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Abstract 

This thesis considers the design of equalizers which need to operate in various modes 

( two or more modes) depending on the difficulty of the channel and the performance 

of the equalizer. We consider the formulation of such switch-mode equalizers where 

it is usually broken into an acquisition mode and a tracking mode. As a broad 

goal, our objectives include speeding up the convergence rate of blind adaptive 

algorithms which are well-known for their slow rate of convergence, achieving low 

steady state errors as well as reducing switching transients during the switch-over 

between operation modes. 

A novel concept based on the reliability of the equalizer output is developed 

and presented where unlike conventional algorithms which utilize only explicit in

formation regarding the equalizer output , the reliability measure is calculated as 

a function of both the equalizer output and its estimated statistical distribution. 

Two separate algorithms are developed based on this concept. The first is a switch

mode algorithm that uses the reliability measure to combine the acquisition algo

rithm and the tracking algorithm to achieve not only a smooth transition between 

1nodes, but also increased rate of convergence and lower steady state errors. While 

the first algorithm that co1nputes the reliability measure requires an estimate of 

the variance of the residual intersymbol-interference (ISI) and noise term, the sec

ond algorithm uses a simple technique of combining that computes the probability 

of the equalizer output being close to the constellation data points instead. The 

second algorithm extends and si1n plifies the first algorithm and is shown to achieve 

fast convergence, low steady state errors and s1nooth transition at a significantly 

lower computational cost. 

We further propose modifications that extend a fast-convergence equalization 

sche1ne proposed by Labat , Macchi and Laot in 1998. The main accomplishment 

is in the design of a new strategy that successfully reduces the switching transients 

that occur during the switch-over between the linear acquisition equalizer and 

the non-linear tracking decision feedback equalizer (DFE). This is achieved by 

combining both the linear and the non-linear equalizers in a parallel fashion while 

adapting the tap parameters using co1nbining techniques designed for dual-mode 

type algorithms such as the Benveniste-Goursat algorithm and the reliability-based 

algorithm developed in this thesis. In addition, we also extended the original 

equalization scheme to incorporate a linear transversal whitening filter in place 

of a recursive whitening filter to overco1ne some deficiencies inherent in recursive 

filtering structures. Thirdly, we introduced a novel DFE scheme that uses two 
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DFE's to accomplish the robust tracking of tirne-varying channel statistics and to 

retain low steady state errors simultaneously by a novel interplay of the equalizer 

structure and the transfer of equalizer tap para1neters between the filter blocks. 

In addition, we also analyzed the "rotational" behavior of several blind algo

rithms using a torque concept, where we assess the susceptibility of the equalizer 

output constellation to converge to stable but undesirable rotated solutions . This 

new analysis tool is used to investigate various blind algorithms and we reveal the 

multi-modulus algorithm (MMA) has superior convergence properties. 
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Chapter 1 

Introduction 

This thesis deals with switch-111ode blind equalizers for single-user digital communi

cation systems. A switch-mode equalizer is a co111bination of two or 111ore equalizer 

modes where it usually starts with a linear equalizer that e111ploys an acquisition 

algorithm and later switches over to a tracking decision directed algorith111 after 

the data esti111ates have beco111e sufficiently reliable. In terms of the filtering struc

ture, a non-linear decision feedback equalizer may be used in the tracking 111ode. 

In the acquisition mode , the equalizer is designed to be robust with respect to the 

channel's initial condit ions but 111ay yield high steady state errors even when its 

convergence is achieved. The tracking equalizer, on the other hand, yields lower 

steady state errors at convergence but cannot be used reliably to acquire severe 

channels ( which do not correspond to init ial open-eye conditions [92 , 99]). There

fore , sv1itch-111ode blind equalizers have become very popular in practical digital 

communication syste111s because the distinct advantages of the acquisition and 

tracking modes are complementary. 

In this introductory chapter, we present an overview of the contents of the 

thesis and provide a list of the contributions. It features several novel swit ch

mode algorith111s as v. ell as switch-mode equalization sche111es . Other contribut ions 

relating to the global topic of switch-mode equalization are also presented. 

1.1 Overview of Thesis 

Chapter 2 - In this background chapter we give a brief overview of the do111ain 

of digital transmission as well as reception over linear channels. The prob

lem of intersy111bol interference (ISI) is presented and the notion of equaliza

tion is defined. Equalizer structures including linear transversal equalizers , 

111axi111um-likelihood equalizers , and decision feedback equalizers (DFE) are 

1 



2 Introduction 

presented. Subsequently, a concise overview of blind equalization techniques 

is given, the emphasis being on Bussgang-type algorith1ns. Non-Bussgang 

algorith1ns such as the polyspectra algorithms, the cyclostationary-statistics 

algorithms and the probabilistic algorithms are also briefly described. Lastly, 

we present an analysis of the undesirable solutions ( due to the non-convexity 

of cost functions) of the most widely used algorithms such as the Sato and 

Godard algorith1ns. 

Chapter 3 - This chapter addresses the problems induced by abruptly switching 

between acquisition and tracking algorithms. We use a novel reliability mea

sure to combine the two algorithms to provide a soft transition and avoid 

having to accurately determine the open-eye threshold for the tracking al

gorithm to be reliably employed. We derive the reliability measure fro1n 

Bayes theorem and compute the posterior probability of correctly detecting 

the equalizer output. From the derivation we find that in order to effec

tively provide a soft transition between algorithms, not only the equalizer 

output needs to be utilized, but the statistical distribution of the residual 

intersymbol-interference (ISI) plus noise term is also required. Once the reli

ability measure is accurately esti1nated, it leads to significant i1nprovements 

over conventional algorithms such as the Benveniste-Goursat algorithm [15] 
as well as the Stop-And-Go algorithm [116]. 

Chapter 4 - This chapter further considers the problem of smooth switching be

tween acquisition and tracking algorithms. In the same spirit as the reliability

based algorithm proposed in Chapter 3, we design an alternative switch-mode 

algorith1n t hat also utilizes information regarding the equalizer output and 

its estimated distribution to ensure a s1nooth transition between algorith1ns. 

This new algorit h1n is based on a simple concept that employs the track

ing algorith1n when the equalizer output is found in reliable regions in the 

constellation space. Otherwise, an acquisition algorithm is e1nployed. The 

novelty lies in the way t he size of these reliability regions is varied accord

ing to a new probabilistic measure regarding the reliability of the equalizer 

output . 

In addit ion , this chapter also presents an algorithm capable of joint blind 

equalization and phase recovery by using the new switch-mode technique. 

Chapter 5 - This cbapter presents t hree novel 1nodifications of the equalizer 

structures in addition to t he adaptation algorithms as is the focus of Chap-
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ters 3 and 4. Overall , this chapter addresses the speed of convergence and 

improved robustness while retaining the simplicity of an equalization scheme 

proposed by Labat , Macchi and Laot [75]. We first address the problem of 

the undesirable use of a recursive linear filter structure in the acquisition 

mode by proposing a new transversal filter while preserving the ability of 

direct transfer of the taps to the D FE in the tracking mode. Secondly, we 

address the problem of eliminating switching transients of dual-mode equaliz

ers during the switch-over between acquisition and tracking modes where the 

positions of several filter blocks need to be rearranged. We propose a novel 

strategy that combines the acquisition linear equalizer and the tracking DFE 

in a parallel fashion to reduce the switching transients effectively. Lastly, the 

chapter addresses the problem of tracking time-varying channels with a new 

dual-DFE equalization scheme that features two DFE in an equalizer setup 

and involves a novel interplay of the equalizer structures and the transfer of 

filter coefficients between the filter blocks. 

Chapter 6 - We analyze the phase and/or frequency locking (rotational) conver

gence behavior of several blind algorithms, namely the CMA, the reduced 

constellation algorithm (RCA) and the multi-modulus algorithm (MMA) 1
. 

The principle objective is to assess their susceptibilities to wrong solutions 

( stable undesirable equiibria) which correspond to an output constellation 

that is a undesirable rotated version of the original data constellation. In 

our analysis, we define a "torque" that is the cross product of the equalizer 

output and the "force" which is due to the error function acting on the equal

izer output symbol. A net torque will correspond to a rotational behavior 

of the equalizer output in either the clockwise direction or the anti-clockwise 

direction. 

Chapter 7 - Son1e concluding remarks and future work are presented in this chap

ter. 

1.2 Contributions 

At this point , a list of major contributions of this thesis is given: 

• New treatment of switching for enhanced equalizer performance -

1The MMA we consider in this Chapter is proposed by Oh and Chin [105], and Yang et 
al [152]. It should not be confused with another algorithm previously proposed by Sethares et 
al [126] under the same name. 
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Smooth switching algorithms are designed to avoid the difficult task of having 

to accurately determine an open-eye condition so that the tracking algorithm 

may be employed reliably. The major contribution drawn from Chapters 3 and 

4 is in the design of superior smooth s101itching switch-mode algorithms. While 

conventional techniques usually tradeoff convergence speed and steady state per

fonnance for smoothness in the switch-over , our techniques actually accelerate 

convergence in addition to ensuring smooth transitions between modes. 

• Dual-parameter measure for estimating reliability of the equalizer out

put -

The reliability-based switch-mode algorithm offers effective smooth-switching 

that enhances convergence rate and preserves low steady state errors based on 

a concept that utilizes explicit and implicit information in the equalizer output 

signals. In contrast to conventional smooth switching algorithms that employ 

a single-parameter2 measure for combining the switch-mode algorith1n, our new 

dual-parameter reliability measure as proposed in Chapter 3 results in not only 

a s1nooth transition between the acquisition and tracking algorithms , but also in 

a faster , more reliable convergence as well as lower steady state errors. 

• Simple algorithm for rapid acquisition -

The new measure for combining the switch-mode algorithm as proposed in Chap

ter 4 is designed to be simple and effective in ensuring a smooth switching be

tween algorith1ns. While conventional algorithms usually trade off equalizer per

fonnance, e.g., convergence speed and steady state errors , with computational 

complexity, t his algorith1n is shown to outperform several well-known switch

mode algorithms at a reduced cost . This is because the novel measure can be 

used to accurately reflect an open-eye condition without having to collect many 

data sa1nples. The switch-over therefore occurs promptly as soon as the data 

esti1nates beco1ne sufficiently reliable. 

• Joint blind equalization and automatic phase recovery -

By coupling the si1nple switching technique described above and the results in 

Chapter 6 regarding phase recovery properties of the MMA, a new switch-mode 

algorithm is propo ed to achieve joint blind ·equalization and phase recovery 

effectively. The phase offsets can be corrected by t he MMA and t he frequency 

off ets can be handled through the use of the smooth switching technique of 

Chapter 4. 

2 Conventional single-para1neter measures rely solely on either the equalizer output, e.g., [15], 
or the signs of the error functions , e.g., [116]. 
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• New fast convergence switch-mode decision feedback equalization (DFE) 

scheme -

We extended a fast convergence equalization scheme proposed by Labat , Macchi 

and Laot in 1998 to incorporate a simple linear transversal acquisition equalizer 

which can be switched to a DFE when the error rate is sufficiently low. Deficien

cies inherent in the recursive filtering structure in [75] can be overcome with this 

modification. After a transformation in the transversal filter , the direct trans

fer of the taps from the acquisition equalizer to the tracking equalizer ( which 

involves a recursive feedback filter) is also retained. 

• Soft transition strategy for new switch-mode DFE scheme -

A parallel adaptation strategy that combines the linear equalizer and the tracking 

DFE in a parallel fashion can reduce the switching transients that are due to the 

rearrangement of the filter blocks as well as a switch in the adaptation algorithms. 

We showed significant improvement in terms of smooth switching between the 

linear equalizer and the DFE as well as rate of convergence with this strategy, 

even when a simple Benveniste-Goursat combination technique is used. 

• Dual DFE scheme for tracking varying channels -

The dual-DFE, unlike conventional equalizers which usually implement just a 

single DFE, may exhibit enhanced tracking capabilities in non-stationary envi

ronments and low steady state MSE in stationary environments. The complexity 

incurred which is less than twice of that of a single DFE is reasonable for its 

achieved improvements. 

• Rotational analysis of blind equalization algorithms -

We develop a novel analysis technique based on a torque concept to study the 

phase/frequency locking behavior of blind equalizer algorithms. Through analy

sis of the RCA and the MMA, we reveal that the MMA is superior to its RCA 

counterpart in terms of immunity to converge to incorrectly rotated solutions. 

This revelation motivates the use of the MMA over the RCA for the task of joint 

equalization and phase recovery. 





Chapter 2 

Background on Single-User Blind 

Equalizers 

For bandwidth-efficient communication syste111s operating in high inter-symbol in

terference (ISI) environments, adaptive equalizers have become a necessary compo

nent of the receiver architecture. An accurate estimate of the amplitude and phase 

distortion introduced by the channel is essential to achieve high data rates with 

low error probabilities. An adaptive equalizer provides a simple practical device 

that is capable of both learning and inverting the distorting effects of the channel. 

Conventional equalizers rely on the transmission of a training sequence known to 

both the transmitter and receiver. The blind equalizer, on the other hand, does 

not require a training sequence to be sent for start-up or restart. Rather, the 

blind equalization algorithms exploit a priori knowledge regarding the statistics 

of the transmitted data sequence as opposed to an exact set of symbols known to 

the transceiver, thereby achieving improved bandwidth utilization. Blind equaliza

tion is also desirable when the communication system must cope with multipoint 

broadcast environments and unpredictable channel changes [147]. 

In this chapter, a concise background on the communications systems is pro

vided. We recommend the following references [12 , 38, 58, 117- 119, 141] for an 

excellent tutorial overview of the field. Our focus will be to provide sufficient self

contained background on the subjects which the thesis deals with predominantly, 

i.e. , a variety of equalizer structures and popular blind algorithms. 

2.1 Model of a Digital Communications System 

Throughout this thesis we will be dealing with aspects related to the physical layer 

of a communications system, 1.e. , the transmission layer. A typical communica-

7 
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Other Sources 

Information Source Channel Multiplex Modulate Tx 
Source Encode Encode 

Tx Medium 
(Channel) 

Information Source Channel Demultiplex Demodulate Rx 
Sink Decode Decode 

Other Sources 

Figure 2.1: A typical com1nunication system. 

tions system is illustrated in Fig. 2.1. The complete cycle of the transmit-receive 

process begins with the original infonnation being formatted in a digital form in 

order to be represented by a series of bits. These digits are then source-encoded 

whereby the message is represented in a succinct form and the redundancy is be

ing removed as much as possible. The resulting sequence is then channel-encoded 

where redundancy is now introduced into the data stream in a deliberate but con

trolled manner for the purpose of detecting and possibly correcting the errors due 

to transmission. This is also known as error control coding. One technique of 

error control coding is to introduce frequent symbol changes so that the symbol 

clock speed can be easily recovered in the receiver. Also , often a number of bits 

are encoded into one or more symbols. At this point, multiplexing with sequences 

fro1n other sources 1nay be perfonned to efficiently . utilize the limited bandwidth 

of co1nmunication channels. Finally, the sequence is converted by the modulator 

into continuous-ti1ne passband wavefonns, in accordance with modulation schemes 

that are suitable for trans1nission over the channel. Examples of communications 

channel include coaxial, fiber optic, or twisted-pair cables in wired communications; 

and the atmosphere or ocean in wireless co1nmunications, or some combination of 

these 1nedia. This resulting wavefonn is then delivered to the receiver at the other 

end of the channel. 

At the receiver, the processes prior to transmission need to be "inverted" in 

order to recover the original trans1nitted information. The received waveform is 

first demodulated and de1nultiplexed. Subsequently, the sequence is equalized and 

decoded in order to give the final digital output. Equalization is necessary to 

combat the impainnents of the channel that 1nay have caused signal distortions. 

2.1.1 Digitally Modulated Source Signals 

The infonnation bearing bits are usually collected in blocks of say K consecutive 

binary digits. Thus there may be 2K different binary sequences, and each sequence 



2.1 Model of a Digital Communications System 9 

would correspond to a symbol. The set of all possible symbols is called the al

phabet set A of the transmitted symbols of a particular modulation fonnat. Each 

of these possible symbols is then mapped to one of 2K different continuous-time 

lowpass waveforms by attributing to the set of symbols a discrete set of amplitudes, 

frequencies and/ or phases, depending on the modulation format of the specific sys

tem. For example, let we consider Quadrature Amplitude Modulation (QAM) and 

let there be K = 4 binary digits in each block. Thus, there are 24 = 16 different 

sequences as follows: 

[0000, 0001, 0010, 0011, · · · , 1110, 1111]. (2.1) 

The QAM alphabet set can be represented by the set of sequences in (2.1) where 

each sequence is uniquely mapped to one of 16 different constellation points in the 

complex plane as in Fig. 2.2. The resulting 16-QAM alphabet set is thus 

A= {±1 ± j, ±1 ± 3j, ±3 ± j, ±3 ± 3j}. (2.2) 

* * * * 

* * * * 

* * * * 

* * * * 
(A) (B) 

* * * * 
* * 
* * 

* * * * 

(C) (D) 

Figure 2.2: Constellation diagram of modulation formats for (A) 16-QAM, (B) 
4-PAM, (C) 8-PSK, (D) 16-APK (V29-CCITT). 
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For other 1nodulation formats such as the Pulse A1nplitude Modulation (PAM) 

and the Phase Shift Keying (PSK) formats , they differ from the QAM example 

by only the mapping operator that maps each of the sequence in 2.1 to one of 

the alphabet in 2.2. The constellation points of 16-QAM; 4-PAM, 8-PSK, and the 

16-APK (A1nplitude-Phase Keying, also widely known as 16 point V29-CCITT for 

9,600 bits per second modems). The choice of modulation formats usually trades off 

between bandwidth efficiency and probability of error, where larger constellations 

1nay utilize the bandwidth more efficiently but suffers higher probability of error. 

More recently, some new techniques that vary the 1nodulation constellation size 

according to the time-varying channel conditions in order to 1naintain a specified 

target reliability in the receiver output have been proposed [52, 61]. 

2.1.2 Inter-Symbol Interference and Eye Diagram 

In a nutshell , inter-symbol interference (ISI) in a digital transmission system is the 

distortion of t he received signal that is manifested in the te1nporal spreading. The 

overlap of individual pulses and their adjacent pulses would usually result in the 

receiver being unable t o reliably distinguish between individual signal elements. 

Linear 
channel 

h(t ) 

(A) 

Noise 
n(t) 

(B) 

h(t) 

Figure 2.3: (A) Linear noisy baseband equivalent channel model. (B) Discrete-time 
channel i1npulse response obtained from the continuous-time response. 

Consider a linear t i1ne invariant (LTI) baseband equivalent channel1 whose im

pulse respon e h(t) is shown in Fig. 2.3. Then the received signal r(t) is obtained 

by convolving the input ignal a(t) with the channel's impulse response h(t) , giving 

r(t) = a(t) @ h(t) + n(t) 

= L ajh(t - jT) + n(t) 
J 

(2 .3a) 

(2 .3b) 

1 In this 1nodel1 the channel includes the effects of the transmitter filter , the modulator, the 
trans1nission 1nediu1n, the receiver filter and the demodulator. 
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where 0 denotes convolution, T seconds is the signalling interval and n( t) is the 

additive white Gaussian noise (AWGN). When the continuous-time signal is sam

pled at kT + t0 , where t0 accounts for the channel delay and sampler phase, the 

sampled signal becomes 

r(t0 + kT) = akh(t0 ) + ~ ajh(to + kT - jT) + n(to + kT) 
j=/=k 

= akh(to) + v(to + kT). 

(2.4a) 

(2.4b) 

The first term on the right hand side (RHS) of (2.4a) is the desired term scaled by 

h(t0 ) since it can be used to identify the transmitted signal level. The middle and 

last terms on the RHS of (2.4a) are the ISI and AWGN respectively. The sum of ISI 

and noise is also known as the effective noise and is denoted by v ( k) 6 v ( t0 + kT). 

In the frequency domain, the received signal may be represented by the following 

multiplicative process 

R(J) = A(f)H(f) (2.5) 

where H(f) is the Fourier transform of h(t): 

H(f) = '.I(h(t)) = 1: h(t)e-j21rftdt, (2.6) 

and R(J) , A(J) are similarly defined as 3='(r(t)) and 3='(a(t)), respectively. A suf

ficient condition for zero ISI is for the folded spectrum to have a flat magnitude 

at all frequencies for If I < 1/2T and a linear phase. This is also known as the 

Nyquist criterion. Most chann_els that are considered in the thesis are ISI channels 

which linearly distort the transmit signals and the aim objective of equalization is 

to combat such distortions. 

The presence of ISI and noise can be easily visualized using the eye diagram 

shown in Fig. 2.4. The figure is generated assuming an ideal raised cosine filter was 

used with no added noise. The sampling should be carried out at a time offset that 

corresponds to the two well defined points in the middle where the eye opening 

is the largest in the vertical direction. Therefore, when and if the eye is open , 

the symbol can be accurately detected at the receiver by a simple decision device 

with an appropriate timing. When the signal-to-noise-ratio (SNR) drops due to 

the addition of the AWGN and/or ISI, then the eye will begin to close , resulting 

in an increase of the probability of an error. 
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Figure 2.4: Eye diagram. 

2.1.3 Performance Measures 

The ultimate aim of the receiver is to produce a sequence of data estimates with 

a minimu1n probability of error. When such a measure is difficult to esti1nate or 

impractical , there are other si1npler performance indices that are closely related to 

the bit-error-rate. Three commonly used indices are: 

1. The closed eye 1neasure ( CLEM) 

(2.7) 

where the sequence with element si is the combined channel-equalizer re

sponse. It is the ratio of the noise margin level to the total signal level. A 

small value of the CLE_ /I indicates that the channel eye is sufficiently "open'; . 

Usually, if the CLEM is less t han unity, then the decision directed algorithm 

can be reliably e1nployed and the convergence to undesirable local equilibria 

can be avoided [92], [57, Ch. 3). 

2. The ISI measure 

(2.8) 

Thi measure indicate to what extent t he equalized signal is influenced by 

adjacent ample of the same ignal. It is the ratio of the power noise margin 

of to the co1nbined channel-equalizer power . 
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3. Decision directed 1nean squared error (DD-MSE) 

MSE0 o(k) = E{ lz(k) ~ Q(z(k))l2} (2.9) 

where Q(z(k)) is the nearest neighbor quantization operator appended to 

the equalizer output z(k). A small value of lVISEDD(k) indicates the raw 

( unquantized) equalizer output is close to a sy1nbol value. 

Other 1neasures that can be used include the Kolgomorov-Smirnov as well as 

the Chi-Squared goodness-of-fit tests, with a suitably chosen null hypothesis, to 

detennine if the distribution of the equalizer output corresponds to an open eye 

condition. An example is found in [8]. 

Among the three above mentioned perfonnance indices, only the MSEDD ( k) can 

be practically used under blind equalization because it does not require knowledge 

of both the unavailable channel and transmitted sequence. The CLEM and ISI 

measure can be used for theoretical analysis but not for practical real-time digital 

communication systems. 

2.2 Equalizer Structures 

We now describe several equalizer structures which can be used to mitigate the 

effects of ISL The choice of the equalizer structure will largely determine the speed 

of recovery of the linearly distorted data sequence ( convergence of the equalizer) 

and the error probability of the equalizer output. A linear transversal equalizer 

can be used to invert the channel and hence recover the trans1nitted input data. 

Non-linear equalizers such as the maxi1num-likelihood sequence esti1nator and the 

decision feedback equalizer exploit the discrete nature of the input sy1nbols to 

cancel ISI and noise in a more effective manner. 

2.2.1 Linear transversal equalizers 

In order for the receiver to reliably detect the original transmitted signal , the 

effective noise (i.e., the sum of ISI and AWGN) of (2.4) 1nust be reduced to lower 

decision errors. The 1nost com1non and simplest channel equalizer structure is the 

linear transversal equalizer, or otherwise known as the tapped-delay line or non

recursive equalizer as shown in Fig. 2.5. In digital implementation, the sa1npled 

received signal at time kT is given as r(k), where the symbol-rate samples are stored 

in digital shift registers or me1nory. The equalizer output samples are computed 
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r(k + !VI) r(k - !VI+ 1) r ( k - ~NI) 

z(k) z(k) 
Q(·) 

Figure 2.5: Linear Transversal Filter. 

according to 

M 

z(k) = L cir(k - i) (2 .10) 
i=-M 

where { ci} are the (2M + 1) tap weight coefficients of the equalizer. Linear equaliz

ers designed on the basis of the baud-rate sampled received signal are quite sensitive 

to symbol timing errors . Therefore, fractionally spaced linear equalizers are widely 

used to mitigate the equalizer's sensit ivity to symbol t iming errors . A fractionally 

spaced equalizer (FSE) in the linear transversal structure has the output 

M 

z(k) = L cf r (k - i) (2 .11 ) 
i=-M 

where cf and r( i) are colu1nn vectors with 1nore than one sample per symbol 

according to the oversampling factor, while { ci} are the (2M + 1) vector tap weight 

coefficients of t he FSE. The linear equalizers can also be i1nplemented as a lattice 

filter [118] which is known for its i1nproved convergence and numerical properties. 

2.2.2 Non-linear equalizers 

In digital com1nunications , the actual goal of equalization is to recover the input 

·which is discrete and not to invert the channel. Hence despite the channel being 

linear the equalizer needs not be linear. In fact , by most criteria the best equalizer 

structures should be non-linear . 

Linear equalizers generally do not perform satisfactorily when the channel is 

severely distorted especially when it has deep spectral nulls in the passband. Non

linear equalizers can deal with such channels more effectively. In the reahn of 

non-linear equalizers, two well known approaches are: 

Maximum-Likelihood (ML) Sequence Estimator It has been shown be Se-
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shadri [125] that it is possible to perform joint data and channel estimation 

using the Viterbi algorithm [44]. However, unlike conventional maximum 

likelihood sequence estimators (MLSE) where the Viterbi algorithm operates 

on only one trellis, for joint data and channel estimation, the VA operates 

on many trellises where each of them corresponds to a hypothesized estimate 

of the channel. The number of trellises grows exponentially with the length 

of the channel impulse response. The MLSE operates based on the following 

concept: 

The MLSE estimates the information sequence to rnaximize the joint proba

bility of the received sequence conditioned on the information sequence. The 

linear FIR channel output is 

L 

r(k) = L hia(k - i) + n(k) (2.12) 
i=O 

where L + l is the channel length and n ( k) is the channel noise. Since n ( k) 

is often white Gaussian , the ML estimate of the channel input a(k) based 

on a sequence of channel output r(k) can be obtained if the channel impulse 

response is known or has been estimated. This is done by maximizing the 

likelihood function, or equivalently, by minimizing 

oo L 2 

L r(k) - L hia(k - i) (2.13) 
k=L i =O 

If the size of the symbol alphabet is M , then there are ML different possi

ble states or transmitted sequences. The principle of ML receivers is then 

to choose, among these ML sequences the most likely one to have produced 

the received sequence { r( k)}. Finding the most likely sequence involves ex

haustive calculation of all the ML metrics, which can be quite complex if 

the number of states ML is large. A substantially lower computational com

plexity can be achieved by employing the Viterbi algorithm. Reduced state 

Viterbi algorithms that provide good compromises between complexity and 

performance by assuming some past decisions are correct have been proposed 

for channels with long but small tails [37]. 

Due to the high computational cost of the MLSE which is impractical in real

time high-data-rates digital communication systems, alternative structures 

such as the DFE are usually preferred. 
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Decision Feedback Equalizer The philosophy of a decision feedback equalizer 

(DFE) is to e1nploy previously detected symbols to reduce the impact of ISI 

and noise due to those symbols that have distorted the current symbol. The 

nonlinearity that arises from the use of a decision device significantly i1nproves 

the performance of the DFE because it exploits the discrete properties of the 

transmitted sequence. However j it suffers from the error propagation phe

nomenon whenever a decision error is made [39 ; 71]. This phenomenon is due 

to incorrect decisions traversing the feedback delay line; resulting in enhanced 

probability of error until the states have been flushed out completely. 

In this thesis; we deal with two types of DFE extensively in Chapter 5. These 

DFE;s have been commonly used in the literature and are briefly described below: 

Conventional Decision Feedback Equalizer 

r(k + ~if) r(k - M + 1) r(k - NI ) 
T 

f f 

z(k) z(k) 
Q(·) 

z(k - 1) z(k - Q + 1) z(k - Q) 
T T 

Figure 2.6: Convent ional deci ion feedback equalizer. 

The DFE \\-a fir t developed b Au t in [7]. It wa int ended t o combat t he 

I I due to channel \\-ith evere amplitude di tortion ) u ing deci ion feedback t o 

cancel the interference from y1nbol \\-hich have already been detected. It i imple

mented a a ca cade of a for \\-ard fi lter and a feedback filt er that i equipped with 

a memoryle deci ion deYice. Fig. 2.6 hov.- a ymbol-rat e DFE. The equalized 

ignal i the u1n of the output of t he forward and feedback part of t he equalizer ) 
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given by 

M Q 

z(k) = L cir(k - i) - L qjfi(k - j) (2.14) 
i=-M j=l 

where qj is the tap weight coefficient of the feedback filter with length Q, and a( k) is 

the output of the decision device. The forward filter is similar to the linear equalizer 

that 111ay be symbol-rate or fractionally spaced. The feedback filter however must 

have tap spacing that equals the symbol interval. 

Predictive Decision Feedback Equalizer 

r (k + NJ ) r (k - ]VJ+ 1) r (k - M ) 
T 

s(k) 

z(k) z(k) 
Q(,) 

z(k - 1 z(k - P + 1) z(k - P ) 
T T 

Figure 2.7: Predictive decision feedback equalizer. 

A nonlinear equalizer, shown in Fig. 2. 7, that is equivalent to the conventional 

DFE under the condition that the forward filter has an infinite number of taps 

was proposed by Belfiore and Park [10] . It is known as the predictive DFE and 

is developed as follows. Given the MMSE forward filter , say an infinite-length 

FSE, then the sequence of sy111bol-rate signals at the output of this forward filter 

forms a set of sufficient statistics for estimating the transmitting sequence. Thus by 

i111plementing the linear predictor as a feedback filter shown in the configuration 

given in Fig. 2. 7, t he MSE may be further reduced by the 111e111oryless decision 
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device that eliminates the contribution of ISI and noise to the equalized signal. 

The output of the MMSE forward filter is given in the usual form of (2.11 ). 

The predictive DFE output , which is the input to the decision device, is given by 

M p 

z(k) = L cir(k - i) - L Pj{ s(k - j ) - ci(k - j)} (2 .15) 
i=-M j=l 

where pj is the tap weight coefficient of the predictive feedback filter with length 

P , and s(k) is the output of the forward filter. 

Remarks on conventional DFE and predictive DFE : 

1. Both conventional DFE and predictive DFE have identical expressions of min

imum achievable MSE when the lengths of the forward filters of the equalizers 

are unconstrained , even when the feedback filter is reduced to a finite length. 

The output of the infinite length linear predictor is a white noise sequence 

with corresponding minimum MSE that is identical to that of the conven

tional DFE. A proof of their equivalence can be found in [119], [118]. 

2. In contrast to the conventional DFE whose forward filter depends on the 

number of feedback coefficients, the forward filter of the predictive DFE is 

independent of the predictor coefficients. Optimizations of the forward filter 

and the feedback predictor in the predictive DFE can be done separately. 

Hence, its MSE is at least as large as that of the conventional DFE. In spite 

of this sub-optimality of the predictive DFE, it is more suited for trellis-coded 

signals than the conventional DFE [40 143]. 

3. Usually the conventional DFE and the predictive DFE are not used simul

taneously because they are essentially equivalent [10] . However, we found a 

new way to incorporate both DFE's in Chapter 5.6 to enhance the tracking 

capability of the equalizer in time-varying channels . 

2.3 Criteria That Lead To ISI Cancellation 

Throughout Section 2.2, commonly used linear and non-linear equalizer structures 

were pre ented . The transmitted sequence is estimated by filtering the channel 

output with a et of filter coefficients that ideally produce an output sequence with 

minimum average probability of error . Unfortunately, the probability of error is a 

highly non-linear function of the tap coefficients and cannot be easily computed 
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without a known training sequence. Consequently other criteria in the spirit of 

lowering the error probability have been proposed. We will review two criteria in 

this section, namely the peak distortion criterion and the mean-square-error crite

rion. The former is used to invert the channel directly while the latter minimizes 

the error between the raw equalizer output data with its quantized output. In 

digital communications where the input is discrete, the latter criterion is usually 

preferred. 

2.3.1 Zero Forcing Algorithm 

The zero forcing (ZF) equalizer minimizes the so-called peak distortion criterion 

[118], which is in essence the residual ISI (without the AWGN term) given by 

CX) 

]zF = L ls(k) I (2.16a) 
k=-oo,k-/=-0 

CX) CX) 

L L Cj ( k) h ( k - j) (2.16b) 
k=-oo ,k-/=-0 j=-00 

where { s ( k)} is the combined channel-equalizer impulse response, i.e., the convolu

tion of the channel impulse response , { Cj}, and the equalizer coefficients , { hj}. The 

ZF cost is the peak value of the interference term minus the term corresponding 

to the (k = O)th tap and the noise term, divided by s(O) which is often nonnalized 

to be unity. With an infinitely long equalizer , JzF can be zeroed. Effectively, this 

corresponds to the complete elimination of ISI. The values of the taps are chosen to 

yield non-zero overall channel-equalizer response at decision time , i.e. , k = 0, and 

zero elsewhere. In other words this corresponds to choosing equalizer coefficients 

so that the following condition is satisfied: 

where 

CX) 

s(k) = · L cj(k)h(k - j) = 5k ,o 
j=-00 

5ko = 6. { 1 
, 0 

k=O 
otherwise 

(2.17) 
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denotes the Kronecker delta. In the z domain, this leads to the direct inversion of 

the channel ( assuming it is invertible) : 

1 
C(z) = H( (2 .18) 

where C ( z) and H (z) denote the z transform of the { Cj} and { hj}, respectively. 

Even though the zero-ISI condition generally requires infinite-length symbol-rate 

ZF equalizers, it can be shown that zero-ISI ZF equalizers of finite length generally 

exist for fractionally-spaced receivers [118] . 

Minimizing the peak distortion using a finite length symbol-rate linear equaliz

ers cannot completely eliminate the ISI at the output of the equalizer. However , it 

can at the least be shown to be a convex funct ion of the equalizer coefficients [88] . 

A steepest-descent recursive algorithm for adjusting the (2K + 1) equalizer coeffi

cients would there£ ore be 

cj(k + 1) = cj(k) + µc(k))a*(k - j), J. = -K · · · -1 0 1 · · · K 
) ) ) ) ) ' (2.19) 

where cj(k) is the value of the jth coefficient at time t = kT, c(k) = a(k) - z(k) 

is the error signal at time t = kT and µ is the adaptation step size. When the 

equalizer coefficients have converged to their global minima, the error is orthogonal 

to the transmitted sequence, giving 

E(c(k)a*(k - j)) = E[(a(k) - z(k))a*(k - j)J 

= E[a(k)a*(k - j)J - E[z(k)a*(k - j)J 

= c5j ,O - s(j) 

=0 J. = -K .. · K 
) ) 

(2.20a) 

(2.20b) 

(2 .20c) 

(2.20d) 

where we have assumed the transmitted sequence to be i.i.d . and the equalizer 

output is correct, so that Q(z(k)) = a(k). The last two lines follow because the 

opti1nal tap coefficients will give the zero-ISI condition, i.e. , s(O) = 1 and s(k) = 0 

for 1 < lkl < K. 

2.3.2 Least Mean Squared (LMS) Algorithm 

The ZF equalizer minimizes the ISI without explicitly taking into account the effects 

of channel noise. For channels that exhibit deep spectral nulls, the channel inversion 

property of the ZF algorithm 1nay a1nplify the noise component at frequencies 

corresponding to the nulls in the spectrum, resulting in significant deterioration 
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of the bit-error-rates of the equalizer output. The minimum mean squared error 

(MMSE) criterion on the other hand ameliorates this problem. Its philosophy is 

rather than trying to completely eliminate the ISI, the MMSE equalizer minimizes 

a balanced contribution from the ISI and the channel noise. The instantaneous 

mean squared value of the error is 

E(k) = a(k) - z(k) (2.21) 

which is the derivative of the MMSE cost function with respective to the equalizer 

output. Thus, the MMSE cost is 

JMMSE = E (ia(k) - z(k)l2) 

= E (Ia ( k) - rH ( k) C ( k) n 
(2.22) 

(2.23) 

where r(k) is the column vector of the channel output and c(k) is the column 

vector of the tap coefficients of the transversal equalizer. The solution to the above 

criterion is the MMSE equalizer which is given in the z domain by 

1 
C(z) = H(z) (2.24) 

where the additive noise at the channel output is assumed white with power spec

tral density N0 . The minimization of the cost leads to the well known Wiener 

filter whose ( optimal) tap weights c* are determined by the following Wiener-Hopf 

equation 

(2.25) 

where R is the autocorrelation matrix of the equalizer input and p denotes the 

cross-correlation of the equalizer input and the desired signals [58]. 

2.3.3 Unsupervised (Blind) Algorithms 

The ZF and MMSE equalizers are usually implemented with a training sequence 

that is known to both the transmitter and the receiver. When the transmission 

of these sequences is impractical or too costly, an alternative solution is to rely on 

blind equalization techniques. The Bussgang-type techniques estimate the training 

signal based only on the received signal and certain a priori statistical information 

regarding the transmitted signals. We devote the following sections to discuss 
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certain blind algorithms in the literature as this thesis deals primarily with the 

class of blind algorithms. We first give a brief overview of non-Bussgang techniques 

before discussing in more detail the class of Bussgang algorithms which is used 

extensively in this thesis. 

2.4 Overview of Non-Bussgang Techniques 

2.4.1 Historical Notes 

To understand a science it is necessary to know its history. 

Auguste Comte (1798- 1857) 

The problem of blind deconvolution is the subject of thorough research over 

the past few decades; under different names and for various applications. The 

homomorphic filter was introduced to remove effects of non uniform illumination 

of images [107, Ch. 10]. An observed image is usually described as a convolution 

of the object brightness distribution (OBD) by a Point Spread Function (PSF), 

and blind deconvolution is used to recover the OBD when no reliable information 

regarding the PSF is available. The name "blind deconvolution" was first used by 

Stockham et al for the restoration of old records [132]. Later "minimu1n entropy 

deconvolution" in seismic data analysis was introduced [149] to find the inverse 

of the channel that maximizes the kurtosis of the deconvolved data. The same 

concept was later applied to synthetic aperture radar focusing to estimate the 

rate of change of the Doppler shift of radar echoes [77]. It is also used for image 

reconstruction to remove t he effects of the blur induced on astronomical plates 

by short term variations of t he refraction index of the atmosphere [154] . At t he 

sa1ne ti1ne, similar concepts were applied to multilevel blind data transmission over 

telephone and radio channels. 

The search for cost-function-based blind algorithms started with the seminal 

work of Sato and Godard [49,124] . Their algorit hms were generalized by Benveniste 

et al [14] and Sethares et al [126], respectively. Later the Bussgang methods for 

blind equalization, which subsume all the algorith1ns in this section, were discovered 

by Bellini [11] . Other 1nethods include CMA with 1nultiple radii [120, 126], sign 

algorithms [144], convex cost functions [68], super exponential methods [127] and 

the so-called multimodulus-algorithm (MMA) [105, 106, 151 , 152] . Alternatively, 

second order statistics-based algorit h1ns that emerged in the early 90 's due to 

Gardner and Tong et al [45,135] have received a lot of attention. Some earlier works 

by Tong et al include [134,136, 155]. Higher-order statist ics-based algorithms which 
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include cumulant matching algorithms were proposed [56,140], as well as maximum 

likelihood estin1ation using the Viterbi algorithm [47,125], [57, Ch. 6] . 

Much of the research over these two decades on blind equalization centered 

on the analysis of particular blind algorithn1s . Generally, researchers are con

cern with the convergence behaviors of these algorith1ns under both ideal condi

tions [14, 99] and also t he case when they are violated, such as finite length filter 

effects [26,27,35]. Apart from t he work related to analysis, significant a1nount of re

search is dedicated to extension of original equalization algorithms and structures . 

For example, Benveniste et al [15] and Picchi et al (Stop-And-Go) [116] proposed 

dual-1node algorit hms t hat cater for s1nooth switching between the Sato and the 

decision directed (DD) algorit hms. In addit ion , so1ne new algorit hms that enable 

a soft transition between t he CMA and the DD algorithm have also been pro

posed [60,145]. In t he domain of equalizer structures, both blind decision feedback 

equalization [5, 17,66 , 75 ,112,133] and neural network i1nplementations [43], [58, Ch. 

19] have also been considered 1nore recently. 

2.4.2 Classifications of Blind Deconvolution Algorithms 

We have broadly identified four fa1nilies of blind deconvolution algorithms. They 

are: 

1. The Bussgang algorit h1ns where a non-linear operation 1s performed on the 

output of the adaptive equalization filter. 

2. The polyspectra algorith1ns where a non-linear operation is perfonned on the 

input of the equalizer . 

3. Probabilistic algorith1ns, where the non-linearity is in t he data detection process. 

4. The cyclostationary statistics-based algorith1ns which exploit the second-order 

cyclostationary statistics of the received signal. The property of cyclostationar

ity is known to arise in a 1nodulated signal that results from varying the ampli

tude, phase, or frequency of a sinusoid carrier , which is basic to the electrical 

co1n1nunications process. 

For the ren1aining parts of this sec ion, the last three types of algorithms will 

be briefly described namely the polyspectra type, cyclostationary statistics based 

and the probabilistic algorithms. _As the focus of this thesis is blind Bussgang 

algorith1ns, a whole section is dedicated to reviewing he rich but essential literature 

in this area. 
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2 .4.3 P olyspectra algorithms 

One method of blind deconvolution that has attracted a lot of attention in the 

late 80's and early 90's is the polyspectra algorithm. It explicitly exploits higher 

order moments of the channel output in order to recover both magnitude and phase 

information regarding the channel, where second order statistics based algorithms 

fail. One important assumption is that the transmitted signal is not Gaussian 

because otherwise phase identification is not possible ( since for a Gaussian signal, 

its higher order moments, i. e., order three and above, are zero) . This assumption 

is easily met in practical digital communications system. 

The motivation behind using higher order cumulants or their Fourier transfonns 

called polyspectra for blind equalization include: 

1. Equalization techniques based on higher order statistics are independent of a 

particular transmitted sequence ( the training sequence) since digital com1nu

nications signals are data sequences with common statistical properties. They 

are also more robust with respect to the channel input probability density 

functions provided they are not too close to being Gaussian , which is typically 

the case because the distribution is discrete. 

ii. Polyspectra have the ability to identify non-minimum phase communications 

channels from output measurements by virtue of their ability to be sensitive 

to phase and magnitude information in the channel output . 

111. All polyspectra of Gaussian processes of order greater than two are zero. Con

sequently, polyspectra techniques will not be affected by additive Gaussian 

noise which might be present in communications systems, assuming they are 

independent of the data. 

1v. Global convergence to the desired solution is guaranteed in approaches of the 

equation error type ( see below). 

As noted in [141], given the mathematical model, there are two broad classes 

of approaches to channel estimation and equalization. They are distinguished only 

by their re pective choices of optimization criteria: 

Equation Error The approaches of the Tricepstrum Equalization Algorithm (TEA) 

and its extensions by Hatzinakos et al [56] and in [48] minimize an "equation 

error'' in some equation which is satisfied ideally. They showed equalization of 

a non-minimu1n phase channel ( which we now assume is FIR for illustration, 
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under the assumption that no zeros lie on the unit circle) given by 

H( z ) = XI(z) O(z-1
) 

N1 

I( z ) = L(l - anz- 1 
), 

n=l 

N2 

O(z-1
) = L(l - bnz), 

n=l 
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(2.26a) 

(2.26b) 

(2.26c) 

where I( z), O(z- 1 ) are minimum phase and maximum phase polynomials 

respectively, can be identified and used for sequence estimation. Here we 

give the briefest outline of the equation error approach whilst the details can 

be found in [57, Ch. 5], [58, Ch. 18] and [56]. 

Let c4 (T1 , T2 , T3 ) denote the fourth-order cumulant of the channel output r(k). 

The tricepstrum of r ( k) is thus 

(2.27) 

where F[·] denotes the three-dimensional discrete Fourier transformation. De

fine also the so-called tricepstrum of the process r ( k) as 

(2.28) 

where p- 1 denotes the inverse three-dimensional discrete Fourier transfor

mation and ln is loge. The following relation between c4 (T1 , T2 , T3 ) and the 

assun1ed i.i.d. channel input sequence holds [58, Ch. 3. 7], [100] 

00 

C4(T1, T2, T3) = !'4 L hihi+T1hi+T2hi+T3· 
i=O 

(2 .29) 

It can be shown that ~4 ( w1 , w2 , w3 ) can be expressed in terms of the zeros and 
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poles of H ( z) in the following form: 

ln X + 3 ln 14 , T1 = T2 = T3 = 0 
-T-l A (T1 ) 

1 ) T1 > 0, T2 = T3 = 0 
- T-l A (T2 ) 

2 ) T2 > 0, T1 = T3 = 0 
-T-l A (T3 ) 

3 ' 
T3 > 0, T1 = T2 = 0 

T-l B (T1) 
T1 < 0, T2 = T3 = 0 

K:4 ( W1 , W2, W3) = 1 ) 
(2 .30) 

T-l B (T2 ) 
T2 < 0, T1 = T3 = 0 

1 ' 
T-l B (T3) 

1 ' 
T3 < 0, T1 = T2 = 0 

- T-1 B (T2 ) 
2 ' T1 = T2 = T3 > 0 

'T-l A (T2 ) 
2 ' 

T1 = T2 = T3 < 0 

0 otherwise 

where 

N2 

B (m) = L b7;: . (2.31) 
n=l n=l 

Note that A (m ), B (m) contain information regarding the 111inimum phase and 

maximum phase roots of H (z) in (2.26) . The key equation that connects the 

fourth-order cumulant to the tricepstrum is [110] 

CX) CX) CX) 

L L L ,K:4 (, , s, t)c4(T1 - r, T2 - s, T3 - t) = -T1c 4 (T1 , T2 , T3 ). (2.32) 
r=-oo s=-oo t=-oo 

Substit ut ing (2.30) into (2.32) yields 

p 

L (A(m) [c4(T1 - m , Tz , T3 ) - c4(T1 + m , T2 + m , T3 + m)]) 
m=l 

q 

+ L ( B (m) [c4 (Ti - m , T2 - m , T3 - m) - c4(T1 + m , T2, T3)] ) 
m=l 

(2.33) 

Repre enting (2. 33) in matrix fonn as an over-detennined linear system of 

equation we get 

Ca= p (2.34) 

where we wi h to determine a t o identify the non-111ini111um phase channel, 
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and C is a matrix with entries of the form {c4 (T1,T2 , T3 ) - c4(T{ ,T~,T~)} and 

dimensions given in [58, Ch. 18], p is a vector with entries of the fonn 

{T1c4 (T1, T2 ,T3 )} , and a is a (p + q)-by-1 coefficient vector in terms of A (m) 

and B (m) given by 

a = [A ( l ) A (2) · · · A (p) B (1) B (2) · · · B (q)J T 
' ' ' ' ' ' ' . 

(2.35) 

By estimating a it can be shown that the channel may be identified and a 

corresponding equalizer may be constructed. 

Fitting Error This so-called cumulant matching technique that is adopted in 

[140] matches the model-based higher order statistics to the estimated data

based statistic in a least-squares sense to estimate the channel i1npulse re

sponse. Unlike the "equation error" approach which results in a zero-forcing 

equalizer, this approach allows consideration of noisy observations. In gen

eral, it is a less robust approach since it requires a good initial guess to prevent 

the convergence of the channel estimator to undesirable local minima. 

2.4.4 Algorithms based on cyclostationary statistics 

For linear ti1ne-invariant frequency-selective detenninistic channels, when the re

ceived wavefonns are over-sampled at p times the baud-rate , the discrete signal 

displays scalar cyclostationarity properties that 1nay be exploited for channel iden

tification and equalization. Depending on its application, sequence esti1nation us

ing this technique is viewed as a single-input-multiple-output (SIMO) equalization 

where a discrete-ti1ne vector of stationary sequences is available at the equalizer 

input , or fractionally-spaced equalization. The fonner considers the channel output 

as 

(2.36) 
'l 

where hi and n( k) are p-by-1 vectors. When the received signal is oversampled , the 

fractionally-spaced equalizer that e1nploys the constant 1nodulus algorithm (CMA) 

has been shown to converge to complete ISI re1noval under noiseless 1nodels [25 , 79]. 

However this is achieved at the expense of higher complexity relative to baud-rate 

equalizers. 

A subspace n1ethod that exhibits low complexity t hat leads to closed-fonn solu

tions is given in [86]. Consider the collection of m over-sampled received sequences 
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r ( k) ( 1nulti ple snapshots of r ( k)) 

(2.37) 

where 'J(h) is the so-called filtering matrix, his the channel vector, a k is the input 

source vector. As long as 'J(h) has full column rank, the span of 9--C(r) is identical 

to that of 9--C(a). Then when 9--C(a) has more 1nodes than the rank of 'J(h) , 9--C(a) can 

be uniquely determined from the nullspace of 9--C(r) and the transmitted sequence 

can be found by solving the set of linear equations 

UH (k)J-C(a) = 0 (2.38) 

where U(k) is the nullspace of 9--C (r) and H denotes the Hermitian transpose oper

ator. 

2.4.5 Probabilistic algorithms 

An overview of this technique has been previously discussed in Section 2.2.2 under 

the maximum-likelihood sequence estimation section. 

2.5 Bussgang Algorithms 

This section reviews the class of Bussgang-type blind algorithms that is used ex

tensively in this thesis . The Bussgang technique [11, 57] for blind equalization is 

to obtain an estimate of the input signal by sending the equalizer output through 

a zero-memory non-linear device g( ·), and then the filter taps are updated using 

the LMS algorithm by minimizing the error between the equalizer output and the 

estimate of the input signal. The cost function of the Bussgang algorithm is thus 

lBussgang = E { lz(k) - g(z(k)) n · (2.39) 

The equalizer model is assumed to be linear transversal with 2N + 1 symbol

rate taps, whose tap weight vector at sampling time· kT is denoted as w( k). This 

same model is used for the rest of this section when dealing with Bussgang blind 

equalization techniques. The tap update equation of the equalizer is 

w(k + 1) = w(k) - µc(z(k)) X *(k) 

w(k + 1) = w(k) - µ (z(k) - g(z(k))) X *(k), 

(2.40a) 

(2 .40b) 
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Figure 2.8: Linear Transversal Bussgang Equalizer. 
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where X(k) is the regressor vector of the linear equalizer that employs the Bussgang 

algorithm and c(k) is the LMS error function implicit in (2.39). This approach was 

proposed by Godfrey and Rocca [51] for deconvolution of seismic traces and the 

term Bussgang algorithm was coined by Bellini [11] after he revealed that the 

algorithms based on higher order statistics implicitly are indeed identical to the 

methods described by Barrett and Lampard [9]. In the approach, the estimated 

input signal is cross-correlated with the equalizer output to obtain an approximate 

inverse filter. 

The very first truly blind algorithm for multilevel digital communication sys

tems was proposed by Sato back in 1975. However reliable blind digital transmis

sions has been sought after even before the revolutionary pioneering work of Sato. 

In this section, we go one step before the invention of the Sato algorithm to describe 

a simple blind algorithm called the Maximum Level Error (MLE) algorithm before 

describing some com1non blind algorithms that have enjoyed widespread popular

ity in today's digital receivers. In fact , the concept of the MLE algorithm has 

been partially exploited in the design of our switch-mode algorithm as described 

in Chapter 4. 

2.5.1 Maximum-Level-Error (MLE) algorithm 

The MLE algorithm [153] is usually not regarded as a truly blind algorithm. It is 

briefly explained here just to show how the evolution of blind equalization tech

niques started. The algorithm was proposed by Yatsuboshi et al based on a very 

simple idea. They observed that when the equalized signals are found beyond the 

largest constellation points , there is a higher probability that these signals are cor

rect regardless of the SNR of the residual equalizer output. Therefore , the LMS 

algorithm which is decision directed , may be employed with a relatively higher rate 
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*····· ·· *·· ····· * ··· ···* 

* * * * 

* * * * 

. . 

*······· *······· * ····· ·* 

Figure 2.9: Maximum Level Error (MLE) Algorithm: Constellation diagram for 
16-QAM with dotted-line boundary connecting the edge data points. The equalizer 
is only updated if the output is exceeds the boundary depicted by the dotted lines. 

of detecting a correct symbol when the signal exceeds the boundary that joins the 

edge symbols, as depicted in Fig. 2.9. The filter taps are updated only when at 

least one of the fallowing conditions 

J Re ( z ( k)) I > max I Re ( a ( k)) J 

aEA. 

I Im ( z ( k)) J > max I Im ( a ( k)) I 
aEA. 

are met . The stochastic gradient update equation of the MLE equalizer is 

w ( k + l ) = w ( k) - µ5 ( k) ( z ( k) - Q ( z ( k)) ) X * ( k) 

(2 .41a) 

(2.41 b) 

(2.42) 

where 5 ( k) is the Kronecker delta that yields a value of 1 when at least one condition 

in (2.41 ) is satisfied, and O otherwise. Due to the low probability of satisfying the 

condit ions in (2.41 ), very slow convergence of the equalizer is expected especially 

for large constellation sizes . 

However, its concept has been exploited by seve.ral equalization and phase recov

ery techniques . In Chapter 4, we designed a switch-mode algorithm that performs 

joint equalization and phase recovery when one of the conditions in (2.41 ) is satis

fied because such signals are generally more reliable. This concept is also similar 

to the "four-corner" phase recovery technique of [63 , 139] where a phase discrimi

nation is only performed when signals are "far" away frorn the origin , for example 
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when they are close to the "four-corners" of the QAM constellation. 

2.5.2 Sato algorithm 

The first blind algorithm was proposed by Sato [124] for multilevel digital trans

mission of real one-di1nensional signals. His work has been widely recognized as a 

major breakthrough in blind digital communication systems. Sato 's M-ary PAM 

blind equalization algorit h1n consists of minimizing a non-convex cost function 

l sato = E { (z(k) - "(s · sgn[z(k)J/} 

with the scaling coefficient that sets the gain of t he equalizer defined by 

6 E{a2 (k)} 
,s = E{Ja(k)J} 

where a(k) is the channel input sample. Sato 's error function is thus 

Esato ( k) = z( k) - ,s · sgn [ z( k)]. 

(2.43) 

(2 .44) 

(2.45) 

In what follows , we provide a summary of t he work of Sato in [124]. He used the 

example of 8-PAM whereby the signal levels are given by 

V -di + -d2 + -d3 (
1 1 1 ) 
2 4 8 

(2 .46) 

where d1 , d2 and d3 are binary rando1n variables and V is a constant factor. The 

Sato algorithm estimates only the most significant digit d1 while treating the d2 

and d3 as random noise superimposed at the data source ( see Fig. 1 in [124]) . 

The concept of Sato 's algorith1n is thus to treat the 1nultilevel digital signal as a 

"binary" signal. The algori thin then uses the results of this preliminary step to 

modify t he error signal obtained fro1n a conventional decision directed algorithm. 

The algorith1n only 1nakes a distinction between the signs of t he equalizer output , 

subject only to a gain factor , ,s . In short , rat her than "pushing" the equalizer 

output towards the nearest data point as would conventional decision directed 

algorithms , t he algorithm "pushes" t he signals towards t he half plane where they 

are found. 

The original work of Sato made three strong and rather "impractical" assump

tions for the algorithm to be globally convergent : 
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1. The PAM modulation admits an infinity number of levels , i.e. 

V · -di + -d2 + -d3 + -d4 + · · · (
1 1 1 1 ) 
2 4 8 16 

where di = ±l for all i, with a continuous unifonn distribution in a sym111etric 

interval of (-V, V); 

2. The combined channel-equalizer impulse response { si} is doubly infinite in 

length; 

3. The channel eye is initially open, i.e. CLEM < 1, where CLEM is defined in 

(2. 7). 

Under the above assumptions , the Sato cost function may be rewritten as 

v2 ~ 2 ( L i10 s; ) 2 
lsato = 3 ~ Si - rs · v So + So + rs . (2.4 7) 

l sato is shown to be a convex2 function of the tap gains { ci} in Appendix B of [124] 

under the above assumptions . This convexity result guarantees that it has a unique 

minimum point that corresponds to a zero forcing equalizer (ZFE). These assu111p

tions are indeed sufficient but not necessary. According to the Benveniste-Goursat

Ruget theore111 [14], global convergence of the Sato algorithm can be achieved pro

vided that the probability density function of the transmitted data sequence is a 

sub-Gaussian function such as the uniform distribution. The condition for doubly 

infinite equalizer is required however to ensure its global convergence. Deviations 

from this ideal behavior have been reported in the literature [26 , 92 , 99]. 

Perhaps the most important asymptotic result regarding the convergence of 

the BGR algorithm is that it can be shown to be globally convergent in the zero

forcing sense when the distribution of the input sequence { a( k)} is sub-Gaussian 

when the equalizer length is unconstrained. The subsequent investigations carried 

out by Ding et al in [26, 27 , 78] yield t he conclusion t hat the violation of t he ideal 

and impractical conditions can result in ill-convergence of the BGR algorithms to 

undesirable local minima. 

Benveniste et al developed important results regarding the convergence of t he 

Sato algorithm and its generalizations for sub-Gaussian and super-Gaussian inputs, 

where the input is continuous instead of discrete. The work of Kennedy, Ding et 

2 f(x) is said to be a convex function of x if for any O <a< 1, the following holds: f (ax1 + 
(1 - a)x2 < af (x1) + (1 - a)f (x2), for any x1 < x2 in the domain of definition off . 
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* * * * 0 

* * * * 

* * * * 

0 0 

* * * * 

Figure 2.10: Reduced Constellation Algorithm (RCA): Constellation diagram for 
16-QAM and its reduced constellat ion whose 4 data points are represented by 'o' 
at coordinates [, s, , sJ, where ) s is defined in (2 .44). 

al later revealed that undesirable local minin1a do exist in Sato equalizers under 

practical constraints of finite equalizer length and discrete inputs [26 , 67] . 

Generalizations of Sato algorithm 

The Sato algorithm, which is originally designed for real signals , is subsequently 

generalized by Benveniste, Goursat and Ruget [14] into a class of error functions , 

·v1hich can be used for complex signals, and is given by 

EcsA(z(k)) = Eb (z(k)) - rb · sgn(z(k)) 

6 E{ib(a(k))a(k)} 

b = E{ la (k)I } 

(2.48a) 

(2.48b) 

where Eb(- ) is an odd function whose second derivative is non-negative for z > 0, 

such that Eb (- z) = - 'i.b (z), and ci (z) = 'i.i (z) > 0 for all z > 0. This is sometimes 

known as the Generalized Sato Algorithrn since it subsu1nes the special case of t he 

Sato algorith1n which is obtained when one defines Eb (z) = z . 

Extension to the complex signalling, for example QAM signalling, has been 

proposed by Godard and Thirion [50] and Benveniste and Goursat [15]. It is 

commonly referred to as the Reduced Constellation Algorithm (RCA) because t he 

algorithm, just like the original Sato algorithm, treats the real and imaginary parts 

of the QAM signals are binary" signals. Thus it represents a reduced const ellation 
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in the constellation space. The error function is thus 

ERcA(z(k)) = z(k) - , s · csgn(z (k)) (2 .49) 

where csgn( ·) is the complex signum operator defined as csgn(z) = sgn(Re(z)) + 
sgn(Im(z)). Even though the RCA largely resen1bles the Sato algorithm concep

tually, in another sense, it differs from the Sato algorithn1 because unlike the Sato 

algorithm, the RCA would alter the phase of the equalizer output in addition to 

adjusting its magnitude (see Fig. 2.10). 

2.5.3 Godard algorithm 

The arguably most important class of Bussgang algorithm is the Godard algo

rithm [49] which consists of a family of constant modulus blind equalization al

gorithms . It was also independently proposed by Treichler and Agee [137] under 

the name, Constant Modulus Algorithm (CMA) . The Godard algorithm penalizes 

the deviation of the equalized signal from a constant modulus via the "property 

restoral" philosophy, a term coined by Agee in [3] . The deviations from this con

stant modulus is depicted by the ~otted circles in the constellation space as shown 

in Fig. 2.11. It was initially developed for constellations that exhibit a constant 

modulus property such as the 4-QAM and PSK formats (see Fig. 2.11-A for the 

8-PSK format ). However, it exhibits exceptional robustness with respect a variety 

of other non-constant modulus data formats such as larger QAM formats and the 

V29-CCITT formats. 

* * * * 
* 

.. * * * * ·. 

·. * * * * .. 
*· 

* * * * 

(A) (B) 

Figure 2.11: Godard algorit hm or Constant Modulus Algorithm (CMA): It pe
nalizes deviations fron1 a constant modulus represented by the dotted circles for 
(A) 8-PSK which is a constant modulus source, and (B) 16-QAM which is a non
con tant modulus source. 
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The Godard algorithm minimizes a non-convex cost function parameterized by 

a positive integer p given as 

(2.50) 

where ,~ is a positive real constant called the dispersion constant which is given 

by 

P ~ E{la(k)l2P} 
re - E{la(k)IP}. (2 .51) 

When p = l , t he CrvIA is identical to the Sato algorithm for real systems. The 

cost functions and error functions of the Godard algorithm for p = l and p = 2 are 

respectively given by 

p = 1: 

p = 2: 

JcMA = E { (l z(k)I - 1c)
2

} 

( ,c ) 
E CMA = z ( k) 1 - I z ( k) I 

J cMA ( k) = E { ( I z ( k) 1
2 

- r:2:)2 } 
ECMA = z(k) (lz(k) 1

2 
- ,6) . 

(2 .52a) 

(2 .52b) 

(2.53a) 

(2 .53b) 

The second special case where p = 2 is referred to in the literature as the 

constant 1nodulus algorith1n (CMA) and it is the most widely used algorithm in 

the family of Godard algorithms . 

The Godard algorith1n is considered the most successful and the most exten

sively researched Bussgang algorithm. It is supported by some co1nparative studies 

perfonned by Shynk et al [130] and Jablon [63]. It can be shown to exhibit the 

carrier phase blind property [8 1] that is particularly advantageous in the design of 

practical digital transmission systems. Therefore it is more robust than other Buss

gang algorithms with respect to carrier phase offsets as the equalizer parameters 

can be adapted independently but si1nultaneously with the operation of the carrier 

recovery system, leading to the notion of a decoupled equalizer and phase estima

tor. Under steady state conditions, the Godard algorithm attains a mean-squared 

error (MSE) that is lower than other Bussgang algorithm [58] . 
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As the cost function is non-convex, initialization of the equalizer tap parame

ters is crucial in order to avoid convergence to spurious local minima. Even though 

convergence to global n1inima cannot be guaranteed for all cases, practical guide

lines do exist to ensure desirable convergence have been suggested in [49, 79). In 

contrary, bad initialization strategies that should be avoided have been fonnulated 

in [35] where it is stated that t he init ialization with an edge tap set to a non-zero 

constant may very likely yield convergence to undesirable local minima that do not 

correspond to the desired ISI removal. 

2.5.4 Shalvi and Weinstein algorithm 

The methods of Shalvi-Weinstein [128] generalize CMA, but unlike conventional 

Bussgang algorithms t hat implicit ly exploit higher order statistics of the equalizer 

output, the Shalvi-Weinstein algorithm (SWA) are explicit ly based on the higher 

order statistics of the equalizer output. The SWA maximizes the absolute value of 

the kurtosis of the equalizer output \K(z(k) ) I, i. e., 

max K(z(k)) 

subject to 

E{l z(k)l 2
} = E{la(k)l 2

} , 

where the kurtosis of z ( k) is defined as 

(2 .54a) 

(2 .54b) 

(2.55) 

For convenience, we denote Ka = \ K ( a( k)) \ and Kz = \ K ( z( k)) \. Shalvi and 

Weinstein showed that when (2 .54b) is true, then the following must hold [128) : 

\Kz\ < \Ka\ 
\Kz\ = \Ka\ if and only if s = ej

8 ( · · · 0 0 ~ 0 0 ... )T 
' ' ' ) ' ' 

where s is the vector of the combined channel-equalizer response , i.e., 

(2 .56a) 

(2 .56b) 

(2 .57) 

and hi is the channel impulse response , wz ( k) is the equalizer i1npulse response, 

and ~ is a non-zero constant. The result of (2 .56b) is of particular interest as it 

corresponds to a zero-forcing solution. It i. obtained as follows [128): 
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Let the l2-norm JJsJJ~ be absolutely summable, i.e. , I:z lsz(k)l 2 < oo. Then, 

(2.58) 

where equality holds if and only ifs has at most one non-zero component, which 

would correspond to the zero-forcing solution. This completes the proof. The 

necessary and sufficient conditions for equalization are therefore 

(2 .59) 

It can also be shown for typical digital modulation , that the condition IK zl = IKa l 

may be replaced by the simpler E{l z(k)l 4
} = E{la (k)l 4

}. 

According to the criterion in (2 .54), the cost function may be expressed as 

lsw = JKzJ 
= sgn (Kz) · Kz 

= sgn (Kz) { E{lz(k)l4} - 2(E{lz(k)l2} )
2 

- (E{z(k)2} )2} 

(2.60) 

(2 .61 ) 

(2 .62) 

where it can be shown that the second and third terms on the right hand side of 

(2 .60) do not influence the 1naximum. The criterion thus becomes 

(2 .63) 

The update equation of the equalizer parameters is 

w (k + 1) = w (k) - µ sgn(Ka)z(k )X * (k) lz(k) 1

2 (2.64) 

where µ is the step size parameter. 

2.5.5 Multi-Modulus Algorithm 

The C111A for multiple 1noduli cons ellations is later extended and redeveloped 

to incorporate joint phase con tellation recovery together with equalization [105 

152]. It is called the multi-modulus algorithm (111\IIA) by Yang, \!Verner and Darth 

[152]. The rotational behavior of this algorithm v. ill be studied in Chapter 6 and is 

compared with the Reduced Constellation Algorithm (RCA) previously described 
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Figure 2.12: Multi Modulus Algorithm (MMA): It penalizes deviations from rM 
for real and complex components separately. 

above. The algorith1n minimizes t he cost function 

JMMA = E{ [Re(z(k)) 2 - 1~] 2 + [Im(z(k))2 -1~J2} (2 .65) 

where 

2 E [ Re ( a ( k)) 4 + Im ( a ( k)) 4 ] E [ a ( k) 4 J 
!M = = 

E[1Re(a(k))i2 + 1Im(a(k)Jl2] E[la(kJl2] 
(2 .66) 

for square QAM constellations. For cross QAM constellations, ,i should be as

signed different values for different data points in the constellation, where details 

can be found in [152]. Its concept is to "push" the equalizer output signals towards 

t he four boundaries t hat form a square of width 2,M as depicted in Fig. 2.12. This 

cost function is somewhat similar to that of the CMA except that the in-phase and 

quadrature components are separated and the cross term between the co1nponents 

have been eliminated as we now show. Recall that the cost function of the CMA 

2-2 algori t hin t hat has been expanded is 

l cMA = E{ [lz(k) 12 
- 12;]2} 

= E{ [Re(z(k)) 2 - 16]2 + [Im(z(k)) 2 - 16]2 

- [2Re(z(k))Im(z(k)) - 16]2
} 

(2 .67a) 

(2 .67b) 
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where t'~ is the dispersion constant of the CNIA (2.51). Comparing (2 .65) and 

(2.67b) reveals that the cross term has been dropped in the MMA cost function. 

The error functions of the MMA for the in-phase ( i) and the quadrature ( q) filters 

are there£ ore 

c ~MA = Re ( z ( k)) [ Re ( z ( k)) 
2 

- t'f1 J 

c~trA = Im(z(k)) [Im(z(k) )
2 

- t'~] . 
(2.68a) 

(2 .68b) 

Because of the disjoint adaptation of the in-phase and quadrature phase fil

ters, minimization of t his cost, unlike t he CMA, will lead to phase-aware solu

tions, i.e. , with automatic constellation phase recovery ( up to ambiguities related 

to sym111etries in the constellation) simultaneously achieved with the desired ISI 

removal [81, 105 , 152]. 

2.5.6 Bussgang algorithms for multiple-modulus constella

tion 

The Cl 1A was proposed with the intention of equalizing signals whose source con

stellations display a constant modulus. It was later shown to be robust with re

spect to the modulation format , but would on the other hand yield larger excess 

noise [42, 65]. Recognizing this fact , the Cl 1A is extended for signal formats with 

multiple radii such as 64-QANI and 8-P.A.NI in [8,120 ,126,145]. Two algorithms were 

proposed b} Sethares et al [126] where the first is also called the multi-modulus al

gori h111 (same as [152]) and the second is the decision adjusted 111odulus algorithm 

(DANLA). To avoid confusion with the NI LA we described earlier in Chapter 2.5.5 , 

we will abbre iate the firs algorithm of [126] as NI~1IA2. T·he cost function of the 

NINIA2 is 

[ ( ) 2 2] 2 [ ( ) 2 2] 2 [ ( 2 2 J 2 11 1i\IA2 = z k - r 1 z k - r 2 · · · z k) - rm (2.69) 

where r1, · · · , rm are he rn, radii that circles the data points as illustrated in 

Fig. 2.13. 

The econd algori hm that -as jointl - proposed b - Sethares et al with the 

fAl in [126) is called the decision adjusted modulus algorith111 (DA~IA). It is 

also independen 1 - propo ed b Read and Gooch under the name Radius Directed 
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Figure 2.13: MMA2 and the DAMA algorithms The 9 radii of the 64-QAM 
constellation. 

Equalization (RDE) algorith1n [120]. It minimizes the cost function 

]DAMA= E{ mtn lz(k)2 
- rf 12} 

= E{ lz(k)2 - QR(z(k)) 2 n. 
(2.70a) 

(2. 70b) 

DAMA is conceptually identical to a decision directed algorithm except for the 

decision device, QR(,) that they used. The decision device is a radius discriminator 

which is defined as 

(2. 71 ) 

At convergence , the MMA2 and the DAMA yields lower MSE than t he CMA due 

to the exploitation of the 1nulti-modulus property of the constellation. 

2.5. 7 Decision directed algorithms 

The decision directed algorith1n [89] requires no training and is the simplest blind 

algorith1n. Its cost function is 

JLMS = E{ z(k) - Q(z(k)) 2}. (2.72) 
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where in principle, it rninimizes the mean square error between the equalizer output 

and the quantizer output. The performance of this algorithm can be indicated by 

the closed-eye-measure , CLE1VI of (2 . 7) , which is an indication of how ( un)reliable 

the equalizer output is. Global convergence to the optimum equalizer settings is 

guaranteed is CLEM < 1 [99] . In general, if the initial parameter values cause 

significant number of decision errors, then local convergence to undesirable minima 

is highly likely [92]. 

2.6 Principal Aims Of Thesis 

In the remainder of the thesis we will develop several new switch-mode algorithms as 

well as switch-mode equalization schemes for blind equalization of linear channels . 

The motivation for the development of each new method is due to the deficiencies 

and disadvantages of existing algorithms and schemes in the following aspects: 

• Their low convergence speed . 

• Their high steady-state errors. 

• Their abrupt switching which may result in the ill-convergence of the adaptive 

equalizer. 

• Their high computational costs. 

• Their poor estimation of open-eye condition that directly determines the 

switch from the acquisition to the tracking equalizer mode. 
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Chapter 3 

Reliability Based Technique For 

Switch-Mode Blind Algorithms 

Blind acquisi ion algorithms such as the Sato and t he Godard algorithms can be 

used for he reliable acquisition of an unknown channel driven by a data sequence 

of known dist ribut ion [14) 49 124]. Unfortunately in general such algorithms yield 

non-zero error (nois -) solutions) typically described t hrough the excess mean square 

error ) e -en v\ hen t he equalizer parameters have nominally reached t heir optimal 

settings ) especiall - when dealing with non-constant modulus data formats [42 ) 65]. 

On t he other hand blind t racking algori hms such as t he decision directed (DD ) 

algori h1n and he decision adjusted modulus algorithm (DAM_A) [89) 126] can be 

used after he channel eye is open t o yield a low excess mean square error ( dom

inated onl - be the channel noise) v\ hen desired convergence is achieved) even for 

non-constant 1nodulus data forma s [58 , 119]. Unfortuna ely t hese decision based 

algori hms stric 1 - require a sufficientl - lov\i level of decision errors to ensure con-

ergence [92 99]. Since the acquisi ion and tracking algorithms exactly complement 

each others deficiencies i is co1nmon to e1nplo} t he former duTing t he ini ial ac

quisi ion and subsequent l - switch o the lat er v\ hen t he error rate is sufficien ly 

low. This combina ion which pairs up t he abo -e blind algorithms is t hus called a 

swi ch-1node algorith1n. The Sato , Godard ) L~VIS and DA~VIA algorithms have been 

pre riou 1 in roduced in Chapter 2. 

Swi ching be v\ een modes can be done in one of tv\i O wa s. Firstl ) it can 

take place instantaneously as soon as a measure of the equalizer performance sur

pa ses a pre-defined value that is chosen to correspond to lo - error rates . This is 

he a-called ('hard- i chint' technique [58) 82]. Otherwise) s -itching ma occur 

smoothly in he ense ha· he ran ition be ween algorithms is oft and is usuall 

auto1na ic [15 60 116, 145]. nfor una el smoo h s ritching techniques usuall -

43 
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slow down the convergence speed of the equalizer significantly, in addition to com

promising low steady state errors. The following questions are therefore raised: 

1) In determining the combination parameters of s111ooth switching approaches 

how well does the switching process accurately reflect the error rates? 

2) In designing for a sufficiently smooth transition in a switching scheme, is the 

convergence speed too adversely affected and has the steady state error been 

compromised as well? 

We propose a new smooth switching technique in this chapter that reflects 

the current error rate more accurately and less conservatively. It involves the 

computation of the probability of a correctly detected symbol at the equalizer 

output which has been derived using Bayes theorem. As a result , we observe fast 

convergence and low steady state errors without the need to manually control t he 

parameters that govern the convergence speed and excess noise. 

3.1 Motivation 

In a trained digital communications syste111, the LMS algorithm can be employed 

with satisfactory convergence and steady state perfonnance. With the availability 

of a reference signal, its cost function is the error between the equalizer output 

and t he reference signal. There£ ore minimizing the cost should lead to the desired 

recovery of the transmit signal. In blind transmissions, however , the cost function 

of the DD algorithm is t he error between t he equalizer output and its quantized 

value. When the output is unreliable , the quantized output will be erroneous with 

high probability, and may therefore result in the ill-convergence of the equalizer. A 

sufficient condit ion for the DD convergence is for the channel to have an initially 

open-eye condit ion [92 , 99]. Therefore the goal of blind acquisit ion algorithms is to 

achieve an open-eye condition. The critical problem can be posed as : 

((How can we measure the open eye condition; or at least estimate it as 

accurately as possible; given only the observed channel output with only 

knowledge of the statistics of the transmitted sequence?;; 

The conventional technique is to perform switching instantaneously when a 

performance mea ure , say the estimated MSE of the equalizer out put , drops below 

a pre-defined thre hold value. Even t hough it is simple to implement this technique 

requires the u er to pre- pecify the t hreshold value on the MSE to trigger the 
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Figure 3.1: A typical baseband equivalent channel and a linear equalizer that 
employs the switch-mode algorithm. 

switch-over. Strictly speaking this can only be done effectively if there is knowledge 

of the channel, which is not available. Switching too early when there are many 

errors may result in the ill-convergence of the DD algorithm; switching too late 

may result in a slow rate of convergence and possibly fail to acquire the channel 

when the channel is time-varying. There are other instances when the estimated 

MSE is not low enough even though the eye is clearly sufficiently "open" , such as 

noisy channels and high excess MSE due to equalization of non-constant modulus 

data using the Sato or Godard algorithm. 

A few sn1ooth switching techniques have been suggested in the literature to 

overcome the lost of a reference ( training) sequence. Some of them suggeste combi

nation techniques for the acquisition and the tracking algorithms to be reflective of 

the current distribution of the equalizer output based on the equalizer output only. 

For example, if the equalizer output is close to one of the constellation data points , 

then the tracking algorithm is preferred over the acquisition algorithm because 

it is "believed" to be resulted from a well converged equalizer. On the contrary, 

when the equalizer output is far from the data points , the acquisition algorithm is 

preferred over the tracking algorithm. Thus , their concept is such that the error 

rate is implicit in this combination parameter which measures the distance of the 

equalizer output from its data points. The algorithms that employ this concept 

are those in [15, 60 ,145]. Another concept is the so-called "stop-and-go" algorithm, 

whereby the algorithm is in its tracking mode at all times, but an update of the 

equalizer parameters is only performed when the error functions of both acquisition 

and tracking algorithms agree in sign [54, 55 , 116]. However , the slow convergence 

of this technique has been reported [82]. 
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3.2 System Model 

In this chapter, we largely treat a cor:nmunication system involving real signals 

given they usually have obvious extensions to the complex case. Consider the 

combined channel-equalizer system depicted in Fig. 3.1. Let h 6 [ho, h1 , · · · , hL]T 

denote the coefficients of the channel filter of length L + 1. The channel is assu1ned 

stationary, possibly non-minimum phase, but unknown. Let the source data vector 

be a(k) 6 [a(k) , a(k - 1) , · · · , a(k - L)]T at a time index k, with elements drawn 

from the alphabet set 

A 6 {d1 , d2, ... ,dM} = {±1 , ±3, ... ,±(M -1)} (3.1) 

representing M-ary PAM signaling. Then the input signal to the equalizer is 

r(k) = hT a(k) + n(k) (3.2) 

where n(k) is the additive noise. Also let w(k) 6 [w-N,k, · · · , wo,k, · · · , WN,k]T be 

the (2N + 1) equalizer tap coefficients. We set 

p=O 
otherwise 

(3.3) 

to have a center-tap initialization, which allows the causal development of approx

imate inverse filters for non-minimum phase systems. Then the equalizer output is 

given by 

N 

z(k) = L Wnr(k - n) (3 .4a) 
n=-N 

= s0a(k) + v(k) (3 .4b) 

where 

N+L N 

v(k) = L Sja(k - j) + L wnr;(k - n) (3 .5) 
j/=0,j=-N n=--'N 

is the so-called effective noise with a variance of CJ~, and { Sj } , j = -N, · · · , N + L 

is the set of coefficients of the combined channel-equalizer filter. Without loss of 

generality, the coefficient s0 is defined as unity. We further assume: 

(J-cl ) the M-PAM source sy1nbols are identically and independently distributed 
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(i .i.d. ); 

(JC2) v(k) is white and Gaussian with zero mean and variance a;; 

(JC3) the impulse response of the co111bined channel-equalizer filter is absolutely 

summable, i. e., I:J lsJI < oo. 

Justification for the second assumption is provided by t he central limit theorem 

(see Section 3.5.2 for further justification). 

3.2.1 Expressions for error function of switch-mode algo

rithms 

Before we proceed any further , we provide first the different expressions to describe 

a switch-mode algorith111: 

Blind adaptive equalization algorithms are often designed as stochastic gradient 

descent schemes to update t he parameter vector by minimizing some cost functions 

that do not involve the use of the original input a( k) but reflect the current level 

of ISI in the equalizer output. Define the mean cost function as 

6 1 ') 
J ( w ( k)) = - E{ E~ ( z ( k))} 

2 
(3.6) 

where e2
( · ) : IR --+ IR is a scalar cost function and z(k) is the equalizer output . De

note the weight vector of the equalizer as w(k) and r (k) = [r (k - N) , · · · , r (k ), · · · , r (k+ 

) JT is the regressor vector of the equalizer consisting of samples from the channel 

output . The stochastic gradient descent minimization algorithm is well-known to 

be 

a 1 
w(k + 1) = w(k) - µ Bw(k) 2 E

2 (z(k)) 

= w(k) - µe (z(k)) r (k)T. 

(3.7) 

(3.8) 

Hence the blind algorithm can either be defined by the cost funct ion or equivalent ly 

through e(, ) which we call the error function since it replaces the predict ion error 

in the LMS algorithm. 

Switch-111ode algorithms can be broadly categorized under three dist inct groups. 

Slight modifications are possible as long as t he modified form largely rese111bles t he 

parent form of (3.9) - (3.11) as shown below. Let Eacq(k) and Etr(k) be the error 

functions of the blind algorithms of the acquisition mode and the tracking mode , 
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respectively. Then the error function of a switch-1node algorith1n can be expressed 

in one of the following three forms: 

( Yl) A weighted error function: 

E( k) = /31 ( k) Etr ( k) + /32 ( k) Eacq ( k) 

= (3( k) [Etr(k), Eacq(k)]T 

(3.9) 

where (31 ( k) and (32 ( k) are positive functions and we define for convenience 

(3 ( k) 6 [(31 ( k), (32 ( k)]. They can be functions of the equalized output z ( k) but 

generally are taken as positive constants. The desired properties of (3( k) are 

such that ~~~~~ << 1 when the equalizer is far from convergence, and ~~~~~ >> 1 

when the equalizer is close to convergence. 

(Y2) A conditional update type error function: 

E(k) = 
[1, OJ [Etr(k), Eacq(k)]T = Etr(k) 

[O , 1] [Etr(k), Eacq(k)]T = Eacq(k) 

[ 0, 0] [ Etr ( k) , Eacq ( k)] T = 0 

Condition 1 

Condition 2 

Condition 3. 

(3.10) 

Depending on the conditions, only one of the error functions will be used 

at any one t ime , or none at all when Condition 3 is satisfied. Condition 

1 is usually a condition that indicates high probability of correct equalized 

signals, or an event corresponding to low noise levels. Conditions 2 and 3 

hold when there is uncertainty in the quality of the equalizer output with 

condition 3 taking the most conservative approach (no update) . 

(Y3) A Bussgang-type error function: 

E(k) = z(k) - g(z(k)) = z(k) - g(Eacq(k), Etr(k)) (3 .11) 

where g(-) is a Bussgang me1noryless nonlinear function. As mentioned in 

Chapter 2, Bellini [11] pointed out that most of the blind adaptive algorithms 

are Bussgang-type algorithms . They include t he Sato, the Godard, and even 

the DD algorithms. The Bussgang-type algorith1n resembles closely the LMS 

type algorithm since the error function of t he LMS algori thin is z ( k )-Q (z ( k)), 

where Q(- ) is the quantization operator and Q(z(k)) is taken as the reference. 

The Bussgang error replaces Q(z(k)) with g(z(k)) as is shown above. The 

combination of the respective error functions, given in (3 .11), is performed 

within the nonlinear function g ( z ( k)). 
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Several approaches to the switching problem have been given in the references 

[8, 15 , 53-55, 60 , 75 , 87, 116, 130 , 145] . We will review four popular switch-mode 

algorithms in the fo llowing subsection because they present novel concepts that 

enable a soft transition between the acquisition and tracking algorithms. 

3.3 Review of traditional switch-mode algorithms 

3.3.1 Benveniste-Goursat (BG) algorithm 

The very first known switch-rnode algorithm in the literature to address the switch

ing problem is proposed by Benveniste and Goursat [15]. They proposed to min

imize an error function that combines the Sato and the DD algorithm in the fol

lowing manner: 

(3.12) 

where k1, k2 are positive constants. It is expressed in he form of (3 .9). In their 

algorith111, they used the 111agnitude of the LMS error function as the weight of 

Esato ( k) . When the equalizer is far from convergence, then the equalized signals 

are usually far av\ray from the constellation points. Hence I EDD ( k) I is large and 

Esato(k) is largely used for the update . However , when the equalizer is close to 

convergence, I EDD ( k) I reduces. It is interesting to note that at perfect equalization, 

EDD(k) = 0, and so will EBc(k) . Therefore , the BG algorithm can achieve the zero 

cost condition given ideal convergence and no noise. Deshpande [23] reports still 

better perfonnance if the Sato error is replaced by t he CMA error. 

3.3.2 Stop-And-Go (SAG) decision directed algorithm 

The standard DD algorithm for joint MSE equalization and carrier recovery, which 

is nonnally utilized in the open-eye condition , can be turned into an algorithm 

providing effective blind convergence in the _ SE sense and is usable in the closed

eye acquisition pha e. This "stop-and-go" (SAG) algorithm [54 , 55 , 116] uses a 

binary-valued flag to indicate to both he equalizer and the synchronizer whether 

the equalizer output is sufficiently reliable. The flag shows "Go", i.e. , an update 

event when he signs of Etr ( k) and Eacq ( k) agree. Wlien they disagree , adaptation 

is stopped for that iteration. 

Consider the original algorith111 by Picchi and Prati. They e111ployed the Sato 

algorith111 and the DD LIVIS algorithm whose error func ions are Esato (k) and EDD (k), 
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respectively. Their error functions can be expressed in the forms of (3 .9), (3.10) in 

a modified 1nanner and (3 .11) , as shown: 

( ~1 ) Weighted error function 

EsAG(k) = 0.5EDD(k) + 0.5jEDD(k) lsgn (Esato(k)) . 

(~2) Conditional update type error function 

(k) _ { EDD(k) 
EsAG -

0 

(~3 ) Bussgang type error funct ion 

sgn( EDD ( k)) = sgn( Esato ( k)) 

sgn(EDD(k))-/- sgn(Esato(k)). 

(3.13) 

(3.14) 

EsAG(k) = z(k) - {0.5(Q(z(k)) + z(k)) - 0.5 jEDD(k)jsgn(Esato(k)) }. (3 .15) 

This is a de1nonstration that a switch-mode algorithm can be expressed in various 

fonns if required. 

3. 3.3 D ual-M ode Generalized Sato Algorithm (DMGSA) 

and Dual-Mode Godard Algorithm (DMGA) 

\;\Teekackody and Kassa1n [130, 145] proposed two sche1nes that separately use 

the generalized Sato algorith1n (GSA) and the Godard algorithm as the acqui

sition algorithms, and the DD LMS and the decision adjusted modulus algorith1n 

(DAJ'v1A) [126] as their tracking algorithms, respectively. Sche1ne 1 is a combina

t ion of the GSA and the DD LMS algorith1n, named dual-mode generalized Sato 

algorith1n (DNIGSA). Scheme 2 is a combination of the Godard algorithm and the 

DA1v1A, na1ned dual-1node Godard algorith1n (DMGA). 

The conditions of switching are as follows. For both DMGSA and D_ 1GA, 

condition 1 i when the equalizer output is within a predefined region D ( k). Con

dition 2 i i1nply its oppo ite , i.e. when the equalizer output is not inside D (k) . 

For D}l1IGS_A: D (k) i a box around the con tellation alphabet . For D GA D (k) 

i an annular region around the 1noduli of the (non-C_ ) constellation. So, the 

error function exp re ed in the form of ( 3 .10) are 
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1. Dual-Mode Generalized Sato Algorithm (DMGSA) 

where 

{ 
[l , OJ [EDD(k), Esato(k)JT 

EDMGSA(k) = 
[0, l J [EDD(k) , Esato(k)JT 

z(k) E Di 

z(k) tj_ Di, vi; 

EDD(k) = (Re(z(k)) - Q(Re(z(k)))) + j(Im(z(k)) - Q(Im(z(k)))) 

Esato(k) = (Re(z(k)) - 1 Re(z(k))) + j(Im(z(k)) - 1 Im(z(k))) 

where I is a constant [124J . 

2. Dual-Mode Godard Algorit hm (DMGA) 

{ 
[l , OJ [EDAMA(k), EcMA(k)JT 

EDMGA(k) = 
[O, OJ [EDA_t1A(k), cc 1A(k)JT 

where 

z(k) E Di 

z(k) tj_ Di, vi; 

C DAMA ( k) = ( I z ( k) 1

2 
- f4) z ( k) 

EcMA(k) = (lz(k)l 2 
- R)z(k) 
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(3 .16) 

(3.17) 

\f\ here R is the dispersion constant [49J and { !4} is the set of the radii square 

of the source constellation. For further details of the DA_ 1A algorithm and 

the DI\1GA please refer to [126J and [130, 145J respectively. 

3.3.4 Hilal-Duhamel (HD) algorithm 

Bilal and Duha1nel [60J proposed a dual-mode algorith1n for blind equalization of 

P SK 1nodulated signals. Their algori h1n combines the C~1_A and t he DD algo

rithm in the manner as shown in (3.11), i. e., a Bussgang-type algorithm. The 

combining 1nethod is u ing a memoryless proxi1nity mea ure of the actual output 

z( k) fron1 each of he con tellation poin s , so that the further z( k) i from a con

s ella ion point , he smaller is this proximity 1nea ure . The concept is similar to 

he Ben eni te-Gour a algorithm, \f\rhere it can be hown that the closer z( k) is 

· o a con ella ion poin , he 1nore the DD algori h1n will dominate . vVhen it is far 

a\f\1ay, the algorithm will be dominated b the C~1A. 

The algori h1n i a follo\f\ . Let di, i = {l , 2 · · · , M} be the M -PSK constel

la ion poin . Then he propo ed Bu sgang memor le s nonlinearity yields the 
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output 

EHv(k) = z(k) ~ exp {j. arg (~ Prox(z(k) : di) .Od;)} (3 .18) 

where the notations are defined as follows. The so-called proximity measure is 

defined as 

l /( ~ M-1 1 ) 
L-i=O llz(k)dil l 

V 

a 
Prox(z(k) : di)= ---- (3.19) 

where a is a normalization constant that ensures that t he sum of all proximities 
---t 

be equal to 1, and Odi = z(k) + z(k)di. Then (3 .18) becomes 

EHD(k) = z(k) - exp {j. arg ( z(k) +ta z(k)di ) } . 
i=O 11 z ( k) di 11 

(3.20) 

The behaviour of the proximity measure can be categorized under three scenarios : 

a) z(k) ~ 0 (Equalizer far from convergence): The distances ll z (k)dnll are al

most equal for all n due to t he symmetry of the constellation, and L ~ 1 a z( k)di 
i- llz(k)dill 

is ahnost a null vector, yields gHD(z (k)) ~ exp(j. arg(z(k))). 

b) I z ( k) I >> maxn ( / dn /) (Equalizer far from convergence): This corresponds to 

the case when z ( k) is very far from the constellation points. Then L ~ 1 a z(k)di = 
- llz(k)dill 

z(k) O + 6 has the same argument as z(k), 6 is a small insignificant value. 

c) z(k) ~ a(k) (Equalizer close to convergence): It is shown [60] that L ~ 1 a z(k)di = 
- llz(k)dill 

z( k )d*, where d* is the constellation point of the transmitted sy1nbol. Thus, 
------+ 

z(k) + z(k) d* = Od*, which is the decision directed algorithm. 

3.3.5 Diagrams of error functions 

The diagrams of t he error functions of so1ne of the above mentioned switch-mode 

algorith1ns are shown in Fig. 3.2. The shapes of the error functions are reflective 

of a combination of an acquisition and a tracking algorith1n which is proportioned 

according to a parameter that is a function of the equalizer output . We observe 

the following properties in the above figures: 

1. The shape of the. error function is detennined only by the position of the 

equalizer output regardless of how reliable these data are . This is the main 
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Figure 3.2: The error functions of the switch-mode algorithms outlined in the above 
subsections for 8-PAM signalling. Their shapes vary with the equalizer output z(k) 
only. (A) Benveniste-Goursat (BG) algorit hm [15], with parameters k1 = 1, k2 = 
0.25. (B) Stop-And-Go (SAG) algorith1n [116]. (C) Dual-Mode Generalized Sato 
Algorithm (DMGSA) [145], with the decision region D(k) = di± 0.5 , Vi , where 
{ di} is the set of the source constellation. (D) Dual-Mode Godard Algorithm 
(DMGA) [145] with the decision region D (k) =di ± 0.5 , Vi . 

"deficiency" in conventional algorithms that our switch-mode algorithm over

comes . 

2. Whenever t he equalizer output is close to a data sy1nbol, the shape of the 

error function rese1nbles t hat of t he tracking algorithm more. Otherwise when 

t he equalizer output is close to the bisector of the data symbols , its shape 

will resemble t hat of t he acquisition algorithm. 

3. All t he above switch-1node algorit hms yield zero error when the ideal conver

gence to optimal equalizer parameters is achieved. They exploit the discrete 

nature of t he input data as would decision directed algorithms. 

4. The well-known slow convergence of the "Stop-And-Go'' (SAG) algorithm can 

be explained (see Fig. 3.2-(B) ) by observing that almost half of the values of 

t he equalizer output corresponds to zero update conditions. This happens at 

t he values where the signs of both acquisition and tracking error functions 

do not agree. 
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3.4 

Reliability Based Technique For Switch-Mode Blind Algorith1ns 

A Novel Reliability Based Switch-Mode Al

gorithm 

Let Eacq ( k) and Etr( k) be the error functions of the blind algorithms of the acquisition 

mode and the tracking mode, respectively. We propose a switch-mode algorith1n 

with an error function 

e(k) = a(k),Etr(k) + (1- a(k))Eacq(k) (3.21) 

which represents a convex co1nbination between rEtr ( k) and Eacq ( k) with convex pa

rameter a( k) , and , is chosen to compensate for the differences in the variances of 

the respective error functions where it is sensible to assign, ~ E{IEacq(k)I } / E{ IEtr(k)l }1. 

The formulation in (3.21) is according to (3.9) . The principle design issue is how 

to detennine a(k) as a function of signals available at the receiver. In what follows 

we identify a(k) with a measure of reliability2
. 

Let Pc be the probability of the output of the quantizer being correct given 

t he output of the equalizer z(k) . Then our proposed reliability measure can be 

co1npactly expressed as 

a(k) = 

1 . 

2Pc -1 

0 

2 2 
(}' V < (}' thr 
0.5 < P:c < 1 and 0'

2 > 0'
2 

V - thr (3 .22) 

otherwise 

which we now explain. Given that a( k) is a convex parameter we can relate the 

extreme values of a(k) to Pc in the following way, where at one extreme, a(k) = 0 

·when the probability of the equalizer detecting an incorrect symbol exceeds that of 

the correct symbol, i.e., Pc < l - Pc or Pc< 0.5. At the other extreme, a(k) = 1 

when the probability of the symbol is high enough to allow the DD algorithm to 

converge to its global 1ninima. As empirical results often show that a bit-error

rate of less than 10% is usually sufficient reliable , we will set a( k) = 1 whenever 

CJ'~ < O';hr where O';hr is a suitable threshold . Subsequently we need to decide on the 

relationship between a(k) and Pc whenever 0.5 < Pc < l and CJ'~ > O'thr , which 

is the crucial portion that governs the need for smooth switching. We propose a 

1, is meant to be computed infrequently say at the end of each frame. When we consider 
the C11A and the L11S algorithm for example, we find that , is approximately constant for a 
particular constellation size during the transitional period between acquisition and steady state, 
i.e. , .at the vicinity of an open eye condition. For the 4-PAM source, for example, it can be shown 
e1npirically that , ~ 14. 

2The definition of reliability is the ability of a system or component to perform its required 
functions under stated conditions for a specified period of time [62]. 
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simple linear relationship between a(k) and Pc which is given by a(k) = 2Pc - 1. 

Other mappings are possible as long as a( k) is a monotonically increasing function 

of Pc . This concludes our explanation of the assignment of a(k). 

The probability Pc can be interpreted as the posterior probability of the event 

of a correctly detected symbol given certain measurements. Such an event can 

be mathematically expressed as {Aj* : Q(z(k)) = dJ* = a(k)}, where Q(·) is the 

quantization operator and j* is the index of the alphabet symbol that corresponds 

to a correct quantizer decision. All other incorrect events are { Aj : Q ( z ( k)) = dj , 

Vj -/- j*}. Thus , we define Pc as the posterior conditional probability 

(3.23) 

3.4.1 Computation of Reliability Measure a(k) 

To compute a(k) we need to compute Pc and a;. The former can be calculated 

by applying Bayes theore1n3 and the law of total probability: 

3The Bayes Theorem expresses the posterior probability as 

P (A IB ) = P (B IA)P(A) 
P (B ) 

(3 .25) 

(3 .26) 

(3.24) 

where P (B IA) is known as the likelihood function and P (A), P (B ) are known as the priors. The 
Law of Total Probability defines 

P (B ) = P (B IA)P(A) + P (B IA)P(A) 

where A is the complement event of A . The likelihood function can be obtained if we have prior 
knowledge of the distribution of the continuous random variable B given event A has occurred: 

P (B IA) = PA(B) . 
fBE JR, PA(B)dB 

Note that the upper case P (-) is used to denote the probability function , whereas the lower 
case p(-) is used to denote the probability density function. If PA (B ) is normalized, i.e. 
JBE JR, PA(B)dB = 1 then t he conditional posterior probability becomes P (B IA) = PA (B ). Simi
larly, Vie have P (B IA) = p,4(B). So (3 .24) becomes 

PA(B)P (A) 
P (A IB ) = PA (B )P (A) + p,4(B)P (A) 
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where p( ·) denotes the probability density function (pdf) . From assumption (}Cl), 

we get P(Aj) = l/M, \/j. From assumption (J-(2), p(z(k)IAj), \/j is the pdf of a 

normalized Gaussian distribution, i.e. , 

(3 .27) 

Therefore , due to assumptions (}Cl) and (J-(2), Pc of (3.25) becomes a function of 

both z ( k) and o-~ so that 

(
-(z(k) -Q(z(k))) 2

) exp 2 2 
n - (J'v re -

"\"' M ( -(z(k)-dj )2 ) . 
L,'j=l exp 20'~ 

Then a(k) of (3 .22) becomes 

a(k) = 

1 
2exp (-(z (k)-Q(z(k)) )2 ) 

2crv -----'----,.----',--- - 1 
M (- (z(k) -dj )

2
) 

Lj=l exp 2 2 
CTv 

0 

2 2 
(TV < (Tthr 

otherwise. 

(3 .28) 

(3.29) 

The contour plot of a(k) w.r.t . changes in z(k) and CTv can be illustrated as in 

Fig. 3.3. Here CTthr is chosen to be 0.2. 
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Figure 3.3: Contour plots of the reliability measure of (3 .29) for a 4-PAM data. 

To calculate the reliability measure a(k) in (3 .27) and Pc in (3 .36), it is neces-
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sary to estimate the variance of the effective noise a;. However , estimation of this 

noise level is not a simple task because of the unknown channel. In our situation, 

we will rely on the effective noise being Gaussian due to the central limit theorem, 

i.e. , the assumption of (J-C2). Recall that the conditions of the central li1nit t heo

rem are such that there should be many independent terms in the impulse response 

of the effective noise which is the co1nbined channel-equalizer response excluding 

the cursor s0 . In other words , the terms in { s j}, V j -/- 0 should be many and 

independent of one another. When the channel eye is almost open, the impulse 

response { Sj } , \/j -/- 0 should contain many small terms whose cross-correlation is 

small [57, ch. 2] if the equalizer has successfully minimized the cost function. It is 

actually appropriate to restrict the region of our consideration to the region when 

the channel eye is almost open as this is when switching usually occurs and the 

calcufation of a( k) is required. 

There are two known methods to obtain a; , namely the decision directed MSE 

and the signal-to-noise ratio (SNR) moments estimator approaches. 

SNR Moments Estimator 

The variance of the effective noise can be obtained by solving simultaneously the 

equations of the second ( M 2 ) and fourth ( M 4 ) order moments of z( k) [115] 

M2 6 
S + N 

M4 6 kaS2 + 6SN + kvN 2 
(3.30) 

(3.31) 

where S, N are the power scaling factors of the unit variance signal and noise 

respectively, and ka 6 
E{ la(k) 1

4} / E{ la(k) 1
2}2 and kv 6 

E{ lv(k) 1
4} / E{ lv(k) 1

2}2 

are the kurtoses of the signal and the noise , respectively. Let the so-called excess 

kurtoses of a(k) and v(k) be Ga 6 ka - 3 and Gv 6 kv - 3. Then solving for Sand 

J\T in tenns of M2 and M4 , we get 

S = M2Gv ± J(M2Gv) 2 - (Ga+ Gv)( M:j; (Gv + 3) - M4) 
Ga+ Gv 

N = M2-S. 

(3.32) 

(3.33) 

Further we assume the effective noise is Gaussian so that Gv = 0. Thus the 

last step before a; 6 is obtained is to solve for S and of (3.32) and (3.35) 

simultaneously yielding 

(3.34) 
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The second and fourth order moments M 2 , M4 , can be estimated recursively in 

time k by 

M2(k + 1) = pM2(k) + (1 - P)! z(k)j 2 

M4(k + 1) = pM4(k) + (1 - P)l z(k)l4 

-------

(3.35) 

(3.36) 

where p is a forgetting factor t hat is close to 1. The init ial values of Jvf2 (0) and 
-------M 4 ( 0) are set to zero . Equation (3 .36) needs to be computed only once in every 

frame4
. The estimated variance is t hen substituted into Pc of (3 .28) to acquire the 

reliability measure a(k) . 

Decision Directed MSE Method 
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Figure 3.4: Relationship between the DD MSE and av for M-ary PAM with M = 
2, 4, · · · , 64. The range of values of av is from 0.1 to · 1.4 presented in the log scale. 

Once the pdf of v(k) i assumed Gaussian, there is a straight forward relation

ship between a~ and the DD MSE. This 111ethod involves a lookup table to be 

tabulated which can be computed offiine. The value of av is varied from say 0.4 to 

4 In our simulations using 4-PAM data, one frame consists of 100 sy1nbols. 
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Table 3.1: Lookup table for MSEDD(a v) and variance of effective noise, a~ for 
M -PAM signals 

av 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
a2 

V 0.16 0.25 0.36 0.49 0.64 0.81 1.0 

M -PAM MSEDD (a v) 
2- 0.157 0.232 0.311 0.392 0.476 0.565 0.663 
4- 0.155 0.224 0.287 0.344 0.396 0.444 0.495 
8- 0.154 0.219 0.275 0.32 0.354 0.383 0.411 
16- 0.154 0.217 0.269 0.308 0.334 0.353 0.369 
32- 0.154 0.216 0.266 0.302 0.324 0.338 0.348 
64- 0.154 0.216 0.265 0.3 0.319 0.33 0.337 

1.0 at an interval of 0.1 and a large sample of z(k) is generated for each av. Let 

the DD MSE of these sample points be MSEDD (av), where it is a function of av. 

Then the DD MSE can be computed according to 

MSE ( ) 
_ Lt=1 lz(k) - Q(z(k))l 2 

DD av - L (3 .37) 

where Lis the sa1nple size used. The lookup table for M -PAM, M = 2, 4, 8, 16, 32, 64 

for a range of av values is tabulated in Table 3.1. 

One advantage of the DD MSE approach over the SNR 1noments estimator, 

apart from being less computationally intensive , is that it is a direct and unbiased 

estimator. In contrast t he SNR 1no1nents estimator may suffer a large variance 

given higher order moments need to be esti1nated. On the other hand , the DD 

MSE approach is less robust for greater constellation sizes . For M -PAM, it may 

not be reliably used for constellation sizes larger than 16 as the relationship becomes 

increasingly nonlinear (see Fig. 3.4). 

3.5 Discussions on convergence and approxima

tion 

3.5.1 Convergence 

The error function of (3.21) is a function of both z(k) and a~. We plotted the error 

funct ion that combines the CMA and the DD LMS algorithm. Figure 3.5 depicts 

the error function for an 4-PAM source for the range of z(k) values between -

4 and 4, and for the range of av values between O and 2. At high noise levels , 
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Figure 3.5: The error function of the novel switch-mode algorithm of Equation 
(3 .21). Here , = 14. 

say when o-v ~ 2, the error function is clearly dominated by <=cMA(k) (recall that 

<=cMA(k) has the shape of a cubic, a third order polynomial). At low noise levels , say 

o-v ~ 0, the error function is clearly dominated by <=tr ( k). The transition between 

<=cMA(k) and <=tr(k) which happens when O"v reduces from 2 to O may be observed as 

s111ooth. Thus the convergence of the switch-mode algorithm is such that it follows 

the characteristics of the CMA during the initial acquisition phase and then the 

characteristics of the DD algorithm at steady state. 

A look at the cross section of the new c( k) 

Consider further a switch-111ode algorith111 that combines <=cMA(k) and <=tr(k) for an 

8-PAM source. If we were to take the cross sections of the error function at o-v = l. 2 

and 0.7 , then the resulting error function evaluated at O"v = 1.2 is predo111inantly 

<=c:vrA (k) and <=tr(k) for O"v = 0.7. See Fig. 3.6. This switch-mode algorith111 is 

not only robust at high noise levels but the error also goes to zero at perfect 

( and noiseless) equalization. The 3-D characteristic of this error function can be 

contrasted with the 2-D error functions in Fig. 3.2, typified by Benveniste-Goursat 

and other researchers. 
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Figure 3.6: Cross sections of the 3-D graph of t he error function of the new dual
mode algorithm for 8-PAM signalling and,= 100. (A) e5v = 1.2 and (B) e5v = 0.7. 
The error functions of t he CMA and t he LMS algorithms are also plotted as dashed 
and dotted lines respectively. 

3.5.2 Gaussian assumption of effective noise 

This subsection is intended for discussing t he Gaussian assumption of the effective 

noise which we have used to estimate t he reliability measure. While the assumption 

that the assumption that t he effective noise, v ( k), is Gaussian is generally untrue for 

most dispersive channels and hence it is difficult to derive a universal expression for 

the distribution of v(k) due to the unknown channel, the central limit theorem may 

simplify matters significantly. Recall that t he conditions of the CLT are that there 

are many, independent random variables where none of them is especially dominant. 

From (3.5) that v(k) is the sum of the sequence sja(k - j), - N < j < N + L , 

j i- 0. Therefore for CLT to be valid , {sj} , - N < j < N + L , j i- 0 should be 

independent of each other and the order of the impulse response , 2N + L , should 

be sufficiently large. In this discussion we will cover two scenarios where the first 

validates the CLT and the second considers the case when 2N + L is very large. 

1) If 2N + L is sufficiently large ( usually at least 15 will yield well approximated 

Gaussian distribution) , then the correlation between v(k) and a(k) is small. 

The normalized correlation coefficients of v(k) and a(k) are [57, ch. 2] 

E{v(k)vj } L z SzSz+j-k (3.38) 
jE{v(k)2 } E{ v;} Lz 8 [ 

and 

E{a(k)vj } Sj-k 
(3 .39) 

jE{ a( k )2} E{ v;} vT;st' 
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If 2N + L is a large positive integer , then the above coefficients which are on 

the order of the inverse of the square root of the terms Sj that are different 

from zero will be small. This results in srnall cross- and autocorrelation 

of v(k) and a(k) which validates the CLT. Supportive experimental results 

were presented by Metzger [101] whereby the pdf 's of the effective noise 

in multilevel digital transmissions look reasonably Gaussian , and becornes 

increasingly Gaussian-like with increasing constellation sizes. 

One remaining issue regards the possibility of several taps with relatively 

larger values than the rest dominating the overall distribution of v ( k). A 

simple example is when the equalization just begins , i.e. , w(k) = [O, · · · , 0, 1, 

0, · · · , OJ, and the channel has just two non-zero taps, h = [1, ,,\], where ,,\ is 

a non-zero value. Then v(k) cannot be (approximately) a Gaussian random 

variable. A general conclusion is that the more accomplished equalization is , 

the more Gaussian-like v ( k) will becon1e. 

2) Consider 2N + L ~ oo. Even though the derivation of the CLT assumes the 

limiting case when the number of terms approaches infinity, it can be shown 

that this is actually undesirable. As pointed out by Ding et al [57, ch. 3], 

one ilnportant condition for the CLT is for the variance of v(k) to be finit e 

and non-zero, i.e. , 

(3 .40) 

where ,,\1 and ,,\ 2 are so1ne finite positive constants. 

In order to justify the assumption that v ( k) is Gaussian, we restrict our region 

of consideration to the region where the eye is almost open. By then the condition 

that Sj are independent rando1n variables is satisfied . Further , we propose to prefix 

the usual equalizer with a recursive whitening filter [14, 75] in order to satisfy the 

CLT conditions that 2N + L be large but finite. A recursive filter ensures the length 

of the co1nbined system to be large regardless of the order of the channel. Besides, 

prefixing the recursive filter also si1nultaneously satisfies the second condition of 

2N + L < oo since its (transversal) impulse response is exponentially decaying with 

increasing tap length [58]. This is why 2N + L is less than infinity in the practical 

sense. So long as the .Gaussian assumption of v ( k) is valid, so would a( k) and 

a sumption (n2). 
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Figure 3. 7: A comparison of several dual-mode algorithms equalizing channels (A) 
h' , and (B) h" , both at an SNR of 25dB for 4-PAM signalling. 

3.6 Simulation Results 

With stationary channels, the equalizer achievements can be characterized in terms 

of convergence speed and steady-state error. As our performance measure , we have 

used the DD MSE which can be estimated recursively via 

MSEDD(k + 1) = pMSEDD(k) + (1 - p)[z(k) - Q (z(k))] 2 (3.41) 

where p = 0.99 is the forgetting factor. Results have been obtained via Monte Carlo 

simulations using 200 independent runs on two nonminimum phase channels: 

h' = [0 .04, -0.05 , 0.07, -0. 21 , -0.5 , 0. 72 , 0.36 , 0, 0.21 , 0.03, 0.07] 

h" = [0 .8264 , -0.1653 , 0.8512 , 0.1636 , 0.81]. 
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Figure 3.8: A comparison of several dual-mode algorithms equalizing channels 
H1(z) with an SNR of (A) 20 dB, and (B) 15 dB for 4-PAM signalling. 

h' is a channel with a weaker coloring on the channel output [118], and h" is one 

with stronger coloring [75] . 

Siinulations on both channels were carried out at an SNR of 25dB using 4-P AM 

signalling { ±1, ±3}. A total of 104 and 105 symbols were used in each simulation 

run when dealing with the channel h' and h", respectively. For the respective 

channels, we used a baud-rate equalizer with 20 taps and 40 taps initialized with 

a center tap strategy, employing a step size of 10-4 and 2.5 x 10-5 , respectively. 

We compared the performance of the proposed dual-mode algorithm (new) 

with 4 other popular algorith1ns, na1nely the Benveniste-Goursat (BG) algorithm 

[15], the Stop-And-Go (SAG) algorithm [116], the dual-mode Godard algorith1n 

(DMGA) [145] and the traditional "hard switching" (HS) algorith1n. The HS al

gorithm will switch from the CMA to the LMS algorithm when MSEDD(k) < 0.25 . 

The choice of acquisition and tracking algorithms in all cases is the CMA 2-2 and 

the DD LMS algorith111, re pectively, except for the DMGA [145] which employs 

the decision adju ted modulu algorith1n (DAMA) [126] at steady state. Their 



3.6 Simulation Results 

-10 -. 

-15 

w -20 
(J) 

~ 

-25 

-30 

0 

-
~ I 

-.:::... · - . _ ~ Stop-And-Go ( dash-dot) 
\ \ · -......./ 

\ ~ Benveniste-Goursat (dash) 

\ ~ · 'Hard Switching' (dot) 
\ . 

. '-
.. \ DMGA (thin solid) 

. -. . 

~- -
· New algorith.m-Cthtck -so.lid) -- -

, 

-_ I 
~ I 

~ I 

-_ I 

~ 
Trai~e~ LE (thick dot) 

', \ ~ 
I -

I • • I J I I I I I I • e e I I I I I I I I I • • e I \ t ~~~~~~~ 
\ 

New algoriij,m with pre-whitening (thick dash) 

..... --------~-----~ 
2000 4000 6000 8000 10000 

(A) Number of data points 

65 

Figure 3.9: Similar to Fig. 3.7, this graph also includes the new equalizer that is 
prefixed with a recursive whitening filter where lower steady state MSE is achieved 
due to the additional whitening filter which increases the effective length of the 
equalizer, thereby being able to estimate the channel more accurately. The SNR is 
25 dB, and a 4-PAM source is used. 

respective error functions are given below: 

EcMA ( k) = z ( k) ( I z ( k) 1

2 - R2) 

EDD(k) = z(k) - Q(z(k)) 

EDAMA(k) = z(k)(lz(k)l 2 
- Q2 (z(k))) 

where Q( ·) is the nearest neighbor quantizer. 

(3.42) 

(3.43) 

(3.44) 

For our simulations , the parameters of various algorithms of comparison are out

lined below. In the notation of ( 3. 22) we can express the error function in terms 

of the combination /3 ( k) = [/31 , {32J. The name of the associated algorithm is super

scripted on {3 (k). We have assigned {3BG(k) = [4 , IEDD(k)\J; 13sAG(k) = [40 , 0J for h' 

and 13sAG(k) = [14, OJ for h" when sgn(EcMA(k)) = sgn(EDD(k)) and 13sAG( k) = [O , OJ 

when sgn(EcMA(k)) # sgn(EDD(k)); {3DMGA(k) = [1 , 0], \f\ z(k) - Q (z(k))\ < 0.2 , 

and {3DMGA(k) = [O, lJ otherwise; {3H8 (k) = [O, lJ when MSEDD(k) > 0.25 , and 

{3H8 (k) = [14, OJ otherwise. As for our dual-mode algorithm, we used a(k) from 

(3.27) and assigned , = 14. The variance o-; is estimated from (3.32). 

We simulated 200 runs for each dual-mode algorithm for both channels. The 

graphs of the DD MSE of the averaged runs are plotted in Fig. 3.7. Not e that 

t hese graphs are obtained by averaging out only the MSE of the runs that have 
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Table 3.2: Su111mary of results in Fig. 3. 7 including failure rates 
h' h" 
Normalized Normalized 

Dual-111ode Fail time to reach Fail time to reach 
Algorithm rate -14dB I -18dB rate -14dB I -18dB 

New 0% 1 1 3.5% 1.11 1 
BG 0% 1.45 1.35 16.5% 1.65 1.35 

SAG 0% 2.70 2.88 55.0% 3.18 -

DMGA 0% 1.15 1.25 1.5% 1.06 1.07 
HS 1.5% 1.13 1.31 53.5% 1 1.23 

Time normalized by I 1590 2110 11 28900 49700 

been successful in convergence. The summary of the results that includes the 

failure rate of convergence is tabulated in Table 3.2. The failure rate is calculated 

by recording the number of runs where the MSE at the end of a particular run is 

higher than -13.15 dB = 0.22 then dividing by the total nurnber of runs. The time 

to convergence has been normalized by the averaged number of symbols required 

by the fastest algorithm. From Table 3.2 , the hard switching algorith111 is the most 

unreliable as it yields high failure rates. Both our algorith111 and the DMGA are the 

smoothest in terms of low failure rate , but the DMGA yields higher steady state 

MSE and is also carrier phase blind. The general conclusion is that the proposed 

new algorithm is superior than others in tenns of convergence speed and steady 

state error based on the results in Fig. 3. 7 and Table 3.2. 

3. 7 Conclusions 

In this chapter, we proposed a new switch-111ode algorith111. It reflects the reliability 

of the equalizer output as a function of the equalizer output itself and the effective 

noise variance . When employed, the technique exhibits superior performance in 

terms of convergence speed and steady state errors relative to several conventional 

switch-mode algorith111s. This new technique also eliminates any require111ent for 

the manual control of the parameters that govern the _convergence speed and excess 

noise. 



Chapter 4 

Probabilistic-Based Switching 

Technique For Switch-Mode 

Algorithms 

In this chapter, we propose a new switching technique that is intended to ensure a 

smooth switch-over between the acquisition and tracking algorithms in addition to 

achieving rapid convergence and low steady state errors. Like the reliability-based 

technique proposed in Chapter 3, this new technique also exploit both the equalizer 

output as well as its estimated distribution to achieve the above objectives. The 

most important property of this technique lies in the simplicity of this technique 

that accurately and promptly detects suitable conditions for the employment of 

the tracking algorith1n. The technique incurs no additional costs but it achieves 

significant improvements over conventional switch-mode algorithms, for both hard

switching and soft-transition type. When coupled with the result of Chapter 6 

which reveals that the multi:_modulus algorithm (MMA) [105 , 152] usually yields 

correctly oriented output constellation upon the convergence of the adapt ive pa

rameters , a tri-mode algorithm is proposed to perform joint blind equalization and 

phase recovery. 

Conventionally, the switch-mode algorithm is perceived to be a combination of 

an acquisition algorithm and a tracking algorithm in such a way that they comple

ment one another's weakness so that the performance of the algorithm is improved. 

However, in a more critical approach, we choose to treat switch-mode algorithms 

as merely a tracking algorithm whose acquisition is assisted by a temporary acqui

sition algorithm that is less desirable in the sense that it yields poorer steady state 

performance, but is absolutely necessary during acquisition. Thus , it becomes clear 

that failure to switch-over from the acquisition algorithm to the tracking algorithm 

67 
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as soon as the data estimates become sufficiently reliable will consequently slow 

down the convergence of the equalizer. Hence, this motivates the design of better 

and more efficient techniques to detect the open-eye condition reliably. 

In Section 4.1. of this chapter, we present a brief problem statement regarding 

the difficulty in perfonning switching. In Section 4.2 , we illustrate graphically the 

error functions of the acquisition and tracking algorith1ns to help us appreciate the 

abruptness encountered due to the switching in switch-mode algorith1ns. In Section 

4.3 , we present our novel switching technique. In Section 4.4., we present a tri-mode 

algorithm that uses this switching technique to perform joint blind equalization 

and phase recovery effectively. Lastly, we present convincing simulation results to 

show the i1nprovement of this technique over some previous criteria reported in the 

literature. 

4.1 Problem Statement 

Without a training sequence in blind equalizers, the detection of an open eye con

dition using for example the closed-eye measure ( CLEM) in (2 . 7) is impossible. 

Thus, we must 1nake a good guess regarding this condition based only on the avail

able observed data. To make the existing task even more challenging, we will rely 

only on the most current data signal, for reduced complexity, to make this guess. 

Conventionally, it is common to esti1nate the mean-squared error (MSE) of the 

equalizer output, as in the "hard-switching" criterion, and periodically compare it 

to a pre-defined threshold value that usually corresponds to low error rates. These 

threshold values, unfortunately, need to be chosen in a very conservative manner 

to avoid switching too early that results in the ill-convergence of the tracking al

gorithm [92 , 99]. The acquisition algorithm is thus employed much longer than 

desired thereby sacrificing valuable acquisition time. Moreover , the NISE criterion 

1nay not be suitable because of the steady state MSE is comprised of the minimum 

achievable :WISE plus an excess NISE term that is due to the fluctuation of the filter 

tap parameters about their optimal values [42, 58]. Large a1nount of excess MSE 

would often contribute to the total MSE especially for large non-constant modu

lus ource con tellations [65] uch as higher ordecPAM and QA 1 constellations. 

Therefore: he ~ISE estimate that i high due to the exce s MSE contribution 

1nay not drop below the pre-defined thre hold value even though the channel eye 

is clearly open: thu preventing it fro1n witching to the tracking algorithm. In ad

dition to the above problem , 1nost witching criteria are ba ed on econd order or 

higher order stati tic of the data sequence , for example the MSE and the reliability 
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measure [82], which must be estimated. A large sample size is therefore required 

before an accurate estimate can be obtained. Again, the collection of large sampl~s 

may take time and slow the estimation process and consequently, slow convergence. 

4.2 Graphical Illustration of Switching Difficulty 

in Switch-Mode Algorithms 

Since we have repeatedly mentioned about the switching difficulties encountered 

during the switch-over of the switch-mode algorithms, some graphical illustra

tions are provided in this section to assist us in appreciating this problem visu

ally. Consider a transversal equalizer, w( k), whose regressor vector is denoted by 

r(k) = [r(k - N), · · · , r(k), · · · , r(k + N)]. Then the stochastic gradient descent 

equation of the equalizer is 

8J(k) 
w(k + 1) = w(k) - µ Bw(k) 

= w(k) - µc(k)r*(k)T. 

( 4. la) 

( 4. lb) 

The error function of the switch-mode algorithm, c( k), essentially combines the 

acquisition algorithm and the tracking algorithm. In what follows , we will plot the 

figures of I c( k) I for some acquisition algorithms, namely, the CMA indexed by inte

gers 1 and 2 (see (2.50)), and some tracking algorithms, namely, the DD algorithm 

and the decision adjusted modulus algorithm (DAMA) (2.70) [126]. Their cost and 

error functions are given below: 

J cMA1(k) = E{(lz(k)I - ,g))2} 

JcMA2(k) = E{(lz(k)l 2 - ,g))2} 

JDD(k) = E{(z(k) - Q(z(k))) 2} 

JDAMA(k) = E{lz(k) 2 - QR(z(k)) 2
1

2} 

EcMA1(k) = z(k) - ,g)sgn(z(k)) 

CCMA2(k) = z(k)(lz(k)l 2 - ,g)) 
CDD(k) = z(k) - Q(z(k)) 

CD AMA ( k) = z ( k) ( I z ( k) 2 - QR ( z ( k)) 2 / 2) 

( 4.2a) 

( 4.2b) 

( 4.2c) 

( 4.2d) 

( 4.3a) 

( 4.3b) 

( 4.3c) 

( 4.3d) 
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Figure 4.1: The plots of le(k)I for (A) CMA-1 , (B) CMA-2 , (C) DD algorit hm, (D) 
DAMA algorith111, for the non-constant modulus 16-QAM source signals. 

where 125) is known as the dispersion constant that is parameterized by the positive 

integer p as in ( 2. 51) , Q ( ·) is the nearest neighbor quantizer , QR = arg 111ini { /I z( k) 1-
ri /} , where { ri} are the radii of circles that join the source constellation points. 

Further details on the DAMA can be found in Chapter 2.5.6 or [126]. 

Thus by plotting the figures of le( k) I against complex values of equalizer out

put z(k), we can then appreciate the differences in the respective shapes of the 

acquisition and tracking algorith111s that complicate switching. The shapes differ 

largely for data constellations which are constant 111odulus such as binary PAM, 

4-QAM , 8-PSK and for those which are non-constant 111odulus such as 8-PAM and 

16-QAM. 
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Figure 4.2: The plots of IE(k)I for (A) DD algorithm, (B) DAMA algorithm, for 
the constant modulus 8-PSK source signals . The plots of IE( k) I for CMA-1 and 
CMA-2 are identical to Fig. 4.1-A,B, except that ,g) has to be readjusted. 

4.2.1 Non-Constant Modulus Constellation 

We consider first the non-constant modulus constellation of 16-QAM. The absolute 

values of the error functions in ( 4.3) are plotted in Fig. 4.1. The minimum points as 

seem in the figures indicate zero update of the equalizer parameters. From Fig. 4.1-

A,B, none of the sixteen (16) QAM data points lie on the minimum points. This 

is the reason why a finite excess MSE is still expected even when the CM equalizer 

has converged to its optimal settings [42, 65]. This is because of the finite error term 

that constantly updates the equalizer parameters. On the contrary, the tracking 

algorithms such as the DD and the DAMA algorithms yield zero solutions when the 

equalizer has converged to its optimal settings since all 16 data points correspond 

to the minimum points of the plots in Fig. 4.1-C,D. It is clear from the figures that 

the error functions of the acquisition and the tracking algorithms are very different 

indeed, thereby resulting in a disruption in the convergence of the switch-mode 

equalizer when the switching occurs. 

4.2 .2 Constant Modulus Constellat ion 

We consider now the constant modulus constellation of 8-PSK. From Fig. 4.2-

A,B, it is clear that upon convergence, the eight (8) PSK data points would all 
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Figure 4.3: The new switch-mode algorithm featuring adaptation with the acquisi
tion algorithm when z( k) is outside the individual square regions surrounding each 
data point , and with the tracking algorithm otherwise. 

lie on the surface that correspond to local minima. T his is also the same for the 

acquisition algorith111s, CMA-1 and CMA-2 (which have the same shapes as 4.2-

A,B). The only difference between the acquisition and tracking algorithms is t hat 

upon convergence, t he phase of the acquisition algorithm may differ (deviate) fro111 

the original phase. This result therefore i111plies that switching is easier if the data 

constellation is constant modulus than if it were non-constant modulus. 

4.3 A Novel P robabilistic-Based Switching Tech-
• n1que 

Using a concept that parallels the reliability measure derived fro111 Bayes theorem in 

Chapter 3 and [82, 83], we propose a new switching technique that is also dependent 

on both the equalizer output and its statistical distribution. This is because we have 

shown that according to Bayes theore111, the reliability of the equalizer output is a 

function of both the equalizer output and its distribution [82, 83] . Consequently, 

the new switch-mode algorith111 111ay achieve 111ore rapid convergence and lower 

steady state errors. On the other hand , the new technique in this chapter, unlike 

the reliability-based technique in Chapter 3 that is computationally intensive , is 

very si111ple but yet accurately reflects an open-eye condition. This switch-mode 

algorithm co111bine the acqui ition and tracking algorithms in a convex manner 
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using a binary combination parameter1
. 

We originally developed this smooth switching switch-mode technique for QAM 

systems. Its error function can be expressed as 

c(k) = a(k),EDD(k) + (1 - a(k))ccMA(k) 

or perhaps more conveniently as 

c(k) = { rEDD(k) 
ECMA (k) 

z(k) E D(k) 

z(k) tj_ D(k) 

(4.4) 

(4.5) 

where , is appropriately chosen to compensate for the differences in the variance 

of the respective error functions as in (3.21) and details found in Appendix A, and 

the binary combination parameter is defined as 

a(k) = { ~ z(k) E D(k) 

z(k) tj_ D(k). 

D( k) is our reliable regions which are designed to correspond to regions of relatively 

low bit-error-rates so that the DD algorithm can be employed more reliably [92, 99]. 

One relatively more reliable region in the QAM constellation space can be identified 

as regions enclosing each of the constellation point. Therefore , if we denote the 

individual region that encloses the pth data point, ap, as Dp(k), then D(k) is given 

by 

D(k) = UDp(k), P =12··· M 
' ' ' 

(4.6) 

where we have heuristically chosen DP ( k) to be the square region , each of equal 

size for all p , in a similar fashion as [145]. The diagram illustrating this switch

mode algorithn1 is shown in Fig. 4.3. During the transient stages, the distortion 

introduced by the channel will cause the equalizer output to be scattered in a very 

large area around the transmitted data point. Thus , if D ( k) is sufficiently small 

during the initial acquisition mode , then the error function will be dominated by the 

acquisition algorithm. On the other hand, in the steady state, since the equalizer 

output will be close to the transmitted data point , then the error function will be 

dominated by the tracking algorithm. The more important contribution which we 

will now show is to vary the size of the region, D(k) , according the new probabilistic 

1neasure that is closely related to the distribution of the equalizer output. The 

1 It can sometimes be thought of as a binary approximation of the reliability measure. 

tlHET • 7Ei **** ... 
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increase of t he size of D ( k) in steady state makes sense because in steady state, 

we want D ( k) to be a large area so that most equalizer output will be found in it 

and they can drive the equalizer with the DD algorithm instead of the acquisition 

algorithm. On t he other hand, during the initial acquisition, we want D ( k) to be 

small so that most output will drive the equalizer with the acquisition algorithm. 

Let the width of the each individual region, Dp(k), be 25(k) as in Fig. 4.3. Then 

we propose to update the width , which ultimately governs the size D (k), according 

to the probability of the equalizer output being found in the reliable region) D ( k), 

i.e. ' 

5(k + 1) = Pr{z(k) E D (k) } ( 4. 7a) 

= Pr { Re [ z ( k) - Q ( z ( k))] < 5 ( k)} 

+ Pr{Im[z(k) - Q(z(k))] < 5(k)}. ( 4. 7b) 

Imple1nentation-wise, the width of these individual regions , 5(k) , can be updated 

according to the recursion 

where 

I (k) - { 
1 

5(0) 

5(k + 1) = {35(k) + (1 - {3) I (k) 

Re(cDD(k)) < 5(k) and Im(EDD(k) ) < 5(k) 

otherwise 

( 4.8) 

and /3 is a forgetting factor , say 0.99. Its initial value, 5(k), should be sufficiently 

s1nall but non-zero. Consider first an initial closed-eye condition and 5(0) is small. 

Say under successful adaptation, t he channel eye opens. Then Pr{z( k) E D ( k)} is 

increased regardless of the size of D ( k) , as long as it is non-zero. This is because the 

highest concentration of equalizer output is found in the regions surrounding the 

data points . Consequently, t he width of t he individual region increases according 

to (4.8). The increase of 5(k) subsequently induces an increase in the size of the 

reliable region, D ( k). This will in turn increase Pr{ z ( k) E D ( k) } even 1nore. This 

cycle repeats itself until an equilibrium is reached.· For an open eye condition, 

5(k) ~ 1 ask~ oo . Conversely, for a closed eye condit ion , 5(k) ~ 5(0) ask~ oo 

in a similar 1nanner. 

Since the width 5 ( k) increases and decreases progressively, it provides a soft 

transition between the acquisition and the tracking algorith1ns . In addit ion , the 

simple technique incurs very little implementation cost but is very effective even 
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for large constellation sizes . Unlike higher-order criteria such as the DD MSE 

hard-switching technique, as well as t he reliability-based technique [82 , 83] , this 

technique involves only first order estimation which are computationally simple 

and accurate with a small sample size. 

4.4 Algorithm For Joint Blind Equalization And 

Phase Recovery 

Extending the probabilistic switching technique developed in Section 4.3 , we pro

pose an algorithm that can perform joint blind equalization and phase recovery 

by exploit ing reliability in the constellation space. We first describe the QAM 

equalizer model before delving into the development of the new algorithm. 

4.4.1 System Model 

Non-stationary Combined Channel Combined Equalizer Phase-Estimator 
·· ···· ·· ············ ···· ··· ····· ·· n(k) 

Stationary : I : Phase : 
Channel : t : Equalizer Estimator Quantizer 

a(k) ® I I : + CDr(k): I I y(k) ® :Z(k) ' I a(k) ... 
~ {hi} : .., : .., { Wi} .., : .., Q ( ·) 

• I I I ]~............... : .................... +· 
exp(j 8(k )) exp ( - j <P ( k) ) 

Figure 4.4: Baseband QAM system 1nodel for joint blind equalization and phase 
recovery. 

The objective of the QAM digital baud-rate receiver that we will consider in 

this paper is to recover the data symbol up to a fixed time delay 6k and a possible 

phase shift () modulo 90°. The phase ambiguity of modulo 90° is allowed as it may 

be easily detected and corrected using differential encoding techniques. Thus the 

desired output of the combined equalizer-phase estimator should be in the form of 

a(k - 6k)eje , where 8 E [0° , 90° , · · · ]. ( 4.9) 

where a(k) is the transmitted symbol drawn from the M -QAM alphabet set A = 

{ a1 , a2, · · · , aM} . The baseband channel output is corrupted by a linear distortive 

channel and additive white Gaussian noise ( AWG N). In addition , we assume that 

demodulation phase errors may be present which may cause time-varying phase 
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rotations or simply an arbitrary phase offset in the output signal constellation. 

Therefore in a typical baseband receiver [49,63,139], its output prior to quantization 

can be expressed as (see Fig. 4.4) 

z(k) = a(k)ej~e(k) + v(k) (4.10) 

where 

6e(k) = [e(k) - <I>(k)] ( 4.11) 

is the instantaneous residual phase error term, e ( k) and <I> ( k) are as depicted in 

Fig. 4.4 , and 

e(k) = 21rkf ~+ea ( 4.12) 

is the demodulation phase error that consists of a normalized frequency offset , 

J~, and an arbitrary phase offset , ea; and v(k) is the residual-ISI-plus-channel

noise term. We will also make the simplifying assumption that v(k) is Gaussian 

and circularly distributed with independent real and imaginary components each 

of variance o-~ due to central limit theorem [57, Ch.2]. A typical receiver sepa

rately removes the ISI , v(k), and compensates for the phase errors, 6e(k) , with an 

equalizer and a phase estimator, respectively. In our · approach, we propose a new 

algorithm that accomplishes the joint tasks of ISI removal and phase estimation in 

a single filter. Our philosophy is as follows. Rather than treating the phase errors 

separately from v(k) as in (4.10), we choose to express the equalizer output as 

z(k) = a(k) + v'(k) ( 4.13) 

and then minimize EI v' ( k) 1
2

, where the v' ( k) is the ISI-pl us-noise term of the non

stationary channel eje(k) · h , where his the channel coefficient vector, [h1 , h2, · · · ]. 

4.4.2 Development of Novel Tri-Mode Algorithm 

Having established the system model, we now propose an algorith1n that performs 

joint blind equalization and phase recovery without having to rely on a separate 

phase estimator using the novel switching technique developed earlier in Section 

4.3. In our approach, we have designed an algorithm that e1nploys one of three blind 

algorith1ns depending on the location of the equalizer output in the constellation 

space. They are the DD algorith1n, the MMA and the CMA, whose error functions 
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Table 4.1: Characteristics of blind algorithms 
II CMA I MMA I DD algorithm I 

Robust Acquisition y y N* 

Low Excess Noise N N y 

Phase-Awareness N y y 

(Y)es, (N)o. 
* Requires the condition of an initial open eye. 

are given below: 

CDD(k) = z(k) - Q(z(k)) 

EMMA(k) = Re(y(k)) [Re(y(k))2 - rt] 
+ 0 · Im(y(k)) [rm(y(k))2 - rt] 

C CMA ( k) = y ( k) ( I y ( k) 1

2 
- '~) 
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(4.14a) 

(4.14b) 

( 4.14c) 

where ,itr = E{Re(a(k)) 4 }/E{Re(a(k)) 2
} [152], ,6 = E{la(k)l 4 }/E{la(k)l 2

} [49], 

and the names of the respective algorithms are subscripted on c( k). These three 

algorithms display distinct characteristics which we will use , after identifying them, 

as the underlying reasons for the design of our algorithm. In particular , we are 

looking for robust acquisition abilities, low excess noise under convergence, and 

phase correcting capabilities. A summary of their properties is tabulated in Table 

4.1. 

Our proposed tri-mode algorith1n, in terms of its error function , can be com

pactly expressed as 

c(k) = 
rEDD(k) 

fMMA(k) 

fCMA(k) 

z(k) E D(k) 

z(k) E Dout 

Z ( k) tf- U ( D ( k), D out) 

( 4.15) 

where , is to compensate for the difference in the average values of EDD ( k) and 

EMMA(k) as well as ccMA(k); D (k) and Dout are suitably defined regions of higher 

reliability in the constellation space, where the size of the former is time varying 

and the size of the latter is fixed. D ( k) should represent a region where EDD ( k) 

may be employed in a reliable manner where ill-convergence may be avoided with 

high probability. Reliability can be measured as a function of the variance of the 

residual ISI plus noise term [82] and the phase error. We choose to adopt D (k) as 

proposed in Section 4.3 as described by equation 4.6. D out is a fixed size region 
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Figure 4.5: The new t ri-mode blind equalization algorithm. The reliable regions 
D (k) = UDp(k),p = 1, 2, · · · , 32 and Dout(k) ·where the DD algorithm and the 
MMA are respectively employed for t he 32-QAM constellation are illustrated. The 
CMA is e1nployed outside t hese regions. 

outside a boundary set near the edge or corner symbols and it is exclusive of D ( k) . 

Its 1nain function is to separate the inner constellation from the outer constellation 

points o that the C::v1A is employed when smaller values of z( k) are detected , 

otherwise the >.1I>.LA is employed for larger values of z(k) . Thi design enables 

robust and rapid acquisition in the presence of phase errors which we now explain. 

_According to ( 4.11-4.12), the phase error 6.6 ( k) consists of a con tant phase offset 

60 and a frequency component 21rkf 2:,. vVe make the following claim regarding 

pha e recovery in the absence of frequency offsets i.e. f 2:. = 0. 

In the absence of a frequency offse( phase recovery is guaranteed as long as 

Pr(z(k) E D 0 ut) > 0. i.e.,. the MMA is employed with a finite probability. 

Thi i true becau e the >.I>.IA 1nu t -ield comple e phase recover when equal

ization i acco1npli hed [ 1 i 152]. It pha e recover propertie are covered in Chap

ter 6. Therefore . the exact ize of Dout i irrele ant a long a P r(z(k) E Dout) > 0. 

:\" aturally the larger the ize of Dout, the fa ter i he proce of pha e recovery. 
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Figure 4.6: Figures illustrating t he technique for joint equalization and phase re
covery for 16-QAM signals in the presence of phase errors. The emphasis is on the 
variable-size reliable region , D ( k). 

We propose that Dout be either 

{ Dout lz(k) I > c5out} ( 4.16) 

which is a circle, or 

{Dout: Re(z(k)) > c5out and Im(z (k)) > c5out} ( 4.17) 

which is a square. We have adopted the latter in our tri-mode algorithm as shown 

in Fig. 4.5 . For fast phase recovery, c5out should be as small as possible so that Dout 

becomes a large region that employs the MMA. 

Consider now a (sizeable) frequency offset that corresponds to fast phase ro

tations where the MMA cannot recover. In such situations, the MMA will be 

combating fast phase rotations in addition to its usual task of ISI removal. This 

will result in large fluctuations in the equalizer parameters and hence increased 

MSE which we want to avoid. Thus, we design Dout to be the outer region where 
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the amplitude of z(k) is large so that Pr(z (k) E Dout) is finite but s1nall, so that the 

adaptation with the MMA is less frequent than with the CMA. Here we choose Dout 

to be the outer region because the equalizer output signals in this outer region are 

more reliable2 [63, Sect. III]. Our design that performs phase discrimination only 

when z(k) is large emulates several blind DD phase estimation techniques such as 

the "four-corner" technique [139] and the reduced-constellation phase-locked-loop 

(PLL) [63], with the exception that phase recovery is performed using a phase

aware algorithm instead of a separate phase estimation filter. 

Discussion on characteristics of individual algorithms 

Although employing the tracking algorithm is desirable in steady state because 

it yields less noisy solutions and possesses good tracking abilities, its convergence 

to undesirable local minima is highly likely if the initial parameter values cause 

significant number of incorrect decisions [92, 99]. The CMA and the MMA on 

the other hand, can perform reliable channel acquisition that results in significant 

ISI removal in a zero-forcing fashion [49, 65, 152]. However, their steady state 

solutions are significantly noisier than the DD solution, especially for large non

constant modulus modulation formats [65]. This is why the CMA or the MMA is 

usually employed during acquisition and later switched to the tracking algorithm 

when decision errors are less likely to occur. As for the task of simultaneous 

phase recovery, the MMA is chosen as the candidate algorithm that facilitates 

phase recovery in the acquisition mode, while the tracking algorithm caters for the 

t racking mode. The MMA is phase-aware because its cost function minimizes the 

dispersion of the output samples around straight moduli which fits into a reduced 

version of t he original constellation in the statistical sense. The tracking algorithm 

is phase-aware as it 1ninimizes Elv'(k)l 2
, where v'(k) is the effective error term as a 

function of both residual ISI and phase error as expressed in ( 4.10). Table 4.1 shows 

a summary of t he important characteristics of the above 1nentioned algorithms. 

4.4.3 Performance Improvements via Pre--Whitening 

Considerable performance improvements 1nay be achieved if the channel output is 

first whitened prior to t he equalizer. A whitening filter , or otherwise known as 

t he minimum out put energy (MOE) filter , can be implemented. Let {rch} be the 

channel output sequence and {r} be the equalizer input sequence. The MOE filter 

2This is because they suffer less noise contributions from their adjacent data points . 
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minimizes the cost 

( 4.18) 

which is its output energy. There are three areas where we may benefit from 

implementing the MOE filter prior to the equalizer. 

1. Rapid acquisition: An MOE filter is able to compensate for the amplitude 

distortions of the channel. Thus, via pre-whitening, the proceeding equalizer 

will be left with the simpler task of compensation of residual phase distortions 

by the 'slower' CMA that computes higher moments of the received data. As 

demonstrated in [75], pre-whitening significantly increases convergence time 

compared to equalization without pre-whitening. 

2. Low steady state MSE: Perhaps one of the nicest properties of the equaliza

tion scheme in [75] is that the equalizer acquires the channel efficiently as a 

linear equalizer, then switches to a decision feedback equalizer (DFE) to sup

press steady state MSE when its output is sufficiently reliable. A predictive 

DFE scheme that is proposed in [5] can also be used in conjunction with the 

implementation of the MOE filter. 

3. Larger step size for the DD algorithm for enhanced tracking: The step size of 

the DD algorithm is governed by the eigenvalue spread of the autocorrelation 

matrix of the received signals r ( k) [ 58]. It is bounded as follows: 

0<µ<, 
2 

/\max 

where Amax is the largest eigenvalue of the autocorrelation matrix. Usually 

when the channel is unknown, a conservatively small value of µ that slows 

convergence is assigned in case of highly correlated channel output . Through 

whitening, Amax may be minimized , hence allowing a larger step size to be 

employed for faster tracking purposes. 

By incorporating the MOE filter , we summarize the algorithm and its associated 

step size assignments in Table 4. 2. 

4.5 Simulation Results 

The objective of this section is to provide a performance comparison of our new tri

mode algorithm with probabilistic switching-technique and other conventional al-
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Table 4.2: Progressive stages in new algorithm and associated step sizes employed 
in our simulations in the presence of phase errors 

Step Sizes of 
Stage MOE* I CMA I MMA I DD algorithm Description 

1 none initialization 
2 1 X 10-3 2 X 10-5 2 X 10-5 2 X 10- 5 acquisition mode t 
3 5 X 10-5 5 X 10-5 5 X 10- 5 5 X 10-5 usual acquisition mode tt 
4 2.5 X 10-5 5 X 10-7 5 X 10- 7 1.5 X 10- 3 DD mode ttt 

* MOE stands for the Minimu1n Output Energy algorith1n 
t MOE algorith1n dominates in this mode. 
tt Joint blind equalization and phase recovery is perfonned in this mode. 
ttt It can be switched to a DFE as in [5, 75] if required. 

gorith1ns that have been proposed in the literature. The performance improvement 

of the tri-1node algorithm, as we will show later , varies according to the severity 

of the channel. Basically, t he 1nore severe the channel, the more distinctive is the 

tri-1node algorithm's perfonnance over its competitors . The i1nprovement is due 

to the way the tri-mode algorithm is designed and the smooth switching technique 

employed. 

We separate the simulations into two 1najor sections, where the first deals with 

a variety of channels assuming zero phase errors . The later section then deals with 

channels with phase errors. As the performance of the equalizer is usually charac

terized by the mean-squared error (MSE), we will estimate the decision directed 

MSE according to the following recursion: 

l\lISEnn(k + 1) = pMSEnn(k) + (1 - p) lz(k) - Q(z(k)) 1

2 
( 4.19) 

where p = 0.99 is our assigned forgetting factor . Throughout this section, we will 

use only three channel for all simulations . They consist of a lightly colored channel , 

h' [118], a 1nediu1n colored channel, h" [118] , and a heavily colored channel, h'" [75] . 

Their i1npulse response are respectively given by 

h' = [0.04 , -0.05 , 0.07, -0.21 , -0.5 , 0.72 0.36 0, 0.21 , 0.03, 0.07] 

h" = [2 - 0.4j , 1.5 + l.8j , 1, 1.2 - 1.3j 0.8 + 1.6j] 

h'" = [0 .8264 , -0.1653 , 0.8512 0.1636 0.81]. 

( 4.20a) 

( 4.20b) 

(4 .20c) 

We will compare ou tri-mode algorithm everal other switch-mode algorithms 
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where some employ the "hard-switching" criterion and others smooth switching 

techniques. The switch-mode algorithms that employ the "hard-switching" tech

nique can be expressed as 

E ( k) = { E acq ( k) 
,'EDD(k) 

MS EDD ( k) > CMsE 

MSEDD(k) < CMSE· 
( 4.21) 

where CMsE is a suitably chosen threshold value that would correspond to low error 

rates under the condition MSEDD ( k) < CMSE· Two "hard-switching" algorithms 

under comparison are 

1. The constant modulus algorithm ( CMA) [ 49] and DD algorithm, where Eacq ( k) = 
ECMA(k). 

2. The multi-modulus algorithm (MMA) [152] and DD algorithm, where Eacq(k) = 
EMMA(k). 

The switch-mode algorithms that ernploy smooth switching techniques are 

3. Dual-mode Godard Algorithm (DMGA) [145] type where 

c(k) = { EMMA(k) 
,'EDD(k) 

Re[z(k) - Q(z(k))] > c)DMGA or Im[z(k) - Q(z(k))] > c)DMGA 

otherwise. 

( 4.22) 

and c5DMGA is a suitably defined width between O and 1, nonnally small at 

around 0.2 [145]. 

4. Benveniste-Goursat [15] type where 

where k1 and k2 are a suitably chosen constants [15]. 

5. Tri-Mode Algorith1n ( 4.15) where 

,'EDD(k) 

c(k) = EMMA(k) 

ECMA (k) 

z(k) E D(k) 

z(k) E Dout 

z(k) i u(D(k), Dout) . 

For our simulations, the parameters of the equalizer are as follows: 

Adaptation step size: µ = 5 x 10-5 , unless otherwise stated. 

( 4.23) 

(4 .24) 
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'"Y = 10. 

For CMA-DD and MMA-DD, the MSE threshold value is assigned to be CMsE = 

V2 X 0.282 = 0.396 . 

For Dl\lIGA type algorithm, 5DMGA = 0.25 , unless otherwise stated. 

For BG type algorithn1, k1 = 5 and k2 = 1, unless otherwise stated. 

For the tri-mode algorithm, the init ial width value is assigned as 5(0) = 0.25 and 

t he forget factor is /3 = 0.95 , unless otherwise stated. 

The length of the equalizer for various channels are varied according to the length 

of the inverse response of the channel. For h', the equalizer has 31 taps . For h", 

t he equalizer has 36 taps. For h"' , the equalizer has 41 taps. 

4 .5.1 Result s for Stationary Channel Without Phase Er

rors 

Vve want t o compare the performance of our tri-mode algorithm against several 

competitors as listed above under various conditions. We found a simple channel, 

h', and two difficult channels with deep spect ral nulls , h" and h"'. We also test the 

t ri-mode algorithm against different modulation formats . For all simulations, we 

performed 50 independent Monte Carlo runs for each algorithm and plotted their 

average )/ISEDD (k) in Fig. 4.7 to Fig. 4.10. 
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For the first easy channel, h' , we performed our simulations on the channel with 

an SNR levels of 15 dB and 25 dB for 16-QAM data using a total of 10 ,000 symbols 

for each of our runs. At lower SNR levels , e.g., 15 dB , smooth-switching algorithms 

outperform the hard switching algorithms in terms of steady state errors, whereby a 

gain of close to 1 dB is achieved over the MMA-DD algorithm at steady state. The 

speed of convergence for all the algorithms are almost the same, where the tri-mode 

algorithm has a marginal improvement over other competitors. The CMA-DD 

exhibit high steady state MSE because under adaptation, its output constellation 

has been regularly rotated because it is a phase-invariant algorithm, unlike the 

other algorithms. 

Under higher SNR level, 1.e., 25 dB , the tri-mode algorithm outperforms all 

other competitors in terms of convergence rate. In terms of steady state errors, 

it outperforms the BG type algorithm and marginally outperforms the DMGA

type algorithm. It achieves the same steady state performance as the MMA-DD 

algorithm. The CMA-DD algorithm exhibits higher steady state MSE and slower 

convergence due to the same reason as given above. 

16-QAM, h" 

For the difficult channel, h" , we performed our simulations on the channel with 

an SNR level of 15 dB for 16-QAM data using a total of 100,000 symbols for each 

of our runs. The step sizes for all algorithms are reduced by a factor of 50, i.e. , 

µ = 10- 5
, except for the BG type algorithm where its step size is further reduced 

to µ = 2 x 10-7 to ensure high rate of successful convergence. Here for the BG 

type algorithm, k1 = k2 = 1. The CMA-DD algorithm is omitted because it cannot 

converge at all unless the phase recovery is performed. 

From Fig. 4.8, it is shown that our tri-mode algorithm converges the fastest 

on average among all four switch-mode algorithms, followed closely by the hard

switching n1ethod. The smooth switching algorith1ns converge much slower. The 

tri-mode algorithm, MMA-DD , and the DMGA-type algorithms achieve similar 

steady state errors in this special case. The BG-type algorithm is very slow in its 

convergence mainly due to a smaller step size that we assigned (5 times smaller). 

This is essential to ensure the convergence of the BG-algorith1n with high prob

ability of success. In other words , the BG-algorithm cannot be used reliably to 

open the channel-eye unless the step size is significantly reduced , thereby slows the 

convergence as shown in the figure. 
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Figure 4.8: Co1nparing various algorithms using the channel h" under SNR level 
of 15dB. The modulation format is 16-QAM. Equalizer has 41 taps. 

16-QAM, h"' 

For the difficult channel, h"' , we performed our simulations on the channel with 

an SNR level of 17 dB for 16-QAM data using a total of 100,000 sy1nbols for each 

of our runs. The step sizes for all algorithms are reduced by a factor of 5, i.e. , 

µ = 10-5
, except for the BG type algorith1n where its step size is further reduced 

to µ = 2 x 10- 5 to ensure high rate of successful convergence. Here for the BG 

type algorith1n , k1 = k2 = 1. 

Fro1n Fig. 4.9, it is observed that our tri-mode algorith1n once again achieves 

the fastest convergence. The 1nore subtle advantage lies in its lower steady state 

MSE over all other algorithms. This is due to the new probabilistic technique that 

recognizes an open-eye condition under very noisy environments 1nuch earlier than 

did the hard-switching algorith1n and the DMGA-type algorithm. 
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Figure 4.9: Comparing various algorithms using the channel h"' under SNR level 
of l 7dB. The modulation format is 16-QAM. Equalizer has 41 taps. 

32-QAM, h' 

For the easy channel, h', we performed our simulations on the channel with an 

SNR levels of 25 dB and 30 dB for 32-QAM data using a total of 50 ,000 symbols 

for each of our runs. The step sizes for all algorithms are reduced by a factor of 

20, i.e. , µ = 2.5 x 10-6
. As for,, it is set to be at,= 50 to compensate for the 

difference in the 111agnitudes of the error functions. 

From Fig. 4.10, we draw several interesting conclusions. For (A) where SNR 

level is lower , it is observed that once again our tri-mode algorithm achieves the 

fastest convergence ( only marginally slower than the BG-type algorithm) and the 

lowest steady state errors. The MMA-DD algorithm yields relatively higher MSE 

because it has failed to switch-over to the tracking algorithm because the DD MSE 

estimate never drops below the pre-defined MSE threshold. The BG-type and 

the DMGA-type switch-mode algorithms also display slightly marginally higher 

MSE because of they allow a significant percentage of the equalizer output to 

J;ZJ"l7815 M ... INlaliU!LWJ 
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Figure 4.10: Comparing various algorithms using the channel h' under SNR levels 
of 25dB and 30dB. The modulation format is 32-QAM. 

drive the equalizer parameters with t he acquisit ion algorit hm. For (B), i. e., the 

simulations performed at a higher S R level, the tri-mode algorithm significantly 

outperforms all other algorit hms. Only the MMA-DD algorithm achieves simi

lar steady state MSE while t he smooth-switching algorithms suffer slightly higher 

steady sta e l 1SE. 

Only the tri-mode algorit hm maintains its superiority in terms of convergence 

speed and low steady state errors for both relatively high and low SN R levels. 

32-QAM, h'" 

For the difficult channel, h'", we performed our simulations on the channel with 

an S:\"R level of 30 dB for 32-QA_ 1 data using a total of 150,000 symbol for each 

of our run . The step sizes for all algorithms are reduced by a factor of 20 , i.e. , 

µ = 2 x 10-5 . except for the BG-algorithm which has a step size ofµ= 1.25 x 10-5 . 

_As for r;, . it is set to be at 1 = 50 to compensate for the difference in the magnitude 

of the error function . 

From Fig. 4.11. \\-e notice that for thi difficult channel , the convergence i 

till Yery rapid cornpared to the other algorithm . The D:vl:GA-type algorithm, 

eYen though rnooth. i low and yield high teady tate _ 1SE a expected. The 

~I~I.A-DD conYerge lo\\-er becau e of he DD_ 1SE, which i difficult to accurately 

e ti1nate. i u ed to govern the ·witching. Yioreover , for larger con tellation ize , 

the exce ~ISE due to non-con tant modulu input con tellation ma - increa e 

the DD ~ISE eYen though the channel e} e i alread - open. _A for the BG-type 

algorithm: it cannot employ a imilar tep ize a the other algorithm otherwi e 

it \\-ill not con,-erge mo t of the time . That explain the low rate of convergence 
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Figure 4.11: Comparing various algorithms using the channels h'" under SNR level 
of 30dB. The modulation format is 32-QAM. 

which is due to a smaller step size assignment. Due to the smaller step size , it also 

achieves similar steady state errors as the tri-mode and MMA-DD algorithms. 

4.5.2 Results for Joint Equalization and Phase Recovery 

We compare the tri-rnode algorithm with two phase-aware algorithms , namely the 

reduced constellation algorithm (RCA) and the rnultimodulus algorithm (MMA) 

[105 , 152] in the presence of phase errors for the difficult channel, h"' , only. Simu

lations were carried out for the noiseless channel and one with considerable noise 

using 16-QAM data. In addition, the channel is subjected to phase and frequency 

offsets in three different scenarios. In the first scenario there is no phase or fre

quency offsets. The second scenario has a 45° phase offset but no frequency offset. 

The third scenario has both 45° phase offset and ft::. = 2 x 10-4 of normalized 

frequency offset ( 4.10), i.e. , a complete rotation of 21r in 5000 symbols. The MMA 

and the RCA are designed to switch to the DD algorithm once the DD MSE, 
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MSEDD(k), drops below 0.3960 , as before in Section 4.5 . . Note that wehave not 

used an additional phase estimator for all the algorithms in order to assess t heir 

performances in the presence of phase and frequency offsets. In addition we also 

compared our algorithm with a trained linear equalizer. 

The channel output sequence will be whitened by the MOE filter, b(k), prior to 

equalization as mentioned in Section 4.4.3 , except for the case of the trained linear 

equalizer. We implemented an infinite i1npulse response (IIR) MOE filter which 

has four taps in the same manner as [75]. The taps of the MOE filter , b(k), are 

adapted as follows: 

b(k + 1) = b(k) - µbr(k)r*(k - 1) 

where r(k) = [r(k) , r(k - 1) , r(k - 2) , r(k - 3)]T and µb is the adaptation step 

size. The proceeding baud-rate equalizer, with the exception of the trained linear 

equalizer, has 24 taps and is init ialized with a non-zero tap set at the 18th position, 

i. e.' 

w(O) = [O · .. 0 1 0 .. · oJT. 
'-v--' ~ '-v--' 

1-17 18 19-24 

More anti-causal taps than causal ones were assigned because the causal impulse 

response would be close to zero once the MOE filter has equalized the amplitude 

distortions. For the t rained equalizer however, it has 40 taps and will be initialized 

with a center tap strategy. For our new algorithm, the parameters t hat control the 

sizes of D (k) and Dout(k) are D (O) = 0.15 and {3 = 0.95 according to (4.7), and 

Dout(k) = 2.5, \:/k. Its adaptation step sizes for different stages are shown in Table 

4.2. As for the trained equalizer, we assigned a larger step size init ially for fast 

convergence and then a s1naller one to achieve a lower steady state MSE. 

The results show fast convergence rate of the new algorithm in comparison to 

the CMA, MMA, and RCA sche1nes, in addition to automatic phase recovery and 

smooth transition between modes . In both noiseless and noisy cases without phase 

errors in Fig. 4.12-(A),(B), the tri-1node algorithm converges the fastest. 

In Fig. 4.12 (C) and (D) the tri-mode algorith1n ·corrects a 45° phase offset and 

converges faster than the RCA but slower than the MMA. This is due to the lack 

of phase recovery in our algorithm as we only e1nploy the MMA in a restricted 

region in Dout ( k). 

In Fig. 4.12 (E) and (F), the RCA completely failed to acquire the frequency 

offset as depicted by the ripple-like MSE, where each notch corresponds to a mod-



4.6 Conclusions 91 

ulo 90° phase offset , once in 1250 symbols. The tri-mode algorithm and the MMA 

perform better in the sense their MSE have descending staircase-like behaviors. 

This means at every modulo 90° phase offset , more simulation runs have success

fully converged to the DD mode. The tri-mode algorithm reports more successful 

convergence compared to the hard-switching technique employed by the MMA-DD 

algorithm as depicted by the lower steady state MSE of the tri-mode algorithm. 

4.6 Conclusions 

The new tri-mode algorithm is the fastest converging algorithm among the hard

switching and smooth-switching algorithms according to our simulations. It is 

attributed to both the novel smooth-switching technique as well as the novel de

sign of the tri-mode algorithm that assigns algorithms with different capabilities 

to different reliable regions in the constellation space. Apart from that, it also 

achieves the lowest steady state errors for a wide range of easy to difficult chan

nels, different SNR levels, as well as constellation sizes. From the results obtained 

via simulations, we conclude that in general, smooth-switching algorithms outper

form hard-switching algorithms under high noise conditions, but the opposite is 

true when the noise level is relatively low. The tri-mode algorithm however per

forms just as good under low and high noise conditions. The complexity of the 

algorithm is extremely low as the smooth-switching technique exploits first order 

estimates which are accurate and simple. In addition, it can also perform joint 

blind equalization and phase recovery in the presence of realistic demodulation 

phase errors without having to rely on a separate phase compensator. 
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Chapter 5 

Fast Convergence Switch-Mode 

DFE Schemes 

5.1 Introduction 

Blind equalization compensates for channels distortions without relying on a train

ing sequence. Relative to adaptation using training sequences, blind equalizers 

tend to exhibit slower convergence, higher steady state errors and possibly ill

convergence. In the domain of linear equalization the blind algorithm design and 

analysis problem has been exhaustively studied for several decades. In the do

main of decision feedback equalization, it was only in 1998 that Labat, Macchi and 

Laot found a cornpelling realization of an effective blind decision feedback equal

izer (DFE) [75] . In Sections 5.2 and 5.3 of this chapter, we build on their work to 

develop alternative designs which exhibit significant performance advantages. 

In the innovative blind scheme presented in [75] , the adaptation is broken up 

into two modes , an acquisition mode and a tracking mode. Not only is the adap

tation algorithm switched between modes but also the actual equalization filtering 

structure is switched. In the acquisition 1node a recursive linear structure is em

ployed and later , once the eye diagram has opened sufficiently, the DFE is employed 

in the tracking mode. The algorithm in the acquisition mode uses a co1nbination 

of a constrained convex minimum energy cost and the constant modulus algorithm 

(CMA) , whilst in the tracking mode a decision directed (DD ) algorithm is used. 

These choices are not arbitrary but are guided by the design objective to have the 

blind DFE converge as close as possible to the opti1nu1n MMSE solution. 
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Figure 5.1: Decomposition of a transversal non-minimum phase channel via the 
channel decomposition property with H (z) = 9Hmin(z) H ap(z), assuming the com
plex gain, 9 , is unity. 

5.1.1 Channel Decomposition Property 

The novel approach taken by Macchi, Labat and their colleagues in [22, 75] is to 

equalize a "decomposed" channel via the channel decomposition property to achieve 

rapid and effective equalization. According to the channel decomposition property 

[108], an arbitrary non-minimum phase channel H (z) can be represented by the 

convolution of an equivalent minimum phase system, Hmin(z), and an equivalent 

all-pass system, H ap ( z), multiplied by a complex gain 9 in the following manner: 

H (z) = 9Hmin(z) H ap(z). · (5 .1 ) 

Consider the decomposition of a transversal non-minimum phase channel of the 

fonn 
N1 N2 

H (z) = 9 IT [1 - Tr,iz-1
] IT [ro~ - z-1J (5 .2) 

i=l j=l 

where rr and ro are zeros of the system that are inside and outside the z-unit circle, 

(U), respectively. Hmin(z) is the equivalent minimum phase system that contains 

Tr and ro*, i. e., the zeros that are the conjugate reciprocals of To . Hap(z) is an all

pass system which co111prises of zeros r0 , and poles r0* to cancel the reflected zeros 

in H min(z) . Thus the decomposed channel consists of the following components 

N 1 N2 

Hmin(z) = IT [1 - Tr,iz-1
] IT [1 - (ro,jz)-1

] (5 .3a) 
i=l j=l 
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(5.3b) 

The decomposition process for an example with a pair of minimum phase zeros 

and a pair of maximum phase zeros is shown in Fig. 5.1. Its zeros and poles are 

respectively represented by circles, 'o ' , and crosses, 'x'. H(z) is shown in Fig. 5.1-A, 

while its decomposed components , Hmin(z) and Hap(z) , are shown in Fig. 5.1-B,C, 

respectively. 

Channel 
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• l._____gc____, 

Gain 
Control 
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•: T PR • 
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Figure 5.2: Novel blind linear equalizer setup [75] as a cascade of four devices used 
to acquire the "decomposed" channel. 

The authors of [22, 73, 75] exploited this deco111position property to isolate 

Hmin(z) from Hap(z), where the equivalent minimum phase can be quickly equal

ized by a whitening filter that is based on second order statistics. It is also known 

as the a111plitude equalizer in [22). The output of the whitening filter which is now 

uncorrelated appears to have been produced by convolving the channel input with 

a new channel SHap(z) since the whitening filter has equalized Hmin(z). A transver

sal phase equalizer that employs the CMA will be used subsequently to equalize 

the remaining phase distortions due to Hap(z). The CMA, which is usually slower 

than the whitening algorithm, now has the simpler task of equalizing the all-pass 

channel without amplitude distortions [14, 22). Compensation for the complex gain , 

9, is carried output by splitting the task into compensation of real and complex 

components , respectively, using a real gain control and complex phase rotator. It 

is suggested in [75] that the real gain control be placed upstream of the equalizer 

while the phase rotator downstream, as shown in Fig. 5.2 during the acquisition 

of the channel. This equalizer setup has been shown to speed up the convergence 

of the Godard equalizer significantly. In fact , at high signal-to-noise ratios (SNR), 

this cascaded equalizer structure has been shown to emulate the optimal linear min

imum MSE equalizer and efficiently equalize the decomposed channel [75] , where 

W will converge to H-;;}n(z) , 'J to H;}( z ), and SC and P~ will jointly compensate 

for the complex gain, 9. Simulations in [75] show that its performance is equally 

impressive at low SNR levels, outperforming even the trained DFE in so111e cases. 
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Another attractive feature of the equalization scheme of [75] lies in the flexibility 

of the linear equalizer to switch to a DFE when the bit-error-rate is sufficiently low. 

This is accomplished by si1nply relocating W downstream, i.e., behind 'J and P~, 

and incorporating a quantizer to facilitate decision feedback. 

5.2 Design Objectives 

For the equalizer sche1ne of sections 5.3 and 5.4 

In our design we seek to improve on the design in [75], while retaining the 

simplicity of the equalization scheme, with the following principle goals in mind: 

A) Non-Recursive Linear Acquisition Filter - In [75], the recursive form of 

the linear filter in the acquisition structure is used to permit direct transfer of 

the filter tap values to the DFE feedback filter in the tracking structure. Our 

design goal is to retain the ability of direct transfer of filter taps value but 

avoid some of the well-known problems with the adaptation of the recursive 

form ( where the gradient can only be approximated, the dynamic range at the 

output may be large and the stability needs to be 1nonitored). We show that 

this is indeed possible using a non-recursive linear filter provided we modify 

the DFE feedback filter appropriately. 

B) Reduced Switching Transients - Switching structures and switching algo

rithms lead to transients in signals which disrupts convergence. The design goal 

here is to develop a strategy which provides for "smooth switching" and thereby 

significantly i1nproved convergence. We achieve this on the structural side by 

employing a parallel adaptation strategy where the acquisition structure and 

the tracking structure are jointly adapted. Further on the algorith1n side, rather 

than abruptly switch algorith1ns, we e1nploy a technique to smoothly combine 

the acquisition and tracking algorithms into a single algorithm. In this way 

it is not necessary to make a distinction between acquisition and tracking and 

therefore the new scheme needs not be considered a dual-1node equalizer. This 

eli1ninates the require1nent for the user to pre-specify certain parameter values 

that strictly depend on the channel to deter.mine the exact and appropriate 

sampling period to perform the switch-over. 

To accomplish our first goal, we develop new equalizer structures in the acqui

sition and tracking modes as described in Section 5.3. As t he underlying concepts 

of our alternative sche1ne are identical to that of [75], simulation results would 
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subsequently show almost identical performance between both schemes. Our sec

ond goal, which is more important , features a novel strategy that enhances these 

fast-convergence DFE schemes ( that include the scheme in [75] and our alternative 

scheme in Section 5.3) where they must undergo a switch in both their adapta

t ion algorithms and filtering structures. This new switching strategy that results 

in a single-mode DFE by combining the respective equalizers in both modes in a 

parallel fashion is described in Section 5.4. 

5.2.1 System Model 

Consider a typical baseband symbol-rate blind equalizer whose main objective is 

to recover a corrupted version of the transmitted signal, {a(k) }, based only on the 

observable received signals , {r(k)}. Let the linear distort ive channel and additive 

white Gaussian noise be denoted as {hi} and n(k) , respectively. Then the objective 

of equalization is to yield an output, z(k), that well estimates t he transmitted 

signal such that z(k) ~ a(k - D) , where D is some t ime delay. We will treat 

the channel {hi}, via the channel decomposition property [108], as a cascade of 

an equivalent minimum phase channel and an all-pass channel for the design of 

our linear equalizer in the starting mode in an identical fashion to [22, 75]. Thus , 

we separate the principle tasks of our equalizer into compensation for amplitude 

distortions only ( due to t he equivalent minimum phase channel) , and compensation 

for the remaining phase distortions [73, 75]. 

The equalization sche111e involves two distinct 111odes - t he linear acquisition 

mode and the tracking DFE mode. In order to distinguish t he filter parameters 

and signals of t hese two modes, we append the superscripts "(1) " and "(2)" to all 

filter parameters and signals in the "first " acquisition mode and "second" t racking 

111ode, respectively. 

5.3 Development of Alternative Fast-Convergence 

DFE 

Following [75] , a possible equalizer setup in the acquisition mode is t he cascade 

of four filters , na111ely, a real gain control filter (9e), a whitening filter (W ), a 

phase equalizer ('J) , and a complex phase rotator (P~ ). Thus in acquisition mode 

t he equalizer is linear and decision feedback is not employed. This overall linear 

equalizer consisting of filters 9e, W , 'J, and P~, is shown in Fig. 5.3. 

In contrast to [75] for the reasons listed in the introduction , we propose to use a 
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Figure 5.3: Linear equalizer of acquisition mode of the alternative DFE scheme to 
that of [75], featuring a non-recursive W. 

non-recursive whitening filter in the place of the originally proposed recursive filter. 

This requires a modification to the whitening algorithm. The whitening algorithm, 

also known as the minimum output energy (MOE) algorithm, minimizes the cost 

function E{lt (1)(k)l 2 } , where t (1)(k) is the output of W. In order to avoid the 

convergence of the equalizer to the trivial solution, it is necessary to impose a 

linear constraint upon the equalizer taps so that convexity of the cost function is 

not lost. Following [142], the simplest and recommended linear constraint fixes the 

leading tap, a0 ( k), to be unity for all k so that the transfer function of W becomes 

1 + A(z) as shown in Fig. 5.3. Define a(l)(k) = [a1 (k), a 2 (k), · · · , aN(k)]T as the 

weight vector of W of length N that excludes the leading tap, a0 ( k). Then under 

the usual stochastic gradient adaptation, a (l ) ( k) is updated according to 

(5.4) 

where the MOE error takes the form 

fMOE = t(l ) ( k) (5 .5) 

and a (1)(0) = [O, · · · , OJT , µa c1) is the adaptation step size, s (1)(k - 1) = [5 (1)(k -

1), 5 (1) ( k - 2), · · · , 5(1 ) ( k - N) ]T and * is the complex conjugate operator. This 

algorith1n atte1npts to mini1nize the cost J MoE(a(l )) = E{ jt (1)(k)/ 2 } subject to the 

first tap being fixed at unity, i.e. , a0 (k) = 1. 

As for SC, 'J and P~, our adaptation algorithms are no different from that 

of [75]. Briefly, 9 c: is a real filter that fixes the average power level of the sam

ples at t(l ) ( k) at a particular value, while P~ is the complex phase rotator that 

compen'"'ate for any demodulation phase errors . As for the phase equalizer, 'J, the 

CMA is the preferred algorithm to achieve the desired removal of the residual ISI. 
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The update equations of 9e, 'J and P9( are as follows: 

• For 9e: 

c(1\k + 1) = G(l)(k) + µG(l) (1- lu(l)(k)l 2
) 

9(ll(k + 1) = J1c(ll(k + 1)1 

99 

(5.6a) 

(5.6b) 

where G(l) (0) = 1, and µcc1) is the positive step size that governs the rate of 

adaptation of 9 e. The output of 9 e is s(l) ( k) = g(l) ( k )r(1) ( k). 

• For 'J: 

(5.7) 

where the CMA error takes the form 

(5.8) 

and b (1 ) (0) = [O, 0, · · · , 0, 1, 0, · · · , OJT and µbc1) is a small positive step size, 

t(l)(k) = [t(l)(k), t(1)(k- l) , · · · , t(1)(k-M + l)JT , where Mis the equalizer length 

and ,b 6 
E{la(k)l 4 }/E{la(k)l 2

} is the so-called dispersion constant of the CMA, 

where a(k) is the transmitted data symbol [49]. 

• For P9(: 

e(l\k + 1) = e(1)(k) + µ 8c1)E<t>(k) 

E<t>(k) = Im[Q(z(l\k))z(1)*(k)] 

or E<t>(k) = Im[Q(z(l)(k))[Q(z(1)(k)) - z(1)*(k) J] 

k 

+ {3 L Im[Q(z(1\j))[Q(z(1\j)) - z(l)*(j)J] 
j=l 

(5.9a) 

(5.9b) 

(5.9c) 

where ()(1
) (0) = 0 and µ 8c1) is a small positive step size, (5.9b) and (5.9c) correspond 

to the first [49] and second order [75] phase tracking loop, respectively, and {3 is an 

appropriate positive parameter. 

In the tracking mode, the position of the whitening filter, W, is interchanged 

with the positions of 'J and P9(, so that W is transformed to a non-linear filter 

and placed downstream. Unfortunately, unlike the recursive structure in [75] , our 

non-recursive W is not immediately ready to facilitate decision feedback. Our sub

sequent objectives therefore are to firstly transform the non-recursive filter block, 

W , into a new but equivalent filter block that is equipped with a feedback path; 

WRBR-NJIIII JJUl!illl....-wn • iiJZQ IIU:CFSF 7FF'li¥Ylllll:IX A 
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Figure 5.4: The non-linear equalizer (DFE) of the tracking mode. 

and secondly, to retain the ability for the direct transfer of the parameters of W 

between the acquisition and the tracking modes. The objectives can be joint ly 

achieved by performing the following block transformation: 

1 + A(z) 
1 + A(z) = 1 + A(z) -

1 
l A(z) 

l+A(z) 

(5 .10) 

The term on t he right hand side , which is equivalent to the non-recursive t ransfer 

function of W of the acquisit ion mode, is now equipped with a feedback path whose 

transfer function is - 1tY{z) . The transformed block W in terms of A(z) only of 

the DFE is illustrated in Fig. 5.4. 

The adaptation of the real gain cont rol 9 C is no longer required in the tracking 

mode. As for T , W , and JJ](, they are jointly adapted by minimizing the decision 

directed MSE criterion 

(5 .11 ) 

where a (2
) and b(2

) are the weight vectors of A(z) and B (z), respectively, as in Fig. 

5.4. They are updated as follows: 

a (2)(k + 1) = a (2)(k) - µac2)EDD(k)x (2)*(k - 1) 

b(2\ k + 1) = b(2\k) - µb (2)EDD(k) t (2)*(k) 

where EDD(k) = z(2)(k) - Q(z(2)(k)) and 

x (2)( k) = [z(2)(k - 1), 2(2\ k - 2) , ... 2(2\k - N)]T 

- [y(2)(k - 1) y (2)(k - 2), ... 'y( 2\k - N)]T 

(5 .12) 

(.5.13) 

(5.14a) 

+ 
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Figure 5.5: New DFE scheme under parallel adaptation. The taps are adapted and 
shared among filters from "top" and "bottom" paths of the new DFE. 

(5.14b) 

The phase rotator is adapted as it would in the acquisition mode according to 

(5.9). Suppose switching occurred at k = k0 , then their initial values are [75]: 

a(2)(ko - 1) = a(1)(k0 - 1) with x (2)(k0 - 1) = 0, b(2)(k0 - 1) = b(1)(k0 - 1) and 

t(2)(ko - 1) = 0 , and lastly g(k) = g(ko - 1) , 'v'k > ko - 1. 

5.4 Parallel Adaptation Strategy for Dual Mode 

Equalization Schemes 

Switching between the starting mode and the tracking mode involves both a rear

rangement of the equalizer structure as well as a change between the acquisition 

and tracking algorithms. The switching often results in a slower rate of convergence 

because of the disruptions in the filtering structure and the algorithms employed. 

In addition, there is also a disruption in the states of the filters which adversely 

affect the algorith111s and the output signals over several sample periods until they 

are flushed fro111 the regressor vectors. Consequently, the output signals are more 

error-prone and the DFE, which is sensitive to incorrect decisions , may therefore 

exhibit pathological behavior [39 , 71]. 

In the light of these problems, we propose a novel parallel adaptation strategy to 

ameliorate the transients by employing parallel adaptation of the linear equalizer 

of the acquisition mode and the DFE of the tracking mode such that only one set 

of filter parameters { A( z), B ( z) } is adapted and shared by the linear and decision 

feedback equalizers, as shown in Fig. 5.5. This means it is possible to always 

obtain the equalizer output from the output of the DFE, z(2) (k), as depicted in 

+ 
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Fig. 5.5. Thus , this strategy will transform the original dual-1node equalization 

scheme in [75] to a single-mode DFE scheme whose init ial acquisition is assisted by 

a linear acquisition equalizer. The new update equations of t he DFE filter weights, 

a( k) and b ( k), under parallel adaptation are 

a(k + 1) = a(k) -µa{ a1(k)EM0ES(l )*(k) 

+ a2(k),aEDD(k)x (2)*(k)} 

b (k + 1) = b (k)-µb{P1(k)EcMA(k) t(l)*(k) 

+ P2(k) ,bEDD(k)t(2 )* (k) } 

(5 .15) 

(5 .16) 

where a(O) = [o, ... ,o]T , b(O) = [0, 0, ··· , 0, 1, 0, ... ,o]T , EDD(k) z(2)(k) -

Q ( z(2) ( k)) , a1 ( k), a2 ( k), p1 ( k), P2 ( k) are data dependent parameters in a manner 

that is described below, ra and rb are parameters assigned to compensate for the 

difference in the expected values of the respective error functions. s(l) ( k) and 

t (1)(k) are regressor vectors of 1 +A(z) and B (z) of length N and M, respectively, 

of the linear equalizer along the top path of the new DFE. A phase rotator in the 

linear equalizer is not required for this setup. The signals from the top path are 

obtained by employing t he shared DFE taps such that 

N 

t (
1)(k) = s(k) + L aj(k)s(k- j) 

j=l 

M 

u(l\k) = L bj(k)t(l\k - j). 
j=O 

(5.17a) 

(5 .17b) 

where aj(k) , bj(k) are the jth taps of A(z) and B (z) of the new DFE, respectively. 

The gain control and the phase rotator are adapted as in (5 .6) and (5 .9) . Therefore, 

due to the parallel adaptation strategy, the outputs of the "top" linear equalizer 

and the "bottom" DFE will be approximately equal, i.e. , 

(5.18) 

See Appendix-B for detailed explanation. 

The choice of a 1 ( k), a 2 ( k) , p1 ( k) and p2 ( k) is paramount to the success of our 

parallel adaptation strategy in terms of convergence speed and steady state errors, 

in addition to guaranteeing a smooth transition between "modes" which ultimately 

affects the convergence speed. In fact, certain soft switching techniques that were 

previously proposed for dual-1node algorithms are suitable for combining the ac-
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Figure 5.6: The new alternative fast-convergence predictive DFE. 

quisition and tracking increment vectors1 in (5.15) and (5.16) where intermediate 

values between O and 1 can be assigned to a 1 ( k), a 2 ( k), (31 ( k) and (32 ( k) according 

to a reliability 1neasure of the equalizer output [82] . Alternative si1npler techniques 

(albeit with poorer performance) that include the 'Stop-And-Go ' algorithm [116], 

dual-mode type algorithm [145], as well as the simple Benveniste-Goursat algo

rithm [15] can also be employed. As a simple illustration, we will describe t he 

Benveniste-Goursat soft-switching technique which assigns 

a 1(k) = f31( k) = c1IEDD(k)I 

and a2 ( k) = !32 ( k) = c2 

(5 .19a) 

(5 .19b) 

where c1 and c2 are user defined positive constants [15]. The new update equa

tions of (5.15) and (5 .16) under parallel adaptation strategy using t he Benveniste

Goursat type para1neters become 

a(k + 1) = a(k) - µa{ c1 IEDD(k) IEM0Es(l )* (k)+ 

C2r aEDD ( k )x (2) * ( k)} 

b ( k + l ) = b ( k) - µ b { c 1 IE DD ( k) I E c_ t1A ( k) t ( 1 ) * ( k) + 
C2 b EDD ( k) t ( 2) * ( k) } . 

(5.20) 

(5.21 ) 

+ 

5.5 Alternative Fast-Convergence Predictive DFE 

Scheme 

The predict ive DFE (P-DFE) [10] is an alternative DFE structure that is equivalent 

to t he conventional DFE under t he condit ion that the forward filter has an infinite 

1The increment vector of the stochastic gradient update equation is the regressor vector mul
tiplied by t he error function. 
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number of taps. A blind P-DFE that extended the equalization scheme in [75] has 

been proposed in [5] . The objectives of this P-DFE are to overcome the switching 

difficulties encountered by the switch-mode equalizer in [75] and to interface with 

trellis-based channel codings schemes [40,133,143]. They seek to overcome the same 

switching problem that our novel parallel adaptation strategy proposed in Section 

5.4 seeks to overcome. However , in their novel equalizer setup, switching of filtering 

structures is not required at all because the taps of the whitening filter can be driven 

by the P-DFE filter downstream, and conversely, the P-DFE taps can be driven 

by the linear whitening filter upstream. The equivalence of the linear whitening 

filter (which is a linear forward predictor [58]) and the non-linear predictive DFE 

is shown in [5] . In the acquisition mode , the linear whitening filter will adapt its 

filter taps and transfer them directly to the P-DFE situated downstream. After 

convergence is achieved by this linear equalizer setup, the P-DFE will begin its 

adaptation and map its taps to the linear whitening filter upstrea1n. In this way, a 

low MSE is achieved due to the P-DFE without the need to switch filter positions. 

As for the interface with trellis-based coding schemes, a vector deinterleaver is 

inserted in between the whitening filter and the transversal Godard equalizer to 

take advantage of the noise whitening effect [5]. 

In our alternative DFE scheme, we will use a non-recursive whitening filter in 

the place of the originally proposed recursive whitening filter. Then we design 

the feedback filter of the P-DFE as P(z) = 1:Y(z) as shown in Fig. 5.6 where it 

has been derived earlier in the same manner as our alternative conventional DFE 

sche1ne in Section 5.3 which is governed by Equation (5 .10). 

5.5.1 Switching Strategy 

Switching for this P-DFE is not as difficult as it is for the conventional DFE 

scheme in Section 5.3. This is because the P-DFE only involves a switch in its 

algorithms while the positions of the filters need not be interchanged, which is the 

original intention of the authors of [5]. We adopt a similar concept as the parallel 

adaptation strategy described in Section 5.4. Let the taps of the whitening filter 

be a (3)( k) , which is also the filter taps of the P-DFE (see Fig. 5.6). Similarly, let 

the taps of the phase equalizer be b(3) ( k). Then the proposed update equations of 

a (3) ( k) and b(3) ( k) are as follows: 

a (3)(k + 1) = a (3\k) - µap { a3t (3\k)s(3)*(k) + 0:4EDD(k)x (3)*(k)} 

b (3)(k + 1) = b (3)(k) - µbp{ {33EcMA(k) + {34EDD(k)} t (3 )*(k) 

(5 .22) 

(5 .23) 
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where a (3 ) (0) = [O . . . OJT b(3 ) (0) = [O O .. · 0 1 0 .. · OJT x (3 ) (k) is the re-' ) ) ' ) ' ' ) ) ) ) 

gressor vector for P (z), t (3) * ( k) the regressor vector for B ( z), and a3 , a4 , (33 , (34 

are user defined parameters. These parameters are assigned in the same manner 

as described for our alternative conventional DFE in Section 5.3. An example us

ing Benveniste-Goursat combination technique [15] has been described earlier in 

Section 5.4. 

5.6 Novel Dual Decision Feedback Equalizer 

5.6.1 P roblem Statement 

The least-mean-square (LMS) algorithm has been widely embraced due to its sim

plicity, useability and convexity. It is also known for its satisfactory performance 

for tracking time-varying channel statistics [58]. When the LMS algorithm is em

ployed by a DFE, it usually exhibits near-maximum likelihood (1VIL) steady state 

perfonnance at a fraction of the }/IL implementation cost. In addition, t he DFE is 

capable of equalizing channels with deep spectral nulls which are usually difficult 

with linear equalizers. 

The DFE that is adapted using the stochastic gradient approach must employ a 

reasonably small adaptation step size to ensure the proper convergence of the LMS 

algorith1n. When the channel order is high ( and hence the equalizer length), and/ or 

the impulse response of the channel is heavily colored, the step size parameter has 

to be further decreased . As the step size governs the speed of convergence and 

tracking, the tracking capabilities of the DFE may be limited once the equalizer 

length is increased. _A_ bulk of research effort has focussed on blind equalization 

algorithms over the past few decades based on a fixed equalizer structures such as 

the linear equalizer [14, 49 , 124] and the DFE [7, 10 , 17, 133]. l\!Iore recently, the 

approach by the research community is reversed whereby new equalizer structures 

and sche1nes based on conventional algorithms are proposed instead [5, 21 , 75 ,106]. 

In what follows, we propose a more robust DFE structure that e1nploys the L~v1S 

algorithm. 

5.6.2 D evelopment 

'lle propose a new DFE tructure that incorporates both the conventional DFE 

and the predict ive DFE in one equalizer for improved tracking. _A thi structure 

consists of two DFE's, v. e will refer to it a the dual DFE from hence forth [80]. 

I consists of three filter blocks in the equalizer path as shown by the solid lines 
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Figure 5.7: The dual DFE scheme which features a conventional DFE that is 
prefixed by a linear recursive filter whose taps are driven by a predictive DFE 
which is not in the equalizer path (illustrated by the dotted lines) but it minimizes 
the residual error at the soft output of the conventional DFE, y(k). 

connecting them in Fig. 5.7, i.e., the filters P(z), B(z) and A(z). The combination 

of B(z) and A(z) constitutes the conventional DFE as previously shown in Chapter 

2.2 in Fig. 2.6, where B(z) is a non-causal transversal filter and A(z) is a causal 

feedback filter. As for the newly appended P(z) before the conventional DFE 

structure, it is a linear recursive filter is driven by a predictive DFE criterion that 

minimizes the residual error at the conventional DFE soft output. In fact the 

taps of P ( z) are copied directly from the predictive D FE, P' ( z), since the linear 

whitening filter upstream and the predictive DFE are forward predictors which 

are a1nplitude equalizers [58]. It can be shown that the prediction filter , P' ( z), is 

identical to P ( z) as follows [ 5]: 

Assume first that z(k) = a(k) and z'(k) = a(k) , i.e. , the output signals of 

both the conventional DFE and the predictive DFE are correctly detected. Let 

the error sequences at the output of the conventional DFE and the predictive DFE 

be c(k) = y(k) - z(k) and c'(k) = w(k) - z' (k), respectively. Let Z(·) denote t he 

z-transfonnation. Then, the error sequence of the predictive DFE in t he z-domain 

can be expressed as 

1¥ ( z) = Y ( z) + P' ( z) [Y ( z) - Z' ( z)] 

c: ' (z) = W(z) - Z'(z) 

= y ( z) + P' ( z) [Y ( z) - Z' ( z)] - Z' ( z) 

= [ 1 + P' ( z)] [Y ( z) - Z 1 
( z)] 

= c:(z)[l + P' (z)] 

(5 .24) 

(5 .25) 

(5 .26) 

(5 .27) 

(5.28) 

where c:(z) = Z(c(k)) and c: '(z) = Z(c'(k)) . The power spectral density of the error 
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sequence at t he output of the predictive DFE can be expressed as 

Z(E[l(k)1:'*(k - i)J) 

= Z(E[1:(k)1:*(k - i)J) [1 + P' (z)] [1 + P'*(z)] 
2 2 

= u; F (z) ;;~a- •) + u;, [1 + P' (z)] [1 + P'*(z)] 
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(5.29a) 

(5 .29b) 

(5.29c) 

where F (z) is t he channel response, o-~ and o-; are the variance of the AWGl 

and the data symbols, respect ively. Furt her , t he denominator of (5.29c) can be 

factorized into 

(5.30) 

where S0 is a positive constant . Recall t hat the t ransfer function of t he optimal 

linear 1111SE equalizer can be expressed as [75 , 118, 119] 

(5 .31) 

and the transfer function of t he linear recursive whitening filter that compensates 

for the minimum phase part of C ( z) is such t hat 

1 1 

1 + P(z) G (z) 

. ·. P (z) = G (z) - 1. 

(5 .32a) 

(5 .32b) 

Thus the minirnization of t he 1-/ISE at the input to the decision device of t he 

predictive DFE , i. e., E [c' (k) c'* (k - i)] would lead to P' (z) = G (z) - 1 according 

to (5.29c) . This expression is exactly identical to (5 .32b), which is the transfer 

function of the linear whitening filter upstream. 

5.6.3 Operation Details 

The dual DFE's main objective is to enhance the tracking capability of the con-

entional DFE v\ · hou cornpromising on the lov\r stead - tate ~ISE of the conven

tional DFE . ~Te wish to retain the ad -antage of implementing the conventional 

DFE -ho e tead tate _ ISE i u uall - lov\rer than that achie -able b the predic

ti -e DFE in practice [119). Thu , the predic i -e DFE hould not 'compete' with 

he con -entional D FE in acquiring the tran fer function of the mini1num phase 

channel expre ed in (5.32), but rather co1nplement the con -entional DFE onl 
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when rapid changes in the channel statistics are encountered. 

Let the weight vectors of P(z) and P' (z) be p(k) = [p1 (k),p2 (k) , · · · ,PN(k)]T 

and p' ( k) = [p~ ( k) , p; ( k), · · · , p~ ( k) JT . Let their associated regressor vectors be 

s(k) = [s1 (k), s2 (k), · · · , sN(k)]T and v(k) = [v1 (k), v2 (k), · · · , vN(k)]r, respec

t ively. The conventional DFE is allowed to converged first until a sufficiently low 

MSE, say MSEt1 , is detected at time k = k0 . The predictor coefficients are not 

updated before k0 , such that 

p ( k) = 0 , p' ( k) = 0 

s(k) = 0 , v(k) = 0 

\/k < ko 

\/k < ko. 

(5.33a) 

(5 .33b) 

After time k0 , the regressor vectors are initialized with their input signals, but the 

adaptation of P' (z) is not started yet as we are relying on the conventional DFE 

to achieve a low steady state MSE. However, when the MSE is detected to have 

risen above a pre-defined threshold , MSEt2 , at time k > k0 , either changes in the 

channel statistics have been encountered or the SNR level has dropped. Assume 

fixed SNR level , then the predictive DFE is started to assist in the tracking of t he 

channel statistics . It is adapted as follows , for k > k0 , MSE > MSEt2 : 

p' ( k + 1) = p' ( k) - µP, [ W ( k) - X ( k)] v * ( k) (5 .34) 

The weight vector of linear recursive filt er upstream copies the adapted weights 

of ( 5. 34). If tracking is successful and the channel statistics are vary slower, then 

the MSE would decrease given the same SNR levels. When t he MSE drops below 

MSEt1, then the adaptation of P' (z) ceases and weight vector is slowly decreased 

to O by multiplying p' ( k) with a decaying factor very close to unity. 

Discussion 

By incorporating a predictive DFE, the MSE can usually be reduced further at 

the output of the predictive DFE due to its noise whitening effect . However, this 

does not help the MMSE equalizer upstream to track the channel better since the 

NIMSE equalizer is independent of the predictor coefficients [119]. The novelty of 

the dual DFE is in the mapping of the predictor taps into a linear recursive filter 

upstream of the MMSE equalizer, enabling a coupling between the taps in a special 

way so that the predictor coefficients may be reflected into the equalizer path ( in 

solid lines in Fig. 5. 7) to reduce the load on the conventional DFE. With this new 

configuration, a low steady state MSE due to the use of the conventional DFE in 



5.7 Simulation Results 109 

stationary environments and enhanced tracking due to the predictive DFE driven 

criterion that minimizes the residual error at the conventional DFE's output are 

simultaneously accomplished. 

Switch-mode fast-convergence blind dual DFE 

For acquisition of the channel blindly, we choose to implement a fast convergence 

DFE scheme due to Labat et al [75] . The initial acquisition is performed using the 

cascaded equalizer structure that exploits the channel decomposition property as 

explained in Section 5.1 in this chapter. The equalizer is allowed to converge to 

its optimal settings as a conventional DFE. When the MSE estimate drops below 

a pre-defined threshold, then the dual DFE structure is subsequently implemented 

according to (5.33) and (5.34) . 

5. 7 Simulation Results 

This chapter deals with three broad classes of switch-mode DFE schemes, namely, 

the switch-1node conventional DFE scheme of Section 5.3, the switch-mode pre

dictive DFE scheme of Section 5.5, as well as the switch-mode dual DFE scheme 

of Section 5.6. The simulation results are plotted for various switch-mode DFE 

schemes that will be addressed accordingly in the following subsections. 

5.7.1 Switch-Mode Conventional DFE Scheme of Section 

5.3 - Channel Equalization Results 

The following simulations are generated to yield performance results regarding the 

new scheme in Section 5.3 with and without the enhancements using the parallel 

adaptation strategy as described in Section 5.4. Two stationary non minimum 

phase channels are selected for our simulations.The first is an auto-regressive mov

ing average (ARMA) channel , h1, which is 1nore heavily colored , and the second 

is a moving average ( transversal) channel , h11
, which is lightly colored [118]. The 

transfer functions (TF) of both · channels are given by 

TF (hi) = 0.4 + z -1 

1 - 0.3z- 1 + 0.5z- 2 - 0.2z- 3 
(5.35) 

TF (h11
) = 0.04 - 0.05z- 1 + 0.07z- 2 

- 0.2lz- 3 
- 0.5z- 4+ 

0.72z-5 + 0.36z- 6 + 0.2lz- 8 + 0.03z - 9 + 0.07z- 10
. (5.36) 
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Figure 5.8: (A) and (B) are comparisons of three DFE schemes for the first channel, 
h' , while (C) and (D) are for the second channel, h" , using 16-QAM data signals. 
The first equalizer is the DFE of [75] . The second and third equalizers are the DFE 
described in Section 5.3 without and with parallel adaptation strategy, respectively. 
The parallel adaptation strategy employs the Benveniste-Goursat type combination 
parameters. 

The transrnit data format used is 16-QAM and assumed independent and iden

tically distributed. The real and imaginary components of the transmit data are 

drawn from the [-3, -1, 1, 3]. To characterize the equalizer performance in terms 

of convergence speed and steady state errors, we employ the decision directed MSE 

which can be esti111ated using the following recursion 

MSEDD(k + 1) = 0.99 MSEDD(k) + 0.01 JEDD( k) j2 . (5.37) 

We tested with three types of adaptive equalizers. The first is the DFE in [75] . 

The second is the DFE of Section III without the use of parallel adaptation strategy. 

The third is si111ilar to the second equalizer except that the parallel adaptation 

strategy with the Benveniste-Goursat type soft switching technique is used. The 



5.7 Simulation Results 111 

system parameters of the three equalizers are as follows: 

The length of A(z) is 20 , for the recursive whitening filt er of [75] as well as our 

non-recursive one (see Fig. 5.3). The length of B (z) is 21 for all t hree equalizers. 

For the first two DFE's ( without parallel adaptation strategy) , it switches fro1n 

the linear acquisit ion mode to the tracking mode when MSEDD(k) < 0.5657 , i.e., 

-4.9dB. Once it is in the t racking mode, it may be switched back to t he starting 

mode if MSEDD(k) > 0.7778 , i.e. , -2.2dB. For the third equalizer t here is no dis

t inct switching point. Their adaptation equations are governed by t he Benveniste

Goursat parameters c1 = c2 = 1 and ra = l , rb = 10 for both channels ( equations 

( 5. 20) and ( 5. 21) are ref erred), with the exception c1 for ( 5. 20) for h" where we 

assigned c1 = 0.5. The step sizes of the first two equalizers for h' in t he acquisit ion 

mode are µa c1) = 5 x 10-5 and µb c1) = 5 x 10-5 , while in the tracking mode they 

become µa c2) = µb c2) = 10-4; for h" , we assigned µa c1) = µa c2) = µb c2) = 2.5 x 10-4 

and µb c1) = 2.5 x 10-5 . As for the third equalizer , µa= 5 x 10-5 and µb = 5 x 10-5 

for h' ; and µa= 2.5 x 10-4 and µb = 2.5 x 10-5 for h". 

Fig. 5.8 shows t he MSE plots of t he three above equalizers averaged over 100 

independent trials using 15 ,000 and 10,000 symbols for channels h' and h" , re

spectively, at SNR levels of 15 dB and 25 dB. Two main conclusions are drawn. 

Firstly, t he first and second equalizers exhibit almost ident ical performances in 

terms of convergence speed and steady state errors for both channels under both 

SNR levels. This shows that our simplified DFE as described in Section III has 

maintained t he standard set by t he original DFE in [75] . Secondly, the use of 

t he parallel adaptation strategy using t he Benveniste-Goursat type combination 

pararneters improves performance of the t hird equalizer over t he first two equal

izers t hat are without t he strategy. The success of the smooth switching strategy 

is implicit in t he faster rate of convergence achieved by the third equalizer since 

the first two equalizers would usually switch between their acquisition and track

ing modes several t imes before convergence is finally achieved. It is less obvious 

for easier channels, i. e., h" , at high SNR levels (Fig. 5.8-D) since switching with

out parallel adaptation can still be "smooth" because t he slicer errors that can 

cause ill-convergence of the DFE are fewer. On a different note, the third equalizer 

that employs t he Benveniste-Goursat type parameters yield higher steady state 

NISE because of t he fini te contribut ion from the acquisit ion increment vectors, i.e. , 

c1IEDD(k)IEM0Es(1)*(k) and c1IEDD(k)IEcMA(k) t (l)*(k) as in (5 .20) and (5 .21), even 

after convergence has been achieved . The problem with the high steady state NISE 

can be solved by employing the reliability measure technique [82] which is more 

computationally intensive. 
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5. 7.2 Switch-Mode Conventional DFE Scheme of Section 

5.3 - Channel Identification Results 
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Figure 5.9: The 100 most dominant taps of the inverse response of channel h"' . 

For this subsection, we generated source data signals that are drawn from an 

8-PAM alphabet set 

A= {±1 , ±3 , ±5, ±7}. 

We chose a 5 tap transversal channel whose transfer function is given by 

TF (h'" ) = 0.8264 - ·0.1653z-1 + 0.8512z-2 + 0.1636z-3 + O.Slz-4
. (5 .38) 

It is a severe non-minimum phase channel that exhibits deep spectral nulls and 

has an initial kurtosis ratio of 0.3 ( see [75]). The implication of the initial kurtosis 

ration that is less than 0.5 , according to [79], is that convergence of the Godard 

equalizer would usually take 1nuch longer . As our equalizer is transversal, under 

convergence , its weight vector will be approxi1nately the inverse of the channel's 

i1npulse response , which is shown in Fig. 5.9. Only 100 of its most do1ninant taps 

have been plotted. 
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Figure 5.10: Channel iden ification results using new switch-mode DFE scheme 
proposed in Section 5.3. T hese results are obtained using (A) 300 symbols , (B) 800 
s mbol , (C) 2500 sy1nbols. T he equalizer is in its acquisition mode for both (A) 
and (B). As for (C) , the equalizer has settled into its tracking (DD ) mode. 

The SKR level is set at 30 dB. Therefore. after some calculations. the standard 
J J 

deviation of the A -c:r; is obtained o be O" = 0.15. vVhile the equalizer removes 

he ISI due o he channel distor ions ) i inevi abl amplifies the noise. At he 

equalizer ou put , he fil ered ( amplified) noise has a standard deviation of 0.22, 

·where a1n plification is b} a factor of 111 + A. ( z) 11 ~) where 11 · 11 2 denotes the b norm 

of a -ec or and as urning A. ( z) has converged to its optimal values. This level of ( fil-

ered) noise makes equalization of this channel quite a challenging task) especially 

for non-cons ant modulu source ignals like 8-PA~I [42). 

_An equalizer can be de igned for channel identifica ion purposes by inverting 

the channel. In our ca e we ai1n o find the in er e re pon e of the channel using 

our non-recur i\e FIR acquisi ion equalizer. If ~ SEDD (k) drops below 0.27 , it 

ould then witch o the DFE as explained in Section 5.3. T·he in -er e impulse 

respon e of he channel ha 1nore han 90 tap v\'hose magnitudes exceed 10-3
, as 

ell a man r other 1naller ails . _ hundred of the 1nost do1ninant taps of H-1 (z) 

are plo ed in Fig. 5.9. 

Due to he large number of tap in the channel' inver e re pon e) °\\ e as igned 

40 ap for A(z) and 50 aps for B (z) . \ i\ e imulated 15 different runs where 300 

and 800 baud-ra e rmbol "v\ ere u ed. The equalizer impul ere pon e of each run 
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is plotted in Fig. 5.10-A,B , as a solid line and t he desired impulse response of the 

channel inverse is plotted as circles on the same graphs. Even though the equalizer 

has not switched to its decision directed mode at this point , we are pleasantly 

surprised at the close proximity of the equalizer's taps to the channel's inverse 

after just 800 symbols despite the severity of the channel. Fig.5.10-B demonstrate 

the speedy acquisition of the linear acquisition equalizer. 

5. 7.3 Switch-Mode Conventional DFE Scheme Under Par

allel Adaptation Strategy 

(A) MSE 
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Figure 5.11: The average MSE and SER of 20 runs of fast convergence DFE scheme 
of Section 5.3, with (solid line) and without ( dotted line) parallel adaptation strat
egy on 8-PAM signals at 30 dB for channel h"'. 

In Fig. 5 .11 , we plotted the averaged result from 20 separate runs to demon

strate the adverse effects of switching. When parallel adaptation is not used , the 

equalizer generally faces an abrupt change when switching occurs which disrupts 

the convergence of the equalizer para1neters to its optimal decision directed set

tings. The average MSE plots of the equalizer output with and without parallel 

adaptation are drawn with the solid and dotted lines , respectively. Notice the 

'bu1nps ' encountered at the vicinity of switching when parallel adaptation is not 

e1nployed. Consequently, the equalizer 1nay switch back and forth between its ac

qui ition and tracking 1node until eventually convergence is achieved . As a result , 

the equalizer will generally take longer to converge. As the DFE is extremely sensi

tive to decision errors [.39, 71], the 'bump ' in the symbol error rate (SER) at around 

15% SER 1nay cause the ill-convergence of the DFE. 
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Figure 5.12: Resul of o ne al ernati e DFE}s compared with trained equaliz-
er . 

The e ima e ~ISE i ob ained according to (5.37) and the symbol-error-rate 

(SER) i e in1ated via 

\\-here 

SER(k + 1) = 0.99 SER(k) + 0.01 I (k ) 

I (k ) = { ~ z(k) = a(k) 

r./ (k) # a(k). 

(5.39) 

(5.40) 

J ( k) i impl - an indicator \\1hi ·h Tields unit , \\rhen the equalizer output i correctl -

detected: i.e .. r./( k) = a (k): and a zero if it i incorrectl - detected : i.e. : z(k) # a(k). 

5.7.4 New Switch-Mode DFE Schemes of Sections 5.3, 5.4 

and 5.5 - Channel Equalization Results 

In thi e ·tion. \\-e pro,ide imulation re ult to dra\\- e,idence of fa t conYergence: 

lo\\- t ad ~ ate error > and high ucce ra e of conYergence that i unaffected 

b - \'ii ching: of he ne\'i- DFE. ,Ye \'iill compare the performance of the blind 

·onYen ional DFE of Sec ion 5.3. the blind P-DFE of Section 5.5. the trained LE 
' ' 



116 Fast Convergence Switch-Mode DFE Schemes 

and the trained DFE. The data format used is 4-QAM signalling. The SNR level 

is set at 15 dB. The channel to be equalized is h'" of (5.38) . We used a total of 

20,000 symbols for the above simulations. 

The convergence rate of t he blind equalizer is comparable to that of the ·trained 

equalizers (LE and DFE), and its steady state MSE is lower t han the trained LE. 

Unlike the results in [75] that showed equal convergence speed for both their blind 

equalizer and the trained equalizers, our results show marginally slower convergence 

speed. This is largely due to the increased length of the non-recursive for this 

particular example. The length of the recursive whitening filter in [75] is 4 but 

ours is fixed at 21. 
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Figure 5.13: Plot of the equalizer output of various selected schemes extracted at 
the end of the data stream. (A) CMA equalizer . (B) Trained LMS equalizer. ( C) 
Fast converging blind predictive DFE. (D) Our FIR scheme and the trained DFE, 
which yields si1nilar MSE. 

In Fig. 5.13 , we plotted the last 2000 symbols of the data stream consisting of 

20 ,000 sy1nbols of the equalizer output for various selected equalizers fron1 Fig. 5.13 

in ascending order of their steady state MSE. The results is not surprising because 

a clear open eye is expected for our conventional DFE scheme, followed by a smaller 

eye by the predictive DFE scheme. This is because the predictive DFE's forward 

MNISE equalizer parameters are adapted independently of its DFE feedback pa

rameters , whereas the parameters of both feedforward and feedback filters of the 

conventional DFE are jointly adapted [119] . The linear equalizers perform much 

worse, where the trained linear equalizer yields lower MSE compared to the CM 

equalizer because the data constellation is non-constant 1nodulus [42] . 
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5.7.5 Switch-Mode Dual DFE Scheme of Section 5.6- Chan

nel Equalization Results 

The following simulations show the perforrnance comparison of three schemes used 

to equalize the five-tap non-minimum phase channel that is used in [75], which 

is h'" . The data format used here belongs to t he real 8-PAM format. As the 

dual DFE equalizer scheme is one that only enhances tracking of a non-stationary 

channel after which convergence has been achieved, we let t he channel be stationary 

for the first 15 ,000 symbols before introducing a t ime-varying zero. For the first 

simulation scenario whose 1'/ISE is as depicted in Fig. 5.14, a fifth zero denoted by 

r 5 (k) apart from the four original zeros of (5 .38) is added. It starts from the origin 

at the 15 , 001 th symbol and it moves radially towards the coordinate (1 , 0) on t he 

z-unit circle according to t he following equation: 

T5 ( k) = { ~.06(k~ 15000) 
2000 

0 < k < 15000 - -

k > 15000 
(5 .41) 

As for the second si1nulation whose results are depicted in Fig. 5.14 , a zero is 

also added on the 15 , 001 th symbol. It is defined by a similar linear motion plus a 

sine component in the following manner: 

{ 

0 
r- k = - -o ( ) O.Oo (k-loOOO) _L O l · hr 

2000 1 • Sln 2000 

0 < k < 15000 

k > 15000 
(5.42) 

Here, we co1npare the performances of three equalization scheme. The first 

is the linear equalizer of the acquisition mode of [75] . T·he second is the linear

equalizer-DFE scheme of [75] whereby it starts off as a linear equalizer (same as 

the first equalizer hat we are te ting on), and switches over to a DFE once the 

e e is sufficiently open. The switching occurs when_ fSEDD (k) < 0.27. The third 

i the dual-DFE scheme that arts off as the DFE scheme of [75] (same os the 

second equalizer that we are testing on) . It the dual-DFE is implemented once the 

_ ISE esti1nate further drops below a lower threshold , i.e., when ~ISEDD (k) < 0.23. 

~ ote hat all hree equalizers are extensions of the one before it. The first 

equalizer i merel the acquisition linear equalizer in [75]. Its recursive whitening 

filter A(z), has 25 aps. Its doubl - finite Godard transversal filter , B (z), has 

50 tap . The second equalizer extends he first in the sense that acquisition is 

achie -ed u ing · he i1nilar linear equalizer , it swi ches to a conventional DFE once 

he es imate )VISE drops belo a predefined threshold value i.e. , ~1ISEDD ( k) < 

0.27. The hird equalizer extends the second equalizer in he sen e it is adapted 
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Figure 5.14: Comparing t hree equalizers: 1) the linear acquisition equalizer (LE) 
of [75], 2) the DFE scheme of [75], and 3) t he dual-DFE that extends the DFE 
in [75]. 

exactly as the second equalizer until MSEDD(k) < 0.23 after which the dual DFE 

is implemented. In the setup of the third equalizer, the additional predictor filters , 

P(z) and P' (z) , have equal lengths of 25 taps. 

The plots in the MSE figures are obtained using 20 different and independent 

runs at a signal to noise ratio (SNR) of 30 dB. 

5.8 Conclusions 

In this chapter , we have accornplished three distinct goals which describe the main 

contribution of this chapter. They can be itemize_d as follows: 

1. We have successfully extended the switch-mode equalizer scheme of Labat 

et al [75] to incorporate a linear transversal whitening filter while retaining 

the simplicity of a direct transfer of its tap para1neters to the DFE in the 

tracking 1node. o observable loss in performance is encountered with this 

1nodification to the transversal mode as compared to the original recursive 
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scheme. 

2. We addressed the srnooth switching between operation modes of the equaliza

tion scheme of [75]. Even though it is advantageous to use different types of 

equalizer structures under different conditions related to the existing channel , 

it beco1nes difficult to ensure a smooth switching between these structures. 

We proposed a switch-mode technique called the parallel adaptation strat

egy [84] that ensures an automatic transit ion between a suboptimal linear 

acquisition structure and a non-linear tracking structure. 

3. We proposed a new equalizer structure that incorporates two DFE 's simul

taneously to cope effectively with t ime-varying channel statistics as well as 

stationary ones. 
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Chapter 6 

Rotat ional Analysis On Several 

Blind Equalization Algorit hms 

In this chapter, we study the rotational behaviors of the constant modulus algo

rithm (CMA), the reduced constellation algorithm (RCA) and the multi-modulus 

algorithn1 (M 1:A) for quadrature-amplitude-n1odulation (QAM) sche1nes, which 

are the behaviors of the equalizer output constellation under the adaptation of the 

above algorithms. In particular, we compare their susceptibilities to undesirable 

rotated solutions using the concept of torque where the output signal constellation 

is treated as a physical object and the update error term treated as an external 

force that induces rotation. We verify the phase-invariant property of t he CMA 

and show that the RCA is prone to undesirable 45-degree solutions for cross-QAM 

constellations but 1nuch less likely for square-QAM constellations. We also found 

that the MMA cannot converge to such wrong solutions for any arbitrary constant 

phase offsets for a wide range of noise levels. 

6.1 Introduction 

Blind equalization algorithms can be employed to co1nbat the intersymbol interfer

ence (ISI) when only the channel output and some statistical infonnation regarding 

the data input are available. Certain blind algorith1ns are also capable of correcting 

the phase of the output constellation apart from their usual tasks of blind ISI re-

1noval. These phase aware algorithms include the reduced constellation algorithm 

(RCA) [15 ,50] and the multi-1nodulus algorithm (MMA) [105 ,152] t hat is developed 

more recently. Unfortunately, their convergence to undesirable rotated solutions 

whereby the output constellation is rotated by an arbitrary angle from its original 

orientation have been reported in the literature [105 , 147, 152]. In t his chapter, we 

121 
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Stationary Phase 
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Figure 6.1: Baseband QAM system model. 

will analyze the constant modulus algorithm (CMA) [49 , 137], the RCA and the 

MMA, with respect to their immunities ( or susceptibilities) to such undesirable 

solutions. 

Blind equalization is used extensively in various emerging broadband access 

applications such as fiber-to-the-curb (FTTC) networks and x-digital-subscriber

line (xDSL). A phase aware blind algorithm that can perform the joint task of 

blind equalization and phase recovery satisfactorily is highly desirable [46, 147]. 

In carrierless amplitude and phase ( CAP) modulation and quadrature amplitude 

modulation ( QAM) receivers , for exa1nple, additional carrier phase tracking circuits 

are necessary due to the lack of an automatic constellation phase recovery property 

not inherent in the CMA. A solution is then to employ phase aware algorithms such 

as the RCA and the MMA so that the phase tracking circuits are no longer required. 

However t heir potential convergence to wrong solutions will seriously jeopardize the 

equalizer performance under practical environments. While the occurrences of such 

undesirable convergence are much fewer for t he MMA compared to the RCA and 

the CMA [152], the reason for the superior behavior of t he MMA has not been 

established. Moreover, even though t he minimization of the costs of both the RCA 

and the MMA will result in the desirable 0° solut ion [46], it is not clear it there 

exists other rotated solutions which may not yield minimum costs . We will study 

the existence of such ill-oriented solutions which helps in the design of an equalizer. 

In this chapter, we will use the concept of torque common in mechanics to address 

this rotational issue . 

6.2 System Setup and Assumptions 

Consider the channel-equalizer system depicted in Fig. 6.1. Let h 6 [ho, h1 , · · · , hL]T 

denote the coefficients of the stationary channel filter of length L + 1. The chan

nel is po sibly non-1nini1num phase but unknown to the receiver. In addition, 

the data sy1nbols 1nay be rotated. Let the source data sequence be a( k) 6 
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[a(k), a(k - 1), · · · , a(k - L )]T with a t in1e index k, drawn from M -QAM al

phabet set , M = 16, 32, 64, 128, where M = 16 , 64 are square constellations and 

M = 32, 128 are cross ones. At t he receiving end , t he input signal to the equalizer 

l S 

r(k) = h T a(k) + n(k) (6 .1 ) 

where n(k) is the addit ive whi e Gaussian noise (AWGN) and T denotes trans

posit ion. Let w (k) 6 [w __ (k), · · · , w0 (k), · · · , wN(k)]T be t he (2N + 1) complex 

equalizer tap coefficients initialized with a center-tap strategy, which allows t he 

causal development of approximate inverse filters for non-mini1num phase systems. 

Then the equalizer output can be expressed as 

N 

z(k) = ~ Wn(k)r(k - n) (6.2a) 
n=-N 

= a(k)ej6 e(k) + v(k) (6.2b) 

~here 6.8 (k) = [8(k) - <I> (k)] is t he instantaneous residual phase error term, 8(k) 

and <I> (k) are depicted in Fig. 6.1 , and v(k) is the residual-ISI-plus-noise term of 

variance a;. In our analysis, we 1nake t he simplifying assu1nption t hat v(k) is 

normally dist ributed so that we can assu1ne t hat the data is trans1nitted over an 

AV\ GN channel due t o t he central linlit theore1n [57, ch. 2]. 

Under the usual stochastic gradient adaptation, t he weight vector of the equal

izer is upda ed as belo~: 

8J(w) 
w (k + 1) = w (k) - µw Bw (k) 

= w (k) - µwc(k)r \(k) 

(6.3a) 

(6.3b) 

~ here µw is he adaptation step size J(w) and c(k) are the cost funct ion and the 

error func ion of t he blind adapt i, e algori h1n , respectively, r 1 - ( k) = [r ( k), r ( k -

1) · · · r(k - T + l )JT is the inpu regressor , and * denotes complex conjugation. 

In , -ha folio~ s, e ~ ill assess he cost functions J( w ) or equivalently, their error 

func ions c( k) wi h respec to their immunitie ( or suscep ibili ies) to undesirable 

ro a ional equilibria . 



124 Rotational Analysis On Several Blind Equalization Algorithms 

(A) (B) (C) 
4 . 6 5 . _ ..... -.._.. ... 

,t: ~ t .,.. " . 4 , ' 
2 . ~- "' ·t ~ t(o\\ • 

2 ff. *" "i' it- :~ 
2 -. 2 : I 2 . ill.,. ·-:£· ~ .t ~ 0 • N 0 N 0 - . ... -E . E ...... .,,. 

~ ~ 
,I E \ \. I J • -2 • 

-2 
. .'ft- :ij· * ·if.· 

\ / ' . . . -4 ~ -~ ... ".. '--- ,·' . " . . 
-6 t\. ;,. .. ........ --~, 

-4 -5 -4 - 2 0 2 4 -5 0 5 - 5 0 5 
Re(z(k)) Re(z(k)) Re(z(k)) 

Figure 6.2: Examples of undesirable rotated solut ions for (A) 16-QAM at 21 °, 
obtained by RCA and CMA; (B) 32-QAM at 45°, obtained by RCA and CMA; (C) 
16-QAM under a frequency offset, obtained by CMA. 

6.3 Torque Analysis of Undesirable Rotated So

lutions 

6.3.1 Some Wrong Rotated Solutions 

The cost functions of the CMA, the RCA and t he MMA are respectively given by 

lcMA(w) = E { (lz(k)l 2 - 1~)2 } 

hcA(w) = E { lz(k) - /Rn 
JMMA(w) = E { [ Re(z(kj)2 -1~ r + [rm(z(k) )2 -1~ r} 

(6 .4a) 

(6 .4b) 

(6 .4c) 

where 1~ 
6 

E{la(k)l 4 }/E{la(k)l 2
} [49], rR 6 

E{a(k) 2}/E{la(k)I}, csgn(-) = sgn(Re(·))+ 

F·sgn(Im(-)) is the complex signum operator, and ri1 6 E{Re(a(k)) 4 }/E{Re(a(k)) 2
}. 

Wrong rotated solutions should not be confused with the undesirable local min-

i1na in the channel-equalizer para1neter space which will result in incomplete ISI 

re1noval [26 , 31 , 78]. Wrong rotated solutions, on the other hand, are solutions 

obtained even after the channel eye has been open except that its output signals 

are out of phase with its original QAM constellation. Note that modulo 90° is 

acceptable because such solutions 1nay be detected and corrected with differential 

encoding techniques. Consequently with disorientated solutions, the MSE is not 

minimized. Thus such solutions present the notion of local 1nini1na in the phase 

parameter space, as opposed to local 1nini1na in the combined channel-equalizer 

para1neter space. 

Fig. 6.2 shows three wrong solutions that may be encountered during lab sim-
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ulations , where Fig. 6.2-A, B show two possible wrong solutions at angles of 21 ° 
and 45°, respectively, when the CMA and the RCA are employed in the presence 

of a constant phase offset. Fig. 6.2-C shows a wrong solution of the CMA un

der non-stationary phase offsets. Even though the eye is clearly open for each of 

the three cases (three distinct circular lines in Fig. 6.2-C represent a well open 

eye condition), the MSE is not minimized due to the disorientation of the output 

constellation. It is also interesting to note that none of the wrong solutions has 

been reported when the MMA is employed. The torque analysis that proceeds will 

explain this phenomenon. 

6.3.2 Preliminaries on Torque Concepts and Some Defini

tions 

Unlike conventional approaches, we have resorted to using torque to analyze the 

rotational behavior of the output constellation under the adaptation of the tap 

weights. This is because the output constellation may be represented by an object, 

in the physical sense, that is being applied a net rotational force which causes 

rotation about its origin. Thus this translates into a problem that can be readily 

addressed by the concept of (mechanical) torque. 

Torque is a measure of how much a force acting on an object causes that object 

to rotate. The object rotates about an axis called the pivot point or simply, the 

origin. The distance from the origin to the point where the force acts is called the 

moment arm. In our context, the origin of the object is in fact the origin of the 

QAM constellation. The object that is being rotated is the equalizer output vector 

------+ 
z ( k) = [ Re ( z ( k)), Im ( z ( k))] . (6.5) 

Note that the moment ann is a vector. The acting force is t he error function vector 

------+ 
c(k) = [Re(c(k)) - Re(z(k)), Im(c(k)) - Im(z(k))]. (6.6) 

Thus , the effective torque applied on the output signal is defined as 

------+ ------+ ------+ ------+ 
T ( k) = z ( k) x E ( k) = z ( k) E ( k) sin cp (6 .7) 

where x denotes the cross product of two vectors and cp is the angle between the 

two vectors. We now state the condition for rotational equilibrium. 

Under rotational equilibrium, the sum of the torques acting on the object must 
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-------+ 
be equal to zero. In our context, there is only one force , c(k) , acting on one moment 

--+ 
arm, z(k) , at any one instant. The moment arm and its associated force , however , 

are distributed over the constellation space. Thus , the condition for rotational 

equilibriu1n is for the expected torque value to be zero, i.e. , 

E{T(k)} = 0. (6.8) 

6.3.3 Rotational Behavior of the CMA 

Using the concept of torque, we will show that the CMA is a phase-blind algorithm, 

i. e., it is insensitive to the phase of its output. In other words , we will verify that all 

angles for the output signal constellation correspond to marginally stable equilibria. 

The error function of the CMA is 

EcMA (k) = z(k) (l z(k) 1

2 
- , 6) 

where the noisy phase rotated equalizer output (6.2b) given here again is 

z ( k) = a ( k) eJ ~e ( k) + v ( k) . 

The force that acts on the 1noment arm is 

The torque is 

~ = ( Re(z(k)) (lz (k) 12 
- ?6) - Re(z(k)), 

Im(z(k)) (l z(k )12 - ?6) - Im(z(k))) 

= (lz(k)l 2 - ,'6 -1) (Re(z(k)), lm(z(k)) ) 
--+ 

= scalar· z(k). 

--+ --+ 
T ( k) = z ( k) x (scalar · z ( k) ) 

--+ --+ -
= scalar · (z(k) z(k) ) sinO 

= 0, Vz(k) 

(6.9) 

(6.10) 

(6.lla) 

(6.llb) 

(6.llc) 

(6.12a) 

(6.12b) 

(6.12c) 

because the cross product of two vectors in the sa1ne direction is zero (6.12a), which 

is also reflected by the term, sin 0, in ( 6.12b). Since z( k) is a function of the residual 

phase errors, 6.8 ( k), t his i1n plies t hat t he rotational equilibrium is achieved for all 
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Figure 6.3: Rotational behavior of RCA for square-QAM constellations. The non
fl at region in Fig. (B) indicates that there is an undesirable but rotationally stable 
equilibrium point which is at the vicinity of 21 °. This is also reflected in Fig. ( C) 
where a shallow local minimum is observed for <5v ~ 0 and 6.8 (k) ~ 21 °. 

phase errors, i.e. , 

E{T(k) } = 0, \/6.8 (k) . (6.13) 

In other words , there is no mean torque that acts on the output signal constellation 
~ 

for all values of 6.8 ( k) because the force that acts on z( k) will go through the origin, 
~ 

just like z(k) itself. This result supports t he fact t hat the CMA is indeed phase-

blind. 

6.3.4 Rotational Behaviors of RCA and MMA 

We will study the rotational behaviors of t he RCA and the MMA by examining 

the mean torque acting on t he output constellation for different phase errors, SNR 

levels , and constellation sizes. Rather than being vigorous in our analysis, we com-
~ 

puted the cross products of large samples of equalizer output vectors, z(k), and 
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Figure 6.4: Rotational behavior of RCA for cross-QAM constellations. The large 
non-flat regions in Figures (B) and (E) at the vicinity of 45° indicate that the RCA 
is very susceptible to the '45° ' wrong solutions. This is also reflected in the cost 
figures ( C), (F ) where a local minimum point clearly exists at 45°. There are two 
more stable points for 32-QAM as shown in Figure (B) at high SNR and around 
13° and 21 °. 

~ 

their associated error function vectors, e( k), to obtain their mean torques . In addi-

tion, we also computed their n1ean costs, E{ J} , under t he following environments: 

1. A phase error of 0° to 45° at intervals of 0.5° . 

ii. A standard deviation , av, of the effective noise which is assun1ed to be Gaus

sian, from 0.05 to 1 at intervals of 0.05 . 

111. Constellation sizes of 16 , 32, 64 , 128, where 16, 64 are square QAM constella

t ions, while 32 , 128 are cross QAM constellations. 

The empirical results using torque analysis regarding the rotational equilibria 

of the RCA and the MMA are shown in Fig. 6.3 , 6.4 , 6.5. In order to meaningfully 

interpret the figures, the following points must be understood first : 
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a) Due to the symmetry of the QAM data constellation about the x- and y-axes, 

the torque figures are identical for 0° < 68 ( k) < 45° , 90° < 68 ( k) < 135° , · · · , 

while they are 1nirrored about the x-axis (i.e., the positive mean torque becomes 

the negative mean torque) for 45° < 68(k) < 90° , 135° < 68(k) < 180° , .... 

Therefore, the results for the range 0° < 68 ( k) < 45° can completely describe 

the rotational behavior of the algorith1n. 

------+ ~ 

b) By the definition of z(k) in (6.5) and c(k) in (6.6), a positive mean torque will 

result in a clockwise rotation in the constellation. Conversely, a negative mean 

torque will result in an anti-clockwise rotation. If you will refer to the figures 

of mean torque, a positive 1nean torque 'pushes' 68(k) towards the equilibrium 

point1 on its left. A negative torque 'pushes ' 68(k) towards the equilibrium 

point on its right. Therefore, an undesirable equilibrium point between 0° and 

45° exists if a negative mean torque exists over this range. This is why we have 

also plotted the negative 1nean torque figures to ease the identification of such 

undesirable equilibria. 

c) Not all equilibrium points are stable. For the range 0° < 68(k) < 45°, a stable 

equilibriu1n is one that must experience a negative 1nean torque on its left and 

a positive 1nean torque on its right. Take for exa1nple the 32-QAM for RCA 

and observe Figure 6.4- (B). The 45° solution is stable for av = 0.5. However , 

at av = 0.1 , the stable angle corresponds to approximately 37°. 

\Tve now present the conclusions drawn fro1n observing Fig. 6.3 , 6.4 , 6.5. 

1) Square (16- and 64- ) QAM constellations: Both algorith1ns exhibit little sus

ceptibilities to wrong solutions , except for the RCA at very high SNR's and 

only for 16-QAM. There exists one stable equilibriu1n at approximately 21 ° and 

av = O.l. 

2) Cross (32- and 128-) QAM constellations: The RCA , as opposed to the MMA, 

is 1nuch 1nore likely to converge to the 45° solution for both 32- and 128-QAM 

sizes. Once trapped in these solutions , they are hard to 'escape' . This is because 

of t he large area of negative 1nean torque that spans approxi1nately 11 ° to the 

left of 45° and over all shown values of av. Thus , once t rapped in the 45° 

solution, a large amount of torque will 'push ' the signal constellation back to 

the wrong solution if the constellation is rotated within 11 ° from 45°. Hence 

they are highly stable solutions. It is no wonder a high rate of undesirable 

convergence to 45° solutions has been observed in lab experi1nents [152] . 

1 An equilibrium point corresponds to zero mean torque. 
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Figure 6.5: Rotational behavior of MMA for 16-QAM constellation. Identical
shaped figures are observed for 32-, 64- and 128-QAM, so they are not plotted. 
Figure (B) shows no signs of a negative mean torque and this is true also for 32-, 
64- and 128-QAM. This phenomenon is also reflected in the cost function which 
does not have any undesirable local minimum. 

3) The 111ean torque of the MMA that is always positive for all O" v and !::..() ( k) shows 

that a rotational force always pushes the output signal constellation back to its 

correct 0° solution. Therefore, the MMA is not possible to converge to a wrong 

solution. In addition the mean torque has a constant shape even when the O"v 

varies . This is a very interesting property which makes MMA a very robust 

blind phase recovery algorith111 as it is not only immune to 45° solutions, but 

its 111ean torque is also insensitive to fluctuations in the SNR. 

Based on this torque analysis we therefore conclude that the MMA is far more 

superior than the RCA in terms of its convergence immunity to wrong solutions 

for QAM systems in both high and low noise environ111ents. 

6.4 Conclusions 

The rotational behavior of gradient-type blind algorithms, na111ely, the CMA, the 

RCA and the MMA can be studied using the concept of torque. The CMA is shown 

to be phase invariant through the use of the torque analysis. As for the RCA , it 

is shown to suffer fro111 potential wrong solutions of all sorts of angles especially 

for cross-QAM constellations . These wrong solutions are also highly stable for the 

RCA. The MMA on the other hand , is shown to be superior in terms of its i111munity 

to undesirable rotated solutions in both high and low noise environments. 

In this chapter, we have presented a new way to analyze the rotational behavior 

of blind algorith111s which can be thought of as the local minima analysis in the 
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phase parameter space. Therefore , when it co1nes to selecting a blind algorith1n for 

the purpose of blind equalization and phase recovery, the MMA is definitely the 

preferred choice over the RCA due to its superior phase recovery properties. Fro1n 

this analysis , we revealed that the MMA is the most suitable algorithm among the 

three algorithms to be used . 
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Chapter 7 

Conclusions 

In this chapter, we present a summary of the research findings of the thesis and 

the contributions found in each of the chapters. Also, guided by insights gained 

in conducting the research found in the thesis, we propose a program for further 

research. 

7.1 Executive Summary 

In this thesis, we have investigated, analyzed, and developed switch-mode equal

ization schemes with the global goals of fast convergence and smooth switching in 

mind. We have developed a new reliability concept based on Bayes theorem that 

is used to combine the acquisition and the tracking algorithms. This combination 

methodology is very flexible and can even be extended to combine algorithms based 

on different equalizer structures such as a linear equalizer and a decision feedback 

equalizer. We then focussed on developing simpler formulations of switching crite

rion inspired by our reliability combining concept. The new switch-mode algorithm 

that employs this switching criterion achieves very fast convergence and smooth 

switching at practically no additional cost. Finally, considered a novel analysis 

method for determining the phase/frequency locking ("rotational") behavior of 

blind algorithms and applied it to several blind algorithms to test their robustness 

and immunity to to wrongly rotated stable equilibria. 

In Chapter 3, we developed a new reliability based switch-mode algorithm 

whereby the acquisition and the tracking algorithms are combined using a convex 

reliability parameter. This parameter has been derived using Bayes theorem and 

is found to be dependent on both the equalizer output and its estimated statistical 

distribution. Unlike conventional techniques found in the literature that employ 

heuristically chosen measures which are usually dependent on only the equalizer 

133 
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output or other measures, our new technique (that depends on both equalizer out

put and its distribution) was shown to exhibit significant performance in1provement 

over conventional techniques. 

In Chapter 4, we developed a new switching criterion that is based on the 

probability of an equalizer output being found in square regions that enclose the 

constellation points. The novelty of this technique lies in the dynamically vary

ing size of these square regions. The concept parallels the reliability measure de

veloped in Chapter 3 whereby the co1nbination of the acquisition and tracking 

algorithms is dependent not only on the equalizer output, but its estimated statis

tical distribution as well. This algorith1n, unlike conventional algorith1ns including 

the reliability-based algorithm in Chapter 3, achieves very rapid convergence, low 

steady state error and automatic phase recovery. In addition it has the advan

tage, particularly in a practical setting, that it is very si1nple to implement with 

complexity co1nparable to conventional "hard-switching" techniques. 

In Chapter 5, we developed a new DFE scheme that extends the work of of 

Labat , J\ifacchi and Laot. The most important aspect of the new strategy is that 

it combines the linear equalizer and the DFE of this equalization scheme in the 

sa1ne way we co1nbine the acquisition and tracking algorithms in Chapters 3 and 4. 

Once again, fast convergence and smooth switching between modes are achieved. 

In Chapter 6, we proposed an alternative tool to analyze the phase/frequency 

locking ("rotational") behaviors of several blind algorithms. Specifically, we verified 

that the constant 1nodulus algorithm (CMA) is rotationally invariant. The most 

important and somewhat surprising result is that the multi-1nodulus algorithm 

developed by Oh and Chin, and independently by Werner and Yang, is superior 

that the reduced constellation algorithm (RCA) developed by Benveniste et al, in 

terms of the algorithm's immunity to wrongly rotated stable equilibria for QAM 

signals . 

7.2 Future W ork 

7.2.1 Direct Extensions 

In tenn of more direct exten ion to the work there are a nu1nber of which we 

indicate a fev.-. The new probabili tic witching criterion in Chapter 4 ha been de

veloped for Q_A~I ignal with the assumption that the effective noise1 is a co1nplex 

Gau ian noi e term which i independen of the data ignal. It can be extended to 

1 Effective noise is defined as the sum of the residual ISI and additive noise. 
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other data formats such as the real PAM format. It can also be extended to involve 

analysis that treats the effective noise as non-Gaussian and non-independent of the 

data signals, which is usually true in practise. 

7.2.2 Generalizations 

Dual mode ( and possibly multi-mode) equalizers can be viewed as specific instances 

of a more general class of equalizers. In their most basic form this type of equalizer 

exists in two modes and there is either a hard switching or soft switching between 

t he modes. The two modes differ in the filtering structure and the type of adaptive 

algorit hm they use. This thesis has focussed on how to make this handover between 

the acquisition mode and the tracking mode as quick and smooth as possible. 

The ability of an equalizer to switch structure and algorithm is in general a very 

powerful notion but the problem is not well studied. Generally a channel will be 

t ime-varying and a given equalizer can expect to have to operate over a variety of 

channels with varying degrees of difficulty. To be successful an equalizer needs to 

have a complexity comparable to the complexity of the channel dynamics. Hence 

when a channel is simple the equalizer should be simple and lowly parameterized. 

Conversely a complex channel would require an equalizer of many parameters. 

The problem that needs to be addressed is how to have an equalizer change its 

structure automatically in response to the complexity of t he channel and to do so 

in a blind way. Married with t he changing structure is a requirement to change the 

associated algorit hm. In this way t he limited number of modes of today 's equalizers 

( usually one or two modes) need to move towards a continuum of modes in a more 

general setting and change in a smooth way that tracks the channel complexity 

variations . Adaptation is no longer an issue of varying the parameter values in 

a fixed structure but also in addition varying the structure , parametrization and 

number parameters. 
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Appendix A 

Computation of mean of absolute 

value of error functions, E{ E( k) } 

The switch-mode algorithms that we deal with in Chapters 3, 4, 5 usually consists 

of two ( or more) algorithms that will be switched from one to another at some 

point in time when the equalizer output is believed to be sufficiently reliable. The 

1nagnitudes of the error functions can be orders apart and thus they need to be 

scaled to yield same orders of error functions to ensure a smooth transition. In this 

Appendix, we will consider the minimum output energy (MOE) or the whitening al

gorithm, the constant modulus algorithm (CMA), and the blind least-mean-square 

(LMS) algorithm. We assume the input signal to the transversal equalizer is r(k) 

and its output z(k). The weight vector of the equalizer is denoted as w(k). 

Firstly, we consider the MOE algorithm. Its cost function is 

(A.1) 

and its error function , i.e., the derivative of the cost function and taking away the 

expectation operator, is therefore 

EMoE(k) 6. z(k) . (A.2) 

Thus, the mean of the absolute value of (A.2) is easily computed once the prob

ability density function (p.d.f.) of z( k) is known. The equalizer output can be 

expressed as the sum of the desired signal ( originally transmitted data signal) and 

an effective noise term which consists of the residual ISI plus colored additive chan

nel noise as in (2.4) . In discrete time, it can be expressed as in (3.4) as follows: 

137 
/ 



138 Computat ion of 1nean of absolute value of error functions , E{ Jc(k)J } 

(A) p.d.f.: MOE algorithm (B) p.d.f.: CMA algorithm (C) p.d.f .: LMS algorithm 
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Figure A.1: T he probability density functions (p.d.f. ) of t he error funct ions of 
t he MOE, CMA, and the LMS algorithms. The solid lines represent the c.d.f. for 
a-; = 0.28 and the dotted lines for o-; = 0. 69. 

N 

z(k ) = L Cnr (k - n) (A.3a) 
n=-N 

= soa(k) + v(k) (A.3b) 

where 

N+ L N 

v(k) = L Sj a(k - j ) + L Cn rJ (k - n) (A.4) 
j-/=0,j = -N n=- N 

is the so-called effective noise wit h a variance of o-;, and { Sj } , j = - N, · · · , N + L 

is the set of coefficients of t he co1nbined channel-equalizer fil ter. The p .d.f. of z( k) 

therefore is the joint p .d .f. of t he 1narginal p .d .f. of t he transmit signal and the 

effective noise, given as 

p(z(k)) = p(a(k), v(k)) = p(a(k)) · p(v(k)) (A.5) 

vvhere p( ·) stands for the probability density function, and the second term to the 

third tennis due to the assu1nption that a( k) and v( k) are statistically independent . 

vVith the simplifying assumption of Gaussian effective noise, we therefore obtain 

the following closed form expressions for the p.d.f. for both real data signals 

which are one di1nensional , and complex data signals which are two dimensional 

as f ollovls: 
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Real: p(z(k)) = --1:___ t l exp [- (z(k) ~ dJ)2] 
M j=l v12iirJv 2rJv 

(A.6a) 

1 M 1 
p(z(k)) = ML 21rrJ2 

j=l V 

Complex: 

[ 
[Re(z(k)) - Re(dj)]2 + [Im(z(k)) - Im(dj)J 2 J 

exp -
2rJ2 

V 

(A.6b) 

where dj is the jth alphabet in the data alphabet set. Therefore, we can plot the 

p.d.f. of the error function of the MOE algorithm, and from there evaluate the 

mean of its absolute value. This is shown in Fig. A.1-A where the real 8-PAM 

data is used assuming CJ; = 0.28 and CJ; = 0.69. 

Next, we consider the CMA. Its cost function is 

JcMA (k) 
6 

E{ (lz(k) 1

2 
- ,6) 2

} (A.7) 

where,~ is the dispersion constant (2.51). Its error function is therefore 

EcMA (k) 6 z(k) (lz(k) 1

2 
- ,6). (A.8) 

To obtain the p.d.f. of EcMA(k), it is possible to perform the p.d.f. transformation 

of z(k), since we have closed form expression of p(z(k)) as in (A.6) according 

to [118, Ch. 1]. The p.d.f. transformation requires that 

EcMA (k) = z(k) (lz(k) 1

2 
- ,6) (A.9) 

be solved, such that { z; ( k), z; ( k), · · · , z~ ( k)} are the N real roots of the above 

equation of (A.9) which are functions of EcMA(k). It can be shown for real PAM 

data forrnats, N = 3, i.e. , there are three real roots, when 

(A.10) 

and N = l otherwise. This will be explained shortly afterwards. Thus, the p.d.f. 
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of EcMA(k) n1ay be expressed as [118] 

N p(zJ(k)) 
p ( E CMA ( k)) = L I / ( * ( k)) I 

j=l ECMA ZJ 

(A.11) 

where 

E~MA(z;(k)) = 3[z;(k)] 2 
- ,~ . (A.12) 

The p.d.f. plot of EcMA ( k) is shown in Fig. A.1-B for an 8-PAM data fonnat with 

o-~ = 1. It is clear from the figure that the p.d.f. is larger for lccMA(k)\ < 86.63 

due to (A.10), where,~= 37. In fact, at \EcMA(k)\ = 86.63, the p.d.f. tends to 

be much larger because at these points , the denominator of (A.11), lc~MA(zJ(k))I, 

tends to zero and the p.d.f. thus tends to infinity. 

Equation (A. 10) is obtained by finding the values of EcMA(k) that correspond 

to 3z2 (k) - ,~ = 0. The z(k) value is found to be ±v0U3. By substituting this 

value into EcMA(k) of (A.9), we thus arriv~ at equation (A.10). 

Lastly, we consider the blind LMS algorith1n. It is rather difficult to obtain 

closed fonn expression for the p.d.f. of the LMS algorithm. Therefore , we generated 

large a1nount of data samples and plotted its p.d.f. as shown in Fig. A.1-C for the 

same 8-PAM data fonnat and o-~ = 0.28 and o-~ = 0.69. 

Conclusions drawn from observation of the figures in Fig. A. l include : 

1. The magnitudes of the respective error functions are indeed orders apart for 

8-PAM. In fact , their differences increase as the constellation size increases , 

say for 32-PAM compared to 8-PAM. 

2. The "shapes' ' of the p.d.f. of E_t1oE(k) and ELMs(k) are rather similar, sug

gesting that a switch between these two algorithms would be smooth under 

appropriate scaling of the error function. The "shapes" of the p.d.f. of 

Ec);IA ( k) and ELMS ( k) are rather different , suggesting that even under appro

priate caling of ELMS ( k), the switching between these algorithms may not be 

mooth. 

The 1neans of the absolute value of the error functions can be computed by 

evaluating the cumulative distribution function (c.d.f. ) of the c(k) [118, Ch. l] 

defined a 

D (x) = Pr (c(k) < x) -00 < X < 00 (A.13) 
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Figure A.2: The cumulative distribution functions ( c.d.f.) of the error functions 
of the MOE, CMA, and the LMS algorithms. The solid lines represent the c.d.f. 
for a~ = 0.28 and the dotted lines for a~ = 0.69. The horizontal dotted lines show 
D(c(k)) = 0.75. 

where x is any real number in the interval (-oo, oo). Note that the mean of the 

error function is obtained when D(c(k)) = 0.5 , but the mean of the absolute value 

of the error function is obtained when D(c(k)) = 0.75. This is shown in Fig. A.2. 





Appendix B 

Validity of (5.18) due to parallel 

adaptation 

In this appendix, we show that via parallel adaptation, the output signals of the 

"top" and "bottom" paths of the new DFE in Section 5.4 are almost similar in 

value, but differs in a 1nanner that is proportional to the adaptation step sizes of 

the respective filters. 

Refer to Fig. 5.5 for the notations of the signals and filters. Consider first the 

linear equalizer of the "top" path. The output signal of the non-recursive whitening 

filter is 

l 1\k) = A (k) ST (k) 

= [ 1, a 1 ( k) , a2 ( k) , · · · ] [ s ( k) , s ( k - l) , ... ] T. 

The output signal of the transversal (Godard) equalizer is 

u(1)(k) = B (k)T (l)T(k) 

= [b1(k), b2(k) , · · · ][t(1\k), t (l)(k - 1) , · · · ]T 

= [b1(k) A (k) ST (k), b2(k) A (k - l )ST (k - 1), · · · , 

bN+M(k)A(k - N - M + l )ST (k - N - M + 1)] . 

(B. la) 

(B.lb) 

(B.2a) 

(B.2b) 

(B.2c) 

The output signal u(l) (k) depends on (N + M) previous input signals as shown in 

(B.5c). 

Consider now the DFE in the "lower" path of the new DFE under parallel 

adaptation. In order to arrive at meaningful results , we "linearize" the DFE in 

the "lower" path by ignoring the quantizer for the following derivat ion. In that 

case, the transformed W of the DFE will have exactly the sa1ne transfer function 

143 
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as the W of the linear equalizer, i.e., 1 + A(z) . The output signal of the transversal 

(Godard) equalizer is 

t( 2)(k) = B (k) ST (k) 

= [b1(k), b2(k), · · · ][s(k), s(k - 1), . .. JT. 

After the phase rotator, the signal and its vector becomes 

u( 2\k) = t( 2)(k)e-je(k) 

u(2\k) = T (2) (k )e-jB(k) . 

(B.3a) 

(B.3b) 

(B.4a) 

(B.4b) 

The equalizer output (ignoring the effect of the quantizer due to linearization), 

eventually, becomes 

z(2\ k) = A (k) U (2)T (k) 

= [1 , a1(k), a2(k), · · · J[u(2)(k), u (2\ k - 1) , ... JT 

(B. 5a) 

(B. 5b) 

= [1 · B (k) ST (k)e-je(k), a1(k)B(k - l )ST (k - l )e-je(k-l), · · · , 

aN+M-1(k) B (k - N - M + l)ST(k - N - M + l )e-je(k-N-M+l)] . 

(B.5c) 

Recall that Equation (5.18) states t hat 

(B.6) 

From (B.2) and (B.5) , we get 

u(l\k)e-jB(k) = [b1(k) A (k) ST(k), b2(k)A(k - l) ST(k - 1) , · · · , 

bN+M(k) A (k - N - M + l) ST(k - N - M + l)]eje(k) (B.7a) 

z( 2\ k) = [1 · B (k) ST(k)e-jB(k), a1(k) B (k - l) ST(k - l)e-je(k-l), · · · , 

aN+M-1(k) B (k - N - M + l) ST(k - N - M + l) e-jB(k-N-M+l)] . 

(B.7b) 

After a close examination of (B. 7 a) and (B. 7b), it · is clear that under the condi

tion of non-adaptive equalization, both terms are exactly equal. The difference 

in 1nagnitude of these two terms increases as the step sizes of the adapting filters 

are increa ed. If Pr{Q(z(2)(k)) = a(k)} is high enough, i.e., the output signal is 

sufficiently reliable , then incorporating the non-linear quantizer would still yield 

output signals that are ahnost similar fro1n both the "top" and "botto1n" paths. 
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