the Segmented

Filter (SF) [6], the Gradient Descent (GD) [7], and the Fractional Tap-length (FT)

algorithm [5] [3] and [4]. Because of its robustness and efficiency FT algorithm is of

particular interest because. This algorithm utilizes some fractional tap-length value

during the instantaneous tap-length update until the increment of the fractional tap-

length accumulates to a certain extent compared with the length’s integer value [3,8].

Adaptive prediction is the application in which a model for the future (forward)

or previous (backward) value of the filter input sequence is estimated using forward

or backward predictors respectively. Lattice structure has most commonly been uti-
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lized for implementing linear predictors in the context of speech processing applica-

tions [9, 10]. This is mainly because of some appealing characteristics that lattice

structure acquires over other filtering forms, such as, modularity, fast convergence

rate and orthogonalization transformation [11,12]. However, traditional implementa-

tion of adaptive prediction assumes some predefined filter’s tap-length, which does not

necessarily meet the optimal criterion of filter’s length. This paper takes advantage of

the forward and backward residual errors of lattice predictors to develop a novel vari-

able tap-length lattice predictor algorithm, that is, the Fractional Tap-length Lattice

Predictor Filter (FT-LPF) [13,14].

3.2 Adaptive prediction

Using transversal or tapped delay line filter structure shown in figure [3.1] below

[11,12]

𝑍−1 𝑍−1 𝑍−1 𝑥(𝑛 − 1) 𝑥(𝑛 − 2) 𝑥(𝑛) 𝑥(𝑛 − 𝑚) 

+ 

− 

𝑒(𝑛) 

𝑦(𝑛) 

𝑤𝑚 𝑤2 𝑤1 
𝑑(𝑛) 

Figure 3.1 – Transversal structured adaptive filter [15].

If the input sequence x(n) is a realization of stationary stochastic process, then two

distinguished prediction schemes can be defined [16]:
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3.2.1 Forward prediction

In this filter, the future value of the input process is predicated using the past values

of same process. Figure 3.2 shows the transversal implementation of an mth-order

forward predictor. If the tap-input vector is x(n− 1) = x(n− 1), x(n− 2), . . . , x(n−

m) then a prediction of the present value x(n) can be obtained by optimizing the

filter’s tap-weight vector am,1, am,2, . . . , am,m in the mean-square sense according to

the Wiener theory [11,12,17].

𝑍−1 𝑍−1 𝑍−1 
𝑥(𝑛 − 1) 𝑥(𝑛 − 2) 

𝑥(𝑛) 

𝑥(𝑛 − 𝑚) 

+ 

− 

𝑓𝑚(𝑛) 𝑥 𝑚
𝑓
(𝑛) 

𝑎𝑚,𝑚 𝑎𝑚,2 𝑎𝑚,1 

Figure 3.2 – Transversal forward predictor [12].

Thus, the optimum forward predictor tap-weights are obtained by minimizing the

function

P f
m = E [f 2

m(n)] (3.1)

where

fm(n) = x(n)− x̂fm(n) (3.2)

is the forward prediction error and

x̂fm =
m∑
i=1

am,ix(n− i) = aTmxm(n− 1) (3.3)
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is the mth-order forward prediction of the sample x(n). This is a conventional Weiner

filtering problem with the input vector xm(n−1) and the desired output x(n). Hence

the Weiner-Hopf equation is obtained by [11], [12]

Ram,o = r (3.4)

where R = E [xm(n − 1)xTm(n − 1)], r = E [x(n)xm(n − 1)] and am,o denotes the

optimum value of am. When the predictor tap weights are optimized according to

(3.4), P f
m is minimized and the Weiner forward minimum mean-square error can be

obtained by

P f
m = E [x2(n)]− rTam = E[x2(n)]− rTR−1r (3.5)

Based on that the forward-prediction error filter, shown in Fig. 3.3, can be defined

as the one has x(n) as the input and the forward prediction error as the output [11].

𝑚th order 
forward predictor 

 

delay 

(𝑇) 

  

− 

𝑓𝑚(𝑛) 𝑥 (𝑛)𝑚
𝑓

 
+ 𝑥(𝑛 − 𝑇) 𝑥(𝑛) 

Figure 3.3 – Forward prediction filter [11].

3.2.2 Backward prediction

Figure 3.4 shows the transversal implementation of an mth-order backward predictor.

If the tap-input vector is x(n) = [x(n), x(n−1), . . . , x(n−m+1)], then a prediction of

the input sample x(n−m) can be obtained by optimizing the filter’s tap-weight vector

is cm,1, cm,2, . . . , cm,m in the mean-squares sense according to the Wiener theory [11,

12]. Thus, the optimum backward predictor tap-weights are obtained by minimizing

the function

P b
m = E b2

m(n) (3.6)
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𝑍−1 

𝑍−1 𝑍−1 𝑥(𝑛 − 1) 

𝑥(𝑛 − 𝑚) 

𝑥(𝑛) 𝑥(𝑛 − 𝑚 + 1) 

+ 

− 

𝑏𝑚(𝑛) 

𝑐𝑚,2 𝑐𝑚,1 𝑐𝑚,𝑚 

𝑥 𝑚
𝑏 (𝑛) 

Figure 3.4 – Transversal backward predictor [12].

where

bm(n) = x(n−m)− x̂bm(n) (3.7)

is the backward prediction error and

x̂bm =
m∑
i=1

cm,ix(n− i+ 1) = cTmxm(n) (3.8)

is the mth-order forward prediction of the sample x(n). This is a conventional Weiner

𝑚th order backward 
predictor 

 

delay 

(𝑇) 

  

− 

𝑏𝑚(𝑛) 𝑥 (𝑛)𝑚
𝑏  + 

𝑥(𝑛 − 𝑇) 

𝑥(𝑛) 

Figure 3.5 – Backward prediction filter [11].

filtering problem with the input vector xm(n) and the desired output x(n). Hence

the Weiner-Hopf equation is obtained by [11,12]

Rbcm,o = rb (3.9)
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where Rb = E [xm(n − 1)xTm(n − 1)], rb = E [x(n)xm(n − 1)] and cm,o denotes the

optimum value of cm. When the predictor tap weights are optimized according to

(3.9), P b
m is minimized and the transversal Weiner backward minimum mean-square

error can be obtained using

P b
m = E [x2(n)]− rTam = E [x2(n)]− rTR−1r (3.10)

Based on that the backward-prediction error filter that has x(n) as the input and the

backward prediction error as the output can be defined.

𝜅1 

𝑏0(𝑛) 

𝑓0(𝑛) 

𝑥(𝑛) 𝜅2 𝜅𝑀  

𝑓1(𝑛) 

𝑏1(𝑛) 

𝑓𝑀(𝑛) 

𝑏𝑀(𝑛) 

Figure 3.6 – Overall lattice structure [11].

3.3 Lattice structure

Lattice structure is formulated around the basic building block shown in Fig. 3.7. The

the input-output relation of such a structure is characterized by a single parameter,

known as, the Partial Correlation (PARCOR) Coefficient κm(n). The order-update

equations for forward and backward residual prediction errors are recursively specified

by [11,18]. fm(n)

bm(n)

 =

 1 −κm(n)

−κm(n) 1

 fm−1(n)

bm−1(n− 1)

 (3.11)

21



where m = 1, 2, . . . ,M , κm(n) is the partial coefficient (PARCOR) at the Mth stage

and time n and fm(n) and bm(n) are forward and backward prediction errors respec-

tively. The PARCOR superscript of * denotes to the complex conjugation. Figure 3.6

shows the overall lattice structure of an M -order forward-backward predictor. Each

stage receives the forward and backward prediction errors from the previous stage

as its input and produces the forward and backward prediction errors of one order

higher as output.

𝑍−1 

𝜅𝑚(𝑛) 

𝑓𝑚−1(𝑛) 𝑓𝑚(𝑛) 

𝑏𝑚−1(𝑛) 𝑏𝑚(𝑛) 
+ 

+ 

− 

− 

Figure 3.7 – Lattice building block [11].

To initialize the adaptation [11]:

f0(n) = b0(n) = x(n) (3.12)

The optimum (PARCOR) coefficient κm of the mth stage of lattice predictor is ob-

tained by minimizing the cost function:

ξm = E
[
f 2
m(n) + b2

m(n)
]

(3.13)

κm(n+ 1) = κm(n)− µp,m(n)
∂ξ̂m(n)

∂κm
(3.14)
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where µm(n) is the step-size. An estimate of the cost function ξm, based on the most

recent samples of the forward and backward prediction errors, is given by

ξ̂m = f 2
m(n) + b2

m(n) (3.15)

Substituting (3.13) in (3.14) and using (3.11), yields

κm(n+ 1) = κm(n) + 2µm(n). [fm(n)bm−1(n− 1) + bm(n)fm−1(n)] (3.16)

The convergence rate can be accelerated by normalizing the step-size µp,m(n) by the

signal power at the mth stage of the predictor, which is estimated by the iteration

Pm−1(n) = βPm−1(n− 1) + (1− β).[(f 2
m−1(n) + b2

m−1(n− 1))] (3.17)

Hence, the normalized step-size is given by

µm(n) =
µp

Pm−1(n) + ε
(3.18)

where µp is the constant step-size and ε is a small positive value to avoid algorithm

instability. Given the PARCOR coefficients of lattice predictor, the corresponding

transversal structure can be calculated using Levinson-Durbin algorithm [19–21]. Al-

gorithm 1 outlines the lattice forward prediction filter [11], in which as an input,

the algorithm receives the present values of PARCOR coefficients, the backward pre-

diction error vector, the power estimates vector and the most recent input sample

x(n). Then the algorithm updates these parameters and returns the forward residual

errors [f1(n), f2(n), . . . , fM(n)]. In a similar manner, the lattice backward prediction

filter [11] receives the present values of PARCOR coefficients, the backward predic-

tion error vector, the power estimates vector and the most recent input sample x(n).

However, as a lattice backward predictor filter, the algorithm in this case updates the-

23



ses parameters according to equations demonstrated in Algorithm 2 and returns the

backward residual errors [b1(n), b2(n), . . . , bM(n)]. The following two algorithms sum-

marize the forward and backward LMS lattice structured adaptive filters respectively.

Algorithm 1: LMS algorithm for adaptive lattice forward predictor.

Input: x(n), κ1(n), κ2(n). . . . , κM(n),

b(n− 1) = [b0(n− 1), b1(n− 1), . . . , bM(n− 1)]T ,

f(n− 1) = [f0(n− 1), f1(n− 1), . . . , fM(n− 1)]T ,

P0(n− 1), P1(n− 1), . . . , PM(n− 1).

Output: f(n) = [f1(n), f2(n), . . . , fM(n)]T ,

κ1(n+ 1), κ2(n+ 1). . . . , κM(n+ 1),

P0(n), P1(n), . . . , PM(n).

1 Initialize f0(n) = b0(n) = x(n)

2 P0(n) = βP0(n− 1) + (1− β) [f0(n)2 + b0(n− 1)2]

3 for m = 1, 2, . . . ,M do

4 fm(n) = fm−1(n)− κm(n)bm−1(n− 1)

5 bm(n) = bm−1(n− 1)− κm(n)fm−1(n)

6 κm(n+ 1) = κm(n) + 2µp
Pm−1(n)+ε

[fm−1(n)bm(n) + bm−1(n− 1)fm(n)]

7 Pm(n) = βPm(n− 1) + (1− β)[fm(n)2 + bm(n− 1)2]

8 end for

9 Return fM(n)
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Algorithm 2: LMS algorithm for adaptive lattice backward predictor.

Input: x(n), κ1(n), κ2(n). . . . , κM(n),

b(n− 1) = [b0(n− 1), b1(n− 1), . . . , bM(n− 1)]T ,

f(n− 1) = [f0(n− 1), f1(n− 1), . . . , fM(n− 1)]T ,

P0(n− 1), P1(n− 1), . . . , PM(n− 1).

Output: b(n) = [b1(n), b2(n), . . . , bM(n)]T ,

κ1(n+ 1), κ2(n+ 1). . . . , κM(n+ 1),

P0(n), P1(n), . . . , PM(n).

1 Initialize f0(n) = b0(n) = x(n)

2 P0(n) = βP0(n− 1) + (1− β) [f0(n)2 + b0(n− 1)2]

3 for m = 1, 2, . . . ,M do

4 fm(n) = fm−1(n)− κm(n)bm−1(n− 1)

5 bm(n) = bm−1(n− 1)− κm(n)fm−1(n)

6 κm(n+ 1) = κm(n) + 2µp
Pm−1(n)+ε

[fm−1(n)bm(n) + bm−1(n− 1)fm(n)]

7 Pm(n) = βPm(n− 1) + (1− β)[fm(n)2 + bm(n− 1)2]

8 end for

9 Return bM(n)
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3.4 Fractional tap-length LMS algorithm

Using system identification setup, the weight update of the adaptive filter in the

FT-LMS algorithm is given by:

wL(n)(n+ 1) = wL(n)(n) + µe
(L(n))
L(n) (n)xL(n)(n) (3.19)

where wL(n)(n) and xL(n)(n) are the weight update and input vectors respectively, µ

is the step size, L(n) is the variable tap-length and e
(L(n))
L(n) (n) is defined in [3] to be

the segmented steady-state error that is calculated by the equation

e
L(n)
G (n) = d(n)−wT

L(n);1:G(n)xL(n);1:G(n) (3.20)

where 1 ≤ G ≤ L(n), d(n) is the desired signal, and wL(n);1:G(n) and xL(n);1:G(n)

are vectors consisting of the first G elements of the vectors wL(n)(n) and xL(n)(n)

respectively.

By defining lf (n) as the pseudo fractional tap-length, the update equation of the

FT-LMS was proposed in [3] as follows:

lf (n+ 1) = lf (n)− α− γ[(e
(L(n))
L(n) (n))

2
− (e

(L(n))
L(n)−∆(n))

2
] (3.21)

where γ is the step size for the tap-length adaptation, α is a positive leakage parameter

and ∆ is a positive integer. Then, the updated tap-length, which will be used in the

next iteration, is calculated from the fractional tap-length lf (n) by:

L(n+ 1) =

blf (n)c if |L(n)− lf (n)| > δ

L(n) otherwise

(3.22)

where b.c is the floor operator and δ is a small integer. When a fixed ∆ is employed,

the FT algorithm is required find a compromise between convergence speed and the
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bias from the optimum tap-length [4].

3.5 Proposed algorithm

Authors in [22] proposed lattice structured variable tap-length algorithm in system

identification setup, and for this purpose the direct error signal of joint process esti-

mator was utilized to update the tap-length recursions. Distinctively, in this work,

the forward errors f0, f1, . . . , fm are employed to update the errors e
L(n)
L(n) and e

L(n)
L(n)−∆

in tap-length recursions of (3.20), (3.21) and (3.22) with f
L(n)
L(n) and f

L(n)
L(n)−∆ respec-

tively [14, 23]. Algorithm 3, summarizes the proposed LMS fractional order lattice

predictor filter (FO-LPF) algorithm.
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Algorithm 3: Proposed fractional order lattice prediction filter (FO-LPF).

Input: x(n), l(n), L(n), κ1(n), κ2(n). . . . , κM(n),

b(n− 1) = [b0(n− 1), b1(n− 1), . . . , bM(n− 1)]T ,

f(n− 1) = [f0(n− 1), f1(n− 1), . . . , fM(n− 1)]T ,

P0(n− 1), P1(n− 1), . . . , PM(n− 1).

Output: b(n) = [b1(n), b2(n), . . . , bM(n)]T ,f(n) = [f1(n), f2(n), . . . , fM(n)]T ,

κ1(n+ 1), κ2(n+ 1). . . . , κM(n+ 1), P0(n), P1(n), . . . , PM(n),

L(n+ 1).

1 Initialize f0(n) = b0(n) = x(n), l(0) &L(0)

2 for n = 0, 1, . . . , do

3 f0(n) = b0(n) = x(n)

4 P0(n) = βP0(n− 1) + (1− β) [f0(n)2 + b0(n− 1)2]

5 for m = 1, 2, . . . ,M, do

6 fm(n) = fm−1(n)− κm(n)bm−1(n− 1)

7 bm(n) = bm−1(n− 1)− κm(n)fm−1(n)

8 κm(n+ 1) = κm(n) + 2µp
Pm−1(n)+ε

[fm−1(n)bm(n) + bm−1(n− 1)fm(n)]

9 Pm(n) = βPm(n− 1) + (1− β)[fm(n)2 + bm(n− 1)2]

10 end for

11 e
L(n)
L(n)(n) = fN−1 ; e

L(n)
L(n)−∆(n) = fN−∆−1

12 lf (n+ 1) = (lf (n)− α)− γ
[(
e

(L(n))
L(n)

)2

−
(
e

(L(n))
L(n)−∆

)2
]

13 L(n+ 1) =

lf (n) if |L(n)− lf (n)| > δ

L(n) otherwise

14 end for

15 Return [f1, f2, . . . , fM ] , [b1, b2, . . . , bM ] & L(n+ 1)

28



3.6 System simulation

In this experiment, a lattice structured forward predictor of Fig. 3.3 is used to predict

a narrow band 100 Hz signal cos(2πft) superimposed on white noise input signal using

the variable tap-length filter shown in Algorithm 3. A 200 samples snap shot of the

input signal, prior to implementing FO-LPF algorithm, is depicted in Fig. 3.8 below.

Figure 3.8 – Input signal.

Filter performance is evaluated by applying the input signal to the forward lat-

tice structured predictor that is illustrated in Fig. 3.3 and the frequency response

of an equivalent transversal predictor is determined. Theoretically, the predictor’s

frequency response, after convergence, should pass the narrow band signal of 100 Hz

and depress all other frequency components. For this purpose Algorithm 3 is used to

compute the frequency response of FO-LPF and the results is compared with different
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fixed and predetermined filter lengths. Throughout the algorithm’s implementation

a step-size µp = 0.003 was chosen and FO-LPF variable tap-length algorithm’s pa-

rameters were selected according to [4] as the the following. δ should be a positive

integer as small as 1 ≤ δ ≤ 10 [3] [4], the selected value of leakage parameter α is an

application dependent, however, [4] considered a choice of α between 0.001 and 0.01

is generally a good choice. The parameter γ controls both convergence speed and

fluctuation of the tap-length, a large γ leads to fast convergence of the tap-length but

results in large fluctuation, consequently, a trade-off of γ should be considered [4] [3].

Hence, in this experiment parameters’ choices are made as follows: ∆ = 10, α = 0.005,

δ = 2 and γ = 1. 100 independent runs of system simulation were performed and

Figure 3.9 – Output signal.

the frequency response was calculated in every run. The results were averaged. A

snap shot of the FO-LPF is shown in Fig. 3.9, where it can be seen clearly that the

narrow-band signal is recognized using the variable tap-length algorithm. Fig. 3.10
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shows the simulation results of computing the filter’s frequency response of variable

tap-length algorithm of FO-LPF against various fixed tap-lengths filters with lengths

L = 5, 10 and 20 where FO-LPS algorithm manifests best frequency response proper-

ties of passing the narrow-band signal of 100Hz and attenuating all other frequencies

with smoother ripples. This is mainly because of FO-LPF’s ability to estimate the

optimal filter size (number of taps) while predicting the filter coefficients.

Figure 3.10 – Frequency response of proposed FO-LPF algorithm against different
fixed filter lengths.

The expected value of FO-LPF filter tap-length is shown in Fig. 3.11. The

simulation results showed an expected tap-length predictor filer of approximately 32

taps. Because FO-LPF algorithm uses a fixed in its length adaptation, the filter

algorithm is supposed to have a bias of ∆ = 10 [3], consequently, an optimal tap-

length of about 22 taps, which can be conceived from Fig. 3.10, as we notice the

fixed filter of 20 taps is closer to the FO-LPF variable tap-length algorithm frequency
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response characteristics.

Figure 3.11 – Tap-length’s expected value of FO-LPF algorithm.

3.7 Conclusion

A new variable tap-length algorithm for lattice structured adaptive predictor was

proposed. This algorithms utilizes the forward residual errors to find the optimal

tap-length adaptively. Simulation results of the filter frequency response showed that

the proposed algorithm can predict the narrow-band message signal efficiently even in

the presence of noise. The suggested algorithm’s frequency response showed superior

characteristics when compared with predetermined lengths of lattice predictors.
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Chapter 4

Variable Tap-length LMS Adaptive

Lattice Filters Applied to System

Identification

4.1 Introduction

Tap-Length is one of the important parameters that significantly affects the perfor-

mance of adaptive filters. An overestimated tap-length increases the filter computa-

tional complexity and reduces the convergence rate, while underestimating it leads

to an extra steady state Mean-Square Error (MSE). Most applications assume some

predefined tap-length, which does not necessarily provide optimal adaptation results.

Therefore, adjusting the filter tap-length to reach the optimal filter length has gained

more attention in recent years [1], [2]. The variable length algorithm should converge

fast to the optimum tap-length with small steady state fluctuations.

Most popular variable length adaptive algorithms are the segmented filter (SF)

algorithm [3], the gradient descent (GD) algorithm [4], and the fractional tap-length

(FT) algorithm [1,2,5]. In the SF algorithm, the filter is subdivided into k segments,

each with fixed ∆ coefficients. Then, based on the difference between accumulated

squared errors from the last two segments, the tap-length of the filter is modified by

adding or subtracting one segment [3]. The GD algorithm does not divide the filter

into segments nor does it constraint the tap-length step-size update to ∆ [4]. Thus,

the GD algorithm is more flexible than SF algorithm. However, the GD suffers from

”wandering” problem, where the adaptive filter tap-length keeps hovering in a range
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larger than the optimum tap-length [5].

The FT algorithm has less computational complexity and better convergence per-

formance than the previously mentioned algorithms. It uses the fractional tap-length

during the instantaneous tap-length update, and the integer value of the fractional

tap-length remains unchanged until the increment of the fractional tap-length accu-

mulates to a certain extent compared with the integer value [5], [6].

This paper is organized as follows. In Section 4.2 the Fractional Tap-Length FT-

LMS algorithm is described within a system identification model and using FIR filter

structure. Lattice structure will be introduced in Section 4.3. In Section 4.4, a new

Fractional Tap-Length lattice structured LMS algorithm (FT-LLMS) is presented.

Simulation results will be shown in Section 4.5 to verify the system performance.

Finally, Section 4.6 will conclude the paper.

4.2 FT-LMS algorithm

In the context of transversal filter (FIR) system identification model, the role of FT-

LMS algorithm is to identify the unknown filter coefficients as well as the tap-length

Lopt of the unknown filter w. The desired signal d(n) is represented as in [7]

d(n) = xTLopt
(n)wLopt + z(n) (4.1)

where xLopt(n) is the input vector given by [x(n), x(n−1) . . . x(n−Lopt+1)]T , wLopt(n)

= [w1(n), w2(n) . . . wLopt(n)]T , is the optimum coefficient vector, Lopt is the optimum

tap-length and z(n) is a stationary zero-mean uncorrelated noise signal that is inde-

pendent of x(n).

In the FT-LMS algorithm, the weight update recursion of the adaptive filter is

given by

wL(n)(n+ 1) = wL(n)(n) + µe
(L(n))
L(n) (n)xL(n)(n) (4.2)
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where wL(n)(n) and xL(n)(n) are the weight update and input vectors respectively, µ

is the step size, L(n) is the variable tap-length and e
(L(n))
L(n) (n) is defined in [5] to be

the segmented steady-state error that is calculated by the equation

e
L(n)
M (n) = d(n)−wT

L(n);1:M(n)xL(n);1:M(n) (4.3)

where 1 ≤M ≤ L(n), and wL(n);1:M(n) and xL(n);1:M(n) are vectors consisting of the

first M elements of the vectors wL(n)(n) and xL(n)(n), respectively.

By defining lf (n) as the pseudo fractional tap-length, the update equation of the

FT-LMS was proposed in [5] as follows:

lf (n+ 1) = lf (n)− α− γ[(e
(L(n))
L(n) (n))

2
− (e

(L(n))
L(n)−∆(n))

2
] (4.4)

where γ is the step size for the tap-length adaptation, α is a positive leakage parameter

and ∆ is a positive integer.

Then, the updated tap-length, which will be used in the next iteration, is calculated

from the fractional tap-length lf (n) by:

L(n+ 1) =

blf (n)c if |L(n)− lf (n)| > δ

L(n) otherwise

(4.5)

where b.c is the floor operator and δ is a small integer. When a fixed ∆ is employed,

the FT algorithm is required find a compromise between convergence speed and the

bias from the optimum tap-length [1, 8].

4.3 Lattice structure

Adaptive system identification filter can be realized using lattice form, which is formu-

lated around the lattice basic structure shown in Fig. 4.1. The input-output relation
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of such a building block is characterized by a single parameter, known as, the Partial

Correlation (PARCOR) Coefficient κm(n). The order-update equations for forward

Figure 4.1 – Lattice building block [9].

and backward prediction errors are recursively specified by [9–11]

fm(n) = fm−1(n)− κm(n)bm−1(n− 1) (4.6)

bm(n) = bm−1(n− 1)− κm(n)fm−1(n) (4.7)

where m = 1, 2, . . . ,M , κm(n) is the partial coefficient at the mth stage and time n

and both of fm(n) and bm(n) are forward and backward prediction errors respectively.

To initialize the adaptation, the zeroth-order forward and backward perdition errors

are set as

f0(n) = b0(n) = x(n) (4.8)

The optimum (PARCOR) coefficient κm of the mth stage of lattice predictor is ob-

tained by minimizing the following cost function:

ξm = E
[
f 2
m(n) + b2

m(n)
]

(4.9)
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The LMS algorithm for minimizing this cost function is implemented according to

the following recursion

κm(n+ 1) = κm(n)− µm(n)
∂ξm(n)

∂κm
(4.10)

where µm(n) is the step-size. An estimate of the cost function ξm, based on the most

recent samples of the forward and backward prediction errors, is given by

ξ̂m = f 2
m(n) + b2

m(n) (4.11)

Substituting (4.11) in (4.10) and using (4.6) and (4.7), yields

κm(n+ 1) = κm(n) + 2µm(n). [fm(n)bm−1(n− 1) + bm(n)fm−1(n)] (4.12)

A faster convergence can be obtained by normalizing the step-size µp,m(n) by the

signal power at the mth stage of the predictor, which is estimated by the recursion

Pm−1(n) = βPm−1(n− 1) + (1− β)(f 2
m−1(n) + b2

m−1(n− 1)) (4.13)

Hence, the normalized step-size is given by

µm(n) =
µp

Pm−1(n) + ε
(4.14)

where µp is the constant step-size and ε is a small positive constant to prevent algo-

rithm instability. The LMS algorithm can then be used to adapt wi coefficient of the
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Figure 4.2 – Lattice joint process estimator [12].

linear combiner in the lattice joint process estimator in Fig. 4.2 as [12–14]

w(n+ 1) = w(n) + 2µc(n)e(n)b(n) (4.15)

e(n) = d(n)−w(n)Tb(n) (4.16)

µc(n) =
µ

Pm(n) + ε
, for m = 0, 1, . . . ,M (4.17)

where µ is the unnormalized step-size that is different from µp and the vector b(n) =

[b0(n)b1(n) . . . bN−1(n)]T is backward prediction error . Algorithm 4 summarizes lat-

tice LMS joint processor estimator.
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Algorithm 4: Lattice LMS algorithm for adaptive joint process estimator.

Input: x(n), d(n), κ1(n), κ2(n). . . . , κM(n),

w(n− 1) = [w0(n), w1(n), . . . , wM(n)]T ,

b(n− 1) = [b0(n− 1), b1(n− 1), . . . , bM(n− 1)]T ,

P0(n− 1), P1(n− 1), . . . , PM(n− 1).

Output: κ1(n+ 1), κ2(n+ 1). . . . , κM(n+ 1),

w(n− 1) = [w0(n), w1(n), . . . , wM(n)]T ,

b(n) = [b0(n), b1(n), . . . , bM(n)]T , P0(n), P1(n), . . . , PM(n).

1 for n = 0, 1, . . . , do

2 Initialize f0(n) = b0(n) = x(n),

P0(n) = βP0(n− 1) + (1− β) [f0(n)2 + b0(n− 1)2]

3 for m = 1, 2 . . . ,M, do

4 fm(n) = fm−1(n)− κm(n)bm−1(n− 1)

5 bm(n) = bm−1(n− 1)− κm(n)fm−1(n)

6 κm(n+ 1) = κm(n) + 2µp
Pm−1(n)+ε

[fm−1(n)bm(n) + bm−1(n− 1)fm(n)]

7 Pm(n) = βPm(n− 1) + (1− β)[fm(n)2 + bm(n− 1)2]

8 end for

9 y(n) = wT (n)b(n)

10 e(n) = d(n)− y(n)

11 µc(n) = µ diag((P0(n) + ε)−1..(PN−1(n) + ε)−1)

12 w(n+ 1) = w(n) + 2µc(n)e(n)b(n)

13 end for
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4.4 Proposed algorithm

The proposed algorithm brings together the Fractional-Tap (FT) strategy and LMS

lattice structured filter, to form a new fractional-tap lattice LMS (FT-LLMS) filter.

Algorithm 5 outlines the proposed FT-LLMS filter. The computational complexity of

the proposed FTLLMS filter and a comparison with its counterpart standard lattice

LMS (LLMS) is shown in Table 4.1.

Table 4.1 – Computational complexity for LLMS and FTLLMS filters.

Operation Addition Multiplication Division
LLMS Filter 9L 14L L

FTLLMS Filter 10L+ 3 15L+ 3 L

The standard lattice LMS filter requires 8L additions, 12L multiplications and L

divisions, where L is the steady-state tap-length of the algorithm. The FT lattice

LMS, on the other hand, adds L+3 additions and L+3 multiplications to the standard

algorithm [15], [16].
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Algorithm 5: Proposed fractional tap lattice LMS (FTLLMS) algorithm.

Input: x(n), d(n), l(n), L(n) κ1(n), κ2(n). . . . , κM(n),

w(n− 1) = [w0(n), w1(n), . . . , wM(n)]T ,

b(n− 1) = [b0(n− 1), b1(n− 1), . . . , bM(n− 1)]T ,

P0(n− 1), P1(n− 1), . . . , PM(n− 1).

Output: L(n+ 1), b(n) = [b0(n), b1(n), . . . , bM(n)]T ,

κ1(n+ 1), κ2(n+ 1). . . . , κM(n+ 1),

w(n+ 1) = [w0(n+ 1), w1(n+ 1), . . . , wM(n+ 1)]T ,

P0(n), P1(n), . . . , PM(n).

1 for n = 0, 1, . . . , do

2 Initialize L(0), l(0), f0(n) = b0(n) = x(n),

P0(n) = βP0(n− 1) + (1− β) [f0(n)2 + b0(n− 1)2]

3 for m = 1, 2 . . . ,M, do

4 fm(n) = fm−1(n)− κm(n)bm−1(n− 1)

5 bm(n) = bm−1(n− 1)− κm(n)fm−1(n)

6 κm(n+ 1) = κm(n) + 2µp
Pm−1(n)+ε

[fm−1(n)bm(n) + bm−1(n− 1)fm(n)]

7 Pm(n) = βPm(n− 1) + (1− β) [fm(n)2 + bm(n− 1)2]

8 end for

9 e
L(n)
L(n)(n) = d(n)−wT

L(n);1:L(n)(n)bL(n);1:L(n)(n)

10 e
L(n)
L(n)−∆(n) = d(n)−wT

L(n);1:L(n)−∆(n)bL(n);1:L(n)−∆(n)

11 µc(n) = µ diag
(
(P0(n) + ε)−1, . . . , (PN−1(n) + ε)−1)

12 wL(n)(n+ 1) = wL(n)(n) + 2µc(n)eL(n)(n)bL(n)(n)

13 lf (n+ 1) = (lf (n)− α)− γ
[(
e

(L(n))
L(n)

)2

−
(
e

(L(n))
L(n)−∆

)2
]

14 L(n+ 1) =

lf (n) if |L(n)− lf (n)| > δ

L(n) otherwise

15 end for
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4.5 System simulations

4.5.1 Lattice structure vs. direct form structure

The main objective of this experiment is to identify an unknown system character-

ized by the impulse response shown in Fig. 4.3, which is a car cabin truncated to

100 samples, using FIR structured and lattice structured LMS adaptive filters. The

experimental setup is similar to those in [1] and [2], where the input signal is white

Gaussian with zero-mean and unity variance and the results are obtained by averaging

multiple independent runs of the simulation.

Figure 4.3 – Car cabin impulse response of length 100 samples.

Filter length in both structures are fixed to (Lopt = 100), the step-size for FIR LMS

adaptive filter and and the linear combiner part of lattice structure LMS adaptive

filter is (µ = 0.0005), and the step-size for the predictor part of lattice structure is

(µp = 10−7). Simulation results for Mean Square Error (MSE) are shown in Fig.

4.4 and Fig. 4.5 which are related to low SNR of 10 dB and high SNR of 30 dB
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respectively. In both cases the two adaptive filter structures show approximately same

error level, nevertheless, lattice structured adaptive filter has a faster convergence

rate.

Figure 4.4 – MSE(n) for lattice and direct form filter, SNR = 10 dB.

Figure 4.5 – MSE(n) for lattice and direct form filter, SNR = 30 dB.

4.5.2 Proposed algorithm simulations

Tracking capability of FTLLMS algorithm

Here, the proposed FTLLMS algorithm in Section 4.4 is used to identify an unknown

system that consists of two parts, the first impulse response of it is shown in Fig.

4.3 and then an abrupt change occurs to the examined system’s impulse response at
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approximately half of the iteration period where all coefficients are multiplied by −1

and the length of the new unknown system becomes 200 samples, as shown in Fig.

4.6. Algorithm parameters are chosen according to [8] as follows below. The value

δ should be a small positive integer, 1 ≤ δ ≤ 10 [5] [8] [2], therefore, it is selected

as δ = 2 in this paper. The selected value of leakage parameter α is an application

dependent, however, it was stated in [8] that values of α between 0.001 and 0.01

would lead to proper performance, hence, α = 0.005 is selected in simulation. The

parameter γ controls both convergence speed and fluctuation of the tap-length, a

large γ leads to fast convergence of the tap-length but results in large fluctuation,

consequently, a trade-off choice of γ = 1 is selected. Simulation results are obtained

by averaging 100 independent runs which provided the results shown in Fig. 4.7 for

high SNR of 30 dB and in Fig. 4.8 for low SNR of 10 dB.

Figure 4.6 – Car cabin impulse response of length 200 samples.
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Figure 4.7 – MSE(n) for a combined impulse response system of Fig. 4.3 and Fig.
4.6, (SNR = 30 dB).

Figure 4.8 – MSE(n) for a combined impulse response system of Fig. 4.3 and Fig
.4.6, (SNR = 10 dB).
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Figure 4.7 and Fig. 4.8 show the FTLLMS algorithm’s ability to identify the

unknown system in presence of an abrupt change in its impulse response, in low and

high SNR environments. The filter length expected value of the FTLLMS algorithm,

in SNR = 30 dB and SNR = 10 dB environments are shown in Fig. 4.9 and Fig.

4.10 respectively. Because FTLLMS algorithm uses a fixed ∆, the filter length of

FTLLMS algorithm a bias of ∆ = 50 [5], this bias is more noticeable in higher SNR

case.

Figure 4.9 – The expected value of the proposed algorithm (FTLLM) tap-Length
E(L(n)), (SNR= 30 dB).
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Figure 4.10 – The expected value of the proposed algorithm (FTLLM) tap-Length
E(L(n)), (SNR= 10 dB).

Comparison with fixed lengths lattice LMS filters

Using same algorithm parameters to that employed in the previous simulations,

FTLLMS algorithm is compared to standard Lattice LMS with lengths L = 60, 120,

and 180, to identify the system shown in Fig. 4.6. Over 100 Monte Carlo trials of

the same experiment using SNR=30 and SNR=10 were performed and averaged. In

high SNR environment Fig. 4.11, the FTLLMS showed best error properties and

convergence rate, while in low SNR environment Fig. 4.12, the proposed variable

tap-length FTLLMS and a fixed tap-length of near to optimum (L = 180) tap-length

showed close results.
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Figure 4.11 – MSE(n) of proposed FTLLMS and different lattice LMS filter lengths
(SNR= 30 dB).

Figure 4.12 – MSE(n) of proposed FTLLMS and different lattice LMS filter lengths
(SNR= 10 dB).
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4.6 Conclusion

A novel variable tap-length algorithm that uses lattice structure adaptive filter was

proposed in a system identification setup. Simulation results showed that the new

algorithm is capable of identifying unknown systems even in the presence of sudden

change in the length of the unknown impulse response. Improved convergence rate

and error properties of the proposed algorithm were also shown by simulations as

compared with the fixed length Lattice adaptive LMS filters.
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Chapter 5

Variable Tap-length RLS Adaptive Lattice

Filters Applied to System Identification

5.1 Introduction

Although standard recursive least squares (RLS) algorithms converge faster than

their least mean squares (LMS) counterparts, this advantage comes with a burden on

the filter size [1]. The computational complexity of RLS algorithm grows proportional

to the square of the filter length [2, 3]. For long filter tap-length, this can become

costly and hence unacceptable. There have been several attempts in the literature to

solve this drawback of RLS filters. Those solutions, whose computational complexity

grows proportional to the length of the filter, are commonly referred to as fast RLS

algorithms [2, 4]. All the fast RLS algorithms employ lattice order-update and time-

update equations [5–7], which means that those algorithms combine the concept of

prediction and filtering to form RLS computationally efficient implementation. Most

popular filters that use this efficient employment are known as Fast Transversal RLS

filter (FTF) and lattice RLS filter (LRLS) [4]. The main advantage of the FTF

algorithm is its reduced computational complexity as compared with other available

RLS solutions. However, in the case of FTF filters this significant reduction in the

complexity comes with high sensitivity to roundoff error accumulation which renders

the algorithm to be instable [2, 4]. LRLS filter leads to more robust implementation

[8], and consequently have been utilized in a variety of signal and image processing

applications such as linear prediction [4,9], noise cancellation [5], system identification
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[10,11] and channel equalization [7,12]. Variable tap-length algorithm is a technique

used to search for the filter optimal structure [13–15]. Among a variety of algorithms,

the fractional tap-length (FT) [16, 17] filter is a recommended strategy due to its

improved convergence performance and efficiency. Moreover, the FT algorithm resolve

the problems that other variable tap-length algorithms suffer from such as inflexibility

and wondering issues [18,19]. In this work, Section 5.2 will first introduce the concept

of LRLS joint process estimator used for system identification. Section 5.3 will then

describe the algorithm utilized in this work as a method to search for the optimum tap-

length, namely fractional tap-length FT algorithm. In Section 5.4, the FT algorithm

is incorporated in LRLS joint process estimator to form the new proposed lattice filter.

System simulations that verify the analysis of the proposed algorithm are going to be

presented in Section 5.5. Finally, Section 5.6 will summarize the work.

5.2 LRLS joint process estimator

In the RLS method, at any time instant n > 0, the adaptive filter tap weights

are calculated so that the quantity

ζ(n) =
n∑
k=1

λn−ke2
n(k) (5.1)

is minimized, where 0 < λn(k) < 1, is the forgetting factor. The error, en(k), for

k = 1, 2, . . . , n is computed at time n that depends on a set of filter parameters,

and hence RLS are related to type of filtering known as deterministic framework as

opposed to statistical framework such as LMS filters. Fig. 5.1 shows lattice RLS joint

process estimator which is used to estimate a process d(n) from another correlated

process x(n). The two parts of the filter are the lattice predictor part and the linear

combiner part. To optimize the coefficients of lattice RLS joint process estimator,

56



𝑍−1 𝑍−1 𝑍−1 

𝜅1
𝑏(𝑛) 

𝜅1
𝑓
(𝑛) 

𝜅2
𝑏(𝑛) 

𝜅2
𝑓
(𝑛) 

𝜅𝑀
𝑏 (𝑛) 

𝜅𝑀
𝑓
(𝑛) 

𝑓0(𝑘) 𝑓1(𝑘) 𝑓𝑀−1(𝑘) 𝑓𝑀(𝑘) 

𝑏0(𝑘) 

𝑏0(𝑘) 𝑏1(𝑘) 

𝑏2,𝑛(𝑘) 𝑏𝑀(𝑘) 

𝑤0(𝑛) 𝑤1(𝑛) 𝑤2(𝑛) 𝑤𝑀(𝑛) 

𝑥(𝑛) 

𝑒0(𝑘) 𝑒1(𝑘) 𝑒2(𝑘) 𝑒3(𝑘) 𝑒𝑀(𝑘) 𝑒𝑀+1(𝑘) 

Figure 5.1 – Lattice RLS joint process estimator [4].

the following sums are minimized simultaneously [2, 4]:

ξffm (n) =
n∑
k=1

λn−kf 2
m(k), m = 1, 2, ..,M, (5.2)

ξbbm(n) =
n∑
k=1

λn−kb2
m(k), m = 1, 2, ..,M, (5.3)

ξeem (n) =
n∑
k=1

λn−ke2
m(k), m = 1, 2, ..,M + 1, (5.4)

where fm(n) and bm(n) are the a posteriori forward and backward estimation predic-

tion errors receptively, and em(n) is the a posteriori estimation error of the length

M joint process estimator. The adaptive joint process estimator adjusts all the for-

ward PARCOR coefficients κfi (n), i = 1, 2, ...M, the backward PARCOR coefficients

κbi(n), i = 1, 2, ...M, and the linear combiner coefficients wi(n), i = 0, 1, ...,M, si-

multaneously. The PARCOR coefficients are adjusted to minimize the forward and

backward prediction errors, while the linear combiner coefficients are adjusted to min-

imize the error signal e(n) in the RLS sense and according to the following equations
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which define the forward and backward PARCOR coefficients [4].

κfm(n) =

∑n
k=1 λ

n−kfm−1(k)bm−1(k − 1)∑n
k=1 λ

n−kb2
m−1(k − 1)

, (5.5)

and

κbm(n) =

∑n
k=1 λ

n−kfm−1(k)bm−1(k − 1)∑n
k=1 λ

n−kf 2
m−1(k)

, (5.6)

whereas the linear combiner coefficients are obtained according to

wm(n) =

∑n
k=1 λ

n−kem(k)bm(k)∑n
k=1 λ

n−kb2
m(k)

(5.7)

for m = 0, 1 . . . ,M , where the summation in the numerator of (5.5) and (5.6) are

defined as the deterministic cross-correlation between the forward and backward pre-

diction errors fm−1(k) and bm−1(k − 1) respectively, and is given by

ξfbm (n) =
n∑
k=1

λn−kfm−1,n(k)bm−1,n−1(k − 1) (5.8)

Similarly, the summation in the numerator of (5.7) is labelled as ξbem(n), the cross-

correlation between the backward prediction error bm(k) and the joint process es-

timation error em(k). Algorithm 6 outlines the lattice RLS joint process estimator

algorithm [2,4].
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Algorithm 6: Lattice RLS algorithm for adaptive joint process estimator.

Input: x(n), d(n), bm(n− 1), wm(n), κbm(n), κfm(n), ξffm (n− 1), ξbbm(n− 1),

ξfbm (n− 1), ξfem (n− 1), ψm(n− 1).

Output: bm(n), w(n+ 1), κbm(n+ 1), κfm(n+ 1), ξffm (n), ξbbm(n), ξfbm (n), ξfem (n),

ψm(n).

1 Initialize ξffm (0), ξbbm(0), ξfbm (0), ξbem(0).

2 for n = 0, 1, . . . , do

3 f0(n) = b0(n) = x(n)

4 e0(n) = d(n)

5 ψ0(n) = 1

6 for m = 1, 2, . . . ,M, do

7 ξffm (n) = λξffm (n− 1) + f2m(n)
ψm(n−1)

8 ξbbm(n) = λξbbm(n− 1) + b2m(n)
ψm(n)

9 ξfbm (n) = λξfbm (n− 1) + fm(n)bm(n−1)
ψm(n−1)

10 κfm+1(n) = ξfbm (n)
ξbbm(n−1)

11 κbm+1(n) = ξfbm (n)

ξffm (n)

12 fm+1(n) = fm(n)− κfm+1(n)bm(n− 1)

13 bm+1(n) = bm(n− 1)− κbm+1(n)fm(n)

14 ξbem(n) = λξbem(n− 1) + em(n)bm(n)
ψm(n)

15 wm(n) = ξbem (n)
ξbbm(n)

16 em+1(n) = em(n)− wm(n)bm(n)

17 ψm+1(n) = ψm(n)− b2m(n)
ξbbm(n)

18 end for

19 end for
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5.3 Optimal structure using FT algorithm

Using system identification setup, the weight update of the adaptive filter in the

FT-LMS algorithm is given by:

wL(n)(n+ 1) = wL(n)(n) + µe
(L(n))
L(n) (n)xL(n)(n), (5.9)

where wL(n)(n) = [w0(n)w1(n) . . . wL(n)(n)]T and xL(n)(n) = [x0(n)x1(n) . . . xL(n)(n)]T

are the weight update and input vectors respectively, µ is the step size, L(n) is the

variable tap-length and e
(L(n))
L(n) (n) is defined in [17] to be the segmented steady-state

error that is calculated by the equation

e
L(n)
G (n) = d(n)−wT

L(n);1:G(n)xL(n);1:G(n), (5.10)

with 1 ≤ G ≤ L(n), where d(n) is the desired signal, wL(n);1:G(n) and xL(n);1:G(n) are

vectors consisting of the first G elements of the vectors wL(n)(n) and xL(n)(n) respec-

tively. By defining lf (n) as the pseudo fractional tap-length, the update equation of

the FT-LMS is proposed as in [17]

lf (n+ 1) = lf (n)− α− γ[(e
(L(n))
L(n) (n))

2
− (e

(L(n))
L(n)−∆(n))

2
], (5.11)

where γ is the step size for the tap-length adaptation, α is a positive leakage parameter

and ∆ is a positive integer. Then, the updated tap-length, which will be used in the

next iteration, is calculated from the fractional tap-length lf (n) by:

L(n+ 1) =

blf (n)c if |L(n)− lf (n)| > δ

L(n) otherwise

, (5.12)

where b.c is the floor operator and δ is a small integer. When a fixed ∆ is employed,

the FT algorithm is required to find a compromise between convergence speed and
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the bias from the optimum tap-length [13].

5.4 Fractional tap-length lattice algorithm

In this section, the fractional tap-length (FT) strategy is combined with lattice

RLS joint process estimators to form a new optimally structured lattice filter, namely,

the fractional tap-length lattice recursive least squares FT-LRLS. For the RLS-based

lattice joint process algorithm, the fractional tap-length equation in (5.11) is slightly

modified to cope with the minimization principle of the RLS that suppresses the effect

of past solution using a forgetting factor as [20]

lf (n+ 1) = λlf (n)− γ[(e
(L(n))
L(n) (n))

2
− (e

(L(n))
L(n)−∆(n))

2
] (5.13)

where λ is the exponential weighting-factor or forgetting-factor, which is set close 1.

Then the integer tap-length L(n) is updated in similar manner according to (5.12).

The proposed algorithm and its computational complexity are shown in Algorithm 7

and Table 5.1 respectively. In Algorithm 7, the auto-correlations ξffm (0) and ξbbm(0) are

initialized to a small positive number to prevent numerical difficulties [4]. The cross-

correlations ξfbm (0) and ξbem(0) are initialized to zero. On the other hand, the fractional

l(n) and the integer L(n) tap-lengths are initialized to some selected value [13,17].
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Algorithm 7: Proposed fractional tap lattice RLS (FT-LRLS) algorithm.

Input: x(n), d(n), bm(n− 1), wm(n), κbm(n), κfm(n), ξffm (n− 1), ξbbm(n− 1),

ξfbm (n− 1), ξfem (n− 1), ψm(n− 1), l(n), L(n).

Output: bm(n), w(n+ 1), κbm(n+ 1), κfm(n+ 1), ξffm (n), ξbbm(n), ξfbm (n), ξfem (n),

ψm(n), L(n).

1 Initialize ξffm (0), ξbbm(0), ξfbm (0), ξbem(0), l(0), L(0).

2 for n = 0, 1, . . . , do

3 f0(n) = b0(n) = x(n)

4 e0(n) = d(n)

5 ψ0(n) = 1

6 for m = 1, 2, . . . ,M, do

7 ξffm (n) = λξffm (n− 1) + f2m(n)
ψm(n−1)

8 ξbbm(n) = λξbbm(n− 1) + b2m(n)
ψm(n)

9 ξfbm (n) = λξfbm (n− 1) + fm(n)bm(n−1)
ψm(n−1)

10 κfm+1(n) = ξfbm (n)
ξbbm(n−1)

11 κbm+1(n) = ξfbm (n)

ξffm (n)

12 fm+1(n) = fm(n)− κfm+1(n)bm(n− 1)

13 bm+1(n) = bm(n− 1)− κbm+1(n)fm(n)

14 ξbem(n) = λξbem(n− 1) + em(n)bm(n)
ψm(n)

15 wm(n) = ξbem (n)
ξbbm(n)

16 em+1(n) = em(n)− wm(n)bm(n)

17 ψm+1(n) = ψm(n)− b2m(n)
ξbbm(n)

18 lf (n+ 1) = (λlf (n))− γ
[(
e

(L(n))
L(n)

)2

−
(
e

(L(n))
L(n)−∆

)2
]

19 L(n+ 1) =

lf (n) if |L(n)− lf (n)| > δ

L(n) otherwise

20 end for

21 end for
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Table 5.1 – Computational complexity of the proposed FT-LRLS algorithm.

Equations + × ÷

(1) ξffm (n) = λξffm (n− 1) +
f2m,n(n)

ψm(n−1)
M 2M M

(2) ξbbm(n) = λξbbm(n− 1) +
b2m,n(n)

ψm(n)
M 2M M

(3) ξfbm (n) = λξfbm (n− 1) + fm,n(n)bm,n−1(n−1)

ψm(n−1)
M 2M M

(4) κfm+1(n) = ξfbm (n)
ξbbm(n−1)

− − M

(5) κbm+1(n) = ξfbm (n)

ξffm (n)
− − M

(6) fm+1,n(n) = fm,n(n)− κfm+1(n)bm,n−1(n− 1) M M −

(7) bm+1,n(n) = bm,n−1(n− 1)− κbm+1(n)fm,n−1(n) M M −

(8) ξbem(n) = λξbem(n− 1) + em,n(n)bm,n(n)

ψm(n)
M 2M M

(9) cm(n) = ξbem (n)
ξbbm(n)

− − M

(10) e
L(n)
L(n)(n)em+1,n(n) = em,n(n)− cm(n)bm, n(n) M M −

(11) ψm+1(n) = ψm(n)− b2m,n(n)

ξbbm(n)
M M M

Tap-length Update:

(12) lf (n+ 1) = (λlf (n))− γ
[(
e

(L(n))
L(n)

)2
−
(
e

(L(n))
L(n)−∆

)2
]

2 3 −

(13) L(n+ 1) =

{
lf (n) if |L(n)− lf (n)| > δ

L(n) otherwise
− − −

Total 8M +
2

12M+
3

8M
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Figure 5.2 – Car cabin impulse response of length 100 samples.

5.5 System simulations

The main objective of the simulation in this section is to identify an unknown

system characterized by the impulse response shown in Fig. 5.2, which is a car cabin

truncated to 100 samples. The setup for simulation is similar to those in [14] and [21],

where the input signal is white Gaussian noise with zero-mean and unity variance and

the results are obtained by averaging multiple independent runs of the simulation of

the proposed algorithms.

5.5.1 Lattice filters vs. transversal filters

This simulation shows a comparison between lattice LMS and RLS filters and their

counterpart of transversal filters to identify the unknown system of Fig. 5.2. Simu-
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lation is implemented using high-signal-to-noise ratio SNR = 30. Filter length in all

structures are fixed to L = 100. The step-size for transversal LMS adaptive filter and

and the linear combiner part of lattice structure LMS adaptive filter is µ = 0.0005,

and the step-size for the predictor part of lattice structure is µp = 10−7, and the RLS

forgetting value λ = 0.999. Figure 5.3 shows the learning curves for the respective

algorithms. Lattice LMS adaptive filter shows superiority in convergence rate with

slightly less MSE value as compared to the LMS transversal filter, whereas the lattice

RLS manifests superiority in both of convergence rate as well as the MSE properties

as compared with the transversal RLS filter.

Figure 5.3 – Comparison of MSE of fixed length lattice and transversal filters
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5.5.2 Parameters’ selection

Here, the proposed joint process FT-LRLS algorithm uses the a posteriori es-

timation errors as previously discussed in Algorithm 7. The forgetting factor of

λ = 0.999 is selected which gave less weight to older error samples [20]. In each

iteration, the algorithm begins with some initial values of forward f0(n), backward

b0(n) and a posteriori e0(n) errors and the conversion factor ψ0(n), as inputs to the

first stage and proceeds to update the consecutive stages of Algorithm 7. According

to [4], the auto-correlations of ξffm (n), ξbbm(n) can theoretically be initiated to zero.

However, because such initialization results in division by zero in first iterations of

Algorithm 7, it is recommended in [4] to start with a small positive number, and

therefore an initialization of ξffm (0) = ξbbm(0) = 0.001, for m = 0, 1, . . . ,M is selected.

The cross-correlations ξfbm (0) and ξbem(0) are initialized to zero. As a result, all re-

maining recursion are written in terms of the a posteriori estimation error. These

recursions are then used to to calculate the forward and backward PARCOR coef-

ficients of κfm+1(n) and κbm+1(n) respectively as in Algorithm 7. Whereas fractional

tap-length algorithm parameters are chosen according to [13]. The value δ should

be a small positive integer 1 ≤ δ ≤ 10 [13, 14, 17], therefore, it was chosen δ = 2 in

this paper. The selected value of leakage parameter α is an application dependent,

however, it was stated in [13] that values of α between 0.001 and 0.01 are generally

good choices, hence, α = 0.005 was selected in simulation. The parameter γ con-

trols both convergence speed and fluctuation of the tap-length, a large γ leads to

fast convergence of the tap-length but results in large fluctuation, consequently, a

trade-off choice of γ = 3 is selected. The parameter ∆ plays an important part to the

proposed algorithms as it controls convergence speed and bias from the optimum tap-

length, which requires a compromise between them due to its fixed value [13, 17, 21].

Therefore, ∆ = 50 is selected throughout the system simulation section.
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5.5.3 Variable length LRLS vs. fixed length LRLS filters

The adaptive filtering FT-LRLS algorithm is tested here using algorithm param-

eters given in Section 5.5.2, and then compared to standard adaptive filtering lattice

RLS with lengths L = 60, 120, and 180 respectively using SNR = 30 dB and SNR

= 10 dB environments. Figure 5.4 shows that FT-LRLS exposed noticeable low MSE

level in both of high and low SNR environments. In high SNR, Fig. 5.4a the MSE

goes as low as −50 dB, whereas in low SNR Fig. 5.4b the MSE is around −20 dB.

5.5.4 FTLRLS algorithm vs. FTLLMS algorithm

Figure 5.5 shows the learning curves and the expected value of tap-length of the adap-

tive lattice filtering using FTLRLS and FTLLMS algorithms. Figure 5.5a shows bet-

ter MSE error level and faster convergence speed of FTLRLS algorithm over FTLLMS

algorithm. In Fig. 5.5b, both algorithms converged to the same value of about 150

taps, which indicates that the FT algorithm has a bias of around 50. This matches the

analysis of the FT algorithm [17] since it uses a fixed ∆ = 50, where the expected bias

according to analysis is approximately the E[L(∞− 50)]. Figure 5.6 shows similar

performance using low SNR of 10 dB.
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(a) (SNR = 30 dB).

(b) (SNR = 10 dB).

Figure 5.4 – Learning curves of the proposed FT-LRLS and different lattice RLS
filter lengths.
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(a) Comparison of MSE(n) of the proposed algorithms.

(b) Comparison of E[L(n)]of the proposed algorithms.

Figure 5.5 – MSE and expectation of tap-length of proposed algorithms in high SNR
environment
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(a) Comparison of MSE(n) of the proposed algorithms.

(b) Comparison of E[L(n)]of the proposed algorithms.

Figure 5.6 – MSE and expectation of tap-length of proposed algorithms in low SNR
environment
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5.6 Conclusion

In this work, we proposed a new variable tap-length algorithm for lattice RLS

joint process estimator filter. The fractional tap-length was used to search for the op-

timal length and hence improve lattice structure adaptive filter performance. System

simulations of the proposed algorithms were carried out in a system identification

setup and the simulation results have shown that the new algorithms are capable

of identifying unknown systems in high SNR as well as in low SNR. Improved con-

vergence rate and error properties of the proposed algorithms were also shown by

simulations as compared with the fixed length LMS and RLS lattice adaptive algo-

rithms.
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Chapter 6

Variable Tap-length Blind Equalization

6.1 Introduction

Adaptive equalizers are used to remove the signal distortion caused by multi-path

effect within time dispersive channel [1–3]. When the scheme applied to achieve

channel equalization does not include any training sequence from transmitter to the

receiver, it is referred to as blind equalization algorithm [4, 5]. Among several blind

equalization algorithms in the literature, constant modulus algorithm (CMA) has

become, since was discovered by Godard [6] and Treichler et al [7], the workhorse

for blind equalization. This is due to CMA’s capability to converge independent

of phase recovery [8]. In the process of quadrature amplitude modulation (QAM),

the equalizer’s design is of special importance because it absorbs a large fraction

of the computation complexity required in the receiver setup [9]. This necessitates

answering the question of how long the equalizer should be. In practice, there is no

general solution for this question and different approaches in literature were proposed

in attempt to solve it. In the first approach, a prototype of the equalizer is built and

then tested against a variety of actual channels [10]. The second method applies rules

of thumb that appears intuitively reasonable for length selection depending on the

type of commutation channel and the transmitted signal sampling rate [9], [10]. Both

approaches are costly and does not deal with changes in the channel behaviors which

can compromise the equalizer’s performance. A cost-effective approach is to come

up with a variable tap-length scheme that can search for the optimal length while

the equalizer is adapting its coefficients. In [11], a segmented filter (SF) variable
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tap-length algorithm was employed to the equalizer. In SF algorithm the equalizer is

subdivided into k segments, each with fixed coefficients. Then, based on the difference

between the accumulated squared errors from the last two segments, the tap-length

of the filter is modified by adding or subtracting one segment, which makes SF an

inflexible option. Authors [12] and [13] used a more flexible and robust variable

length technique that employs the fractional tap-length (FT) algorithm, however, in

the straightforward training mode equalization context. The novelty of this work is to

search for the optimal tap-length of the CMA blind equalizer using the FT technique.

This is done by modifying a non-liner error e(n) of the CMA equalizer output y(n) to

update FT iterations within the initial operation of the equalizer i.e. in blind mode.

6.2 Constant modulus algorithm (CMA)

CMA accomplishes channel equalization by penalizing the dispersion of the output

modulus, |y(n)|, from the constant γC . The cost function that is minimized by CMA

is defined as following [4]:

J cma = E[(|y(n)|2 − γ2
C)

2
] (6.1)

Minimizing this cost function can be thought of as fitting the signal constellation to

a circle as shown in Fig. 6.1 [4].

The dispersion constant γ2
C is given by:

γ2
C =

E[|s(n)|4]

E[|s(n)|2]
. (6.2)

A gradient-descent equalizer algorithm that minimizes the cost function of (6.1) is as

follows

w(n+ 1) = w(n) + µ(−∇wJ
cma) (6.3)
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Figure 6.1 – Graphical representation of CMA for 64-QAM.

Hence the CMA blind equalizer tap adjustment is given as

w(n+ 1) = w(n) + µecma(n)x∗(n) (6.4)

where x(n) is the regressor input vector while ∗ denotes complex conjugation oper-

ation. The term ecma(n) = y(n)(γ2
C − |y(n)|2)x∗(n), denotes the error of CMA blind

equalizer filter [14], which is a complex signal consists of a real and imaginary parts

ecma(n) = ecmaR (n) + jecmaJ (n) (6.5)

ecmaR (n) = yR(n)[γ2
C − y2

R(n)− y2
I (n)]

ecmaI (n) = yI(n)[γ2
C − y2

R(n)− y2
I (n)]

(6.6)

and hence, CMA equalizer update of (6.4) can be rewritten as

w(n+ 1) = w(n) + µ(yR(n)(γ2
C − y2

R(n)− y2
I (n))

+ jyI(n)(γ2
C − y2

R(n)− y2
I (n)))x∗(n)

(6.7)
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6.3 Optimum tap-length

6.3.1 System identification

Within a system identification model and using FT variable tap-length algorithm to

search for the optimal filter length, the LMS filter weight update is given by:

wL(n)(n+ 1) = wL(n)(n) + µe
(L(n))
L(n) (n)xL(n)(n) (6.8)

where wL(n)(n) and xL(n)(n) are the weight update and input vectors respectively, µ

is the step size, L(n) is the variable tap-length and e
(L(n))
L(n) (n) is defined in [15] to be

the segmented steady-state error that is calculated by the equation

e
L(n)
G (n) = d(n)−wT

L(n);1:G(n)xL(n);1:G(n) (6.9)

where 1 ≤ G ≤ L(n), d(n) is the desired signal, and wL(n);1:G(n) and xL(n);1:G(n)

are vectors consisting of the first G elements of the vectors wL(n)(n) and xL(n)(n)

respectively.

The pseudo fractional tap-length lf (n) is updated using the following:

lf (n+ 1)=(lf (n)−α)−γ[(e
(L(n))
L(n) (n))

2
−(e

(L(n))
L(n)−∆(n))

2
] (6.10)

where γ is the step size for the tap-length adaptation, α is a positive leakage parameter

and ∆ is a positive integer. Then, the updated tap-length, which will be used in the

next iteration, is calculated from the fractional tap-length lf (n) by [15–17]

L(n+ 1) =

blf (n)c if |L(n)− lf (n)| > δ

L(n) otherwise

(6.11)
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where b.c is the floor operator and δ is a small integer. When a fixed ∆ is employed,

the FT algorithm is required find a compromise between convergence speed and the

bias from the optimum tap-length [15].

6.3.2 CMA blind equalizer’s optimal length

Here, we use the same concept of the previous section to estimate the CMA equalizer’s

optimum length. Assuming the CMA’s tap-length to be variable in time as L(n), then

using (6.9) we define e(n)L(n) and e(n)L(n)−∆ respectively, as follows:

e(n)
L(n)
L(n) = |ecmaR (n) + jecmaJ (n)|L(n)

e(n)
L(n)
L(n)−∆ = |ecmaR (n) + jecmaJ (n)|L(n)−∆

(6.12)

Therefore using multirate system modeling of Fig. 6.2, the VL-CMA equalizer’s tap

weights are updated according to

w(n+ 1)L(n) = w(n)L(n) + µ|ecma(n)|L(n)x
∗
L(n)(n) (6.13)

And finally the fractional and integer tap-length of the next iteration are given by

(6.10) and (6.11), respectively.

6.4 System model

This section addresses CMA blind equalization in the context of single-input-single-

output (SISO ) systems. T−spaced equalizers are known to be sensitive the to symbol

rate which makes a fractional spaced T/F equalizer [10] a more feasible alternative

as it can achieve the desired equalization with a finite number of taps. To many

designers, fractionally spaced equalizer with F = 2, i.e T/2, is considered a practical

choice [18], which is going to be considered exclusively throughout this paper.
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Figure 6.2 – Multirate system modeling.

Figure 6.2 shows the single input single output (SISO) multirate system that will

employ the proposed VL-CMA algorithm. In this system model ‘n‘ denotes the

T−spaced quantities whereas ‘k‘ is refereed to T/2 quantities. The source transmits

T−spaced symbols through a pulse shaping filter and modulated onto a a microwave

T/2−spaced channel. The source symbol is assumed to be an independent and iden-

tically distributed (i.i.d) random variable with a variance of σ2
s = E[s(n)2]. which

is taken from a finite alphabet given by the set {sm = am + jbm}Mm=1 for M−QAM

constellation. The received T/2 signal is corrupted by white Gaussian noise signal of

v(k) as well as ISI effect. In classical implementation, the baseband receiver consists

of an N−tap T/2−spaced equalizer whose tap weights are specified by N × 1 vector

of w(n) = [w1(n), w2(n), .., wN(n)]T . However, in this work the tap-length of the

equalizer is made variable as L(n) where the FT is used to search for the equalizer

optimal length, and consequently the quantities of system model will become variable

in length as follows. The regressor vector of the equalizer input sequence comprises

the previous filter length’s received T/2-space samples and is given by

xL(n)(n) = CT
L(n)sL(n)(n) + vL(n)(n) (6.14)

where CL(n) is a variable length T−spaced convolution matrix that has dimensions of

P (n)×L(n), where P (n) = K+L(n)− 1, sL(n)(n) = [s(n), s(n− 1), .., s(n− P (n))]T

is a P (n) × 1 vector of source symbols and the vL(n)(n) = [v1(n), v2n), ..., vL(n)(n)]T

is the additive white Gaussian noise column vector of length L(n). The convolution
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matrix is formed by the odd rows of channel impulse response vector, that is [19]



c1 c0

c3 c2 c1 c0

...
... c3 c2

. . .

cK−1 cK−2
...

...
. . . c1 c0

cK−1 cK−2 c3 c2

. . .
...

...

cK−1 cK−2


The equalizer output is then decimated by a factor of two and is given by

yL(n)(n) = xTL(n)(n)wL(n)(n)

= sTL(n)(n)CL(n)wL(n)(n) + vTL(n)(n)wL(n)(n)
(6.15)

6.5 System simulation

In this section, the performance of proposed variable tap-length blind equalizer (VL-

CMA) is tested using multirate system model shown in Fig. 6.2. The experimental

setup is similar to that in [18], which consists of a T/2−spaced SPIB microwave

channel [20] in cascade with a T/2−spaced finite impulse response (FIR) equalizer

which is initialized by a unitary double center spike. A white Gaussian noise is added

such that the final signal-to-noise ratio (SNR) is 30 dB. To validate the proposed

algorithm performance, two experiments are carried out for 16−QAM and 64−QAM

constellations.

6.5.1 16−QAM

In this simulation, the source symbols are randomly taken from normalized 16−QAM

constellation. The received equalizer input samples are generated by convolving the
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source sequence and the SPIB #10 microwave channel whose specifications are illus-

trated below [20].

Table 6.1 – Microwave radio channel SPIB #10.

Channel SPIB Database Designator # of Taps Frequency
MCR-08 10 300 30 Mbaud

The magnitude of the channel impulse response is plotted in Fig. 6.3 where it is

characterized by the finite series of {ck}Kk=1 where K is the channel length as shown

in Table. 6.1. The algorithm step-size is µ = 2−12, and the VL-CMA algorithm’s

Figure 6.3 – Magnitude of impulse response for SPIB #10 microwave channel.

parameters are selected according to [21] with ∆ = 3, α = 0.005, δ = 1 and γ =

0.015. System simulation was performed by averaging over 100 independent runs.

The ensemble mean squared error (MSE) of the VL-CMA algorithm was averaged and

compared with those obtained from blind equalization algorithms of generalized Sato

algorithm (GSA) [22, 23], multimodulus algorithm (MMA) [4, 24], and CMA [6, 19].

The GSA, and MMA algorithms are used with fixed length of 16 taps [18]. As can be

seen from Fig. 6.4, the proposed variable tap-length equalizer showed much better
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convergence rate than other fixed length algorithms while providing the same steady

state MSE. The proposed algorithm was able to search for the optimal filter’s length;

this capability is shown in Fig. 6.5 which plots the expected value of the VL-CMA

tap-length E[L(n)].

Figure 6.4 – Simulation results of MSE(n) of proposed algorithm against other blind
equalization algorithms for 16 QAM.

The initial filter length was set to L(0) = 16, tap-length of proposed algorithm

converged to the value of L = 13 and consequently the estimated optimal length

is approximately Lopt = 13 − ∆ = 10 taps [21]. The proposed equalizer’s output

signal constellation for 16−QAM at steady state is illustrated in Fig. 6.6 which

indicates that the VL-CMA algorithm has achieved a recognizable constellation points

in shorter time and lower number of taps than other algorithms.

6.5.2 64−QAM

In this simulation, 64−QAM constellation is used to for source symbols and the

received equalizer input samples are generated by convolving the source sequence
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Figure 6.5 – The expected value of the proposed VL-CMA algorithm tap-length for
16-QAM.

Figure 6.6 – Output signal constellation of the proposed VL-CMA algorithm for
16-QAM.

and the SPIB #12 microwave channel whose specifications are illustrated in Table

6.2 [20].
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Table 6.2 – Microwave radio channel SPIB #12.

Channel SPIB Database Designator # of Taps Frequency
MCR-10 12 227 22.5 Mbaud

The magnitude of the channel impulse response is plotted in Fig. 6.7 where it

is again characterized by the finite series of {ck}Kk=1 where K is the channel length

as shown in Table 6.2. The variable tap-length algorithm step-size in case of 64

Figure 6.7 – Magnitude of impulse response for SPIB #12 microwave channel.

QAM is µ = 2−14, and the VL-CMA algorithm’s parameters are selected according

to [21] with ∆ = 3, α = 0.00025, δ = 1 and γ = 0.0095. The filter tap-length

was initialized to L(0) = 16. As seen from Fig. 6.9, the the tap-length of proposed

algorithm converged to the value of L = 14 and consequently the estimated optimal

length is approximately Lopt = 14−∆ = 11 taps [21]. MSE of the proposed VL-CMa

algorithms against fixed length GSA, CMA and MMA algorithm using 64-QAM is

plotted in Fig. 6.8, where it shows a rapid convergence of the proposed algorithm

to and approximately same MSE as compared with other algorithms. The proposed

equalizer’s output signal constellation for 64−-QAM at steady state is illustrated in
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Figure 6.8 – Simulation results of MSE(n) of proposed algorithm against other blind
equalization algorithms for 64-QAM.

Fig. 6.10, which shows that the VL-CMA algorithm has achieved a recognizable

constellation points in shorter time and lower number of taps than other algorithms

while attaining the similar misadjustment.

Figure 6.9 – The expected value of the proposed VL-CMA algorithm for 64-QAM.
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Figure 6.10 – Output signal constellation of the proposed VL-CMA algorithm for
64-QAM.

6.6 Conclusion

A novel variable tap-length CMA blind equalizer was proposed. This algorithm and

with little extra complexity can be used to estimate the equalizer optimal length.

The proposed algorithm was compared using 16-QAM and 64-QAM with some other

blind algorithms using 16-QAM and 64-QAM constellations. The proposed algorithm

has shown superior convergence properties as it was able to distinguish the sequence

sent by the source and identify the constellation unambiguously.
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Chapter 7

Conclusions and Future Recommendations

7.1 Conclusions

The major contribution of this dissertation is to present new and novel algorithms

for optimizing adaptive filtering structure in a variety of applications using variable

tap-length. The proposed algorithms are:

1. Fractional Order Lattice Prediction Filter (FO-LPF)

2. Fractional Tap-length Lattice LMS Filter (FT-LLMS)

3. Fractional Tap-length Lattice RLS Filter (FT-LRLS)

4. Variable Length CMA Blind Equalizer (VL-CMA)

In all demonstrated algorithms, pseudo fractional tap-length scheme was incorporated

in lattice structured of LMS prediction, LMS system identification and RLS system

identification. In LMS lattice prediction, the forward residual was used to update the

fractional variable tap-length iterations and variable order lattice predictor method

was suggested (FO-LPF), in which, the proposed filter’s frequency repose showed

superiority, in terms of passing the desired signal and attenuating all other frequencies

with smoother ripples, when compared with other fixed length predictors and the

optimal tap-length of the proposed predictor was estimated using system simulation

and averaging the results. In lattice structured LMS and RLS system identification

application, two new algorithms were proposed, FT-LLMS and FT-LRLS respectively,

both are based on modifying the error signal to update variable length recursions. In
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this application, the system simulation was performed to test the proposed algorithms

in a variety of conditions, namely, low SNR of 10 dB, high SNR of 30 dB. The proposed

algorithms showed noticeable improvement in MSE level as well as in the convergence

rate properties. The proposed algorithms can be used to estimate the filter optimal

tap-length and therefore enhance the efficiency of these applications. Finally, a new

variable tap-length algorithm for CMA blind equalization was developed (VL-CMA)

for QAM modulated signals. In which the non-linear error e(n) of the CMA equalizer

output y(n) was modified to update FT iterations within the initial operation of the

equalizer. In all proposed algorithms, structure adaptation added another dimension

to adaptation process. This is because the coefficient’s weight and tap-length are

achieved simultaneously, which can be considered as addition to the adaptive filtering

efficiency.

7.2 Future Recommendations

There are several ways to expand and develop the work of this thesis. The proposed

FT lattice based algorithms can be used as a foundation to utilize it toward other

lattice-form applications. This task can be achieved by studying the application under

investigation and determine the suitable error signal, and its properties to employ

it in variable tap-length adaptation formulation. Other adaptive filter forms such

as IIR filters can also be examined for the structure adaptation optimization using

variable tap-length. In the context of blind equalization, the proposed VL-CMA

algorithm can be used as explorer to extend it to other blind equalization algorithms.

Blind equalization can also be realized using lattice structure and optimizing such a

realization by variable tap-length methods. Also, variable length tap algorithm can

be applied to fully pipelined direct form filtering.
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