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Abstract 

Blind adaptive algorithm that updates time-domain equalizer (TEQ) coefficients by 

Adjacent Lag Auto-correlation Minimization (ALAM) is proposed to shorten the 

channel for multicarrier modulation (MCM) systems. ALAM is an addition to the 

family of several existing correlation based algorithms that can achieve similar or 

better performance to existing algorithms with lower complexity. This is achieved 

by designing a cost function without the sum-square and utilizing symmetrical-TEQ 

property to reduce the complexity of adaptation of TEQ to half of the existing one. 

Furthermore, to avoid the limitations of lower unstable bit rate and high complexity, 

an adaptive TEQ using equal-taps constraints (ETC) is introduced to maximize the 

bit rate with the lowest complexity. An IP core is developed for the low-complexity 

ALAM (LALAM) algorithm to be implemented on an FPGA. This implementation 

is extended to include the implementation of the moving average (MA) estimate for 

the ALAM algorithm referred as ALAM-MA. Unit-tap constraint (UTC) is used in­

stead of unit-norm constraint (UNC) while updating the adaptive algorithm to avoid 

all zero solution for the TEQ taps. The IP core is implemented on Xilinx Vertix II 

Pro XC2VP7-FF672-5 for ADSL receivers and the gate level simulation guaranteed 

successful operation at a maximum frequency of 27 MHz and 38 MHz for ALAM-MA 

and LALAM algorithm, respectively. FEQ equalizer is used, after channel shortening 

using TEQ, to recover distorted QAM signals due to channel effects. A new analytical 

learning based framework is proposed to jointly solve equalization and symbol detec­

tion problems in orthogonal frequency division multiplexing (OFDM) systems with 

IV 



QAM signals. The framework utilizes extreme learning machine (ELM) to achieve fast 

training, high performance, and low error rates. The proposed framework performs in 

real-domain by transforming a complex signal into a single 2—tuple real-valued vector. 

Such transformation offers equalization in real domain with minimum computational 

load and high accuracy. Simulation results show that the proposed framework out­

performs other learning based equalizers in terms of symbol error rates and training 

speeds. 
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Chapter 1 

Introduction 

1.1 Overview of Multicarrier Modulation Systems 

Multicarrier modulation (MCM) technique was first introduced in late 1950s [1], [2]; 

it is a novel approach to design high bandwidth communication system in the pres­

ence of channel distortion. The basic idea of MCM is to split the transmitting data 

into several parallel data to be transmitted on subcarriers, instead of single carriers 

[3]. The basic multicarrier based transmitter is shown in Fig. 1.1. For example, given 

• Senai-to-Paralld 

n>l bits 

m j bite 

m ^ bits 

m 4 b t t s 

• "Nbito 

' ? 

Modulator 

'i 

, \ 

, \ 
f4 

'N / 

Figure 1.1: Basic multicarrier transmitter. 

bandwidth of W to transmit M data in parallel over subcarriers of A / bandwidth 

for each subchannel results in N number of subchannels, (i.e., N — ^n?) . For each 

subchannel, m amount of bits are modulated with subcarrier /,, for % = 1,2, ,N. 

These subchannels of A / bandwidth are nearly flat to avoid intersymbol interference 
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(ISI) caused by frequency selective channel. Although MCM is a form of frequency 

division multiplexing (FDM), it has the additional feature of overlapping subchannels 

to maximize the spectral efficiency. In order to avoid interchannel interference (ICI) 

between adjacent overlapping subcarriers, precise orthogonality between subcarriers 

is required. The spacing between each subcarriers has to be equal to A/ , otherwise 

ICI is introduced which causes a severe degradation in performance. This property 

can be obtained using discrete Fourier transform (DFT) [4]. The nth MCM input 

symbol xn is modulated so that there are N subcarriers which are orthogonal to 

each other. Furthermore, with the existence of modern digital signal processors to 

implement efficient fast Fourier transform, DFT became a standard used in MCM 

techniques [5]. Orthogonal frequency division multiplexing (OFDM) and discrete 

multitone (DMT) are two types of MCM techniques that are used in several wire­

less systems and Asymmetric Digital Subscriber Line (ADSL) systems, respectively. 

Examples include digital video broadcast (DVB), digital audio broadcast (DAB), 

wireless local area networks (WLAN), digital subscriber line (DSL), and power line 

communications (PLC). Fig. 1.2 shows a standard MCM transceiver architecture. In 

I TRANSMITTER 

Bits} 
S/P • 

• 

t 

modulator • 
• 

N Subchannels 

MIFFT • 
• 

add 
cyclic 
prefix 

• • 
• 

P/S 

1 RECEI\ 

Bits) 

I 

P/S • 
• 

/ER 

Demoduator • • • 

frequency 
domain 

equalizer 

/VSubcha 

• • 
/V-FFT 

nne 

• • • 

Is 

S/P 
remove 
cyclic 
prefix 

channel 

Time 
domain 

equalizer 
[FIR filter; 

Figure 1.2: MCM transceiver architecture. 
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order to transmit data, regrouping of bit sequence is performed to form blocks of size 

N by serial-to-parallel converter. Each block forms in fact an OFDM or DMT symbol 

that consists of, for example, quadrature phase shift keying (QPSK) signal modulated 

using QPSK modulator. Higher quadrature amplitude modulations (QAM) are used 

for higher data rate applications. The MCM symbols are then processed using inverse 

fast Fourier transform (IFFT) to transmit each modulated signal over an orthogonal 

subcarrier. Cyclic prefix (CP) is added as a guard interval between MCM symbols 

to avoid ISI and ICI [6]. As shown in Fig. 1.3, CP is a copy of the last portion 

Copy 

< Cyclic prefix ^ 

< 

MCM symbol 

Cyclic prefix + MCM symbol 

Figure 1.3: MCM symbol with cyclic prefix. 

of the MCM symbol. The length of the CP is directly dependent on the length of 

the channel impulse response. Therefore, in order to combat interference caused by 

multipath fading, a sufficient CP length is required, (i.e., CP length has to be larger 

than the delay spread of the channel to achieve no ISI). The MCM symbol with CP is 

a time-domain signal created using the IFFT block. This signal is converted to serial 

data using parallel-to-serial converter to be transmitted over the wireless or wire­

line channel. The received signal, at the receiver, is passed through a time-domain 

equalizer (TEQ) to reduce the length of the effective channel so that its length is less 

than the CP data. This filter was first introduced in 1990's for multicarrier systems 

[7]. In traditional MCM transceivers, TEQ is not used. However, when larger delay 

spread of the channel is present such as in ADSL channel, TEQ is used at the front 

end of the receivers to shorten the effective channel so that the length of CP can be 
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reduced. Hence, reduction in the CP maximizes the throughput using the relation 

N+Cp [8]. After the TEQ operations, CP is removed and serial-to-parallel converter is 

used to convert the sequence data to parallel. The parallel data are then fed into the 

FFT block that reconstructs the QAM symbols. Following the demodulation using 

FFT, the effects of the channels on the modulated signals are equalized using 1-tap 

frequency domain equalizers (FEQ). Finally, using a demodulator the modulated sig­

nals are mapped to bits and are converted from parallel to serial. Since the objective 

of this thesis is channel equalization in MCM systems we provide an overview of 

channel equalization in the next Section. 

1.2 Channel Equalization in MCM 

Equalization in MCM system is divided in two parts: (i) TEQ is used to shorten 

the effective channel to a length less than the CP length, and (ii) single tap FEQ is 

used to compensate for the magnitude and phase distortion in each subchannel. TEQ 

is often used when there is a large delay spread, such as in ADSL lines, to shorten 

the channel impulse response while maximizing the transmitting bit rate at a fixed 

bit error rate. Once the shortening is fullfilled, then point wise equalization can be 

achieved using a bank of complex scalars, (i.e., single tap-FEQs). 

1.2.1 Time-Domain Equalizer (TEQ) 

Several algorithms have been proposed in literature using trained data to shorten the 

channel such as minimum mean square error (MMSE) design [9], [10], [11] , maximum 

shortening signal-to-noise ratio (MSSNR) design [12], and others evaluated in [13]. 

These TEQ designs are non-blind algorithms where channel need to be estimated or 

it is known in advance. In non-blind equalization techniques, training data reduces 

the throughput of the system. For that reason, blind, adaptive channel shortening 

algorithms have been proposed in the literature to increase the throughput of the 
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system. These algorithms exploit the existing property of the multicarrier modula­

tion systems to build the equalizer taps. Some of the properties includes: presence of 

the cyclic prefix, presence of null tones, constant modulus signals, etc. Some of the 

algorithms that exploit such properties are: Multicarrier equalization by restoration 

of redundancy (MERRY) [14], [15] algorithm which exploits the presence of cyclic 

prefix to blindly update the TEQ. MERRY algorithm updates the TEQ every MCM 

symbol which is slow in convergence that makes it not suitable for fast time varying 

channel [14], [15]. A faster convergence algorithm called sum squared autocorrelation 

minimization (SAM) algorithm [16], which exploits autocorrelation shortening prop­

erty of the channel was proposed. Further detailed discussions of SAM and several 

other algorithms are reviewed in Chapter 2. 

1.2.2 Frequency-Domain Equalizer (FEQ) 

Single-tap equalization is performed once the shortening of the channel is achieved 

when the delay spread of the channel is larger than the CP. Like TEQ algorithms, 

there are training based and blind based algorithms to update the FEQ tap. If 

training is available then least mean square (LMS) or recursive least Square (RLS) 

algorithm is used to adapt the FEQ [17]. On the other hand, in applications where 

training data are not available then blind algorithms are used such as constant mod­

ulus algorithm (CMA) [18] or multimodulus algorithm (MMA) [19], [20] to adapt 

the FEQ by exploiting the desired finite-alphabet output of the FFT. In addition 

to these algorithms, nonlinear classifications, such as Bayesian decision theory, offers 

promising solution for equalization and symbol detection problems [3], [21]. Artifi­

cial neural networks (ANN), such as ANNs based on multilayer feed-forward neural 

networks and radial basis function (RBF), have been used for system identification 

and noise cancelation problems to recover transmitted data [22]. In order to get 

some insight of neural networks, a brief review of neural networks and their types, 

adavantages/disadvantages, and applications is introduced in the following Section 
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[23]. 

1.3 Neural Networks 

Neural networks consisting of interconnecting artificial neurons is called artificial neu­

ral network (ANN). ANN is basically a generalized mathematical model of human 

neural system. It processes information using appropriate connection between neu­

rons over connected links. The signal transmitted through a link is multiplied by an 

associated weight to this link. Activation function is applied to the sum of weighted 

inputs to calculate the output signals. ANN has an ability to learn the relationship 

between input and output in linear and non-linear system which makes it a very 

powerful tool. The training of ANN weights is performed adaptively, as shown in 

Fig. 1.4, until a criterion is met, (i.e., when output signal is close to a desired out­

put). Once the learning phase is completed, testing data can be processed using the 

learned model [23]. 

Output f ^ \ Desired output 

Error- to adjust weights 

Figure 1.4: Learning of ANN. 

1.3.1 Architectures of Neural Networks 

Feedforward Networks 

A feedforward neural network, as shown in Fig. 1.5, allows the signal to propagate 

only in one direction from input-to-output passing through the hidden layer neurons. 
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This type of neural network is straight forward and is used normally in applications 

of pattern recognition. 

Figure 1.5: Feedforward neural network model. 

Feedback Networks 

A feedback neural network shown in Fig. 1.6 allows the signal to propagate in both 

directions. This type of network are very powerful and complicated as it is dynamic 

until reaching an equilibrium state. It stays in the equilibrium state until the input 

changes and the network becomes dynamic again to find a new equilibrium. This 

type of ANN is also called recurrent neural network. 

1.3.2 Learning Processes 

There are two types of learning processes for adaptive neural networks which are: 

supervised learning, and unsupervised learning. In supervised learning, a training 

set is provided where the input and output are known. Using training data, the 

supervised learning algorithm builds a model that is used in the testing phase for any 

unseen data. Multilayer perceptron (MLP) network using backpropagation algorithm 

[24], [25] is an example of supervised learning that uses the desired output to train 
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Figure 1.6: Feedback neural network model. 

the neural network parameters. One of the methods used to minimize the error in 

supervised learning to obtain convergence is the least mean square (LMS) algorithm 

[26]. On the other hand, unsupervised learning are not based on training data but 

instead, it uses local information to train the neural networks. Self-organizing map 

(SOM) [27], is an example of unsupervised neural networks that uses its properties 

to map input and output. 

1.3.3 Applications of ANNs 

Since ANNs have the ability to solve linear and non-linear problem based on the 

training data provided, therefore, it is used in various object recognition applica­

tions such as recognition of signatures, shapes, words, face, color, etc [23]. ANNs 

has capability of forming nonlinear decision boundaries that helps in solving complex 

classification tasks [28] - [31]. Recently, ANN have been also used in modeling nonlin­

ear phenomenon of channel equalizations in wireless communication systems. In the 

literature, different type of feedforward neural network based equalizers are used like 

backpropagation [32], radial basis functions [33] - [35], complex minimal resource allo­

cation network (CMRAN) [36], [37], and complex extreme learning machine (CELM) 

[38] - [40]. 

feedback 

Output 
neurons 
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1.4 Research Objectives 

• The main objective of this thesis is to design new algorithms for channel equal­

ization in multicarrier modulation system. New algorithms are designed to 

obtain optimum performance with lower complexities than the existing algo­

rithms. Blind adaptive TEQ algorithms designed for ADSL systems are used to 

achieve the shortening of the effective channel to a length shorter than the cyclic 

prefix. With this main objective, several other sub-objectives are required to 

be optimized such as: maximizing the bit rate, maintain low complexity in de­

signing the TEQ, suitability for fast time varying channel, and fast convergence 

rate. 

• Investigate, develop and implement an IP core for the ALAM algorithm on 

Xilinx Verix II Pro FPGA. 

• Use of analytical schemes that jointly solve the problem of equalization and 

symbol detection in orthogonal frequency division multiplexing (OFDM) sys­

tems with QAM signals to achieve fast training, high performance, and low 

error rates. 

1.5 Research Contributions 

This section briefly describes the contributions developed to design new algorithms 

for channel equalization that are efficient in terms of performance and complexity. 

• New approach to adapt the TEQ blindly by minimizing the adjacent-lag au­

tocorrelation, without sum-squared as in SAM, to lower the complexity of the 

adaptive algorithm. 

• A decaying step size approach is used, in the proposed ALAM and in the existing 

SAM and SLAM algorithms, to attain stable bit rate and avoid the drop in bit 
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rates after reaching the maximum bit rates. 

• Low complexity instantaneous estimated approach to estimate the correlation 

estimated in the adaptive algorithm. With this approach fast convergence is 

obtained and the TEQ updates every sample which makes it suitable for fast 

time varying channels. 

• Symmetrical property is exploited to reduce the complexity of the proposed 

ALAM and the existing SAM and SLAM algorithms to half of the original 

algorithms. 

• Equal taps constraint (ETC) is enforced while adapting the algorithms to achieve 

higher bit rates without the drop down in bit rate once reached its maximum. 

• An IP core is developed to implement the low-complexity ALAM algorithm on 

Xilinx Verix II Pro FPGA for ADSL receivers. 

• Unit tap constraint (UTC) approach is implemented in the adaptive algorithm 

instead of UNC constraint that is very expensive in terms of hardware imple­

mentation. 

• A new learning based framework to jointly solve equalization and symbol detec­

tion problems in orthogonal frequency division multiplexing (OFDM) systems 

with QAM signals. 

• Fully real-valued processing scheme is used to obtain fast convergence and low 

computational complexity. This is achieved by transforming QAM constellation 

points to a real-valued vector of 2—tuple, which are labeled with integer values 

(i.e., class number) as an output. In addition, higher accuracy is attained by as­

sociating a 2—tuple pattern to one of the M possible classes, which corresponds 

to an individual QAM constellation point. 
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1.6 Organization of Dissertation 

The remainder of this dissertation consists of 5 chapters which are organized as fol­

lows: 

• Chapter 2. Covers an introduction of channel shortening algorithms and the 

background of the existing algorithms for the TEQ. A new low complexity 

cost function is derived based on the new approach of minimizing adjacent lag 

autocorrelation minimization to achieve the optimum TEQ taps. In order to 

avoid the drop in bit rate, a decaying step size is used in ALAM algorithm 

to achieve stable high bit rates. Both algorithm are validated and results are 

compared with the existing algorithms. 

• Chapter 3. An improvement to the proposed ALAM and the existing SAM 

and SLAM algorithms in terms of low complexity and suitability to fast time 

varying channel is achieved. Furthermore, symmetrical property of the TEQ 

is exploited to reduce the complexity of the original algorithms to half of the 

non-symmetrical based algorithms. ETC is used while adapting the algorithms 

to improve the bit rate performance and avoid drop in bit rate with minimum 

computational complexity. The validation of the proposed approaches used in 

this chapter are validated and comparative results are obtained and shown in 

the simulation section of this chapter. 

• Chapter 4. Details the design and implementation of the IP core for ALAM 

algorithm on a Xilinx Vertix II Pro FPGA. For comparison, ALAM algorithm 

is implemented on FPGA using MA method [16] and the low-complexity in­

stantaneous estimate. Physical synthesis report is generated that confirms the 

complexity reduction of the proposed method. Simulation results are shown at 

all stages of the design flow from floating-point simulation to Gate-level simu­

lation to show the functionality of the FPGA implementation. 
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• Chapter 5. In this chapter, a review of existing schemes for equalization and 

symbol detection using neural networks are discussed. An analytical learning 

based framework using extreme learning machine is proposed that solves jointly 

the problem of equalization and symbol detection in OFDM receivers. Ex­

periments are performed to show the significant improvement of the proposed 

framework over the exiting approaches in terms of SER and computational 

complexity. 

• Chapter 6. In this chapter, conclusions of the proposed research in this thesis 

is summarized and some recommendation of future work is presented. 
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Chapter 2 

Blind Adaptive Time-Domain Equalizer 

Algorithm for ADSL Systems by Adjacent 

Lag Auto-correlation Minimization 

(ALAM) 

2.1 Introduction 

In the literature, there are several TEQ designs that are either based on a training 

data or a blind approach [13] with high complexity. Trained methods require addi­

tional overhead that reduces the throughput of the system whereas blind methods 

do not require additional data; moreover it uses the property of MCM such as the 

presence of CP, null tones, constant modulus of signals, etc [41]. Several researchers 

have developed non-blind/non-adaptive TEQ design methods with high computa­

tional complexity such as maximum shortening signal-to-noise ratio (MSSNR) [12], 

minimum mean-square error (MMSE) [7], and several other methods which are sum­

marized and evaluated in [13]. In comparison with non-blind methods, there are 

limited numbers of blind channel shortening methods for TEQ design in the liter­

ature and it has not been explored extensively as blind channel equalization [41]. 
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Among the existing blind TEQ algorithms in the literature, there are: Sum-squared 

autocorrelation minimization (SAM) [16], sum-absolute autocorrelation minimization 

(SAAM) [42], single lag autocorrelation minimization (SLAM) [43], [44], multicarrier 

equalization by restoration of redundancy (MERRY) [14], the algorithms in [45], and 

the recent algorithm in [46]. 

MERRY is a low computational complexity algorithm, but has a very slow con­

vergence rate because it updates the TEQ coefficients once per symbol, therefore, 

it is not suitable for fast time varying environments. On the other hand, SAM, 

SAAM, and SLAM are high complexity algorithms due to the use of minimizing the 

squared-autocorrelation and moving average (MA) methods to estimate expectation. 

Minimizing the squared-autocorrelation produces more than one product terms that 

increases the complexity of the algorithms. This complexity is obvious when tak­

ing gradient of the squared cost function that results in a high complexity adaptive 

algorithm to update the TEQ coefficients. SAAM [42] on the other hand which is 

an extensions of SAM, is based on minimizing the sum of absolute values instead of 

sum squared values as in SAM. This algorithm uses signum function in its adaptive 

algorithm, that is why it has lower complexity than SAM. These algorithms share the 

same drawback of drop down in bitrate which can be treated by freezing the TEQ 

once it reaches the maximum shortening SNR as in SLAM [44]. However, freezing 

the TEQ makes the algorithm non-adaptive and that makes it not suitable for fast 

time varying environments. 

The proposed algorithm in this chapter is focused on reducing the complexity 

while achieving similar performance as SAM and SLAM. ALAM is the proposed 

blind adaptive algorithm that exploits the uncorrelation of the adjacent data samples 

produced by IFFT in ADSL systems to shorten the channel. This property is degraded 

due to the large delay spread in ADSL channel. The restoration of this property is 

achieved while adapting the TEQ by minimizing the adjacent-lag autocorrelation of 

the TEQ output. In this approach, without the square operator as in SAM and 
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Figure 2.1: System model for blind adaptive TEQ algorithm for MCM system. 

SLAM, the gradient function is a single product term of the correlation between the 

TEQ's input and output. Therefore, the complexity of ALAM adaptive algorithm 

is reduced without the degradation in performance. Unit-norm constraint (UNC) 

is implemented on the adaptive algorithm as in SAM and SLAM to avoid all zero 

solution on the TEQ taps [16]. In order to validate the proposed ALAM algorithm, 

MA method used in SAM [43] is implemented on ALAM to calculate the correlation 

estimates. A comparative simulations for ALAM, SAM, and SLAM are performed to 

show effectiveness of the low complexity proposed algorithms. The algorithms using 

MA estimate are referred in this thesis as ALAM-MA, SAM-MA, and SLAM-MA. 

All of those algorithms have the drawback of drop in bitrate once the bitrate reaches 

its maximum. In order to treat such a problem, a decaying step size is used to control 

the convergence and achieve steady bitrate performance. 

2.2 Preliminaries 

2.2.1 System Model 

In MCM systems, each of the M subcarrier is modulated with a quadrature amplitude 

modulation (QAM) signal. The modulation is formed using M-point FFT to produce 

orthogonal data to avoid ISI and ICI. 
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Figure 2.1 illustrates the system model used to shorten the effective channel in 

multicarrier systems. The source sequence x(n) contains M + v number of samples 

(bins) and v here is length of the cyclic prefix. These x(n) samples are uncorrelated 

to each other and are produced using IFFT of the QAM symbol data Xk- The signal 

x(n) is transmitted through linear finite-impulse-response (FIR) channel of length 

Lh + l taps. Those bins form a random process which is white, wide sense stationary 

(WSS), and real with zero-mean and unit variance [16]. 

The received sequence r(n) is described by 

Lh 

r(n) = ^2h(k)x(n-k) + v(n)t C2-1) 
fc=0 

where n is the sample index and v (n) is a zero-mean AWGN sequence, uncorrelated 

with the source sequence and has a variance a^. The sequence r(n) is fed to the TEQ 

of length Lw + \ taps. The effective channel is a discrete time convolution between 

the channel h and equalizer tap vector w, i.e., c = h * w, where the length of the 

effective channel is Lc 4-1, where Lc = Lh + Lw. The output sequence of the TEQ is 

given by 

y{n) = 5 2 w{k)r(n - k) = wTrn, (2.2) 
fc=0 

where w = [WQ W\ W2 . . . WLW]T and the TEQ filter input regressor vector rn = 

[r(n) r{n - 1) r(n - 2) . . . r(n - LW)]T. 

2.2.2 Conventional Autocorrelation Based Algorithms 

The conventional correlation based blind adaptive channel-shortening algorithms are 

SAM [16] and SLAM [43], [44]. Both use received signals to adapt the TEQ coefficient, 

SAM cost function is designed by minimizing the sum-squared autocorrelation of the 

received signal defined by 
i c - l 

Jv+1 = J2 I Rcdl) |2> (2-3) 
l=v+l 
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where i?cc(/) = Ryy{l) under noiseless scenario [16]. The SAM adaptive algorithm 

over the cost function defined in Equation (2.3) is defined as 

w ^ 1 = ™k-»Ztv+1Vw(E[y(n)y(n-l)])2 

= w* - 2liJ2flv+1{E]3f(n)y(n - Z)]}{£[y(n)rn_, + y(n - l)rn]}, 

and the implementation of the above adaptive algorithm is performed using MA or 

auto regressive (AR) estimators. The coefficient update equation of the TEQ using 

SAM algorithm with MA method to estimate the expectation is given by 

(k+l)N-l f_^ ,_ n } ( (k+l)N-l 

l=v+l 

W f c + 1 

+v^ y(n)y(n - /) 1 f V ^ y(n)rn-t + y(n - l)rn 1 

/=WV J I l=kN J l=kN 

(2.5) 

where N is the design parameter that defines the window size of samples (averag­

ing block) to estimate the expectation, larger N gives better estimate but higher 

complexity since the complexity is directly proportional to N. SAM adaptive algo­

rithm is based on estimating the correlation between the equalizer outputs and the 

received samples using MA estimator. The estimator can also be implemented using 

AR method [16] which is faster in convergence however AR method depends depends 

on previous estimated values, and hence its only good for slow varying channels. A 

simplified version of SAM was proposed by Nawaz and Chambers called SLAM [43], 

[44]. SLAM also used MA and AR estimator and has similar performance as SAM 

at a lower complexity. The coefficient update equation of the TEQ using SLAM 

algorithm with MA method to estimate the expectation is given by 
(fc+l)AT-l . . . . "J f (JM-l)iV-l 

w f c + l _ w f c _ ^ 
•((k+l)N-l , w . ) ((k+l)N-

f j , jfcOtfpOlf E 
V. l=kN J [. l=kN 

y{n)rn_i + y(n - l)rn 

N J 
(2.6) 

Another extensions of SAM reported in [42] called SAAM is based on minimizing the 

sum of absolute values instead of sum-squared values as in SAM. This algorithm uses 

signum function in its adaptive algorithm and that is why it has lower complexity 

than SAM. 
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2.3 Proposed Low Complexity Algorithm 

Since the channel input, x{n) sequence excluding the cyclic prefix data, is white with 

zero-mean, therefore the covariance matrix E[xn^] is equal to the correlation matrix 

which is defined as 

£[x«x£] = 

R(0) R(l) R{2)... R(M) 

R{1) R(Q) R(l)... : 

R(2) R(l) R(0)... R(l) (2.7) 

R{M) .. R(l)... R{0) 

where i?(0) is the unity variance and all other non diagonal elements, R(l), -R(2), ..R(M), 

being zero due to the the independent and identically distributed (i.i.d.) assumption 

that the output of IFFT produces output samples that are uncorrelated in MCM 

system. The correlation with lag I is defined by 

72(0 - R{l + M) 

E[*nXl-l\ (2.8) 

R{l-M) ... R(l) 

This correlation model is a Toelpitz matrix, with only one diagonal of nonzero entries 

and depending on the lag value /, the diagonal vector shifts up or down. The shifting 

matrix is a consequence of the i.i.d. assumption about the channel input sequences, 

x(n). In an MCM system, x(n) becomes non i.i.d. due to the the existence of cyclic 

prefix data. However, the shifting structure can still be present if and only if the 

correlating samples are within the M consecutive samples which means that the lag 

I is within the value defined by 

l<M-Lh-i, (2.9) 

where i is the received sample index. If this assumption is violated then the ma­

trix in Equation (2.8) will have another non-diagonal entries that correspond to the 
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correlation between transmitted data and the cyclic prefix data. Since SAM uses a 

range of I in estimating the autocorrelation, the violation probability of the condition 

in Equation (2.9) would be higher if the the length of the channel Lh is large. The 

proposed approach utilizes only adjacent lag to estimate the correlation, this is why 

the condition in Equation (2.9) can be easily met. One of the lags to optimize the 

TEQ is sufficient and i?(l) is the adjacent lag autocorrelation intended to minimize at 

the receiver to optimize the TEQ coefficients, which is used to formulate the proposed 

cost function and is defined by 

J = Ryy(l) = E[y(n)y(n - 1)], n € 1, 2 , . . . , M + v, (2.10) 

where n is the sample number of the MCM symbol. As shown in the proposed cost 

function in Equation (2.10), the sum and square is removed from the cost function 

to reduce the complexity of the proposed algorithm without any loss in performance 

which is shown in our simulation studies in Section 2.4. The optimization problem 

for the proposed algorithm is defined as 

w^* = arg^ min J 
l|w|ii=i 

, where a unit norm constraint is applied to avoid non-zero solution. The cost function 

is derived similarly as [16] and [44] but with only adjacent lag and without sum 

squared autocorrelation 

J = Ryy(l) = E[y(n)y(n-1)} 

= E[(cTxn + w r v n ) ( x ^ 1 c + v ^ 1 w ) ] (2.11) 

= Rcc(l) + CvRww(l), 

where the term a\/^^(l) is eliminated as being very small compare to Z?cc(l) which 

is the lag-1 autocorrelation of the effective channel as in [44]. Therefore, the cost 

function in Equation (2.11) is the autocorrelation of adjacent lag of the TEQ output 
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sequence which is equal to the autocorrelation of adjacent lag of the effective channel, 

i.e., Ryy(l) « -Rcc(l), therefore the final cost function is simplified as 

J = E[y(n)y(n - 1)]. (2.12) 

The effect of removing the sum and square in our proposed algorithm as com­

pared to SAM is investigated in Section 2.4 and in the adaptive algorithm for the 

proposed TEQ using the steepest gradient-descend algorithm to update the equalizer 

coefficients given by 

w ^ 1 = w * - / i V w % ( n ) i / ( n - l ) ] 

= w* - 2^£7[y(n)pn_i], 

where k = 0 , 1 , . . . , Lw — 1, n = 1,2,..., M + v, n is the step size, and for simpli­

fication the delayed TEQ input regressor vector r„_i « rn (This approximation is 

used throughout in the thesis while implementing the proposed adaptive algorithms). 

As shown from the derived gradient of the cost function in Equation (2.12) which is 

used in the proposed adaptive algorithm in Equation (2.13), the update depends on 

estimating the correlations between the received samples and equalizer output. Note 

that, SAM algorithm in Equation (2.4) has additional terms that are formed due 

to the squared autocorrelation in the cost function of Equation (2.3), where as the 

proposed algorithm has only single correlation term. A proper step size in the ALAM 

adaptive algorithm can compensate for additional terms in SAM, furthermore, the 

performance of the simplified proposed approach is investigated and compared with 

SAM performance in Section 2.4. 

A stochastic gradient descent update has been implemented using moving average 

(MA) or auto-regressive (AR) estimate in [16] and [44]. MA method is defined by 

E[y(n)y(n-l)] = ± ^ - i \ (2.14) 
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where AT here is user defined window to perform averaging. On the other hand, AR 

estimate is defined by 

E[y(n)y(n - 1)]4 « (1 - a)E[y(n)y(n - 1 ) ] ^ + ay(n)y(n - 1), (2.15) 

where i and i — 1 are current and previous estimates, respectively. 

According to [16], AR estimate is less complex, however, it depends on previous 

estimate which makes it unsuitable for fast time varying environments, where as 

MA estimate performs the estimate over a predefined window of size N samples 

where each update is performed every N samples. Both MA and AR implementation 

methods have been used in the literature to estimate the expectation. In [16] MA 

and AR methods have been used with a complexity of 4NLW (Lc — v) and 4LW (Lc — v) 

multiplications/additions in each update, respectively. Thus, AR method has about 

N times lower complexity than MA method, however, the AR method depends on the 

previous estimates which makes it unsuitable for fast time variation environments [16]. 

SLAM, on the other, has complexity equal to 3NLW [43] using MA method and equal 

to 4LW [44] using AR method. However, SLAM has the drawback of being dependable 

on the previous estimate which makes it unsuitable for fast time varying channel. In 

the proposed TEQ algorithm, the expectation is implemented by MA estimate which 

has a complexity of 2NLW multiplications/additions per update. The implementation 

of our proposed ALAM using MA method validates the approximation in Equation 

(3.2) as shown by simulation in Section 2.4. 

2.4 Simulation Results 

In this Section, the low complexity ALAM algorithm using MA estimate is simulated 

and compared with the original SAM and SLAM algorithms. In our simulation 75 

DMT symbols are used to simulate results and the ADSL downstream parameters 
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used are: FFT size M = 512, v = 32 for CP, 16 taps for the TEQ, and 40 dB for 
a*v . ADSL performance metric is the achievable bitrate, Rb, given at a fixed bit 

error rate (BER) which is determined by 

Rb = J2 ^ (1 + ^ ) , (2.16) 
i 

where SNRi is the SNR for each subcarrier i, and T is a parameter that depends on 

9.8-dB SNR gap, 6-dB margin and 4.2-dB coding gain [13]. The simulation of the 

proposed algorithm and the modifications to exiting algorithms are written in Matlab 

using the standard carrier serving area (CSA) loop 1 available in [47] and integrated 

with the Matlab code in [48] and the design tool box in [47]. 

To test the performance of the proposed blind adaptive algorithms, TEQ is ini­

tialized with single center spike and the step sizes used for the algorithms are 0.15, 

5, and 600 for ALAM-MA, SAM-MA, and SLAM-MA, respectively. 

2.4.1 Validation of ALAM Approach. 

The proposed ALAM algorithm is validated by comparing it with the conventional 

SAM in [16], SLAM in [43], MSSNR solution, and the matched filter bound (MFB). 

The metric used to validate our results are bitrates, TEQ taps, and shortened channel. 

To validate the ALAM approach of adapting TEQ using adjacent lag autocorrelation 

without sum-square, ALAM adaptive algorithm of Equation (2.13) is implemented 

using MA method used in SAM [16] to estimate the expectation. Fig. 2.2, Fig. 2.3 

and Fig. 2.4 show the simulation using MA method to estimate the expectation. 

Simulation results show that the algorithms are slow in convergence because the up­

dating of TEQ is performed every block. Fig. 2.2 shows that ALAM algorithm using 

MA methods shortens the channel to a length similar to SAM and SLAM. Further­

more, the optimized TEQ taps after convergence using the proposed ALAM-MA are 

demonstrated in Fig. 2.3, where the TEQ taps are almost identical to SAM and SLAM 
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Figure 2.2: Effective (shortened) channel impulse response using MA method. 
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Figure 2.3: TEQ taps obtained using MA method. 
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algorithms. The achievable bitrate vs. the iteration number (average blocks) is shown 

in Fig. 2.4. This figure is simulated using MA estimate where each averaging block 

N = 32 samples which shows that the convergence for ALAM-MA, SAM-MA and 

SLAM-MA is achieved at approximately 320, 260, and 1000 blocks, respectively, (i.e., 

in terms of DMT symbols the convergence is achieved at approximately 18, 15, and 

58 symbols, respectively). These figures validates the proposed approach of adjacent 

lag autocorrelation minimization that shows that the channel shortening is achieved 

with lower complexity algorithm. Fig. 2.5 shows the achievable bitrate versus SNR for 

MSSNR, SAM-MA, SLAM-MA and the proposed algorithm ALAM-MA. The bitrate 

at each SNR is obtained after transmitting 75 symbols. Observe that ALAM-MA and 

SAM-MA achieve almost similar results but SLAM-MA outperforms both of them. 

Note that SLAM in this case is outperforming because the achieved bitrate is recorded 

after transmitting 75 symbols, (i.e., after transmitting 1200 blocks), which is high as 

shown in Fig. 2.4. However, as shown in this figure that at 75 symbols it is still 

in the process of decaying and eventually at steady state it will be the same as the 

ALAM-MA and SAM-MA. 

2.4.2 ALAM-DSS. 

In order to avoid the drop down in bitrate once reached its maximum, a decaying 

step size function is used to achieve MSSNR solution. The step size controls the 

convergence rate. As the bitrate reaches maximum value, the step size approaches 

a value close to 0. This technique works similarly as the stopping criterion used in 

SLAM algorithm which examines the energy of the TEQ taps, and freezes the TEQ 

tap once reached a threshold value. Unlike the stopping criterion which requires the 

designer to determine the threshold, ALAM decaying step size (ALAM-DSS) does 

not require such condition where the problem of stopping is treated by DSS function 

as it approaches 0. By doing so, both techniques are in the non-adaptive mode that 

can not be suitable for time varying channels. The tradeoff in using ALAM-DSS is 
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Figure 2.4: Achievable bitrate vs. iteration number using MA method. 
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Figure 2.5: Achievable bitrate vs. SNR using MA and instantaneous estimates. 
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slight decrease in bitrate for not using a threshold based criterion. This technique can 

be used in the proposed algorithms and the existing SAM and SLAM. But to avoid 

redundancy, only ALAM-DSS is simulated and the bitrate versus iteration numbers 

are shown in Fig. 2.4. In this figure as observed, the convergence with initial step 

size of 0.5 is achieved at around 400 block number, which is the 23rd DMT symbol. 

Note that the bitrate after the convergence becomes almost constant which means 

that the adaptive algorithm have stopped adapting, i.e., the TEQ algorithm entered 

a freezing state. 

2.5 Conclusions 

In this Chapter, a low complexity blind adaptive algorithm called ALAM for the TEQ 

to shorten the channel has been proposed. The proposed algorithm is based on a new 

criterion which is to minimize of the adjacent lag autocorrelation. The reduction in 

complexity is attained by simplified cost function and the validation of the proposed 

approach is verified with existing SAM algorithm using MA method to calculate 

the expectation. A decaying step size is used in ALAM and the existing SAM and 

SLAM algorithms to control the convergence and achieve steady bitrate performance. 

Comparative analysis in terms of computational complexities and performance has 

been performed. Simulation showed the effectiveness of the proposed low complexity 

approach with small degradation in convergence rate. 
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Chapter 3 

Efficient Blind Adaptive TEQ Designs 

3.1 Introduction 

The new algorithms developed in Chapter 2 and the existing algorithms SAM [16] and 

SLAM [43] have some common limitations. These algorithms are slow in convergence 

as they update every block and are not suitable for fast time varying channels. This 

is due to the nature of the MA method used in those algorithms to estimate the 

correlation that would slow down the update of the adaptive algorithm. In addition, 

those algorithms require high computational complexity as they require an averaging 

over a window of samples for each update. In order to achieve fast convergence and 

low complexity, AR method is used to update the adaptive algorithms. However, this 

update depends on previous estimate while estimating the autocorrelation. Because 

of this, AR method it only suitable for slow time varying channels [16]. Moreover, 

the algorithms in Chapter 2 and in [16],[44] share the same drawback of drop down 

in bitrate which can be treated by freezing the TEQ, using stopping criterion, once 

it reaches the maximum shortening SNR as in SLAM [44]. Hence, they are not 

suitable for fast time varying environments. Another approach in Chapter 2 was 

proposed where the freezing of the TEQ taps is achieved using variable step size. 

In this approach, threshold value is not required which does not require a manual 
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setting and saves some amount of computations required for examining the TEQ 

taps while adapting. However, this approach also becomes only suitable for time 

invariant channel due to the freezing of the TEQ taps. 

In order to minimize complexity, several researchers have used TEQ filter proper­

ties to reduce the amount of computation cost of the channel shortening algorithms. 

Symmetrical property of the TEQ filter have been exploited in non-correlating based 

algorithms [50], such as in MSSNR, MMSE and MERRY. In this Chapter, the pro­

posed algorithms are focused on reducing the complexity while achieving performance 

similar or better than SAM-MA and SLAM-MA. The contributions of this Chapter 

are as follows: (i) propose low complexity algorithms that use computational efficient 

method for fast time varying channel to estimate the expectation to replace the MA 

or AR method used in SAM and SLAM algorithms [16], [43], [44], (ii) exploit the 

symmetrical property of TEQ [50] to reduce the amount of computation by 50% in 

ALAM, SAM, and SLAM algorithms with slight decrease in convergence time, and 

in) a TEQ design is proposed that enforces equal TEQ taps while adapting to achieve 

maximum stable bitrate, this allows the algorithms to avoid the limitations of drop 

down in bitrate in ALAM, SAM, and SLAM. 

3.2 Proposed Low Complexity Algorithms 

3.2.1 Low-complexity ALAM, SAM, and SLAM 

Recall from chapter 2, a stochastic gradient descent update is implemented using MA 

or AR estimate in [16] and [44]. Our focus in this Chapter is to simplify the MA 

method to reduce the complexity and update the adaptive algorithm every sample to 

achieve faster convergence. The MA method is defined by [16] 

^My(«-l)l=£^P^, (3.1) 
7 1 = 1 
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where N here is user defined window to perform averaging. This MA method per­

forms the estimate over a predefined window of size N samples that leads to a slow 

convergence and update the adaptive algorithm every N samples. Our approach for 

calculating the expectation, on the other hand, is based on a simplified version of 

MA estimate. It is assumed that the output of IFFT is a stationary process due to 

the WSS Gaussian process as per the central limit theorem [51]. For this reason, the 

simplified low complexity, instantaneous estimate, is used in the adaptive algorithm 

which is approximated as 

E[y(n)y(n - 1)] « y(n)y(n - 1), (3.2) 

This approximation is equal to the MA estimate. If E[y(n)y(n — I)] = Ryy(l) for all 

n, for a stationary process, then 

E[y(n)y(n - 1)] = 1 AT y(n)y(n - 1) = y(n)y(n - 1). (3.3) 

In addition to the above, the justification for this approximation comes from the 

fact that this expectation is estimated using the stochastic gradient algorithm that 

performs a two-fold way of averaging [52]. If we use the MA method in the stochastic 

gradient algorithm as in Equations (2.5) and (2.6) of SAM and SLAM respectively, 

then it looks like a redundant procedure is being done by performing an average of 

averages. For more details about this approximation see Section 2.5 of [52]. 

Both MA and AR implementation methods have been used in the literature to 

estimate the expectation. In [16] MA and AR methods have been used with a com­

plexity of ANLW(LC — v) and 4LW(LC — v) multiplications/additions in each update, 

respectively. Thus, AR method is lower in complexity by N times compare to MA 

method. However, the AR method depends on the previous estimates which makes 

it unsuitable for fast time variation environments [16]. SLAM, on the other hand, 

also uses the MA and AR method with a complexity of 3NLW [43] and 4LW [44], 
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respectively. However, SLAM has the drawback of being dependent on the previous 

estimate which makes it suitable for slow time varying channel. 

In the proposed TEQ algorithm, the expectation is implemented by instantaneous 

and MA estimates with complexities of 2LW and 2NLW multiplications/additions per 

update, respectively. The coefficient update equation for the proposed low-complexity 

ALAM (LALAM) blind adaptive algorithm using instantaneous estimate implemen­

tation of Equation (3.2) is given by 

wfc+1 = wfc - 2/x{y(n)rn_1}. (3.4) 

The proposed method of instantaneous estimate is also implemented on SAM-MA 

and SLAM-MA to lower their complexity by a factor of N. The coefficient update 

equation for the low-complexity SAM (LSAM) is given by 

LC 

w*+1 = w k - 2 / i J {y(n)y(n - Z)}{y(n)rn_i + y(n - Z)rn}, (3.5) 

and for the low-complexity SLAM (LSLAM) is given by 

w*+1 = wfc - 2fi{y(n)y(n - l)}{y(n)rn-i + y{n - l)rn}. (3.6) 

The proposed LALAM, LSAM, and LSLAM algorithms are of low complexity and 

they update every sample which makes them depend on the current settings; making 

them suitable for fast time varying channels. The complexity comparisons of the 

algorithms using MA estimate and the low complexity instantaneous estimate are 

shown in Table. 3.1. 

3.2.2 Exploiting Symmetrical TEQ 

This Section considers the symmetrical TEQ design to reduce the complexity of pro­

posed ALAM algorithm and the existing SAM and SLAM algorithms. In literature 
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Table 3.1: Complexity comparison in terms of number of multiplications and ad­
dition per TEQ update 

Algorithms 

SAM 

SLAM 

ALAM 

MA estimate 

4NLW{LC - v) 

ZNLW 

2NLW 

Inst, estimate 

4LW(LC - v) 

oLw 

1LW 

it has been shown that the optimum TEQ taps become symmetrical as the length 

of the TEQ tends to infinity [53], [54], [55]. Several researchers have utilized this 

property to force the TEQ to be perfectly symmetric in the case of a finite length 

TEQ in non-correlating based TEQ algorithms [50] to reduce the complexity by 50% 

compare to the conventional TEQ design. TEQ length can be even or odd, and it is 

noted that when the length is even the enforcing of symmetry is described by 

wr=[f ( i c tn 

while when the TEQ length is odd, symmetry it is enforced by 

wT = [f 7 (Icff]. 

(3.7) 

(3.8) 

where 7 is a scalar initialized as 1, f = [WQ WI W2 . . . W[LW/2\]T where [.J is the floor 

function, and Ic is the cross diagonal identity matrix defined as 

Ic = 

0 0 

0 0 

0 1 

1 0 

0 

. . . 

. . . 1 

1 0 

0 0 

0 0 

(3.9) 

Compared to the non-symmetrical implementation of LALAM, LSAM, and LSLAM 

in Equations (3.4), (3.5), and (3.6), respectively, the number of multiplications is 
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reduced by 50% for Sym-LALAM, Sym-LSAM, and Sym-LSLAM where the adap­

tation of TEQ is performed only for Lw/2 taps and symmetry is enforced to form 

w. Without loss of generality, we only show the odd symmetrical LALAM coefficient 

update equation which is described by 

i*x = 1<- 2/.{y(n)rn_1}. (3.10) 

w r = [f 7 (Icff]. (3.11) 

The proposed algorithms using symmetrical TEQ design reduces the complexity 

while maintaining similar bitrate performance compare to SAM and SLAM in [16] 

and [43] with slight decrease in convergence rate. 

3.2.3 Adaptive Algorithm for TEQ Using Equal-Taps Con­

straint (ETC) 

A new approach for adapting the TEQ algorithm using equal-taps constraint (ETC) 

is introduced. This approach avoids the limitations in the above proposed and exist­

ing algorithms which are the drop down in bitrate and choosing bad minima while 

converging blindly. An extensive research has been done by Balakrishnan, et al. [16], 

in which an investigation has been carried out and conclusion was drawn that blind 

channel shortening algorithms produce multiple minima and the cost function is in­

variant to the operation of flipping the TEQ taps w. Theorem I in [16] states that 

whenever there is a good minima at w0, there is also another minima at the flipped 

w0 but this does not mean that flipped one is the best minima. Therefore, it is clear 

that there are multiple minima and to achieve the best minima in order to maximize 

the bitrate, a global search technique is needed. Toker and Altin [56] proposed a 

genetic algorithm to search for the global minima to select the best minima. The 

use of genetic algorithm is very costly, in terms of complexity and searching time, 

as it requires to search all the combinations of TEQ taps to reach the best minima. 

A new approach is used to update a single tap using our proposed methods which 
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will produce an equal taps for a single update which reduces the complexity of the 

proposed algorithms by Lw. Using this approach we can achieve a suitable minima 

that gives higher stable bitrate than the existing algorithms which is demonstrated 

by experiments in Section 3.3. 

The scalar adaptive algorithm using the equal-taps constraints for LALAM (ETC-

LALAM) can be formulated as 

/ f e + 1 = / f c -2 / x{ 2 / (n) r n _ 1 }, (3.12) 

and the equal TEQ taps are enforced in the above adaptive algorithm by the vector 

w T = [/ / ] of length Lw. 

Similarly, the ETC approach is applied in LSAM and LSLAM algorithms to re­

duce their complexity and achieve better stable bitrates, the resulting algorithms are 

labeled as ETC-LSAM and ETC-LSLAM, respectively. 

3.3 Simulation Results 

In this Section the simulation setup/parameters of Chapter 2 are used to test the 

performance of the proposed efficient algorithms. The step sizes chosen based on ex­

tensive simulation are 0.01, 0.05, and 7 for LALAM, LSAM, and LSLAM, respectively. 

3.3.1 Validation of LALAM Algorithm. 

The proposed LALAM algorithm, and the modified SAM and SLAM algorithms are 

validated by comparing them with the conventional SAM in [16], SLAM in [43], 

MSSNR solution, and the matched filter bound (MFB). The metric used to validate 

our results are bitrates, TEQ taps, and shortened channel. To validate the low com­

plexity LALAM algorithm, the adaptive algorithm of Equation (3.4) is implemented 

using the low complexity, instantaneous method to calculate correlation estimate. 
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Channel and shortened channel impulse responses 
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Effective (shortened) channel impulse response using instantaneous method. 

TEQ taps 
1.2 

1 

0.8 

0.6 

0.4 

0.2 

LALAM 
LSAM 
LSLAM 

W * * 4 1 M M 1 1 * * 
-0.2' '—• * ' 

0 5 10 

•9-9 

5 10 
Tap number 

15 

Figure 3.2: TEQ taps obtained using instantaneous method. 
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The shortened channel and the TEQ taps of the low-complexity algorithms using 

instantaneous estimate are demonstrated in Fig. 3.1 and Fig. 3.2, respectively, where 

it is shown that the optimization of TEQ taps to shorten the channel can be achieved 

using instantaneous estimate instead of the high complexity averaging method i.e., 

MA method. The achievable bitrate vs. the iteration number (sample number) is 

shown in Fig. 3.3. This figure shows that the convergence is achieved at approxi­

mately 5000, 2500, and 7500 samples for LALAM, LSAM, LSLAM, respectively, (i.e., 

in terms of DMT symbols the convergence is achieved at approximately 9, 5, and 13 

symbols, respectively). In comparison with the simulation of ALAM algorithm using 

MA method shown in Fig. 2.4 of Chapter 2, it is shown that LALAM, LSAM, and 

LSLAM are faster than ALAM-MA, LSAM-MA, and LSLAM-MA by 9, 10, and 45 

symbols, respectively. These figures confirm that the proposed adaptive algorithm 

and the modified SAM and SLAM using instantaneous estimate attain faster con­

vergence rates while the algorithm update per sample which make them suitable for 

fast time varying channel. The simulation in Fig. 3.4 shows the achievable bitrate 

versus SNR for MSSNR, SAM-MA, SLAM-MA and the proposed algorithms. The 

bitrate at each SNR is obtained after transmitting 75 symbols. Observe that the 

low complexity algorithms, LALAM, LSAM, and LSLAM achieve similar results as 

the original SAM-MA and SLAM-MA algorithm for SNRs up to 40dBs, however at 

higher SNRs LALAM and LSAM perform better than LSLAM. 

3.3.2 Symmetrical TEQ Taps Design. 

This Section presents simulation of Sym-LALAM, Sym-LSAM, and Sym-LSLAM al­

gorithm. Fig. 3.5 shows the shortened channel after running symmetrical based adap­

tive algorithms that obtains bit rate performance shown in Fig. 3.6. This figure shows 

the bitrate versus iteration number for algorithms imposing symmetry on the TEQ. 

The symmetrical algorithms, which are represented by solid lines, are compared with 

the low complexity algorithms LALAM, LSAM, and LSLAM which are represented 

35 



Bitrate vs. iteration number(samples) 
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Figure 3.3: Achievable bitrate vs. iteration number using instantaneous method. 
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Figure 3.4: Achievable bitrate vs. SNR using MA and instantaneous estimates. 
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as dotted lines. It is clear that the symmetrical based algorithms can achieve similar 

performance as non-symmetrical based algorithms with slight decrease in convergence 

rate while reducing the complexity by approximately 50%. 

3.3.3 Equal-Taps TEQ Design. 

In this Section, simulation is conducted for the adaptive algorithms derived in Sec­

tion 3.2. Fig. 3.7 shows the obtained effective shortened channel for the proposed 

algorithms using the TEQ adaptive algorithm with ETC. The convergence in terms 

of bitrate vs. iteration number is shown in Fig. 3.8. As observed from this figure, 

the achievable bitrate of the ETC based algorithms outperform the non-ETC based 

algorithms with slight decrease in convergence rate. As a consequence, ETC based 

algorithms avoids the severe drop down in bitrate as in the other proposed and ex­

isting SAM and SLAM algorithms. The achievable bitrate versus SNR for LALAM, 

LSAM, and LSLAM algorithms, which are represented by dotted line, are compared 

with ETC based algorithms, represented by solid line is shown in Fig. 3.9. As ob­

served from this figure, the ETC based algorithms outperform the symmetrical based 

algorithms. The ETC based algorithms achieve minimum complexity for adapting 

the TEQ to shorten the channel for ADSL environment. The complexity for equal 

TEQ taps is reduced by Lw multiplications/dditions per update. 

3.4 Conclusions 

In this Chapter, a low complexity blind adaptive algorithm called LALAM for the 

TEQ is proposed to shorten the channel. This algorithm is an extension of ALAM 

algorithm proposed in Chapter 2. In this algorithm, instantaneous estimate is im­

plemented to the proposed ALAM, SAM and SLAM to lower their complexities by 

a factor of N multiplication/addition per update. Using instantaneous estimate, the 

adaptive algorithm updates every sample which makes it suitable for fast time vary-
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Figure 3.5: Effective (shortened) channel impulse response for symmetrical ALAM, 
SAM, and SLAM. 
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Figure 3.6: Achievable bitrate vs. iteration number using symmetrical TEQs. 
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Channel and shortened channel impulse responses 
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Figure 3.7: TEQ taps obtained for equal-taps constrained ALAM, SAM, and SLAM. 
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Figure 3.8: Achievable bitrate vs. iteration number using Equal-taps constrained 
ALAM, SAM, and SLAM. 
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Figure 3.9: Achievable bitrate vs. SNR using symmetrical TEQs and equal-taps con­
strained. 

ing channels. Symmetrical property of the TEQ is utilized to reduce the complexity 

of the algorithms to half of the non-symmetrical based algorithms. Finally, in or­

der to minimize the complexity of all algorithms and achieve suitable minima, ETC 

is enforced to ALAM, SAM, and SLAM algorithms to obtain better performance. 

Simulation results show comparable results of the proposed algorithms with slight 

degradation in convergence time. 
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Chapter 4 

FPGA Implementation of a Low 

Complexity Time Domain Equalizer for 

ADSL Systems 

4.1 Introduction 

DSP algorithms are implemented using application-specific integrated circuits (ASICs) 

to obtain high operating frequencies, reduce power consumption and size. However, 

with the development of modern field programmable gate array (FPGA) and tools 

that optimize area, speed, and power consumption. They have been used more fre­

quently to provide an ideal solution for implementing high speed signal processing 

circuitry [58], [59], [60]. In addition, the availability of many resources that support 

DSP algorithms such as embedded multipliers, multiply accumulate units (MAC), 

and intellectual property (IP) cores make the task of implementing signal processing 

algorithms on FPGAs convenient. 

The process of implementation involves many challenges in compiling the software 

code into pure hardware [61]. Some of the challenges are to avoid arbitrary division 

and multiplications to reduce the circuit size. In addition, DSP algorithms developed 

using software codes like Matlab are performed using floating-point numbers with 
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infinite precision which is not always feasible in hardware implementation. Therefore, 

an extensive and iterative process is performed to convert the very precise floating­

point numbers to less precise fixed-point numbers that can be easily implemented 

on the hardware. The conversion process is a very difficult step for the designer as 

the size of the circuit and the quantization accuracy is inversely proportional. This 

conversion is an iterative process, which is achieved using quantization in Matlab. 

This chapter discusses the design and the FPGA implementation of a blind adap­

tive time-domain equalizer intellectual property (IP) core for ADSL receivers. The 

design can be configured to implement the adjacent lag auto-correlation minimiza­

tion (ALAM) algorithm to shorten the channel. The calculation of the expectation in 

ALAM algorithm uses MA estimate [43] and the low complexity method introduced 

in Chapter 2. The feasibility of implementing the low complexity channel shorten­

ing algorithm is shown in this chapter and the complexity is compared with ALAM 

algorithm using MA estimate introduced in [16]. The IP core is implemented using 

the Xilinx Vertix II Pro XC2VP7-FF672-5 and ADSL receivers that operates at a 

maximum frequency of 27 MHz and 38 MHz for ALAM-MA and LALAM proposed 

in Chapter 2, respectively. 

4.2 Standard FPGA Design Flow 

FPGA implementation is performed in multiple stages starting from algorithm devel­

opment to the programming of the FPGA device. The flow of the design stages are 

illustrated in Fig. 4.1. As illustrated in this figure, the first step is the development 

of the DSP algorithm which is performed and analyzed using high level programming 

languages such as C / C + + or Matlab. In high level programming, the computation is 

performed using floating-point numbers with infinite precisions. Since the hardware 

specification requires fixed-point numbers, the floating-point numbers are converted 

to fixed-point numbers. The floating-point simulations are then matched with the 
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Figure 4.1: FPGA design flow. 

fixed-point simulation to obtain minimum quantization errors. The next step is to 

perform register transfer level (RTL) simulations using fixed-point numbers. The 

RTL is used to model a sequential circuit that describes the flow of data between reg­

isters. To confirm the functionality of RTL model, the simulations at RTL level are 

compared with the floating-point and fixed-point simulations. Furthermore, Xilinx 

synthesizer tool is used to translate Verilog code to device netlist. The netlist con­

tains a complete description of the circuit that includes logic elements such as gates, 

flip flops, etc. FPGA vender place and route process consist of three steps: translate, 

map, and place-and-route. The translate process, which is also called physical syn­

thesis, uses the netlist to assign the ports to the physical elements of the target device 
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and specifies the timing constraints. The map process divides the whole circuit to sub 

blocks to fit into the targeted FPGA logic blocks. The place-and-route (PAR) process 

places the logic blocks in the target FPGA device and connects them according to the 

constraints. Gate level simulation is performed to validate the functionality of the 

circuit in the FPGA and is compared with the simulation of previous step. Finally a 

bit file is generated to program the FPGA. 

The FPGA design flow is an iterative process that requires careful analysis at 

different steps of Fig. 4.1. To ease this process, several electronic design automation 

(EDA) tools are available such as the one offered by Xilinx (ISE) and Altera (Quartus 

II). The Xilinx tool is being used here to develop an IP core that can be integrated 

to within the ADSL receiver. 

4.3 TEQ Design and Objectives 

In this section, the implementation of the low complexity proposed ALAM algorithm 

in Chapter 2 is discussed and modified to be implementable on FPGA. The time 

domain equalizer using ALAM algorithm is configurable and can achieve tap coeffi­

cient adaptation to shorten the channel using two different methods: low complexity 

method proposed in Chapter 2 and the existing method of MA in [16]. The primary 

goals of this implementation are: 

1. To design a generic IP core of adaptive equalizer using ALAM algorithm and 

implement this core on Xilinx Vertix II Pro XC2VP7-FF672-5 FPGA. 

2. Use FPGA implementation to validate the low complexity method used in Chap­

ter 2 and compare with the high complexity method proposed in [16]. 

3. Implement the ALAM algorithm using low complexity unit tap constraint (UTC) 

to void all zero solution [17]. 
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Figure 4.2: Fixed-point representation. 

4. To target the IP core for ADSL receivers to achieve data rates comparable to 

recent algorithms for channel shortening. 

To achieve these goals, FPGA design flow in Fig. 4.1 is followed. The DSP al­

gorithm developed in Chapter 2 is revisited where UTC is used instead of UNC to 

avoid all zero solution. When UTC is used in adaptive algorithms it achieves supe­

rior performance as shown in [17] and complexity is reduced to make it suitable for 

hardware implementation. 

4.4 Fixed-point Analysis 

After developing the DSP algorithm according to the FPGA design flow in Fig. 4.1, an 

extensive simulation analysis is performed to re-design the DSP algorithm using fixed-

point numbers instead of floating-point numbers. Using simulation analysis, a process 

to identify a proper precision size in terms of word-length (WL) and fractional word-

length (FWL) is performed. This process is performed delicately due to the tradeoffs 

involved with precision size; for example, increase in WL to achieve higher accuracy 

results in higher hardware complexity. The problem is resolved by optimizing the 

precision size while minimizing the cost of area in terms of logic elements (LEs) [62]. 

The fixed-point number representation in Fig. 4.2 shows that the most significant bit 
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(MSB) is the sign bit and all bits to the right of the radix point are the fractional 

word-length. Since the internal signal values are smaller than 1 in adaptive filtering, 

the FWL is kept to it is maximum length allowing only 1 bit for integer word-length 

(IWL) that is the sign bit in our implementation. Note that, since we are using UTC 

where the one tap of the filter coefficient is always 1, therefore it is required to have 

at least 2 bits IWL for the filter coefficients and the rest of the bits for FWL. 

The WL of the I/O signals and the intermediate signals should be determined 

carefully to achieve the best performance of adaptive filtering with acceptable hard­

ware complexity. The word length of the internal circuit, (i.e., including intermediate 

and inter-blocks signals), is critical in reducing the rounding effects and hardware 

complexity. Therefore, the WL of the multipliers output is chosen to be higher than 

the word length of the input. Rounding is applied to the input of the multiplier to 

limit the word length to a pre-specified value. This results in eliminating the least 

significant bits of the input to the multipliers. An overflow can occur which is treated 

by saturation instead of wrap [63]. The WL of the I/O signals is considered for stable 

operation and low quantization error as the output of the filter is fed back to the 

closed loop system. The impact of quantization error on the performance due to the 

transformation from floating-point to fixed-point is shown in Fig. 4.3 and Fig. 4.4. 

A simulation is conducted by setting the WL to 14-bit for the internal signals and 

examining three different sets of WL for the I/O signals as illustrated in Fig. 4.3. 

With WL of 14-bit for internal signals and 10-bit for the I/O signals, the perfor­

mance increases gradually but the convergence is slow. This slow convergence is due 

to the shorter WL of the internal signals because increasing of I /O signals WL to 

14-bit does not improve the convergence as shown in Fig. 4.3. Therefore, a larger WL 

for the internal signals is analyzed by simulating higher WLs at a fixed WL of 10-bit 

for the I /O signals. The results in Fig. 4.4 show that using 16-bit and 10-bit for the 

internal and I/O signals, respectively, achieves the optimum performance. Note that 

10-bit instead of 14-bit WL for the I/O signals is being used to reduce the complex-
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Figure 4.3: Impact of the I/O WL on the performance using 14-bit WL for internal 
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Figure 4.4: Impact of the internal signals WL on the performance using 10-bit WL 
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ity, as the performance with 14-bit WL for the I/O signals does not show significant 

improvement over 10-bit WL for the I/O signals. 

In the rest of the design implementation stage, 10-bit WL of the I /O signals and 

16-bits WL of the internal signals is used. To further validate the ALAM algorithm 

using fixed-point simulation, Fig 4.5, Fig 4.6, and Fig 4.7 illustrate the effectiveness 

of the WL of internal signals and I/O signals used for the FPGA implementation. 

The fixed-point simulation results are compared with the floating-point algorithm 

that shows almost identical results. 

4.5 FPGA Implementation of ALAM 

The direct form realization of the adaptive equalizer using ALAM algorithm in 4.1 is 

shown in Fig. 4.8 which depicts a structural view of such an algorithm implemented 

using FIR filter. As shown in this figure, the main components of the adaptive filter 

consist of Lw unit delay registers T, Lw + 1 filter weight updates, and calculation 

of the gradient of the expectation. The weight-update component updates the TEQ 

taps according to 4.1 whereas the unit delay registers are simply D Flip-Flops. The 

correlation between the input and output of the filter is calculated using instantaneous 

estimate and MA estimate [16]. Note that the MA estimate used in SAM and SLAM 

algorithms is implemented to compare the complexity of our low-complexity proposed 

algorithm. 

4.5.1 Weight Update Block 

Recalling the ALAM adaptive equation proposed in Chapter 2 given by 

wfe+i = wk _ ^wE[y(n)y(n - 1)] 
(4.1) 

== wfc - 2fiE[y(n)Tn-i] 

48 



Channel-Equalizer Combinations -LALAM-Fixed-point 

-0.5 

Original channel 
Shortened channel-LALAM 
10-bit I/O WL (16-bit internal WL) 

0 100 200 300 400 500 
Tap index 

Figure 4.5: Shortened channel using LALAM Fixed-point simulations. 
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Figure 4.6: TEQ taps using LALAM Fixed-point simulations. 
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Figure 4.7: Achievable bit rate using LALAM Fixed-point simulations. 

This adaptive algorithm is the core of the ALAM algorithm to update the TEQ 

taps to achieve channel shortening implemented in Fig. 4.9. The figure illustrates, 

the correlation term E[y(n)Tn-i] and the step size n used to control the TEQ taps 

update. UNC is used to avoid all zero solution of the TEQ taps during update, 

however it adds high complexity as discussed in Chapter 2. Whereas UTC is used to 

minimize the complexity and increase the performance [17], that also avoids the all 

zero solution. UTC is used by constraining the middle single tap of the TEQ vector 

w to 1 [64]. The correlation term in the adaptive Equation 4.1, is the gradient of the 

adjacent autocorrelation derived in Chapter 2. 

4.5.2 Calculation of Expectation-Term Block 

The expectation used in the adaptive Equation 4.1 is calculated in this implemen­

tation using the two methods discussed previously in Chapter 2. The MA estimate 

used in SAM [16] and SLAM [43] algorithms, allows the adaptive algorithm to be 

updated every block of size N. However, this results in slow convergence slow which 
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Figure 4.9: Realization of update equation using ALAM algorithm, 

is only suitable for slow varying channel. The MA method is given by [16] 

N 

VJ = EfrWrn-t] = J2 y(n)r, n - l 

n = l 
N 

(4.2) 

The realization of this estimator to calculate the gradient of the cost function is 

shown in Fig. 4.10 (a). In this figure, N samples are multiplied AT times and the 

multiplication results are stored in delay registers. These stored values are summed 

and multiplied with 1/N to estimate the gradient used in the adaptive Equation 4.1. 

From this realization, it is clear that MA estimate requires a block of AT-samples to 

update a single TEQ tap with the complexity of AT number of multiplications and 

additions. To avoid such complexity and slow convergence, a simplified estimator 

is used in the proposed algorithm in Chapter 2. This simplification is achieved to 
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Figure 4.10: Realization of calculating the gradient of the cost function using (a) MA 
estimate (b) Instantaneous estimate. 

avoid dual averaging that is performed using the stochastic gradient algorithm if MA 

estimate is used [52]. The simplified method to estimate the expectation used in the 

adaptive algorithm is defined by 

V J = E[y(n)rn^] = y(n)r„_i. (4.3) 

The realization of the simplified estimator is shown in Fig. 4.10 (b), to calculate the 

gradient of the cost function. The expectation is found using a single multiplier to 

update single TEQ tap. With this simplified approach two advantages are achieved 

over the MA estimator: (i) the complexity is low as it uses single multiplier for TEQ 

tap, and (ii) the approach updates the TEQ taps every sample which is suitable for 

fast varying channel. The complexity comparison using the implementation result 

reports are shown in the following Section in order to verify the low complexity of 

the proposed algorithm using instantaneous estimate. 

4.6 Implementation Results 

In this section, functionality of the IP core at the RTL level and gate level is verified 

to match the fixed-point simulations performed in Section 4.4. The low complexity 
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method used in the proposed ALAM method is verified to have lower complexity than 

the MA method. The IP core is implemented on Xilinx Verix II Pro XC2VP7-FF672-

5. 

In both RTL level and gate level simulation, the design is tested by creating a 

set of fixed-point input vectors to be used at the RTL level and gate level. Similarly, 

the simulated outputs are saved in a stimulus file in the fixed-point format. Using 

Matlab tool box, a script is written to convert the fixed-point numbers to floating 

point numbers in order to compare them with the expected results. The RTL level 

simulations for the IP core are illustrated in Fig. 4.11 and Fig. 4.12 for the LALAM 

algorithm that shows the TEQ taps and bit rate vs. the no. of iterations, respectively. 

Similarly, RTL level simulation in terms of TEQ taps and bit rate for the ALAM-MA 

algorithm are shown in Fig. 4.13 and Fig. 4.14. As illustrated in these figures, these 

results are almost identical to the floating-point Matlab simulations, and similar to 

the fixed-point simulations performed in the previous Section. 

The last level of verification of the FPGA implementation as per the standard 

design flow discussed in Section 4.2 is to perform synthesis in order to create the 

device netlist. This is performed using Xilinx synthesizer tool along with place-

and-route according to the target device specified in the synthesizer tool. The target 

device selected for this implementation is Vertix II Pro XC2VP7-FF672-5 which has a 

capacity of 4928 configurable logic blocks (CLBs), 44 embedded multipliers of 18 x 18-

bit multiplier blocks, and 396 bounded I/O blocks. 

The MA method to calculate the expectation was previously used for SLAM and 

SAM algorithms in [43] and [16]. However, in ALAM algorithm the expectation is 

implemented using both, the instantaneous estimate and MA method. In order to 

investigate the complexity of these methods, an FPGA implementation of ALAM 

algorithm using both methods is conducted and measurements are taken. The phys­

ical synthesis report of this implementation is illustrated in Table 4.1 which provides 

comparative analysis between LALAM and ALAM-MA algorithms. It also provides 
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Table 4.1: Virtex implementation (post-layout) results for clock frequency and area 

Vertix II Pro XC2VP7-FF672-5 

Area (slices + multipliers) 

Max. Clock Frequency (MHz) 

Relative Area 

ALAM-MA 

2097 slices + 33 multipliers 

27 

2.87 

LALAM 

737 slices + 3 multipliers 

38 

1.00 

the post-layout timing information generated using Xilinx design software tool. The 

obtained results for implementation using automation tools show that the system 

performance for the LALAM is higher than ALAM-MA by 11 MHz. The low com­

plexity method used in LALAM utilizes only 3 multipliers and 737 slices whereas 

ALAM-MA uses 33 multipliers and 2097 slices. Therefore, ALAM-MA occupies 2.87 

times more area than LALAM. This is due to the fact that the MA estimate requires 

an averaging over a window of size N for each update of the TEQ equalizer taps, 

which adds additional multipliers and slices. Hence, it requires larger area and runs 

slower than the proposed LALAM algorithm that uses instantaneous estimate. 

To validate the correct operation of the design, gate-level simulations are per­

formed where the fixed-point test vectors are fed into design under test (DUT) and 

the output results are saved in a file as a fixed-point format. This data is converted to 

floating-point format and plotted using Matlab along with the floating-point simula­

tion for comparisons. These gate-level simulation results are illustrated for LALAM 

in Fig. 4.15 and Fig. 4.16 and for ALAM-MA in Fig. 4.17 and Fig. 4.18. The results 

are almost identical to their corresponding fixed-point and RTL results in Section 4.4 

and this Section, respectively. 

4.7 Conclusion 

In this chapter, the IP core is developed for the low complexity, LALAM, algorithm 

for channel shortening equalizer to be implemented on an FPGA. Additionally, this 
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implementation was extended to include the implementation of the MA estimate for 

the ALAM algorithm referred as ALAM-MA. For implementation on FPGA, the 

ALAM algorithm is modified to use UTC instead of UNC to avoid all zero solution 

for the TEQ taps. This modification was performed to reduce the complexity of the 

ALAM algorithm while updating the TEQ. Since using UNC requires normalization 

at each update (i.e., square root and divide), which is very expensive in terms of 

hardware implementation as compared to UTC which constraints unity at each up­

date. Simulations at all levels were shown including fixed-point, RTL, and Gate-level 

simulation to approximately match the floating-point simulation. A comparison in 

terms of the complexity is discussed and verified between the using instantaneous es­

timate in LALAM and MA estimate in ALAM-MA to calculate the expectation. The 

implemented IP core on Xilinx Verix II Pro XC2VP7-FF672-5 for ADSL receivers 

has shown that it can operate at a maximum frequency of 27 MHz and 38 MHz for 

ALAM-MA and LALAM as proposed in Chapter 2, respectively. 
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Chapter 5 

QAM Equalization and Symbol Detection 

in OFDM Systems using Extreme 

Learning Machine 

5.1 Introduction 

Channel estimation and equalization techniques are employed to mitigate the effects 

of ISI and ICI in an OFDM receiver. Those techniques can be divided into three cate­

gories based on how they operate: blind, semi-blind, and trained. Blind techniques use 

the statistical information of the transmitted signals to estimate the channel response, 

hence they do not use training sequence. Using training sequence decreases overall 

throughput but reduces the receiver complexity. However, semi-blind techniques first 

use training sequence to estimate the channel response then reverts to blind adapta­

tion [70]- [78]. The majority of those techniques employ algorithms based on linear 

equalization using least-square (LS), zero-forcing (ZF), or MMSE criterion [73], [77]. 

Nonlinear classifications, such as Bayesian decision theory, offer promising so­

lution for equalization and symbol detection problems [3], [21]. Artificial neural 

networks (ANN), such as ANNs based on multilayer feed-forward neural networks 

and radial basis function (RBF), have been used for system identification and noise 
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cancelation problems to recover transmitted data [22]. Learning based techniques 

that employ NNs can process a complex signal utilizing two independent real-valued 

multilayer perceptrons (MLP) or a split complex activation function [79]. MLP have 

been successfully used in channel estimation/equalization without symbol detection 

[80] - [82], in symbol detection [83], and in quadrature amplitude modulation (QAM) 

demodulation [84]. Complex-valued radial basis function (CRBF) network in [81] 

and complex-valued minimal resource allocation network (CMRAN) developed in [36] 

use stochastic gradient approach for parameter adjustments in channel equalization. 

CMRAN is a complex-valued version of the real valued minimal resource allocation 

network (MRAN), which is based on sequential learning with ability to prune and 

grow hidden neurons in order to achieve superior performance. CMRAN requires 

shorter training time and data for model learning than RBF [38]. On the other hand, 

a fully complex activation function was deployed in complex back propagation (CBP) 

in [80] as an extension to the traditional back propagation learning. Both CRBF 

and CMRAN can work with complex signals by deploying a split-complex activation 

function, which comprises of two real-valued activation functions, one for real and 

one for imaginary part of the input signal. Learning-based equalization schemes re­

quire manual tuning of the learning rate and epochs, and have limited success due to 

slow convergence to local minima. A single hidden layer feed forward neural network, 

called extreme learning machine (ELM), transforms learning paradigm into a simple 

linear solution [85]. A true complex-valued ELM (C-ELM), an extension of ELM, was 

proposed in [38] for channel equalization with complex input data. Because both CBP 

and C-ELM process complex values, they have higher computational complexities. A 

receiver structure that combines a decision feedback equalizer and a self organizing 

map (SOM) as symbol slicer was proposed in [84]. Later, a receiver structure that 

combines recurrent neural network (RNN) equalizer with SOM detector to estimate 

QAM symbols was proposed in [86]. Those structures require two separate systems, 

one for equalization and one for symbol detection, and converge slowly due to the 
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use of traditional neural networks that require manual tuning of control parameters, 

such as epochs and learning rate. 

In this Chapter, a framework that uses real-valued ELM which solves the combined 

problem of equalization and symbol detection is proposed. This framework converges 

much faster than traditional NNs and jointly solves equalization and detection prob­

lems. In the joint solution, the framework does not need an additional QAM slicer 

circuit, which is required in C-ELM, CMRAN, CRBF, and CBP equalizers. In addi­

tion to this, the proposed framework employs a fully real-valued processing scheme 

where QAM constellation points are transformed to a real- valued vector of 2—tuple, 

which are labeled with integer values (i.e., class number). Using real-valued vectors 

eliminates complex valued processing and reduces computational complexity of the 

receiver. This leads faster convergence. Another advantage of the proposed frame­

work is that it achieves higher accuracy by associating a 2—tuple pattern to one of 

the M possible classes, which corresponds to an individual QAM constellation point. 

The advantages of the proposed framework are demonstrated via simulation studies. 

5.2 Preliminaries 

5.2.1 OFDM System Model 

OFDM system model, that is tested in this experiment, is illustrated in Fig. 5.1. In 

this model, data bits are mapped to one of the symbols of QAM and then AT-point 

fast inverse Fourier transform (IFFT) is applied to produce orthogonal subcarriers. 

In order to simplify the simulations, the broadband carrier modulation scheme is 

omitted in the model. The output of IFFT block is transmitted in time-domain 

where N base-band symbols, x(n) are uncorrelated to each other and are obtained 

by the relation 

N-l 

x(n) = ^2x(k)e>^kn/N), n = 0,l,2,...,N-l. (5.1) 
fc=0 
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Figure 5.1: OFDM system model. 

A guard interval called cyclic prefix (CP) of length v is inserted at the start of 

each OFDM symbol which is a copy of the last v samples of the OFDM symbols to 

mitigate inter-symbol interference (ISI). The resulted signal with guard interval xg(n) 

is transmitted over a frequency selective time varying fading channel. The signal, 

xg(n), which is white and wide-sense stationary (W.S.S), is transmitted through the 

linear time varying finite-impulse response (FIR) channel whose impulse response is 

h(n,p). The output of the channel (i.e., received signal), yg{n), is given by 

p - i 

Vg(n) = 'Y^h{n,p)xg{l)+v{n), (5.2) 
1=0 

where n is the sample index and v(n) is a zero-mean additive white Gaussian noise 

(AWGN) sample with variance of a2; h{n,p) is the impulse response of the sampled 

time-varying channel, and p is the number of propagation paths. Each path has an 

amplitude of a complex Gaussian distribution and the power spectrum. The power 

spectrum of the channel is determined by Doppler frequency shift of fo- The guard 

interval, at the receiver, is removed from yg(n) and DFT is applied on y(n), which is 

given by 

N-l 

Y(k) = ^ y(n)e-Ji2nkn/N\ k = 0,1,2,..., N-l. (5.3) 
n=0 

In a conventional OFDM system, the channel estimation is performed using pilot 

symbols. The channel transfer function after extraction of pilot symbols and estima-
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tion is denoted by H(k). The transmitted QAM symbols can be recovered as 

V H(k) 
(5.4) 

where H(k) is an estimate of H(k). The signal X(k) is fed through QAM symbol 

slicer to detect the actual transmitted data which is transformed into binary sequence 

using a demapper. 

5.2.2 Extreme Learning Machine 

Feed forward neural networks (FNN) have been used to solve nonlinear problems 

in different applications because of their approximating ability in nonlinear map­

pings. The major bottlenecks of FNN are slow learning speeds and the possibility of 

converging to a local minima due to poor adjustments of input weights and biases 

using gradient descend approaches. An analytical learning called extreme learning 

machine, which is based on a fast single-hidden layer feed forward neural network 

(SLFNN), was proposed by Huang et al. in [85]. ELM can exactly learn S distinct 

observations by using majority of nonlinear activation functions and maximum of S 

hidden neurons. Fig. 5.2 illustrates ELM architecture. In ELM, the input weights 

wiAV _ 
Input Hidden layer Output 
neurons neurons neurons 

Max-pool 
function 

Figure 5.2: ELM architecture. 

and hidden layer biases are generated randomly instead of being tuned as in the 
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traditional FNN. The learning speed of ELM is extremely fast and results in good 

generalized performance for activation functions / ( . ) that can infinitely differentiable. 

Thus, a nonlinear problem can be transformed into a linear problem where output 

weights are calculated analytically by performing a generalized inverse operation of 

hidden layer weight matrices. ELM outperforms traditional learning frameworks in 

terms of learning speed and improved generalization performance with a minimum 

training error. Such properties and enhanced performance of ELM can allow us to 

deploy in real-time applications. Given S arbitrary distinct samples of (x,, d;), where 

Xj = [xn,Xi2, • • •, xip]
T 6 W and dj = [da, di2,..., dim]T G Rm , where both column 

vectors are of length p input neurons and m output neurons, respectively. ELM [85] 

with activation function of f(x) and L hidden neurons is mathematically modeled as 

J2&f(wi.xl + bi) = ol, le{l,2,...,S}, (5.5) 
i = l 

where w* = [wn, wi2,... ,wip]
T represents the weight vectors connecting the input 

nodes to an ith hidden node and fa = [Ai,/?i2, • • •, Am]T represents the connection 

between the ith. hidden node and the output nodes. Wj.x* represents the inner prod­

uct of Wj and x*, and 6j is the threshold for the ith. hidden node. The ELM can 

approximate S arbitrary samples with zero error as 

«=1 

and the output weights, /3,, are obtained using the relation 
L 

J ] 0if(wi.xi + k) = dhle{l,2,..., S}. 

(5.6) 

(5.7) 
i = l 

Using the above model, the nonlinear training problem is transformed into a linear 

system and is formulated as H/3 = D where 

/ (wi .x i + 6i) . . . / (w L .x i + bL) 

H = 

/ (w i .x s + fci) . . . / ( w L . x s + bL) 

(5.8) 

SxL 
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(3 = [ff, pi..., (3l\T
Lxm, and D = [dj, <%,..., dT

s)
T

Sxm. (5.9) 

H is the hidden layer output matrix of ELM. For example, ith column of H is the 

output of ith hidden node with respect to inputs xi, x 2 , . . . , x^. When the activation 

function / is infinitely differentiable, the number of hidden nodes are such that L <§; S. 

Training of ELM [85] requires minimization of the cost function, J, which is given by 

J = £f=i(£f=i A s K x , + bt) - d,)2. (5.10) 

Unknown H is estimated using a gradient-descent based scheme to search the 

minimum of ||H/3 — D|| using an adaptive algorithm stated such as 

W* = W*_t - M ^ f f i (5.11) 

where the weight vector W is a combination of Wj, 0i, and bias parameters &;. In 

Equitation (5.11), the learning rate \i significantly affects the learning speed and 

accuracy. A large value of fj, causes divergence and instability, and a small value 

slows the speed of convergence. To overcome these limitations, Huang et al. [85] 

proposed minimum least-square (LS) solution for ELM. The solution is to randomly 

choose the input weights and hidden layer biases and to analytically determine the 

hidden layer output matrix H, instead of tuning the entire neural network parameters. 

The learning of ELM is accomplished by finding least-square solution of: 

||H(w!,...,wL,&;,...,bL)J3-I>\\= min | |H(w 1 , . . . ,w L ,6 1 , . . . ,6 L )^-D| | . (5.12) 

H can be a non-square matrix for a number of hidden nodes L <gi S, the norm 

least- square solution of linear system, H/3 = D, which forces the analytic solution to 

be represented as (3 = H*D, where H* is the moore-penrose generalized inverse of a 

matrix H for non-square matrix where as the solution is straightforward for S = L. 

The smallest training error can be achieved by this special solution: 

| |H/3-D| | = | |HH*D-D | |=min | |H / ? -D | | . (5.13) 
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It has been theoretically analyzed and experimentally demonstrated by Huang et 

al. [85] that ELM can obtain good generalization performance with extremely fast 

learning speed. 

5.3 Proposed Algorithm 

This section explains the proposed framework which jointly solves the problem of 

equalization and symbol detection using fully real-valued ELM. The block diagram 

of the proposed framework is shown in Fig. 5.3. OFDM signals are transmitted 

over a frequency selective fading channel and AWGN noise is added. The received 

OFDM signal is disturbed due to several factors such as multipath fading, Doppler 

frequency shift, and local oscillator frequency drift. The QAM signal is reconstructed 

using FFT, which re-generates M-QAM symbols transmitted using N subcarriers. 

Reconstructed QAM signals are fed into the proposed joint equalization and symbol 

detection module after splitting them into training and testing data. The training 

part of the data is used to learn a generalized network model. After analytically 

adjusting ELM parameters, the classifier processes the real data. The number of 

output neurons is analogous to the value of M representing QAM mode, whereas 

input layer consists of two neurons, one assigned to the real part, and the other for 

the imaginary part of the complex input signal. 

Equalization and symbol detection problem is solved using real-valued ELM by 

establishing a mapping between 2—tuple real input vector to a single complex symbol 

that correspond to an integer. However, existing approaches perform equalization 

using regression through a single mapping between a pair of input and output values 

[38], which compromises accuracy and requires additional QAM slicer. Fig. 5.4 

shows the process of 4-QAM constellation where the received QAM signal Y{k) is 

transformed to 2—tuple real data vector, which is used as an input into a fully real-

valued ELM, Xj = [re(Yk), Im(Yk)]T, and the target or desired output is the level 
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Figure 5.3: Proposed block diagram of OFDM system for joint equalization and symbol 
detection using ELM. 

that corresponds to one of the known QAM constellation points shown in Fig. 5.5. 

The equalization is performed analytically and the symbols are decided based on 

ELM Max-pool decision rule that determines the winner output neuron [85]. As 

shown in right side of Fig. 5.4, the index of a winner output neuron represents 

an integer value (also called 'level'); it is important to state that that each level 

corresponds to one QAM symbol of the equivalent 4-QAM constellation in Fig. 5.4. 

The relationship between output levels of the proposed framework and 4- and 16 

-QAM are shown in Fig. 5.5. The number of levels is always equal to the number of 

classes or distinct symbols of the QAM being equalized. In addition, the proposed 

scheme can automatically identify the QAM mode/size based on training information, 

therefore, it builds up knowledge about the transmitted data for any QAM based 

receiver. 

The CBP and C-ELM are based on complex inputs, weights and activation func­

tions which cause additional computational complexity. In contrast, the proposed 

framework utilizes real- valued classifier, i.e., ELM [85] whose training is performed 

analytically using least-square solution. Using inputs and activation function belongs 

to real domain reduces computational cost of the proposed framework and allows us 

to use large number of nonlinear infinitely differentiable activation functions. The 

proposed algorithm can be described as follows: 
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Figure 5.4: Equalization and symbol detection using ELM for 4-QAM. 

1. Using the training data, the QAM mode is identified and the QAM symbols are 

mapped to different levels according to Fig. 5.5. 

2. Transformation of complex values to a 2—tuple vector of real values. This step is 

performed as follows: Given a set of complex training data (Yj, Xj) where Y* is 

the received QAM symbol (complex value) and X* is the expected QAM symbol 

(complex value). Note that i here corresponds to A;th QAM symbol index. The 

corresponding input-output of the ELM is formed by x* = [Re(Yi), Im(Yi)]T 

and dj = [du, dj2> • • •, dim]T, i = 1,2,3, . . . , 5 , and m represents the number of 

classes (number of output neurons) formed according to quadrature distribution 

of complex plane (as shown in Fig. 5.5). 

3. Randomly assign real values input weight Wi and bias bi, i = 1,2,... ,L. 

4. Calculate the hidden layer matrix H. 

5. Calculate the output weight matrix /3 = H*D 

6. Using the estimated output weight /?, the equalization is performed and the 

correct class/level is chosen based on Max-pool decision rule of ELM. 

7. The selected class/output neuron(which is one of the quadrant or subquadrant 

of Fig. 5.5) is mapped back to the QAM symbol (complex value). 
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In the proposed framework, the complex values are split for processing as real val­

ues in a similar fashion like CMRAN and CRBF. However, the proposed framework 

works complectly in the real domain as the classification problem is treated as map­

ping between a pair of real data to single class which requires only single activation 

function whereas CMRAN and CRBF require two activation functions [38]. The pro­

posed scheme offers improved scalability through automated QAM mode selection, 

and use of variety of activation functions from real as well as complex domain. This 

adds the advantage of lowering the complexity due real valued processing, scalability 

in terms of automated identification of QAM mode, and use of most of activation 

function of our proposed method over the above mentioned techniques. 
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Figure 5.5: 4 and 16 QAM quadrant distribution. 

5.4 Results and Discussion 

Wireless OFDM systems with time varying Raleigh fading channel and three different 

QAM modes are constructed in the experimental setup in order to test the perfor­

mance of the proposed framework. Simulated OFDM system parameters and assump­

tions of the experiments are provided in Table 5.1. The time varying Raleigh fading 

channel simulator described in [87] is used as a channel model. It is assumed that the 

system does not provide any a prion knowledge of the channel being estimated. The 

presented results are averaged values of 10 runs of the same experiment with random 

selection of training data. The proposed scheme is trained and tested using OFDM 

signal of same SNR, which is analogous to a real-life scenario, where as in C-ELM [38] 
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Table 5.1: Simulation parameters 

Simulation parameters 

Modulation 

Symbol Rate 

Number of Subcarriers 

IFFT and FFT points 

Guard interval 

Signal-to-Noise Ratio (SNR) 

Doppler Frequency 

OFDM packet Length (QAM symbols/packet) 

Channel Model 

4QAM, 16QAM, 64QAM 

250kSymbol/sec 

52 

64 

1/4 of OFDM symbol 

1 to 15 dB 

[200, 250, 300, 350, 400, 450, 500] 

[64, 100, 150, 200, 250, 325] 

Raleigh fading channel [87] 

the system is trained at higher SNRs to improve the accuracy, and the trained sys­

tem is tested with data transmitted at lower SNRs. Furthermore, all experiments are 

executed in Matlab environment on an Intel Core 2 Duo processor at 2.0 GHz clock 

speed and 3GB RAM. The proposed framework is compared with other learning-based 

equalization schemes, namely C-ELM, CRBF, CMRAN, k-nearest neighbor (k-NN) 

[88], back propagation (BP) neural network [82], and stochastic gradient boosting 

(SG-Boosting) [89]. In the following subsection, experiments and their results are 

explained in detail. 

5.4.1 Optimal Parameter Selection 

There are mainly three parameters that require consideration to effectively deploy the 

proposed framework. These parameters are: 1) activation functions, 2) amount of 

training data, and 3) the number of hidden neurons. The variations in normalization 

factor of an input signal do not severely degrade the performance of the proposed 

scheme, therefore, there analysis are not included in the experiments. 
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• Activation Functions: Activation functions play a pivotal role in correct clas­

sification and are mainly divided into real and complex domain based on their 

operability. We split the complex numbers into two real values that are con­

sidered the inputs to an ELM. This approach has two advantages, namely: 1) 

the ability to apply real-valued activation functions and 2) the ability to reduce 

computational complexity. Representation of complex signal in real domain al­

lows us to exploit variety of activation functions in the proposed scheme which 

is not possible in the complex domain such as in C-ELM. It is important to 

state that that the proposed framework presents equalization and symbol de­

tection problem as a classification task. Traditionally, classification results are 

presented in terms of accuracy where a higher accuracy corresponds to a lower 

symbol error rate (SER). The maximum accuracy is represented as 1 which is 

equal to 0 SER, (i.e., accuracy = 1 — SER). For 4-QAM, an accuracy analysis is 

presented using 8 different activation functions namely sine, sigmoid, hard limit, 

tribas, radial basis, asinh, and atanh. Fig. 5.6 provides results for accuracy vs. 

different activation functions. These activation functions are operable on real 

and complex-valued signals as well. In this experiment, the number of hidden 

neurons, amount of training data, and normalization factor are kept constant 

for all activation functions in order to compare them precisely. The accuracy 

comparison for various activation functions using the proposed scheme and C-

ELM are presented in Fig. 5.6. From the figure, the proposed scheme using 

given activation functions for real-valued inputs outperforms C-ELM. Amongst 

the given activation functions, the performance of Hardlim(.)was the worst 

with accuracy around 90% whereas sig(.)generated the best accuracy followed 

by sin(.) and asinh(.). 

• Amount of training data: In another set of trials, the performance of the pro­

posed framework is tested in terms of correct classification, accuracy, using data 
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Sig Hardlim TriBas Radbas Asinh Atanh 

Different Activation Functions 

Figure 5.6: Performance analysis for 4-QAM for different acti-vation functions using the 
proposed scheme and C-ELM. 
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Figure 5.7: Performance analysis for 4-QAM for varying percentage of training data 
using proposed framework. 
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at different SNRs (dB). A learner is rated based on its ability to learn a model 

using minimum training time and amount of data. The data is divided into 

training and testing parts. For varying SNRs, the percentage of training data 

is increased at equal intervals between 1% and 19%. The correct classification 

of the proposed scheme for varying size of training data is presented in Fig. 5.7, 

it is noticeable that higher accuracy is obtained for data with rising SNRs. Ex­

cept for training data of size 1%, the proposed framework generates accuracy 

starting from 99.8% and more for increasing SNRs. High accuracy is noticeable 

for training data of size 10% and more to learn the channel being investigated. 

As observed from Fig. 5.7, there is no significant improvement for exploiting 

higher percentage of information during model learning. Therefore, in all of 

experiments 10% of the data are utilized for training and rest of the data for 

testing purpose. 

0.99 
7 8 9 10 11 12 13 14 15 16 17 18 19 20 

No. of Hidden Neurons 

Figure 5.8: Performance analysis for varying number of hidden neurons of ELM in the 
proposed framework using 4-QAM. 
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Figure 5.9: Performance analysis for varying number of hidden neurons of ELM in the 
proposed framework using 16-QAM. 

• Number of hidden neurons: In learning-based frameworks, nonlinearity of an 

equalization scheme is mainly dependent on the number of hidden layers and 

quantity of neurons in each layer. Using only one hidden layer of neurons in 

the proposed framework results in an efficient way of processing QAM signals to 

attain higher accuracy. Efficiency of the proposed framework is attributed to an­

alytic training in real-domain where a single complex number is represented by 

a 2—tuple vector for improved separability and correct classification. Training 

in an analytic fashion has a limitation of growing computational complexities 

with increasing number of neurons during computation of Moore-Penrose gen­

eralized inverse of a matrix. For that reason, the performance analysis of the 

framework tested with changing number of neurons in the hidden layer of ELM 

using data of two different modes of QAM, namely 4-QAM and 16-QAM. For 

both modes, data is generated using four different SNRs ranging from 2 dB to 
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8 dB. Generally, equalization and symbol detection becomes more complicated 

for higher mode QAM where the QAM constellation points become closer to 

each others. Therefore, an algorithm that performs well with high order QAM 

is needed, and the proposed framework can effectively equalize and detect the 

symbols, which is considered as an enhancement over the existing schemes. 

ELM with only one hidden layer of neurons restricts the options of improving 

the equalization capacity of the classifier by only changing the number of hid­

den neurons. It is not recommended to increase the number of neurons since 

large number of hidden neurons contributes to a higher computational com­

plexity and increase in approximation errors. Additionally, such an increase in 

neurons does not guarantee proportional improvement in accuracy. For exam-

ple,Fig. 5.8 and Fig. 5.9 presents performance analysis for changing number of 

hidden neurons using data acquired for two different modes. The number of 

hidden neurons are varied from 6 — 20 and 10 — 70 for 4-QAM and 16-QAM, 

respectively. It is observed that the performance of the proposed framework is 

gradually improving with increasing SNR, furthermore, higher number of hid­

den neurons are required for 16-QAM channel equalization compared to 4-QAM 

channel equalization due to the increase in QAM constellation points. The pro­

posed framework results in smaller variations and stable behavior for data with 

higher SNRs and for L > 2M where L and M represent the number of hidden 

neurons and the mode of investigated QAM, respectively. Besides, a rippling 

behavior of the graph lines for various SNRs and modes of QAM is also spotted 

for small number of hidden neurons. A similar trend in accuracy is found for 

64-QAM data; based on evidence from the experiments, it is recommended for 

hidden layer of an ELM to satisfy L > 2 * M criterion for a minimum number 

of neurons to achieve improved equalization and symbol detection. 
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5.4.2 Varying Packet Length and Doppler Frequency 

For time varying channels, equalization schemes are heavily dependent on the change 

in Doppler frequency and OFDM packet length. SER is directly proportional to 

the length of its input packets and Doppler frequency. For better understanding, 

a set of experiments in time-varying channel for increasing Doppler frequency and 

packet length are performed for 4-QAM. In these experiments, SNR is fixed to 4dB. 

The channel with Doppler frequencies ranging from 64Hz to 325Hz are used to test 

the performance of SER in seven different schemes and the results of these tests 

are shown in Fig. 5.10. In this figure, the SER using the proposed framework at 

100Hz Doppler frequency is approximately 100 times better than kNN, SG-Boosting, 

and CRBF. The proposed framework outperforms all other equalizers by generating 

minimum SER, and 5 times on average better than C- ELEM, CMRAN, and BP. 

Fig. 5.11 illustrates the SER versus varying packet length which ranges from 200 

OFDM symbols to 500 OFDM symbols. The figure shows that at packet length of 

300 OFDM symbols, the SER using kNN, SG-boosting, and CRBF is worse than 

the proposed by approximately 100 times where as using CMRAN, CELM and BP 

worse than the proposed by approximately 5 times on average. Overall, the proposed 

framework outperforms all other equalizers in achieving minimum SER under varying 

Doppler frequencies and packet lengths. 

5.4.3 Performance Analysis of 4-, 16-, and 64-QAM 

The performance comparison of the proposed framework against existing equalization 

schemes is presented in Figs. 5.12-5.14 for M-QAM signals, namely 4-, 16-, and 64-

QAM. For all three experiments, QAM with varying SNR ranging from 1 dB to 15 

dB is used where each experiment utilizes equal amount of training samples. SER 

for 4-QAM is presented in Fig. 5.12 where seven equalization schemes are divided 

into three noticeable groups based on SER performances. The best group among the 
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Figure 5.12: Error probability of various scheme for 4-QAM. 

three is the proposed framework and BP. The group consisted of SG-Boosting, kNN, 

and CRBF did not perform well. SER performances of C-ELM and CMRAN lie in 

the middle where a slow decrease in SER is observed for increasing SNR. 

The performance comparison for 16-QAM is presented in Fig. 5.13, it is shown 

that all the schemes show poor performance except the proposed framework and C-

ELM. For the proposed framework, a steep and consistent drop of SER ascertains 

superior performance whereas C-ELM is the second best equalizer with widening 

gap in performance against the proposed framework. No improvement in SER are 

observed for the rest of the schemes which perform consistently high SERs as observed 

in Fig. 5.13 and Fig. 5.14. 

For 64-QAM, Fig. 5.14 presents results that establishes superior realization of 

the proposed framework with consistently improved performance. The performance 

of C-ELM is significantly degraded in current set of experiments with a very small 

improvement for increasing SNR. As observed from Fig. 5.13 and Fig. 5.14 increase 
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Figure 5.14: Error probability of various scheme for 64-QAM. 
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in the SER for the rest of the equalizers is attributed towards rising of the QAM 

constellation points as in 16- and 64-QAM. Clearly, the lowest SER for the proposed 

framework is consistent throughout the set of experiments on different settings. 

5.4.4 Computational Comparison 

The architecture of the proposed framework is very much alike to C-ELM and other 

learning- based equalization schemes. However, presentation of equalization and sym­

bol detection problem in a classification domain removes inherent limitation to use 

a decision slicer to identify a symbol. On the other hand, C-ELM offers regression 

based equalization in complex domain where an additional decision slicer is required 

for symbol detection; whereas the proposed framework operates in a real domain 

by splitting complex signal into two real-valued inputs. Moreover, analytic training 

and equalization in complex domain is computationally intensive compare to the real 

domain operations. In order to check the computational cost of various methods, a 

set of experiments are performed using data of 16-QAM and 64-QAM. The higher 

mode QAM are being used to test the performance of various methods for nonlinear 

channel equalization in terms of computational time (seconds) during training and 

testing phases. The computational time for channel estimation and testing is pre­

sented in Table 5.2. Deploying seven different techniques named proposed framework 

using ELM, kNN, BP, SG-Boosting, C-ELM, CRBF, and CMRAN. Naturally, the 

computational time for training is much higher than the testing phase due to opti­

mization constraints to learn a model or channel under investigation. Note that the 

training time for kNN scheme is equal to zero since the centers of sub-quadrants as 

the means of clusters are provided, to associate an incoming input to a symbol using 

Euclidean distance. The size of training and testing data is set to equal for all schemes 

for a fair comparison. The computational time for learning phase in 16-QAM and 

64-QAM are presented in Table 5.2, where the training time for SG-Boosting and 

CMRAN are the highest amongst all techniques whereas the proposed framework 
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Table 5.2: Complexity time comparison of training and testing for different algo­
rithms 

16-QAM 64-QAM 

Algorithms 

Proposed using ELM 

kNN 

BP 

SG-Boost 

C-ELM 

CRBF 

CMRAN 

Training time (s) 

0.0156 

N/A 

2.530 

241.6 

0.0937 

0.7656 

44.60 

Testing time (s) 

0.2031 

0.4062 

0.7308 

0.65625 

0.6875 

2.625 

7.125 

Training time (s) 

0.0625 

N/A 

2.112 

419.0 

0.4218 

0.7656 

40.73 

Testing time (s) 

0.2656 

0.4375 

0.6702 

0.8125 

1.140 

2.578 

7.5 

has the minimal training time and then follows C-ELM, CRBF and BP. In addition, 

schemes like BP require a careful selection of number of epochs and layers, and learn­

ing parameters since these are implicit characteristics of gradient-descent methods. 

The training using proposed framework runs at least 6 times faster than C-ELM and 

the rest of the algorithms. Moreover, the computational time for various methods 

during testing phase for equalization and symbol detection are shown in Table. 5.2 for 

both 16-QAM and 64-QAM. The proposed framework consumes minimum resources, 

whereas kNN is the second inline of the most prudent methods in the trials. On 

other hand, CRBF and CMRAN schemes consumes the highest amount of CPU time 

for equalization and symbol identification. Based on computational analysis, it is af­

firmed that the proposed framework requires minimum computational time amongst 

different learning-based equalization schemes 

5.5 Conclusions 

The problem of equalization and symbol detection is presented as an optimum clas­

sification task. The use of a classification framework removes inherent limitation in 
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symbol detection schemes to use an additional decision slicer followed by equalization 

step. In channel estimation, analytic learning approach finishes training at faster 

than traditional gradient-descent schemes. The proposed framework performs joint 

equalization and symbol detection in real- domain by transforming a complex signal 

into a single 2—tuple real-valued vector. Such transformation offers equalization in 

real domain with minimum computational load and high accuracy. The proposed 

work shows significant improvement in terms of SERs, and has lower complexity than 

existing algorithms. One of the benefits of operating in real domain is to use large 

number of nonlinear and infinitely differentiable activation functions. 
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Chapter 6 

Conclusion and Future Work 

6.1 Concluding Remarks 

This dissertation investigates efficient equalization algorithms for multicarrier modu­

lation systems. A low complexity blind adaptive algorithm called ALAM for the TEQ 

has beeb proposed to shorten the channel. The proposed algorithm has employed a 

new criterion that minimizes of the adjacent lag autocorrelation. The reduction in 

complexity has been attained by simplified cost function. This new cost function has 

been verified with SAM [16] algorithm using MA method in the calculation of the 

expectation. A decaying step size is used in ALAM, SAM, and SLAM algorithms to 

control the convergence and to achieve steady bitrate performance. Since the pro­

posed ALAM algorithm has used MA estimate, the adaptive algorithm is updated 

every block which makes the algorithm not suitable for fast time varying channels. 

A low complexity estimator that updates every sample has been used. This method 

is called instantaneous estimate and has been implemented in the proposed ALAM, 

SAM and SLAM to lower the complexity by a factor of N multiplication/addition 

per update. Using instantaneous estimate, the adaptive algorithm updates every 

sample and hence the algorithm is suitable for fast time varying channels. Sym­

metrical property of the TEQ has been utilized to further reduce the complexity of 
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the algorithms by 50% with respect to the non-symmetrical algorithms. The bitrate 

drops down when it reaches its maximum. This problem of drop down in bitrate is 

solved by enforcing ETC on the adaptive algorithm while updating. Only single tap 

is updated, if ETC is used, and the rest of the taps are forced to be equal to the 

adapting tap. This resulted in higher bitrates while the complexity reduced by the 

length of filter length, Lw, with respect to non-ETC based algorithm. An IP core is 

developed to implemented LALAM on Xilinx Vertix II Pro FPGA in order to show if 

the proposed LALAM algorithm is feasible for hardware implementation and is lower 

complexity than the existing algorithms. Moreover, the implementation has been ex­

tended to include the implementation of the MA estimate for the ALAM algorithm, 

(i.e., ALAM-MA). Before direct implementation on FPGA, the ALAM algorithm was 

slightly modified to use UTC instead of UNC to avoid all zero solution for the TEQ 

taps. UTC is replaced with UNC which constraints unity at each update and reduces 

the complexity of the ALAM algorithm while updating the TEQ. Simulations at all 

levels were shown including fixed-point, RTL, and Gate-level to match the floating­

point simulations. A comparison in terms of the complexity has been discussed and 

verified between the use of instantaneous estimate in LALAM and MA estimate in 

ALAM-MA. The implemented IP core on Xilinx Vertix II Pro XC2VP7-FF672-5 for 

ADSL receivers can operate at a maximum frequency of 27 MHz and 38 MHz for 

ALAM-MA and LALAM algorithms, respectively. Once the channel is shortened (or 

is already short), FEQ equalizer is used to recover the QAM signal which could be 

distorted due to several reasons such as multipath fading, Doppler frequency shift, or 

local oscillator frequency drift. A joint problem of equalization and symbol detection 

in OFDM systems has been presented as an optimum classification task to recover 

the QAM signals. The use of a classification framework removes inherent limitation 

in symbol detection schemes to use an additional decision slicer followed by equaliza­

tion step. In channel estimation, the proposed analytic learning approach using ELM 

performs training at faster rate than traditional gradient-descent schemes. The pro-
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posed framework performs joint equalization and symbol detection in real-domain by 

transforming a complex signal into a single 2—tuple real-valued vector. Such transfor­

mation offers equalization in real domain with minimum computational load and high 

accuracy. The proposed framework using ELM has shown significant improvement in 

terms of SERs while maintaining lower complexity compare to existing algorithms. 

Another advantage of operating in real domain is to use large number of nonlinear 

and infinitely differentiable activation functions. 

6.2 Future Work 

Although this dissertation have provided several algorithms to solve the problem 

of equalization in multicarrier modulation systems, there are still some outstanding 

research problems that can be considered in the future which are: 

• Investigation of ETC-TEQ adaptive algorithm to achieve faster convergence 

rate and further improvement in bitrates to reach MSSNR performance. 

• Investigation of computational efficient methods to implement efficient multi­

pliers involved in adaptive algorithms on an FPGA. 

• The implementation of proposed framework using ELM require future inves­

tigation, such as implementation issues involving matrix inverse, and channel 

equalization issues for fast time varying channels. Also, pilot symbols that exist 

in the OFDM systems can be exploited to further enhance the performance of 

the proposed framework. 
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