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Abstract
Blind Equalization (BE) refers to the problem of recovering the source symbol sequence from a signal
received through a channel in the presence of additive noise and channel distortion, when the channel
response is unknown and a training sequence is not accessible. To achieve BE, statistical or constellation
properties of the source symbols are exploited. In BE algorithms, two main concerns are convergence speed
and computational complexity.

In this dissertation, we explore the application of relative gradient for equalizer adaptation with a structure
constraint on the equalizer matrix, for fast convergence without excessive computational complexity. We
model blind equalization with symbol-rate sampling as a blind source separation (BSS) problem and study
two single-carrier transmission schemes, specifically block transmission with guard intervals and continuous
transmission. Under either scheme, blind equalization can be achieved using independent component analysis
(ICA) algorithms with a Toeplitz or circulant constraint on the structure of the separating matrix. We also
develop relative gradient versions of the widely used Bussgang-type algorithms. Processing the equalizer
outputs in sliding blocks, we are able to use the relative gradient for adaptation of the Toeplitz constrained
equalizer matrix. The use of relative gradient makes the Bussgang condition appear explicitly in the matrix
adaptation and speeds up convergence.

For the ICA-based and Bussgang-type algorithms with relative gradient and matrix structure constraints, we
simplify the matrix adaptations to obtain equivalent equalizer vector adaptations for reduced computational
cost. Efficient implementations with fast Fourier transform, and approximation schemes for the cross-
correlation terms used in the adaptation, are shown to further reduce computational cost.

We also consider the use of a relative gradient algorithm for channel shortening in orthogonal frequency
division multiplexing (OFDM) systems. The redundancy of the cyclic prefix symbols is used to shorten a
channel with a long impulse response. We show interesting preliminary results for a shortening algorithm
based on relative gradient.
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ABSTRACT 

ALGORITHMS FOR BLIND EQUALIZATION BASED ON RELATIVE 

GRADIENT AND TOEPLITZ CONSTRAINTS 

Zhengwei Wu 

Saleem A. Kassam 

Blind Equalization (BE) refers to the problem of recovering the source symbol 

sequence from a signal received through a channel in the presence of additive noise and 

channel distortion, when the channel response is unknown and a training sequence is not 

accessible. To achieve BE, statistical or constellation properties of the source symbols are 

exploited. In BE algorithms, two main concerns are convergence speed and computational 

complexity.  

 In this dissertation, we explore the application of relative gradient for equalizer 

adaptation with a structure constraint on the equalizer matrix, for fast convergence without 

excessive computational complexity. We model blind equalization with symbol-rate 

sampling as a blind source separation (BSS) problem and study two single-carrier 

transmission schemes, specifically block transmission with guard intervals and continuous 

transmission. Under either scheme, blind equalization can be achieved using independent 

component analysis (ICA) algorithms with a Toeplitz or circulant constraint on the 

structure of the separating matrix. We also develop relative gradient versions of the widely 

used Bussgang-type algorithms. Processing the equalizer outputs in sliding blocks, we are 

able to use the relative gradient for adaptation of the Toeplitz constrained equalizer matrix. 
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The use of relative gradient makes the Bussgang condition appear explicitly in the matrix 

adaptation and speeds up convergence.  

For the ICA-based and Bussgang-type algorithms with relative gradient and matrix 

structure constraints, we simplify the matrix adaptations to obtain equivalent equalizer 

vector adaptations for reduced computational cost. Efficient implementations with fast 

Fourier transform, and approximation schemes for the cross-correlation terms used in the 

adaptation, are shown to further reduce computational cost.  

We also consider the use of a relative gradient algorithm for channel shortening in 

orthogonal frequency division multiplexing (OFDM) systems. The redundancy of the 

cyclic prefix symbols is used to shorten a channel with a long impulse response. We show 

interesting preliminary results for a shortening algorithm based on relative gradient. 
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Chapter 1  

Introduction 

 

In digital communication systems, information is represented as symbols that belong to a 

finite, discrete constellation. The digital signals are transmitted through an analog channel 

between the transmitter and the receiver. Real channels are never ideal, and therefore the 

received signal may undergo significant distortion. A widely encountered form of 

distortion is caused by non-ideal linear channels, where the frequency response is not flat 

in magnitude or not linear in phase across the transmission bandwidth. This results in inter-

symbol interference (ISI). To compensate for this distortion, a linear equalizer can be used 

at the receiver. An equalizer can provide significant reduction in ISI. 

Traditional equalization is based on transmitted training sequences, and uses the 

minimum mean square error criterion for equalizer adaptation [1]. However, it is not 

always feasible to send training sequences, which also take up bandwidth for transmission 

and reduce the effective data rate. Blind equalization (BE) has the advantage of eliminating 

the use of pilot training sequences. Specifically, BE refers to equalization achieved without 
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knowledge of the channel characteristics when no training sequence is used, with the 

equalizer converging to a good solution based only on channel outputs during actual data 

transmission.  

BE has been obtained by exploiting known statistical or constellation properties of the 

source symbols [2]–[7]. The BE technique is broadly useful in many applications beyond 

classical point–to-point communication channel equalization. The principles of blind 

channel equalization can be applied in seismic signal processing [8], in reduction of 

microphone-induced ISI in speech recognition [9], [10], and in massive MIMO systems 

with time-division duplex (TDD) where the uplink and downlink channels are reciprocal, 

allowing BE to be employed by a station based on uplink transmission for better 

information about the state of the channel  [11]–[14].  

There has been extensive work done on blind equalization. Existing algorithms belong 

mainly to two types of schemes: one based on known statistical properties of the source 

sequence [6], [7], [15], and the other based on the known structure of the signaling 

constellation [2]–[4]. The limitations of existing BE algorithms are computational 

complexity and/or slow convergence. Especially in practical applications where the 

channel is time-varying, fast convergence of channel equalization is necessary [1].  

In this dissertation, we modify existing algorithms and develop new ones for BE. We 

utilize ideas of relative gradient for equalization adaptation, and constraints on the matrix 

structure of the equalizer representation, for faster convergence without excessive 

computational cost. First we focus on independent component analysis (ICA)-based 

algorithms, where the relative gradient has been used to achieve BSS. Instead of employing 

a fractional sampling scheme that allows, for blind equalization, the model of a standard 
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blind source separation (BSS) problem to be used and the application of an ICA-based 

algorithm, we use symbol rate processing. Two transmission schemes are analyzed, where 

the symbols are transmitted either in blocks with a guard interval, or continuously without 

guard intervals. With either of the schemes, the BE problem can be formulated in matrix 

form that has a form similar to that of the BSS problem, except with an additional constraint 

on the matrix structure. With a structure-constrained ICA algorithm, independent source 

symbols can be recovered with faster convergence. For source symbols with independent 

in-phase and quadrature parts, the I/Q independence constraint can be used further for 

phase recovery.  

We then consider the widely used Bussgang-type algorithms for BE. In the standard 

Bussgang-type algorithms, one equalizer output is processed each time with equalizer 

adaptations based on standard stochastic gradient descent. In our work, a block processing 

scheme for the equalizer outputs is proposed, which allows the use of the relative gradient. 

With the relative gradient, the Bussgang condition appears in the adaptation explicitly and 

helps speed up convergence. 

The block processing approach for both the ICA-based algorithms and the modified 

Bussgang-type algorithm shows the interesting connection between these two types of 

algorithms. Although the starting points for the two types of algorithms are different, they 

end up having related structures. With a matrix structure constraint, the matrix adaptations 

for both types of algorithms can be expressed as simpler equalizer vector adaptations. 

Approximation schemes simplifying the updates and the use of the fast Fourier transform 

allow the computational cost to be further reduced.  
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We also propose in a final chapter the use of relative gradient and structure constraint 

for channel shortening in orthogonal frequency division multiplexing (OFDM) system. 

Channel shortening allows a long channel impulse response to be partially corrected to a 

shorter one that can then be equalized based on the OFDM cyclic prefix. The redundancy 

due to the cyclic prefix is used in the cost function. We show through simulation the 

performance comparison between the proposed and existing algorithms. We also discuss 

briefly the potential aspects that may be considered for a more comprehensive evaluation 

of the channel shortening algorithms.  

 

1.1 Organization of the Dissertation 

There are five main parts in the dissertation: Chapter 2 through Chapter 6.  

In Chapter 2, we summarize the fundamental concepts of BSS and BE, including the 

notation and the models. The connection between BSS and BE is explained. We introduce 

the core idea of ICA, which is a widely used approach for BSS. The “contrast” or criterion 

functions and algorithms for ICA methods are explained. Also included in this chapter is a 

brief review of BE algorithms, which lays the foundation of further development. 

In Chapter 3, we describe two block transmission schemes using guard intervals, for 

symbol-rate processing in standard single-carrier systems. With the padded guard intervals 

between transmitted blocks, BE can be modeled as a standard BSS problem, which enables 

the use of an ICA-based algorithm for BSS. With the guard interval being zeros or a cyclic 

prefix, the “separating matrix” has the constraint of being Toeplitz or circulant. We present 

a method to enforce the structure constraint in the separating matrix adaptation. This allows 
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faster convergence compared to standard ICA-based algorithms. I/Q independence 

constraint can be combined with the structure constraint for cases where the source symbols 

have independent in-phase and quadrature parts. With either the Toeplitz or circulant 

constraint, there are repeated elements in the separating matrix. We give an equivalent 

computationally efficient adaptation for the vector of elements contained in the separating 

matrix.  

In Chapter 4, we develop continuous transmission symbol-rate BE schemes related to 

the block transmission schemes using ICA-based algorithms. Unlike previous work where 

fractional sampling was needed for the use of standard ICA-based algorithms [6], [7], we 

show that BE can be achieved with a constrained ICA algorithm using symbol-rate 

sampling. We show that the matrix we aim to find for source symbol recovery is a Toeplitz 

matrix containing the impulse response of the equalizer. With the Toeplitz constraint 

during matrix adaptation, faster convergence can be achieved. The constrained adaptation 

leads to an equivalent form of equalizer vector adaptation. Modifications to further reduce 

the computational complexity using approximations of vector update equations and the fast 

Fourier transform (FFT) is explained in detail in this chapter. Simulation results are shown 

for different ICA-based algorithms, and also compared with those of other standard BE 

algorithms.  

In Chapter 5, we introduce our approach to modifying Bussgang-type algorithms with 

relative gradient instead of the standard gradient, using output block processing. By 

looking at a block of equalizer outputs, a Toeplitz matrix containing the equalizer vector 

can be updated each time based on the cost function from a Bussgang-type algorithm, 

which exploits some known constellation property of the source symbols. The application 
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of relative gradient results in an explicit use of the Bussgang condition for faster 

convergence. The structure of matrix adaptation with Toeplitz constraint based on 

Bussgang-type algorithms is similar to that of the constrained ICA-based algorithms. We 

show that these two types of algorithms have a close connection to each other. 

In Chapter 6, we investigate briefly the application of relative gradient in channel 

shortening algorithms for OFDM systems. In OFDM a cyclic prefix is usually used, which 

results in redundancy of the cyclic symbols and the corresponding data symbols in the 

OFDM block. When the channel impulse response is shortened to a length smaller than 

that of the cyclic prefix, the redundancy between the OFDM symbols and the 

corresponding cyclic prefix symbols should be maintained. When multiple cyclic prefix 

symbols are taken into consideration, the problem of exploiting redundancy can be 

formulated in a matrix expression. This allows the effective use of relative gradient during 

adaptation, with the expectation that convergence can be faster. We give preliminary 

simulation results and discuss possible directions of future work. 

 

1.2 Contributions and Publications 

The main contributions arising from this dissertation are listed below; there are four 

conference papers, and two journal papers in preparation for submission. 

 

Zhengwei Wu, Saleem A. Kassam and Kaipeng Li, “Blind Equalization Based On 

Blind Separation with Toeplitz Constraint,” Proc. of 48th Asilomar Conference on Signals, 

Systems and Computers, Asilomar, CA, 2014.  
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Zhengwei Wu and Saleem A. Kassam, “Symbol-Rate Blind Equalization Based on 

Constrained Blind Separation,” Proc. of 49th Annual Conference on Information Sciences 

and Systems (CISS), John Hopkins, MD, 2015.  

 

Zhengwei Wu, Saleem A. Kassam, and Visa Koivunen, “Relative-Gradient Bussgang-

Type Blind Equalization Algorithms,” Proc. of 41st IEEE International Conference on 

Acoustic, Speech and Signal Processing (ICASSP), Shanghai, China, 2016.  

 

Zhengwei Wu and Saleem A. Kassam, “Computationally Efficient Toeplitz-

Constrained Blind Equalization Based on Independence,” Proc. of 50th Annual Conference 

on Information Sciences and Systems (CISS), Princeton, NJ, 2016.  

 

Zhengwei Wu and Saleem A. Kassam, “ICA-Based Blind Equalization Algorithms 

with Toeplitz Constraint,” (In progress).   

 

Zhengwei Wu and Saleem A. Kassam, “Relative-Gradient Bussgang-Type Blind 

Equalization Algorithms,” (In progress). 
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Chapter 2  

Review of Blind Source Separation 

and Blind Equalization 

 

2.1 Introduction  

Blind adaptive equalization has been of long-standing interest, and Bussgang-type 

algorithms for blind equalization (BE) based on gradient descent schemes are well-known. 

Blind source separation (BSS) and blind equalization problems have similar goals, 

recovery of the original signals from their observed mixtures based on limited knowledge 

of the sources. As a result, BE algorithms based on BSS have also been of interest. 

In this dissertation, we will develop new BE algorithms based on both BSS techniques 

and Bussgang-type methods, incorporating constrained matrix adaptation and the ideas of 
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natural and relative gradient. In this background chapter, we summarize the basic concepts 

and approaches of BE and BSS.  

In Section 2.2, the model of BSS and the well-known Independent Component 

Analysis (ICA) based algorithms are introduced first. Different criteria that may be used 

for BSS are given. We summarize the two useful steps in ICA-based approaches: whitening 

and orthogonalization. A brief discussion of gradient descent based on natural and relative 

gradient concepts is also given. Since the focus of the dissertation is to obtain better BE 

schemes, we also introduce the general model of the BE problem in Section 2.3. The 

relation of the BE model to the BSS problem is explained.  Examples of BE algorithms 

that are widely used are briefly reviewed. Further details related to specific algorithms will 

be included as we use them in later chapters. 

 

2.2 Review of BSS and ICA 

2.2.1 Basic Model   

Blind source separation (BSS) is the problem of recovering independent sources from 

observed mixtures when no information about the mixing process and no training sequence 

is available. Generally, in BSS problem, there are n  independent source signals at time k , 

i.e. (1), (2),..., ([ ])k k k
T

k s s ns s . These sources get mixed, and result in m  linear 

combinations with unknown coefficients. Expressing this process in matrix form, we have  

 k k x As ,  (2.1) 
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where  (1), (2),..., ([ ])k k k
T

k x x mx x  is the 1mu  vector of observations, and A  is the 

m nu  matrix of mixture coefficients. It is generally assumed that m nt , i.e. there are at 

least as many observations as sources.  

The goal of BSS is to find an n mu  separating matrix B  such that  

 k k y Bx   (2.2) 

contains estimates of the source components ( )ks i , 1, 2,...,i n .  Ideally, the separating 

matrix should satisfy  

  BA ȁP ,  (2.3) 

where ȁ  is a non-singular diagonal matrix, and P  is a permutation matrix. In other words, 

the sources may be recovered to within a scaling and permutation. Perfect recovery means 

that  BA I , i.e. B  is the inverse of A .  

One widely applied approach to BSS is that of independent component analysis (ICA) 

[1]. The basic idea of ICA is that if no more than one source is Gaussian, the signals can 

be estimated with the simple constraint that recovered signals be statistically independent 

[1], [2]. The conditions of identifiability, separability, and uniqueness of linear ICA models 

are studied in [3].  

 

2.2.2 Contrast Functions 

In the ICA approach, BSS is usually obtained by defining and optimizing a real-valued 

contrast function, or cost function of the separating matrix B . Since the contrast function 

measures the degree of independence of the separated components in k k y Bx , it usually 
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has the form ( ) [ ( )]L E G B y .  The contrast functions should be designed in a way such 

that when the sources are separated the optimal value of the contrast function is achieved 

[4]. There are several different statistical criteria that can be used to define contrast 

functions, and it has been shown that some of them are closely related. In this part, different 

examples of the criteria used in ICA methods are reviewed briefly.  

 

Likelihood function 

Assume that the sources have joint density function (
1

)( ) ( ( ))s

n

i
i

f f s i
 

 �s s . By virtue of 

(2.1), if A  is a non-singular matrix, the joint density function of the observation can be 

expressed as  

 1 1( ) | det | ( )f f� � x sx A A x .  (2.4) 

If the joint density function of the sources is known a priori, our goal is then to find a 

matrix  1� B A  such that (2.4) is maximized. In other words, we want to get the 

maximum-likelihood estimate of 1�A .  

Using the logarithm of the likelihood function in (2.4), one can define the contrast 

function based on maximum likelihood as  

 � �)
1

(( ) [ log ( ( )) ] log | det |M
i

L i

n

sL E f y i
 

 �¦B B .  (2.5) 

The expectation in the contrast function can be interpreted as the average computed from 

a finite set of observed samples.  
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The maximum likelihood contrast can be shown to be closely related to a group of 

contrast functions, such as the one based on mutual information of the separated symbols 

[5], and also the one based on cumulants [4]. These contrast functions are reviewed next. 

 

Mutual information 

The mutual information contrast is an information-theoretic measure of dependence 

between random variables. It is always nonnegative, and is zero when the variables are 

statistically independent of each other. As a result, the mutual information of the separated 

components can be used in the contrast function to achieve source separation [5], [6].  

Mutual information can be interpreted using entropy or Kullback-Leibler divergence 

[7]. From either starting point, it can be shown that the mutual information for components 

in y  can be defined as  

 
1

(1)) ( ))
(1),...,

( ... (( (1),..., ( )) [log ] ( ( )) ( )
( ( ))

n

i

y y nf fI y y n E
y

H y i H
f y n  

 �  �¦ y ,  (2.6) 

where the sub-index ( )s i  of the density function is omitted, and 

� �( ( )) [log ( ( )) ]H y i E f y i �  is the entropy. From (2.2) it follows that 

 ( ) ( ) log | det |H H �y x B .  (2.7) 

Since ( )H x  is a constant, minimizing (2.6) leads to the contrast function  

 
� �

1

1

( ) ( ( )) log | det |

[log ( ( )) ] log | det |

n

i

M
i

I

n

L H y i

E f y i

 

 

 �

 � �

¦

¦

B B

B

.  (2.8) 



15 

Comparing (2.8) and (2.5), we see that the two contrast functions differ only by a 

negative sign. As a result, minimization of the mutual information of the separated symbols 

is the same as maximization of the likelihood of the observations. 

  

Non-Gaussianity 

In addition to the criteria mentioned above, non-Gaussianity can also be used in the 

definition of contrast functions. According to the central limit theorem, when sources are 

linearly combined, the distribution of the mixed signal is closer to Gaussian than that of 

individual non-Gaussian sources [7]. The idea to maximize output non-Gaussianity is 

therefore to go in the opposite direction of mixing, i.e. to separate the signals.  

From information theory we know that among random variables of equal variance, a 

Gaussian variable has the largest entropy. A measure that is zero for Gaussian variables 

and gets more positive for variables that are less Gaussian is negentropy. The contrast 

function based on negentropy can be expressed as  

 
1

( ) ( ( )) ( ( ))NE Ga s

n

us
i

L H y i H y i
 

 �¦B ,  (2.9) 

where ( )Gaussy i  is a scalar Gaussian random variable that has the same mean and variance 

as ( )y i , and ( ( ))H y i  is the entropy of ( )y i  [1]. 

When the separated symbol vector y  is preprocessed to be uncorrelated, i.e. 

[ ]HE  yy I , we have  

 � � � � � �det [ ] 1 det [ ] (det )det [ ] (det )H H H H HE E E   yy B xx B B xx B .  (2.10) 
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This implies det B  should be a constant since � �det [ ]HE xx  does not depend on B . If we 

look at the mutual information based contrast function (2.8), we can see that it can be 

written equivalently as  

 
( ) ( ( )) ( ( )) log | det | ( ( ))

constant ( )

MI Gauss Gauss

NE

i i i
L H y i H y i H y i

L

 � � �

 �

¦ ¦ ¦B B

B
  (2.11) 

As a result, when the separated symbols are constrained to be uncorrelated, minimizing 

mutual information of the estimated components is equivalent to maximizing the sum of 

their negentropies  

 

Cumulants 

The contrast functions mentioned above are based on at least an approximation of the 

source density function. Now we discuss an approach using high-order statistics that does 

not depend on the source density. For simplicity, source symbols are assumed to be real in 

this brief discussion.. 

Cumulants are high-order statistics that can be used to define contrast functions. For 

BSS, the most commonly used cumulants are the  2nd- and 4th- order ones, which can be 

defined as  

 ( ) [ ( ) ( )]ijCum E s i s js � ,  (2.12) 

 
( ) [ ( ) ( ) ( ) ( )] [ ( ) ( )] [ ( ) ( )]

[ ( ) ( )] [ ( ) ( )] [ ( ) ( )] [ ( ) ( )].
ijklCum E s i s j s k s l E s i s j E s k s l

E s i s k E s j s l E s i s l E s j s k
�

� �

s �
  (2.13) 

Specially, the 2nd-order cumulant terms in (2.12) compose the covariance matrix of vector 

s .  
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When the sources in s  are independent, the cross-correlation terms in (2.12) and 

(2.13) vanish, and we have that  

 2( )ij i ijCum V Gs � ,  (2.14) 

 ( )ijkl i ijklCum N Gs �  , (2.15) 

where ijG  or ijklG  equals one when all the sub-indices are the same and zero otherwise; and  

2
iV  and iN  are the variance and kurtosis of source is , i.e. 

 2 2[ ( ) ]i E s iV � ,  (2.16) 

 4 2 2[ ( ) ] 3 [ ( ) ]i E s i E s iN �� .  (2.17) 

 Cardoso pointed out in [4] that the following function can be shown to be a contrast 

function: 

 � �2

4 ( ( )( )) ijcumu
ijkl

kl i ijklL CumI GN � ¦yB y .  (2.18) 

At the same time, this function can be interpreted as the quadratic mismatch of the 

cumulants.   

The cumulants-based contrast function is closely related to the maximum likelihood 

function. When the s  and y  are symmetrically distributed with distribution that is close to 

normal, then using the Edgeworth expansion [8], the maximum likelihood based contrast 

function can be shown to be related to the following function with the 2nd- and 4th- order 

cumulants [4]:  

 � �2 4
1( ) 12
4

( )
8

( )ML ApproL I I�  �y yB   (2.19) 

where 4 ( )I y  was defined in (2.18) and  
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 � �2
2

2
( ) ( )ij i j

j
i

i
Cum VI G �¦ yy .  (2.20) 

 Specially, when the outputs are constrained to be of zero mean and unit variance, 

[ ( )] 0E y i   and 2[ ( ) ] 1E y i  , the term 2( )I y  defined in (2.20) becomes zero. Under the 

whitening constraint 2( ) 0I  y , it can be shown that 4( )I y  in (2.18) is equal to  

 4
4
Ƞ ( ) 2 ( ) [ 2 ( ( ) 3)]i iiii

i
i

i
Cum E y iI N N �  � �¦ ¦y y .  (2.21) 

When the kurtoses of all the sources are negative, then (2.21) becomes the very simple and 

commonly used kurtosis-maximization contrast function used in [9], [10], [11]: 

 4( ) [ ( ) ]KM
i

L E y i ¦B .  (2.22) 

We will see in Chapter 3 and 4 that this contrast function leads to a simple nonlinearity that 

can be used in ICA- based algorithms which can be interpreted as being based on non-

linear decorrelation for independence. 

 

2.2.3 Gradient and Online Algorithms 

With a specific contrast function ( ) [ ( )]L E G B y  chosen for minimization, the classical 

approach for obtaining the minimum is steepest descent or gradient descent. In the gradient 

descent method, we start from an initial positon, and minimize the function iteratively by 

computing a gradient of the function at the current position and moving in the negative 

direction of the gradient by a certain amount [7]. The process is repeated until convergence.  

For simplicity, we consider B  to be a matrix with real-valued entries in this sub-

section to illustrate the ideas of relative and natural gradient. More explanations will be 
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included in Section 5.3. The gradients for complex cases will also be derived and used in 

Chapter 5.   

 

Relative Gradient and Natural Gradient 

A widely-used gradient is the standard gradient, which is usually assumed at the 

mention of “gradient”. For a contrast function ( )L B  of matrix B , the standard gradient of 

the function with respect to the variable B  can be expressed as  

 ( ))( LL w
�  

wB

B
B

B
 . (2.23) 

It will be seen from detailed analysis to be given in Chapter 5 and its appendix that when 

the contrast function has the expression ( ) [ ( )]L E G B y , the standard gradient can be 

derived as  

 ) [ (( ) ]TEL�  B B g y x ,  (2.24) 

where g  is the component-wise derivative of function G  at y . With the standard gradient, 

the iterations for minimization are  

 1 )(k k LO� � � BB B B ,  (2.25) 

where O  is the step-size.  

Another gradient that can be used is the relative gradient. For a contrast function ( )L B , 

a perturbation B�  proportional to the current value of B  is considered, where �  is a 

matrix with small entries [10]. Writing out the Taylor expansion for ( )L B , we find  

 ( ) ( ) trace[ (( ) ) ] ( )T TL L oL�  � � �BB B B B B� � � .  (2.26) 

The relative gradient of the function can be defined to be  
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 ( ) ) ) [ (( ( ) ]R T TL EL  �  �B BB B B g y y . (2.27) 

The relation between the relative gradient and the standard gradient can be seen from the 

expressions (2.24) and (2.27). With relative gradient, the adaptation for matrix B  becomes  

 ( )
1 )(R

k k k kLO� � � BB B B B .  (2.28) 

 The concept of natural gradient was developed by Amari [6] and used for various 

problems including the BSS [12]. The starting points of natural gradient and the relative 

gradient are different. However, for the BSS problem where the variable B  is a non-

singular matrix, the two yield the same expression for gradient, and as a result the same 

adaptation. More details about the relative gradient and natural gradient will be given in 

Chapter 5. 

 

Online Algorithms 

In (2.25) and (2.28), the adaptation for matrix B  with standard gradient and relative 

gradient have been given respectively. Although the contrast function includes expectation, 

which needs an estimate to be computed, in simple gradient descent methods the 

expectation is dropped and replaced by its instantaneous value. As a result, the gradient 

descent method is usually used as stochastic gradient descent.   

With the relative gradient, or natural gradient, and dropping the expectation, the 

adaptation in (2.28) becomes  

 1 ( ) T
k k k k kO�  �B B g y y B .  (2.29) 

The iterative updating in (2.29) can be written as 
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 1

[ ]
( )

( )
k k k k

k k

O
O

�  �

 �

B B B

U yI

y

B

U
 , (2.30) 

where (( ) ) T
k k k U g y yy .  Online algorithms that have the form of (2.30) can be called 

“serial updating”. The advantage of such an algorithm is the property of “equivariance”. 

If we multiply both sides of (2.30) from the right by the mixing matrix A  , we have  

 1 [ ]( )k k k kO�  � UC I C s C , (2.31) 

where k kC AB� . 

In (2.31), the adaptation is characterized by the global system kC  and the source 

symbols. For two mixing matrices A  and 'A  with the same sources, if we initialize the 

separating matrix to be 0B  and 0 'B , as long as 0 0 ' ' B A B A , the trajectory of the global 

system C  will be identical. In this case, we say that the adaptive algorithm is equivariant, 

and offers uniform performance. The equivariance property enables one to deal with BSS 

problems with an ill-conditioned mixing matrix, and consider the global system as a whole.  

 

2.2.4 Whitening and Orthogonalization 

Whitening 

In BSS, to make it easier to separate the sources, the observed data is often preprocessed 

to have uncorrelated components. Mathematically, a zero-mean random vector z  is said 

to be white if its elements are uncorrelated with each other and have unit variance. In other 

words, for z  that is white 

 [ ]HE  zz I .  (2.32) 
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 Whitening can be obtained through eigenvalue decomposition (EVD). Suppose we 

want to whiten the mixed signals x  with a linear matrix V , and it is transformed to be 

 z Vx . When z  is white, we have  

 [ ] [ ]H H HE E  zz V xx V I . (2.33)  

Let [ ]HE xxC xx  be the covariance matrix of x , then by EVD the matrix xxC  can be 

written as  

 H xxC EDE ,  (2.34) 

where E  is the matrix whose columns are the eigenvectors of the covariance matrix xxC , 

and D  is the diagonal matrix of the eigenvalues of xxC . As a result, a linear operation with 

matrix 1/2 H� V D E  will make  z Vx  become white. In fact, whitening matrix is not 

unique, since we can pre-multiply V  with an orthogonal matrix and still keep the 

covariance matrix of z  identity.  

In addition to algebraic methods such as EVD, whitening can also be performed with 

on-line algorithms. As stated in [10], the Kullback-Leibler divergence between two normal 

distributions with covariances zR  and I  can be expressed as  

 > @1( ) Trace( ) log det( )
2 z zK n� �z R R�   (2.35) 

where n  is the size of vector z . We see that ( ) 0K tz  with equality if and only if z  R I . 

With the cost function ( ) ( ) ( )L K K  V z Vx and using relative gradient [7], [10], 

whitening can be performed iteratively with  

 1 [ ]H
k k k k kO�  � �z zV V I V .  (2.36) 
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As has been seen in Section 2.2.2 some contrast functions are defined based on the 

assumption that the mixed signals are white. In such cases, it is important to pre-process 

the observations so that they are whitened. 

 

Orthogonalization 

With whitening as a pre-processing step, the BSS problem reduces to finding an 

orthogonal matrix Q  such that Qz s� , i.e. the separating matrix is  B QV . The 

orthogonality is based on the pre-whitening step, and is said to operate under the whiteness 

constraint [13].  

With a particular contrast function, the gradient descent method for updating an 

orthogonal Q  will not necessarily make it remain orthogonal automatically. As a result, it 

may be beneficial to orthogonalize the matrix at the end of each iteration.  

Orthogonalization can be accomplished in many ways [7], and one method uses the 

following procedure: 

 1/2( )H �mQ Q Q Q . (2.37) 

It can be shown that the operation in (2.37) is the orthogonal projection of matrix Q  onto 

the set of orthogonal matrices [14]. The drawback of the method of (2.37) is that a matrix 

inverse is involved at each iteration. A simpler approach is the following two-step iterative 

updating: 

 
/ || ||

3 1
2 2

H

m

m �

Q Q Q

Q Q QQ Q
    ,  (2.38) 

which is implemented until HQQ  is close to identity. 
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The orthogonality and the whitening constraint can also be combined during 

adaptation. In [10], Cardoso proposed the equivariant adaptive separation via 

independence (EASI) algorithm which combines the whitening constraint and preserves 

orthogonality in one step. In the EASI algorithm, the adaptation for the separation matrix 

is  

 1 ( ) ( )H H
k k k k k k k k

H
kO� ª º � � � �¬ ¼B B y y I g y y y g y B ,  (2.39) 

where the vector ( )kg y  is the component-wise derivative of the function ( )G y  in the 

contrast function at k k k y B x . In the updating scheme (2.39), the first two terms in brackets 

effect a whitening constraint. The last two terms are to make the relative change skew 

symmetric so that the orthogonality is obtained with the whitening constraint. The ( )G y  

function is based on criteria such as those introduced in Section 2.2.2, however it can more 

generally be taken to be some reasonable nonlinear function. The term ( ) H
k kg y y  can be 

interpreted as forcing nonlinear decorrelation for independence of the separated symbols.  

 

2.3 Review of Blind Equalization 

2.3.1 Model of Blind Equalization  

Consider a complex symbol sequence { ( )}s k  transmitted through an FIR complex channel. 

The notation for the source symbols here is slightly different from what we set up for the 

BSS model, but the context makes it very clear. The general model of BE is shown in Fig. 

2.1. 



25 

 

Fig. 2.1 General model of blind equalization. 

 

For symbol-rate sampling, the output of the channel at time k  can be expressed as  

 
0

( ) ( ) ( ) ( )
L

l
x k h l s k l v k

 

 � �¦ ,  (2.40) 

where [ (0), (1),..., ( )]Th h h L h  is the channel response, and { ( )}v k  is an additive white 

Gaussian noise sequence. The input source sequence is generally assumed to be i.i.d, but 

some BE algorithms work when the source symbols are correlated.  

In BE, suppose an -M th order equalizer with impulse response 

[ (0), (1),..., ( )]Tw w w M w  is to be designed, such that the output of the equalizer is  

 
0

( ) ( ) ( )
M

T

m
ky k w m x k m

 

 �  ¦ w x ,  (2.41) 

where [ ( ), ( 1),..., ( 1)]T
k x k x k x k M � � �x  is a length - ( 1)M �  vector containing the 

current and past M  channel outputs.  

Ideally, ( )y k  is an approximation of the input symbol with some delay d  and possibly 

a phase shift T . In other words, when the impulse response of the channel-equalizer 

cascaded system is approximately 

 N
 zeros

(0,...,0 ,1,0...0)
d

ideal je T
  c h w c� � ,  (2.42) 
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we consider w  to be an ideal equalizer. With an ideal equalizer, the source symbols can be 

recovered up to a fixed delay and phase shift.  

In most adaptive BE algorithms, a single equalizer output is processed each time. To 

achieve BE, a cost function J (w)  E[G( y(k))] that is based on the fit of equalizer outputs 

to some known signaling constellation property of the source constellation may be defined 

and optimized. 

Suppose the channel outputs are processed in blocks of size P M�  ( 0P ! ) at symbol 

rate, by sliding along the sequence of channel outputs, with one-symbol shift each time. 

Let [ ( ), ( 1),..., ( 1)]T
k x k x k x k P M � � � �x�  be the k-th output block from the channel at 

time k, which is influenced by the length- ( )P M L� �  source vector 

[ ( ), ( 1),..., ( 1)]T
k s k s k s k P M L � � � � �s . The channel is assumed to be almost 

stationary over this observation period. The channel output block of length P M�  can be 

expressed in matrix form as  

 k k k �x Hs v� ,  (2.43) 

where [ ( ), ( 1),..., ( 1)]T
k v k v k v k P M L � � � � �v  is the additive noise vector, and H  is a 

() )( P MP M Lu � ��  Toeplitz matrix containing the channel response: 

 

(0)     (1)       ( )              0
                                              
           (0)     (1)          ( )     
                                              
0         

h h h L

h h h L H

! ! !
% ! % !
! ! !

% ! %
!        (0)     (1)          ( )h h h L

§ ·
¨ ¸
¨ ¸
¨ ¸
¨ ¸
¨ ¸
¨ ¸
© ¹! !

 . (2.44) 

When 1P  , we can produce only one equalizer output; while when 1P ! , there are 

multiple equalizer output symbols that can be produced at each time. With 1P ! , the model 
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in (2.43) has a form similar to the BSS model of (2.1) (ignoring the noise term), and this 

provides another point of view for the BE problem. Note that the H  matrix in (2.43) is an 

underdetermined matrix with more columns than rows. Although the dimension of H  does 

not satisfy the requirement of a standard BSS problem, it will be seen in later chapters that 

with some constraints the BE can nonetheless be obtained with ICA-based algorithms.  

 

2.3.2 Blind Equalization Algorithms 

Many well-known algorithms for BE use steepest stochastic gradient descent methods for 

adaptive updates. With a defined cost function J (w)  E[G( y(k))] based on some source 

constellation property, the equalizer coefficients are updated generally according to  

 
*

*

1

( ( )

( )

,) k

k

k

k

g y k

JP

P
�

 

 � �

�
w

w

x

w w

w
  (2.45) 

where * ( )J�
w

w  is the standard gradient of the cost function ( )J w  with respect to the 

conjugate of the equalizer vector for complex case, and ( ( ))g y k  is the derivative of 

( ( ))G y k  with respect to the conjugate of the equalizer output y(k) . The details of 

obtaining gradient when the variable is complex will be shown in the appendix in Chapter 

5.  In the steady state, if the coefficients of the equalizer converge, we have approximately 

 *1 ( ) 0k k J�  ��  
w

w w w .  (2.46) 

Following (2.46), it can be shown that for any integer m, the equation 

 *[ ( ( )) ( ) ] 0E g y k y k m�    (2.47) 
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holds at the steady state, for any integer m  . This condition (2.47) is called the Bussgang 

condition, and an algorithm that has the adaptation of the form (2.45) is called a Bussgang-

type algorithm.  

Next we will give several examples of the widely used Bussgang-type algorithms, with 

their cost functions and adaptive update equations. More details about these adaptive BE 

algorithms will be explained in Chapter 5.  

Sato algorithm 

The pioneer BE algorithm was the Sato algorithm for PAM signal [15], whose cost 

function is  

 Sato Sato
2( ) [( ( ) sgn( ( ))) ]J E y k R y k �w , 

where 
2

Sato
[| ( ) | ]
[| ( ) |]

E s kR
E s k

 . The adaptation for the Sato algorithm is  

 � �Sat1 osg( ) n( ( ))k kk R ky k yP�  � �w w x .  

Generalized Sato algorithm 

A generalization of the Sato algorithm to complex signals is the generalized Sato 

algorithm (GSA)  [16], with cost function  

 2
GSA GSA( ) [| ( ) csgn( ( )) | ]J E y k R y k �w ,  

where csgn( ( )) sgn( ( )) sgn( ( ))R Iy k y k j y k �  for complex valued number 

( ) ( ) ( )R Iy k y k jy k � , and 
2 2

GSA
[| ( ) | ] [| ( ) | ]
[| ( ) |] [| ( ) |]

R I

R I

E s k E s kR
E s k E s k

  . The adaptation is  

 � �1 GSA
*csgn(( () ))k k kR y ky kP�  � �w w x  .  

Godard algorithm/ constant modulus algorithm 
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The Godard algorithm [17] has the cost function defined as  

 Godar
2

d ( ) [(| ( ) | ) ]p
pJ E y Rk � w ,  

where 
2[| ( ) | ]

[| ( ) | ]

p

p p

E s kR
E s k

 . The adaptation for the Godard algorithm is  

 2
1

*(| ( ) | ) ( ) | ( ) | kk
p p

k pRy k y k y kP �
�  � �w w x  . 

A special case of the Godard algorithm for 2p   is the constant modulus algorithm (CMA) 

proposed in [18], with the cost function 

 2 2
CMA CMA( ) [(| ( ) | ) ]J E y k R �w .  

The adaptation for the CMA is  

 2
1 CMA

*(| ( ) | ) ( )k k ky k y kRP�  � �w xw  . 

Multimodulus algorithm 

The multimodulus algorithm (MMA) was proposed in [19] that provides more 

flexibility than the CMA. The MMA has cost function  

 2 2
MMA MMA MMA( ) [(| ( ) | ) (| ( ) | ) ]p p p p

IRE y k R k RJ y� � �w , 

where  
2 2

MMA
[| ( ) | ] [| ( ) | ]
[| ( ) |] [| ( ) |]

p R I

R I

p pE s k E s kR
E s k E s k

  . The adaptation for the MMA has the 

expression  

 1 MMA
*( () )k kk ke y kP�  �w w x  , 

where 

 MMA ( )( ) ( )R Ike k je ke �  , 

 2
MMA( ) (| ( ) | ) ( ) | ( ) |p p p

R R R Rk y k R y k y ke � � , 

 2
MMA( ) (| ( ) | ) ( ) | ( ) |p p p

I I I Ik y k R y k y ke � � . 
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Square contour algorithm 

The square contour algorithm (SCA) in [20] combines the idea of the CMA and the 

Sato, with the cost function  

 2
SCA SCA( ) [(| |( ) ( ) ( ) ( )| | ) ]R I R Ik k kJ E y y y y Rk � �� �w ,  

where SCA 2max{| |, }( ) ( )R Ik s kR s . Then the adaptation for the SCA is 

A

*

1 SC{( ( ) ( ) ( ) ( ) )
(sgn[ ( ) ( ) ] sgn[ ( ) ( ) ])

}
(sgn[ ( ) ( ) ] sgn[ ( ) ( ) ])

| | | |
| |

.
| |

k k R I R I

R I R I

R I R I
k

k k k k
k k k k

j

y y y y R
y y y y

y kyk kyky

P� � � �

� � �§ ·
¨ ¸� � � �©

�

¹

 � �w w

x
 

ICA-based algorithm 

Besides the above Bussgang-type algorithms that exploit some constellation properties 

of the source symbols, BE schemes have also been modeled as a BSS problem, and solved 

using ICA-based algorithms [21], [22], when the source symbols are independent and 

identically distributed (i.i.d.).  

To allow exploitation of independence between symbols, fractional sampling can be 

applied so that the model satisfies the requirement of a standard BSS problem [22]. In [23], 

a block transmission scheme is considered, with which the BE problem can be formulated 

as a standard BSS model.  

Blind equalization problems with respect to minimum phase and non-minimum phase 

systems have been discussed widely in [16], [24]–[32]. With only the second-order 

statistics of the source, the channel phase cannot be determined [29], [32]. The algorithms 

mentioned above use 1st order or high order statistics, and they have been used in both 

minimum phase and non-minimum phase systems, although it has been shown that some 

adaptive algorithms may converge to local minima. In [21], the authors show with 
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simulation results that the ICA-based algorithms work for non-minimum phase systems. In 

this dissertation, the analysis of identifiability of the channel phase information is not the 

main focus. In the next several chapters, our proposed algorithms will be examined in 

multiple channels including non-minimum phase channels. The performance of the 

algorithms will be analyzed as we explain more details.  

In the BE problem for complex signals, it is generally assumed that complex sources 

are proper or circular, i.e. 2[ ( ) ] 0E s k   [33]. Also in the widely used BE algorithms that 

have been reviewed, a linear filter is usually used without the specific assumption of the 

circular property of the source. However, it has been shown in [34] that when the sources 

are improper and the channels are complex, the performance with the equalizer as a linear 

filter may lead to undesirable solution. The exploration of noncircular sources has 

motivated research both on blind equalization and blind source separation [35]–[37]. To 

improve performance of blind equalization for improper complex sources, a widely linear 

filter is used by processing the channel output kx  and its conjugate *
kx  as well [37]–[39]. 

In our work in the later chapters, we will develop new algorithms for general complex 

sources. The proposed algorithms may have a limitation in equalizing improper sources, 

while the idea with relative gradient and matrix structure constraint may be applied in 

equalization with widely linear filter for better performance. 

 

2.4 Conclusion 

In this chapter, we reviewed the basic concepts, models, and approaches for BSS and BE. 

Furthermore, the connection between the BSS and BE was also discussed. In Chapters 3 



32 

and 4, we will explain how the ICA-based algorithms, which have been used in BSS 

problems, can be applied to obtain BE under certain constraints. In Chapter 5, the idea of 

relative gradient will be used to improve the standard Bussgang-type BE algorithms for 

better performance. In Chapter 6, channel shortening for OFDM systems with the relative 

gradient will be shown. 
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Chapter 3  

Constrained ICA for Blind 

Equalization with Block Transmission 

 

3.1 Introduction 

In Chapter 2 we have seen that the blind equalization (BE) problem can be formulated in 

matrix form, which is similar to the form of the blind source separation (BSS) problem 

based on independent component analysis (ICA). However, the “mixing” matrix in the 

general BE problem does not satisfy the dimension requirement of the standard BSS 

problem.  

To make our problem fit a BSS model that will allow BE to be accomplished, we 

consider two block transmission schemes, with zero-padding or cyclic prefix. These single 

carrier modulation schemes have received interest in broadband communication, and have 

been compared with the orthogonal frequency division multiplexing (OFDM) technique 
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[1]–[4].  Our study of block-based transmission leads naturally to consideration of 

Toeplitz- and circulant-matrix-constrained BE algorithms based on independence.  In the 

next chapter we will build on these ideas and consider the continuous transmission case, 

and show that constrained BSS schemes are also quite effective without a block-based 

transmission scheme.  

In Section 3.2, the block transmission scheme with zero padding is analyzed. We show 

how to formulate the BE problem as a standard BSS problem, and how constrained ICA-

based algorithms can be applied. In Section 3.3, block transmission with a cyclic prefix is 

considered in a parallel way to Section 3.2. For both of these schemes it is shown in Section 

3.4 that the matrix adaptations of the corresponding BE algorithms can be implemented in 

a computationally efficient way. In Section 3.5, we explain how an I/Q independence 

constraint for two-dimensional constellations can be incorporated to reduce phase 

ambiguity for source symbols with independent I/Q parts. Simulation results and 

comparisons are shown in Section 3.6. We discuss briefly the relative merits of the two 

block transmission schemes in Section 3.7, and conclude the chapter with Section 3.8. 

 

3.2 Block Transmission with Zero Padding 

3.2.1 Formulation  

We first consider a transmission scheme where the source symbols are transmitted through 

a channel with impulse response [ (0), (1),..., ( )]Th h h L h  in blocks of size Q  with L  
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zeros padded at the beginning of each block [5]. Without loss of generality, we assume that 

(0) 0h z . Also it is assumed that Q L! .  

Denote by Zblock block , 0,..( .[ ) ,0]T T
k k s s  the k -th block of the transmitted symbols with 

zero paddings, where block ( ), ( 1),..., (1)[ ]k k k
T

k Q Q ss s �s . The length- Q  vector block
ks  is 

defined this way so that its first symbol is the latest transmitted one, and the last one is the 

one that transmitted earliest. The length of the padded zeros is L , and is equal to the 

assumed maximum order of the channel. The corresponding noise vector that affects the 

channel outputs is Zblock
kv . The whole block with length Q L�  including the paddings will 

affect a total of Q  channel outputs. According to the model of BE in matrix form in (2.44), 

the observation block Zblock
kx  can be written as  

 Zblock Zblock Zblock
k k k �x Hs v . (3.1) 

In the above model (3.1) the last L  symbols of Zblock
ks  are the padded zeros and will 

not contribute to the observed mixture Zblock
kx . As a result, equation (3.1) reduces 

equivalently to  

 Zblock block Zblock
Tk k k �x H s v  , (3.2) 

where TH  is a Q Qu  square Toeplitz matrix with lower diagonals zero, consisting of the 

first Q  columns of matrix H . From (3.2) it can be seen that the block of channel outputs 

at time k  is affected only by the source symbols in the k -th block. 
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Since it is assumed that (0) 0h z , TH  is full rank. As a result, matrix TH  has a unique 

left inverse. The recovery of block
ks  from Zblock

kx  in (3.2) is a standard BSS problem, and it 

can be attempted using a standard BSS algorithm.  

Let W�  be the “separating” matrix in this zero-padded block transmission BE problem, 

then the goal is to find a matrix W�  such that TC WH I� �� � . When the BSS adaptation 

converges, if the separating matrix W�  is a good approximation of 1
T
�

H , the source 

symbols will be well recovered. From the structure of H  in (2.44), we know that TH  is a 

square Toeplitz matrix with lower triangular elements zero. The Toeplitz structure is 

maintained under inversion [6], [7], so 1
T
�

H  should also be a square Toeplitz matrix with 

lower diagonals zero.  

Now let us take a slight detour to consider the elements in 1
T T

�
W H� . Let the first 

row of TW  be [ (1), (2),..., ( )]T
T T T Tw w w Q w . Then  

 1
T T

T T  w H e , (3.3) 

where 1e  is a length Q  column vector with 1(1) 1e  , 1( ) 0e j   for  2,...,j Q . Because of 

the Toeplitz structure of TH , the vector on the right side of (3.3) via matrix multiplication 

can be equivalently obtained as the truncated convolution of Tw  and h . We denote by 

1:( )T Q
h w  the column vector of the first Q terms of the convolution of Tw  and h . We 

have  

 � �1: 1( )
TT

T T T
T

Q 
  w H h w e .  (3.4) 
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Let us define the “inverse” of h  as the column vector containing the coefficients of the 

inverse z-transform of h , which can be obtained by long division. From (3.4) we see that 

Tw  is the truncated version of the inverse of h  containing only the first Q taps.  

 Since TH  has Toeplitz structure, based on (3.3), we also have 

                   

1 zeros

[0 ... 0 (1) (2) ... ( 1)]T T T
T

i
T iw w w Q i

�

� � H e�	
 =   (3.5) 

where 1, 2,...,i Q , and ie  is a length- Q  vector with the i-th element one and zero 

elsewhere. Denoting the transpose of the vector on the left side in (3.5) by ( )i
Tw  (note 

(1)
T T w w ), we have  

 (1) (2) ( )
1 2... ...

T TQ
T T T QT Qª º ª º  ¬ ¼ ¬ ¼w w w H e e e I         =         .  (3.6) 

From the above equation we see that the inverse of TH , where 

1 (1) (2) ( )...
TQ

T TT T
� ª º ¬ ¼H w w w         , is a Q Qu  Toeplitz matrix containing the first Q  taps of 

the inverse of h, with lower triangular elements zero.  

Let T
w�  be the first row of the separating matrix W� . If T C WH� �  is close to the 

identity matrix, then W�  is approximately 1
T
�

H , and then w�  is approximately Tw , the 

truncated inverse of h . In this case, all the symbols in the block block
ks  will be recovered 

without any arbitrary permutation. With this model, we are able to recover the source 

symbols, but will not obtain the impulse response of the equalizer.  
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3.2.2 Constrained ICA Algorithms  

We have seen from the above analysis that with the zero-padding block transmission 

scheme, the BE problem becomes a standard BSS problem and can thus be solved with an 

ICA-based algorithm. Since we know that the “separating” matrix should have Toeplitz 

structure, this constraint can be enforced during iterations.  

Forcing the Toeplitz structure on W�  will result in a C�  matrix that is also square 

Toeplitz with lower diagonal elements zero, but due to imperfect convergence the upper 

rows of the final C�  will generally contain small non-zero off-diagonal elements. As a 

result, the first several transmitted symbols, which correspond to the elements in the bottom 

of block
ks , will be better recovered than the last ones. The effect of imperfect convergence 

gets more severe when Q  is large compared with L . In this case, to limit the number of 

nonzero elements in the top rows of W� , we can add a “length” constraint on w�  by forcing 

the uppermost diagonals of W�  to be zero. By doing so, we are adding a constraint that the 

coefficients of w�  be nonzero only up to a particular length. As a result, the number of 

possible non-zero elements in each row of matrix C�  will also be limited. 

One general conclusion so far is that we can impose a Toeplitz structure constraint and 

length constraint on W�  in using a BSS adaptation scheme, with the expectation that it will 

allow improved performance. In fact, the performance of the constrained ICA-based 

algorithms depends on the characteristics of the channels. For minimum phase channel 

with the first tap having the largest magnitude, if we start from a good initialization it will 

not be difficult for the global system to converge to the identity; however, if the channel is 
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non-minimum phase or minimum phase with the largest tap behind the first tap, the inverse 

of TH  may have very large coefficients, which is hard for the algorithm to converge to. 

We will see examples based on simulations in Section 3.6. 

We will next use the EASI algorithm explained in Chapter 2 as an example to show 

our idea of forcing Toeplitz structure and length constraint. Recall that with the EASI 

algorithm, the separating matrix has the adaptation as follows [8]: 

 Zblock Zblock Zblock Zblock Zbloc
1

k Zblock( ) ( )( ) ( )k k
H H

k k k k k k k
HO� ª º � � � �¬ ¼W W y y I g y y y g y W� � � , (3.7) 

where Zblock Zblock
k k k y W x�  contains the separated symbols in the k -th block. Denoting the 

relative change in the brackets as kU , the adaptation can be written as   

 1k k k kO�  �W W U W� � � . (3.8) 

There are two ways to enforce the Toeplitz constraint: one on the relative change 

matrix kU , and the other on the whole perturbation kkU W� . 

 

Constraint on relative change 

Since the multiplication operation is closed in the space of Toeplitz matrices with 

lower elements zero, if we enforce Toeplitz structure on kU , the perturbation k kU W�  as a 

whole will still have the Toeplitz structure. With the Toeplitz constraint on the relative 

change, the adaptation can be written as  

 1 { }k k kkToeplitzO�  �W W U W� � � , (3.9) 

where { }Toeplitz <  means that the Toeplitz structure is enforced on kU  by taking averages 

along descending diagonals after forcing the lower left part to be zero. In fact, this Toeplitz 
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structure constraint can be proved to be the orthogonal projection of any square matrix 

onto the space of Toeplitz matrices with lower diagonals zero. In Chapter 4, the constraint 

will be enforced on non-square matrices. The proof of this orthogonal projection property 

will be given in the appendix of Chapter 4, and it can apply in a similar way for the square 

matrix case here.  

From the adaptation in (3.9), we see that it has the form of “serial updating” introduced 

in Section 2.2.3. As a result, if the Toeplitz structure constraint is enforced on the relative 

change, the adaptation has the property of equivariance. In other words, the updating 

process does not depend on TH  as long as the global system T C WH� �  is the same.  

For the length constraint, it is not possible to enforce the constraint on matrix kU  and 

keep the number of non-zero elements unchanged in the first several rows of W� . The first 

row of { }k kToeplitz U W�  gives the truncated version of the convolution of kw�  and the first 

row of { }kToeplitz U . As a result, as long as { }kToeplitz U  is not identity, w�  cannot keep 

the number of nonzero elements in its tails unchanged from the previous iteration. However, 

the length constraint can be added after the matrix multiplication, i.e. on { }k kToeplitz U W� , 

which leads to the T-LC-EASI algorithm. The T-LC-EASI algorithm does not have the 

equivariance property. 

    

Constraint on whole perturbation 

The Toeplitz constraint can also be enforced on k kU W� , with the adaptation  

 1 { }k k kkToeplitzO�  �W W U W� � � .  (3.10) 
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However, the adaptation in (3.10) does not have the serial updating form, and thus is not 

equivariant. In addition to the Toeplitz constraint, the length constraint can be enforced on 

the term k kU W�  after matrix multiplication.  

 

3.3 Block Transmission with Cyclic Prefix 

3.3.1 Formulation  

Another block transmission scheme that is widely used is to pad the cyclic-prefix (CP) 

between transmitted blocks. This transmission scheme has similarity to the latest 

orthogonal frequency division multiplexing (OFDM) technique except that the block of 

symbols are not modulated by multiple subcarriers before adding the CP, and is called 

single-carrier (SC) modulation. The SC modulation combined with frequency domain 

equalization (FDE) has attracted wide interest in broadband communication systems [1]–

[3]. Compared with OFDM, the SC-FDE has comparable performance with the same 

overall complexity, while it can overcome the drawbacks OFDM suffers: high peak to 

average power ratio, intolerance to amplifier nonlinearities, and sensitivity to carrier 

frequency offsets. In this part we will study time domain equalization for this signal carrier 

case with CP, for comparison with the zero padding scheme.  

The source symbols without the CP are transmitted in blocks of size Q  with a cyclic 

prefix extension, and the length of the CP is equal to the order of the channel L . As in the 

zero-padded block transmission case, for this block transmission scheme with the CP, it is 

also assumed that Q L! .   
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Denote the -thk transmission block as CPblock block CP[( ) , ( ) ]T
k

T
k

T
k s s s , where  

block ( ), ( 1),..., (1)[ ]k k k
T

k Q Q ss s �s  are the Q  transmitted symbols, and the CP is the same 

as the first L  symbols in block
ks , i.e. CP ( ),..., ][ ( 1) T

kk ks Q s Q L � �s . The transmission 

scheme is illustrated in Fig. 3.1. With the corresponding noise vector CPblock
kv , the channel 

outputs can be expressed as  

 CPblock CPblock CPblock
k k k �x Hs v .  (3.11) 

 

 

Fig. 3.1 Block transmission with cyclic prefix. 

 

Since the last several elements of CPblock
ks  are the CP, which are copies of the elements 

in block
ks , equation (3.11) reduces to  

 CPblock block CPblock
k C k k �x H s v ,  (3.12) 

where CH  is square circulant matrix. Matrix CH  is the modified version of the first Q 

columns of matrix H , where the last L columns of H  is added onto the first L columns of 

H , i.e. 
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With the formulation in (3.12), our goal is to find a matrix W�  with size Q Qu , such 

that CCWH I� � . Here CI  is defined as a circularly shifted version of identity matrix I. 

Different from the zero-padding case where the perfect global system is considered to be 

the identity, in this block transmission scheme with the CP, the ideal global system includes 

all the circularly shifted versions of the identity, i.e. CI ; this will make the analysis more 

straightforward due to the properties of the circulant matrix. With the global system CI , 

the symbols in a certain block will be recovered subject to circular permutation. We need 

to resolve this circular permutation with other techniques; this should not be difficult and 

is not addressed here. 

Before going to the iterative algorithm, let us first take a look at the nature of the 

inverse of CH . Since CH  is a circulant matrix, from the property of circulant matrices, we 

know that its inverse should also be circulant [9]. Let Ch  be the first row of matrix CH , 

which is a length-Q vector that extends h by padding zeros at the end. Denote 1
C C

� W H , 

and let vector T
Cw  with length Q  be the first row of CW , then matrix CW  contains 

circularly shifted versions of T
Cw  in each row. Multiplication of two circulant matrices 

actually gives the circular convolution of the associated vectors, thus  
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 [1,0,..., 0]C C
T�  w h .  (3.14) 

Denote the Q point DFT of Cw  as DFT
Cw , and that of the channel response Ch  as DFT

Ch , 

then  

 DFT DFT( ) ( ) 1C Ch k w k  , 1,2,..k Q .   (3.15) 

Thus the first row of CW  is a vector such that the element-wise multiplication of its Q -

point DFT and the Q -point DFT of Ch  gives a sequence of ones. Let T
w�  be the first row 

of matrix W� . If matrix W�  contains vector T
Cw  is its first row, i.e. C w w�  , then W�  is 

exactly the inverse of CH , i.e. C W W� . Since we allow C CWH I� � , w�  can be any 

circularly shifted version of Cw .  

Now we examine the relation between Cw  and the equalizer response. For simplicity, 

we only consider the case CWH I� �  with no circular shifting, i.e. C w w� . Recall that the 

length of h  is 1L� , so the linear convolution of w�  and h  should be of length Q L� , and 

the Q -point circular convolution of w�  and Ch  is the first Q  points of *w h�  with aliasing 

from the last L  points of *w h� . When Q  is large enough, w�  is likely to be the response 

of a good equalizer; but this is not necessary. In general, as long as w�  has DFT that 

satisfies the condition (3.15) considered above , CWH I� �  can be obtained.  

 

3.3.2 Constrained ICA Algorithms  

We know that ideally W�  should be a circulant matrix, and contains circularly shifted 

versions of the same vector in each row. For this circulant matrix case, we can enforce the 
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circulant structure on W�  in an iterative scheme by taking averages of the corresponding 

elements, as shown in Fig. 3.2. This can be shown to be the orthogonal projection of a 

square matrix onto the space of circulant matrices. The proof is similar to the one given in 

the appendix of Chapter 4, and will be omitted here.  

 

 

Fig. 3.2 Circulant structure constraint by taking averages. 

 

As in the Toeplitz case, we will use the EASI algorithm to illustrate our idea of the 

structure constraint in adaptation. Since multiplication is closed in the space of circulant 

matrices, we can consider forcing the circulant structure either on the relative change or on 

the whole perturbation. However, for circulant matrices, it can be shown that if Y  is a 

circulant matrix, then  

 { } { }Circulant Circulant X Y XY .  (3.16) 

The detailed proof of equation (3.16) will be given in Appendix 3A. 

For the EASI algorithm, denote the k -th output block as CPblock CPblock
k k k y W x�  and 

let CPblock CPblock CPblock CPblock CPblock CPblock( ) ( )( ) ( )H H
k k k k

H
k kk  � � �U y y I g y y y g y , then the 

EASI algorithm has the adaptation for matrix W�   



49 

 1k k k kO�  �W W U W� � �   (3.17) 

According to (3.16), forcing the circulant constraint on the relative change kU  and then 

doing matrix multiplication is the same as forcing the constraint on kkU W� . As a result, the 

following two adaptations are equivalent: 

 1 { }k kk kCirculantO�  �W W U W� � �  , (3.18) 

 1 { }k kk kCirculantO�  �W W U W� � �  . (3.19) 

For (3.18), the adaptation is serial updating, and thus has the equivariance property. 

Although (3.19) does not have the form of serial updating, it is equivalent to (3.18) and 

thus also has the property of equivariance. The resulting algorithm can be called as the C-

EASI algorithm.  

For the C-EASI algorithm, the number of non-zero elements in each row is the same. 

In correspondence to the T-EASI algorithm, we can still enforce a length constraint (LC) 

on the vector w�  contained in each row of W� , so that w�  can have non-zero elements up 

to a certain length. For the same reason as explained for the T-EASI case, the length 

constraint cannot be enforced on the relative change, but on the whole perturbation after 

matrix multiplication, i.e. { } kkCirculant U W� . We will call the algorithm with length 

constraint the C-LC-EASI algorithm. With the length constraint after the matrix 

multiplication, the property of equivariance will not be preserved.  

In fact, the length constraint on w�  for the C-EASI algorithm does not make as much 

sense as for the T-EASI algorithm. On the one hand, since circulant matrix has circulantly 

shifted vector in each row, all the symbols in the block can be recovered to the same degree 

with no bias; on the other hand, for circulant case, we allow the final global system to be a 
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circulant version of the identity, so it is hard to tell whether w� , the first row of W� , is 

exactly the vector we want to enforce length constraint on or its circularly shifted version. 

If we can resolve the circular shift ambiguity, and figure out the location of the vector that 

satisfies the DFT condition in (3.15), we will be able to enforce a more reasonable length 

constraint by setting the elements outside the vector to zero. We will see from later 

simulations that the effect of the length constraint varies from case to case. 

 

3.4 Simplified Vector Updating and 

Computational Complexity 

For both of the block transmission schemes, we end up with a matrix adaptation with a 

Toeplitz or circulant matrix constraint. Our development in the previous sections resulted 

in iterations for the “separating” or inverse matrix W� . However, since the “separating” 

matrix contains repeated elements in each row vector, we can seek equivalent vector 

iterations to make the computations more efficient. In this section, we show how the matrix 

adaptations can be converted to vector adaptations. For simplicity we focus on the T-EASI 

and C-EASI algorithm without the length constraint. In fact, with the equivalent form for 

vector adaptation, we can always enforce the length constraint on the vector by forcing a 

fixed number of elements in the last part of the vector to be zero at the end of each iteration. 

  

3.4.1  T-EASI 

For the T-EASI algorithm, there are two versions with the Toeplitz constraint, as follows: 
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 1 { }k k kkToeplitzO�  �W W U W� � � , (3.20) 

 1 { }k k kkToeplitzO�  �W W U W� � � .  (3.21) 

where ( ) ( )k k k k
H H

k
H

k k � � �U y y I g y y y g y  with the superscript  “Zblock” of ky  

omitted.  

In (3.20), with the matrix kU  forced to be Toeplitz, the multiplication of two Toeplitz 

matrices { }kToeplitz U  and kW�  gives a new Toeplitz matrix. Denote the first row of 

{ }kToeplitz U  as T
ku , and the first row of  kW�  as T

kw� , then the first row of  

{ }k kToeplitz U W�  will contain the first Q  elements of the convolution of ku  and kw� . As a 

result, it is easy to see that the matrix adaptation in (3.20) can be written equivalently as 

the vector adaptation  

 1 1:{ * }k k Qk kO�  �w w w u� � � .  (3.22) 

Since linear convolution can be implemented with the FFT by adding zeros to the vector, 

the order of computational complexity using (3.22) can be reduced from 3( )O Q  to 

( log )O Q Q  with efficient implementation. In Appendix 3B, the exact number of the 

additions and the multiplications are listed, with details omitted. In Chapter 4, the same 

idea will be applied to simplify the matrix adaptation containing the equalizer vector with 

more detailed explanation.  

 For the second version of the matrix adaptation (3.21), the equivalent vector 

adaptation has the form  

 1 kk k kO�  �w w ī w� � � ,  (3.23) 
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where kī  contains cross-correlation terms from matrix kU . However, the relation 

between kī  and kU  is not as straightforward as in the first case. The following is an 

example of how matrix kī  can be obtained from kU .  

Suppose 3Q  and kU  is expressed as   

 
11 12 13

21 22 23

31 32 33

k

U U U
U U U
U U U

ª º
« » « »
« »¬ ¼

U  , (3.24) 

then kī  can be calculated to be  

 

11 22 33 32 21 31

12 23 11 22 21

13 12 11

3 3 3

2 2 2k

U U U U U U

U U U U U

U U U

ª º
« »
« »
« » « »
«

� � �

�

« »¬ ¼

�

»
« »

ī . (3.25) 

From extensive simulations we found that the performance of the two versions (3.20) 

and (3.21) of the T-EASI algorithm is almost the same. As a result, in the following 

analysis and simulations, the T-EASI algorithm we refer to is the first version (3.20) of the 

T-EASI with Toeplitz constraint on the relative change, since it has the nice property of 

equivariance and can be implemented computationally efficiently via FFT. 

 

3.4.2 C-EASI 

Unlike the T-EASI case, forcing circulant structure on either the relative change or the 

whole perturbation leads to equivalent algorithms. With the circulant structure constraint, 

the C-EASI algorithm has the iterative updating  
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 1 { }k kk kCirculantO�  �W W U W� � � , (3.26)  

where ( ) ( )k k k k
H H

k
H

k k � � �U y y I g y y y g y  with the superscript “CPblock” of ky  

omitted.  

In (3.26), { }k kCirculant U W�  will give a new circulant matrix. If we denote the first 

row of { }kCirculant U  as ku , and the first row of kW�  as kw� , according to the definition of 

circular convolution, it can be seen that the first row of { }k kCirculant U W� will be exactly 

the circular convolution of ku  and kw� , i.e. kk �w u� , where �  means the circular 

convolution of two vectors. Here we are using the same notation ku  and kw�  for the two 

different schemes, but this will be clarified where necessary to avoid confusion. Based on 

the property of circulant matrices, it follows that the equivalent vector adaptation for kw�  

can be written as  

 1k k k kO�  � �w w w u� � � .  (3.27) 

Circular convolution can be efficiently implemented with fast Fourier transform, thus the 

computational cost of implementing (3.27) can be reduced to ( log )O Q Q . The number of 

additions and multiplications is given in Appendix 3B. 

  

3.5 I/Q Independence 

When the source has independent in-phase and quadrature parts, as in the case of standard 

QAM signaling, Q  complex source symbols can be seen as 2Q  mutually independent real 

symbols. In this case, if the sources are well separated, the 2Q  real output symbols of the 
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equalizer should be independent of each other, and the original symbols can be recovered 

with no phase ambiguity by proper I/Q association [10], [11].  

In this section, we will see how the I/Q independence constraint can be incorporated 

to reduce phase ambiguity in our T-EASI and C-EASI schemes. Since a circulant matrix 

can be considered to be a special case of Toeplitz matrices, we will use the block 

transmission scheme with zero padding to explain the idea.  

Recall that with zeros padded between transmitted blocks, the BE problem can be 

formulated in matrix form as  

 Zblock block Zblock
Tk k k �x H s v .  (3.28) 

For simplicity of analysis, we ignore noise in (3.28) and drop the block-index k and the 

superscripts “Zblock” and “block”. Denoting the in-phase and quadrature parts of the 

channel matrix TH  as ( )RTH  and ( )ITH , and those of the signal vector s  as Rs  and Is , 

the in-phase and quadrature components of the observation vector become 

 ( ) ( )R R R I IT T �x H s H s   (3.29) 

 ( ) ( )I R I I RT T �x H s H s   (3.30) 

Writing (3.29) and (3.30) in a matrix, we have  

 
( )    ( )
( )     ( )

T T

T T

R R I R

I I R I

�ª º ª º ª º
 « » « » « »

¬ ¼ ¬ ¼ ¬ ¼

x H H s

x H H s
.  (3.31) 

The separated output k k k y W x�  can also be written in terms of their respective in-phase 

and quadrature components, i.e.   

 
   

      
R R I R

I II R

ª º�ª º ª º
 « »« » « »
« »¬ ¼ ¬ ¼¬ ¼

y W W x

y xW W

� �
� �

.  (3.32) 
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Defining 
( )    ( )
( )     ( )

R I

IT T R

T T
T

�ª º
 « »
¬ ¼

H H
H

H H
,

   

      
R I

I R

ª º�
 « »
« »¬ ¼

W W
W

W W

� �
�

� �
, R

I

ª º
 « »
¬ ¼

x
x

x
  and R

I

ª º
 « »
¬ ¼

y
y

y
 , we have  

 
( ) ( )    ( ) ( )

( ) ( )     ( ) ( )  
R R I I R I I R

R

T T T T
T

T T T TI I R R R I I

ª º� � �
 « »

� �« »¬ ¼

W H W H W H W H
WH

W H W H W H W H

� � � �
�

� � � �
,  (3.33) 

  y Wx� .  (3.34) 

The original problem becomes: given the observation vector x , find the separating 

matrix W�  such that y  is a good estimate of   
TT T

R Iª º¬ ¼s s , i.e. T  WH I� .  

The matrix multiplication TWH�  consists of four Q Qu  blocks, of which the diagonal 

blocks are the same and the other two sum to zero. Thus ideally we want  

 ( ) ( )R R ITIT Q�  W H W H I� � ,  (3.35) 

 ( ) ( )  R IT RT QI�  W H W H 0� � .  (3.36) 

The ideal solutions of RW�  and IW�  satisfying (3.35) and (3.36) are 

 1 1 1 1( ) (( ) ( ) ( ) ( ) )ideal
R I RT T IT T TI R

� � � � �W H H H H H� ,  (3.37) 

 1 1 1 1 1( ) (( ) ( ) ( ) ( ) ) ( ) ( )T T T
ideal

I I R I I R T TIT RT
� � � � � � �W H H H H H H H� .  (3.38) 

Since ( )RTH  and ( )ITH  are both square Toeplitz matrices with lower diagonal elements 

zero, their inverses have the same structure. In addition, since the Toeplitz structure 

remains under matrix multiplication, ideal
RW� and ideal

IW�  are also square Toeplitz matrices 

with lower diagonal elements zero. We see that matrix W�  has a resulting block structure 

constraint, with identical Toeplitz diagonal blocks and off-diagonal Toeplitz blocks that 

are sign-inverted versions of each other. 
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Using the EASI algorithm with the I/Q independence constraint, we can enforce the 

Toeplitz constraint either on the relative change or the whole perturbation without much 

difference in performance. To be consistent with the T-EASI algorithm, we enforce this 

constraint on the relative change in the simulation parts. In addition to the Toeplitz structure, 

the block structure of W�  is also enforced.  

The original EASI algorithm, T(C)-EASI and T(C)-LC-EASI can all be combined with 

the I/Q independence constraint, which gives the I/Q-EASI, I/Q-T(C)-EASI, and I/Q-T(C)-

LC-EASI algorithms.  

 

3.6 Simulations 

In this section, we will give examples of the (I/Q)-T-(LC)-EASI and (I/Q)-C-(LC)-EASI 

algorithms for the two block transmission schemes. The performance of the two different 

schemes (zero-padding vs. cyclic prefix) will also be compared.   

First consider a minimum phase channel with channel impulse response shown in Fig. 

3.3. The channel has order 4L   and the SNR is 15dB. The first tap has the largest 

magnitude. From the zero-pole pattern of the channel in Fig. 3.4, it can be seen that all the 

zeros are near the unit circle, which makes it hard to equalize. A sequence of 64-QAM 

source symbols is transmitted through the channel in blocks of size 30Q  , before which 

there are 4L   padded symbols being either zero or the cyclic prefix. In the algorithms, 

the nonlinear function is the phase preserving cubic, i.e. 2( ) | |g x x x . 
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Fig. 3.3 Channel impulse response of short minimum phase channel.  

 

Fig. 3.4 Zero-pole pattern of the minimum phase channel. 

 

First consider the block transmission scheme with zero padding. The performance of 

the EASI, T-EASI and the T-LC-EASI is compared in Fig. 3.5. For the T-LC-EASI 

algorithm, the length constraint is enforced so that the elements on the upper right corner 

of the W�  matrix are zero. Specifically, in the first row of W�  the first 1M �  elements are 
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kept and the other elements are set to zero; the other rows are then shifted truncated 

versions of the first row. Based on our experiments, 20M   is a reasonable choice.  

For the case when the symbols are transmitted in blocks with the CP, the performance 

of the EASI, C-EASI, C-LC-EASI and their I/Q version is compared in Fig. 3.6. The 

parameter M  is set to be the same as the last example, i.e. 20M  . For both of the two 

examples, the “separating” matrix is initialized with (1 0.5 )j �W I� .   

In the experiment, we use the average inter-symbol interference (ISI) of the rows of 

the matrix TWH�  or CWH�  to measure the performance of separation, where the ISI for a 

vector c  is defined as  

 
1

2

2

| |ISI 1
max | |

i

i i

Q

i

c
c 

 �¦ .  (3.39) 

For the zero-padding case, when the T-EASI is applied, the ISI of each row is different 

because of the difference in the number of the off-diagonal elements of TWH� . As a result, 

the average ISI reflects an average degree to which the symbols in a block are recovered. 

For the CP case, the ISI of each row is the same and equal to the average ISI, thus picking 

any row gives the same result. 

From Fig. 3.5, it can be seen that with the Toeplitz constraint, the performance is 

greatly improved compared to the EASI in terms of faster convergence and lower ISI at 

the steady state. With the length constraint, the convergence speed of the T-LC-EASI is 

slightly faster than the T-EASI. The algorithms with the I/Q version yield comparable 

performance with the ones with no I/Q independence constraint.  
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Fig. 3.5 Average ISI of each row of matrix TWH�  for the minimum phase system EASI, 

T-EASI and T-LC-EASI, initialization (1 0.5 )j �W I� . 

 

In Fig. 3.6, the performance for the block transmission scheme with the CP is shown. 

The result is consistent with that of the scheme with zero padding. In this example, 

comparing the results of the C-EASI and C-LC-EASI, we can find that compared to the T-

EASI case the length constraint helps increase convergence speed more. For the C-EASI 

algorithm, the I/Q independence constraint yields a little more apparent advantage 

compared with the T-EASI case I/Q version.  
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Fig. 3.6 ISI of the rows of matrix CWH�  for the minimum phase system with EASI, C-

EASI and C-LC-EASI, initialization (1 0.5 )j �W I� . 

 

In addition to the typical example of minimum phase channel as given above, we also 

examined our algorithms without the I/Q constraint on multiple channels with the Rician 

model. We randomly generated 10 minimum phase channels with length 4, i.e. there are 

four paths. Among the four discrete paths, the first one is Rician fading process with factor 

1K  , while the others are Rayleigh fading processes. The average power gain of the four 

paths decreases in order. The parameters M  and Q , and the initialization of  W�  is set as 

above. From Fig. 3.7 and Fig. 3.8, it can be seen the average performance over multiple 

channel examples for different versions of the EASI algorithms is consistent with that 

shown in Fig. 3.5 and Fig. 3.6. 
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Fig. 3.7 Average ISI over multiple minimum phase channels with EASI, T-EASI and T-
LC-EASI. 

 

Fig. 3.8 Average ISI over multiple minimum phase channels with EASI, C-EASI and C-
LC-EASI. 
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For the minimum phase typical example, we also tried a different initialization for 

matrix W� . Specifically, we set the center tap of the first row of W� to be the only nonzero 

tap with 1 0.5 j� . For the T-EASI case the W�  matrix has nonzero elements in one of the 

minor diagonals, and at convergence it can be expected that the largest tap will also appear 

in a certain minor diagonal. Since we want the matrix TWH�  to be a scaled identity, i.e. 

the first tap in the first row of TWH�  has the largest magnitude, the performance with this 

initialization cannot give good performance. For the C-EASI case, W�  is a circularly 

shifted version CI  of the identity, scaled by some constant. In this case, CWH�  may 

converge to a scaled version of CI .  The ISI curve, as shown in Fig. 3.9, still gives the same 

result as the one as in Fig. 3.6, while the symbols in a block will be recovered with circular 

shift. At the same time, the LC constraint does not help convergence because it is hard to 

enforce length constraint due to the circular shift ambiguity. When the length constraint is 

enforced on the first row so that the elements are zero to a certain length, the performance 

may degrade. 
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Fig. 3.9 ISI of the rows of matrix CWH�  for the minimum phase system with EASI, C-
EASI and C-LC-EASI, initialize center tap of first row of W�  to value 1 0.5 j� . 

 

Next, an example for a non-minimum phase system with the CP scheme is shown. The 

impulse response and the zero-pole pattern are shown in Fig. 3.10 and Fig. 3.11. The size 

of the transmission block is set as 30Q  . When length constraint is enforced, we require 

20M  . The performance of the C-EASI algorithm is shown in Fig. 3.12.  
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Fig. 3.10 Impulse response of the non-minimum phase channel 

 

Fig. 3.11 Zero-pole pattern of the non-minimum phase channel 

 

For the non-minimum phase system, the inverse of the TH  matrix has large 

coefficients in the upper right corner. With either EASI or different algorithms with 

Toeplitz constraint, we do not get convergence. However, with a reasonable block size Q , 



65 

it is not difficult for the CP scheme to converge to  a separating matrix W�  such that 

CC  WH I� . From the figure, we can see that the C-EASI and C-LC-EASI can still yield 

good performance. Since there is circular shift, the LC constraint does not give better 

performance.  

 

Fig. 3.12 ISI of the rows of matrix CWH�  for the non-minimum phase system with EASI, 

C-EASI and C-LC-EASI, , initialization (1 0.5 )j �W I� . 

 

3.7 Discussion 

We have compared in the simulation parts the performance for zero- and CP-padded block 

transmission schemes with the Toeplitz constrained and circulant constrained EASI 

algorithms, respectively. In this section, we will make a general comparison of the two 

schemes.  
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For either scheme, when the channel is a minimum phase system with the first tap 

having the largest magnitude, with a proper initialization the performance is good and 

comparable for the zero padding scheme with the T-EASI and for the CP scheme with the 

C-EASI.  

According to Appendix 3B, in the implementation of the T-EASI, 

2(6 3) ( 1og 2 ) 6 3lQ Q Q� � � � additions and 2(6 3) (2 1)log 12 6Q Q Q� � � �  multiplications 

are needed. To implement the C-EASI, 22 log 3Q Q Q�  additions and 22 log 6Q Q Q�  

multiplications are needed. Comparing the computational complexity, we see that the cost 

of the C-EASI is slightly lower than that of the T-EASI. However the two schemes have 

the same order of computational complexity and when Q  is large, the difference is small.  

Although there is slight advantage in computational cost with the C-EASI compared 

to the T-EASI, the power efficiency is the opposite. In the block transmission, we need 

additional power to transmit the CP. Especially when the channel is long, i.e L  is large, 

the power efficiency of the CP padded scheme can be significantly lower. In our example 

for the non-minimum phase channel, there is a 8 / 30 27%|  power efficiency loss with the 

CP scheme.  

From the simulations, we see that for the minimum phase system, the T-EASI is 

sensitive to initialization; while the C-EASI gives almost the same results for all circularly 

shifted versions of a particular W� .  

Based on our many simulation experiments under different conditions, we found that 

for non-minimum phase channels and for minimum phase channels whose largest tap is 

not at the beginning, the T-EASI does not work because it is hard to get the inverse of the 
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“mixing” matrix TH ; while the C-EASI is more robust since circular permutation is 

allowed, but the recovery of symbols is subject to circular permutation within blocks.  

In general, for both of the schemes, there is a need to use an auxiliary technique to 

identify recovered symbols in the right order. However, the idea of using a Toeplitz or 

circulant structure constraint for equalization in block-transmission schemes is interesting 

and useful, and importantly our development in this chapter sets the stage for further 

development in the next chapter where the symbols are transmitted continuously. 

 

3.8 Conclusion 

In this chapter, we explored BE methods based on independent source separation for two 

block transmission schemes. With either padded zeros or cyclic prefix between blocks, BE 

can be formulated as a standard BSS problem and solved with ICA algorithms. The 

Toeplitz or circulant structure constraint can be enforced on the “separating” matrix with 

improved performance. The resulting matrix adaptations can be implemented more 

efficiently as equivalent vector adaptations. This work sets the stage for extension to the 

standard continuous transmission case in the next chapter.  
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Appendix 3A 

In this part, we will prove the property (3.16) for circulant matrices: 

Suppose Y  is a circulant matrix with size Q Qu  , and X  is a square matrix of the 

same size, then the following equation holds:  

 { } { }Circulant Circulant X Y XY  . (3.16) 

Before going to the proof, we define a modified version of the standard mod-Q 

representation of an integer, which will be used in the proof, as follows: for integer x , 

 
                    if mod( , ) 0 

( )
mod( , )       otherwiseQ

Q x Q
x

x Q
 ­

 ®
¯

  (3A.1) 

Proof:  

To prove equality of the matrix products in (3.16), we need to show that for any M, N 

with1 M Qd d , and  1 N Qd d ,  

 � � � �, ,
{ } { }

M N M N
Circulant Circulant X Y XY   (3A.2) 

where the sub-indices denote the ( , )M N -th element of the matrix.  

For a matrix Z , forcing circulant structure means taking average along the diagonals 

circulantly, as shown in Fig. 3.1.  As a result, with { }Circulant Z , the ( , )m n -th element 

becomes  

 ,( )
1

,
1( ) ( )

Q

Q

jm n j n m
jQ � �
 

 ¦Z Z , 1 m Qd d , and  1 n Qd d .  (3A.3) 

Looking at the left side of (3A.2), we have  
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 (3A.4) 

Similarly, 

 
� � ,( ),

1

, ,( )
1 1

1{ } ( )

1 ( ) ( ) .

Q

Q

Q

j j N MM N
j

Q Q

j i i j N M
j i

Circulant
Q

Q

� �
 

� �
  

 

 

¦

¦¦

XY XY

X Y

  (3A.5) 

Since Y  is a circulant matrix, each column includes all the elements in the matrix. As 

a result, for any 1 i Qd d , and  1 j Qd d , ,( )( )
Qi j N M� �Y  can be found in the N -th column of 

matrix Y . Suppose in the N -th column, the m -th element equals ,( )( )
Qi j N M� �Y , then  

 ,( ) ,( ) ( )
Qi j N M m N� �  Y Y  , (3A.6) 

 where 1 m Qd d , then we should have  

 ( ) (( ) )Q Q QN m j N M i�  � � � . (3A.7)  

This means  

 1 2 3( )N m k Q j N M k Q i k Q� �  � � � � � ,  (3A.8) 

where 1k , 2k  and 3k  are integers. The value of 1k , 2k  and 3k  are selected individually to 

make the corresponding terms in ( )Q<  take integer values between 1 and Q.  

We get from (3A.8) the expression of m . i.e. 

 1 2 3 4( ) ( )Qm M j i k k k Q k Q M j i � � � � � �  � �  . (3A.9) 
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Similarly, we find that  

 ( )Qi m j M � �  . (3A.10) 

Substituting the element ,( )( )
Qi j N M� �Y  in the last line of (3A.5) with  , ( ) ,( ) ( )

Qm N M j i N� � Y Y , 

we have  

 
� � ,

, ( ) ,
1 1

{ }

1 ( ) ( )
Q

M N

Q Q

j i M j i N
j i

Circulant

Q � �
  

 ¦¦

XY

X Y
 . (3A.11) 

Let ( )Qm M j i � � , then according to (3A.10) ( )Qi m j M � � . Changing the variable 

i  in (3A.11) to m, we have   

 
� � ,

,( ) ,
1 1

{ }

1 ( ) ( )
Q

M N

Q Q

j m j M m N
j m

Circulant

Q � �
  

 ¦¦

XY

X Y
 . (3A.12) 

Comparing (3A.12) with (3A.4), we see that they are exactly the same, and this completes 

the proof of the equation (3.16) in Section 3.3.2.  
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Appendix 3B 

The number of additions and multiplications in the efficient implementation of the vector 

T-EASI and C-EASI schemes is listed in the following two tables. For fair comparison, for 

both algorithms that can be implemented by FFT, we start with the vector kw� , ky , and 

( )kg y  in time domain, and explore the computational complexity to get the change to kw�  

in time domain at each iteration. 

T-EASI 

To implement linear convolution with circular convolution, zeros needed to be padded. 

In the table, the superscript “(p)” means to pad 1Q �  zeros at the end of the corresponding 

vector. 

 Multiplication Addition 
1 1:{ * }k k Qk kO�  �w w w u� � �  (via FFT in frequency domain) 

DFT of ( )
k

p
y / *( )

k
p

y  2(2 1) ( 1og 2 ) 2l /Q Q� �  2(2 1) ( 1og 2 ) 2l /Q Q� �  
DFT of ( ) ( )k

p
g y / ( ) *( )p

kg y  2(2 1) ( 1og 2 ) 2l /Q Q� �  2(2 1) ( 1og 2 ) 2l /Q Q� �  
DFT of *) ,0,.( ..0[ ]T

k
Tflip y  2 1Q �   

DFT of * ) , 0,.[ ..0( ( ) ]T T
kflip g y  2 1Q �   

DFT of elements in kU  3(2 1)Q �  3(2 1)Q �  
elements in kU with IDFT 2(2 1) ( 1og 2 ) 2l /Q Q� �  2(2 1) ( 1og 2 ) 2l /Q Q� �  

ku  from kU , DFT of ( )p
ku  2(2 1) ( 1og 2 ) 2l /Q Q� �  2(2 1) ( 1og 2 ) 2l /Q Q� �  

DFT of ( )p
kw�   2(2 1) ( 1og 2 ) 2l /Q Q� �  2(2 1) ( 1og 2 ) 2l /Q Q� �  

DFT of ( ) ( )*p p
k ku w�  2 1Q �   

1:*{ }k Qkw u�  with an IDFT 2(2 1) ( 1og 2 ) 2l /Q Q� �  2(2 1) ( 1og 2 ) 2l /Q Q� �  
Total 

2(6 3) (l 2 1)
     

o
12 6

gQ Q
Q

� �
� �

 2(6 3) (2 1)
 

l
    6 3

ogQ Q
Q

� �
� �
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C-EASI 

 Multiplication Addition 
1k k k kO�  � �w w w u� � �  (via FFT in frequency domain) 

DFT of ky  ( *
ky ) 2( / 2) logQ Q  2( / 2) logQ Q  

DFT of ( )kg y  ( *( )kg y ) 2( / 2) logQ Q  2( / 2) logQ Q  
DFT of *( )kflip y  Q   

DFT of *( ( ))kflip g y  Q   

DFT of ku  3Q  3Q  

DFT of kw�   2( / 2) logQ Q  2( / 2) logQ Q  
DFT of kk �w u�  Q   

kk �w u�  with an IDFT 2( / 2) logQ Q  2( / 2) logQ Q  
Total 22 log 6Q Q Q�  22 log 3Q Q Q�  
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Chapter 4  

Toeplitz Constrained ICA for Symbol-

Rate Blind Equalization 

  

4.1 Introduction 

We have seen from the previous chapter that constrained independent component analysis 

(ICA) can be used to solve blind equalization (BE) problems with block transmission 

schemes. With symbols transmitted in blocks with padding, the BE problem can be 

modeled as a standard blind source separation (BSS) problem, where the independence of 

the symbols is exploited in the adaptation. In this chapter, we will show how the ICA-based 

algorithms with constraints can be applied to symbol-rate sampling blind equalization. 

Even though the associated mixing matrix may not satisfy the dimension condition of a 

standard BSS model, we can use an ICA-based algorithm appropriately modified to recover 
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the source sequence. The matrix adaptation can be simplified as equalizer vector adaptation, 

with efficient implementation schemes.  

In Section 4.2, the symbol-rate sampling BE is formulated as an under-determined 

BSS problem with matrix expression. In Section 4.3, the EASI algorithm is used as an 

example to illustrate the proposed scheme of constrained ICA-based algorithm. The 

adaptation of the Toeplitz constrained EASI (T-EASI) algorithm for the matrix that 

contains the equalizer coefficients is given. The matrix adaptation is simplified to an 

equivalent efficient equalizer vector adaptation in Section 4.4. To further reduce 

computational complexity, in Section 4.5 we show how the T-EASI algorithm can be 

implemented with FFT. At the same time, instead of updating a whole vector of equalizer 

outputs and their nonlinear cross-correlations, two approximation schemes can be used. In 

Section 4.7, similar to the idea that has been introduced in the previous chapter, I/Q 

independence constraint is used for phase recovery when the source symbol has 

independent I/Q parts. In addition, phase recovery with an appropriate choice of 

nonlinearity in the T-EASI algorithm is proposed. In Section 4.8, we give examples to 

show that the Toeplitz constraint idea can also work with other ICA-based algorithms.    

 

4.2 Symbol-Rate Blind Equalization and Blind 

Source Separation 

In this section, we will see how the symbol-rate BE problem can be formulated as an 

underdetermined BSS problem. Similar to the block transmission schemes in Chapter 3, a 
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matrix expression will be used as the starting point to make the problem have the form of 

a BSS problem. With such a formulation, the independence constraint can be exploited 

with constrained ICA algorithms. It will be shown later that matrix adaptation can be 

simplified to equalizer vector adaptation. 

Suppose we process channel outputs in blocks of size P M�  ( 0P ! ) at symbol rate 

by sliding along the sequence of observations from the channel, with one-symbol shift each 

time. Note that M is the FIR equalizer order. Compared to standard BE scheme where a 

block of 1M �  channel outputs are processed for single equalizer output, a longer channel 

output block is processed to generate multiple equalizer outputs. Specifically, to allow the 

use of an ICA algorithm, we require that 1P ! .  

Let  [ ( ), ( 1),..., ( 1)]T
k x k x k x k P M � � � �x�  be the k-th observation block with length 

P M� . Then the channel outputs can be expressed in matrix form as 

 k k k �x Hs v� ,  (4.1) 

where [ ( ), ( 1),..., ( 1)]T
k s k s k s k P M L � � � � �s  is the -thk source vector with length 

P M L� � , [ ( ), ( 1),..., ( 1)]T
k v k v k v k P M L � � � � �v  is the additive noise vector, and H  

is a () )( P MP M Lu � ��  Toeplitz matrix composed of the impulse response of the 

channel, i.e.  

 

(0)     (1)       ( )              0
                                              
           (0)     (1)          ( )     
                                              
0         

h h h L

h h h L H

! ! !
% ! % !
! ! !

% ! %
!        (0)     (1)          ( )h h h L

§ ·
¨ ¸
¨ ¸
¨ ¸
¨ ¸
¨ ¸
¨ ¸
© ¹! !

 .  (4.2) 
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We have seen in Chapter 2 that an ideal equalizer is defined to satisfy the requirement 

that the cascaded system has the response  

 N
 zeros

(0,..., 0 ,1, 0...0)i

d

deal je T c  .  (4.3) 

Suppose idealw  is an ideal equalizer of order M  such that cascaded system response 

satisfies equation (4.3). Construct a ( )P P Mu �  Toeplitz matrix idealW  from the 

coefficients of idealw  as follows: 

 

(0)     (1)       ( )              0
                                              
           (0)     (1)          ( )     
                                              
0     

ideal

w w w M

w w w M W

! ! !
% ! % !
! ! !

% ! %
           (0)     (1)          ( )w w w M

§ ·
¨ ¸
¨ ¸
¨ ¸
¨ ¸
¨ ¸
¨ ¸
© ¹! ! !

, (4.4) 

where the elements inside the matrix are the coefficients of idealw . The super-index “ideal” 

is omitted for notation simplicity. We call such a matrix an ideal equalizer matrix.  

Ideally, the product of W and H  is then the ( )P P M L� �u  Toeplitz matrix 

 

     0     ...     0
0          0     ...     0
          ...          ...
   0        ...       0      

ideal

ideal
ideal ideal

ideal

§ ·
¨ ¸
¨ ¸ ¨ ¸
¨ ¸¨ ¸
© ¹

 

c
c

C H

 

HW W

c

C� � ,  (4.5) 

where idealc  was the ideal cascaded response as in (4.3). In the matrix C  defined in (4.5), 

there is only one nonzero element in each row in the ideal case. Ignoring noise, if we apply 

matrix idealW  to the channel output vector kx� , we are able to recover P  of the P M L� �  

source symbols. Thus in the BE problem with matrix formulation, we want to find a matrix 

W  such that the outputs 
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 k k y xW� �   (4.6) 

 can approximately recover the elements in ks . Note here 

( ) ( )[ ( ), ( 1),..., ( 1)]T
k

k ky k y k y k P � � �y� � � ,  where ( ) ( ) k i
k T

ky k i ��  w x� , 0,1,..., 1i P � , is 

the equalizer output using the equalizer at the k-th iteration, and 

[ ( ), ( 1),..., ( )]T
k i x k i x k i x k i M�  � � � � �x  is length- ( 1)M �  sub-vector in kx� . The tilde 

notation is to emphasize the difference between our block scheme and the standard BE 

schemes. In standard BE, only one output is considered at each iteration, and the output is 

from the equalizer at the corresponding iteration, i.e. ( ) T
k i k iy k i ���  xw .  Specially, the 

first output in ky�  of (4.6) comes from the equalizer at the k -th iteration, and is the same 

as the one used in the standard BE schemes, i.e. . 

The model here is similar to that of the BSS problem introduced in Section 2.2.1, and 

the ideal “separating matrix” we want to find is the matrix idealW  containing the 

coefficients of an ideal equalizer. In an ICA-based algorithm, the desired independence of 

the outputs in ky�  is used to update the matrix W  at each iteration.  

 

4.3 Toeplitz-Constrained ICA for BE 

In Section 2.2.4 we have introduced a popular ICA-based algorithm for BSS, the EASI 

algorithm [1]. The EASI algorithm was used in Chapter 3 for BE with block transmission 

[2]. In this section, we will show how constrained ICA can be used in symbol-rate sampling 

equalization with continuous transmission scheme. The EASI algorithm will be used to 
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explain our Toeplitz-constrained scheme, however such structure constraint can be used 

generally in ICA-based algorithms for BE, which will be shown in Section 4.8 

Recall from section 4.2 that BE can be modeled as a BSS problem with the matrix 

expressions in (4.1) and (4.6): 

 k k k �x Hs v� ,   

      k k k W xy� � .           

Although the “mixing matrix” H  here does not satisfy the dimension requirement of a 

standard BSS problem, we will see that constrained ICA-based algorithms can still be 

applied to recover the source sequence.  

With the standard EASI algorithm, the matrix W  is updated as  

 1 ( ) ( )H H H
k k k k k k k k kO� ª º � � � �¬ ¼W W y y I g y y y g y W� � � � � �  ,  (4.7) 

Where ( ) ( )( ) ( ( )), ( ( 1)),..., ( ( 1))
Tk k

k g y k g y k g y k Pª º � � �¬ ¼g y� � �  is the component-wise 

derivative of the contrast function ( )kG y  at ky� , and O  is the adaptation step-size. Recall 

that the first two terms are for whitening, and the last two terms provide non-linear 

decorrelation for independence.  

From the definition of idealW  in (4.4) we know that the ideal equalizer matrix should 

be a Toeplitz matrix with repeated vector in each row. As a result, after each update, we 

need to project the updated matrix onto the space of Toeplitz matrices with the structure of 

idealW . An intuitive guess of one projection is to impose Toeplitz structure on 1k�W  by 

taking averages along the descending diagonals of the matrix after forcing the 1P �  

diagonals on the upper right and lower left corners of the matrix to be zero. We can show 
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that this structure forcing 1{ }kToeplitz �W  turns out to be the orthogonal projection onto the 

space of Toeplitz matrices that has the same structure as idealW .  

A matrix can be considered as a long vector where the columns of the matrix are 

concatenated. Two vectors are orthogonal to each other if their inner product is zero. As an 

extension to matrix case, the inner product of two complex matrix X  and Y  is defined as 

^ `, Trace H X Y Y X . Matrices X  and Y  are defined to be orthogonal to each other 

when , 0 X Y . 

Suppose W  is a ( )P P Mu �  matrix at the k-th iteration, with sub-index k omitted 

for simplicity of notation. Let ToeW  be the resulting matrix after enforcing Toeplitz 

structure by taking averages along diagonals and forcing upper right and lower left parts 

zero. We can then show that 

 , 0Toe Toe�  W W W , (4.8) 

which means that { }Toe Toeplitz W W  is the orthogonal projection of  W  onto the space 

of Toeplitz matrices with the structure of  idealW . The proof is given in Appendix 4A.  

With the Toeplitz structure requirement included, the EASI algorithm with Toeplitz 

constraint (T-EASI) can be expressed as a two-step adaptation as follows:  

 1

1 1

ˆ ( ) ( ) ,
ˆ }.

[ ]

{

H H H
k k k k k k k k k

k kToeplitz

O�

� �

� � � � 

 

W W y y I g y y y g y W

W W

� � � � � �
  (4.9) 

Similar to the block transmission case, if we start by initializing W as a Toeplitz matrix, 

the W matrix can remain in the space of Toeplitz matrices with the Toeplitz structure 

constraint on the perturbation, i.e. on the term ( )[ ( )]H H H
k k k k k k k� � �y y I g y y y g y W� � � � � �  in the 

first line of (4.9). However, we write it as a two-step adaptation to make the matrix 
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adaptation without Toeplitz constraint more explicit. For this ICA-based algorithm we need 

2P t  to allow use of independence of output symbols. The choice of P  should reflect a 

balance between using more independence constraints and requiring more sample cross-

correlations within the algorithm that may slow down convergence. From multiple 

experiments for different channels, we found that good performance is usually obtained 

with a choice of / 2P M| .  

 

4.4 Equalizer Vector Adaptation  

In this section we will show how the equalizer matrix adaptation can be simplified to an 

equivalent equalizer vector adaptation, which can reduce computational complexity. 

In (4.9) we have given the adaptation of the separating matrix for our BE problem with 

the T-EASI algorithm. With Toeplitz structure constraint, the separating matrix will 

contain the equalizer vector in each row at the end of each iteration. Although the whole 

matrix is updated each time, if we focus on the equalizer coefficients in each row, the 

computational complexity of the scheme can be reduced. 

Let ( ) ( )H H H
k k k k k kk  � � �U y y I g y y y g y� � � � � � , which is a P Pu  matrix containing the 

cross-correlation terms, so that the updates for the separating matrix in (4.9) can be written 

as 

 1

1 1

ˆ ,
ˆ{ }.

k k k

k k

k

Toeplitz

O�

� �

 

 

�W W U W

W W
  (4.10) 

Let 1
ˆ ( ,:)k i�W  and ( ,:)k iW  be the i -th row of 1

ˆ
k�W  and of kW , respectively, and let 

( , )kU i j  be the ( , )i j -th element of matrix kU , then  



82 

 1
1

ˆ ( ,:) ( , ( , )):) ( ,:
P

k k k k
j

U i ji i jO�
 

 � ¦W W W .  (4.11) 

Setting the lower left and upper right of the matrix 1
ˆ

k�W  to zero, we only update the 

elements within the diagonal band which contains the equalizer coefficients. Let 

1
ˆ ( , : )k i m n�W  be the row vector containing the m -th to n -th elements of the i -th row of 

matrix 1
ˆ

k�W . In the i -th row, the i -th to i M� -th elements form the equalizer vector, and 

they are updated as 

 1
1

( , )

             

ˆ ( , : ) (

      

, : ) ( , : )

( ,       ( ,:): ) (:, : )

P

k k k k
j

k k k

i i M i i i M i j i M i

i i M i i M i

U i

i

jO

O

�
 

� � � �

� �

 

�

¦W W W

W WU
  (4.12) 

From the expression in (4.12), we can see that each row of matrix kU  pre-multiplies  a 

( 1)P Mu �  submatrix of kW  to update the elements in a particular row of kW  within the 

diagonal band, as illustrated in Fig. 4.1. 

 

 

Fig. 4.1 Row updating of W within the band 

 

To enforce Toeplitz structure on matrix Ŵ , we take averages along descending 

diagonals, giving 

 
1 1

1
1 1

1 1 1ˆ ( , : ) ( , (: ) (, : )) ,
P P

i i

P P

k k k k
i j

i i M i i i M i j i M i
P P P

U i jO
  

�
  

� � � � ¦¦ ¦¦W W W . (4.13) 
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The operations (4.12) and (4.13) together are equivalent to the Toeplitz structure constraint 

1 1{ ˆ }k kToeplitz� � W W  in (4.10). 

With (4.12) and (4.13) at each iteration, each row of W  then contains the updated 

coefficients of the equalizer as shown in Fig. 4.2.  

 

Fig. 4.2 Structure of the equalizing matrix 

Denoting the equalizer vector at time k  as kw , we have  

 1
1 1

( , )1 ( , : )
P P

k
T T

i
k

j
k kU i j j i M i

P
O�

  

 � �¦¦w w W   (4.14) 

The l -th ( 0 l Md d ) coefficient of the equalizer has the iterations  

 1
1 1

1( ) ( ) ( , )( , )
P P

k k k k
i j

w l w l W j iU i j l
P

O�
  

� � ¦¦   (4.15) 

Letting i jW  � , with variables changing from i  and j  to W  and j  as shown in Fig. 4.3, 

we see that (4.15) can be written as  

 
min{ , }1

1
1 max{1 ,1}

(( ) ( ) ( ,) ),
P PP

k k k k
P j

w l w l W j l
P

U j j j
W

W W

O W W
��

�
 �  �

 � �� �¦ ¦   (4.16) 
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Fig. 4.3 Changing variables from i  and j  to i jW  �  and  

 

From Fig. 4.2, we can see that in the Toeplitz matrix W, the elements outside the diagonal 

band are zero, and the range is decided by the element index. Specifically, 

( , ) 0kW j j lW � �   if j lj W! � �  or j M j lW� � � � . Thus the summation range over W  

in (4.16) becomes lj j j MW � dd � � , i.e. l lMW� d d � . Substituting the elements in the 

matrix within the Toeplitz band with the coefficients of the equalizer vector, i.e. 

( , ) ( )k kW j l lj wW W� �  � , we have  

 
min{ 1, } min{ , }

1
max{1 , } max{1 ,1}

( ) ( ) ( ), ) (
P M l P P

k k k k
P l j

w l w U j l
P

jl w
W

W W

O W W
� � �

�
 � �  �

� ��¦ ¦   (4.17) 

To make the expression in (4.17) simpler, let  

 
min{ , }

max{1 ,1}
( ,( ) )

P P

k k
j

r U j j
W

W

W W
�

 �

� ¦  ,  (4.18) 

j
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i.e.  
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 . 

Then the adaptation for the l -th coefficient of vector w  becomes 

 
min{ 1, }

1
max{1 , }

( ) ( ) ( ) ( )
P M l

k k k k
P l

w l w l w lr
P W

O W W
� �

�
 � �

 � �¦   (4.19) 

Fig. 4.4 shows the relation between the matrix kU  and the parameters ( )kr W  defined in 

(4.18) for 1 1P PW� d d � . The difference in color will be used to explain a scheme for 

approximation of kU  in the next section, and can be ignored for now.  

 

Fig. 4.4 Obtaining the ( )kr W , 1 1P PW� d d � , from matrix kU  

(0)kr(1)kr(2)kr

#

( 1)kr P�

¦

( 1)kr �

( 2)kr �

...

(1 )kr P�
¦

¦

$

$

k  U
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Equation (4.19) is the general result showing that the adaptation in (4.10) for the separating 

matrix can be expressed as updates for the coefficients of the equalizer vector, in terms of 

nonlinear cross-correlation parameters of the outputs.  

When 1P Mt � , ( )kr W  is well-defined in the range M MW� d d . For 1P M� � , 

( )kr W  is not defined beyond 1 1P PW� d d � , and we can additionally define  

 ( ) 0  for  1  and  1kr M P P MW W W� d � � � � d�   (4.20) 

so that ( )kr W  always has definition over the range M MW� d d . With these definitions of 

( )kr W , (4.19) can be further simplified to give   

 1( ) ( ) ( ) ( )
M l

k k k k
l

w l w l w lr
P W

O W W
�

�
 �

� � ¦   (4.21) 

Writing (4.21) in vector-matrix form, we get  

 1k k k kP
O

� � w w Ȍ w   (4.22) 

where kȌ  is a ( 1) ( 1)M M� u �  Toeplitz matrix containing the cross-correlation terms 

( )kr W  with the expression: 

 

(0) (1) ( )
( 1) (0) ( 1)

( ) ( 1) (0)

k k k

k k k
k

k k k

M
M

M

r r r
r r r

r r rM

ª º
« »� �« »
« »
« »� � �¬

 

¼

Ȍ
# # " #

. (4.23) 

The adaptation for equalizer vector in (4.22) is equivalent to the matrix adaptation in 

(4.10). To compare the computational complexity of the two algorithms, we start with the 

matrix kU  for both of them. In the analysis of computational complexity, we assume that 

1P M� � , which is usually true according to our experiments.   
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In the matrix adaptation (4.10), the matrix multiplication kkU W  needs 2 ( 1)P M �  

multiplications and ( 1)P P M� additions, where the zeros in the lower left and upper right 

part of kW  are taken into consideration. In this matrix adaptation, starting from a Toeplitz 

kW , we can enforce the Toeplitz constraint on kkU W  by taking averages along the 

diagonals, which needs ( 1)( 1)P M� �  additions; and the division by constant P  can be 

combined with the step-size. Then the matrix subtraction can be achieved by considering 

a single row because of the Toeplitz structure, which needs 1M �  additions. Thus in 

total1, there are 2( 1)P M �  multiplications and 2P M P�  additions.  

In the vector adaptation (4.22), getting kȌ  from kU  needs 2( 1)P�  additions. The 

matrix and vector multiplication k kȌ w  needs 22 3 1PM P P M� � ��  multiplications and 

2 32 2 2PPM P M� � �� additions considering 1P M� �  and there are zeros at the 

upper right and lower left corners of kȌ . Lastly, the vector subtraction needs 1M �  

additions. So there are 22 3 1PM P P M� � ��  multiplications and 2 2PM P M� � �  

additions. If we take / 2P M| , the vector adaption approximately reduces the 

computational complexity by a factor of 2
3

P .   

 

                                                 
1 The scalar multiplication of the step-size is omitted in the analysis of computational complexity. 
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4.5 Computationally Efficient Implementation for 

Equalizer Vector  

Although the computational complexity of the vector adaptation has been reduced 

compared to matrix adaptation, it is still P  times that of the popular Bussgang-type BE 

algorithms. In this section we will show how vector adaptation can be implemented 

efficiently with FFT and approximation of the cross-correlation terms, which can reduce 

the computational complexity further.  

4.5.1 FFT Implementation of T-EASI 

In T-EASI algorithm, we can consider three steps in the adaptation at each iteration: 

generating equalizer outputs, obtaining cross-correlation terms and the matrix kȌ , 

implementing adaptation with matrix and vector multiplication. We will next explain in 

detail how each step can be implemented efficiently to reduce computational complexity. 

First, a block of equalizer outputs is a truncated version of the convolution of equalizer 

and the channel output sequence, i.e.  

 1:( * { })k k k k k M M Pflip � �  x xy wW �� � , (4.24) 

where { }flip <  inverts the order the elements in the vector. As a result, FFT can be used to 

reduce computational complexity. Specifically, with 1P �  zeros padded at the end of 

( )kflip w , the length-( )P M�  sequence 

 FFT{ } FFT{[ { } , 0, ..., 0] } T
kk

Tflipx w� : ,  
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where :  is component-wise multiplication, would give the DFT of a vector whose last P  

elements compose ky . 

Equation (4.22) gives the adaptation for the equalizer vector. Recall that the term ( )kr W  

is defined in (4.18) as  

 

min{ , }

max{1 ,1}
( ) 1( , ), 1

P P

k k
j

r U j Pj P
W

W

W W W
�

 �

 � d d� �¦
,  

where  

 
( ) ( ) * ( ) ( ) *

( (
0

) ) *

( , ) ( 1) ( 1) ( 1)) ( 1)

( 1) ( ( 1

1 (

))

k k k k
k

k k

j j y k j y k j y k j y k j
y k j g y

U g
k j

WW W W

W
 �  � � � � � � � � � �

� �

�

� � �

�

�

� � � �
� �

 , 

and 01W  is an indicator function. As a result, for a fixed W , ( )kr W  is the summation of the 

cross-correlation parameters with the same time lag W , and thus can be computed using 

linear convolution.  

Let * * ** { } ( ) * { } * { ( ) }k k k k k kk flip flip flip� �r y y g y y y g y� � � � � � �� . Suppose kr�  has 

coefficient index from 1 to 2 1P � , then  

 
1 1 or 1( )       

( )
( )     0 

1k
k

k

r
r

P P P
r P P
W W W

W
W W
� � d d � d d

�¯

�
® �  
­

 
�
�

  (4.25) 

There are three convolutional terms in kr� , and we will take *( ) * { }k kflipg y y� �  as an 

example to show how it can be obtained via FFT. To calculate the linear convolution 

*( ) * { }k kflipg y y� �  via FFT, 1P �  zeros should be padded at the end of ( )kg y�  and 

*{ }kflip y� . Then  

 
*

*

FFT{ ( )* { }}

FFT{[ ( ) ,0,...0] } FFT{[ { } ,0,..., 0] } 
k k

k
T T T

k
T

flip
flip 

g y y
g y y

� �
� �:

 . (4.26) 
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In fact to compute the FFT of the convolution vectors needed for kr� , we only need to 

compute FFT{[ ( ) ,0,..., 0]T
k

Tg y� } and FFT{[ ,0,..., 0]T
k

Ty� }. We can use the property of 

DFT to get  

 
1

* *
2 ( )

2 1FFT {[ { } ,0,..,0] } FFT {[ ,0,...,0] }
jT T T T

P n

n n
P

k kflip e
S

�
�
� y y� �  , (4.27) 

where the sub-index n  means the n -th element of the DFT. A final IFFT will give a length 

2 1P �  vector kr� , which is the summation of three convolution vectors. With kr� , ( )kr W  for 

1 1P PW� d d �  can be obtained from the relation in (4.25).  

Finally, let { ( )}kr W  be the sequence of ( )kr W  values defined for M MW� d d . With 

kȌ  a Toeplitz matrix containing { ( )}kr W , the elements in k kȌ w  can also be expressed as 

the linear convolution of { ( )}kr W  and kw , i.e.  

 � � 1:2 1
{ { *( { })} }k k k k M M

flip r flipW
� �

 Ȍ w w .  (4.28) 

 After padding M  zeros at the end of { }kflip w , doing DFT of  both { ( )}kr W  and padded 

{ }kflip w , we can get the DFT of a modified version of ( ){ * { }}k kr flipW w . Another inverse 

FFT with truncation would give the vector k kȌ w . 

The T-EASI with FFT algorithm is defined explicitly in Table 4-1. In the table, when 

zeros are padded they are always at the end of a vector.  

Table 4-1 T-EASI with FFT 

Algorithm: T-EASI algorithm with FFT 
Initialization: Initialize 0w . 
Serial Updating: 

while there is new data kx�  
1. kx� , ( )M P� -point FFT. 
2. { }kflip w , pad 1P �  zeros, ( )M P� -point  FFT. 
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3. Get the DFT of *k kx w� . 
4. ( )M P� -point IFFT, get length- P ky� , then ( )kg y�  
5. ky� , pad 1P�  zeros, 2 1P� -point  FFT 
6. ( )kg y� , pad 1P�  zeros, 2 1P� -point  FFT 
7. Get the DFT of *[ { } ,0,..,0]T

k
Tflip y�  and *[ { ( ) } ,0,.., 0]T T

kflip g y�  
8. Get the DFT of kr�   
9. (2 1)P� -point IFFT to get kr�  and { ( )}kr W  
10. { ( )}kr W , (2 1)M� -point FFT 
11. { }kflip w , pad M zeros, (2 1)M � -point FFT 
12. DFT of elements in k kȌ w  
13. IDFT, truncate to get k kȌ w  

end while 
 

The complexity in each step of T-EASI implemented with FFT is listed in Table 4-2 

in Appendix 4B. With FFT implementation, the complexity of T-EASI is reduced from 

2( )O M  to ( log )O M M . 

 

4.5.2 Approximation of Cross-Correlation Terms 

In the standard T-EASI in (4.22) or its implementation with FFT, the vectors ky�  and ( )kg y�  

and all the cross-correlation parameters in kU  need to be updated to get { ( )}kr W  at each 

iteration. In fact, the outputs  ky�  at two adjacent iterations are not greatly different, so the 

outputs from the previous iteration can be used as an approximation of the ones in the 

current iteration. 

In this part, we will give two methods of getting an approximation of { ( )}kr W , which 

will be used in the adaptation for equalizer vector. The simulation results that will be given 

in the next section show that using approximated { ( )}kr W  in our methods yield virtually the 
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same performance as the standard T-EASI, and the computational complexity will be 

reduced greatly. In the two methods of approximation, instead of updating the whole ky�  

and ( )kg y�  vector, only one new ( )y k  and ( ( ))g y k  is computed. In this case, FFT is not 

necessarily needed to get the equalizer output.  

With single output, the cross-correlation terms in the first row and the first column of 

kU  (the darker blue part in Fig. 4.4) can be obtained approximately using ( )y k , ( ( ))g y k  

and the first 1P �  elements in vectors y  and ( )g y  from the previous iteration, with 

2(2 1)P �  multiplications. After several iterations, the vectors y  and ( )g y  at the k -th 

iteration become [ ( ), ( 1),..., ( 1)]T
k y k y k y k P � � �y  and ( )kg y , where the elements in ky  

are from different equalizers at the corresponding iterations. The two alternative ways of 

using these to update kU  are as follows. 

 

a. Partially updated cross-correlations 

Instead of updating all the outputs and the corresponding cross-correlation terms in 

kU , only parts of the elements are updated. In Fig. 4.5, the updating of kU  in this partially 

updating scheme is shown. In the figure, the light blue parts are from the previous iteration. 

At time k , when there is one new output, the cross correlations on the first row and column 

can be obtained with the current output and the outputs from the previous iteration. The 

other elements in kU  can be taken directly from the first 1P �  rows and columns in 1k�U . 

The figure in Fig. 4.5 gives an illustration of the relation between vector ky  and kU  with 
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partially updated approximation scheme; however, the elements  ( )kr W  in the matrix kȌ  

can still be obtained efficiently with FFT directly from ky  and ( )kg y . 

 

 

Fig. 4.5 Updating matrix kU  partially with current output 

With the partially updated scheme, the computation needed for updating output vector 

is decreased; however, convolution is still needed to get the elements in kȌ , which has 

computational cost of order ( log )O P P . 

 

b. Instantaneous cross-correlations 

Similar to the partially updating method, the new output ( )y k  and the other 1P �  

outputs in y  from the previous iteration are used to get the cross-correlation terms in the 

first row and first column of kU . These 2 1P �  include the cross-correlations with time lag 

from 1 P�  to 1P � .  
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In the matrix kU  in the T-EASI algorithm, the cross-correlation terms on a certain 

diagonal have the same time lag. According to Fig. 4.4, the { ( )}kr W  terms in the matrix 

kȌ  is the summation of the cross-correlation terms with the same time lag. For example, 

the terms on the main diagonal of kU  corresponds to the case when 0W  , there are P  

such terms, so (0)kr  is the summation of P  terms; the terms on the diagonal above the 

main one of kU  corresponds to the case when 1W  � , there are 1P �  such terms, so 

( 1)kr �  is the summation of 1P �  terms. With the updated cross-correlation terms with 

time lag from 1 P�  to 1P � , kU  can be considered as a Toeplitz matrix having these 

2 1P �  terms in each of the descending diagonals. The elements ( )kr W  for 1 1P PW� d d �  

in Toeplitz matrix kȌ  can then be obtained by multiplying the instantaneous cross-

correlation terms with the number of elements on the corresponding diagonal. 
 

To get { ( )}kr W , the computational cost with the T-EASI in (4.22) and its FFT 

implementation is 2( )O P  and ( log )O P P , as can be seen from Appendix 4B. With both of 

the approximation schemes, the computational cost to get the equalizer outputs is ( )O P  

since single equalizer output is needed. With the first scheme, the computational 

complexity of getting { ( )}kr W  is ( log )O P P ; while with the second one, the computational 

complexity of getting { ( )}kr W  is reduced to ( )O P . 

For the standard T-EASI and T-EASI with partially updated approximation method, 

instead of shifting one symbol along the channel output sequence each time, a number of 

symbols could be shifted at each iteration. While this may in some cases lead to reduced 
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computation cost for similar performance, we found from simulations that any 

improvement is rather limited and variable across different channels. Multiple-symbol 

shifting is not useful for T-EASI with instantaneous cross-correlations. 

 

4.6 Simulations  

The simulation results will be given for four cases: a long minimum phase FIR channel, a 

long non-minimum phase FIR channel, a short minimum phase FIR channel, and a short 

non-minimum phase FIR channel. The channels are selected by adjusting the positions of 

the zeros in a random way. For the short minimum phase channel, although the channel 

order is only 4L  , all the zeros are near the unit circle, which made it difficult to equalize 

the channel.  

We simulated a sequence of i.i.d source symbols taken from a 64-QAM constellation 

transmitted continuously through the channels with AWGN and SNR=20dB. The source 

was normalized so that [ ]HE  ss I . In our simulations the nonlinearity in the T-EASI 

algorithm was chosen as a phase-preserving cubic function 2( ) | | yg y y  unless otherwise 

specified. 

The inter-symbol interference (ISI) of the cascaded system c  was computed at each 

iteration to measure the performance, where the ISI is defined as  

 
2

2

| |ISI 1
max | |ii

i

i

c
c

 �¦  . (4.29) 

The ISI shown in the simulation results are in dB. 
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In the following part, we will give the simulation results for each of the four channels. 

For each channel, the impulse response and the zero-pole pattern of the channel are shown. 

The ISI performance as a function of iteration number is compared for our proposed T-

EASI algorithm, the standard constant modulus algorithm (CMA) [3]–[5], multimodulus 

algorithm (MMA) [6], and square contour algorithm (SCA) [7]; both the result for a typical 

run and the average of 10 runs are shown. Our simulations also show how the choices of 

parameters such as the size of the equalizer output block P  and the length of the equalizer 

M  may affect the performance. For different channel cases, the simulation results are 

consistent, so we will explain in detail the first example, and give more explanations for 

the other cases when needed.  

 

(a) Long minimum phase FIR channel 

The impulse response of the channel is shown in Fig. 4.6, and the zero-pole pattern is 

shown in Fig. 4.7. From Fig. 4.8 and Fig. 4.9, it can be seen that the T-EASI algorithm 

yields faster convergence than the standard Bussgang-type algorithms. The T-EASI needs 

about 410  symbols for the algorithm to converge, while the Bussgang-type algorithms 

need about 44 10u ; also the ISI with T-EASI after convergence is slightly lower than the 

Bussgang-type algorithms. From Fig. 4.10, we see that when the value of P  is reduced to 

5P   for 30M  , the performance of the T-EASI is worse than that of the standard CMA 

since not enough independence constrains are provided to update the equalizer. On the 

other hand for large P  convergence may become slow. Based on simulations with 

different P , it turns out that 15P   gives the best performance. When P  increases 

further, for example when 20P   and 25P  , the convergence is slightly slower. There 
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is not much difference between 20P   and 25P  . Experiments with other channels and 

different choices for P  and M  also indicated that / 2P M|  is a good choice. In Fig. 

4.11, the performance comparisons are given when the equalizer has different order M .  It 

can be seen from the figure that when M  is small, i.e. 8M   or 15M  , the performance 

of T-EASI is worse than or comparable to that of the CMA. When M  is large enough, i.e 

20M  , the convergence speed of the T-EASI is faster than that of the CMA. As M  

increases further to 30M  , not only the convergence speed is faster, but also the ISI after 

convergence is lower than that of the CMA. Since in BE problem we tend to set the 

equalizer to be of a reasonable length (not too short), our T-EASI algorithm will be more 

likely to outperform the CMA algorithm. 

 

 

Fig. 4.6 Channel impulse response of long minimum phase channel 
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Fig. 4.7 Zero-pole pattern of long minimum phase channel 

 

Fig. 4.8 ISI of the cascaded system for long minimum phase channel, 64-QAM, 
SNR=20dB. 15P  , 30M  . 
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Fig. 4.9 Average over 10 runs of the ISI of the cascaded system for long minimum phase 
channel, 64-QAM, SNR=20dB. 15P  , 30M  . 

 

 

Fig. 4.10 ISI of the cascaded system for long minimum phase channel with different 
choices of P, 64-QAM, SNR=20dB. 30M  . 
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Fig. 4.11 ISI of the cascaded system for long minimum phase channel with different 
choices of M , / 2P M , 64-QAM, SNR=20dB. 

(b) Long non-minimum phase FIR channel 

The impulse response of the channel is shown in Fig. 4.12, and the zero-pole pattern 

is shown in Fig. 4.13.  

 

Fig. 4.12 Channel impulse response of long non-minimum phase channel 
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Fig. 4.13 Zero-pole pattern of long non-minimum phase channel 

 

Fig. 4.14 ISI of the cascaded system for long non-minimum phase channel, 64-QAM, 
SNR=20dB. 10P  , 20M  . 
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Fig. 4.15 Average over 10 runs of the ISI of the cascaded system for long non-minimum 
phase channel, 64-QAM, SNR=20dB. 10P  , 20M  . 

 

Fig. 4.16  ISI of the cascaded system for long non-minimum phase channel with different 
choices of P , 64-QAM, SNR=20dB. 20M  . 

 



103 

 

Fig. 4.17 ISI of the cascaded system for long non-minimum phase channel with different 
choices of M , / 2P M , 64-QAM, SNR=20dB. 

 

(c) Short minimum phase FIR channel  

The impulse response of the channel is shown in Fig. 4.18, and the zero-pole pattern 

is shown in Fig. 4.19. From the impulse respnse, we can see that the zeros are near the unit 

circle, which makes it difficult to equalize. 
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Fig. 4.18 Channel impulse response of short minimum phase channel 

 

 

Fig. 4.19 Zero-pole pattern of short minimum phase channel 



105 

 

Fig. 4.20 ISI of the cascaded system for short minimum phase channel, 64-QAM, 
SNR=20dB. 10P  , 20M  . 

 

Fig. 4.21 Average over 10 runs of the ISI of the cascaded system for short minimum 
phase channel with different choices of P, 64-QAM, SNR=20dB. 20M  . 
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Fig. 4.22 ISI of the cascaded system for short minimum phase channel with different 
choices of P, 64-QAM, SNR=20dB. 20M  . 

 

 

Fig. 4.23 ISI of the cascaded system for short minimum phase channel with different 
choices of M , / 2P M , 64-QAM, SNR=20dB. 
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(d) Short non-minimum phase FIR channel 

The impulse response of the channel is shown in Fig. 4.24, and the zero-pole pattern 

is shown in Fig. 4.25.  

 

Fig. 4.24 Channel impulse response of short non-minimum phase channel 

 

 

Fig. 4.25 Zero-pole pattern of short non-minimum phase channel 
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Fig. 4.26 ISI of the cascaded system for short non-minimum phase channel, 64-QAM, 
SNR=20dB. 10P  , 20M  . 

 

Fig. 4.27 Average over 10 runs of the ISI of the cascaded system for short non-minimum 
phase channel, 64-QAM, SNR=20dB. 10P  , 20M  . 
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Fig. 4.28 ISI of the cascaded system for short non-minimum phase channel with different 
choices of P, 64-QAM, SNR=20dB. 20M  . 

 

Fig. 4.29 ISI of the cascaded system for short non-minimum phase channel with different 
choices of M , / 2P M , 64-QAM, SNR=20dB. 



110 

 

We also performed simulations using the two schemes of approximation described in 

Section 4.5.2. Only the results for the short minimum phase channel will be shown in Fig. 

4.30 as an example. From the simulation results, it can be seen that the adaptations with 

and without the approximation are virtually the same. If we magnify the curves, we can see 

from the small figure on the right that the three curves are not exactly overlapping, but the 

difference is very small. Simulation results were also done that showed a similar behavior 

for the other three channel cases. 

 

  

Fig. 4.30 ISI of the cascaded system for short minimum phase system with 
approximation, 64-QAM, SNR=20dB. 10P  , 20M  . 
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4.7 Phase Recovery   

4.7.1 BE via T-EASI with I/Q Constraint 

When the source has independent in-phase and quadrature parts, as in the case of standard 

QAM signaling, P  complex source symbols can be seen as 2P  mutually independent real 

symbols. In this case, if the source symbols are well recovered, the 2P  real output symbols 

of the equalizer should be independent of each other. With independence of I/Q 

components as a constraint, phase recovery can be achieved [8], [9]. This constraint can be 

applied in our T-EASI scheme, as explained below and in [10]. 

For simplicity, we drop the sub-index k and the noise vector kv  in (4.1). Denote the 

in-phase and quadrature parts of the channel mixing matrix H  by RH  and IH . The source 

vector and the channel output vector can also be expressed with their I/Q components, so 

that (4.1) can be written (without noise) as 

 
   
      

R R I R

I I R I

�ª º ª º ª º
 « » « » « »

¬ ¼ ¬ ¼ ¬ ¼

x H H s
x H H s
�
�

 . (4.30) 

With a similar definition for the separating matrix and the equalizer outputs, we have  

 
   
      

R R I R

I I R I

�ª º ª º ª º
 « » « » « »

¬ ¼ ¬ ¼ ¬ ¼

y W W x
y W W x
� �
� �

. (4.31) 

Defining 
   
     

R I

I R

�ª º
« »
¬ ¼

H H
H

H H
� , 

  
    

R I

I R

�ª º
« »
¬ ¼

W W
W

W W
� , R

I

ª º
« »
¬ ¼

x
x

x
�

�
�

  and R

I

ª º
« »
¬ ¼

y
y

y
�

�
�

 , we have 

 
    
      

R R I I R I I R

R I I R R R I I

� � �ª º
 « »� �¬ ¼

W H W H W H W H
WH

W H W H W H W H
 , (4.32) 

  y Wx  .  (4.33) 
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At convergence, if W  is a good “separating matrix”, it is expected that 

 R R I
ideal

I
je T��  rW H W H C   (4.34) 

 = R I I R�W H W H 0   (4.35) 

or  

 0R R I I�  W H W H   (4.36) 

 =R I I R
ideal je T�� rW H W H C   (4.37) 

where idealC  is defined in (4.5) as the Toeplitz matrix containing the ideal response of the 

cascaded channel-equalizer system. With these equations, the constellation of the source 

can be recovered up to a multiple of  / 2S  ambiguity.  

The T-EASI algorithm with this further I/Q independence constraint (I/Q-T-EASI) can 

be used to update matrix W . Specially, matrix W  is updated first with the EASI algorithm 

as in (4.7) with adaptations  

 1 ( ) ( )k k k k
H H H

kk k kkO� ª º � � � �¬ ¼W W y y I g y y y g y W  . (4.38) 

Then the structure constraint that W  has identical diagonal blocks and off-diagonal blocks 

that are sign-inverted versions of each other as in (4.31) is imposed. In addition, the 

Toeplitz structure is forced on the sub-blocks RW  and IW . 

As in the case of the T-EASI algorithm, the matrix adaptation can be simplified for the 

I/Q components of the equalizer vector. Dropping the sub-index k, and denoting the I/Q 

components of w  as Rw  and Iw , it can be seen that the adaptation of Rw  and Iw  can be 

written as  
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 > @( ) ( )
2R R RR II R RI IR IP
O

m � � � �w w Ȍ Ȍ w Ȍ Ȍ w   (4.39) 

 > @( ) ( )
2I I IR RI R II RR IP
O

m � � � �w w Ȍ Ȍ w Ȍ Ȍ w   (4.40) 

where the Ȍ  matrix with sub-index contains the cross-correlation terms from the 

corresponding U  matrix. Specifically, the U matrices have the expression as follows: 

 ( ) ( )RI R I R
H H

I
H

I R � �U y y g y y y g y� � � � � � ,  (4.41) 

 ( ) ( )IR I R I
H H

R
H

R I � �U y y g y y y g y� � � � � � ,  (4.42) 

 ( ) ( )RR R R R
H H

R R R
H � � �U y y I g y y y g y� � � � � � ,  (4.43) 

 ( ) ( )II I I I
H H

I I I
H � � �U y y I g y y y g y� � � � � � .  (4.44) 

The Ȍ  matrix can be obtained from the U  matrix in a similar way as shown in Fig. 4.4. 

 

4.7.2 Reducing Phase Ambiguity with Hard-limiting 

Phase “recovery” can also be achieved without imposing the I/Q independence constraint 

if we choose an appropriate nonlinearity ( )g �  for our ICA-based algorithm. Similarly, here 

“recovery” does not guarantee exact phase recovery, but reduces the phase ambiguity to a 

multiple of / 2S . 

For the EASI algorithm, we are sometimes interested in reducing computational 

complexity by using simple, coarsely quantized versions of some “optimal” nonlinearity. 

One of the simplest approximations in our case would be a phase-preserving hard limiter, 

i.e 

 ( )
| |

yg y
y

D ,  (4.45) 
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where D  is a scale constant. The hard-limiting also provides additional robustness 

compared to nonlinearities with unbounded characteristics.  

According to the stability analysis in [1], we can prove that for second-order circular 

signal satisfying 2( ) 0s kE ª º  ¬ ¼ , such as QAM, D  should be negative in (4.45) to ensure 

stability of the algorithm. A simple selection is 1D  � , and this results in  

 ( )
| |
yg y
y

 � .  (4.46) 

Based on (4.46), we can additionally impart a phase quantization to make the 

nonlinearity even simpler. The resulting nonlinearity is the quad-phase version of the hard 

limiter, i.e. 

 ( ) csgn( )g y y � ,  (4.47) 

where csgn( ) sign( ) sign( )R Iy y j y �  for complex symbol R Iy y jy � . This 

nonlinearity quantizes the output symbol to one of the four representative points in each 

quadrant (with a S  phase shift), and reduces the phase ambiguity to / 2S , which is 

characteristic of the generalized Sato algorithm (GSA) [3] . For this non-phase-preserving 

nonlinearity, we cannot derive explicitly the stability conditions, but simulation results 

show that this amplitude and phase quantizing nonlinearity gives quite good results for 

QAM signal. 

 

4.7.3 Simulations 

For the different channels in our channel examples given in Section 4.6, the simulation 

results are consistent for the algorithms of this section. To illustrate the performance of the 
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algorithms for phase recovery, we therefore only show the simulation results for the long 

non-minimum phase channel.  

In this sub-section, the SNR is 35dB, which is different from the 20dB set in Section 

4.6; the final ISI gets lower so that the constellations of the recovered symbols can be better 

observed. From Fig. 4.31, it can be seen that with quad-phase hard-limiting in the T-EASI, 

the performance is comparable with that of the I/Q-T-EASI, which is slightly better than 

the T-EASI with cubic nonlinearity. In the figure, the red curve for T-EASI and the purple 

curve for T-EASI with approximation are almost overlapping, as has been shown in the 

previous simulations. From the constellations in Fig. 4.32 and Fig. 4.33, it can be seen that 

T-EASI is subject to phase ambiguity, as in the CMA. In comparison, when hard-limiting 

nonlinearity or I/Q independence constraint is used, phase recovery can be achieved. Since 

the source symbols are from 64QAM and the channel is subject to noise, there is still ISI 

in the recovered constellation.  
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Fig. 4.31 ISI of the cascaded system for long non-minimum phase channel with phase 
recovery, 64-QAM, SNR=35dB. 10P  , 20M  . 

 

 

Fig. 4.32 Constellation for recovered symbols, without phase recovery, long non-
minimum phase channel, 64-QAM, SNR=35dB. 10P  , 20M  . 
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Fig. 4.33 Constellation for recovered symbols, with phase recovery, long non-minimum 
phase channel, 64-QAM, SNR=35dB. 10P  , 20M  . 

 

4.8 Other ICA-Based Algorithms with Toeplitz 

Constraint 

In addition to the well-known EASI algorithm, there are many adaptive ICA based 

algorithms for BSS. These algorithms can also be used with Toeplitz constraint for our BE 
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problem. A well-known algorithm that has been used widely was proposed by Amari [11]. 

The algorithm was based on natural gradient, with the adaptation  

 1 ( ) H
k k k k kO� ª º � �¬ ¼W W g y y I W� �  . (4.48) 

Compared with the EASI algorithm, the algorithm in (4.48) does not have an explicit 

whitening part. We call the adaptation of (4.48) with Toeplitz constraint the T-Amari 

algorithm. 

To illustrate the capability of this algorithm, and to demonstrate in general the fact that 

different ICA algorithms may be employed for use in our blind equalization problem, we 

will give simulation results for the short minimum phase channel and long non-minimum 

phase channel with SNR=20dB. From both the simulation results in Fig. 4.34 and Fig. 4.35, 

which is average of 10 runs, we can see that the Amari algorithm with Toeplitz constraint 

gives faster convergence speed than the standard Bussgang-type algorithms. Similar to the 

T-EASI case, the performance with I/Q independence constraint is slightly faster than that 

without the I/Q independence constraint. In addition, to reduce computational complexity, 

the two approximation schemes of Section 4.5.2 can be used. For T-Amari and IQ-T-Amari 

algorithms, approximation schemes give virtually the same results as their corresponding 

algorithms without approximation. The curves for the approximation schemes are not 

shown in Fig. 4.34 and Fig. 4.35. 

In Fig. 4.36 and Fig. 4.37, the performance of the T-EASI and T-Amari is compared 

for the long non-minimum phase channel and short minimum phase channel, with 

SNR 20dB . From the figures, it can be seen that for the channels and cubic nonlinearity 

used in our examples, the convergence speed of the T-EASI algorithm is about two times 
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faster than the T-Amari’s algorithm. However, since the relative change in the T-EASI 

algorithm contains more terms and includes whitening, the computational cost of the T-

EASI algorithm is somewhat higher. In fact, the performance of the ICA-based algorithms 

is impacted by the choice of nonlinearity and also the channel characteristics, and it is 

possible that for other channels with other choices of nonlinearity, the T-Amari could equal 

the T-EASI algorithm in terms of convergence speed. In general, the T-Amari algorithm is 

a simpler algorithm for blind equalization based on independence that yields faster 

convergence than the standard Bussgang-type algorithms, and is a good choice when the 

source symbols are statistically independent of each other. 

 

Fig. 4.34 T-Amari algorithm for long non-minimum phase channel, 64-QAM, 
SNR 20dB . 10P  , 20M  . 
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Fig. 4.35 T-Amari algorithm for short minimum phase channel, 64-QAM, SNR 20dB . 
10P  , 20M  . 

 

Fig. 4.36 Comparison of T-EASI and T-Amari algorithm for long non-minimum phase 
channel, 64-QAM, SNR 20dB . 10P  , 20M  . 
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Fig. 4.37 Comparison of T-EASI and T-Amari algorithm for short minimum phase 
channel, 64-QAM, SNR 20dB . 10P  , 20M  . 

 

4.9 Conclusions 

In this chapter, by extending the idea for BE with block transmission schemes of the 

previous chapter, we formulated the symbol-rate sampling BE as an underdetermined BSS 

problem. ICA-based algorithms with Toeplitz constraint were developed to exploit the 

independence between symbols. The algorithms can be written as an adaptation for the 

equalizer vector. In addition, with FFT implementation and approximation for cross-

correlation terms, the computational complexity is reduced. Simulation results showed that 

even though the proposed algorithms have a somewhat higher computational cost than the 

standard BE algorithms, the performance gains obtained are significant. 
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Appendix 4A  

Suppose W  is a matrix of size ( )P P Mu �  , and its ( , )i j -th element is denoted as ijW  in 

this appendix for clarity of expression2. It is forced to be Toeplitz by taking average along 

the descending diagonals and forcing the upper right and lower left corners to be zero. Let 

ToeW  be the resulting matrix. Here we will show that  

ToeW is the orthogonal projection of matrix W  onto the space of Toeplitz matrix with 

upper right and lower left corners zero.  

The inner product of two complex matrix X  and Y  can be defined as 

^ `, Trace H X Y Y X . To prove the above statement, we need to show that  

 , 0Toe Toe¢ � ²  W W W   

Proof: 
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2 This notation will be used exclusively in the appendix. In the previous sections, the sub-index of W is used 
to indicate iteration number. 
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Matrix ToeW  has Toeplitz structure with upper right and lower left elements zero, and 

contains shifted vector in each row, thus ( ) 0Toe ij  W  for 0j i� �  and j i M� ! . Suppose 

ToeW  has the following form:  

 

(0) (1) ( ) 0 0
0 (0) (1) ( ) 0 0

,

0 0 (0) (1)
.
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For a fixed W , ( )w W  is equal to the average of the W -th descending diagonal, thus 
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Thus , 0Toe Toe¢ � ²  W W W  and ToeW  is the orthogonal projection of matrix W  onto the 

space of Toeplitz matrix with upper right and lower left elements zero.  
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Appendix 4B 

The computational complexity of the T-EASI implemented with FFT is listed in the table.  

Table 4-2 Computational complexity of T-EASI with FFT implementation 

Algorithm: T-EASI with FFT 
implementation 

Addition Multiplication 

Initialization: Initialize 0w . 
Serial Updating: 
while there is new data kx  

 

 

1. kx , ( )M P� -point FFT. ( ) log( ) / 2M P M P� �  ( ) log( ) / 2M P M P� �  

2. { }kflip w , pad 1P �  zeros, 
( )M P� -point FFT. 

( ) log( ) / 2M P M P� �  ( ) log( ) / 2M P M P� �

3. Get the DFT of *k kx w . M P�  
4. ( )M P� -point IFFT, get length-

P  ky� , then ( )kg y�  
( ) log( ) / 2M P M P� �
 

( ) log( ) / 2M P M P� �
 

5. Pad 1P �  zeros at the end of ky , 
(2 1)P � -point FFT 

 (2 1) log(2 1) / 2P P� �  (2 1) log(2 1) / 2P P� �  

6. Pad 1P �  zeros at the end of 
( )kg y , (2 1)P � -point  FFT 

 (2 1) log(2 1) / 2P P� �  (2 1) log(2 1) / 2P P� �  

7. Get the DFT of 
*[ ( );0;...;0]T

kflip y  and 
*[ ( ( ) );0;...;0]k

Tflip g y  

2(2 1)P �  

8. DFT of kr�   2(2 1)P �  3(2 1)P �  

9. (2 1)P � -point IFFT to get kr�  and 
( )kr W  

(2 1) log(2 1) / 2 1P P� � � (2 1) log(2 1) / 2P P� �  

10. { ( )}kr W , (2 1)M � -point FFT (2 1) log(2 1) / 2M M� �  (2 1) log(2 1) / 2M M� �  

11. { }kflip w , pad M  zeros, 
(2 1)M � -point FFT 

(2 1) log(2 1) / 2M M� �
 

(2 1) log(2 1) / 2M M� �
 

12. DFT of elements in k kȌ w  (2 1)M �  
13. IDFT, truncate to get the change 

k kȌ w  
End while 

(2 1) log(2 1) / 2M M� �  
 

(2 1) log(2 1) / 2M M� �
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Chapter 5  

Bussgang-Type Blind Equalization 

Algorithms Based On Relative 

Gradient 

 

5.1 Introduction 

We have explained in Chapter 2 that in blind equalization (BE) statistical or structural 

properties of payload data can be used for finding the equalizer. A group of algorithms 

called Bussgang-type algorithms have been widely used to achieve BE. These algorithms 

define a cost function based on signaling constellation properties and use standard 

stochastic gradient descent method to do the equalizer adaptation. In the Bussgang-type 

algorithms, a single equalizer output is generated at each iteration.  
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In this chapter we propose to modify the Bussgang-type algorithms by using the 

relative gradient (RG) instead of the standard gradient (SG) formulation. A block of outputs 

are used each time to update the matrix that contains the coefficients of the equalizer vector. 

Using the RG and forcing Toeplitz structure helps speed up convergence. Unlike 

independent component analysis (ICA)-based BE algorithms using the RG, independence 

of source symbols is not required for our RG Bussgang equalizers. Our proposed 

algorithms yield faster convergence compared to standard Bussgang-type BE algorithms. 

In Section 5.2, the Bussgang-type algorithms are reviewed. The concept of the relative 

gradient, as well as of the natural gradient which is closely related to the RG, is explained 

in Section 5.3. In Section 5.4, the application of the RG in the vector adaptation for the 

Bussgang-type algorithms is shown. Although vector adaptation with the RG does not have 

good performance, the idea of the RG is useful when a block of equalizer outputs are 

considered. In Section 5.5, the block version of the Bussgang-type algorithm with the SG 

is shown. Its relation to the standard Bussgang-type algorithms is also explained. The idea 

of using block of equalizer outputs for adaptation leads to the block version of relative-

gradient Bussgang algorithms in Section 5.6. The application of the RG in processing 

multiple equalizer outputs exploits the Bussgang condition at the steady state to help 

adaptation, and speeds up convergence. In Section 5.7 schemes to reduce computational 

complexity are discussed. Simulation results are shown in Section 5.8, and the connection 

between block RG Bussgang algorithms and the ICA-based algorithms for BE is discussed 

in Section 5.9. 
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5.2 Review of Bussgang-Type Algorithms 

In this section, we review the standard stochastic-gradient algorithms for blind equalization 

(BE). In BE a training sequence to help the equalizer coefficients adaptation is not available. 

Well-known BE techniques start from a cost function that the equalizer attempts to 

minimize. The cost function is in general the expected value of some function of the 

equalizer output, which is designed based on a priori knowledge of the nature of the finite-

alphabet signaling constellation.  

Generally, we may express the cost function as J (w)  E[G( y(k))] , which is a 

function of [ (0), (1),..., ( )]Tw w w M w  by virtue of the expression 

 
0

( ) ( ) ( )
M

m
y k w m x k m

 

 �¦ . 

An adaptive equalizer may then be based on gradient descent, with the adaptation for the 

equalizer vector given as  

 *1 ( )k kk JP� � � ww w w  , (5.1) 

where P  is the step-size, kw  is the vector at the k-th iteration, and * ( )kJ�w w  is the 

gradient, or more explicitly the standard gradient (SG). It represents the direction of 

change in kw  for the maximum rate of change of the cost function. Note that for a complex 

vector, the standard gradient is the gradient of the function with respect to the conjugate of 

the vector. For details of this standard derivation, refer to Appendix 5A. When the 

algorithm (5.1) converges to the steady state, the gradient approximates zero, i.e. 

 *1  ( )k k kJ� � �| |
w

w ww 0   (5.2) 
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In conventional equalization with a sequence of training symbols, one popular 

approach is to use the least mean square (LMS) equalizer. In this case, the cost function is 

defined as the mean of square of the difference between the actual and desired output of 

the equalizer, also called mean square error (MSE), i.e.  

 2( ) [| ( ) ( ) | ]J E y k s k d � �w , (5.3) 

where d  is the delay of the channel-equalizer system. For the equalizer iterative adaptation, 

the expectation is replaced by its instantaneous value in the LMS algorithm, so that the 

adaptation for the equalizer vector becomes 

 *

1 ( ( ) ( ))k kk y k s k dP�  � � �w w x  , (5.4) 

where [ ( ), ( 1),..., ( )]T
k x k x k x k M � �x  is the vector of channel outputs at time k  with 

length 1M � . The standard LMS algorithm thus uses the stochastic gradient in place of 

the gradient. 

 

5.2.1 Bussgang Technique and Bussgang Condition 

The Bussgang technique was first proposed in [1]. Since in BE there is no explicit 

information about the training symbol ( )s k d�  as required in (5.4), a memoryless 

estimator ( )M <  based on the equalizer output ( )y k  is used to provide an estimate of the 

source symbol: 

 ˆ( ) ( ( ))s k d y kM�  . (5.5) 

A reasonable choice of estimator is the conditional mean estimator [1] [2]:  

 ˆ( ) ( ( )) [ ( ) | ( )]s k d y k E s k d y kM�   � . (5.6) 
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Such an estimated value can in principle be calculated at least approximately from 

information about the distribution of the source symbol.  

With ( ( ))y kM  considered as an approximation of the desired symbol, the adaptation 

(5.4) becomes 

 1

*( ( ) ( ( )))k kk y k y kP M�  � �ww x
 .  (5.7)  

From (5.7), we have for the i -th coefficient ( 0 i Md d ) of the equalizer 

 � � *

1( ) ( ) ( ) ( ( )) ( )k ki w i y k y k x kw iP M�  � � � . (5.8)  

For the iterative updating equation described in (5.7) and (5.8), asymptotically, under 

algorithm convergence, the expected value of any equalizer coefficient should tend to a 

constant. As a result, the following condition should hold: 

 * *[ ( ) ( ) ] [ ( ( )) ( ) ]E y k x k i E y k x k iM�  �  for k of  and 0 i Md d .  (5.9) 

As has been shown in [2], when the equalizer is doubly-infinite, i.e. i�f� ��f , if 

we multiply both sides of (5.9) with the conjugate of the equalizer coefficient *( )w i m�  

where m  can be any integer, and sum over all i , we have  

 

* *

* * *

* * *

[ ( ) ( ) ]

[ ( ) ( ) ] [ (

( )

( )

( (

) ( ) ]

[ ( )) ( ) ] [ ( ( ))) ( ) ].

i

i

i

E y k x k i

E y k x k i m E y k y k m

w i m

w i

E y k x k i m E y k y k mw iM M

�f

 �f

�f

 �f

�f

 �f

�

 � �  �

  

�

� � �

¦

¦

¦

  

As a result, in the steady state the following equation holds 

 * *[ ( ) ( ) ] [ ( ( )) ( ) ]E y k y k m E y k y k mM�  �  .  (5.10)  
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A process { ( )}y k  is called a Bussgang process if it satisfies the condition (5.10), and 

the algorithm (5.7) is therefore called a Bussgang algorithm. From (5.10) we can see that 

in the steady state, upon convergence, the output is a Bussgang process, and the 

autocorrelation of the output sequence is equal to the cross-correlation of the output and a 

zero-memory nonlinearity applied to the output, with the same time lag.  

Note that the Bussgang condition is derived under the assumption that the equalizer 

vector is doubly-infinite, which is not possible in practice. Starting from a doubly-infinite 

equalizer, if we keep only the central significant part containing 1M �  taps, we get an FIR 

equalizer. With M  large enough, this FIR equalizer can be expected to give good 

performance, and the Bussgang condition should be well approximated. 

 

5.2.2 Sato Algorithm  

The Sato algorithm was one of the earliest to be used for BE of multilevel PAM signals [3]. 

Benveniste and Goursat [4] extended the original Sato algorithm to the generalized Sato 

algorithm (GSA) to include complex signals such as QAM symbols. The GSA penalizes 

the deviation of the equalizer output from a representative point in the quadrant it falls in, 

and so it in essence uses a coarse quantization of the output as an estimate of the symbol.  

The cost function of the GSA is defined as  

 2

GSA GSA( ) [| ( ) csgn( ( )) | ]J E y k R y k �w ,   (5.11) 
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where csgn( )<  is the complex sign function defined as 

csgn( ( )) sgn( ( )) sgn( ( ))R Iy k y k j y k �  for ( ) ( ) ( )R Iy k y k jy k � , and 

2 2

GSA

[| ( ) | ] [| ( ) | ]

[| ( ) |] [| ( ) |]
R I

R I

E s k E s kR
E s k E s k

   is a constellation-dependent scaling constant.  

The GSA equalizer adaptation with standard stochastic gradient is then  

 wk�1
 wk � P y(k)� R

GSA
csgn( y(k))� �xk

* . (5.12) 

Compared with (5.7), the estimator of the source symbol ( ( ))y kM  in the GSA is replaced 

by a slicer 
GSAcsgn( ( ))R y k .  

 

5.2.3 Constant Modulus Algorithm 

One well-known BE algorithm is the constant modulus algorithm (CMA) [5], [6], [7]. It 

was first proposed to compensate for the effect of multipath and interference by exploiting 

the constant modulus of the signal in signaling constellations such as binary PAM or PSK 

[5]. The idea of the CMA is to minimize the dispersion of the modulus of the equalizer 

output from a constellation-dependent scaling constant. It has been shown that the CMA 

can also equalize non-constant modulus signals, such as from QAM constellations.  

The cost function of the CMA is expressed as 

 2 2

CMA CMA( ) [(| ( ) | ) ]J E y k R �w ,  (5.13) 

where the scaling constant 
C M AR  can be defined as 

4

CMA 2

[| ( ) | ]

[| ( ) | ]

E s kR
E s k

  . The equalizer 

vector adaptation with the standard stochastic gradient descent method is  

 wk�1
 wk � P(| y(k) |2 �R

CMA
)y(k)xk

*  . (5.14) 
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The CMA does not use an explicit estimator to estimate the source symbol, but it can still 

be written in a form similar to that in (5.7). Comparing (5.14) with (5.7), we see that in the 

CMA the “estimator” can be considered to be M( y(k))  y(k)� (| y(k) |2 �R
CMA

)y(k) .  

Besides the GSA and the CMA, there are many other BE algorithms that explore 

various other constellation properties of the source symbols, such as the multimodulus 

algorithm (MMA) [8] and the square contour algorithm (SCA) [9]. There has also been 

other work that modifies the popular Bussgang-type algorithms to improve performance 

with additional terms that are based on constellation structural properties, such as by adding 

a constellation-matched error term [10], [11]. In fact, for all the algorithms mentioned 

above, the cost function J (w) can be written as the expectation of some function of the 

equalizer output, i.e. J (w)  E[G( y(k))]. For a cost function of this form, the adaptation 

for the standard stochastic gradient descent method can be written in general as  

 wk�1
 wk � Pg( y(k))xk

*  , (5.15) 

where g( y(k))  
wG( y(k))

wy*(k)
 is the partial derivative of G( y(k))  with respect to the 

conjugate of the equalizer output y(k) .  

Comparing (5.15) with the Bussgang algorithm updates (5.7), we see that the BE 

algorithms that use the standard stochastic gradient descent method have a form similar to 

the original Bussgang algorithm, and are thus called Bussgang-type algorithms [2]. For any 

BE algorithm whose cost function can be written as J (w)  E[G( y(k))], we can find a 

nonlinear “estimator”  

 M( y(k))  y(k)� g( y(k)),  (5.16) 
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such that the adaptation for the equalizer vector has the expression  
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In the steady-state, the Bussgang condition  

 * *[ ( ) ( ) ] [ ( ( )) ( ) ]E y k y k m E y k y k mM�  �   

is equivalent to  

 *[ ( ( )) ( ) ] 0E g y k y k m�  . (5.17) 

We will see in Section 5.6that the Bussgang condition (5.17) helps to explain why our 

proposed algorithms can speed up convergence during the process of adaptation.  

 

5.3 Natural Gradient and Relative Gradient  

In the canonical standard stochastic gradient algorithm (5.1), the standard gradient (SG) is 

used to minimize a cost function ( )J w  in the Euclidean space of equalizer vectors. With 

the SG, the vector makes a change in what we would like to be the “steepest” descent 

direction at each iteration. However, when the parameter space corresponds to a 

Riemannian manifold, the SG may not represent the steepest descent direction of the cost 

function [12], [13].  For example, the set of equalizer vectors which are nominally in 1M �\  

may have constraints on them which put them in such a manifold. For simplicity of 

explanation, in this section we will only consider functions of a real vector or matrix. We 

will give results for complex scalars, vectors and matrices in the other sections. 
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Let us first look at the iteration (5.1) when all the elements of vector w are real-valued, 

to understand why there might be a problem with the standard gradient descent algorithm 

[12].  For the real case we have 

 
1 ( )kk kJP� � � ww w w  . (5.18) 

Suppose we make a coordinate transformation with matrix B  such that the vector variable 

w is transformed into , then for the cost function , the gradient 

with respect to w�  is  

 ,  (5.19) 

where 1( )T T� � B B . Under the transformed coordinates, the iteration for the new variable 

w�  is  

 , (5.20) 

which is equivalent to  

 1 ( )T
k k kJP �
� � � wBw Bw B w .  (5.21) 

Comparing (5.21) and (5.18) we see that under a coordinate transformation the first 

term on the right of (5.18), which is the vector w  itself, transforms with B ; while the 

second term, which is the small perturbation to w , transforms with T�B . As a result, in 

(5.18) we are actually adding two terms that do not change in the same way under 

coordinate transformation. The parameter space (space of equalizer weight vectors w ) 

implicitly assumed here is Euclidean, while it may be more appropriate to model it as a 

Riemann manifold.   
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5.3.1 Natural Gradient  

Let Gw  be a small change of length H  at point w . In Euclidean space, the square of the 

length can be expressed as  

 
2 2

i
i j

jwwG G G H
 

  ¦w . (5.22) 

A general form of (5.22) can be written as  

 
,

2 2( ) T
ij i j

i j
R w wG G G G G H   ¦w w w R w , (5.23) 

with { ( )}ijR R w
 
being an identity matrix for Euclidean space. In a Riemannian manifold, 

a positive definite { ( )}ijR R w  is defined according to the structure of the manifold of w  

vectors. Such a square matrix R  is called the Riemannian metric tensor. 

A Riemannian manifold is a smooth manifold M  which is locally Euclidean. For 

example, a circle in 2\  and a sphere in 3\  are manifolds that have local Euclidean 

structure which changes smoothly. For each point p M� , there is a tangent space pT M . 

For a sphere in 3\ , the tangent space at point p  is the plane that touches the sphere only 

at point p  and is perpendicular to the radius through p . The Riemannian metric Rg  

assigns to each point in the manifold M  an inner product on the corresponding tangent 

space pT M , which changes smoothly from point to point as one traverses the manifold. A 

Riemannian metric tensor R  arises from the Riemannian metric Rg  as a function of 

p M� . 
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Amari [13] showed (through a simple constrained minimization) that for manifold M

, in terms of the Riemannian metric tensor R , the steepest descent direction of ( )J w  is 

given by 

 
( ) 1( ) ( )

N

J J� � �w wRw w .  (5.24) 

The modified version 
( )

( )
N

J�w w  of ( )J�w w  in (5.24) is called the natural gradient (NG) 

[13]. If we use the NG in place of the SG for blind equalizer updates, we get the NG version 

of (5.18): 

 
( ) 1

1 ( ) ( )
N

k k kk kJ JP P �
�  �  �� �w ww Rw w ww .  (5.25) 

When there is a coordinate transformation with a matrix B , the small change Gw  to 

the equalizer vector w  becomes , i.e. . As expressed in (5.23), the 

square of the length of change is then  

 
1 1 1 2( ) ( ) ( )T T TG G G G H� � � �  B w R B w w B RB w� � � � .  

As a result, with coordinate transformation, the metric tensor for w�  is transformed to 

1T� �B RB  [12]. At the same time, from (5.19) we know that the SG is transformed to 

( )T J� �wB w , so that the NG with respect to w�  becomes  

 .  (5.26) 

With the coordinate transformation, the adaptation with the NG for the new variable w�  

can be written as  

 .  (5.27) 

Substituting into (5.27) the expression for the NG of (5.26), we see that (5.27) is the same 

as  



139 

 1

1 ( )k k kJP �
� � � wB B BRw w w .  (5.28) 

Compared with (5.25), all the terms in (5.28) transform the same way with B  when 

there is a coordinate transformation. This means that when there is a coordinate 

transformation B  in (5.25), the variable w  as well as the perturbation will also be 

transformed by B , which makes more sense than what happens with the SG. In addition, 

it was shown in [13] that the NG has the advantage of being asymptotically Fisher efficient; 

in other words, the algorithm gives a result asymptotically equivalent to the batch mode 

approach where the available information can be reused again and again.  

Besides spaces of vectors, the NG can also be defined for matrix spaces. Of particular 

interest in applications such as blind source separation is the space of invertible square 

matrices. As in the vector case, a real-valued cost function ( )L W  of matrix W  is defined 

to measure performance. For the matrix case, when there is a perturbation GW  at W , the 

squared norm of GW  can be written in a form similar to (5.23):  

 
2

, ( )ij kl ij klWR WG G G ¦w W .  (5.29) 

With a specification of an appropriate Riemannian metric tensor , ({ })ij klR R W , the 

NG can be obtained and used for adaptation. In [13], the authors use a relatively simple 

approach to obtain the explicit form for the NG (and implicitly the metric tensor R ).  For 

the space of invertible matrices, starting with a deviation GW  at W , we consider the 

deviation 
1G ��W W  which is the corresponding deviation at 

1� �I W W .  An invariance 

condition for this space of matrices then requires 
2 1

2

G G � �
W I

W W W , where the 

subscripts make explicit the point in the space at which the norm is obtained.  If we denote 
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by 
( )

)(
LL w

�  
wW

WW
W

 the SG of ( )L W , then according to the analysis in [13],  the NG 

of ( )L W  can be expressed explicitly as  

 ( ) ) )( (N TL L�  �W WW W W W ,  (5.30) 

which is the SG post-multiplied by TW W . This post-multiplication of the SG is the 

operation that converts it into the NG. With the NG, the adaptation for matrix W  as 

expressed in the vector counterpart  (5.25) becomes  

 1 )( T
k k kk kLP�  � �WW W W WW .  (5.31) 

 

5.3.2 Relative Gradient 

So far we have discussed the widely used standard stochastic gradient, and also the natural 

gradient when a Riemannian manifold is considered. Another gradient can also be used in 

stochastic gradient descent. The relative gradient was first proposed by Cardoso [14] in 

the context of blind source separation, where the mixing matrix has full column rank, as 

mentioned in Chapter 2. It was developed independently of [13] and from a different point 

view. However, the results in [13] and [14] are closely related, and this relationship has 

been explored by Cardoso in [15].  

In general, to minimize a scalar-valued cost function ( )L W , instead of searching over 

all possible GW  of some small norm we can consider a small change  that is 

proportional to the current W , with the matrix  a “small” matrix. Therefore  is a 

measure of the change GW  relative to W . Writing out the Taylor expansion of ( )L W  

when the small change in W  is made by an amount proportional to W , we have   
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  . 

Appendix 5B gives details of this expansion. From this we find that if we pick  to be in 

the direction opposite to ( ) TL�W W W , the descent rate of ( )L W  is the largest (from 

among all relative changes by  of the same length). This leads to the definition of the 

relative gradient (RG) for this matrix case as   

 ( ) ) )( (R TL L � �W WW W W .  (5.32) 

It is significant that the result (5.32) for the RG turns out to be very closely related to 

the NG of (5.30) for the case of invertible matrices W . Comparing (5.32) with (5.30), we 

see that when the matrix variable W  is in the space of invertible square matrices, the NG 

is simply the RG post-multiplied by W , i.e.  

 ( ) ( )( ) )(N RL L� � W WW W W  . (5.33) 

Using the RG of (5.32), the updates for matrix W  become  

 

( )

1

) ,

( )

(

R

k kk
T

k k

k

k k

L
L

P

P
� �

 � �

 � W

W

W W W W
W WWW

 (5.34) 

which is the same as (5.31) for the NG updates. As a result, if we start with the same 

initialization and use the same step-size P  in (5.31) and (5.34), the change made to the 

matrix W  in the k-th iteration will be the same and equal to ( )k k
T
kLP�W W W W  . 

The RG approach that we outlined above is not dependent on the concepts of 

Riemannian manifolds and metric tensors, and it can be understood quite intuitively and 

easily. We can now appreciate that the idea of using the RG is related to the concept of the 

NG, where the Riemannian metric on the tangent space is not fixed but depends on the 
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location of the variable in the manifold. In the space of invertible matrices both the NG and 

RG give exactly the same result for the minimization updates, which is different for the 

SG. With the NG and RG, the perturbation to the matrices transform in the same way as 

the variable when there is a coordinate transformation, unlike the case with the SG. 

To use the NG approach, we need to know explicitly or implicitly the matrix tensor 

R . Finding the specific metric tensor explicitly may not be straightforward in applications. 

Furthermore, obtaining the NG for non-square matrices, for example for over-determined 

or under-determined blind source separation (BSS) problems, is non-trivial [16]. The RG 

can be found relatively easily for such situations. Given these apparent advantages of the 

RG, we will now proceed to explore its use in Bussgang algorithms as an alternative to the 

SG versions of these algorithms. 

 

5.4 Bussgang Algorithm with Relative Gradient  

In this section, we will show how the relative gradient (RG) used in place of the standard 

gradient (SG) modifies the Bussgang-type algorithms for adaptive updates of the equalizer 

vector. The analysis is for complex vectors or matrices, and the details are in Appendix 5B 

and Appendix 5C.  

In BE, a cost function ( )J w  of the equalizer vector based on the output is defined. 

From the review of the Bussgang-type BE algorithms in Section 5.2, we see that the cost 

function ( )J w  is usually defined as the expectation of some function of the equalizer 

output, i.e. ( ) [ ( ( ))].J E G y k w  As derived in Appendix 5C, when there is a small change 
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G w  in w , omitting time indices k , the Taylor expansion of function ( )J w  can be written 

as  

 *

*

*

( ) [ (( ) )] [ ( )]

                 ( ) 2Re , ( )

          

 

( )       ( ) 2Re , ,

T TJ E G E G y

GJ E o
y

yEgJ

G G G

G G

G

�  �  �

w
� �

w
 

| �

w w w w x w x

w w x w

w w x

 (5.35) 

Here *, i i
i

m n ¦m n  is the Hermitian inner product of two vectors, 
 

*

( )
( )

G yg y
y

w
 

w
 is the 

partial derivative with respect to the conjugate of the equalizer output, and x  is the vector 

of observations from the channel. Thus the SG of ( )J w  is 

 *

*( ) [ ( ) ]J E g y�  
w

w x  ,   

and as given in (5.15), the standard stochastic gradient updates are 

 *

1 ( ( ))k kk g y kP�  �w xw  .  (5.15) 

Suppose we now consider a small perturbation to w  that is proportional to the current 

value w . To be comprehensive, we consider two possibilities for vector variable w : the 

relative change is a small scalar H  such that the small perturbation is G H w w , or the 

relative change is a small matrix  such that the small perturbation to w  is G  w w� .  

When G H w w , by replacing Gw  with Hw  in equation (5.35), we have 

 
*

( ) [ (( ) )] [ ( )]

                 ( ) 2Re , ( )  ( ).

T T

H

J E G E G y

J Eg y o

H H H

H H

�  �  �

� � 

w w w w x w x

w w x
  

To minimize ( )J w , when H  is in the direction opposite to that of *( ) HEg y w x  in the 

complex plane, the change rate is maximum. Thus the RG of ( )J w  with respect to w  for 

scalar relative change is  
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 ( ) *( ) ( )R HJ Eg y�  w w w x  ,  (5.36) 

and the stochastic adaptation is  

 

*

*

1 ( ( ))

( ( ))

H
k k

H
k

k k k

k kk

g y k
g y k

P

P
�  �

 �

w w w x w
w w w x

 .     (5.37) 

The second line in (5.37) comes from the fact that in the second term on the right side of 

equation (5.37), ** ( )H
k k y k w x  is a scalar and can either pre- or post- multiply kw . 

Comparing (5.37) and (5.15), we see that when the RG for scalar relative change is 

used instead of the SG, the second term on the right side of the equation, which is the 

change to kw , is modified by a matrix kk
Hw w . Since kk

Hw w  is a rank-1 matrix, this is not 

a very useful result.  This is apparent when we consider w  to be initialized with a single 

non-zero coefficient. In general the perturbation to kw  in (5.37) is 

**( ( )) ( ( )) ( )H
k k k kg y k g y k y kP P w w x w , which is kw  multiplied with an output-

dependent scalar *( ( )) ( )g y k y kP . As a result, at each iteration the elements of the vector 

w  are changed according to the rule � �*

1 ( ( )) ( )1k kg y k y kP�  �w w , so the equalizer 

adaptation keeps it in the subspace of the initial vector 
0w .  

For , a similar analysis for the Taylor expansion gives  

 
*

( ) [ (( ) )] [ ( )]

                 ( ) 2Re , ( ) ) ,(

T T T

H

J E G E G y

J Eg y o 

�  �  �

� �

w w w w x w x

w x w

� � �

� �
  (5.38) 

where , Trace{ }H M N N M  is the matrix inner product. The change rate is maximum 

when �  is aligned with *[ ( ) ]HE g y x w , thus the RG of ( )J w  for matrix relative change is   

 ( ) *( ) [ ( ) ]R HJ E g y�  w w x w . (5.39)  
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Based on the RG for a matrix relative change, the equalizer vector adaptation becomes  

 

*

*

1

2

( ( ))

( ( )) || ||

k k k
H

k k

kk k

g y k
g y k

P

P
�  �

 �

w w x w w
w x w

. (5.40) 

Comparing (5.40) and (5.15), we see that the standard gradient descent algorithm is 

now scaled in the second term on the right side of (5.15) by the norm-square of the vector 

kw . Thus at each step, the effective step-size is controlled by how “large” kw  is. The 

performance with (5.40) depends on many factors such as the specific channel, the length 

of the equalizer, and the initialization of the equalizer vector. It cannot be concluded easily 

from (5.40) if the step-size scaling term 2|| ||kw  will help speed up convergence or not. 

Even though there might be some benefit, a modification that is based essentially on this 

simple step-size control only cannot be expected to give significant improvement.  

In fact, the RG for scalar relative change is a special case of the RG for matrix relative 

change, because we have ( )H H w I w . When all the elements on the diagonal of the 

relative change matrix  are identical and the off-diagonal terms are zero, the relative 

change becomes a scalar.  

From the analysis above, we may conclude that the use of the RG (for matrix relative 

change) instead of the SG in defining Bussgang-type algorithms for the equalizer vector w 

will not give any significant benefits in blind equalizer adaptation. We note however that 

the original work on the RG in [14] which showed its effectiveness was for the matrix 

variable W (in blind source separation). We therefore now turn to a consideration of block 

or matrix formulations of the adaptive blind equalization problem. 
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5.5 Block Versions of Standard-Gradient Bussgang 

Algorithms 

In the standard-gradient Bussgang-type algorithms, the equalizer is applied to its input 

vector kx  that contains the current and past M  outputs, where M  is the order of the 

equalizer. Suppose we apply at each time k the equalizer to a larger block of channel 

outputs  of size P M� , as in the 

T-EASI scheme in Chapter 4. The equalizer convolved with this block will produce P 

outputs at each time k.  We can then use these P  equalized outputs at time k and the P  

length-(M+1) sub-vectors of corresponding equalizer inputs in kx�  to form an averaged 

version of the equalizer update term in (5.15);  this gives 

  .  (5.41)  

Recall that [ ( ), ( 1),...., ( )],k i x k i x k i x k i M�  � � � � �x  0,1,.., 1i P � , are the 

length-( 1)M �  vectors contained in , and  is the equalizer output using the 

equalizer at the k-th iteration, i.e. , 0,1,..., 1i P � . Note 

, and  is different from ( ) T
k i k iy k i ���  xw , where the equalizer 

used is from the ( )k i� -th iteration in the past. Equation (5.41) can be considered to be a 

block version of the standard Bussgang algorithm. By using a larger block, we take more 

information into account in the adaptation at each iteration. Compared to the standard-

gradient Bussgang algorithms with 1P  , the convergence speed may be expected to be 
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faster, depending on how much the extra information from a larger block helps in the 

equalizer vector updates. In fact, based on simulation results that are shown later in this 

section, there is not much difference between the standard Bussgang algorithms with 1P   

and their corresponding block versions with 1P ! , even when we take relatively large 

blocks, for example P  50.   Nonetheless, we will find it useful to pursue this block 

structure further at this point, because it turns out to be quite effective in the case of relative 

gradient.  

Define a ( )P P Mu �  Toeplitz “equalizer matrix” containing the equalizer coefficient 

vector as follows: 

  .  (5.42) 

Then the adaptive equalizer coefficient vector update of (5.41) can be written in matrix 

form with two steps at each iteration:  

 
1

1 1

ˆ

{

( ) ,

ˆ }.

H
k k

k k

k k

Toeplitz

P�

� �

 �

 

W W g y x

W W

� �
 (5.43) 

Here 
 
is the block of P  outputs from the current 

equalizer, and ; in the second step the 

Toeplitz structure of (5.42) is forced on 
1

ˆ
k �W  by taking averages along the descending 

diagonals of 
1

ˆ
k �W  and forcing the upper right and lower left corners of the matrix to be 

zero. The resulting 
1k�W  matrix will then contain the updated equalizer coefficients of 
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(5.41) in each row. Now we will show that the matrix updates of the first step of (5.43) can 

be obtained by the standard stochastic gradient descent method with a properly defined 

cost function of the equalizer matrix W . 

In the standard Bussgang-type algorithm, our goal is to minimize J (w)  E[G( y(k))]. 

When the stochastic gradient descent iterations for wk  converge to a good equalizer vector, 

the equalizer outputs should be close to the actual transmitted symbols. If we apply this 

equalizer after convergence to a large block of observations , then the equalizer outputs 

, 0,1,..., 1,i P �  will be approximations of the source symbols. As a result, 

 is expected to be close to its minimum for i  0,1,..., P �1, and so is their 

average. Thus we now consider as our cost function the sum of the . This 

leads to a modified optimization problem. 

Let W  be the Toeplitz matrix containing the coefficients of the equalizer w  in each 

row. Define a new cost function as 

 ,  (5.44) 

where  is the vector with function ( )G <  applied component-wise on the . The 

function L(W) is minimized when W  is a good “equalizer matrix”, i.e. W  contains the 

coefficients of the optimal equalizer.  

According to Appendix 5A, the elements of the standard gradient (SG) matrix of 

( )L W  can be calculated component-wise as  

 � �*

( *)

*

( )
( ) [ ( ( 1)) ( 1) ]k

mn
mn

LL E g y k m x k n
W

w
�   � � � �

wW

WW � �  . (5.45) 
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As a result the SG of ( )L W  is  

 * ( ) [ ( ) ]H
k kL E�  

W
W g y x� �  , (5.46) 

and the standard stochastic gradient descent adaptation becomes 

 1
ˆ ( ) H

k k k kP�  �W W g y x� � .  (5.47)  

The equation (5.47) is the same as the first step iteration of (5.43), which transformed the 

vector form in (5.41) to the matrix form updates. Toeplitz structure is then forced on 1
ˆ

k�W  

with 1 1{ ˆ }k kToeplitz� � W W  as in (5.43) so that the set of the equalizer coefficients are in 

each row of W . 

Fig. 5.1 and Fig. 5.2 give examples of the performance of the standard-gradient 

Bussgang algorithm and the corresponding block versions of the standard-gradient 

Bussgang algorithm. These figures are for the CMA and GSA, respectively. In the first 

example, a sequence of i.i.d symbols from a 32-PSK constellation is transmitted through a 

complex minimum phase channel with received SNR 20dB . The channel has response 

[1, 0.349 0.2617 ,0.007 0.343 , 0.2168 0.019 ,0.1445 0.1357 ]j j j j � � � � � �h . The order 

of the equalizer is set to be M  15, and P is taken to be relatively large ( P  50). We use 

inter-symbol interference (ISI) in dB to measure the performance of the algorithm, where 

2

2

| |
ISI 1

max | |ii

i

i

c
c

 �¦  for equalized system * c h w . The step-sizes are chosen so that the 

final ISI will be approximately the same for the block and non-block versions. It can be 

seen from Fig. 5.1 that the performance of the standard CMA and the block version CMA 

in this case is almost the same. The only difference is that the curve of the block version 

CMA is smoother than that of the standard CMA. In the second example, a sequence of 
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i.i.d symbols from a 64-QAM constellation is transmitted through a non-minimum phase 

channel with SNR 20dB . The channel has impulse response 

[0.01 0.03 , 0.024 0.1 , 0.85 0.52 , 0.22 0.27 , 0.05 0.07 , 0.016 0.02 ]j j j j j j � � � � � � � � �h . 

The equalizer has order   M  15, and the size of the equalizer output block is taken to be 

  P  10. The ISI curves for the standard GSA and the block version GSA are shown in Fig. 

5.2. As for the GSA case, the convergence speeds for these two GSA schemes are almost 

the same so that the curves overlap each other in the figure.  

 

 

Fig. 5.1 ISI for CMA and block SG CMA. The step-sizes are 3

CMA 1. 13 0P �u , 
3

Block CMA 01.4 1P �u . SNR 20dB , 15M  , 50P  . 
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Fig. 5.2 ISI for GSA and block SG GSA. The step-sizes are 6

GSA 8 10P �u , 
6

Block GSA 08 1P � u . SNR 20dB ,  M  15, 10P  . 

 

As we have remarked earlier, even though the block versions of the standard-gradient 

Bussgang algorithms we have considered in this section do not show any improvement 

over their common vector versions, we will find the block versions to be quite effective in 

the case of relative gradient. Before we consider the relative gradient block versions, we 

digress briefly to examine an existing block version of the CMA known as the vector CMA. 

 

Block CMA and Vector CMA 

In Fig. 5.1 we considered the performance of the block version of the CMA which is a 

special well-known example of a Bussgang algorithm. There has been proposed in the 
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literature a version of the CMA called the vector CMA (VCMA) that is also based on 

processing a block of equalizer outputs at each iteration [17].     

The cost function of the standard CMA is 2 2

CMA CMA( ) [(| ( ) | ) ]J E y k R �w , with 

2 2

CMA CMA( ( )) (| ( ) | )G y k y Rk � , and as a result the ( )g <  function in (5.41) is  

  . (5.48) 

Obviously  depends only on . According to (5.41), the update 

for w  in the block version CMA is  

 ( )

C

1
*

1
0

MA ( ( ))
P

k k k
i

k
iP

g y k iP �

� �
 

� � ¦w w x�  .  (5.49)  

We know that the CMA cannot equalize Gaussian symbols, because when the source 

sequence is Gaussian, the output of the equalizer is always Gaussian. For zero mean 

Gaussian output, we have 4 2[| ( ) | ] 3 [| ( ) | ]E y k E y k , and the cost function of the CMA 

becomes 2

CMA C A

2

M[(3 2 ) | ( ) | ]E yR Rk �� . In this case, the CMA cost function admits 

infinitely many optimal equalizer vectors.  

The VCMA was first proposed in [17] for BE when the transmitted symbols come 

from a shaped constellation whose distribution is approximately Gaussian. It was also used 

for BE in OFDM systems where the source is approximately Gaussian with large number 

of subcarriers [18]. The cost function of the VCMA is  

 , (5.50) 
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where the scaling constant 
VCMAR  can be defined as 

4

VCMA 2

[|| || ]

[|| || ]
k

k

ER
E

 
y
y
�
�

 . The function 

(5.50) is based on the block of equalizer outputs at each iteration.  It has been shown in 

[19] that if the source symbols are i.i.d, and 
VCMA CMAR PR , (5.50) can be expressed as  

 
1

2 2

VCMA CMA CMA( ) ( ) 2 [ ( ) 1 )( ] ()
P

i
y k iJ PJ E y k P R

 

 � � ��¦w w  .  (5.51) 

This means that the VMCA has a composite cost function involving both the cost function 

of the CMA as well as higher-order cross-terms. From the analysis of stability of the 

channel-equalizer system, it was shown in [19] that with the higher-order cross-terms, 

when the source sequence is Gaussian, the VCMA admits two optimal equalizer vectors 

that will give the estimation of the source sequence with a possible delay. 

With (5.50) as the cost function, the updates for w  based on the stochastic SG 

becomes  

 
1

1 VCMA
0

( , )
P

H
k k k k i

i
g iP

�

� �
 

� ¦w y xw �  ,  (5.52) 

where 2

VCMA VCMA

( )( , ) (|| || ) ( )k
k

kg i R y k i � �y y� � � , and P  is the step-size. Compared with 

(5.49), the weighting coefficient 
VCMA ( , )kg iy�  of observation vector k i�x  in the updates 

(5.52) is a function involving multiple equalizer outputs.   

The advantage of the VCMA is that it can be used for Gaussian sources. On the other 

hand for non-Gaussian sources the VCMA may have worse performance than the CMA. 

In Fig. 5.3 the ISI curves for the standard CMA, the block version of the standard CMA, 

and the VCMA are shown. The source sequence is composed of i.i.d 16-QAM symbols. 

The channel is under SNR 20dB , with impulse response as
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[0.28,0.9816 0.191 , 0.5756 0.245 ,0.3344 0.1385 ,0.189 0.0625 ,0.0825]j j j j � � � � �h . 

The order of the equalizer is set to be 15M  , and the size of the equalizer output block is 

taken to be   P  10. We can see from Fig. 5.3 that for the source with uniform distribution 

over the 16-QAM constellation the VCMA performs worse than both the standard CMA 

and the block version of the CMA. 

 

Fig. 5.3 ISI for CMA, block SG CMA and VCMA for channel with SNR 20dB , 
16QAM,   M  15,   P  10. 

 

5.6 Block Versions of Relative-Gradient Bussgang 

Algorithms 

We have seen in the last section that the standard BE problem can be formulated in terms 

of a ( )P P Mu �  Toeplitz equalizer matrix (5.42) in which each row of the matrix is the 
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set of 1M � equalizer coefficients. The stochastic gradient descent method together with 

the Toeplitz constraint leads to the “block” equalizer iterations of (5.43). While we have 

considered the standard gradient (SG) so far in formulating the matrix or block version of 

the equalization problem, we now consider the use of the relative gradient (RG) in this 

context. We have already concluded in Section 5.3 that the RG has some appealing 

characteristics, and we now proceed on the expectation that use of the RG in the matrix 

setting for equalization will allow us to obtain useful performance gains. 

 

5.6.1 Block RG Bussgang Equalizer Adaptation 

For the matrix formulation of the block SG Bussgang equalizer algorithm, we considered 

the Toeplitz matrix W  of equalizer coefficient vector w  in each row, and defined in (5.44) 

a cost function ( )L W  as follows: 

 .   

Here  

  

and  

  

are the input and output blocks of the equalizer at time k and ( )kG y�  applies a scalar 

function G component-wise to ky� .  

For the cost function ( )L W  of the matrix W , derivation of the relative gradient 

depends on how we define the small relative change GW  which is proportional to W . We 
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may define  with H �  a scalar. Alternatively we can have  where 

�  is a P Pu  matrix pre-multiplying W , or we can have  where W  is post-

multiplied by a ( ) ( )P M P M� u �  matrix � . 

From the details given in Appendix 5A, we know that the cost function ( )L W  defined 

for a matrix has the following Taylor expansion:  

 
( ) [ (( ) )] [ ( )]

               

 

    ( ) 2 Re ,  .( ) ( )H

L E G E G

E oL

G G G

G G 

�  �  �

� �

W W W W x y Wx

W W g y x W

� � �

� �
 

For the case  where H �  is a scalar, Appendix 5C shows that to minimize 

( )L W , the change rate of ( )L W  is maximum when the scalar H  is in the direction 

opposite to that of Trace{ [ ( ) ]}HE g y y� �  in the complex plane. For this case of equalizer 

matrix W  and scalar H , we know from our discussion of the corresponding vector case of 

equalizer w  in Section 5.4 that the scalar relative change updates the elements in the vector 

proportionally and does not result in a useful scheme.   

When the relative change is a small pre-multiplied matrix such that the small change 

to W  is , the Taylor expansion is   

 
( ) [ (( ) )]

                   ( ) 2 Re , (

 

 ) ) .(H

L E

EL

G

o 

�  �

� �

W W W W x

W g y y

�

� �
� �

� �
  (5.53) 

As a result, when  is aligned with , the change rate is maximum among all 

relative changes , and the RG for a pre-multiplied matrix change is  

 .  (5.54) 



157 

It was shown in (5.46) that the SG for function ( )L W  is * ( ) [ ( ) ]H
k kL E�  

W
W g y x� � . 

Comparing (5.54) with the expression of the SG, we can see that the RG for a pre-

multiplied matrix change is just the SG multiplied by 
HW  on the right, i.e. 

 *

( ) ( ) ( )R HL L�  �W W
W W W  . (5.55) 

With the RG, the stochastic gradient descent adaptation for matrix W  may be stated as   

 
1

1 1

ˆ ( ) ,

ˆ .{ }

H
k k k k

k

k

kToeplitz

P

�

�

�

 �

 

W W g y y W

W W

� �
  (5.56) 

The relative gradient ( ) H
k kg y y� � that pre-multiplies kW  in (5.56) contains cross-correlation 

terms of the outputs and the memoryless nonlinear function applied to the outputs. These 

terms are exactly the ones in the Bussgang condition *[ ( ( )) ( ) ] 0E g y k y k m�   in (5.17), 

and it will be explained later that they will help make convergence faster.   

When the relative change is a small post-multiplied matrix, the small change to W  is 

. With the small change , the Taylor expansion of L(W) is then   

   (5.57) 

When  is aligned with , the change rate is maximum, so the RG for a post-

multiplied matrix change has the expression  

 . (5.58) 

Similarly, with the matrix update and Toeplitz structure constraint, the adaptation becomes    

 

1 1

1

{

ˆ ( ) ,

ˆ }.

H H
k k

k

k

k

k k k

Toeplitz

P

�

�

�
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W W W W g y x

W W

� �
  (5.59) 
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We found from our simulations for these two cases of matrix relative change (relative 

change  is a pre- or post- multiplied matrix) that the second case of post-multiplied 

change does not yield performance gains as good as those obtained using the pre-multiplied 

change. We will focus on the relative gradient algorithm of  (5.56), which is based on 

change  in W  defined by pre-multiplication with � , in the rest of this 

discussion. 

 

5.6.2 Expected Convergence Performance 

Recall that for any Bussgang-type algorithm with cost function ( ) [ ( ( ))]J E G y k w , the 

iterations using the standard stochastic gradient descent method can be written as  

 *

1 ( ( ))k kk g y kP�  �w xw  ,  (5.15) 

where ( ( ))g y k  is a nonlinear memoryless function of the equalizer output. According to 

the Bussgang condition in (5.17), we have that when the algorithm reaches steady state, 

the following equation holds: 

 
*[ ( ( )) ( ) ] 0E g y k y k m�   .  

In our block version of the Bussgang-type algorithms with the RG, the updates for 

matrix Wk  are written as 

 1

1 1

ˆ ( ) ,

ˆ .{ }

k
H
k k

k

k k

kToeplitz

P

�

�

�

 �

 

W W g y y W

W W

� �
  (5.56) 

A stationary point for (5.56) is any matrix Wk  such that  holds. Therefore, 

unlike the case of the standard stochastic gradient descent method of (5.47), the deviation 
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from the Bussgang condition in the steady state is taken into consideration in deciding how 

large the change should be relative to the current W . When ( ) H
k kg y y� �  is large, the 

adaptation is far from the steady state, and the relative change to W  is large as a result; 

while when ( ) H
k kg y y� �  is small, it is close to the steady state, and the value of W  is then 

adjusted with small relative change at each iteration.  

Matrix ( ) H
kkg y y� �  is a P u P  matrix that contains the cross-correlation terms with time 

lag up to P �1. On the one hand, the larger P  is, the more information is used to update 

matrix W  at each iteration. However, on the other hand, the larger P  is, the more elements 

there are in the matrix ( ) H
kkg y y� �  to adjust through updates to W  in the adaptation, and the 

more difficult it is to converge to the stationary point . As a result, as in the 

selection of the size of equalizer output block in the T-EASI algorithm, the parameter P  

needs to be selected carefully to balance between good performance and relatively fast 

convergence speed. From extensive simulations we have found that a reasonable choice is 

P | M / 2 .  

 

5.7 Equalizer Vector Adaptation and 

Computationally Efficient Implementation 

In the block RG Bussgang algorithms, we update the “equalizer matrix” at each iteration, 

and force it to have Toeplitz structure, so that we get the vector of the equalizer coefficients 

by picking any row from the matrix. As in the case of the matrix adaptation in Chapter 4 
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for T-EASI algorithm, while the algorithm (5.56) is updating the whole matrix each time, 

if we focus only on the equalizer vector we want the computational complexity of the 

scheme can be reduced. 

For Block RG Bussgang algorithms, let , which is a P Pu  matrix 

containing the cross-correlation terms, so that the updates for the “equalizer matrix ” in 

(5.56) can be written as 

 

1

1

1

ˆ ,

ˆ }.{k k

k k k k

Toeplitz

P

� �

�  

 

� UW W W

W W
  (5.60) 

The matrix adaptation in (5.60) has the same form as that in (4.10) for T-EASI algorithms, 

with a different expression for matrix kU . The step-size of the block RG Bussgang scheme 

in this chapter is denoted as P .  For the T-EASI algorithm in Chapter 4 the step-size was 

denoted by O . Using the same technique as in Section 4.4, we can see that for the l -th 

coefficient of the equalizer vector the update becomes 

 
min{ 1, } min{ , }

1
max{1 , } max{1 ,1}

1
( ) ( ) (,) ( )

P M l P P

k k k k
P l j

U j jw l w l w l
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W W

P W W
� � �

�
 � �  �

 � ��¦ ¦   (5.61) 

To make the expression in (5.61) simpler, let  
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  (5.62) 

i.e.  
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  , (5.63) 

then the adaptation for the l-th coefficient of vector w  becomes 

 
min{ 1, }

1
max{1 , }

1
( ) ( ) ( ) ( )

P M l

k k k k
P l

w l w l w lr
P W

P W W
� �

�
 � �

� �¦   (5.64) 

The adaptation in (5.64) holds for either 1P Mt � or 1P M� � . When 1P Mt � , ( )kr W  

has definition on M MW� d d ; for the case 1P M� �  we can define 

 ( ) 0  for  1  and  1kr M P P MW W W � d � � � � d   (5.65) 

so that ( )kr W is defined over the full range of M MW� d d . With these definitions of ( )kr W , 

equation (5.64) can be further simplified as  

 1

1
( ) ( ) ( ) ( )

M l

k k k k
l

w l w l w lr
P W

P W W
�

�
 �

� � ¦ . (5.66) 

If we write equation (5.66) in vector-matrix form, we get  

 1k k k kP
P

� � w w Ȍ w , (5.67) 

where kȌ  is a ( 1) ( 1)M M� u �  correction matrix for the equalizer vector, containing the 

cross-correlation terms ( )kr W  of (5.63): 
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The terms { )}(kr W  in the matrix kȌ  are related to those in the matrix ( ) H
k k k U g y y� � , 

and should be approximately zero in the steady state according to the Bussgang condition. 

When 1P �  is taken to be smaller than M , the lower left and upper right corners of kȌ  

will be zeros. As mentioned earlier, for large P  the number of cross-correlation terms we 

use at each update is large, and convergence can be expected to be slower.  

Compared with the matrix updating in (5.60), the computational complexity of vector 

updating in (5.67) is reduced approximately by an order of P .  

As in the case of the T-EASI algorithm in Chapter 4, we can reduce computational 

complexity by using the FFT algorithm or by using approximations for the cross-

correlation terms { )}(kr W  without updating all the terms in the matrix kU . These schemes 

can reduce the computational cost from 2( )O M  to ( log )O M M . Since the matrix kU  in 

the block RG Bussgang algorithm is simpler than that in the T-EASI algorithm, it is not 

difficult to figure out the details of the implementation based on the explanations in Section 

4.5 of Chapter 4. The details are omitted here.  

 

5.8 Simulations for Block RG Bussgang  

In this section, we will give simulation results for the block RG Bussgang algorithms and 

compare them with results for the standard Bussgang algorithms to illustrate the 

improvements with our proposed algorithms. Results for different channels, and different 

choices of parameters such as the order of the equalizer M  and the size of the equalizer 
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output block P , will be shown and compared. In the experiments we will use the standard 

CMA and GSA and their RG block versions as examples.  

First consider a sequence of i.i.d source symbols from a 64-QAM constellation 

transmitted through a long non-minimum phase channel with SNR 20dB . The channel 

has order L  9 with impulse response shown in Fig. 5.4. This channel is the same as the 

long non-minimum phase channel in Chapter 4. The order of the equalizer is set to be 

M  20, and the size of the equalizer output block is taken to be P  10. The equalizer is 

initialized with center tap   1� 0.5 j , and zero elsewhere. This initialization of the equalizer 

vector is the same throughout this section.  

We will first compare the performance of the CMA and the block RG CMA. ISI will 

be calculated at each iteration to measure the equalization performance. The step-sizes of 

the two algorithms are chosen as P
CMA

 2u10�7 , and P
RG-CMA

 6u10�7  so that the ISI 

after convergence for either algorithm is approximately -20dB. Fig. 5.5 gives the result of 

a typical run, and Fig. 5.6 shows the average result over 10 runs. From both Fig. 5.5 and 

Fig. 5.6, we see that the CMA needs about 46.5 10u  symbols for the adaptation to converge, 

while the block RG CMA needs 42.5 10u .  
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Fig. 5.4 Channel impulse response of long non-minimum phase channel. 

 

 

Fig. 5.5 ISI for CMA and block RG CMA, i.i.d 64-QAM source. Long non-minimum 

phase channel with SNR 20dB  , 7

CMA 2 10P � u , 7

RG-CMA 6 10P � u , 20M  , 10P  . 
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Fig. 5.6 Average over 10 runs of the ISI for CMA and block RG CMA, i.i.d 64-QAM 
source. Long non-minimum phase channel 

 

Next we will see how the choice of P affects the performance. The channel, SNR, 

source, and the equalizer length are the same as above. We compare four choices of the 

block size of the equalizer outputs, i.e.   P  5,   P  10,   P  20  and 40P  . From Fig. 5.7, 

we can see that when P  is relatively small, i.e. 5P  , the performance of the block RG 

CMA is worse than that of the standard CMA. Not only the convergence speed is slower 

than the standard CMA, but the ISI after convergence is also higher. With   M  20 and 

5P  , there are a total of about 
  M � (P �1)� �2

 256 zero elements on the lower left and 

upper right corners of kȌ  in (5.68). In this case the correction matrix kȌ  may not provide 

much help in updating the coefficients of   wk  in (5.67). As has been said, the performance 

improves with increasing P  up to a certain point. Beyond that point, the performance may 
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even decrease because of the increasing dimension of the correction matrix in the 

adaptation. We did experiments with different choices of P , and it turned out that 10P   

is a point when the performance is the best. When P  increases further, for example when 

20P  , the performance is not much different from that when 10P  . When 40P   the 

convergence is slower than in the cases when 10P   or 20P  .  

 

Fig. 5.7 ISI for CMA and block RG CMA with different choices of P, i.i.d 64-QAM 
source.  Long non-minimum phase channel with SNR 20dB , 20M  . 

 

For the same channel in the above example, consider the case when a sequence of 

correlated symbols from a 16-QAM constellation is transmitted. For better comparison of 

performance, the SNR is 40dB for this example with correlated signal. The first symbol of 

the sequence is chosen randomly from the 16-point constellation. In the sequence, the 

symbol stays in the same quadrant as the previous one with probability 4/7, and jumps to 

one of the other three quadrants each with probability 1/7.  In any of the four quadrants, 
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the symbol takes one of the four values in the quadrant with equal probability. From Fig. 

5.8, we can see that with the standard CMA, convergence needs about  49 10u  symbols, 

while block RG CMA needs 43 10u . When the source symbols are correlated, the 

Bussgang algorithm can still work. However, it takes longer to converge, because the 

symbols are correlated, and not as much new information is provided at each iteration 

compared to the case of i.i.d symbols. The curves shown in Fig. 5.8 are the averages of 

three runs, because the curves for a single run are not smooth. When the SNR is low, the 

convergence speed of the block RG CMA is still faster than the CMA, but the ISI in the 

steady state is high.  

 

Fig. 5.8 ISI for CMA and block RG CMA, correlated 16-QAM source. Long non-

minimum phase channel with SNR 40dB , 6

CMA 3.5 10P � u , 6

RG-CMA 13 10P � u , 

20M  , 10P  . 
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For correlated source, we now compare the results for equalizer output blocks of 

different sizes: 5P  , 10P  , 20P   and 40P  . From the simulation results in Fig. 5.9, 

we see that the worst performance is obtained when P   has the relatively small value 

5P  . The ISI after convergence is relatively high, with slow convergence. The 

performances of block RG CMA with 10P   and 20P   are similar, and the convergence 

speed is faster than that of the standard CMA. However, if we continue to increase P , the 

performance gets worse, as seen in the figure when 40P  . 

 

Fig. 5.9 ISI for CMA and block CMA with RG with different choices of P , correlated 
16-QAM source. Long non-minimum phase channel with SNR 40dB , 20M  . 

 

For the same channel and i.i.d. 64-QAM source, we also used the standard GSA to 

achieve blind equalization and compared its performance with the RG block version of the 

GSA. The results for different values of P  are shown in Fig. 5.10. The difference in 

convergence speeds of the GSA and the block RG GSA is similar to that of the standard 
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CMA and the block RG CMA. The performance with 10P   is best. The convergence 

speed with 20P   and 30P   is almost the same, and is slower than that with 10P  . 

When 10P  , for similar ISI after convergence, the standard GSA needs about 51.5 10u  

symbols to converge, while the block RG GSA only needs 46 10u . The ISI after 

convergence for block RG GSA is -23dB, while that for the standard GSA is -20dB; if we 

adjust the step-size to make them both converge to -23dB, the standard GSA will need 

more symbols for convergence. 

 

 

Fig. 5.10 ISI for GSA and block RG GSA with different choices of P, i.i.d 64-QAM 
source. Long non-minimum phase channel with SNR 20dB , 20M  . 

 

In the next example, the channel is a short minimum phase system that has been used 

in Chapter 4. Though the channel is not long with 4L   only, it has four zeros that are 

close to the unit circle, which makes it hard to equalize. The impulse response of this short 
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minimum phase channel is shown in Fig. 5.11. The order of the equalizer is set as 20M  . 

A sequence of i.i.d 64-QAM symbols is transmitted through the channel with SNR 20dB . 

The performance of the CMA and GSA is compared with their respective RG block 

versions in Fig. 5.12 and Fig. 5.13. The results with different choices of P  are shown. 

When 10P  , the performance of the block RG Bussgang is better than its standard 

Bussgang counterpart with either the CMA or GSA. When P  increases further, the 

convergence speed becomes slower. 

 

 

Fig. 5.11 Channel impulse response of short minimum phase channel 
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Fig. 5.12 ISI for CMA and block RG CMA with different choices of P, i.i.d 64-QAM 
source. Short minimum phase channel with SNR 20dB , 20M  . 

 

 

Fig. 5.13 ISI for GSA and block RG GSA with different choices of P, i.i.d 64-QAM 
source. Short minimum phase channel with SNR 20dB , 20M  . 
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From the previous experiments, we see that / 2P M  is a good choice for the size of 

the equalizer output block. Next, we will see how different choices of equalizer order M  

may affect the performance of BE. For the non-minimum phase channel with 9L  , the 

ISI for the CMA and RG block CMA with four choices of M are shown in Fig. 5.14. From 

the figure, it can be seen that when 8M   the block RG CMA performs worse than the 

standard CMA. There is not much difference between the standard CMA and the block RG 

CMA when 15M  ; while when 20M   and 30M  , the convergence of the block RG 

CMA is faster. We know that for the Bussgang condition to hold approximately, the 

equalizer should be long enough. When the order of the equalizer M  is small, the 

Bussgang condition is not well approximated. In this case, the relative gradient ( ) H
k kg y y� �  

in (5.56) may not be helpful. However, when M is relatively large, the advantage of using 

the cross-correlation terms in the Bussgang condition for matrix updating becomes more 

significant. In practical BE problems we always set the equalizer to be of a reasonable 

length, so that the source symbols can be well estimated. If M  is too small, the 

performance may not be good even for standard Bussgang algorithms. As a result, we 

expect that with a reasonable choice of M, our block RG CMA will be more likely to 

performance better than the standard CMA.  

The performance comparisons with different choice of M are also shown for the 

minimum phase channel with zeros close to the unit circle in Fig. 5.15. The result is similar 

to the first case. As the equalizer length 1M �  becomes larger, the advantage of the block 

RG CMA becomes more apparent. In a practical BE problem, we also need to consider the 

complexity of a long equalizer, thus there is a trade-off in the selection of equalizer length.  
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Fig. 5.14 ISI for CMA and block RG CMA with different choices of equalizer order M , 
for the long non-minimum phase channel. / 2P M . 
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Fig. 5.15 ISI for CMA and block RG CMA with different choices of equalizer order M  
for the short minimum phase channel. / 2P M . 

 

5.9 Comparison with ICA Based BE Algorithm 

Our block RG Bussgang algorithms in this chapter have an interesting relationship to the 

independent component analysis (ICA)-based algorithms considered in Chapter 4. Source 

symbol independence is the essential condition used in the ICA approach, but this is not 

explicitly the basis for the Bussgang algorithms. Nonetheless these two schemes for the 

equalizer matrix adaptation have a structural similarity that we will examine briefly here. 

In the T-EASI algorithm, the equalizer matrix is a Toeplitz matrix that contains the 

equalizer coefficients in each row. The equalizer matrix is updated according to  
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 , (5.69) 

where nonlinear decorrelation is used to achieve output independence and therefore 

equalization. As a result, the T-EASI is not based on any specific constellation property of 

the source symbols. The selection of the nonlinear function g  can start from a cost 

function that measures degree of independence of the outputs, and in general a variety of 

nonlinear functions can be used in the T-EASI algorithm. In the steady-state, the terms in 

the bracket go to zero, i.e. H
k k �  y y 0I� �  and ( ) ( )H

k k k
H
k �  g y y y g y 0� � � � . Since the condition 

H
k k �  y y 0I� �  requires source symbols be white or uncorrelated, the T-EASI does not work 

well for sources that have correlation between symbols.  

For the adaptation of the block RG Bussgang with the RG of (5.56),  
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W W g y y W
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   (5.56) 

one difference from (5.69) is that the correction matrix contains only cross-correlation 

terms ( ) H
kkg y y� � , while in T-EASI the correction matrix is composed of two parts: a 

whitening part H
k k �y y I� �  and the skew-symmetric “nonlinear decorrelation for 

independence” term ( ) ( )H
k k k

H
k �g y y y g y� � � � .  Note that the T-EASI algorithm arises from 

an objective of obtaining the inverse of an unknown mixing matrix for separation of 

independent sources, whereas in using a Bussgang algorithm the objective is that of 

equalizing an unknown linear channel based directly on a source estimation error-

minimizing criterion. Bussgang schemes implicitly or explicitly form a nonlinear estimate 
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from the equalizer output for the unknown symbol, based on which a cost function is 

defined.  The nonlinearity g is the derivative of this cost function.  

Although the cost functions of the block RG Bussgang algorithms do not explicitly 

impose the constraint of independence of source symbols, nonlinear decorrelation is 

included in the cross-correlation matrix condition ( ) 0H
kk  g y y� �  for steady-state 

convergence. From this point of view, when the source is indeed i.i.d, the independence of 

the source symbols helps speed up convergence in the block RG Bussgang schemes. 

However, the Bussgang-type algorithms also work for correlated input symbols. It should 

be noted that the Bussgang condition of (5.17) contained in ( ) 0H
kk  g y y� �  does not 

necessarily mean that the output source sequence has independent symbols.  

The simulated performance of T-EASI and block RG CMA was compared for the short 

minimum phase channel and the long non-minimum phase channel, with i.i.d. 64-QAM 

source symbols, and the results are shown below. From Fig. 5.16 and Fig. 5.17, we see that 

the performance for the two algorithms is comparable. The convergence speed of the T-

EASI is slightly faster than that of the block RG CMA.  
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Fig. 5.16 ISI for CMA, block RG CMA and T-EASI with different choices of P, i.i.d 64-
QAM source. Long non-minimum phase channel with SNR 20dB , 20M  . 

 

 

Fig. 5.17 ISI for CMA, block RG CMA and T-EASI with different choices of P, i.i.d 64-
QAM source. Short minimum phase channel with SNR 20dB , 20M  . 
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From the matrix adaptations in (5.69) and (5.56), we can see that the complexity of the 

T-EASI is slightly higher than that of the block RG CMA, because more terms need to be 

calculated in (5.69) for the equalizer matrix adaptation. This also happens when we use the 

computationally efficient implementation of the two algorithms. However, if the equalizer 

is long, and P  is large as a result, the difference in computational complexity will be small, 

because the two algorithms have the same order of computational complexity.  

In fact, the block RG CMA has very similar form to the Amari algorithm with Toeplitz 

constraint, which was introduced in Section 4.8. Recall that as mentioned in (4.48) that the 

Amari algorithm has the adaptation  

 1 ( ) H
k k k k kO� ª º � �¬ ¼W W g y y I W� �  . (5.70) 

Comparing the first line of  (5.56) and (5.70), we can see that the only difference is an 

identity matrix in the brackets. The Amari algorithm starts from measuring the 

independence of the separated symbols, but can be interpreted as using nonlinear 

decorrelation for separation. Generally at convergence the off-diagonal elements of 

( ) H
kkg y y� �  are zero, and the diagonal elements are normalized to one so that ( ) H

kk  g y y I� � . 

Suppose now we use a nonlinearity function g  for the Amari algorithm that comes 

from a Bussgang-type cost function based on some constellation property. It can be 

expected, according to the Bussgang condition, that ( ) H
kk  g y y 0� �  should hold if the source 

symbols are recovered. Suppose after the K -th iteration ( ) H
KK  g y y 0� �  is obtained, then 

according to (5.70), the matrix adaptation in the ( 1K � ) -th iteration becomes  

 1 (1 )K KO�  �W W  , (5.71) 
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and the elements in 1K�y�  becomes (1 ) KO� y� . Taking the nonlinearity of the CMA as an 

example, we have that vector ( )kg y�  is a component-wise function of vector ky�  with 

2

CMA( ) (| | )g Ry y y� . As a result, the vector ( )kg y�  can be written as  

 ( )k k k g y ȁ y� � ,  (5.72) 

where kȁ  is a diagonal matrix with component-wise function 2

CMA| |y R�  of vector ky�  on 

the diagonal. After the K -th iteration, the matrix ( ) H
KKg y y� �  becomes 

 ( ) H H
K K KK K  g y y ȁ y y 0� � � � .  (5.73) 

Then at the ( 2K � ) -th iteration, with 2

1 1 1( ) (1 )H H
K KK KKO�� � �g y y ȁ y y� � � � , the matrix 

adaptation becomes  
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The iterations keeps going as in (5.74). Intuitively, as the components of matrix kW  grow, 

so does the elements in the matrix kȁ , and this reverses the growth of kW  so that the 

tendency to converge to the steady state ( ) H
kk  g y y 0� �  is maintained. As a result, even for 

correlated source symbols the Bussgang condition can be satisfied and we can use the 

nonlinearity of a Bussgang-type algorithm as the nonlinearity for the constrained Amari 

algorithm.  

In Fig. 5.18, we compare the performance of the T-Amari algorithm and the block RG 

CMA for correlated input symbols. The source symbols are 16-QAM and are correlated in 

the way described in Section 5.8. The performance of the T-EASI algorithm is also shown 

for comparison. From the figure, it can be seen that for the Toeplitz constrained Amari 
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algorithm, when the cubic nonlinearity is used, the performance is the worst; while when 

the nonlinearity based on the CMA cost function is used, the performance is comparable 

with that of the block RG CMA algorithm. The T-EASI with cubic nonlinearity does not 

yield good performance. Although the algorithm works to some extent, the ISI after 

convergence is -14dB; when the SNR decreases or when the source symbols are from a 

higher-order signaling constellation, the performance can be even worse. 

 

Fig. 5.18 ISI for T-EASI, T-Amari, CMA and block RG CMA, correlated 16-
QAM source. Long non-minimum phase channel with SNR 40dB , 

20M  , 10P  . 

 

The norm of the equalizer vector with the constrained Amari algorithm is also shown 

in Fig. 5.19. We observe from the figure that when the algorithm converges, the changes 

in the vector will be very small, and the curve is almost flat. This verifies our explanation 

for the matrix adaptation for Amari algorithm with CMA nonlinearity. When steady-state 
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is obtained, the algorithm tends to maintain the steady-state by preventing the components 

of the matrix kW  from large changes. 

 

Fig. 5.19 Norm of equalizer during adaptation. 

 

5.10  Conclusions 

In this chapter we formulated an approach to process a block of equalizer outputs to modify 

the standard Bussgang-type algorithms, resulting in an effective relative gradient (RG) 

adaptation scheme for blind equalization. Our new block RG Bussgang algorithms use a 

block of equalizer outputs at each iteration and enforce a Toeplitz condition for faster 

convergence. With the RG, the Bussgang condition appears more explicitly in the equalizer 

adaptation steps. Simulation results suggest that the block RG Bussgang algorithms offer 

faster convergence compared to their standard counterparts. While the block algorithms 
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have a somewhat higher computational cost, our results suggest that the performance gains 

obtained are significant. Our work has also brought out interesting connections between 

different algorithms (EASI, Amari, and Bussgang). 
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Appendix 5A   

Gradient Computation in Complex Domain 

One challenge of dealing with complex Blind Source Separation (BSS) or Blind 

Equalization (BE) problems is the derivation of gradient of the cost function in the complex 

domain. For a complex-valued function  

 ( ) ( , ) ( , )real imagf z f a b jf a b �  (5A.1) 

where z a jb � , the conditions of differentiability are given by the Cauchy-Riemann 

equations [20]  

 ,
imag imagreal realf ff f

a b a b
w ww w

  �
w w w w

  (5A.2) 

which require that the derivative of f (z)  at a point z
0
 should be the same regardless of 

the direction of approach, in spite of the additional dimensionality in complex domain. The 

conditions impose a strong structure on freal (a,b) and fimag (a,b), and these are usually not 

satisfied for many functions of practical interest, such as the real-valued cost functions in 

BE and BSS problems.  

One method to deal with the function in complex field is to transform the complex 

variable into one in real domain, i.e. . This transformation allows the 

computations in real domain, and the result can be transformed back to complex domain at 

the end. However, the transformation doubles the dimension of variables. Another popular 

method is the Wirtinger Calculus [21], which relaxes the Cauchy-Riemann conditions and 

enables the computation of derivative in complex domain in a straightforward way. Here 
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we will explain the Wirtinger derivative and its potential application in complex BSS and 

BE. We will call the gradient derived this way in Euclidean space as standard gradient 

(SG). 

 

Scalar case  

A function of complex variable z, , can be considered as a function 

 with f (z)  f (a,b) . It has been shown in [20] that for function 

 such that fz (z,z*)  f (a,b) , if fz  is analytic with respect to z  and 

z*  independently, the partial derivative could be defined as  

 
1

( )
2

zf f fj
z a b

w w w
 �

w w w
  (5A.3) 

 
*

1
( )

2
zf f fj

z a b
w w w

 �
w w w

  (5A.4) 

by treating z*  and z  as constant in fz  respectively. Especially, when fz  is real-valued, 

 

w fz

wa
 and 

 

w fz

wb
 are both real, and we have  

 

  

w fz

wz
§
©̈

·
¹̧

*

 
w fz

wz*
 .  (5A.5) 

When there is a small change G z  to z, the Taylor expansion of function fz (z,z*)  at 

(z �G z,z* �G z*)  can then be written as  

 

* * * * *

*

*

( , ) ( , ) ( , )

                              ( , ) 2Re

z z
z z

z
z

f ff z z z z f z z z z o z z
z z

ff z z z
z

G G G G G G

G

w w
� �  � � �

w w
w§ ·| � ¨ ¸w© ¹

  (5A.6) 
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When zG  is aligned with 

  
 
w fz

wz
§
©̈

·
¹̧

*

 
w fz

wz*
, the function will have the maximum change rate, 

thus the SG of real-valued function f (z)  is the partial derivative with respect to the 

conjugate z* .  

Suppose our goal is to find the optimal value of z  such that the value of f (z)  is 

minimized. With the SG, the updating algorithm for the complex variable is then 

 
1 *k k

zz fz
z

P�  �
w
w

  (5A.7) 

where zk  is the estimate of  z  at the k-th iteration, and P  is the step-size. 

 

Vector case  

Now we will extend the scalar variable case to vector case. Let  be a 

function of complex vector 1 2, ,...,[ ]T N
Nz zz �z ^ , and define the gradient operator with 

respect to z  as �z  [w/ wz
1
,w/ wz

2
,...,w/ wzN ]T . For function  

such that *( , ) ( )f f z z z z , if *( , )fz z z  is analytic with respect to z  and *z  independently, 

the gradient �z  and *�
z

 of *( , )fz z z  can be calculated element-wise using the definition 

in (5A.3) and (5A.4).  

Let G z  be the small change to vector  z. The first-order Taylor expansion of fz (z,z*)  

can be written as [22], [23]  

 *

* ** * *( , ) ( , ) ( ) ( ) ( , )T Tf f f f oG G G G G G� �  � � � � �z z z z zz
z z z z z z z z z z      (5A.8) 
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where m,n  mini
*

i 1

N

¦  Trace{nHm} is the Hermitian inner product of two vectors. 

When fz  is real-valued, (�z fz )*  �
z* fz  and G z,�

z* fz  G z*,�z fz

*

, and it follows 

that  

 
*

*

* * * * *

*

( , ) ( , ) , , ( , )

                             ( , ) 2 Re ,

f f f f o

f f

G G G G G G

G

� �  � � � � �

| � �

z z z z zz

z zz

z z z z z z z z z z

z z z
     (5A.9) 

From equation (5A.9) we can see that the change of function fz  is approximately 

2Re G z,�
z* fz , and the change rate is maximum when G z  is in the same or negative 

direction of �
z* fz . Thus the SG of complex function f (z)  is �

z* fz . This has wide 

application in standard BE problems. Suppose we want to minimize function f (z) , then 

the adaptation for vector z  with the SG is  

 *1k k fP�  � � zz
z z   (5A.10) 

If z  is a row vector, the gradient operator is defined accordingly as a row vector 

�z  [w/ wz
1
,w/ wz

2
,...,w/ wzN ] . In such a case, the SG of complex function f (z)  can be 

derived in a similar way as above using transpose of z  and �z , and the SG still has the 

expression �
z* fz . By comparing the scalar and vector case, we can see that the scalar case 

is a special example of the vector case where there is only one element in the vector. 

 

Matrix case  

In many applications such as BSS, the function variable is a matrix. Similar to the 

vector case, the gradient of the function can also be analyzed with Wirtinger Calculus.  
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Let  be a function of complex matrix M Nu�Z ^ . The gradient 

operator with respect to Z is defined as �Z, a M u N  matrix whose (i, j)-th element is the 

partial derivative with respect to the (i, j) -th element of Z . For real-valued function 

fZ(Z,Z*)  f (Z), if it is analytic with respect to Z and Z* independently, the first-order 

Taylor expansion can be written as  

 
fZ(Z�GZ,Z* �GZ*)  fZ(Z,Z*)� GZ,�

Z* fZ � GZ*,�Z fZ � o(GZ,GZ*)

                                  fZ(Z,Z*)� 2Re GZ,�
Z* fZ � o(GZ,GZ*)

 (5A.11) 

where M,N  Trace{NHM}, and �
Z* fZ  (�Z fZ )*. As in the vector case, the change 

rate is maximum when the direction of GZ  aligns with that of �
Z* fZ

, which is the SG for 

matrix case. To minimize function f (Z) with gradient descent the updating rule is  

 *1k k fP� � � ZZ
Z Z .  (5A.12) 

Note that the vector case is in fact a special example of the matrix case: when M  1, Z 

reduces to a row vector while with N  1, Z reduces to a column vector; when M  1 and 

N  1, Z becomes a scalar.  
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Appendix 5B   

Relative Gradient in Complex Domain 

The standard gradient (SG) at a particular point defines the direction and rate of steepest 

change at that point. However, we want to look into the case when the perturbation to a 

variable is proportional to its current value. Among all such perturbations, the one that 

gives the maximum change rate is defined as relative gradient (RG) [14]. 

 

Scalar case  

First consider function  of a complex scalar z , and its corresponding 

equivalent function with two variables fz (z,z*)  f (z) . Suppose there is a small 

perturbation H z  proportional to z , where H  is a scalar. If fz  is real-valued, then 

according to (5A.6), the first-order expansion of fz  at (z, z*)  can be written as 

* * * * * * *

*

*

( , ) ( , ) ( , )

                              ( , ) 2 Re

z z
z z

z
z

f ff z z z z f z z z z o
z z

ff z z z
z

H H H H H H

H

w w
� �  � � �

w w
w§ ·| � ¨ ¸w© ¹

           (5B.1) 

If H  is aligned with 
  
(
w fz

wz
z)*  

w fz

wz*
z*, then the change rate will be maximum. Thus 

the RG of the function f (z)  with complex scalar variable  z  is 
  

w fz

wz*
z* , which is the SG 

multiplied by *z . Iterative updates of z  to reach the minimum value using the RG can be 

given as  
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zk�1

 zk � P
w fz

wz*
zk

*zk .  (5B.2) 

Compared to (5A.7), the step-size is modified by the square of the modulus of Z , i.e. 

zk
*zk  | zk |2 . 

 

Vector case  

Now consider function  of a complex column vector z , and the 

function *( , ) ( )f f z z z z . Suppose there is a small perturbation proportional to z . For the 

vector case, there are two possibilities, one is when the perturbation is Hz , where H  is a 

scalar and the other is when the perturbation is  , where  is an N Nu  matrix so that 

z�  has the same dimension as z .  

According to (5A.9), if fz  is real-valued, the first-order expansion of fz  at *( , )z z  is  

 fz (z �G z,z* �G z*) | fz(z,z*)� 2Re G z,�
z* fz  . 

If G H z z , then   

 
*

*

* * * *

*

( , ) ( , ) 2Re ,

                               ( , ) 2Re( )H

f f f

f f

H H H

H

� � | � �

 � �

z z zz

z zz

z z z z z z z

z z z
 .  (5B.3)  

When H  is aligned with * *

* *( ) ( )H Tf f�  �z zz z
z z , the change rate is maximum. Thus the 

RG of ( )f z   in this case is  

 * *

( ) *( ) ( )R T Hf f f�  �  �z zz z
z z z  , (5B.4) 

which is the SG pre-multiplied by Hz . The updates (5B.2) become, for this case of scalar 

relative change,  
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 * *1

H H
k k k k k k kf fP P�  � �  � �z zz z

z z z z z z z  .  (5B.5)  

Compared with (5A.10), the second term is multiplied by a square matrix of rank 1. 

If G  z z� , then  

 

*

*

*

* * * *

*

*

( , ) ( , ) 2Re ,

                               ( , ) 2ReTrace{ }

                               ( , ) 2Re ,

H

H

f f f

f f

f f

� � | � �

 � �

 � �

z z zz

z zz

z zz

z z z z z z z

z z z

z z z

� � �

�

�

 .  (5B.6)  

When  is aligned with *

Hf� zz
z  the change rate is maximum, and the RG of ( )f z  as a 

matrix is 
 

 *

( ) ( )R Hf f�  � zz
z z ,  (5B.7) 

which is the SG post-multiplied by Hz . The corresponding iterative minimization rule is  

 *1

H
kk k kfP� � � zz

z z z z  .  (5B.8)  

Compared with (5A.10), the second term is multiplied by a scalar k
H
kz z , i.e. the square of 

the norm of the equalizer vector. As a result, at each iteration, the effective step-size is 

adjusted by the magnitude of the equalizer. 

In fact, the first case where the RG is a scalar is a special case of the second one where 

the RG is a matrix. Specifically, when  is a diagonal matrix, with all the elements on the 

diagonal identical to the scalar H , . 

When z  is a row vector, we can derive the RG by considering its transpose and 

analyzing in a similar way as above.  

 

Matrix case  
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Now consider the RG in the matrix case. For function , suppose 

*( , ) ( )f f Z Z Z Z  and *( , )fZ Z Z  is analytic with respect to Z  and *Z  independently. If 

the perturbation is proportional to the current Z, there are three cases: Z multiplied by a 

scalar H , i.e.HZ ; Z pre-multiplied by an M Mu  matrix , i.e. Z� ; Z post-multiplied by an 

N Nu  matrix , i.e. Z� . 

According to (5A.11), when f (Z)  is real-valued, the first-order Taylor expansion is  

 fZ(Z�GZ,Z* �GZ*)  fZ(Z,Z*)� 2Re GZ,�
Z* fZ � o(GZ,GZ*)  (5B.9) 

When G H Z Z ,  

 
*

*

* * * * *

*

( , ) ( , ) 2 Re , ( , )

                                  ( , ) 2 Re( Trace{ })H

f f f o

f f

H HH

H

H H� �  � � �

| � �

Z Z ZZ

Z ZZ

Z Z Z Z Z Z Z

Z Z Z
 (5B.10)  

Thus the RG of f (Z)  for scalar relative change is  

 * * *

( ) ( ) Trace{ }) Trace{ } Trace( { }R H H H Hf f f f  �  � � �Z Z ZZ Z Z
Z Z Z Z .   (5B.11) 

When H  is aligned with the direction of Trace{�
Z* fZZH }, the change rate is maximum. 

The adaptation, for minimization, for matrix Z is  

 *1 Trace{ }H
k k k kfP� � � ZZ

Z Z Z Z . (5B.12) 

When ,  

 

*

*

*

* * * * *

*

*

( , ) ( , ) 2Re , ( , )

                                    ( , ) 2Re(Trace{ })

                                  ( , ) 2Re(Trace{( ) })

                      

H

H H

f f f o

f f

f f

� �  � � �

| � �

 � �

Z Z ZZ

Z ZZ

Z ZZ

Z Z Z Z Z Z Z

Z Z Z

Z Z Z

� � � � �

�

�

*

*            ( , ) 2Re , Hf f � �Z ZZ
Z Z Z�

  (5B.13) 
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Thus when a pre-multiplying matrix relative change �  is aligned with the corresponding 

RG 

 *

( ) ( )R Hf f�  � ZZ
Z Z  , (5B.14) 

the change rate is maximum. Compared with the SG of a function with respect to complex 

matrix, RG is the SG multiplied by ZH  from the right side. The minimization updating for 

matrix Z is  

 *1

H
k k k kfP� � � ZZ

Z Z Z Z  . (5B.15) 

When ,  

 

*

*

*

* * * * *

*

*

( , ) ( , ) 2 Re , ( , )

                                  ( , ) 2 Re(Trace{ })

                                  ( , ) 2 Re ,

H

H

f f f o

f f

f f

� �  � � �

| � �

 � �

Z Z ZZ

Z ZZ

Z ZZ

Z Z Z Z Z Z Z

Z Z Z

Z Z Z

� � � � �

�

�

   (5B.16) 

When a post-multiplying matrix relative change  is aligned with the corresponding RG   

 *

( ) ( )R Hf f�  � ZZ
Z Z  , (5B.17) 

the change rate is maximum. The RG in this case is the SG multiplied by ZH  from the left 

side. The minimization adaptation for matrix Z becomes  

 *1

H
k k k k fP� � � ZZ

Z Z Z Z  . (5B.18) 

The RG for scalar relative change can be seen as a special case of RG for matrix 

relative change. Comparing (5B.11) with (5B.14) and (5B.17), we can see that the scalar 

RG is the trace of the matrix RG.  

For comparison, the minimization iterations based on gradient descent with the SG 

and RG of a function of complex variables are listed in the following table:  
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Table 5-1 SG and RG for complex variables 

( )f �  SG RG 
Scalar H  Pre-  Post-  

( )f z
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Appendix 5C   

Standard Gradient and Relative Gradient for a 

Special Case 

In practical applications, the function of the variable is usually defined as the 

expectation of some other function, i.e. ( ) [ ( )]f z E G y  .  

 

Scalar case  

Suppose z  is a complex scalar, and function  

 ( ) [ ( )] [ ( )]f z E G y E G zx  , (5C.1) 

is the expectation of real-valued function ( )G y , with x  being a known scalar, and y zx  . 

For function Gy ( y, y*)  G( y) , for a small perturbation G y  at y , the Taylor 

expansion of Gy  is  

 * * * * *

*
( , ) ( , ) ( , )

y y
y y

G G
G y y y y G y y y y o y y

y y
G G G G G G

w w
� �  � � �

w w
.   (5C.2) 

Substituting (5C.2) into the function (5C.1), we have 

 

*

* * *

* * * *

*

( ) [ (( ) )] [ ( )] [ ( , )]

                 [ ( , )] [ ] [ ] ( , )

                 [ ( , )] 2 [Re ]

                 ( ) 2 [Re

y y

y

y

y

y

y

f z z E G z z x E G y zx E G y zx y z x
G G

E G y y E zx E z x o z z
y y

G
E G y y E zx

y
G

f z E z
y

G G G G G

G G G G

G

G

�  �  �  � �

w w
 � � �

w w
w

| �
w

w
�

w
 ]x

 (5C.3) 
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Thus the SG of ( )f z  is 
* *

*
( [ ]) [ ]

y yG G
E x E x

y y
w w

 
w w

. If we replace G z  with RG defined 

as zH , and derive the Taylor expansion in a similar way as the above, we will have that  

 ( ) ( ) 2 [Re ] ( )
yG

f z z f z E z x o
y

H H H
w

�  � �
w

.     (5C.4) 

When H  is in alignment with * * *

*
( [ ]) [ ]

y yG G
E z x E x z

y y
w w

 
w w

, maximum change rate is 

achieved. This means that the RG of ( )f z  for scalar relative change is * *

*
[ ]

yG
E x z

y
w

w
.  

For the scalar complex variable z , the minimization adaptation for z  with the 

stochastic RG and SG is as follows, respectively:  

 1 *

*SG: 
y

k kkz
G

z x
y

P�  �
w

w
  (5C.5) 

 *

1 *

*RG: 
y

k k k k k

G
z x z z

y
z P�

w

w
 �   (5C.6) 

where in the RG case, the step-size of the updating is adjusted by the square of the modulus 

of the variable, i.e. zk
*zk .  

 

Vector case  

Now consider the case when the variable is a complex column vector,  

 ( ) [ ( )] [ ( )]Tf E G y E G  z z x , (5C.7) 

where ( )G y  is real-valued function, z  is applied on a column vector x , i.e. Ty  z x , and 

y is a scalar. 
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As in the complex scalar variable case, substituting (5C.2) into the function (5C.7), we 

have 

 

* *

* * *

*

*

*

( ) [ (( ) )] [ ( )] [ ( , )]

                 [ ( , )] [ ] [ ] ( , )

                 [ ( , )] 2 [Re ]

                 [ ( , )]

T H
y

y

y

y

T T

y yT H

y T

f E G E G y E G y y
G G

E G y y E E o
y y

G
E G y y E

y

E G y y

G G G G G

G G G G

G

�  �  �  � �

w w
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w w
w

| �
w

 �

z z z z x z x z x z x

z x z x z z

z x

* *

*

*

*

2 [Re ]

                 [ ( , )] 2Re ,

                 ( ) 2Re ,

y

y T

y

y

G
E

y
G

E G y y E
y

G
f E

y

G

G

G

w

w

w
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w

�
w

 
w

x z

z x

z z x

 (5C.8) 

Thus the SG of f (z)  is 

 *

*

*
( ) [ ]

yG
f E

y
w

�  
wz

z x  .  (5C.9)  

From the analysis of RG of a general function ( )f z , we know that the RG for the 

vector case can be defined in two ways: Hz  and . The first can be considered as a special 

case of the second one, where the matrix is a diagonal matrix with identical elements. If we 

consider the RG for matrix relative change, and replace G z  with  to derive the Taylor 

expansion as the above, we will have that  

 

*

*

*

*

 

               

( ) ( ) 2 Re , ( )

( ) 2 Re , ( ) 

y

y H

G
f f E o

y

G
f E o

y

w
�  � �

w

w
 � �

w

z z z z x

z x z

� � �

� �

.   (5C.10) 
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When  is in alignment with *

*
[ ]

y HG
E

y
w

w
x z , the change rate is maximum. This means 

that the RG of f (z)  for matrix relative change is  

 ( ) *

*
( ) [ ]

yR HG
f E

y
w

�  
w

z x z .  (5C.11) 

When �  is a diagonal matrix with identical elements, i.e. H I� , the change rate is 

maximum when the scalar H  has the value * *

* *
Trace{ [ ]} [ ]

y yH HG G
E E

y y
H

w w
  

w w
x z z x . Thus 

the RG of f (z)  for scalar relative change is 

 *( )

*
( ) [ ]

yR HG
f E

y
w

�  
w

z z x   (5C.12) 

For the vector case, the iterative updates of z  with the stochastic RG and SG is as 

follows, respectively:  

 1 *

*SG: 
y

k kk

G
y

P�  �
w

w
z z x   (5C.13) 

 *

1 *

*

*
RG( ): H H

k k k
y y

k kk k k k

G G
y y

P PH �

w w
  � �

w w
z z z x z z z z x   (5C.14) 

                             1 *

*RG( ): H
k k

y
k k k

G
y

P�  
w

w
�z z x z z�                                      (5C.15)  

 

Matrix case  

At last we consider the matrix case. Similarly, the function of the matrix can be 

expressed as  

 f (Z)  E[G(y)]  E[G(Zx)]   (5C.16) 
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where ( )G y  a real-valued function, and Z  is applied on a known column vector x , i.e. 

 y Zx  is a column vector. 

For function 
*( , ) ( )G G y y y y , when there is a small perturbation G y  at y , the Taylor 

expansion of Gy  is  

 Gy (y �Gy,y* �Gy*)  Gy(y,y*)� G y,�
y*Gy � G y*,�yGy � o(Gy,Gy*) (5C.17) 

Substituting (5C.17) into the function (5C.16),  

 

*

*

* * *

* * *

*

*

( ) [ (( ) )] [ ( )] [ ( , )]

                 [ ( , )] , , ( )

                 [ ( , )] 2 [Re , ] ( )

                 [ ( , )] 2 Re ,

f E G E G E G

E G E G E G o

E G E G o

E G

G G G G G

G G G

G G

G

�  �  �  � �
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 �

y

y y y yy

y yy

y

Z Z Z Z x y Zx y Zx y Z x

y y Zx Z x y

y y Zx y

y y Z *

*

( )

                 ( ) 2 Re , ( )

 

 

H

H

E G o

f E G o

G

G G

�

� � 

�

�

yy

yy

x y

Z Z x y

(5C.18) 

Thus the SG of ( )f Z  is 
   
�

Z* f (Z)  E[�
y*Gyx

H ].  

If we replace GZ  with , and derive the Taylor expansion in a similar way as in 

previous parts, we will have that  

   (5C.19) 

When  is in alignment with 
   
E[�

y*Gyy
H ], maximum change rate is achieved. This means 

that the RG of ( )f Z  with respect to Z for pre-multiplying matrix change is  

 
   
�( R) f (Z)  E[�

y*GyyH ]  (5C.20) 

Comparing the relation between the RG and SG, we can see that  
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�( R) f (Z)  E[�

y*GyyH ]  E[�
y*Gyx

H ZH ] �
Z* f (Z)ZH   (5C.21) 

If , then  

   (5C.22) 

When  is in alignment with 
   
E[ZH�

y*Gyx
H ], maximum change rate is achieved. This 

means that the RG of ( )f Z  with respect to Z for post-multiplying matrix change is  

 
   
�( R) f (Z)  E[ZH�

y*Gyx
H ]  (5C.23) 

As mentioned before when the variable is a matrix, RG for scalar relative change can 

be considered as a special case of RG for matrix relative change. When GZ  HZ , when 

* *Trace{ [ ]} Trace{ [ ]}H H HE G E GH  �  �y yy y
y Z x  the maximum change rate is 

achieved. With scalar relative change, the elements in matrix Z will change proportionally 

at each iteration, so the performance is not expected to be good.  

The iterative adaptation for Z  with the stochastic RG and SG is as follows, 

respectively:  

 *1SG: k k
H
kGP� � � yy

Z Z x   (5C.24) 

 *1RG( ): Trace{ [ ]}k kkk
HE GH P�  � � yy

Z Z y Z   (5C.25) 

 *1RG(pre ): k k
H

kkGP�  � � yy
Z Z y Z�   (5C.26) 

 *1RG(post ): H
k

H
k k k k GP� � � yy

Z Z Z Z x�   (5C.27) 
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Chapter 6  

Channel Shortening for OFDM with 

Relative Gradient  

 

6.1 Introduction  

In orthogonal frequency division multiplexing (OFDM) systems, a cyclic prefix (CP) is 

usually used to reduce inter-carrier interference (ICI) and inter-symbol interference (ISI). 

To be effective, the length of the CP should be longer than that of the channel impulse 

response. The transmission of a long redundant CP with each OFDM data block takes 

power and reduces the data rate. If the CP is not long enough for long channel impulse 

responses, output processing for channel shortening is implemented to shorten the effective 

channel impulse response. The CP results in redundancy or duplication in the transmitted 

CP symbols and the symbols in the OFDM block, which can be employed for channel 

shortening. In this chapter, we will study use of the relative gradient to achieve channel 
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shortening in OFDM systems, which provides an alternative to the standard gradient in 

channel shortening algorithms. Two blocks of shortener outputs that should remain 

redundant as a result of the redundant CP symbols and corresponding symbols in the 

OFDM block will be used for adaptation each time. The criteria functions used for 

adaptation are squared-error criteria that have been previously defined in [1], [2]. Our block 

processing scheme allows the use of relative gradient in the matrix adaptation containing 

the response of the shortener, with Toeplitz constraint. Also, we will use inter-symbol 

interference (ISI), together with the power ratio proposed in previous work [2] as the 

criteria to judge performance. 

In Section 6.2, the model of the OFDM system is introduced, including the basic 

concepts and notation. In Section 6.3, some previous work on channel shorting that used 

the redundancy of the CP is reviewed. Considering multiple pairs of the CP and the 

corresponding OFDM symbols, we formulate the problem in matrix form and use the 

relative gradient for the cost function optimization. In Section 6.4, preliminary results for 

different algorithms are shown. We also discuss the potential directions of future research 

that would lead to a comprehensive evaluation of channel shortening algorithms. 

 

6.2 Review of OFDM 

In this section, we review the system model of OFDM. Some of the notation used in this 

chapter is the same as that used in the previous chapters for equalization problems in the 

single carrier systems, but since the models are different, the meaning of the notation will 

be clarified. Generally, an OFDM system splits the source stream into N  sub-streams. 
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These sub-streams are used to modulate N  parallel subcarriers, which employ a narrow 

bandwidth each and are orthogonal to each other. The symbol rate on each subcarrier is 

reduced by a factor of N  compared to a single carrier modulation scheme that occupies 

the whole bandwidth. 

Typically in OFDM systems guard intervals are used to combat inter-symbol 

interference (ISI) and inter-carrier interference (ICI). The guard interval can be zero 

padding or cyclic prefix (CP) as mentioned for the single carrier scheme in Chapter 3 [3]. 

In practice, the CP is more commonly used in OFDM because it allows the use of a single-

tap equalizer at the receiver side, provided the CP length is longer than the channel impulse 

response. 

A model of the OFDM system is shown in Fig. 6.1. The input stream { ( )}S n�  is divided 

into N  substreams, and at time k , the symbols in the size- N block can be written as 

[ (1),..., ( )]T
k k kS S N S� � � .  

  

Fig. 6.1 OFDM system 
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OFDM symbols can be efficiently generated using inverse fast Fourier transform 

(IFFT). Denote F  as the N Nu  normalized IFFT matrix with entries 
21

n

mn
N

j

mF e
N

S

  , 

, 0,1,..., 1m n N � , then the OFDM symbol block at time k  can be expressed as   

 k k s FS� .  (6.1) 

The block kS�  and ks  are usually called the frequency domain signal and the time domain 

signal respectively, due to the fact that IFFT is used to convert signal in the frequency 

domain to that in the time domain.  

Suppose the length of the CP is Q . With the CP, the last Q  symbols of an OFDM block 

is copied and padded at the beginning of each block. Let the OFDM block at time k  be 

(1),..., ( )[ ]T
k k ks Ns s . From the figure, it can be understood that the last Q  symbols in the 

k -th block, i.e. ( ), ( ),.1 .. )2 , (k k ks N s N s NQ Q� �� � , are copied and padded ahead of the 

OFDM block. The OFDM blocks with their CP are then converted into a serial sequence 

{ ( )}r n , where  

 
( )      1,..,

( ( ) )       
( )             1 ,..,

k

k

i
i

i
s N i

r k N
s i N

Q Q
Q

Q Q Q
�

�
�
�  ­

�  ®  � �¯
,  (6.2) 

which can be seen from Fig. 6.2. 
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Fig. 6.2 Parallel to serial transmission 

The serial CP padded OFDM sequence { ( )}r n is transmitted through the channel 

[ (0), (1),..., ( )]Th h h L h , which generates the channel output sequence { ( )}x n . Omitting 

noise, the output of the channel can be expressed as   

 ( ) T
nx n  h r ,  (6.3) 

where [ ( ),..., ( )]n
Tr n r n L �r .  

When the channel length is larger than the length of the CP, such as in digital 

subscriber loops (DSL) [4], the ICI cannot be removed even with the use of the CP. In that 

case, there is a need for a channel shortener so that the maximum excess delay of the 

shortened channel does not exceed the length of the CP. A channel shortener can be 

considered as a generalization of channel equalizer. Channel shortening results in a non-

ideal but shorter channel, and can be achieved with a shorter linear filter compared to an 

equalizer. When the cascaded channel-shortener system has the ideal response with a single 

non-zero tap, the shortener becomes an equalizer.  
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In Fig. 6.1, there are two dotted blocks indicating the possible use of time domain 

equalizer and frequency domain equalizer. In OFDM, equalization can be realized simply 

with a single-tap equalizer in the frequency domain. As a result, shortener is usually 

combined with a frequency-domain equalizer after FFT. However, there have been many 

studies of equalization in the time domain [5]–[7], [8], [9]. In fact, there is a connection 

between the channel shortener and time domain equalizer, and this will be discussed briefly 

later in this section. 

The impulse response of the shortener is denoted as [ (0), (1),..., ( )]Tw w w M w . 

Transmitting the output of the channel { ( )}x n  through the shortener gives the shortener 

output sequence { ( )}y n , where the output symbol can be expressed as  

 ( ) n
T

ny n  w x  , (6.4) 

with [ ( ),..., ( )]n
Tx n x n M �x . Specifically, the output with the shortener at the 'n -th 

iteration in adaptive updating can be expressed as ( )
'( )n T

n ny nc  w x . 

Let c  be the cascaded response of the channel and the shortener, i.e. *c h w� . 

Suppose we want to shorten the channel length to 1K � , then c  should have a window of 

length 1K �  containing the major taps, with the taps outside the window having very small 

magnitude. When 1K Q� d , the ISI that affects the last KQ �  symbols in the cyclic prefix 

will be the same as that which affects the corresponding symbols in the OFDM block. 

Specifically, when the channel is shortened to have length Q , i.e. 1K Q�  , the last symbol 

in the cyclic prefix should be the same as the last symbol in the OFDM block; and when 

1K Q� � , the equality relation should hold for multiple pairs of cyclic prefix symbols and 

corresponding data symbols in the OFDM block. Let '  be the designed delay value of the 
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cascaded system, which indicates the starting location of the effective length-( 1K � ) 

window. Selection of a good delay parameter '  was considered in  [2] and [10], the goal 

being to concentrate the shortened channel within the window. Including the delay ' , we 

can expect that with a shortener,  

 ( ( ) ) ( ( ) )y k N i y k N i NQ Q� �'�  � �'� � ,  (6.5) 

where index i takes values within the range ' iQ Qd d , with 'Q  an integer satisfying 

1 'Q Qd d  and determined by the effective length of the shortened channel. 

The redundancy of the CP has been used for channel shortening and also equalization 

in OFDM systems [2] – [4], [8]–[10]. In equalization algorithms, we require that every CP 

symbol be equal to the corresponding OFDM symbol [8], [9], [13]. In other words, 

equalization enforces a more strict constraint on the redundancy of the CP. In this chapter, 

we focus on obtaining channel shortening and consider redundancy of a subset of CP 

symbols, instead of every CP symbol. We will see in Section 6.4 through simulations that 

equalization can be achieved to some extent with our proposed shortening algorithm. In 

the next section, we will review the shortening algorithms and explain our proposed 

algorithm based on the relative gradient. 

 

6.3 Channel Shortening Algorithms 

In this section, the algorithms employing the information of the guard intervals for channel 

shortening will be reviewed first. Based on the ideas of considering redundancy due to the 

CP, we consider use of the relative gradient for adaptive blind channel shortening. 
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6.3.1 Review of Shortening Algorithms 

We have shown in the previous section that when the length of the cascade system of the 

channel and the shortener is shorter than or equal to Q , the redundancy between part of the 

CP and the corresponding OFDM symbols is maintained. The extent of the redundancy is 

determined by the length of the shortened channel.  

In [11], the authors proposed the Multicarrier equalization by restoration of 

redundancy (Merry) algorithm. In other words, the goal is to shorten the channel to the 

length of the CP. The cost function is defined to minimize the difference between the last 

symbol in the CP and its corresponding OFDM symbol (last symbol in OFDM block). 

Specifically, for the k -th OFDM block, the last symbol in the CP is a copy of the OFDM 

symbol ( )ks N . When transmitted in serial sequence, the last CP symbol is denoted as 

( ( ) )s k N Q Q� � , and it is equal to the last symbol in the OFDM block ( ( ) )Ns k N Q Q �� � . 

As a result, the Merry objective function has the expression  

 2( ) [| ( ( ) ) ( ( ) ) | ]MerryJ E y k NN y k NQ Q Q Q� ' � �� � � ' � �w .  (6.6) 

The shortener is updated once with one transmitted OFDM block. With a stochastic 

gradient descent method, the adaptation for vector w  is  

 
� �

( ) )

1

(

( ) ( )

*                                    (

( ( ) ) ( ( ) )

)

k

k N

k k

NN

k

k

y k N y k N N

Q Q Q Q

P Q Q Q Q

� � �

�

�' � �'�

� ' � � � � � �

�

�� ' �w w

x x
, (6.7) 

where the shortened outputs are from the shortener at the k-th iteration. Since a shortener 

with all the elements zero will make the Merry cost function (6.6) null, a normalization 

may be implemented at the end of each iteration.  
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Since there are a total number of Q  symbols in the CP, an intuitive generalization of 

the Merry algorithm is to use more information at each iteration. In [2], the authors 

proposed the forced redundancy with optional data omission (Frodo) algorithm by 

exploiting the redundancy of multiple pairs of the CP symbols and the corresponding 

OFDM symbols. The cost function of the Frodo algorithm is  

 2( ) [| ( ( ) ) ( ( ) ) | ]
fi

Frodo
S

J E y k N y ki iN NQ Q
�

� ' � � ' � � � � �¦w ,  (6.8) 

where fS  is a subset of {1,2,..., }Q . Note that cost function of the Frodo algorithm can be 

seen as a generalization of the Merry algorithm; when i takes single value Q , the Frodo 

cost function reduces to that of the Merry algorithm.    

A cost function similar to (6.8) was used in [14] and [9] for equalization. In [14], it is 

pointed out that by requiring all the symbols in the cyclic prefix to equal the corresponding 

OFDM symbol, equalization can be achieved in the time domain. The equalization 

approach of [14] can be seen as a special case of channel shortening [2] with the goal to 

shorten the channel to a single tap.  

In [2], it was shown that the optimization of (6.8) with a constraint for avoiding  w 0  

is equivalent to a group of optimization problems, some of which can be solved with an 

existing maximizing algorithm in [15] based on an iterative eigen-decomposition. The 

adaptation for shortener w  in the Frodo algorithm avoids normalization by division at each 

iteration as in the Merry algorithm. Although the Frodo algorithm does not use gradient 

descent method directly, the idea of looking at a block of CP symbols provides an 

interesting way to use the redundancy information. In the next section, we will use the cost 

function of the Frodo algorithm, and use the relative gradient for gradient descent. 
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6.3.2 Shortening Algorithms with Relative Gradient 

In this section, relative gradient will be used for channel shortening based on the cost 

function of the Frodo algorithm.  Recall the cost function of Frodo (Merry is a special case 

when i Q  ) is  

 � � � � 2( ) | ( ( ) |)
f

Frodo
i S

kJ E y k i NN y k iNQ Q
�

ª º � � �¬ ¼� � ' � � � '¦w .  

At each iteration, the outputs are from the shortener from the previous iteration. With the 

standard gradient, the adaptation for the shortener is   

� � � �� �

� �

( ) ( )

( (

1

*

) )

[ ( (

                                               

)

 

)

 ]

fi S

k N k N

k k
k k

i N i

E y k N y k Ni N i

Q Q

P Q Q
�

�

�

� �' � � '� �

� � � �

�

 � � � ' � � � '¦w w

x x
. (6.9) 

At convergence, we expect that the coefficients for kw  and 1k�w  would ideally be 

equal. Thus, at the steady state, the m-th element of vector )(k N iQ � '� �x  and )(k N N iQ � � '� �x , 

expressed as � �)( iN mx k Q � �'��  and � �)( N i mx k N Q � � � ' �� , 0,1,...m M  

should satisfy 

 
� � � �� �

� � � �� �

( ) ( )

*

[ ( (

         

) )

) ) ( (  ]=0

fS

k

i

kE y k N y k N

x k N x k

i N i

i m N iN m

Q Q

Q Q

�

� � � ' � � � '

� � ' � � �� ' �

�

�

�

� �

¦
 , (6.10) 

and this is equivalent to  

� � � �� � � �

� � � �� � � �

*( ) ( )

*( ) ( )

) ) ) ]

) ) ) ]

[ ( ( (

= [ ( ( (
f

f

i S

k k

k

S

k

i

E y k N y k N x k N

E

i N i

y k N

i m

i N i Ny k N x ik N m

Q Q Q

Q Q Q

�

�

� � � �

� � �

� � ' � � � ' � � ' �

� � ' � � � ' � � � ' ��

¦

¦
. 

  (6.11) 
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Let ( )k ND Q� �'  and )( Nk NE Q� �'� , then equation (6.11) can be expressed in 

a simpler form as  

 
� � � �� � � �

� � � �� � � �

*( ) ( )

*( ) ( )

[ 

=  

]

][
f

f

k k

k

i S

i S

k

E y y x

E

i i i m

iy y xi i m

D E D

D E E

�

�

� � � �

� � �

�

� �

¦

¦
 . (6.12) 

Suppose the shortener w is approximated to be doubly-infinite in length. Following 

the proof for Bussgang condition in [16], we see that 

 ( ) ( ) ( )
m

i i my x w mD D
�f

 �f

� � �¦  , (6.13) 

and for any integer n, 

 
( ) ( ) ( )

( ) ( )

m

m

i n i n m

i

y x m

x m

w

w m n

D D

D

�f

 �f

�f

 �f

 � � � �

� �

�

� 

¦

¦
 . (6.14) 

For a fixed integer n, multiplying both sides of equation (6.12) with *( )w m n�  and 

summing over all integers m�f� � �f , we have 

 

� � � �� � � �

� � � �� � � �

� � � �� � � �
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� � � �� � � �
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E y y y

E

i i i m
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 �

� �
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].
fi S�

¦

    (6.15) 

The third line and the last line in (6.15) gives  
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                � � � �� � � � � �� �*( ) ( ) 0][
f

k k

i S
E y yi i i yn i nyD E D E

�

� � � � � � ��  ¦ ,  (6.16) 

which is: 

              
� � � �� �

� � � �� �

( ) ( )

*( ) ( )

[ ( (

          (

) )

) ( )  ]=0

f

k k

k

i

k

S
E y k N yi N i

i n N

k N

y k N y k N i n

Q Q

Q Q

�

� � �

� �

� � ' � � � '

� � ' � � � � '� �

¦
.  (6.17) 

When { }fS Q  , equation (6.17) corresponds to the steady state of the Merry 

algorithm. In fact, we can make fS  be a set containing a single index and focus on a single 

CP and its corresponding OFDM symbol; then at the steady state, we should have ideally 

            
� � � �� �

� � � �� �

( ) ( )

*( ) ( )

( (

          

) )

) )( (  =0

k k

k k

i N i

i

y k N y k N

m N i my k N y k N

Q Q

Q Q

� �� � ' � � � '

� � ' � � � � ' �

�

� � �
. (6.18) 

This means that the cross-correlation of the difference of the cyclic prefix and the 

corresponding OFDM symbol with any time lag should be zero. As in the Bussgang 

condition in the RG Bussgang algorithms, this steady state condition can appear explicitly 

in the updates.  

As in the Bussgang equalization case, the shortener cannot be doubly-infinite in 

practice. However if we start from an ideal doubly-infinite shortener and keep only the 

central significant taps, we get an FIR filter, and the equation in (6.18) should still hold 

approximately. 

Let W be a Toeplitz matrix of dimension ( )P P Mu �  containing the impulse 

response w of the shortener in its rows, 0 P Q� d . Let the output block of length P M�  

from the channel be  
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� � � �

� �
) , ) 1 ,

             ..., )

[ ( (

( ]1 T

CP
k kx N x k

k

N

x P MN

Q Q Q Q

Q Q

 � �

�

� � ' � � ' �

� � ' � � �

x�
,   (6.19) 

then � � � �( ) ( )[ ) ,.. 1( ., ) ](C k k TP CP
k k y N k ky PNQ Q Q Q � � ' � � ' � � � �Wxy ��  

corresponds to the last P symbols in the cyclic prefix. Also let  

 
� � � �
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) , ) 1 ,

     

[ ( (
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� � � ' � � � ' �

� � � ' � �

 � �

��

x�
, (6.20) 

then � � � �( ) ( )) ,..., ) 1( ][ (k k T
k k y N yk N k N PNQ Q Q Q� � � ' � � � ' �  � � �y Wx� �  

corresponds to the last P symbols in the OFDM block. The positive integer P indicates the 

number of pairs of CP and OFDM symbols used for redundancy. With these definitions, 

the Frodo cost function with 1{ ,..., }fS PQ Q� � can be expressed as  

2 2( ) [| | ] [| )( | ]Frodo k k
CP C

k k
P

kJ E E �  �W xW y y x�� � � � . 

With the expectation replaced by instantaneous value, the adaptation for matrix W 

with standard gradient descent is  

1

)

{ }

( )(CP CP H
kk k k k

k k

k

Toeplitz

P

�

 � � �

 

W W y y x

W

x

W

� � �
�

��
 .    (6.21) 

The iterative matrix updates (6.21) with Toeplitz constraint, starting from a Toeplitz matrix, 

will keep W a Toeplitz matrix with repeated rows containing w, and this is equivalent to 

the vector update in (6.9). 

From the derivation in Chapter 5, we know that the following relation between the 

standard gradient and the relative gradient should hold: 

 *
( ) ( ) ( )R HJ J�  �W W

W W W� � .  (6.22) 

Thus the relative gradient in the present case has the expression  
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                     ( ) ( )(( ) ) )( )(CP CP CP CP
k

R H H H
k k kk kk kJ�  � �  � �W W y y xx W y y y y� � � �� � �� � .  (6.23) 

With the relative gradient, the adaptation (6.21) becomes  

 
1

(
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(

{

) )H
k k k
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k k k k

k kToeplitz
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 � � �

 

W W y y y y W

W W

� � � � �
�

, (6.24) 

which will be called the relative gradient shortening (RGS) algorithm. In the RGS 

adaptation, the relative change for matrix kW  is the matrix ( )( )H
k

CP CP
k k k� �y y y y� � � � . As has 

been shown, at the steady state (6.18) is expected to hold. In the adaptation (6.24), the terms 

in (6.18) are used explicitly to update matrix W.  

From adaptation (6.24) we can see that when 1P  , ( )( )H
k

CP CP
k k k� �y y y y� � � �  is a scalar, 

so that the elements in kW  are updated proportionally at each iteration, and this will keep 

the shortener w in a certain sub-space. As a result, to use relative gradient effectively, we 

need to have 1P ! . 

 

6.4 Simulations and Discussion 

In this section, we will show some preliminary results for the proposed RGS channel 

shortening algorithm and compare them with those of the Merry and Frodo algorithms.  

The experiments were done for the DSL communication channels given in [17]. We 

will only give the results for one of the channels, since the results are consistent with 

different channel examples. 

In the example, the length of the channel is 512. The size of the OFDM block without 

the CP is 512. In other words, the size of FFT matrix used to generate the OFDM symbols 
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is 512 512N Nu  u . The length of the CP is 32Q  . The length of the shortener is set to 

be 16. The SNR of the channel is 40dB. For the proposed RGS algorithm and the Frodo 

algorithm, we use 10P   pairs of the CP and the OFDM symbols for the cost function 

based on redundancy in (6.8), i.e. 9,.. ,{ }.fS Q Q � . The delay parameter is obtained with 

the method in [10], with 21'   in the example.  

During iterations, we use two criteria to measure the performance of the algorithms. 

One is the inter-symbol interference (ISI) of the shortened channel, defined as  
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2
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| |ISI 1
max | |i

L
i

i

M

i

c
c

�

 

 �¦   (6.25) 

 for shortened system * c h w . Another criterion used is the ratio of the power inside the 

shortened window to that outside the window [2], [4], [11]. The window length is the size 

of the CP 32Q  . With this criterion, we are in effect trying to concentrate the shortened 

system taps with significant magnitudes within a range whose length is bounded by that of 

the CP. The higher the power ratio, perhaps we can expect the algorithm to be more 

effective in channel shortening.   

The curves for the ISI and the power ratio of the Merry algorithm, the proposed RGS 

algorithm and the Frodo algorithm are shown in Fig. 6.3 and Fig. 6.4. 

From Fig. 6.3, we can see that when the ISI is considered, our proposed RG shortening 

algorithm (RGS) has the lowest (best) ISI after convergence. The convergence speed of the 

RGS algorithm is almost the same as that of the Frodo algorithm, which is faster than that 

of the Merry algorithm. The convergence speed of the Merry algorithm is comparatively 

slow since only on CP symbol is used for redundancy at each iteration.  
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In Fig. 6.4, the power ratio is also compared. From the figure we see that the measure 

of the power ratio is not consistent with that of the ISI. After the ISI converges to a certain 

value, the power ratio may still change. In terms of power ratio, the Merry algorithm has 

the highest value after convergence. From this point of view, the Merry algorithm performs 

well in concentrating power. However, if we consider the whole OFDM system, we also 

need to check the effect of the channel shortening, i.e. whether the equalization can be 

solved in an efficient way after shortening. 

 

 

Fig. 6.3 ISI of the shortened channel. 
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Fig. 6.4 Power ratio of taps inside to those outside the window 

In Fig. 6.5, the actual impulse responses after channel shortening using the different 

algorithms is compared. The first 200 taps of the cascaded system c is shown, since there 

is a long tail of zeros in c. From the figure it can be seen with all three algorithms shortening 

can be achieved. The Frodo algorithm appears qualitatively to generate a shorter channel 

than the other algorithms. The RGS result is qualitatively also quite comparable. From the 

figure, it can be seen that with the Merry algorithm, the shortened channel has many 

nonzero taps with large magnitude in addition to the one with the largest magnitude, and 

this explains the high power ratio reflected in Fig. 6.4  These results indicate that a single 

performance criterion such as ISI or power ratio is not necessarily the best way to judge 

performance. 
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We found that the performance of the RGS and the Frodo algorithms depends on how 

many pairs of CP and OFDM symbols are used for redundancy. When P is selected to be 

small, the shortening may not be very good, and there will remain tails outside the window. 

 

Fig. 6.5 Impulse response of shortened channel, 10P  . 

 

We also did experiments for P Q  for the Frodo and our proposed RGS algorithms. 

The impulse responses of the shortened channels are shown in Fig. 6.6. From the figure, it 

can be seen that when the whole set of the CP is used for redundancy, i.e. {1, 2,..., }fS Q , 

qualitatively the RGS gives better performance. With the RGS algorithm the shortened 

channel has one dominant tap, with many of the other taps much smaller than the dominant 

ISI: 5.5dB 
Power ratio: 35dB 

ISI: 4.8dB 
Power ratio: 33dB 

ISI: 5.5dB 
Power ratio: 23dB 
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tap. The taps outside the window have very slightly heavier tails compared to the case when 

10P  . As a result, equalization may be realized to a good extent, with the possibility that 

ISI can be further reduced with a better selection of the parameters such as the length of 

the shortener. 

 

Fig. 6.6 Impulse response of shortened channel, P Q .  

To make a fair comparison of the algorithms, we need to consider multiple factors that 

affect the performance. The purpose of channel shortening is to remove the inter-carrier 

interference, and to make the equalization part easier for suppressing ISI. We have seen 

that qualitatively the shortened channel impulse response using RGS compares very 

ISI: 6dB 
Power ratio: 33dB 

ISI: 1dB 
Power ratio: 17dB 

ISI: 6.2dB 
Power ratio: 25dB 
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favorably against the Merry algorithm result and is also good compared to the Frodo 

algorithm outcome. The ISI measure is somewhat more consistent with this observation 

compared to the power ratio, which has been used in previous studies [2], [4], [11]. Better 

criteria need to be established that not only measure the performance of the shortening part, 

but also the degree to which the difficulty of final equalization is reduced.  

 

6.5 Conclusion 

In this chapter, we discussed the application of the relative gradient in channel shortening 

for OFDM systems. The redundancy of the cyclic prefixes was used to define the cost 

function. By formulating the problem in a matrix form, we showed how relative gradient 

can be used for the adaptation of a Toeplitz matrix containing the shortener vector. 

Simulation results showed that the proposed RG based algorithm performs better than an 

existing algorithm under the ISI criterion, but appears less effective in terms of power 

concentration. In future work, better criteria need to be found for a fair and comprehensive 

evaluation of the algorithms.  
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Chapter 7  

Conclusion 

 

In this dissertation, we explored blind equalization (BE) algorithms based on the concept 

of relative gradient, using constrained adaptation for the equalizer parameters. We studied 

two types of BE algorithms: one based on the independence of source symbols, and the 

other exploiting signaling constellation structure. Relative gradient was used in algorithms 

for adaptation of the equalizer matrix containing the response of the equalizer. The Toeplitz 

structure constraint on the equalizer matrix was incorporated into the iterations for faster 

convergence. In addition, we improved the algorithms by simplifying the constrained 

adaptations to equivalent computationally efficient equalizer vector adaptation. 

Furthermore, with approximation schemes for the terms used in the adaptation and efficient 

implementation of the iterations, the computational cost was further reduced. Channel 

shortening for OFDM systems with relative gradient adaptation was also investigated in 

preliminary work.  
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In Chapter 2, we reviewed basic ideas of blind source separation (BSS) and blind 

equalization. We gave examples of independent component analysis (ICA) based contrast 

functions and online adaptive algorithms for BSS. Two key ideas of ICA, whitening and 

orthogonality, were discussed. We explained the connection of BE to BSS by expressing 

the convolution-based equalization model as a matrix model. Finally we reviewed existing 

algorithms for BE including the widely used Bussgang-type algorithms and ICA-based 

algorithms. 

In Chapter 3, we started with BE for single carrier systems with block transmission 

schemes to allow BE to be achieved using BSS. Zeros or cyclic prefixes are padded 

between the transmitted blocks of source symbols as guard intervals. With the guard 

intervals, BE could be modeled as a standard BSS problem, with the separating matrix 

satisfying a Toeplitz or circulant structure constraint. For existing ICA-based algorithms 

for BSS that use the relative gradient, we proposed to include the structure constraint during 

adaptation for the “separating” matrix. The elements in the separating matrix were analyzed. 

With the Toeplitz or circulant structure, the matrix adaptation was simplified as an 

equivalent vector adaptation, which helps reduce computational cost. We also examined 

the channel characteristics that fit the use of the constrained ICA algorithms. In addition, 

for sources with independent in-phase and quadrature parts, the I/Q independence 

constraint was applied for phase recovery.   

In Chapter 4, we extended the previous results to continuous transmission symbol-rate 

single-carrier schemes with no zero padding or cyclic prefix. Although in this case the 

model does not satisfy the requirement of a standard BSS problem, we showed how BE 

can still be realized with constrained ICA-based algorithms. The equalizer impulse 
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response is contained in a Toeplitz matrix, which is used to separate the source symbols. 

Similar to the block transmission scheme, the matrix adaptation was simplified to become 

an equalizer vector adaptation. The computational cost of the algorithm can be reduced by 

implementing the algorithm with fast Fourier transform. In addition, we proposed to use 

approximation schemes to approximate the nonlinear cross-correlation terms used in the 

adaptation, which can reduce the computational complexity further. This idea of 

constrained adaptation can be applied generally with different adaptive ICA based 

algorithms. Similar to the block transmission scheme, the I/Q independence constraint can 

also be applied for continuous transmission case. 

In Chapter 5, we proposed an approach to process a block of equalizer outputs at each 

iteration rather than only the most recent output as in standard Bussgang algorithms. The 

Bussgang-type algorithms were further modified to make use of relative gradient (RG), 

which yields an effective BE scheme. With a block of equalizer outputs, the Toeplitz matrix 

constraint is enforced for faster convergence of equalizer coefficients. In the block RG 

version of the Bussgang type algorithms, the Bussgang condition at the steady state appears 

in the adaptation more explicitly, which yields faster convergence than the corresponding 

standard Bussgang algorithms. The block RG Bussgang-type algorithms work well for 

correlated sources as well. In this chapter, the relation between the block RG Bussgang-

type algorithms and the ICA-based algorithms was also discussed. Although the block RG 

Bussgang-type algorithms and the ICA-based algorithms start from different criteria, 

constellation signaling property and independence, respectively, they end up with similar 

forms for adaptation. 
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In Chapter 6, we explored the application of the relative gradient in channel shortening 

for orthogonal frequency division multiplexing (OFDM) systems. The OFDM scheme with 

cyclic prefix was studied. This redundancy was used to define a cost function to minimize 

the difference between the OFDM data symbols and the redundant cyclic prefix symbols. 

Simulation results showed that the proposed RG based channel shortening algorithm 

performs better than an existing method, in terms of faster convergence when the inter-

symbol interference from the shortened channel is measured. When the power 

concentration of the shortened channel was considered the algorithm with the relative 

gradient was slightly less effective. However, the goal of channel shortening is equalization 

and the ISI criterion may be more relevant. A comprehensive analysis of performance and 

other alternatives remains to be explored.   
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