29 research outputs found

    Service oriented networking for multimedia applications in broadband wireless networks

    Get PDF
    Extensive efforts have been focused on deploying broadband wireless networks. Providing mobile users with high speed network connectivity will let them run various multimedia applications on their wireless devices. In order to successfully deploy and operate broadband wireless networks, it is crucial to design efficient methods for supporting various services and applications in broadband wireless networks. Moreover, the existing access-oriented networking solutions are not able to fully address all the issues of supporting various applications with different quality of service requirements. Thus, service-oriented networking has been recently proposed and has gained much attention. This dissertation discusses the challenges and possible solutions for supporting multimedia applications in broadband wireless networks. The service requirements of different multimedia applications such as video streaming and Voice over IP (VoIP) are studied and some novel service-oriented networking solutions for supporting these applications in broadband wireless networks are proposed. The performance of these solutions is examined in WiMAX networks which are the promising technology for broadband wireless access in the near future. WiMAX networks are based on the IEEE 802.16 standards which have defined different Quality of Service (QoS) classes to support a broad range of applications with varying service requirements to mobile and stationary users. The growth of multimedia traffic that requires special quality of service from the network will impose new constraints on network designers who should wisely allocate the limited resources to users based on their required quality of service. An efficient resource management and network design depends upon gaining accurate information about the traffic profile of user applications. In this dissertation, the access level traffic profile of VoIP applications are studied first, and then a realistic distribution model for VoIP traffic is proposed. Based on this model, an algorithm to allocate resources for VoIP applications in WiMAX networks is investigated. Later, the challenges and possible solutions for transmitting MPEG video streams in wireless networks are discussed. The MPEG traffic model adopted by the WiMAX Forum is introduced and different application-oriented solutions for enhancing the performance of wireless networks with respect to MPEG video streaming applications are explained. An analytical framework to verify the performance of the proposed solutions is discoursed, and it is shown that the proposed solutions will improve the efficiency of VoIP applications and the quality of streaming applications over wireless networks. Finally, conclusions are drawn and future works are discussed

    QoS Scheduling in IEEE 802.16 Broadband Wireless Access Networks

    Get PDF
    With the exploding increase of mobile users and the release of new wireless applications, the high bandwidth requirement has been taking as a main concern for the design and development of the wireless techniques. There is no doubt that broadband wireless access with the support of heterogeneous kinds of applications is the trend in the next generation wireless networks. As a promising broadband wireless access standard, IEEE 802.16 has attracted extensive attentions from both industry and academia due to its high data rate and the inherent media access control (MAC) mechanism, which takes the service differentiation and quality of service (QoS) provisioning into account. To achieve service differentiation and QoS satisfaction for heterogenous applications is a very complicated issue. It refers to many fields, such as connection admission control (CAC), congestion control, routing algorithm, MAC protocol, and scheduling scheme. Among these fields, packet scheduling plays one of the most important roles in fulfilling service differentiation and QoS provisioning. It decides the order of packet transmissions, and provides mechanisms for the resource allocation and multiplexing at the packet level to ensure that different types of applications meet their service requirements and the network maintains a high resource utilization. In this thesis, we focus on the packet scheduling for difficult types of services in IEEE 802.16 networks, where unicast and mulitcast scheduling are investigated. For unicast scheduling, two types of services are considered: non-real-time polling service (nrtPS) and best effort (BE) service. We propose a flexible and efficient resource allocation and scheduling framework for nrtPS applications to achieve a tradeoff between the delivery delay and resource utilization, where automatic repeat request (ARQ) mechanisms and the adaptive modulation and coding (AMC) technique are jointly considered. For BE service, considering the heterogeneity of subscriber stations (SSs) in IEEE 802.16 networks, we propose the weighted proportional fairness scheduling scheme to achieve the flexible scheduling and resource allocation among SSs based on their traffic demands/patterns. For multicast scheduling, a cooperative multicast scheduling is proposed to achieve high throughput and reliable transmission. By using the two-phase transmission model to exploit the spatial diversity gain in the multicast scenario, the proposed scheduling scheme can significantly improve the throughput not only for all multicast groups, but also for each group member. Analytical models are developed to investigate the performance of the proposed schemes in terms of some important performance measurements, such as throughput, resource utilization, and service probability. Extensive simulations are conducted to illustrate the efficient of the proposed schemes and the accuracy of the analytical models. The research work should provide meaningful guidelines for the system design and the selection of operational parameters, such as the number of TV channels supported by the network, the achieved video quality of each SS in the network, and the setting of weights for SSs under different BE traffic demands

    Hybrid wireless broadband networks

    Get PDF
    A hybrid system is an integration of two or more different systems, particularly in this thesis referring to wireless broadband networks. However, to provide end-to-end quality of service (QoS) in a hybrid system is a challenging task due to different protocol in each system. In this thesis, we aim to improve the overall performance of hybrid networks in a disaster management by addressing the challenges as well as the problems in a homogeneous network. Such an approach allows more efficient multi-parameter optimization and significant improvements in the overall system performance. More specifically, we introduce two novel algorithms. The first is the novel end-to-end QoS algorithm for hybrid wireless broadband networks. We proposed the end-to-end QoS maps based on particular chosen parameters and analyse the simulation results. The QoS maps are applied to a few scenarios, and the performance evaluation of the constructed network is presented. Based on the results obtained by software simulation tools, the performance validation shows that the hybrid network has specific advantages and constraints in terms of number of users, preference, coverage and applications. The second algorithm presented is the novel in users’ application algorithm, the purpose of which is to optimize bandwidth for first responders applied in the PPDR project under grant agreement EU FP7 SEC PPDR-TC. This algorithm is responsible for incorporating more users and different levels of background load to a hybrid network. The proposed method analyses both positive and negative outcomes based on the results obtained. This algorithm has been presented in the PPDR project

    Spectrum Sharing Methods in Coexisting Wireless Networks

    Get PDF
    Radio spectrum, the fundamental basis for wireless communication, is a finite resource. The development of the expanding range of radio based devices and services in recent years makes the spectrum scarce and hence more costly under the paradigm of extensive regulation for licensing. However, with mature technologies and with their continuous improvements it becomes apparent that tight licensing might no longer be required for all wireless services. This is from where the concept of utilizing the unlicensed bands for wireless communication originates. As a promising step to reduce the substantial cost for radio spectrum, different wireless technology based networks are being deployed to operate in the same spectrum bands, particularly in the unlicensed bands, resulting in coexistence. However, uncoordinated coexistence often leads to cases where collocated wireless systems experience heavy mutual interference. Hence, the development of spectrum sharing rules to mitigate the interference among wireless systems is a significant challenge considering the uncoordinated, heterogeneous systems. The requirement of spectrum sharing rules is tremendously increasing on the one hand to fulfill the current and future demand for wireless communication by the users, and on the other hand, to utilize the spectrum efficiently. In this thesis, contributions are provided towards dynamic and cognitive spectrum sharing with focus on the medium access control (MAC) layer, for uncoordinated scenarios of homogeneous and heterogeneous wireless networks, in a micro scale level, highlighting the QoS support for the applications. This thesis proposes a generic and novel spectrum sharing method based on a hypothesis: The regular channel occupation by one system can support other systems to predict the spectrum opportunities reliably. These opportunities then can be utilized efficiently, resulting in a fair spectrum sharing as well as an improving aggregated performance compared to the case without having special treatment. The developed method, denoted as Regular Channel Access (RCA), is modeled for systems specified by the wireless local resp. metropolitan area network standards IEEE 802.11 resp. 802.16. In the modeling, both systems are explored according to their respective centrally controlled channel access mechanisms and the adapted models are evaluated through simulation and results analysis. The conceptual model of spectrum sharing based on the distributed channel access mechanism of the IEEE 802.11 system is provided as well. To make the RCA method adaptive, the following enabling techniques are developed and integrated in the design: a RSS-based (Received Signal Strength based) detection method for measuring the channel occupation, a pattern recognition based algorithm for system identification, statistical knowledge based estimation for traffic demand estimation and an inference engine for reconfiguration of resource allocation as a response to traffic dynamics. The advantage of the RCA method is demonstrated, in which each competing collocated system is configured to have a resource allocation based on the estimated traffic demand of the systems. The simulation and the analysis of the results show a significant improvement in aggregated throughput, mean delay and packet loss ratio, compared to the case where legacy wireless systems coexists. The results from adaptive RCA show its resilience characteristics in case of dynamic traffic. The maximum achievable throughput between collocated IEEE 802.11 systems applying RCA is provided by means of mathematical calculation. The results of this thesis provide the basis for the development of resource allocation methods for future wireless networks particularly emphasized to operate in current unlicensed bands and in future models of the Open Spectrum Alliance

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modiïŹed our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the ïŹeld of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    Medium Access Control Layer Implementation on Field Programmable Gate Array Board for Wireless Networks

    Get PDF
    Triple play services are playing an important role in modern telecommunications systems. Nowadays, more researchers are engaged in investigating the most efficient approaches to integrate these services at a reduced level of operation costs. Field Programmable Gate Array (FPGA) boards have been found as the most suitable platform to test new protocols as they offer high levels of flexibility and customization. This thesis focuses on implementing a framework for the Triple Play Time Division Multiple Access (TP-TDMA) protocol using the Xilinx FPGA Virtex-5 board. This flexible framework design offers network systems engineers a reconfigiirable platform for triple-play systems development. In this work, MicorBlaze is used to perform memory and connectivity tests aiming to ensure the establishment of the connectivity as well as board’s processor stability. Two different approaches are followed to achieve TP-TDMA implementa­tion: systematic and conceptual. In the systematic approach, a bottom-to-top design is chosen where four subsystems are built with various components. Each component is then tested individually to investigate its response. On the other hand, the concep­tual approach is designed with only two components, in which one of them is created with the help of Xilinx Integrated Software Environment (ISE) Core Generator. The system is integrated and then tested to check its overall response. In summary, the work of this thesis is divided into three sections. The first section presents a testing method for Virtex-5 board using MicroBlaze soft processor. The following two sections concentrate on implementing the TP-TDMA protocol on the board by using two design approaches: one based on designing each component from scratch, while the other one focuses more on the system’s broader picture

    Mathematical modelling of end-to-end packet delay in multi-hop wireless networks and their applications to qos provisioning

    Get PDF
    This thesis addresses the mathematical modelling of end-to-end packet delay for Quality of Service (QoS) provisioning in multi-hop wireless networks. The multi-hop wireless technology increases capacity and coverage in a cost-effective way and it has been standardised in the Fourth-Generation (4G) standards. The effective capacity model approximates end-to-end delay performances, including Complementary Cumulative Density Function (CCDF) of delay, average delay and jitter. This model is first tested using Internet traffic trace from a real gigabit Ethernet gateway. The effective capacity model is developed based on single-hop and continuous-time communication systems but a multi-hop wireless system is better described to be multi-hop and time-slotted. The thesis extends the effective capacity model by taking multi-hop and time-slotted concepts into account, resulting in two new mathematical models: the multi-hop effective capacity model for multi-hop networks and the mixed continuous/discrete-time effective capacity model for time-slotted networks. Two scenarios are considered to validate these two effective capacity-based models based on ideal wireless communications (the physical-layer instantaneous transmission rate is the Shannon channel capacity): 1) packets traverse multiple wireless network devices and 2) packets are transmitted to or received from a wireless network device every Transmission Time Interval (TTI). The results from these two scenarios consistently show that the new mathematical models developed in the thesis characterise end-to-end delay performances accurately. Accurate and efficient estimators for end-to-end packet delay play a key role in QoS provisioning in modern communication systems. The estimators from the new effective capacity-based models are directly tested in two systems, faithfully created using realistic simulation techniques: 1) the IEEE 802.16-2004 networks and 2) wireless tele-ultrasonography medical systems. The results show that the estimation and simulation results are in good agreement in terms of end-to-end delay performances

    Delay analysis for wireless applications using a multiservice multiqueue processor sharing model

    Get PDF
    The ongoing development of wireless networks supporting multimedia applications requires service providers to efficiently deliver complex Quality of Service (QoS) requirements. The wide range of new applications in these networks significantly increases the difficulty of network design and dimensioning to meet QoS requirements. Medium Access Control (MAC) protocols affect QoS achieved by wireless networks. Research on analysis and performance evaluation is important for the efficient protocol design. As wireless networks feature scarce resources that are simultaneously shared by all users, processor sharing (PS) models were proposed for modelling resource sharing mechanisms in such systems. In this thesis, multi-priority MAC protocols are proposed for handling the various service traffic types. Then, an investigation of multiservice multiqueue PS models is undertaken to analyse the delay for some recently proposed wireless applications. We start with an introduction to MAC protocols for wireless networks which are specified in IEEE standards and then review scheduling algorithms which were proposed to work with the underlying MAC protocols to cooperatively achieve QoS goals. An overview of the relevant literature is given on PS models for performance analysis and evaluation of scheduling algorithms. We propose a multiservice multiqueue PS model using a scheduling scheme in multimedia wireless networks with a comprehensive description of the analytical solution. Firstly, we describe the existing multiqueue processor sharing (MPS) model, which uses a fixed service quantum at each queue, and correct a subtle incongruity in previous solutions presented in the literature. Secondly, a new scheduling framework is proposed to extend the previous MPS model to a general case. This newly proposed analytical approach is based on the idea that the service quantum arranged by a MAC scheduling controller to service data units can be priority-based. We obtain a closed-form expression for the mean delay of each service class in this model. In summary, our new approach simplifies MAC protocols for multimedia applications into an analytical model that includes more complex and realistic traffic models without compromising details of the protocol and significantly reduces the number of MAC headers, thus the overall average delay will be decreased. In response to using the studied multiservice multiqueue PS models, we apply the MPS model to two wireless applications: Push to Talk (PTT) service over GPRS/GSM networks and the Worldwide Interoperability for Microwave Access (WiMAX) networks. We investigate the uplink delay of PTT over traditional GPRS/GSM networks and the uplink delay for WiMAX Subscriber Station scheduler under a priority-based fair scheduling. MAC structures capable of supporting dynamically varying traffic are studied for the networks, especially, with the consideration of implementation issues. The model provides useful insights into the dynamic performance behaviours of GPRS/GSM and WiMAX networks with respect to various system parameters and comprehensive traffic conditions. We then evaluate the model under some different practical traffic scenarios. Through modelling of the operation of wireless access systems, under a variety of multimedia traffic, our analytical approaches provide practical analysis guidelines for wireless network dimensioning

    Modeling And Dynamic Resource Allocation For High Definition And Mobile Video Streams

    Get PDF
    Video streaming traffic has been surging in the last few years, which has resulted in an increase of its Internet traffic share on a daily basis. The importance of video streaming management has been emphasized with the advent of High Definition: HD) video streaming, as it requires by its nature more network resources. In this dissertation, we provide a better support for managing HD video traffic over both wireless and wired networks through several contributions. We present a simple, general and accurate video source model: Simplified Seasonal ARIMA Model: SAM). SAM is capable of capturing the statistical characteristics of video traces with less than 5% difference from their calculated optimal models. SAM is shown to be capable of modeling video traces encoded with MPEG-4 Part2, MPEG-4 Part10, and Scalable Video Codec: SVC) standards, using various encoding settings. We also provide a large and publicly-available collection of HD video traces along with their analyses results. These analyses include a full statistical analysis of HD videos, in addition to modeling, factor and cluster analyses. These results show that by using SAM, we can achieve up to 50% improvement in video traffic prediction accuracy. In addition, we developed several video tools, including an HD video traffic generator based on our model. Finally, to improve HD video streaming resource management, we present a SAM-based delay-guaranteed dynamic resource allocation: DRA) scheme that can provide up to 32.4% improvement in bandwidth utilization
    corecore