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Abstract

The ongoing development of wireless networks supporting multimedia appli-

cations requires service providers to efficiently deliver complex Quality of Ser-

vice (QoS) requirements. Compared to earlier simple service networks which

only provided best effort service, the wide range of new applications in these

networks significantly increases the difficulty of network design and dimen-

sioning to meet QoS requirements. Traffic engineering that involves consid-

eration of multimedia applications is targeted at meeting QoS requirements

based on existing network resources. Improved service performance includ-

ing guaranteed delay, jitter and bandwidth, cannot be easily maintained by

legacy wireless networks.

Medium Access Control (MAC) protocols affect QoS achieved by wireless

networks. Research on analysis and performance evaluation of different pro-

posed MAC protocols is important for the efficient protocol design. As wire-

less networks feature scarce resources that are simultaneously shared by all

users, processor sharing (PS) models were proposed for modelling resource

sharing mechanisms in such systems. In this thesis, multi-priority MAC pro-

tocols are proposed for handling the various service traffic types. Then, an

investigation of multiservice multiqueue PS models is undertaken to analyse

the delay for some recently proposed wireless applications.

We start with an introduction of MAC protocols for wireless networks

xiii
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which are specified in IEEE standards and then review scheduling algorithms

which were proposed to work with the underlying MAC protocols to coopera-

tively achieve QoS goals. An overview of the relevant literature is given on

PS models for performance analysis and evaluation of scheduling algorithms.

We introduce four types of basic PS model, viz: egalitarian processor sharing

(EPS), generalized processor sharing (GPS), discriminatory processor sharing

(DPS) and multilevel processor sharing (MLPS) models.

We propose a multiservice multiqueue PS model using a scheduling scheme

in multimedia wireless networks with a comprehensive description of the ana-

lytical solution. Firstly, we describe the existing multiqueue processor sharing

(MPS) model, which uses a fixed service quantum at each queue, and correct a

subtle incongruity in previous solutions presented in the literature. Secondly,

a new scheduling framework is proposed to extend the previous MPS model to

a general case. This newly proposed analytical approach is based on the idea

that the service quantum arranged by a MAC scheduling controller to service

data units (SDUs) can be priority-based. In this model, the arrival process

and the service process of specified networks can be described by a specific

mathematical distribution. We obtain a closed-form expression for the mean

delay of each service class in this model. The proposed simple yet efficient

MAC protocol for wireless multimedia networks can support a wide range of

services. Our MAC protocol is designed to meet QoS requirements in terms

of the average delay. Some implementation issues of the new model are ad-

dressed. In summary, the advantages of this model over the traditional PS

approach for performance analysis of delay are: (i) it simplifies MAC proto-

cols for multimedia applications into an analytical model that includes more

complex and realistic traffic models without compromising details of the pro-

tocol; (ii) it significantly reduces the number of MAC headers, thus the overall
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average delay will be decreased.

In response to using the studied multiservice multiqueue PS models, we

apply the MPS model to two wireless applications: Push to Talk (PTT) service

over GPRS/GSM networks and the Worldwide Interoperability for Microwave

Access (WiMAX) networks, where delay performance is one of our primary

concerns. We investigate the uplink delay of PTT over traditional GPRS/GSM

networks and the uplink delay for WiMAX Subscriber Station (SS) scheduler

under a priority-based fair scheduling. MAC structures capable of supporting

dynamically varying traffic are studied for the networks, especially, with the

consideration of implementation issues, such as channel sharing schemes in

GPRS/GSM networks, retransmissions for the PTT service and traffic classes

specified in WiMAX standard. The model provides useful insights into the

dynamic performance behaviours of GPRS/GSM and WiMAX networks with

respect to various system parameters and comprehensive traffic conditions.

We then evaluate the model under some different practical traffic scenarios.

The performance analysis based on the model under realistic traffic conditions

shows the benefit of our model for determining the delay associated with real-

time services.

As the layering model simplifies telecommunications processes, through

modelling of the operation of wireless access systems, under a variety of multi-

media traffic, our analytical approaches provide practical analysis guidelines

for wireless network dimensioning.



Chapter 1

Introduction

Since wireless networks for commercial purposes first emerged in the 1970s,

they have dramatically increased in size and scope in the networking industry.

Many mobile users can access ubiquitous communication regardless of their

location. With the broad range of services provided in wired networks, and as

conventional wireless networks are progressively linked into wired networks,

it is natural to see wired network services being extended into wireless net-

works.

However, service performance through wireless networks cannot simply

rely on physical layer technologies, such as multiple antennas (e.g., multiple-

input multiple-output (MIMO) [1]), advanced modulation techniques (e.g., or-

thogonal frequency-division multiplexing (OFDM) [2]), highly efficient coding

schemes (e.g., Turbo codes [3]), and so on. The upper layer communication

protocols, such as Medium Access Control (MAC), also play important roles in

delivering network performance by controlling the number of users to access

resources and effectively scheduling the different sizes and kinds of demands.

The MAC layer is actually a sublayer of the data link layer, which is located

between the physical and network layers in the Open Systems Interconnec-

1



CHAPTER 1. INTRODUCTION 2

tion (OSI) reference model [4]. As wireless bandwidth is a scarce resource

shared by a number of individual users for multiple services, and these ser-

vices can be real-time or non real-time services with specific quality of ser-

vice (QoS) requirements, MAC protocols are required to effectively cope with

growing bandwidth demands as well as featured service differentiation. So

the design of MAC protocols for wireless networks is much more challenging

than for wired networks.

1.1 Focus of this Thesis

1.1.1 Scheduling for QoS

Connection Admission Control (CAC) is implemented in order to achieve a

range of QoS targets at the MAC layer. The decisions made by the CAC

are highly dependent upon the performance of scheduling algorithms because

these algorithms provide a mechanism for bandwidth allocation to different

users and services. As a result, in the process of MAC design, choosing an

efficient scheduling policy and evaluating the performance of the scheduling

policy are vitally important. The ongoing development of scheduling schemes

faces the challenge of providing end-to-end performance guarantees to het-

erogeneous and bursty traffic; at the same time, the service disciplines must

be simple enough to be implemented in a high speed environment. Due to

the complexity of wireless link conditions and the bursty nature of the traf-

fic, it has been considered difficult to design an effective scheduler as well

as to analyse its performance with a set of parameters under realistic traffic

conditions.

The service discipline used at the system scheduler decides the principle
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that the server capacity is allocated to the customers. The common disciplines

are:

1. First Come First Served (FCFS) that serves jobs in the arriving order;

2. Last Come First Served (LCFS) that serves the job arrived most recently;

3. Processor Sharing (PS) service discipline that serves all jobs concur-

rently.

1.1.2 Performance Analysis by Queueing Models

Queuing theory provides fundamental methods to be applied in the perfor-

mance analysis. Through modelling different telecommunication systems, we

can obtain descriptions of networks or local access systems, and performance

of traffic schedulers and access protocols by means of queuing analysis. A

queueing system is mainly characterized by arrival process of the customers

(that normally represent other items such as data-packets) and service dis-

cipline to allocate the resources to the customers. The performance of a sys-

tem is decided by the complex interaction between these two characteristics.

Therefore, essential analytical methods and approaches of queueing theory

have been broadly applied to the evaluation and design of communication net-

works.

The PS model is one of the important queueing models. PS models are

typically applied to the analysis of resource sharing systems due to the main

property of the PS service discipline that all jobs present in the system share

the common resources, such as data communication networks. The key per-

formance issues are the sojourn time and the throughput of jobs.
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1.1.3 PS Scheduling Strategy and Models

Since an ever-increasing number and diversity of services are required and

various QoS requirements need to be supported in the Internet, the use of

a processor sharing [5] scheduling strategy and its associated scheduling al-

gorithms have been proposed to achieve realizable, efficient, flexible and fair

service disciplines. As the original PS principle is simple to apply in situations

where different users receive their shares of scarce common system resource,

it benefits those applications with delay concerns by allowing fast scheduling

decisions.

The performance of PS scheduling algorithms has been studied in a wide

range of PS models, where the analysis usually relies on simplifying assump-

tions, such as assuming specific traffic arrival and service models. The stan-

dard PS model consists of a single server assigning each customer an equal

fraction of the service rate, similar to the time-sharing model used in com-

puter operating systems. More important extended PS models were then pro-

posed, such as the generalized processor sharing (GPS) model [6, 7, 8] and

the discriminatory processor sharing (DPS) model [5, 6]. Allowing the service

rate to be class-dependent, these models can be applied in packet-switched

networks supporting service differentiation. The packets of high quality traf-

fic flows are served with strict priority over the packets of low quality traffic

flows in the network nodes, such as routers in an Internet Protocol (IP) net-

work or Base Stations (BS) in a cellular wireless network. For instance, if

data traffic flows are subject to a flow control mechanism such as the Trans-

port Control Protocol (TCP) and the available bandwidth of TCP connections

is temporarily limited due to overloads, the flow control mechanism decreases

the transmission rate of each flow according to the assigned rate to fairly
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share the available bandwidth. Thus, these models significantly enhance the

modelling capabilities of the PS model.

Over the past few decades, PS models have been widely studied in the

queueing literature for performance evaluation of computer and communica-

tion systems. PS-type models specifically cover the main factors which de-

termine system performance; on the other hand, they are still simple enough

to allow for the determination of an exact or approximate analytical solution.

Thus, in many cases, PS models are preferred over some other models that

may involve more details but are too complicated to be tractable for use in

practical situations. However, compared to some other simple queueing sys-

tems such as FCFS, PS models are still quite hard to analyse. Intractable

problem have been investigated for many years. Classical queueing analysis

usually only studies average performance for aggregate traffic under realistic

traffic models. In a PS queue with Poisson arrivals, though it is well-known

that the queue length distribution has a simple geometric distribution, re-

gardless of the service requirement distribution, the sojourn time distribution

is far less tractable, even for exponential service cases. Therefore, there is a

need to develop an analytical model that provides performance analysis of a

versatile multiservice multiqueue PS model and covers a wide range of prac-

tical scheduling mechanisms. Such analysis can then play a critical role in

network design and dimensioning.

This thesis considers a PS discipline with multiservice multiqueue models

for the analysis of resource sharing in communication networks, especially, in

wireless networks. The multiservice multiqueue PS models with a fixed ser-

vice quantum and with priority-based service quanta are presented respec-

tively. A multiqueue processor sharing (MPS) model [9] is introduced that

includes the correction of a subtle incongruity. We also extend the MPS model
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to a priority-based service quanta (PBSQ) model to fit the general require-

ments of wireless multimedia applications. Extensive mathematical analyses

are provided to quantitatively characterise the performance of the proposed

PBSQ model. Combined with the MAC protocol operation in detail, under

general and realistic arrival assumptions, it will be shown that our analyti-

cal approach using the PBSQ model leads to an accurate approximation for

the delay in multimedia networks. The extended model takes into account

features of current wireless networks that can be used to define multimedia

traffic.

1.1.4 Wireless Applications using a Multiservice Multi-

queue PS Model

We propose a priority-based scheduling algorithm for two wireless applica-

tions: Push to Talk (PTT) [10] over General Packet Radio Service/Global Sys-

tem for Mobile Communications (GPRS/GSM) and the Worldwide Interoper-

ability for Microwave Access (WiMAX) [11], and apply the multiservice multi-

queue PS model to analyse the their delay performance. According to the MAC

structures of these networks, our model involves different effects of imple-

mentation issues, such as channel sharing schemes in GPRS/GSM networks,

retransmissions for the PTT service and traffic classes specified in WiMAX

standard.

1.2 Contributions of this Thesis

The contribution of this thesis is mainly threefold. Firstly, we introduce a new

multiservice multiqueue PS model, namely PBSQ, that enables a delay anal-
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ysis of multiservice networks. Unlike other PS models, it extends the delay

analysis to the case of priority-based multiservice PS scheduling where differ-

ent priorities receive different service quanta at a time. As the priority-based

multiservice PS scheduling inherits nice properties of traditional PS service

disciplines such as ease of implementation and relative simplicity of analysis,

it benefits systems such as wireless MAC, where the scheduler needs to make

fast decisions. An accurate approximation for the mean message delay is de-

rived for the PBSQ model. Delay analyses for the multi-class multi-connection

systems are made possible by the analytical model in a close-formed solution.

With regard to the MAC implementation issues, we demonstrate the compar-

ison of the PBSQ model and the developed MPS model, where the throughput

of services with large size requests can be improved by setting priority-based

service quanta in the PBSQ model to reduce MAC headers. Our study offers

a practical model for delay analysis of multimedia applications with heteroge-

neous traffic characteristics.

Secondly, we apply our analytical priority-based PS scheduling discipline

model to two multiservice wireless networks applications: PTT/GPRS/GSM

and WiMAX, for delay performance evaluation. More implementation issues

of MAC layer specified in these two applications are taken into consideration.

The delay performance is analysed under some realistic traffic conditions.

This scheme can effectively protect real-time services on the delay require-

ment by setting them higher priorities. As a result of applying the model,

the produced analytical results of delay can be used by operators in network

dimensioning and management.

Thirdly, we discover some new insights into the delay analysis of the MPS

model that better explains its components. Although the overall delay in the

MPS model is correct, we demonstrate that one component in it, namely wait-
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ing time in a local queue, may obtain negative value in a very particular situ-

ation. We provide a modified analysis that fixes this subtle inconsistency with

the physical meaning of local queue waiting time.

The contributions led to the following publications: [12, 13, 14, 15, 16] and

are summarised below:

The work described in Chapter 2 led to the publication of [12]. The contri-

butions of this chapter can be summarised as follows:

• Overview and comparison of various options for scheduling algorithms in

wireless networks. Both non-opportunistic and opportunistic scheduling

algorithms are considered.

The work described in Chapter 3 led to the publication of [16]. The contri-

butions of this chapter can be summarised as follows:

• Demonstration and correction of a subtle incongruity for the waiting

time in a local queue in the original Potter and Zukerman’s work [9].

• Development of a priority-based service quanta model that allows for

different kinds of services to obtain different service quanta each time

rather than obtaining a fixed service quantum in the MPS model.

• Study of the mean delay of the PBSQ model under specified assumptions

for the given parameters.

• A C++ simulation study for model evaluation and delay comparisons

with the MPS model.

• An implementation issue for the PBSQ model involving MAC headers.

The work in Chapter 4 led to the publication of [13, 14]. The contributions

of this chapter can be summarised as follows:
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• Description of PTT over the GPRS/GSM uplink architecture.

• Modelling and analysis of the uplink delay using the MPS model.

• Discussion of the quasi-stationary assumptions in the analytical model.

• Estimating the effects of GPRS retransmission on PTT delay.

• An ns-2 simulation study to evaluate accuracy of the analytic model.

• A C++ simulation to study the effects of GSM voice traffic.

• Numerical results that illustrate the benefit for PTT service by using a

priority arrangement.

The work in Chapter 5 led to the publication of [15]. The contributions of

this chapter can be summarised as follows:

• Description of the WiMAX MAC architecture and identification of QoS

issues.

• Development of a priority-based scheduling scheme for the Subscriber

Station (SS) uplink scheduler.

• The delay analysis of the scheduling algorithm using the MPS model.

• Discussion of WiMAX traffic models.

• An ns-2 simulation study to evaluate the model.

• A numerical study for the effects of traffic models and scheduling policy.
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1.3 Organisation

Chapter 2: In this chapter, we start with the context for QoS requirements in

wireless networks and tasks performed by MAC protocols. In the MAC layer,

the scheduling mechanism is introduced for the delivery of QoS. Scheduling

issues in MAC protocols become more complicated due to the growth of band-

width demands and the service diversification. Herein, we outline the pro-
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posed wireless scheduling algorithms. Afterwards, we focus on the PS service

discipline and existing PS models used for handling heterogeneous traffic in

multiple classes to provide an overview of the characteristics and results of

applying the models. Two wireless applications: PTT and WiMAX are intro-

duced at the end of this chapter, which are used as application examples for

the multiservice multiqueue PS models in later chapters.

Chapter 3: We review the results of the existing MPS queueing model. We

demonstrate a subtle incongruity in the original model and modify the anal-

ysis to correct it. Furthermore, we extend this model from the assumption

of a fixed service quantum at each priority to using a priority-based service

quantum at each priority. We provide an accurate approximation of the aver-

age delay with derivation of a closed-form expression for the new model. The

effects of different parameters are demonstrated. Furthermore, through our

approach, we show that having implemented PBSQ model reduces message

delay significantly as it is possible to reduce the number of MAC headers by

setting a bigger service quantum to cope with large service demands.

Chapter 4: We consider the case of PTT service delivered over GPRS/GSM

networks. The reason for analysing PTT delay in this context is based on the

fact that GPRS is initially designed for a normal data service (non real-time),

but not for a voice (real-time) service. Firstly, in this chapter, the existing

GSM standard is described in some detail. We then propose the use of the

MPS model to analyse the delay performance of PTT over GPRS/GSM net-

works. Different types of traffic mix – including the original GSM voice traf-

fic, GPRS data and PTT voice over GPRS are blended into consideration using

our analytical model. The accuracy of our model is evaluated using simula-

tion. Moreover, the effect of retransmissions over GPRS on PTT delay is anal-

ysed. Through this numerical study, we show that a PTT voice service can



CHAPTER 1. INTRODUCTION 12

be strictly protected by using priority assignment. Our model allows service

providers to do comprehensive network dimensioning.

Chapter 5: In this chapter, we introduce WiMAX technology according to

the IEEE 802.16 standards and the multiple services supported by WiMAX,

including Voice over IP (VoIP), streaming video, data etc.. We describe the

MAC architecture of WiMAX for the delivery of different QoS requirements.

Then, we propose a priority-based scheduling policy for the SS scheduler. The

delay of real-time traffic is protected by a priority arrangement. All schedul-

ing services are considered in the model. We validate the model using simula-

tion and demonstrate the effects of traffic characteristics on scheduling policy

using our numerical and simulation results.

Chapter 6: This chapter is devoted to providing some final conclusions

and discussing future research directions.



Chapter 2

Background

Nowadays, following the integration of wired and wireless networks in our

communication systems, more multimedia applications have been launched

into wireless networks. The traffic types from these applications include non

real-time and real-time traffic which require performance guarantees. Such

performance requirements need to be technically expressed using a range of

QoS requirements such as delay, throughput, delay-jitter and loss rates. Such

like in wireless local area networks (WLANs) [17], MAC protocols play a crit-

ical role to provide QoS guarantee by carrying out two essential functions:

connection admission control (CAC) and service differentiation [18].

Due to limitations in bandwidth resources, CAC policies are very depen-

dent on the specific scheduling disciplines used to handle different services.

Scheduling algorithms which provide mechanisms for bandwidth allocation

are considered to be a key issue for MAC layer performance. Once scheduling

algorithms have been chosen, modelling the algorithms and getting analytical

performance results involving specific parameters become important research

issues, as such performance results can be used by the admission control mod-

ule.

13
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In this chapter, we provide a general description of a wireless MAC layer

and explore difficulties in achieving QoS requirements due to features of the

wireless link. After a brief introduction to wireless scheduling algorithms, we

focus on current work involving PS disciplines to give a comprehensive re-

view of a range of PS models which have been proposed for modelling various

scheduling algorithms. Issues of packet scheduling associated with service

differentiation for two wireless applications: PTT and WiMAX, are discussed

at the conclusion of this chapter.

2.1 Wireless MAC Protocols and Related Schedul-

ing Issues

We begin by briefly discussing QoS metrics and addressing the functions per-

formed by MAC protocols in wireless networks. We then introduce two com-

mon sets of wireless standards with a MAC specification and discuss schedul-

ing issues in these wireless networks.

2.1.1 QoS Metrics

Although there are many alternative definitions of QoS, in this thesis, QoS is

under the field of packet-switched networks as a traffic engineering term. We

focus on “objective” QoS which means the performance that can be measured

rather than “subjective” QoS which corresponds to the quality from a user’s

perspective and is now more commonly referred to as “Quality of Experience”

and denoted by QoE.

QoS requirements vary for different service applications. Since real-time

applications are delay sensitive and may also require certain data rates, the
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QoS issues are critical. For example, streaming multimedia requires guaran-

teed throughput; IP telephony or VoIP require strict limits on jitter and delay;

video teleconferencing requires low jitter and delay. For a comprehensive dis-

cussion of QoS for multimedia applications, readers can refer to [19].

Here, we review four general performance metrics which are also relevant

to QoS of multimedia applications [20].

• Throughput (or bandwidth) refers to the data rate (also called the bit

rate) generated by the application. The required throughput depends on

application characteristics. Throughput is called bandwidth when it is

considered to be the network resource allocated to applications.

• Delay (or latency) directly affects satisfaction of a user. This information

is valuable QoS metric and gives direct insight of the total performance

of the system. We shall focus on probabilistic delays by referring to the

expected value of delay in this thesis.

• Jitter (or delay variation) as a QoS term refers to delay variation. Sev-

eral definitions of jitter have been used in the literature, such as the

maximum variation of the delay and the standard deviation of the delay.

Jitter can be measured from the exact delay difference between sequen-

tial packets, but cannot calculated from the mean delay. Large jitter can

be smoothed out using a large buffer at the expense of longer delays.

• Packet loss has a direct impact on user’s perceived quality. It can be

caused by network congestion or by communication channel errors. The

lost packets or the packets with errors might be recovered by several

techniques, such as packet retransmission or error correction. In a wire-

less network, lost packets are usually detected using sequence numbers
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and automatic repeat request methods.

Broad-band wireless networks need to provide services for heterogeneous

traffic with different QoS requirements. In wireless networks, because of the

limited capacity, the QoS issue is more challenging than in wired networks.

More complex MAC Layer implementations have to be considered for the QoS

solutions in wireless networks. Such as the IEEE standard sets of 802.11e

[17] and 802.16 [21], different ranges of QoS-based improvements have been

involved for wireless networks at the MAC layer, in which QoS support mech-

anisms should be integrated into the MAC scheduling algorithms.

2.1.2 Role of Wireless MAC Protocols

Wireless channel resources are shared by multiple users for multiple services

delivery. Unlike the data link control for a point-to-point communication link

in a wired network, which only needs to convert the physical layer bit pipe into

a higher level frame, wireless MAC protocols are also required to regulate the

user’s access to the channel and to achieve appropriate sharing of the channel

resources among users.

MAC protocols in wireless networks are complicated as they have to han-

dle the requirements of multi-access communication. For example, in WLANs

[17], data packets are sent through a common channel so that “collisions”

may occur when different users transmit their data at the same time. To co-

ordinate the transmissions among all users, the MAC provides mechanisms

for channel access control which make communications possible. A physical

address (or MAC address) is assigned a unique serial number for each net-

work adapter over which a data packet can be delivered to a given destination

within a physical network. Therefore, several stations can be connected to the
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same wireless physical medium to share the link [22]. In general, WLANs use

a Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) MAC

protocol to fit the nature of the wireless channel.

Another key function of a MAC protocol is to achieve the efficient utilisa-

tion of the wireless link and satisfy QoS requirements for each user. However,

the scarce bandwidth is time-varying and location-dependent in a wireless

system, and network performance suffers from high error rates due to user

mobility and power constraints in their devices [23]. As a result of the special

characteristics of wireless communications and complex traffic characteris-

tics, efficient and effective scheduling algorithms may need to be developed

for wireless networks. Since MAC decisions concerning resource sharing rely

on the operational results of scheduling, obtaining results by modelling and

performance evaluation of scheduling algorithms for wireless networks is im-

portant and more challenging than for fixed networks.

2.1.3 IEEE Standards 802.11 and 802.16

The classification of wireless networks is normally according to the geographi-

cal coverage. The wireless wide area networks (WWANs) were developed first

to cover a very large area and its typical examples are mobile cellular net-

works and satellite networks. Then, wireless local area networks (WLANs)

were developed to provide network access to a group of users within a certain

local area typically based on the IEEE 802.11 standards [17] family. Recently,

wireless metropolitan area networks (WMANs) have been proposed to sup-

port broadband wireless access over a metropolitan area based on the IEEE

802.16 standards [21]. In contrast to those networks with large coverage,

wireless personal area networks (WPANs) only operate within a short dis-
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tance of a few meters, which are based on the IEEE 802.15 standards [24]

including 802.15.1 for Bluetooth, 802.15.3 for high data rate ultra-wideband

networks and 802.15.4 for low-rate WPANs such as wireless sensor networks.

Relating to the issue of QoS requirements in wireless networks with in-

tegrated traffic, we discuss two standards for wireless communication which

are in wide use currently, viz: the 802.11 [17] and the 802.16 [21] standards.

The 802.11 Standard was approved by the Institute of Electrical and Elec-

tronics Engineers (IEEE) in 1997, followed by the standard known as 802.11b

in 1999. This set of standards was developed by the IEEE LAN/MAN Stan-

dards Committee (IEEE 802) for WLAN computer communications and con-

tains WLAN MAC and Physical Layer (PHY) specifications. Although it was

intended for indoor WLAN, a range of WLAN-based products have been used

in point-to-point and point-to-multipoint outdoor solutions. In the original

version of the standards, only best effort (BE) services were supported; there

was no priority setting for different traffic types in the network, hence, no

QoS differentiation was achieved. The IEEE 802.11e standard was later de-

veloped and approved as the QoS enhanced version of the original standard.

A set of QoS enhancements is defined for supporting delay-sensitive applica-

tions, such as VoIP and streaming video.

In April 2002, the IEEE Standard 802.16 [21] was approved and it focused

on broadband wireless access in metropolitan area networks. This technology

provides an alternative to traditional wireline technologies such as coaxial

cable networks and digital subscriber lines (xDSL) based on PSTN access net-

works. As multimedia applications, including data, streaming video and VoIP,

are supported, each connection may have different QoS requirements.

The IEEE 802.11e and 802.16 standards enable QoS differentiation which

is desirable since communication sessions usually differ in their QoS require-
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ments. For instance, streaming video and VoIP conversations require a guar-

anteed minimum or constant throughput to ensure image and speech quality.

On the other hand, other normal data applications usually can take variable

transmission rates. However, these advantages for QoS differentiation make

traffic scheduling and performance evaluation of scheduling algorithms more

complex.

2.2 Scheduling Algorithms for Wireless Networks

A scheduling mechanism is an instrument used to treat all applications with

service differentiation, which has to be implemented at routers or switches of

a network. Service disciplines to support a number of services with various

QoS needs are required for the scheduling mechanism in both wired and wire-

less networks to achieve efficient and fair scheduling among multiple users.

However, the standards mentioned in Section 2.1.3 purposely do not spec-

ify the details of a MAC protocol containing scheduling algorithms. This al-

lows equipment manufacturers to be given the choice of implementing their

own proprietary algorithms to differentiate their products from those of their

competitors.

Many scheduling algorithms have been developed for wireline networks

with associated performance studies, by which a certain level of QoS can be

achieved by treating different types of traffic differently. Even including QoS

differentiation, the existing service disciplines [25], such as fair queueing (FQ

or generalized processor sharing, i.e., GPS) scheduling [26] and variants, vir-

tual clock [27] and the earliest due date (EDD) [28], may not be adequate for

wireless networks due to their different channel characteristics. In wireline

links, the bandwidth is constant, while in wireless links it is time varying due
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to interference, fading and shadowing. Also, due to different physical loca-

tions, different terminals may perceive different channel quality at the same

time instance. This is referred to as multiuser diversity. If a wireline schedul-

ing algorithm is directly applied, without giving consideration to channel con-

ditions, a packet may be scheduled for transmission on a bad wireless channel

so that the packet cannot be successfully transmitted. Then, the bandwidth

received by the connection is not the intended bandwidth allocated by the

scheduling algorithm, and in general, the QoS received by a connection is not

as good as the scheduling algorithm expects to deliver.

Here we review several recently developed wireless scheduling algorithms

which consider channel conditions and attempt to schedule packets for good

channels. Two classes of such algorithms are considered: 1) non-opportunistic

scheduling, and 2) opportunistic scheduling. Opportunistic scheduling algo-

rithms attempt to better predict channel quality using more detailed physical

layer information than the non-opportunistic algorithms.

2.2.1 Non-opportunistic Scheduling

These algorithms assume the channel is either in a good or a bad state and use

per-flow queueing. Here we only provide a brief summary of these algorithms.

For a more comprehensive and critical review, see [23].

Channel state-dependent packet scheduling (CSDPS) [29] is one of the ear-

liest schemes which takes into account location-dependent and time-dependent

channel conditions. Basically, packets are scheduled by a wireline scheduling

algorithm, e.g., round robin (RR). The wireless system throughput is improved

by temporarily disallowing the flow having a bad channel to transmit, and in-

stead, giving the transmission opportunity to the next flow with a good chan-
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nel. This introduces a fairness issue because the flow that loses its right to

transmit is never compensated. This fairness problem is alleviated by adding

a class-based queueing (CBQ) [30] algorithm. The resulting scheme, called

CSDPS+CBQ [31, 32], restricts a flow from receiving additional bandwidth

when it has already received its fair share thus ensuring fair sharing of link

bandwidth.

The weighted fair queueing (WFQ) algorithm [26, 7, 31] has been widely

used for wireline networks to provide fairness at the packet level. WFQ has

been modified to be also applicable to the case of multiuser diversity. This

WFQ modification gave rise to the algorithm called idealized wireless fair

queueing (IWFQ) [33]. An important concept in both WFQ and IWFQ, is

the so-called finish time, which indicates the intended time for a packet to

complete its service. Accordingly, packets with earlier finish time are served

first. Packets of each flow, upon arrival, are queued in a non-decreasing or-

der of their finish times. Although the scheduler always tries to serve the

packet with the smallest finish time first, this rule may not always apply un-

der IWFQ. If the chosen packet happens to receive a bad channel, the service

opportunity will be given to the packet with the next smallest finish time that

also has a good channel. Packets that have lost their transmission oppor-

tunity still maintain finish times that are the smallest in the system. As a

result, once their channels become good, they are selected first by the sched-

uler. In this way, flows that previously lost their transmission opportunity, are

compensated. In brief, FQ and wireless fluid fair queueing (WFFQ) are fluid

scheduling models for wireline and wireless networks, respectively. As there

are implementation problems, there are WFQ and IWFQ as the corresponding

packet-based emulations of FQ and WFFQ, respectively.

Another scheduling algorithm is the so-called channel-condition indepen-
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dent packet fair queueing (CIF-Q) [34]. It approximates real service in an

error-prone system to its equivalent counterpart in an error-free reference sys-

tem. Then CIF-Q schedules packets as if it is operating in a wireline network

environment using the so-called start-time fair queueing (SFQ) [35]. SFQ is a

wireline scheduling algorithm designed to achieve fairness even if the avail-

able bandwidth in the bottleneck link varies. Unlike IWFQ, CIF-Q is designed

to achieve more specific QoS objectives, viz:

• delay bound and throughput of error-free flows are guaranteed,

• short term and long term fairness are maintained among the flows,

• a minimum service guarantee for a flow which has already received more

than its entitled service.

A flow is labelled leading, lagging and satisfied if it receives more, less or the

same amount of service as it would have in the reference system, respectively.

The scheduler maintains for each flow a virtual time that indicates the nor-

malised amount of service time that the flow has received. The virtual time

is updated according to the SFQ in the reference system. Then, the head-of-

line (HOL) packet of the flow with the smallest virtual time is selected for

service first. Provided that the packet has a good channel and its flow is not

a leading flow that has already received its guaranteed service, the packet is

transmitted. Otherwise, the transmission opportunity is given to a lagging

flow. If none of the lagging flows has a good channel to transmit, then the

transmission opportunity is given to a non-lagging flow.

IWFQ and CIF-Q are based on an approximate error-free reference system

and do not provide explicit compensation to a flow that lost its transmission

opportunity. Therefore, only error-free flows can really be treated fairly and
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be provided with a guaranteed throughput. An approach that considers com-

pensation explicitly is the so-called server-based fair approach (SBFA) [36].

It dedicates a certain part of the available bandwidth to compensate delayed

flows using long-term fairness server (LTFS). If a flow has a bad channel, LTFS

records the service loss. This way, SBFA can provide guaranteed throughput.

2.2.2 Opportunistic Scheduling

We have so far discussed wireless scheduling algorithms that assume a rela-

tively simple channel model; the channel is either good or bad. However, such

simplistic channel characterization may not be sufficient. Therefore, there

has been recent interest in a new class of wireless scheduling algorithms,

called opportunistic scheduling (OS) [37]. In essence, the principle of oppor-

tunistic scheduling is the same as the above-mentioned wireless scheduling

algorithms in that the scheduler avoids transmitting packets having a bad

channel. The difference is that OS schemes make use of more information

on channel quality, and considers indicators such as estimated instantaneous

carrier-to-interference ratios, supportable data rates, received signal strength

indications, or bit error rates of users’ links. Based on these indicators, higher

priority will be given to packets with the best channel quality. This way, OS

schemes improve efficiency by achieving higher channel utilisation.

2.2.3 Discussion

Although these existing wireless scheduling schemes may be applicable to dif-

ferent wireless networks, there are still certain scheduling issues that require

attention from the research community under certain situations for deliver-

ing the promised QoS and efficient operation. Besides providing QoS, a wire-
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less scheduling algorithm should also aim to maximize utilisation of wireless

channels by using a minimal number of scheduling-related control messages

and also minimize unproductive transmissions. Therefore, the difficulties of

using such wireless scheduling algorithms are obvious, such as the complexity

of computing and the evaluation of performance using analytical models.

In the downlink scheduler, for example, at the BS, the environment matches

quite well with the general scenario considered in wireless scheduling algo-

rithms. That is, the scheduler has knowledge about the channel conditions

and full information of individual queues. For this reason, wireless schedul-

ing algorithms that can deliver the required QoS of a service type are good

potential candidates. However, for the uplink scheduler, normally, only lim-

ited information about each traffic queue is available. This is because in order

to reduce the communication overhead, the uplink direction just transmits

minimal amount of information of traffic queues. For example, the uplink

scheduler may not know the packet arrival times or the packet size at the

head of each queue.

The sojourn time (also known as the response time or the delay) on the

performance measures for a real-time service is a very big concern. It means

the time required to deliver a “message” from the origin to the destination, i.e.

the total time spent in the system. Thus, the sojourn time consists of the time

spent in the queue, also referred to as the waiting time, and the time spent in

service. The term “message” may refer to an application layer data-unit or a

network layer packet, if it has been broken down into a number of packets for

transmission. As the consideration of delay strongly influences the choice of

scheduling algorithms and the performance of a network, it is a critical issue

to capture the nature of the delay mechanism involving characteristics of the

network traffic. For wireless scheduling algorithms, the delay is even more
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difficult to be traced by analytical solutions.

2.3 Processor Sharing Scheduling and its Queue-

ing Models

Many common scheduling algorithms, are more or less related to the well-

known service discipline: processor sharing (PS) [5]. The PS scheduling strat-

egy and its inherited scheduling algorithms have been attracting prominent

attention from the research community for several decades. As a convenient

paradigm, the different PS models continue to play an instrumental role in

the design and operations of communication systems. In the following sec-

tion, we provide a detailed overview of PS models available in the literature.

Kleinrock’s PS model [38] has influenced performance modelling and eval-

uation of resource allocation schemes since 1964. This model was used to cap-

ture the fundamental properties of a time-sharing system. Then, he proposed

the PS paradigm to model round robin scheduling algorithms in time-shared

computer systems [39]. In addition to time-shared systems, the PS model

has also been espoused for other resource sharing systems in modelling and

performance evaluation [40, 41], such as wireless networks where bandwidth-

sharing is modelled. These PS models provide valuable insights into service

capacity sharing under a critical assumption: the PS server is always shared

in an egalitarian manner among all competing users – even if they belong to

different classes and should obtain unequal shares [42], so-called Egalitarian

PS (EPS). The limitation leads to a difficulty in using the model to describe

heterogeneous systems.

Later, PS-related disciplines, such as GPS [6, 7, 8] and DPS [5, 6], involv-
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ing the consideration of service differentiation were proposed as multiclass

extensions of the single-class EPS model. These models are widely studied

as suitable abstractions for performance modelling in bandwidth-sharing sys-

tems at the flow-level [40, 43]. However, the delay in such queueing systems

is far less tractable than in the basic PS model. Usually, the resource-sharing

mechanism for best-effort services is modelled by an EPS discipline, while

the one for QoS required services is modelled by either the GPS or the DPS

discipline.

Another multi-level kind of extension of the EPS policy is known as Mul-

tilevel Processor Sharing (MLPS) and was a strategy introduced by Kleinrock

in the 1970’s [5]. Unlike DPS and GPS which are mainly for the purpose of

service differentiation, MLPS aims to improve the performance of the whole

system by exploiting the variability of service demands by giving priorities to

shorter requests [42].

In the following sections, we review various key results for EPS, GPS, DPS

and MLPS models, highlight their inherent desirable properties from ordinary

PS and discuss their capability to deliver QoS requirements.

2.3.1 Egalitarian Processor Sharing (EPS)

The original PS, also known as EPS, means that each customer is assigned

an equal capacity of the processor, which is used in multi-access computer

systems with competitive demands. This simple standard PS model consists

of a single server and multiple users and is applicable to situations in which

different users fairly receive a share of the scarce common resource. If the

capacity is time-shared among all users, the service rate allocated to each one

depends on the total number of users.
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As the service capacity is equally shared by all users currently present

in the system, EPS has been used to evaluate the flow-level performance of

cellular data systems with Proportional Fairness (PF) scheduling [44]. This

idea was also introduced in the study of modelling the bandwidth sharing on

the Internet [40, 45] and the performance analysis of WLANs [46]. Assuming

flows are Poisson arrivals, the EPS model has simple, explicit expressions for

the distribution of the number of active flows in the steady state, and first-

order flow-level performance metrics. These measures are insensitive to the

flow size distribution.

Assume there is a Poisson arrival rate λ and random service requirements

sized x. Let ρ = λE(x) and ρ < 1, where E(x) denotes the mean of x. Sakata

et al. [47] obtained the well-known result for the length distribution of the

stationary M/G/1 EPS queue with n jobs as:

πn = (1− ρ)ρn, for n = 0, 1, . . . . (2.1)

Accordingly, the queue length distribution is insensitive to the service re-

quirement distribution but only depends on the mean of the service require-

ment distribution, i.e., E(x). This is also true for the mean sojourn time ac-

cording to Little’s law [48]. In contrast to the simple geometric queue length

distribution, the sojourn time (T (x) for a job with size x) distribution does not

have a closed-form expression. Determining the sojourn time distribution in

EPS queues turned out to be a rather challenging problem, even for exponen-

tial service requirements.

The sojourn time of EPS has been analysed in many studies. Conditioned

on the initial service requirement x > 0, Kleinrock [38, 39] showed the mean
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sojourn time for the M/M/1 EPS queue is given by:

E[T (x)] =
x

1− ρ
. (2.2)

The proportional result of (2.2) reflects a certain fairness for EPS. Sakata et

al. [47, 49] extended the case to multiple servers with generally distributed

service requirements. Kleinrock also discussed a similar case in [5]. According

to these results, the proportionality between T (x) and x and the insensitivity

between T (x) and the service requirement distribution are valid. Eventually,

it is also true in Cohen’s generalized PS model [50].

For an EPS queue with the assumptions of a Poisson arrival process and

exponential service requirements, Coffman et al. [51] first derived a closed-

form expression for the Laplace-Stieltjes transform (LST) of the equilibrium

sojourn time of an arriving job, conditioned on the service requirement x > 0.

From these results, the first two moment expressions for the conditional so-

journ time were obtained. Morrison [52] extended this work to obtain the

unconditional distribution function of sojourn time, which can be used for nu-

merical evaluation of the sojourn time distribution when the traffic intensity

ρ < 1. When ρ is close to 1, the sojourn time distribution under the situation

of heavy-traffic behaviour can also be analytically investigated.

The exact expression for the distribution of the conditional sojourn time

for an EPS queue with generally distributed service requirements has been

studied for many years. Several analytic solutions for the conditional sojourn

time have been obtained by Yashkov [53], Ott [54], Schassberger [55], and Van

den Berg and Boxma [56] via different approaches. However, because of the

complexity of these transform expressions, the results are not really insightful

and cannot be simply applied for computational purposes. The expression ob-
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tained by Zwart and Boxma [57] is supposed to be the most explicit one in the

literature, but can only recursively calculate the moments of the sojourn time.

Cheung et al. [58, 59] studied the moments of the sojourn time when there

is a service requirement x > 0 and derived explicit upper and lower bounds

for all moments. These bounds are insensitive to the service requirement dis-

tribution but only related to the mean, hence, provide further support for the

observation of EPS as a fair resource discipline. Recently, Borst et al. [60]

gave an overview of several methods that had been developed to obtain the

asymptotic equivalence and outlined the differences and similarities between

these approaches.

More related work on EPS queues may be obtained from the literature

under different assumptions of arrival processes and service requirement dis-

tributions: Massey [61] and Núnez-Queija [62] for M/M/1 EPS; Egorova et

al. [63] for M/D/1 EPS; Mandjes and Zwart [64], Brandt and Brandt [65] for

GI/G/1 EPS; and mostly work for M/G/1 EPS, such as Asare and Foster [66],

Yashkov [67, 68, 69], Baccelli and Towsley [70], Grishechkin [71], Guillemin

et al. [72], Bansal [73], Kitayev [74], Hampshire et al. [75], Kim and Kim [76].

From a practical point of view, in a standard EPS queue, small jobs cannot

be blocked by large jobs since fair sharing policies prevent large jobs from

hogging the server. With such a nice appealing property, the EPS discipline is

a big improvement over the FCFS discipline policy where a high variation of

service requirements degrades the system performance significantly.

While the EPS discipline offers crucial insights into the performance of fair

resource allocation mechanisms, it is limited in analyzing and designing dif-

ferentiated scheduling algorithms. Strictly speaking, EPS is applicable only

if resources (e.g., bandwidth, time-slots) are shared in a perfectly fair manner.

However, it may not be the case in real systems [77]. Especially, the sym-
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metry properties of the EPS discipline are not suitable for use in a system

which transmits data from heterogeneous classes. Hence, the GPS and the

DPS disciplines have emerged as natural generalizations for modelling the

performance of such service differentiation mechanisms.

2.3.2 Generalized Processor Sharing (GPS)

Cohen [50] started using the term GPS to describe an extended PS with state-

dependent service rates. But the seminal work on GPS done by Parekh and

Gallager [7, 8] is more broadly adopted by convention.

In the GPS model [78], all traffic sent to the server is divided into different

classes, and each class i is assigned a positive weight wi as shown in Fig. 2.1.

It is assumed a traffic class i is either an individual flow or includes several

flows with similar QoS requirements. The specified weight wi is the guaran-

teed minimum capacity for the class i. If any class does not fully consume

its reserved capacity, other classes get the right to share the excess available

capacity and the same weights are used to redistribute the excess capacity

as well. The guaranteed minimum rate of class i means that class i receives

service at rate wi if all classes are backlogged. Let B denote the set of back-

logged classes and C denote the full service capacity. We have a backlogged

class i ∈ B that receives a service rate [7] of

wi∑
j∈B wj

C ≥ wiC, for
∑

wi ≤ 1. (2.3)

Due to different weights assigned to different classes, GPS is designed to

achieve service differentiation among heterogeneous traffic networks. For in-

stance, in [79], GPS is proposed as a packet-based mechanism to support real-

time and best effort traffic, simultaneously, in link-sharing. It significantly
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Figure 2.1: GPS model

enhances the modelling capabilities of ordinary PS. However, an underlying

assumption of GPS is a requirement for infinitely divisible capacity, i.e., it is

assumed that several classes can get service at the same time. It cannot be

implemented with real traffic, as data traffic is composed of discrete packets

which are sent sequentially. However, over a certain time scale, the fluid as-

sumption of GPS is natural as packet sizes are very small compared to link

capacity.

Approximations of GPS are required to identify implementable packet-

based mechanisms. Parekh and Gallager have done well-known work to an-

alyze packet-based GPS in [7, 8], also known as Weighted Fair Queueing

(WFQ). A scheduling mechanism with WFQ calculates the service comple-

tion time of every arriving packet under GPS to determine the service or-

der of packets. Clearly, the implementations are more complicated than with

Weighted Round Robin (WRR) in which all classes are served in a fixed order.
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On the other hand, results show that WFQ provides GPS within one packet

transmission time and performs better than WRR.

In fact, asymmetric versions of the PS discipline including GPS and DPS

have been very intractable so far, and there is no known closed-form solution

for the exact distribution of the workload of an individual class, even under

limited assumptions [80, 81]. Parekh and Gallager [7, 8] only provided delay

guarantees for the worst-case and derived a deterministic upper bound for the

delay and workload at each class by introducing a leaky bucket mechanism to

control the traffic. A revisited approach in [82] uses a different type of mech-

anism known as the fractal leaky bucket to effectively handle Long-Range

Dependent (LRD) traffic and get results for an upper bound on the delay and

workload for each class. An exact analysis is only established for a special

case, the two-classes GPS. Those results focussed on bounds and asymptotic

approximations [83, 84, 85, 86, 87, 88, 89].

The asymptotic behaviour reveals some insight into how the system must

have behaved when extremely rare events with small probabilities occur. Such

events are typically used for relevant QoS measurements. Therefore, we fo-

cus on properties of stochastic majorization and stability issues but do not

provide full distributional results in this section. Two asymptotic regimes are

commonly of interest: (1) a large-buffer regime, which concerns the the prob-

ability that the workload of an individual class in a GPS system exceeds a

certain level; and (2) a many-sources regime, which concerns the probability

that the buffer content exceeds a certain level due to the number of sources

being increased. The investigation for these two regimes are normally ap-

proached by using specified traffic processes or multi-class traffic. Asymptotic

expansions can often work as good approximations [90, 91, 92, 93].

Large-buffer asymptotics were obtained both for heavy-tailed and for light-
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tailed traffic processes. Data traffic with highly variable or bursty characteris-

tics often manifests LRD or self-similarity. Such traffic flows can behave very

badly in the sense that they can grab all available capacity for a relatively

long period [94, 95]. LRD or self-similar traffic can be modelled in so-called

heavy-tailed distributions. In particular, traffic flows with Short-Range De-

pendent (SRD) or light-tailed properties will be adversely affected by heavy-

tailed flows, when there is no protection mechanism. This phenomenon can be

prevented in GPS by taking positive minimum weights. Yaron and Sidi [96]

studied GPS stability and derived upper bounds on queue length considering

GPS queues fed by exponentially bounded burstiness traffic [97]. Using the

same traffic model, Zhang et al. [98] calculated upper bounds on the distribu-

tion of the backlog and delay for each GPS class, where the input processes of

the classes can be dependent. Instead of studying the worst case behaviour,

Veciana and Kesidis [99] worked on a broader class of light-tailed processes

and calculated upper bounds on the logarithmic large-buffer asymptotics in

a discrete time GPS system. Their results were extended by Zhang [100],

where, under a similar assumption on the log-moment generating function,

the exact logarithmic large-buffer asymptotics for a two-queue GPS model

were derived. Then, he used these results in [101] to develop and compare sev-

eral admission control schemes for both session-based and class-based service

models. In [102], the large-deviations results for light-tailed traffic sources

were provided. Similar work can also be found in [103] and [104]. For large-

buffer asymptotics of the multiple-class GPS model, related results have been

derived in [105] and [106]. Van Uitert and Borst [107] extended such work to

networks of GPS queues.

Borst et al. [108] started the performance analysis of a multiple-class

GPS system with heavy-tailed characteristics. A phenomenon referred to as
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reduced-load equivalence is found when the average input rates of the classes

are smaller than the GPS weights, the exact large-buffer asymptotics for a

flow are shown to be equal to a flow in a system served by an isolated constant

rate. Afterwards, more work on analysis of the buffer asymptotic with heavy-

tailed traffic has been done by Borst et al. [109, 110, 111, 112], Jelenkovic

and Lazar [113], Jelenkovic and Momcilovic [114], Agrawal et al. [115], Van

Kessel et al. [116], Kotopoulos et al. [117] and Lelarge [118]. For certain

assumptions on the traffic intensities, any heavy-tailed class is served at a

constant rate and is immune from other classes with heavier-tailed character-

istics, but only influenced by the average rates of the other classes. Beyond

such regimes, however, the strong effect of heavier-tailed flows may be very

obvious, known as induced burstiness. For a light-tailed class with a suffi-

cient weight setting, the asymptotics combine the effect of heavy-tailed and

light-tailed large-deviations behaviour, known as a reduced-peak equivalence

[119], in an analogy with the term reduced-load equivalence. Similar types

of qualitatively different regimes in different settings have been observed in

[120, 121].

Many-sources asymptotics have been studied at the same time. Delas et

al. [122] studied the asymptotics of the buffer occupancy distribution when

buffers were accessed by a large number of stationary independent sources.

The large-buffer asymptotics for a two-class GPS system in [117] has been

extended to obtain many-sources asymptotics for GPS systems in [123, 124],

where a GPS system with two queues and with multiple queues have been

studied, respectively. Mannersalo and Norros [125] developed accurate ap-

proximations for a multiple-class GPS system with a large number of Gaus-

sian inputs. Mandjes and Van Uitert [126, 127] further justified and refined

these approximations, and established an interesting connection with tandem
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queues.

So far, compared with the performance analysis of GPS with given weights,

much less work has focussed on the choice of the GPS weights. Elwalid and

Mitra [128] developed a framework for the design of GPS weights, based on

the calculated loss probabilities of the sources. Kumaran et al. [129] pre-

sented an algorithm for getting on-line weight adaptation. Similar work on

selecting the GPS weights can also be found in [130, 131].

For GPS, the analysis of the actual delay (or sojourn time) has been ap-

proached in only a few works. Analogously, the term virtual delay is used to

define the time that is required for the buffer to be emptied, and is closely

related to the workload. Shakkottai and Srikant [132] have shown the loga-

rithmic many-sources asymptotics for the actual delay are equal to those for

the virtual delay in a single discrete-time FCFS queue for certain assumptions

on the input process, also applicable for two-queue priority models. Addie et

al. [133] found results on the actual delay for a fluid particle in a special kind

of on-off model. Borst et al. [134] studied the sojourn time of customers in a

two-class GPS system under the assumption of a PS service discipline within

the class.

For more details on GPS, readers may refer to [6, 78] and the references

therein.

2.3.3 Discriminatory Processor Sharing (DPS)

Like GPS, the traffic under the DPS discipline is also divided into classes, and

each class i is assigned a positive weight wi. However, in contrast to GPS, wi

in DPS is associated with each individual job belonging to class i and not with

the entire class queue, i.e., the service capacity is shared by all jobs according
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to their weights. As shown in Fig. 2.2, all jobs present in the DPS system

are served simultaneously at rates controlled by weights wi > 0, i = 1, 2, . . . .

Therefore, DPS can be reduced to an EPS if all jobs receive the same service

rate, as in a multi-class extension of the EPS.

Figure 2.2: DPS model

In a DPS system, if ni jobs are present for class i, i = 1, 2, ..., I, the service

rate of each class-i job Ri is [42]:

Ri(n1, n2, ..., nI) =
wi∑I

j=1 wjnj

C. (2.4)

As we can see, the capacity obtained by each class in the DPS is not guaran-

teed, and the allocated capacity to each class also depends on the number of

jobs currently present in all the classes except weights wi.
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The DPS discipline provides a natural modelling approach for TCP flow-

level performance with asymmetric bandwidth shares or for differentiated

scheduling mechanisms. By adjusting weights, one can effectively control the

instantaneous service rates of different job classes. As the weight used in DPS

with regard to each active flow within the class, DPS can be an appropriate

model to investigate the performance of heterogeneous systems.

Although DPS is similar to EPS with a simple model, the analysis of DPS

model cannot be easily treated as an extension of the EPS model. Note that

the property of insensitivity for EPS does not work in DPS, which is sensitive

to specific traffic characteristics [135]. Neither the simple geometric queue

length distribution, nor the tractable transform results for the sojourn time

distribution, seem to exist in DPS, even for exponential service requirements.

Some properties of EPS insensitivity only carry over to DPS in certain asymp-

totic regimes. Several asymptotic regimes will be reviewed here by reference

to [42, 6, 60].

In 1967, Kleinrock proposed and studied the DPS model under another

name, viz: Priority Processor Sharing in [39]. After his work, Fayolle, Mi-

trani, and Iasnogorodski [80] made an important move on DPS analysis to

obtain the expected conditional sojourn times as the solution of a system of

integro-differential equations for the M/G/1 DPS queue. The error contained

in O’Donovan’s [136] original system of equations was corrected. For the case

of exponentially distributed service requirements, a closed-form expression

for the conditional mean sojourn time has been derived, and the unconditional

mean sojourn times can be obtained from the system of linear equations. The

derivation of these equations referred to the methods used by Kleinrock et

al. [5, 137] for a processor sharing queue with batch Poisson arrivals. It

shows the asymptotic ratio (also known as the slowdown ratio) of the condi-
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tional mean sojourn time and the service requirement in DPS is insensitive

and independent of the job class. Extending this result, Avrachenkov et al.

[138] showed that the expected unconditional sojourn time is finite and has

an asymptote with slope 1/(1− ρ).

The DPS queue in heavy traffic has been analyzed by Grishechkin [71]

with an assumption of finite second moments for the service requirement dis-

tributions. The asymptotic regime has been discussed under heavy load con-

ditions, i.e., ρ =
∑I

i=1 ρi → 1. Rege and Sengupta [81] made a further advance

in obtaining the moments of the queue length distribution as the solution to

linear equations for the case of Poisson input and exponential service require-

ments. The joint queue length distribution has been shown to be limited. This

work was extended by Van Kessel et al. [139] for the phase-type service re-

quirement distributions and Kim and Kim [140] for bulk arrivals. The case

when the DPS queue is in overload, i.e., ρ > 1, has also been studied by Alt-

man et al. [141] based on techniques for EPS analysis in [142]. It shows that

the queue size of any class grows asymptotically and linearly with a rate. This

rate depends on the service requirement distribution in a complex manner –

not just on the mean. Eventually, all jobs in the system can be finished in a

finite time.

Under the time-scale decomposition regime, which was identified by Bonald

and Proutiere [135], Van Kessel et al. [116] found that the queue length distri-

bution turns out to be insensitive. Especially, the limiting distribution of the

relatively slow dynamic traffic class is independent of the weights and also

insensitive to the service time distribution, where flow sizes follow phase-

type distributions. It is different with the case of generally distributed flow

sizes; where the performance is affected by the distributions of flow sizes for

all classes [80]. Another recent work by Boxman et al. [143] showed that
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a time-scale decomposition approach provides a good approximation to finite

capacity DPS with less computational effort even if the time-scales of classes

are different.

Another asymptotic regime is for heavy-tailed service requirements. It is

an extension of the asymptotic equivalence for EPS established by Zwart and

Boxma [57]. Borst et al. [144] proved, if the service requirement distribu-

tion has finite variance, a similar tail behaviour exists between the service

requirement and sojourn time for any DPS class, which is independent of the

DPS weights. The additional scenarios and a broad assumption concerning

service distributions have been considered in [60]. Note that these insen-

sitivity properties do not appear for light-tailed service requirements [60].

For such cases, Egorova et al. [145] focused on the logarithmic estimates of

sojourn-time distribution using large-deviation techniques.

More conjectures about approximate insensitivity are also considered re-

lated to statistical bandwidth sharing, and readers can refer to [146, 147, 77].

Although several decades have passed, theoretical studies relevant to DPS

in the literature are still scarce and results are only under certain limiting

regimes.

2.3.4 Multilevel Processor Sharing (MLPS)

Another extension of the EPS policy is the family of MLPS strategies intro-

duced by Kleinrock [5]. The MLPS discipline is non-anticipating and work-

conserving, parameterized by the specified set of level thresholds a0 < a1 <

· · · < aN+1 that are used for classifying jobs based on the size of their at-

tained services, where the level n = 0, 1, . . . , N, N + 1 and a0 = 0, aN+1 = ∞.

If a job belongs to level n, the attained service must be at least an−1 but less
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than an. There is a strict priority applied between levels. The lower level

where jobs have smaller amounts of attained service will receive the higher

service priority. The EPS (simply called PS below) policy or the Foreground-

Background Processor-Sharing (FBPS or FB) [148, 149] (also called as Least-

Attained-Service) or FCFS may be applied for serving at each level n. Note

that there are different studies for FB as an independent discipline and as a

mechanism for MLPS queues. We review the literature for both cases related

to the complete discussion of MLPS.

In a larger family of size-based scheduling disciplines, FB performs the

smaller mean sojourn time when the service time distribution has a decreas-

ing hazard rate (DHR) [67]. Righter [150] also proved that FB minimizes the

queue size stochastically with the DHR service distribution. Righter et al.

[151] showed that FB minimizes the mean sojourn time if the service time

distribution has an increasing mean residual life (IMRL), which is a weaker

condition than DHR. Wierman et al. [152] proved that FB is better than PS

with respect to the mean delay whenever the service time distribution is the

type of DHR, and vice versa if the service time distribution is the type that has

an increasing hazard rate (IHR). For further details about the FB discipline,

readers can refer to Nuyens and Wierman’s recent survey [153]. Aalto et al.

[154] proved that the MLPS disciplines are better than PS with respect to the

mean sojourn time for the two-level case whenever the hazard rate of the ser-

vice time distribution is decreasing or increasing. Afterwards, they showed

that these results are valid for any MLPS discipline in [155]. Therefore, a

range of MLPS disciplines seems a reasonable compromise between PS and

FB, having a smaller overall mean sojourn time than PS and better fairness

mean delay than FB.

Alto et al. [6] summarised recent results for the MLPS discipline, includ-
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ing the mean sojourn time, the mean slowdown ratio, and the expected condi-

tional sojourn time asymptotics.

• The mean sojourn times for MLPS and PS are denoted by E[TMLPS] and

E[TPS], respectively. According to [156], MLPS with the internal disci-

plines FB or PS, if service requirements is IMRL, E[TMLPS] ≤ E[TPS]; if it

is decreasing mean residual life (DMRL), E[TMLPS] ≥ E[TPS]. In contrast

with [151], it showed that FB does not minimize the mean sojourn time

under the situation of IMRL [157].

• There is a natural partial order among the internal disciplines applied

in MLPS. For DHR or IHR service requirements, the mean sojourn time

is decreased or increased which is not affected by changing internal dis-

ciplines from PS to FB, or from FCFS to PS, or by any level split in FCFS

internal discipline into two adjacent FCFS levels; or by splitting level 1

with PS internal discipline into two adjacent PS levels [158]. Results

of [158] proved the optimality of FB on the mean sojourn for DHR ser-

vice requirements [159, 154] and quantified the reduction on the mean

sojourn time by adding levels.

• Considering the mean slowdown ratio and results in [158], if a specific

function for all service requirements is decreasing or increasing (see [6]

5.3), the mean slowdown ratio is decreased or increased under any condi-

tions in the last mentioned item. Feng and Misra [159] originally proved

the optimality of FB with respect to the mean slowdown ratio for DHR

service requirements by the same approach.

• Comparing MLPS having PS as an internal discipline at the highest

level with ordinary PS, there is an asymptotic expected conditional so-
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journ time with slope 1/(1 − ρ) and a positive finite bias [160]. Also,

the asymptotic slowdown of these disciplines is exactly the same. These

results for the asymptotic expected conditional sojourn time and slow-

down show that the performance of very large jobs is equivalent under

both MLPS having PS and ordinary PS disciplines.

On the other hand, MLPS disciplines have recently been resurrected in

some papers that focus on the differentiation between short and long TCP

flows in the Internet [161, 159, 162]. Flow sizes in the Internet have been

modelled by Pareto and hyperexponential distributions [163, 164]. The size-

based scheduling MLPS attracts more interest as it is very often that file sizes

are extremely variable and have heavy-tailed characteristics [165, 166, 163,

94].

2.4 Wireless Applications: PTT and WiMAX

2.4.1 PTT over GSM/GPRS

Push to Talk [10], a new mobile service, was first introduced by US-based

network operator Nextel in 1996 [167]. Unlike a normal mobile communi-

cation in a full duplex transmission, PTT operates in a half-duplex mode to

provide fast-access two-way communication between two or more communi-

cating parties. PTT voice packets are transmitted in just one direction at any

given moment, so the operation is similar to a conventional “walkie talkie”.

The right to talk is transferred from one end of the conversation to another

through a push of a button on the mobile terminal.

PTT features shorter call setup times, presence detection and point-to-

point or point-to-multipoint communication modes. Moreover, existing mobile
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phone infrastructure without any major change can deliver PTT, such as Code

Division Multiple Access (CDMA), or GSM.

As PTT is an additional service that does not replace normal cellular mo-

bile communications service, it can increase revenue to the wireless network

operators. Rather than the traditional mobile service being good for long and

interactive communication, PTT aims for demands of quick communications

among end-users. For the significant concerns on Public Safety, or serving

the need for efficient communications during times of emergency or disas-

ter, PTT is considered as an important communication tool by government

and public safety officials. Except to evolve or represent some services pro-

vided by the cellular mobile networks, PTT service benefits the customers

with community-of-interest, such as younger consumers, just as Short Mes-

sage Service (SMS) has been popular with this demographic. At present, PTT

is also available both in Europe and in Australia.

The Open Mobile Alliance (OMA) was established to ensure mobile data

service inter-operability across different devices, geographies, service providers,

operators and networks. Based on the build up standards of PTT over Cellu-

lar (PoC) [168], OMA’s initial work on PTT services focuses on requirements

to develop specifications for an open standard to enable adoption of a PoC

service over mobile networks.

In Europe and Australia, PTT services are provided through the GPRS

over GSM networks that utilise the GPRS “always-on” feature, which reduces

access delay. GSM uses a time division multiple access (TDMA) structure

with eight slots per frame to support speech and data transmission [169].

Second-generation GSM networks deliver voice and data services with high

quality and security and they have full roaming capabilities. The GSM Phase

2+ standard specifies GPRS which is a packet data communication system
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using GSM physical channels [170]. However, since GPRS was originally de-

signed for data packet transmission, there is a concern that PTT/GPRS will

not meet PTT QoS requirements such as delay and jitter standards for a voice

service. Therefore, it is important to verify that PTT/GPRS meets PTT QoS

requirements. In Chapter 4, based on a multiservice PS model, we provide an

analytical model to analyse the performance of the PTT uplink delay.

2.4.2 WiMAX

Following the increasing demand for multimedia services we have now reached

a point where it is commercially justifiable to deploy wireless Internet broad-

band access networks. In situations where either it is difficult to use a wired

technology, or its cost is too high, wireless broadband access is a viable alter-

native. This economic environment has led to the development of the IEEE

802.16 standards [21] for broadband wireless access in metropolitan area by

Working Group 16 of the IEEE 802 committee. In addition, the WiMAX Fo-

rum [11], a non-profit industry consortium, has been formed. It is chartered to

promote the technology and provide compatibility and interoperability certi-

fication of 802.16-based products. Accordingly, the term WiMAX is often used

to mean the IEEE 802.16 technology.

WiMAX enables efficient and reliable broadband access by thousands of

subscribers either in line-of-sight or in non-line-of-sight (NLOS) conditions.

However, given that the development of the line-of-sight air interface spec-

ification has been discontinued, WiMAX technology will mainly be used in

NLOS conditions. There are two modes specified in the IEEE 802.16 standard

for sharing wireless media, namely, point-to-multipoint (PMP) and mesh (op-

tional). We shall focus only on the PMP mode in this thesis. As we illustrate
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in Fig. 2.3, under PMP, a single base station (BS) serves multiple SSs, each

of which can be shared by multiple devices. Hence, a typical SS has multiple

uplink connections generating data to be transmitted to the BS. The cover-

age of a BS has a NLOS range varying from 6 to 10 kms depending on the

type of obstacles present (trees, huge buildings etc.). Theoretically, in a single

Tx/Rx channel, WiMAX can provide data rates of up to 75 Mb/s on both the

uplink and downlink channels. Communications between an SS and external

networks or among SSs have to be carried out via a BS.

Figure 2.3: WiMAX Network (PMP Mode).

WiMAX aims to deliver efficiently various types of services including nor-

mal data, streaming video and VoIP meeting required QoS. QoS guarantee in

WiMAX is provided by the scheduling mechanisms in the MAC layer of the

protocol stack, where the aggregate bandwidth is granted by the BS. Based
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on this, the uplink scheduler of an SS chooses a packet from the appropriate

connection at each time-slot in order to deliver the required QoS. Clearly, in

such a complex traffic environment, QoS delivery depends on the performance

of the algorithm deployed by the uplink scheduler. However, as no speci-

fied scheduling algorithm in the standard, choosing efficient WiMAX access

scheduling algorithms and having the means to evaluate their performance

are important challenges for networks operators.

In Chapter 5, we propose a priority-based fair scheduling algorithm to

handle both real-time and non-real-time uplink WiMAX traffic in an SS and

provide an analytical model to analyse the performance of our proposed algo-

rithm.

2.5 Conclusions

Together with their associated IEEE standards, we have described the func-

tions of MAC protocols in wireless networks and discussed the importance of

the scheduling policy and its performance model for delivery of QoS require-

ments at the MAC layer. We reviewed the developed wireless scheduling algo-

rithms and then we focussed on modelling scheduling schemes. We presented

an overview of work on different PS models which have been presented in the

current literature. We also briefly introduced the background for two wireless

applications: PTT and WiMAX, which we propose to illustrate the use of the

PS scheduling policy and will be modelled by the multiservice multiqueue PS

model in later chapters.



Chapter 3

Multiservice Multiqueue

Processor Sharing Models

3.1 Introduction

3.1.1 Multiservice PS Scheduling

Multiservice PS scheduling is another extension of ordinary PS scheduling

policy, which is able to handle different traffic classes with different prior-

ities. Multiple users/connections are divided into a number of groups and

served in priority order. But the implementation of this priority discipline is

more flexible than MLPS, as jobs do not have to be classified based on the size

of their attained services. Normally, multiservice PS scheduling has been con-

sidered for use in time-sharing systems. In this traditional approach, a user

from any priority holding the service token can only receive a fixed portion

of service time, called the service quantum. Like most PS-related disciplines,

multiservice PS scheduling is work-conserving.

The multiservice PS scheduling policy can be implemented in multimedia

47
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networks without the need for complicated calculations. Thus, it is of par-

ticular benefit to wireless systems where network schedulers need a simple

scheduling algorithm to make a fast decision. As the discipline provides ser-

vice in a prioritized manner, real-time traffic can be protected by giving it a

higher priority. Moreover, the delay performance can be modelled and anal-

ysed with a closed-form solution under certain practical assumptions.

However, for multimedia applications with heterogeneous traffic charac-

teristics, quantum-based multiservice PS scheduling is inefficient for large

size requests as the quantum is normally set according to the smallest size

request. We propose a new approach which allows a priority-based service

quantum to a certain group of users rather than a fixed service quantum for

every group.

3.1.2 Multiservice PS Scheduling Models

Potter and Zukerman [9] proposed a multiqueue processor sharing (MPS)

model for multiservice PS scheduling with the fixed service quantum. The in-

spiration for the MPS model came from a classical model, known as the round

robin processor sharing (RRPS) model [38, 39], and the distributed queue dual

bus (DQDB) protocol [172, 173, 174, 175, 176, 177].

The RRPS model introduces a round robin time-shared service system to

serve a single queue, where arriving jobs with different size of service de-

mands join the end of the single queue immediately when they arrive. When

a job moves to the head of the queue, it receives a certain quantum of service

(also known as the “time-slot” or “segment-time” below), and if more service

is required, the incomplete part of the job goes to the tail of the queue. From

this basic model, the feedback queueing model appeared as a generalization of
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RRPS [5]. It replaces the single queue by a system of queues and the classical

round robin model by a scheduling algorithm which determines the service

order and the service quantum given to a job. As for the original RRPS, if

a job needs more service after receiving its service quantum, the remaining

part stays in the system until the whole job is finished. But the unfinished

job re-queues at the system of queues in the feedback queueing model rather

than the single queue in the RRPS model .

The basic DQDB model introduces the idea of local queues (LQs) for buffer-

ing arrivals which are waiting for transmission and a distributed queue (DQ)

with a server working in priority order. The concept of a fixed service quantum

is also used in this model. Moreover, at each priority, only one segment from

each LQ is allowed to queue in the DQ at a time. The service manner in the

DQ closely approximates RRPS under certain conditions (refer to Section IV of

[9]). However, DQDB is difficult to analyse by modelling the DQ protocol. No-

tice that although the PS model is normally work-conserving, in [178], DQDB

with bandwidth balancing [179] is considered as a non-work-conserving PS

model that applies to IEEE 802.6 [172].

The MPS model falls under the category of Kleinrock’s feedback queueing

model and inherits some features of DQDB construction. Like DQDB, the

MPS model involves several LQs and a central server with a PS queue. The

server performs prioritized round robin processor sharing among these LQs.

As a variation of the classical RRPS, MPS adds an infinite buffer at each

LQ and uses a modified PS server handling the multi-priority case. For each

priority, only one representative from a LQ can be present in the PS queue.

After receiving its service quantum from the shared processor, a customer

whose service is incomplete will be recycled to the tail of its own priority group

within the PS queue. The MPS model extended the ordinary PS model to a
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multiservice multiqueue PS model and the result relies on the conventional

PS assumption, viz: an egalitarian service sharing manner among all users.

An exact analysis of MPS with a closed-form solution for the mean message

delay was presented in [9].

Modelling our new proposed multiservice PS scheduling, we generalize the

MPS model of [9] to the case where the service quanta are different for dif-

ferent services. We call this new model the Priority-based Service Quanta

(PBSQ) model. In the later sections, we derive an accurate approximation for

the mean message delay and demonstrate the performance effect of the choice

of service quantum based on implementation issues under the PBSQ model.

3.2 Multiqueue PS (MPS) Model

We review the MPS model first. In this discrete time model, time is divided

into consecutive equal-length time units called time-slots which are related to

the service time of slots, and the time points at the beginning of each time-slot

are designated by 1, 2, 3, . . . , so the kth time-slot is the time interval [k, k +1).

Messages arriving at a priority p LQ within any time-slot are independent and

identically distributed (i.i.d.) and are also independent of arrivals to other

LQs. All arrivals within any time-slot are assumed to arrive at the boundary

of the time-slot. Message lengths for each priority are discrete i.i.d.. Each

message is assumed to consist of an integral number of units called segments.

A segment is equal to one slot in the MPS model, and corresponds to a time-

slot representing a fixed service quantum/time received by the message from

the PS server at each service time. The message length distribution may be

different for different priorities.

The closed-form result for the mean delay (measured in time-slots) of pri-
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ority p messages was obtained as a function of the number of segments it

contains, where the delay of a priority p message was analysed in two com-

ponents: the waiting time in the LQ, Lp and the time spent in the PS queue

until the whole message is completely transmitted, Sp(n).

Based on previous studies of RRPS, an expression for Sp(n) was obtained

using a similar approach to that of [5] (p.168) by considering a very large

test message. For the derivation of Lp, they considered an equivalence with

the MPS model in terms of the average segment delay, which is the discrete-

time M/G/1 with the preemptive resume priority queueing model [180]. Both

queueing systems follow a strict priority discipline and are work-conserving

at the segment level. Therefore, for any steady-state, statistically, if the total

segment arrival processes into both systems are identical, the distribution of

the total number of segments of each priority at any time-slot will be identical.

By Little’s formula, knowing two systems have equal average queue size and

equal average arrival rate, the mean delay of segments for each priority will

be equal in these systems. Notice that the segment delay distributions are

different for the two models – even with equal means, as the distribution of

delay usually depends on the service order. So Lp can be obtained by equating

the mean of the priority p segment delay for the MPS model and the mean for

the discrete-time M/G/1 with the preemptive resume priority model.

3.3 Notation

Table 3.1 provides a detailed summary of the main mathematical notation

that has been used throughout this thesis for the various proposed models.

Also, in Table 3.2, we provide the notation for references of [9], that are equiv-

alent to our notation.
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Symbol Explanation

E(X) The mean of the random variable X.
Var(X) The variance of the random variable X.
P(X) The probability of the random event X.

p A priority in the system, p = 1, 2, ..., P , where a smaller num-
ber indicates a higher priority.

ap A random variable representing the number of priority p mes-
sages arriving at a priority p LQ during a time-slot.

āp The mean of ap, āp = E(ap) [messages/time-slot].
bp A discrete random variable representing the priority p mes-

sage size.
b̄p The mean of bp, b̄p = E(bp) [segments].
Np The length of a priority p segment in slots, 1 ≤ Np ≤ N .
C2

a,p The squared coefficient of variation of bp, C2
b,p = Var(bp)/b̄

2
p.

C2
b,p The squared coefficient of variation of ap, C2

a,p = Var(ap)/ā
2
p.

Mp The number of the LQs at priority p.
Qp(0) The mean number of priority p messages in the PS queue

which have not got any service.
Fb,p(n) The probability of bp ≤ n, n = 1, 2, . . ..
Rp(k) The probability that a randomly selected priority p segment is

the kth in its own message, k = 1, 2, . . . , bp.
Lp The mean waiting time (or delay, as the propagation delay

from an LQ to the PS queue is assumed to be zero) of prior-
ity p message in the LQ.

Sp(n) The mean time of a priority p message in the PS queue till
completing at least n segments service, where n is a random
variable.

Dp(n) The mean delay of priority p message with n segments, where
n is a random variable.

λp The mean total arrival rate for all priority p LQs.
ρp The traffic load of priority p messages.
εp εp =

∑p
i=1 ρi.

∆p Compensation term for a priority p message to value the dif-
ference between the delay of PBSQ model and the delay pre-
dicted by the MPS model.

hp The size of MAC header [segments], hp < 1.

Table 3.1: Mathematical notation used throughout this thesis
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Symbol in thesis Symbol in [9]
p = 1, 2, ..., P , where 1 is the highest
priority.

p = 1, 2, ..., H, where H is the highest
priority.

Np denotes the length of a priority p
segment in slots.

Np(0) denotes the mean number of
priority p messages in the PS queue
whose segments have not got any
service.

Qp(0) denotes the mean number of
priority p messages in the PS queue
whose segments have not got any
service.
εp =

∑p
i=1 ρi σp =

∑H
q=p ρq

νi = ρib̄i(C
2
b,i + λpC

2
a,p/Mp) for the

MPS model.
νi = b̄i(C

2
b,i + λpC

2
a,p/Mp) for the MPS

model.

Table 3.2: Mathematical notation used in other references

Note that Lp is not related to the message size n and Dp(n) is the mean

delay of priority p message with n segments, where n is a random variable.

We can obtain the mean delay of all priority p messages by
∑Max(bp)

n=1 Dp(n)P(n).

In [5] and [9], it has proved that Sp(n) and Dp(n) are linearly increasing with

n in the RR model or the MPS model. We will prove that this is also true

for our PBSQ model in the later part of this chapter. Therefore, if the mean

message size for priority p is b̄p, the mean delay of all priority p messages

can be simply represented by Dp(b̄p). We will use this result directly in the

following chapters of this thesis.
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3.4 Correction of a Subtle Incongruity in the

LQ and the PS Mean Delays of the MPS Model

In the MPS model, the mean delay of a priority p message of length n segments

is given by

Dp(n) = Sp(n) + Lp.

We have reviewed the method to obtain Sp(n) and Lp respectively in Section

3.2. Note that the total delay Dp(n) in the MPS model has been proved correct

[9]. In this section, we demonstrate just the apportionments to LQ (Lp) and to

PS queue (Sp(n)) are slightly off and provide a correction.

3.4.1 The Subtle Incongruity for Lp and Sp(n)

To demonstrate the incongruity, we consider Lp obtained by the equation (13)

of [9] for a simple case with only one priority that has four LQs. A constant

size of 1 segment is used for all arriving messages and the arrivals follow a

Poisson process with a mean arrival rate of 0.1 messages per time-slot at each

LQ. Based on (13) of [9], we obtain a negative-valued result for Lp, which is

-0.095. This contradicts the physical interpretation of Lp that must be non-

negative.

Let us analyse the reason for this incongruity. Based on Kleinrock [5] and

Appendix I of [9], equation (2) of [9] was obtained as

Sp(n) = n(
Qp(0)

λp

), (3.1)

where Qp(0) denotes the mean number of priority p messages in the PS queue

which have not received any service. According to the classical method de-



CHAPTER 3. MULTISERVICE MULTIQUEUE PS MODELS 55

scribed in Kleinrock [5] and Appendix I of [9], it has proved that Sp(n) is lin-

early increasing with n. In (3.1), Sp(0) is considered to be zero following the

notation in the original round robin (RR) queue (p.168 of [5], using the symbol

“T (0)” there, representing the starting time that a customer enters the RR

system).

However, there is a distinction between Sp(0) in the MPS model and T (0) in

the RR queue. Unlike Kleinrock’s RR with a single queue, the MPS model is

assumed to consist of LQs and a PS queue, where the propagation delay from

an LQ to the PS queue is assumed to be zero. A message arrives at LQ first,

then enters the PS queue directly if there is no message belongs to the same

LQ in the PS queue; otherwise, if another message belonging to the same LQ

is existed in the PS queue, the new arrival waits at the LQ, and then moves

forward to the head of line (HOL) position of the LQ. For the second case, the

HOL message is still waiting at its LQ when the last packet of the previous

message belonging to the same LQ in the PS queue is moving out. However,

following the consideration of the traditional RR, the PS queue was looked

as the single queue [9]; the start time of the LQ HOL message moving into

the PS queue was calculated from the start time that the last packet of the

previous message belonging to the same LQ in the PS queue is served. For

such a case, the LQ HOL message was supposed to be in the PS queue already,

but this is incompatible with the original assumption of the MPS model in

which the HOL message should still be in the LQ until the last packet of the

previous message belonging to the same LQ is completely served. Therefore,

Sp(n) is overestimated by (2) of [9]. This period should be taken into account

in Lp rather than in Sp(n). Let δp denote the mean of this period. We give the



CHAPTER 3. MULTISERVICE MULTIQUEUE PS MODELS 56

corrected expression for Sp(n) as

Sp(n) = n(
Qp(0)

λp

)− δp. (3.2)

Note that the incongruity occurs when a message has to wait for the service

in its LQ. However, the probability for this case, i.e. when a message comes,

another message from the same LQ is in PS queue, is complicated to analyse

for different arrival and service distributions.

To provide a correction for the incongruity, we modify the original assump-

tion of [9] to simplify the case with the incongruity. Assume that a message

staying in a LQ enters the PS queue only when the PS server gives the service

token to this message, i.e. the beginning time of a message in the PS queue

is when the first segment of the message starts to be served. The difference

of this assumption and the original MPS model assumption is only the start

time when a message enters the PS queue and does not affect the total delay.

But it generalizes the case to be analysed easily that we can get a solution of

the incongruity. Based on RR properties summarized by Kleinrock [5] (p.169),

the ratio of wasted time to service time in RR is “W (x)/x = ρ/(1 − ρ)”, which

measures how much waiting time, on average, must be sacrificed for receiv-

ing a unit of service time. Note that the ratio only relates to the traffic load

“ρ”. This can be used to describe the mean time of priority p HOL messages

waiting for the last segment of the previous message (can be from any LQ)

completing service in the PS. For the multi-priority conservation system, the

traffic load “ρ” is only due to the load of equal or higher priorities [5] (p.124);

so it should be εp−1 + ρp
Mp−1

Mp
in the MPS model, as a LQ cannot contribute any

traffic load to the PS queue if there is a message belonging to this LQ in the

PS queue already. Under this approach, the solution of the incongruity for Lp
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is
εp−1 + ρp

Mp−1

Mp

1− εp−1 − ρp
Mp−1

Mp

.

In Appendix A, we prove that Lp would never be negative under this approach

with the above correction.

As the total delay in the MPS model is correct, for simplicity, in the follow-

ing chapters, we still keep the original assumption of [9], and only use δp to

denote the incongruity.

3.4.2 Derivation of LQ Waiting Time

We re-derive the equations which are affected by this incongruity in the MPS

model. Again, consider a priority p “test” message of length x segments as in

[9], whose probability of occurrence does not affect the overall statistics. Then,

the time that this message spends in the PS queue, Sp(x), must approach its

own service requirement x, plus the time required by the total work for all

messages which arrive to the PS queue during its service and waiting time but

just before its last segment (i.e. the xth segment) starts service (the duration

is Sp(x)− 1). These arriving messages include arrivals to priority p LQs other

than the one that has this test message, given by (Sp(x)−1)ρp(Mp−1)/Mp; and

the arrivals to all local queues of priorities higher than p, given by (Sp(x) −
1)

∑p−1
i=1 ρi. The corrected expression for (3) of [9] is shown as

Sp(x) → x + (Sp(x)− 1)[
Mp − 1

Mp

ρp +

p−1∑
i=1

ρi], as x →∞. (3.3)

Defining

εp =

p∑
i=1

ρi, (3.4)
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we obtain:

lim
x→∞

Sp(x) =
x

1− εp−1 − Mp−1

Mp
ρp

. (3.5)

When x →∞, the slope of mean PS delay is:

Qp(0)

λp

=
1

1− εp−1 − Mp−1

Mp
ρp

, (3.6)

same as (6) of [9]. By (3.2), we obtain

Sp(n) =
n

1− εp−1 − Mp−1

Mp
ρp

− δp, (3.7)

and have

Dp(n) = Lp +
n

1− εp−1 − Mp−1

Mp
ρp

− δp. (3.8)

Let Rp(k) for k = 1, 2, . . . , bp be the probability that a randomly selected prior-

ity p segment is the kth in its own message, where the message size bp replaces

∞ in (9) of [9]. According to Appendix II of [9], we have

Rp(k) =
1− Fb,p(k − 1)

b̄p

for k = 1, 2, 3, . . . , bp. (3.9)
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Then, the mean priority p segment delay is obtained as

E[Dseg(p)] =

bp∑

k=1

[Lp + Sp(k)]Rp(k) (3.10)

=

bp∑

k=1

[LpRp(k)] +

bp∑

k=1

[Sp(k)Rp(k)]

= Lp +

bp∑

k=1

[Sp(k)Rp(k)]

= Lp +

bp∑

k=1

[(
k

1− εp−1 − Mp−1

Mp
ρp

− δp)× 1− Fb,p(k − 1)

b̄p

]

= Lp +

∑bp

k=1 k[1− Fb,p(k − 1)]

b̄p(1− εp−1 − Mp−1

Mp
ρp)

− δp.

Then, we simplify the numerator of the second term in the above result as

bp∑

k=1

k[1− Fb,p(k − 1)]

=

bp∑

k=1

[kP(bp ≥ k)]

=

bp∑

k=1

[k
∞∑

j=k

P(bp = j)],

where the random variable bp = 1, 2, 3, ... so j = 1, 2, ...,∞. If we expand the

above summation, we get:

1P(bp = 1) + 1P(bp = 2) + 1P(bp = 3) + 1P(bp = 4) + . . .

2P(bp = 2) + 2P(bp = 3) + 2P(bp = 4) + . . .

3P(bp = 3) + 3P(bp = 4) + . . .

. . . + . . .
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We sum the terms vertically, the summation becomes

∞∑

k=1

[P(bp = k)
k∑

j=1

j]

=
∞∑

k=1

[P(bp = k)
(1 + k)k

2
]

=
1

2
[
∞∑

k=1

kP(bp = k) +
∞∑

k=1

k2P(bp = k)]

=
1

2
[b̄p + E(b2

p)]

=
1

2
(b̄p + b̄2

p + b̄2
pC

2
b,p),

where C2
b,p = (E(b2

p)− b̄2
p)/b̄

2
p.

E[Dseg(p)] = Lp +
b̄p + b̄2

p + b̄2
pC

2
b,p

2b̄p(1− εp−1 − Mp−1

Mp
ρp)

− δp

= Lp +
1 + b̄p + b̄pC

2
b,p

2(1− εp−1 − Mp−1

Mp
ρp)

− δp

= Lp +
[b̄p(1 + C2

b,p) + 1]/2

1− εp−1 − Mp−1

Mp
ρp

− δp. (3.11)

Following the notation presented in Table 3.2, we rewrite (12) of [9] as

E[Dseg(p)] =
νp/ρp +

∑p
i=1 νi/(1− εp)

2(1− εp−1)
+

1

2
. (3.12)

Equating it with (3.11), we obtain the following corrected expression for Lp:

Lp =
νp/ρp +

∑p
i=1 νi/(1− εp)

2(1− εp−1)
− [b̄p(1 + C2

b,p) + 1]/2

1− εp−1 − Mp−1

Mp
ρp

+ δp +
1

2
. (3.13)

Notice that the modified solution adds a term of δp to (13) of [9], where the

bigger δp would increase Lp. Without this term, in [9], the Sp(n) was over-
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estimated and Lp was underestimated through the equivalence of (11) and

(12). However, due to Lp obtained by the equivalence, the final result of the

mean message delay Dp(n) shown at (14) of [9] is still correct. But the new

solution for the mean waiting time in LQ by adding δp is really matched with

the model.

The physical interpretation and explanation for δp can be viewed as the

answer to the question: What is the length of the time period spent between

the LQ and the PS queue? It is based on the separate point of time in the LQ

and in the PS queue. By a slightly modified assumption, our approach enables

to quantify the period.

3.5 Priority-Based Service Quanta (PBSQ) Model

3.5.1 Analytical Model

We illustrate the use of our PBSQ model through the use of a two-priority

(high and low) example as depicted in Fig. 3.1. Consider a centralized proces-

sor that is shared by four LQs in a prioritized PS manner. LQs 1 and 2 are

exclusively loaded by low priority messages and LQs 3 and 4 by high priority

messages. Each LQ is assumed to have an associated infinite buffer.

Message lengths for each priority are discrete i.i.d.. Each message is as-

sumed to consist of an integral number of segments; for example, the message

in LQ 1 has two segments. A segment here corresponds to a MAC layer packet

representing an uninterrupted quantum of service time received by the mes-

sage from the MAC PS server. A MAC layer normally operates using units

called slots each of which consists of a fixed number of bytes. All segments

of a given priority are assumed to be composed of the same integral number
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Figure 3.1: The PBSQ model for the case of two priorities.

of slots, but segments of different priorities may have different numbers of

slots. For each priority p, the length of its segment is denoted by Np [slots],

1 ≤ Np ≤ N , where N represents the maximum possible segment size. In Fig.

3.1, the high priority segment size is two slots and the low priority one is eight

slots. At any time, at most one message from each LQ can be present in the

PS queue, i.e. a message from an LQ cannot move into the PS queue until the

previous message from the same LQ has been completely served.

As for the MPS model, time is also divided into time-slots. As a time-slot is

related to the service time of a slot, the service time of a segment is known as

the segment-time. Messages arriving at a priority p LQ within any time-slot
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follow a Poisson process with a mean arrival rate of āp. Thus, C2
a,p is equal to

1/āp. The mean total arrival rate of priority p messages is given by λp = Mpāp.

The PS server provides one segment of service to the message at the head

of the PS queue and recycles the incomplete message to the tail of its own

priority group, but ahead of all lower priority messages. In the snapshot pre-

sented in Fig. 3.1, a segment from LQ 4 is in service and the remaining seg-

ment of the same message is sent to the end of the high-priority group in the

PS queue; and one segment of the incomplete LQ 3 message (2 segments) will

be served next. We consider non-preemptive priority scheduling at the seg-

ment level, i.e., any new message arrival, even from a higher priority, cannot

interrupt the current segment’s service.

Using b̄p and C2
b,p defined in Table 3.1, the mean size in slots of priority p

messages is given by b̄pNp and the traffic load of priority p messages is given

by ρp = λpb̄pNp, 0 < ρp < 1.

3.5.2 Mean Message Delay

In [9], the delay of an arriving message is obtained by summing its waiting

time in the LQ and its sojourn time in the PS queue. Notice that the method

of [9] relies on the following two assumptions that we do not adopt here: (1)

all messages arrive at a segment boundary; and (2) segments of different pri-

orities are of the same size. Nevertheless, because each priority is considered

separately, we can still develop an accurate approximation for the mean mes-

sage delay by applying the results of [9] and then correcting the result using

a compensation term. Accordingly, the mean delay of a priority p message

consisting of n segments, denoted Dp(n) (in units of priority p segment-time),
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is given by

Dp(n) = Lp + Sp(n) + ∆p, (3.14)

where Lp is the mean priority p message waiting time in the LQ, Sp(n) is the

mean time spent by priority p messages in the PS queue until the completion

of at least n segments of service, and ∆p is the compensation term defined

as the difference between the delay for a priority p message and the delay

predicted by the MPS model of [9].

Since, in the model of [9], each segment is equal to one slot, to use that

model in our approximation it is convenient to consider the basic time unit to

be the segment-time. In particular, when we evaluate the mean delay of pri-

ority p messages, we consider time to be measured in priority p segment-time

units and the amount of traffic that arrives in units of priority p segments.

Since other priority messages may have segments of size that are not equal

to, or not an integer multiple of, the priority p segment size, and because they

arrive during the priority p segment-time (at different time-slots) and not all

at once (as in [9]), in our approximation we do not consider the actual arrival

process, but we do fit the first two moments of our arrival process. Also, since

the result of [9] is based on only two moments, our approximation can be very

good. We re-describe the arrival process of priority i messages in Table 3.3.

Following the line of argument given in Section III and Appendix I of [9]

and Section 3.4 of this chapter, we have the modified expression for Sp(n) as

Sp(n) =
n

1− εp−1 − Mp−1

Mp
ρp

− δp, (3.15)

where εp =
∑p

i=1 ρi.

In a similar fashion to the MPS model, we derive Lp using a discrete-
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The mean length of messages in units of
priority p segments

E[biNi/Np] = b̄iNi/Np.

The mean message arrival rate during a
priority p segment-time

λiNp.

The variance of the number of messages
arriving during a priority p segment-time

NpMiVar(ai) = NpMia
2
i C

2
a,i =

NpMiai, as C2
a,i = 1/ai for Pois-

son arrivals.
The second moment of the number of pri-
ority i messages arriving during a prior-
ity p segment-time

NpMia
2
i C

2
a,i + N2

p λ2 = NpMiai +
N2

p λ2, as C2
a,i = 1/ai for Poisson

arrivals.

Table 3.3: Priority i traffic load converted into units of priority p segments
and segment-times

time non-preemptive priority queueing model [180] which is equivalent to the

PBSQ model in terms of the average segment delay. Thus Lp can be obtained

by equating the mean of the priority p segment delay in the PBSQ model with

the mean of the discrete-time non-preemptive priority model.

According to Appendix II of [9], and in the same way as for the derivation

in Section 3.4.2, we have

Rp(k) =
1− Fb,p(k − 1)

b̄p

for k = 1, 2, 3, . . . , bp,

E[Dseg(p)] =

bp∑

k=1

[Lp + Sp(k)]Rp(k),

where Rp(k) for k = 1, 2, . . . , bp is the probability that a randomly selected

priority p segment is the kth in its own message. Then, the mean delay of

priority p segments is obtained as

E[Dseg(p)] = Lp +
[b̄p(1 + C2

b,p) + 1]/2

1− εp−1 − Mp−1

Mp
ρp

− δp. (3.16)

Using the first two moments of the message arrival process in Table 3.3, we
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apply (6.5) of [180] to obtain the first two moments of the arrival process for

messages of priority p or higher on the priority p segment level. For priority i

messages, the mean and variance of the priority p segment level is derived as

• mean = λiNpb̄iNi/Np = λib̄iNi = ρi [priority p segments/ priority p segment-

time],

• variance = Var(X) = E(X2) − E(X)2. According to (6.5) of [180], us-

ing the results in Table 3.3, the second moment of the arrival process

for messages of priority p or higher on the priority p segment level is

[(NpMiai + N2
p λ2)−Npλ](b̄i

Ni

Np
)2 + NpλE[(bi

Ni

Np
)2]. Thus, we have

[(NpMiai + N2
p λ2)−Npλ](b̄i

Ni

Np

)2 + NpλE[(bi
Ni

Np

)2]− (Npλb̄i
Ni

Np

)2

= [NpMiai + N2
p λ2](b̄i

Ni

Np

)2 −Npλ(b̄i
Ni

Np

)2 + NpλE[(bi
Ni

Np

)2]− (Npλ)2(b̄i
Ni

Np

)2

= (b̄i
Ni

Np

)2[NpMiai + N2
p λ2 − (Npλ)2] + Npλ[E[(bi

Ni

Np

)2]− (b̄i
Ni

Np

)2]

= (b̄i
Ni

Np

)2NpMiai + Npλ(b̄i
Ni

Np

)2C2
b,i

=
b̄2
i N

2
i λ

Np

+
b̄2
i N

2
i C2

b,iλ

Np

=
ρib̄iNi

Np

+
ρib̄iC

2
b,iNi

Np

= ρib̄i
Ni

Np

(1 + C2
b,i).

Define ρib̄iNi(1 + C2
b,i)/Np = νi, variance = νi.

Thus, the total segment arrival process for priority p messages or higher has

the following first two moments:

• mean =
∑p

i=1 ρi = εp,

• variance =
∑p

i=1 νi, where νi = ρib̄iNi(1 + C2
b,i)/Np.
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Parameters in (6.17) of [180] Parameters in PBSQ model
ρIy : the traffic load from those prior-
ities higher than y.

εp−1: the traffic load from those pri-
orities higher than p.

E(Ñ (Fy)) and E([Ñ (Fy)]2): the first
two moments of the number of seg-
ments from priorities i ≤ y.

εp and
∑p

i=1 νi + ε2
p: the first two mo-

ments of the number of segments
from priorities p or higher arriving
during a priority p segment-time, in
the units of priority p segment size.

N̄iB̄i: the mean arrival rate of seg-
ments from the priorities i.

ρi.

B̄y: the mean message/segment
size depends on the equation used
for calculating the mean mes-
sage/segment waiting time.

1: as we calculate the mean segment
waiting time.

N̄y and N̄y
2: the first two moments

of the arriving process for priority y
messages.

ρp and νp +ρ2
p: the first two moments

of priority p segments arriving dur-
ing a priority p segment-time.

Table 3.4: Corresponding parameter notations used in (6.17) of [180]

Then, applying the previously obtained mean and variance, we use (6.17)

of [180] to calculate the mean waiting time of priority p segments. The cor-

responding parameters for our case using (6.17) are shown in Table 3.4. Re-

placement of our corresponding parameters into (6.17) of [180] and adding a

one segment transmission time, we obtain the mean delay of p priority seg-
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ments in units of p segment-time, giving

E[Dseg(p)]

=
1

1− εp−1

{
∑p

i=1 νi + ε2
p − εp

2(1− εp)
+

p−1∑
i=1

ρi +
νp + ρ2

p − ρp

2ρp

}+ 1

=
1

2(1− εp−1)
{
∑p

i=1 νi

1− εp

− εp(1− εp)

1− εp

+ 2εp−1 + νp/ρp + ρp − 1}+ 1

=
1

2(1− εp−1)
{
∑p

i=1 νi

1− εp

− εp + 2εp−1 + νp/ρp + ρp − 1}+ 1

=
1

2(1− εp−1)
{
∑p

i=1 νi

1− εp

+ εp−1 − ρp + νp/ρp + ρp − 1}+ 1

=
1

2(1− εp−1)
{
∑p

i=1 νi

1− εp

+ νp/ρp + εp−1 − 1}+ 1

=

∑p
i=1 νi/(1− εp) + νp/ρp

2(1− εp−1)
− 1− εp−1

2(1− εp−1)
+ 1

=

∑p
i=1 νi/(1− εp) + νp/ρp

2(1− εp−1)
+

1

2
. (3.17)

We can obtain Lp using (3.16) and (3.17). Then, adding Lp to (3.15), we obtain

Lp + Sp(n) =
νp/ρp +

∑p
i=1 νi/(1− εp)

2(1− εp−1)
+

n− [b̄p(1 + C2
b,p) + 1]/2

1− εp−1 − Mp−1

Mp
ρp

+
1

2
. (3.18)

For the first part of the compensation, henceforth denoted ∆p(1), when a

priority p message arrives, it has to wait until the segment in progress com-

pletes its transmission – regardless of its priority – because we do not allow

preemptions. At the same time, due to this delay, there are higher prior-

ity messages which arrive during the time, so the total work required by all

these segments should be taken into account of ∆p(1). Thus, for a priority p

message, denoted the time waiting for the current served segment by Wp, we
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have

∆p(1) → Wp + ∆p(1)

p−1∑
i=1

ρi.

We can evaluate Wp for a priority p message due to the transmission time of a

priority i segment currently found in service. Since the message arrival pro-

cess follows a Poisson process, this occurs with probability ρi (by the PASTA

principle). The mean time that priority p messages have to wait until the pri-

ority i segment completes its service is estimated as half of the Ni time-slots.

We have

E[Wp] =

∑P
i=1 ρiNi

2Np

.

Thus, we have

∆p(1) =

∑P
i=1 ρiNi

2Np(1− εp−1)
. (3.19)

The part ∆p(1) only considers compensation associated with the initial de-

lay. It is important, however, to notice that, for the same reason that the

high priority message experiences additional delay relative to the MPS model

(because it has to wait until a low priority segment completes its transmis-

sion), the low priority message experiences a reduction of delay (relative to

the MPS model) if a high priority message arrives during the transmission of

the last segment of the low priority message. Notice that this reduction of de-

lay, which we henceforth denote by ∆p(2), is only relevant to the last segment.

If the high priority message arrives during transmission of an earlier seg-

ment, the reduction of delay gained by the low priority message will be offset

by a later delay of transmission of subsequent segments as they can only be

transmitted after the transmission of the high priority message is completed

and since the latter incurred initial delay, it will also be delayed in completing

its transmission.
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Let Jp(x) for any i < p be a function defined by

Jp(x) =





1 if x < cNp,

0 otherwise,

where the factor c, 0 < c ≤ 1, will allow us to disregard messages of priori-

ties higher than p when their segment size is close to that of p. Let λ(p) =
∑p−1

i=1 λiJp(Ni). The rate λ(p) is the arrival rate of messages that we would like

to consider in evaluating ∆p(2). In particular, ∆p(2) is evaluated using the

time elapsed from the instant corresponding to the occurrence of an arrival

(drawn from a Poisson distribution process with mean rate λ(p) within the

last segment-time of our priority p message) until the end of that segment-

time.

Consider k random variables X1, X2, ..., Xk that have a uniform distribu-

tion within (0, Np). The random variables represent the arrival times of new

messages that come during a priority p segment-time. We have

P[Min(X) > x] = P(X1 > x)P(X2 > x)...P(Xk > x) = (1− x

Np

)k, for 0 < x < Np.

Hence, the density of Min(X) is k(1 − x/Np)
k−1/Np, for 0 < x < Np. So we
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calculate E[Min(X1, X2, ..., Xk)] by

E[Min(X)] =

∫
P (X > t)dt

=

∫ Np

0

k

Np

(1− x

Np

)k−1xdx

=

∫ Np

0

[1− (1− x

Np

)]k(1− x

Np

)k−1dx

= k[

∫ Np

0

(1− x

Np

)k−1dx−
∫ Np

0

(1− x

Np

)kdx]

= kNp(
1

k
− 1

k + 1
)

=
Np

k + 1
. (3.20)

It is known that conditioning on the number of Poisson arrivals within a

segment-time, the arrival times have the same distribution as the order statis-

tics of the same number of uniformly distributed random variables within that

segment-time. Using (3.20), the mean time from the moment that the first

higher priority message arrives during the last segment-time of a priority p

message until the end of that segment-time, with conditioning and uncondi-

tioning of the number of high priority messages that arrive during that last

segment-time, is obtained by

∞∑

k=0

Np

k + 1
P(Y = k)

=
Np

Npλ(p)

∞∑

k=0

e−λ(p)Np
(λ(p)Np)

k+1

(k + 1)!

=
1

λ(p)
(1− e−λ(p)Np) (3.21)

where Y is a Poisson random variable with parameter λ(p)Np. Then, we obtain
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the correction of the delay relative to MPS in priority p segments by

∆p(2) ∼= 1− 1

Npλ(p)

(
1− e−λ(p)Np

)
, 1 < p ≤ P and λ(p) 6= 0. (3.22)

Since ∆p(2) is relevant only for i < p, we set ∆1(2) = 0. Overall, ∆p is estimated

by

∆p
∼= ∆p(1)−∆p(2). (3.23)

Due to possible large variations in segment sizes for the different prior-

ities, the compensation term ∆p is the key to an accurate evaluation of the

overall mean message delay. We can multiply the result of (3.14) by Np to

convert the delay result to the common “currency” of time-slots.

Compare the mean delay which PBSQ performs with which MPS performs,

∆p is the only difference as PBSQ without the limitation of assumption that

all messages arrive at a segment boundary. As ∆1(2) ≤ 1, ∆p(1) can have a

major effect on this difference. According to (3.19), in the PBSQ model, the

mean delay for a priority traffic is decreased when a bigger segment size is

chosen for this priority than for other priorities. Also, under a same total

loading εP and a same set of segment size Np, p = 1, 2, ..., P , the mean delay of

priority p messages with a bigger εp−1 is longer than one with a smaller εp−1.

3.5.3 Relevant Implementation Issues

The MAC layer enables the optional function of fragmentation to avoid re-

transmission of large frames in the presence of Radio Frequency (RF) inter-

ference. If the bit errors resulting from RF interference affect a single frame,

which is quite typical of a wireless environment, it is obviously better to re-

transmit a smaller frame rather than a larger one. With fragmentation, a
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network node can divide data messages into smaller frames according to a

maximum frame length threshold set by network operators. If a message is

referred to as a network layer service data unit (SDU), it needs to be turned

into one or more frames known as MAC protocol data units (PDUs) for trans-

mission over the network with added headers. MAC header formats are nor-

mally defined in the standards. For example, a typical one is the Ethernet

header used predominantly for network access.

We consider the effect of a MAC header with a size hp [segments], hp < 1.

When a message length bp is divided into n segments, the mean size of MAC

messages B̄P with PDU headers is given by:

B̄p(n) = n(1 + hp). (3.24)

According to (3.14) and (3.24), we can obtain an approximation for the mean

message delay at the MAC layer as Dp[B̄p(n)].

If a bigger segment size is chosen in the PBSQ model, the mean delay will

be decreased due to the fact that adding MAC headers imposes less overhead

than in the MPS model. This will be demonstrated by numerical results in

the following section.

3.5.4 Model Evaluation and Numerical Results

Model Evaluation

In this section, we validate our approximation for the mean message delay

using a C++ simulation program. In this simulation, there are six active sta-

tions, designated as Station 1 to Station 6 respectively, and sharing a central

processor which operates as described in the PBSQ model of Section 3.5.1.
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Stations 1 and 2 transmit messages at priority 3 (lowest), Stations 3 and 4 at

priority 2, and Stations 5 and 6 at priority 1 (highest). The service capacity of

the processor is 0.1 Gb/s. Messages of all priorities arrive in accordance with

a Poisson process, with mean rates equal to 100 and 62.5 messages/s for prior-

ities 2 and 3, respectively, and the mean rate for priority 1 is varied from 100

to 550 messages/s. Message sizes of priorities 1 and 2 are negative exponen-

tially distributed with mean equal to 4.5 and 15 kbytes, respectively; priority

3 message lengths follow a cut-off Pareto distributed model with shape pa-

rameter = 1.1, scale parameter = 4.5 kbytes and cut-off threshold = 2 Mbytes,

as in [181]. From measurements of the generated message-length deviates we

obtain C2
b,3
∼= 16. The generated message size is rounded to the nearest inte-

gral number of segments. The service quanta are 500, 5000 and 3500 bytes

for priorities 1, 2 and 3, respectively. For a slot size of 500 bytes, we calculate

the mean message delay for priority p traffic, Dp[b̄p], using (3.18) and (3.23)

with c = 0.8 (empirically set). Analytical and simulation results with 95%

confidence intervals (which are too small to be noticed in many cases) based

on a Student’s t-test are presented in Fig. 3.2 and 3.3. The analytical results

are in good agreement with the simulation results for all three priorities.

Comparison of the PBSQ and MPS Models

A two-priority example is considered for comparison between the mean mes-

sage delays in the PBSQ and MPS models, where Mp = 2 for each priority. We

have Poisson arrivals with a mean rate of 0.0006 per slot for low priority and

a variable rate from 0.0002 to 0.001 per slot for the high priority. Message size

is negative exponentially distributed with mean 142.7 slots for the high prior-

ity and cut-off Pareto distributed with a mean of 250.04 slots and C2
b,p = 16.3

for the low priority. We consider the message size also rounded to the nearest
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Figure 3.2: Analytical vs simulation results for the mean delay of priority 1
and 2 messages.

Figure 3.3: Analytical vs simulation results for the mean delay of priority 3
messages.

integral number of segments. We assume a 50-slot service quantum for the

low priority and a 90-slot service quantum for the high priority traffic in the

PBSQ model. The fixed service quantum in the MPS model is one slot. We

consider a 0.1 slot header for each service quantum in both models. The nu-
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Figure 3.4: Comparison of mean message delays in the PBSQ model and in
the MPS model.

merical results for the two models are plotted in Fig. 3.4. It shows the delay

for the PBSQ model is significantly improved at the higher arrival rate after

adding headers, although the header size is small. When the arrival rate of

the high priority traffic reaches 0.001, the reduction of the mean message de-

lay for the high priority for the PBSQ model is about 25% less than for the

MPS model, and is more significant at about 40% less than the MPS model

for the low priority.

3.6 Conclusions

In this chapter, we introduced a multiservice PS scheduling policy and the

relevant multiservice multiqueue PS models: MPS and PBSQ. We corrected

a subtle incongruity in the mean LQ waiting time given by equation (13) of

[9] for the MPS model. Moreover, extending this MPS model, we described

a general multiservice multiqueue PS model, that we have called the PBSQ

model, in which the service quanta may be different for different services.
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An accurate approximation for the mean message delay is derived and val-

idated by a simulation study. The unique advantage of our model is that it

allows variable-sized service quanta rather than the fixed service quantum

scheduling mechanism assumed in other models. We also considered the im-

plementation issue for MAC headers, we demonstrated the performance effect

of the choice of service quantum and the benefits that can be achieved over a

fixed service quantum scheduling mechanism through a comparison with our

numerical results.

Multimedia traffic exhibits different traffic characteristics and QoS re-

quirements. A bandwidth allocation algorithm is needed in the MAC protocol

to satisfy diverse QoS requirements and to utilize bandwidth efficiently. The

priority-based algorithm is a basic scheme that can be chosen as one QoS solu-

tion. Given that our closed-form solution obtained from the analytical model

of such an algorithm is easily computable and captures traffic heterogeneity,

so it can be incorporated as part of a practical connection admission function.

The proposed model provides a simple way to evaluate performance of multi-

media applications which can be used by operators in network dimensioning

and management of heterogeneous traffic.



Chapter 4

Modelling and Analysis of PTT

Uplink Delay in GPRS/GSM

Networks

4.1 Introduction

PTT is a packetised voice service provided by mobile network operators as a

value-added service. Since IP is used as a bearer, PTT service performance de-

pends significantly on the infrastructure and technology used by carriers. We

consider the case of PTT over GPRS/GSM networks, where PTT delay perfor-

mance is affected by the PTT/GPRS/GSM channel sharing scheme and associ-

ated delays due to retransmissions. Moreover, the packet delay is largely due

to delays experienced between the mobile station (MS) and the Base Station

(BS). Therefore, an appropriate mathematical model covering the above issues

is required to evaluate the performance of PTT/GPRS. There have been many

publications that discuss the general performance evaluation of GPRS/GSM

systems [182, 183, 184, 185, 186, 187]. However, these studies are based on

78
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the use of GPRS for normal data services only and not for packetised speech.

By using the MPS queueing model idea, based on [170, 9, 5], we analyze the

mean PTT packet delay using the partial sharing channel allocation scheme.

We take into account the effect of GSM voice traffic under a quasi-stationary

assumption [41]. Cases with and without provision of strict priority for PTT

traffic over GPRS data are discussed. We describe the analytical model in-

cluding the underlying assumptions for the MAC/RLC layer between the MS

and the BS, together with numerical solutions and validate this model by

simulations. Based on our analytical solution, the effect of retransmissions is

evaluated. Numerical results are presented to illustrate the interactive im-

pact of traffic loading and various design parameters on PTT packet delay.

The effects of retransmission, GSM voice loading and priority assignment on

mean PTT delay are also discussed.

4.2 GPRS LLC/RLC/MAC Layers

GSM uses a TDMA structure with eight time-slots (channels) per frame to

support voice and data transmission [169]. Two additional support nodes:

the serving GPRS support node (SGSN) and the gateway GPRS support node

(GGSN), have been added into the original GSM infrastructure for GPRS

packet data routing [170, 188]. To support communication between the MS

and the GPRS network, the physical layer is designed to include functions

for modulation/demodulation, channel coding/decoding, etc., and the data link

layer is designed for establishing logical links and all of the detailed imple-

mentation of the GPRS protocols. The data link layer is split into two sub-

layers, namely, logical link control (LLC) and the radio link control/medium-

access control (RLC/MAC). In this section, we describe LLC/RLC/MAC func-
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tions that are relevant to PTT/GPRS performance modelling.

Figure 4.1: PDU segmentation into LLC frames, RLC blocks and MAC bursts
in GPRS networks. (PH: PDU header; FH: frame header; BH: block header.)

• LLC Layer provides a logical link between the MS and the SGSN. PDUs

from higher layers are segmented into variable length LLC frames (see

Fig. 4.1). The LLC layer operates the control and ciphering of link-

level flows either in an acknowledged or in an unacknowledged mode.

In the unacknowledged mode, the LLC layer operation does not attempt

to recover errors in LLC frames. In the acknowledged mode, the LLC

layer enables retransmissions of erroneous LLC frames through an auto-

matic repeat request (ARQ) mechanism using the attached frame-check

sequence (FCS) within each LLC frame.

• RLC/MAC Layer can be considered as the RLC and MAC separately.

The MAC layer handles simultaneous multiple accesses from MSs using

collision detection. It employs a slotted-ALOHA-based reservation pro-

tocol [188]. The RLC lies between the LLC layer and the MAC layer.

As shown in Fig. 4.1, each LLC frame is divided into several RLC

data blocks and added a block-check sequence (BCS) and tail bits at
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every block. Irrespective of using any of four possible channel coding

schemes that are defined for GPRS, an RLC block consists of four time-

slots (bursts). The RLC can also operate in either an acknowledged or

unacknowledged mode. In the RLC unacknowledged mode, the RLC only

reassembles RLC blocks into LLC frames without any retransmission of

erroneous RLC blocks. In the acknowledged mode, the RLC uses the

BCS in an RLC block to detect errors and provides an ARQ mechanism

to recover them. Note that errors can be recovered by retransmission

attempts both at the RLC block level and at the LLC frame level.

4.3 Analytical Model for PTT Uplink Delay

4.3.1 Partial Sharing Channel Allocation Scheme

We consider a typical GPRS/GSM network using a partial sharing scheme

for the uplink. Let C be the total number of available channels for GSM

and GPRS in a single cell and let g be the number of channels exclusively

reserved for GPRS. The remaining k = C − g channels are shared by GSM

voice and GPRS packets and, in these k channels, GSM voice is assumed to

have strict priority over the GPRS data traffic. Assume that voice call arrivals

follow a Poisson process and their holding times are exponentially distributed.

Invoking the classical Erlang M/M/k/k model, we can obtain the probability

Pi of i channels (i = 0, 1, 2, ..., k) being used by GSM voice calls in the steady

state.

Pi =
Ai

i!∑i
q=0

Aq

q!

, for i = 0, 1, 2, ..., k, (4.1)

where A = λ
µ

for Poisson arrivals with the mean arrival rate λ and exponential

service rate µ. Therefore, the probability Πj of having j channels (time-slots)
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available for GPRS data is given by

Πj = PC−j, forj = g, g + 1, g + 2, ..., C. (4.2)

Since packet transmission times are much shorter than GSM voice holding

times, at any state of the Markov process, we can consider that a PTT packet

is serviced by a quasi-stationary [41] network.

4.3.2 Quasi-stationary Assumptions

When a network implements an architecture for differentiated services, an

admission control scheme is engaged to limit the overall traffic for the stability

of the network. The stability is also an important issue for implementation of

the partial sharing channel allocation scheme in GPRS/GSM networks. In our

case, we assume that overall service demand, including GSM voice, PTT voice

and GPRS data, is less than the given capacity so that the system is ergodic.

However, it can occur in some states that the number of GSM voice calls are

holding more channels so that the remaining service rate can be insufficient

to cope with the GPRS arrival demands. Such a situation can be referred

to as local instability as suggested in [41]. In such a case, the GPRS traffic

may suffer a long delay; consequently, authors of [41] considered the elastic

traffic response time both under stable state and unstable state conditions.

It has become necessary in our pseudo-stationary phase approach to include

the unstable states for GPRS traffic in the model. Since the holding time of a

GSM voice call is typically much greater than that of a GPRS packet, states

involving local instability should not last for a significantly long period of time.

However, we are able to avoid local instability by executing admission control

on GSM voice calls to ensure an adequate service rate for GPRS traffic.
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4.3.3 Modelling GPRS Delay

In a standard GPRS implementation, the MAC protocol enables several GPRS

users to share a common transmission medium [170] and this suggests that

it can be viewed as a processor sharing server. This structure was modelled

in [170] by an M/G/1 PS model to estimate the PTT mean packet delay with

packet service time x and link utilization ρ for the uplink of the PTT/GPRS

MAC layer as follows:

Tx =
x

1− ρ
. (4.3)

Equation (4.3) assumes Poisson arrivals and considers only the service time

of a test packet x and the overall utilization ρ. This can be generalized to the

case of an i.i.d. arrival process and packet size distribution using the single

priority version of the M/G/1 PS model of [9]. We have introduced the MPS

queueing system model in Chapter 3, which consists of several distributed

LQs served by a shared processor.

A BS that serves a multiplicity of users is modelled as a PS system and

the GPRS packet sojourn time in the system is modelled by the time in an LQ

and the time in the PS until its transmission is completed. The number of

GPRS MSs sharing the channel is denoted by M . Each MS has an LQ with

an infinite buffer for PTT voice or GPRS data packets with the same priority.

The model is illustrated in Fig. 4.2.

As Fig. 4.1 shows, in a physical implementation of GPRS, the payload IP

packets are segmented into RLC blocks. Each RLC block contains 456 bits,

which is sent in a specific time-slot across four consecutive TDMA frames

with a 20 ms associated transmission time [170]. As the RLC block is the

smallest segment of information over the radio interface, we can measure the

packet size in units corresponding to RLC blocks, as shown in Fig.4.2. Since
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Figure 4.2: Analytical model used to analysis PTT uplink delay.

an RLC block transmission requires 20 ms, the packet size, as measured by

the number of RLC blocks, also represents the packet service time.

In this single priority case, let the random variable a represent the number

of packet arrivals within a RLC block associated transmission time at any MS

(20 ms). We denote the mean of a as ā. Let the random variable b be the

packet length measured in multiples of RLC blocks with the mean b̄. Since an

RLC block transmission requires 20 ms, b also represents the packet service

time. At the BS, the PS server permits only one packet from each MS to

join the PS queue and wait for service. If and only if there is a packet from

a specific MS departing from the PS server in the last RLC block, another

waiting packet from the same MS can then join the PS queue in this RLC

block. For simplicity, in our model, we assume that all packets arriving within

an RLC duration joining the discrete queue commence at the starting point of

the next RLC block duration. Let C2
a and C2

b represent the squared coefficient

of variation of a and b respectively and let D(n) be the mean delay of the packet

with n RLC blocks length, according to [9], D(n) in the units representing the
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number of RLC blocks is given by:

D(n) =
ν/ρ + ν/(1− ρ)

2
+

n− [b̄(1 + C2
b ) + 1]/2

1− M−1
M

ρ
+

1

2
, (4.4)

Where, ν = ρb̄(C2
b + λC2

a/M), λ = Mā, ρ = λb̄.

We examine the effect of GSM loading on PTT performance. As the GSM

load is reduced, the PTT packet service rate increases as more time-slots are

available for GPRS. Let D(n)j be the mean delay of a PTT packet with n RLC

blocks given that j time-slots are available for GPRS. Equation (4.4) can be

used to compute D(n)j by replacing ρ with ρ/j. Notice that the coefficient

of variation of the service time is not affected by increasing the service rate.

Therefore, by (4.2), with specified loads for PTT, GPRS data and GSM voice

traffic, the average PTT packet delay E[D(n)] is estimated by

E[D(n)] =
C∑

j=g

D(n)jΠj. (4.5)

For the above MPS queueing model with time-varying capacity, under the

quasi-stationary assumption, we consider the stability of the Markovian pro-

cess that is required. Although, overall, the GPRS load is less than the given

capacity, in some states of the process, the GPRS traffic experiences local in-

stability, where ρ/j > 1. For such unstable cases, (4.4) cannot be used di-

rectly. With a practical approach, we replace ρ in (4.4) by
∑C

j=g(ρ/j)Πj to

obtain E[D(n)]. As ρ is a mean value in (4.4), this approach is justified. We

can also calculate the probability of the unstable states by
∑C

j=g Πj for any j

having ρ/j > 1. In our approximations, we ignore the effects of these unstable

states. This is consistent with a design that aims to limit the probability of be-

ing in an unstable state to a negligible value. Therefore, our approximations



CHAPTER 4. MODELLING AND ANALYSIS OF PTT DELAY 86

are only accurate if the probability of the unstable states remains small.

4.4 Simulation Study

4.4.1 Scenario 1: Fixed Channel for GPRS Traffic

In this scenario, our analytical model is validated using the ns2 [189] simula-

tion tool with a fixed channel for the GPRS traffic. The simulation uses CBQ

objects that implement a packet-by-packet round-robin processor shared by

the same priority classes. Based on the equivalent assumption for our ana-

lytical model, the CBQ buffer size in the simulation is infinite and the packet

transmission time from the source node to the class-based queue is zero. We

consider the following:

1. One fixed channel (equivalent to a service rate of 22.8 kbits/s) is allocated

for GPRS and this is the service rate of the CBQ.

2. The same priority is given to each source node.

3. A Poisson arrival process with the same arrival rate at each source node,

under the given packet arrival rate, utilisation is varied between 0.1 and

0.9. Nodes 1 and 2 generate PTT packets and the other nodes generate

normal GPRS data packets.

4. Source nodes generate packets according to different packet size distri-

butions, as described in Table 4.1. The maximum packet size is set to

be 1500 bytes. As the continuous random variables (exponential and

Pareto) have been assumed as models for packet sizes, the generated

packet size is rounded to the nearest integral number of bytes.
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5. The time when a packet is generated and when the whole packet com-

pletely departures will be recorded to calculate the packet delay. Having

all packet records, the mean delay can be worked out by a statistical

function of the simulation. Each set of input parameters will be run six

times independently for confidence intervals.

Nodes (MS) Packet size distribution Mean size Parameter
Node1 deterministic 228 bytes -
Node2 exponential 228 bytes -

Node3-6 Pareto 570 bytes Γ = 1.9

Table 4.1: Packet size distributions of the source nodes

According to the same scenario, parameter settings given in Table 4.2 are

used for the analytical model evaluation.

Parameters Value
Average packet size, b̄, measured by the number of RLC blocks 7.2
PTT packet size, n, measured by the number of RLC blocks 4
Squared coefficient of variation of b, C2

b 0.5
The number of active GPRS MSs, M 6

Table 4.2: Parameters for evaluation of the model

Fig. 4.3 compares the analytical and simulation delay results. Simulation

results are plotted with their 95% confidence intervals (which are too small to

be noticed in many cases) based on a Student’s t-test. The approximate PTT

delays are in good agreement with the simulation results – although there is

some divergence at high utilisation cases (e.g. 0.9).
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Figure 4.3: Comparison between analytical results and simulation results for
PTT packet uplink delay.

4.4.2 Scenario 2: Partial Sharing Channel Scheme for GPRS

and GSM Traffic

Including GSM voice traffic which shares channel resource with GPRS under

using a partial sharing scheme, we present numerical results for the PTT

delay based on the model described above in the case of a single cell model. We

consider a cell with 24 available channels and, assuming that one of them is

used for signalling and broadcasting, with an additional two being exclusively

reserved for GPRS traffic, we find that this leaves 21 channels to be shared

by GSM voice and GPRS traffic. Assuming a design based on a GSM voice

call blocking probability of 2% and using the standard Erlang Loss formula,

the traffic capacity is computed to be approximately A = 14 Erlangs. Using

(4.2) for the standard analysis of an M/M/k/k queueing system, we calculate

a set of probabilities corresponding to j available channels for GPRS, j =

2, 3, ..., 23. Other parameters used in our analytical approach are listed in

Table 4.3. Numerical results are plotted in Fig. 4.4.

We have developed a customised simulation tool using the C++ language
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Parameters Value
Average packet size, b̄, measured in units of RLC blocks 7
PTT packet size, n, in units of RLC blocks 4
Squared coefficient of variation of b, C2

b 0.9
The number of active GPRS MSs, M 6

Table 4.3: Parameters for GPRS traffic

and employing a GUI interface. The simulation model incorporates both GSM

voice traffic and GPRS traffic (which includes PTT voice and GPRS data traf-

fic). The simulator runs as a discrete time model, the time units are optionally

based around a standard GSM frame or an RLC block (4 frames). Using the

same basic assumptions as for the GPRS/GSM cell described in the numeri-

cal example above, we assume two reserved channels for GPRS traffic leaving

only 21 channels shared by both GSM voice and GPRS. We consider the fol-

lowing scenario:

1. GSM call arrivals are assumed to follow a Poisson process with a mean

arrival rate 0.1167 calls per second. The channel holding time of a voice

call is assumed to be exponentially distributed with a mean of 120s.

When a GSM voice call arrives, it will be allocated to the next slot or

RLC block (according to the option chosen) if one of 21 channels is avail-

able. Otherwise, it is blocked.

2. The same priority is given to each GPRS MS. Each GPRS MS is assumed

to have an infinite buffer by setting a enough big queue size.

3. A Poisson arrival process with the same arrival rate at each GPRS MS.

GPRS users generate packets according to different packet size distribu-

tions, as described in Table 4.4, then, they are placed in their individ-

ual buffers as GPRS requests. We assume one RLC block as one GPRS

request. The packet transmission from a specific MS uses single-slot
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FCFS, which means the packet from one user can use only one time-slot

to be transmitted in the same RLC block duration.

4. Under various GPRS arrival rates, the overall system utilization of sim-

ulation process is always limited to be less than unity. We are able to

do an analytical estimation of the average number of available channels

for GPRS by
∑C

j=g jΠj. According to the discussion in Section 4.3.3, in

the simulation, we ensure average GPRS traffic loading, i.e.
∑C

j=g ρΠj, is

always less than the average number of available channels for GPRS so

that a given simulation reaches steady-state. For more details of steady-

state in simulations, refer to [171].

5. For every RLC block duration, only one request from each MS is read

in round robin order from users and is allocated to free channels which

are not occupied by other GPRS traffic or any GSM voice traffic. If this

request does not find free channels allocated, the GPRS request pointer

will be recorded and used as the start point for the next round robin run

in the next RLC block duration.

6. A time-slot captured by a request in a RLC block will be released in the

next RLC block or TDMA frame.

7. Same as for Scenario 1, we collect delay results from simulations using

a statistical function.

The other parameter settings for the simulation are the same as for the nu-

merical example presented above, as listed in Table 4.3. Fig. 4.4 compares

analytical and simulation delay results.

Simulation results are plotted with their 95% confidence intervals based

on a Student’s t-test. The approximate PTT delays are in good agreement
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GPRS user Packet size distribution Mean Packet size
PTT user 1 and 2 deterministic 4 RLC blocks

Data user 3-6 exponential 8 RLC blocks

Table 4.4: Packet size distributions of GPRS users

Figure 4.4: Comparison of analytical and simulation results of PTT delay.

with the simulation results although there is some divergence at high arrival

rate cases (e.g. arrival rates of more than 6.5). These situations occur because

of the growth of probability in the unstable states, which we have discussed

before.

4.5 PTT/GPRS Retransmissions

We have introduced the retransmissions taking place at LLC level and RLC

level. In this section, we quantify the effect of packet retransmissions on PTT

packet delay, for when both the RLC and the LLC operate in unacknowledged

mode and if channel errors occur between the source and the BS, whole GPRS

data or PTT packets will be retransmitted. Thus, the average packet delay

will increase. Assuming that retransmissions only occur because of errors,
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and the Bit Error Rate (BER) is given, the packet error rate ε is estimated by

ε = 1− (1−BER)b, (4.6)

where, b is the packet size in units of bits. The mean delay E[D(n)]∗ after

retransmissions is based on the analytical results from the model presented

above can be estimated by

E[D(n)]∗ =
E[D(n)]

1− ε
. (4.7)

4.6 Effects of Traffic Load for GSM and GPRS

Consider the case of two channels that are reserved for GPRS out of 23 chan-

nels where 21 channels are being shared by GSM voice and GPRS. Using the

notation of (4.4) and (4.5), let the number of active GPRS users be M = 8, the

mean GPRS packet size be b̄ = 8 RLC blocks, the PTT packet size be n = 4

RLC blocks, and C2
b = 0.9. Using our analytical model, we focus on the effects

of GSM voice loading on PTT delay to produce the three curves given in Fig.

4.5. We consider the heaviest GPRS loading to be 2.25 Erlangs to keep the

unstable state probabilities small as this is a realistic condition for practical

dimensioning.

For our example, with 2.25 Erlangs of offered GPRS traffic and 18 Erlangs

of GSM voice traffic, PTT packet delay is up to 400 ms, while it is less than

200 ms in low GSM voice loading cases (e.g. 14.4 or 12 Erlangs).
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Figure 4.5: PTT packet delay under different GSM voice loads.

4.7 PTT/GPRS Priority Assignment

With strict delay requirements for PTT traffic, it may be necessary to intro-

duce priorities. These can be implemented by combining two approaches: (1) a

specified number of channels will be exclusively dedicated to GPRS, and (2) if

a user requests a PTT service then they will obtain PTT-exclusive GPRS slots

that will guarantee priority to PTT over other GPRS users. With these ap-

proaches, PTT packets can be protected from excessive loads from both GSM

voice calls, and GPRS data packets.

Our analysis can apply to both ways of providing priority and protection

for PTT traffic. In our example, two channels out of 23 are dedicated to GPRS.

Since PTT packets have a higher transmission priority than other GPRS pack-

ets, where b̄1 = b̄ is the PTT packet size, we consider b̄ = n = 4 RLC blocks,

C2
b = 0 and M = 8. Fig. 4.6 shows the mean delay results obtained from

the analytical solution for PTT with priority and without priority. Comparing

with the case of PTT without priority and (b̄ = 8 RLC blocks, C2
b = 0.9), for the
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mean packet size and the variation of packet size becomes smaller, PTT delay

is reduced significantly. Especially, it is observed to occur under heavy traffic

loading. Even under the heaviest PTT loading that we considered, PTT delay

is still less than 230 ms.

Figure 4.6: PTT packet delay with different priority assignments.

4.8 Conclusions

In this chapter, we have described an application of the multiservice mul-

tiqueue model to estimate the mean PTT packet delay in a PTT/GPRS/GSM

system and validated this model by simulation. GSM voice, PTT data and nor-

mal GPRS data traffic has different traffic characteristics and QoS require-

ments. In the simulations, we considered a typical partial sharing channel

allocation scheme implemented to distribute the bandwidth to three kinds of

traffic. The approximate PTT delays obtained from our analytical model un-

der a quasi-stationary assumption are in good agreement with the simulation

results.
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Although an admission control scheme is engaged to protect the stability

of the network, it is still an important issue for implementation of the partial

sharing channel allocation scheme in GPRS/GSM networks. In some states,

the number of GSM voice calls are holding more channels so that the remain-

ing service rate can be insufficient to cope with the GPRS arrival demands.

As shown in Section 4.4.2, the simulation results under higher mean packet

arrival rates have big statistic errors because of the increased the probability

of instable states. For such cases, the mean delay requirements of different

traffic may not always be met, as the real delay can be much bigger than

the expected analytical results. Moreover, we have to consider the effect of

burstiness of traffic on the probability of instable states. Even we are able to

quantify the probability of instable states, some future research is required to

quantify the effect of this probability on the mean delay.

Using our analytical solution, we have investigated GSM and GPRS load-

ing, GPRS retransmissions on PTT packet delay and the improvement achieved

by allowing PTT packets priority over GPRS data packets. Our results show

that delay was seriously affected by high GPRS and GSM traffic loads. More-

over, the burstiness of GPRS traffic also affects PTT performance. As in pack-

etised speech, suffering retransmissions, PTT delay also depends on channel

quality. The proposed model provides a simple way for GSM operators to man-

age and dimension PTT traffic over GPRS/GSM networks.



Chapter 5

Modelling WiMAX Subscriber

Station Uplink Delay

5.1 Introduction

The multiservice environment that WiMAX supports, possibly with multiple

connections per service, is considered complex because of the various packet

stream behaviours it needs to cope with. In such an environment, the packet

schedulers operating at the MAC layer are very important for QoS delivery.

Four different services are specified in the IEEE 802.16 standard: un-

solicited grant service (UGS), real-time polling service (rtPS), non-real-time

polling service (nrtPS), and best effort (BE) [21].

• UGS is designed to support real-time applications with a fixed-sized

packet, such as T1/E1 and VoIP without silence suppression. UGS con-

nections are allocated fixed bandwidth at periodic intervals because of

their strict delay requirements.

• rtPS is designed to support real-time applications with variable-sized

96
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packets, such as with Moving Pictures Expert Group (MPEG) video and

VoIP with silence suppression. Unlike UGS, it only needs a minimum

reserved traffic rate and has less stringent delay requirements.

• nrtPS is designed for applications without any specific delay require-

ment but with a need for a minimum amount of bandwidth, such as File

Transfer Protocol.

• BE is designed for applications that are delay-tolerant and does not re-

quire a minimum bandwidth.

Because of the distinct QoS characteristics of each service type, it may not

be practical to use a single scheduling algorithm to handle all service types.

Accordingly, a plausible solution is a two-level hierarchical approach [190].

In particular, the higher level serves these four services in the precedence

order of strict priority. That is, connections of UGS are serviced first. Only

after their QoS requirements have been satisfied, the connections of rtPS will

be served and so on. Then, the lower level deals with scheduling of packets

within each service type.

Recently, research on performance evaluation of WiMAX networks with

different scheduling algorithms through the use of simulation has been con-

ducted [190, 191, 181]. In [191, 181], deficit round robin (DRR) and WRR

were chosen for the downlink and uplink schedulers, respectively. These al-

gorithms are suitable for non-real-time data services because they focus on

the throughput guarantee of data flows. Although it is possible for such rate-

guaranteed algorithms to also provide a latency guarantee, these guarantees

require an admission control policy based on worst-case behaviour and thus

they lead to low network utilization. Therefore, they are not really suitable

for real-time services which have stringent delay requirements.
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We propose a priority-based fair scheduling algorithm to handle both real-

time and non-real-time uplink WiMAX traffic in an SS. According to this al-

gorithm, different service classes are assigned different priorities. Traffic is

served strictly according to its priority. As traffic of non-real-time services

is delay tolerant, traffic of real-time services can be protected by being as-

signed higher priorities. This algorithm is simple to implement. Moreover, we

use a multiservice multiqueue processor sharing model to analyse the perfor-

mance of our proposed algorithm. In particular, closed-form expressions for

the mean message delay can be obtained. Using this model, the admission

control module in the BS can evaluate the delay performance of various con-

nections as part of the process of deciding whether a new connection can be

admitted without sacrificing the QoS of existing connections. Note that the

term “message” refers to an application layer data-unit which is broken down

into a number of packets for transmission. It can represent different types of

WiMAX traffic, such as a frame of streaming video, an object of a web page

or a packet from a talk spurt. In other words, the delay guarantees offered to

admitted connections is user-perceived delay rather than packet-level delay.

In this chapter, QoS architecture in WiMAX is reviewed first. We then

focus on the scheduling component in WiMAX networks. After highlight-

ing certain design issues for scheduling algorithms, we describe our proposed

scheduling algorithm and present an analytical model for performance evalu-

ation of our proposed scheduling algorithm for SS uplink traffic. The analyt-

ical model is verified by a simulation study. Also, the various traffic models

related to the different service classes are discussed and a comprehensive set

of numerical results is presented in order to illustrate the impact of traffic

load and various design parameters on WiMAX message delay.
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5.2 MAC Protocol of IEEE 802.16

The MAC layer of IEEE 802.16 is composed of the following three sublayers

[21]:

1. Convergence sublayer (CS) which maps higher-layer SDUs into MAC

PDUs received by the MAC common part sublayer (CPS). Currently,

asynchronous transfer mode (ATM) CS and packet CS are specified in

the standard. Packet CS supports all packet-based protocols such as the

IP, Point-to-Point protocol (PPP) and IEEE 802.3 (Ethernet).

2. Common part sublayer that provides the core MAC function of medium

access control, as well as the functions guaranteeing QoS.

3. Security sublayer which deals with security issues, which are particu-

larly important for wireless communications. It contains two component

protocols: encapsulation protocol for data encryption and privacy key

management.

This section describes the functionalities of MAC CPS, which henceforth will

be referred to as MAC.

mble FCH TTG
1 2 3

Initial 
Ranging

BW
Request1 2 3

RTG
      Uplink bursts  Downlink burstsPrea

    Downlink Subframe       Uplink Subframe

         Frame N     Frame N−1       Frame N+1

Figure 5.1: IEEE 802.16 MAC frame structure in Time Division Duplex mode;
FCH: Frame Control Header, RxDS: Receiver Delay Spread clearing interval,
pp. 395 and 450 [21].
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The MAC protocol supports a variable length, frame-based system for re-

ceiving and transmission of data. In time division duplex mode, for exam-

ple, each frame comprises a downlink and an uplink subframes separated by

a Transmit/Receive transition gap (TTG) and a Receive/Transmit transition

gap (RTG) as illustrated in Fig. 5.1. The downlink subframe always precedes

its corresponding uplink subframe.

The MAC protocol is connection-oriented. Fig. 5.2 depicts the QoS archi-

tecture of an SS and a BS based on the 802.16 standard. Before a logical

connection is established between an SS and a BS, the SS sends a connection

request to the BS. The request includes information about QoS requirements

including information such as bandwidth required and tolerable delay. Then,

the request is analyzed by the admission control residing at the BS. The con-

nection is admitted only if the required QoS can be satisfied without affecting

the QoS of existing connections. Each accepted connection will be assigned

a unique connection ID (CID) by the BS, which may be further used during

the call for further bandwidth requests and QoS requirement information and

will be carried by the MAC PDU headers.

After the connection has been established, traffic from each connection is

generated and eventually arrives at the MAC layer where MAC PDUs are

formed. The MAC PDUs are classified into different traffic queues according

to their CIDs, as shown in Fig. 5.2. Such a per-connection queueing allows

the scheduler to provide differentiated service to connections belonging to dif-

ferent service classes.

The procedures for downlink and uplink transmission are different. In the

downlink, transmission is relatively simple because there is no contention

as only the BS can transmit data in the downlink subframes. The downlink

scheduler at the BS selects packets from the appropriate queue for the next
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Figure 5.2: QoS architecture of IEEE 802.16

downlink frame according to the QoS parameters and the queue status of each

connection. The transmission is broadcast to all SSs and each SS listens and

selects only the packets destined to itself.

In regards to uplink transmission, there is a need to overcome possible

contention as many SSs share the single wireless channel. In this case, only a

single SS is permitted to transmit at a time. Accordingly, to avoid contention,

each SS needs to be granted bandwidth before it transmits. This is facilitated

by the so-called request/grant mechanism that allows the BS to determine

the bandwidth requirements of the various SSs and grant bandwidth to them

on demand. The 802.16 defines several mechanisms to solicit bandwidth re-

quests from admitted connections:

1. Unsolicited granting, where a fixed amount of bandwidth on a periodic

basis is specified during connection establishment. Once the connection

is accepted, no subsequent bandwidth request is required. Unsolicited

granting is used to support UGS connections.
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2. Unicast polling, which allocates the bandwidth needed to transmit a

bandwidth request for a polled uplink connection. Since only one up-

link connection is polled at a time, it is guaranteed that the request will

be received by the BS. The BS periodically grants unicast polls to rtPS

connections. The polling period may optionally be specified during con-

nection establishment.

3. Broadcast polling, which is issued to all uplink connections. If there

are two or more uplink connections replying with their requests, colli-

sion occurs and the truncated binary exponential backoff mechanism is

used to resolve the contention. Both nrtPS and BE connections request

bandwidth by responding to broadcast polls from the BS.

Based on the amount of requested and granted bandwidth for each con-

nection, the BS uplink grant scheduler estimates the residual backlog of each

uplink connection, and then allocates the uplink grants to meet the negoti-

ated QoS parameters. The resultant grant allocation for the current uplink

subframe is conveyed to the SSs by the UL-MAP message carried in the frame

control header (FCH) field of each downlink subframe. Although an uplink

grant is allocated according to individual requests from each connection, the

grants are aggregated and given to an SS to be distributed among its connec-

tions at its discretion. Therefore, upon receiving the grants, the SS uplink

scheduler schedules access to each connection.

5.3 Priority-based Fair Scheduling

Based upon the above discussion, the uplink traffic arriving at an SS belongs

to one of the four scheduling services. As the constant-bit-rate UGS traffic is
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allocated dedicated bandwidth, it does not share the granted bandwidth with

other scheduling services. Accordingly, the scheduler only needs to handle

the other three scheduling services. According to their QoS requirements,

rtPS, nrtPS and BE are naturally assigned to high, medium and low priorities,

respectively. As shown in Fig. 5.2, each connection has its own queue. When

a message arrives, it will be broken down into a number of packets. Each

packet fits into one time-slot of an uplink frame. In our priority-based fair

scheduling algorithm, rtPS connections are always served first. Only if all

rtPS connections have no packets waiting, then will the nrtPS connections

be served. Similarly, only if all rtPS and nrtPS connections have no packets

waiting, will BE connections be served. Whenever there are multiple active

connections of the same priority, the scheduler serves one packet from each

connection in a round robin fashion.

5.4 Delay Analysis using the MPS Model

Our proposed scheduler can be analysed by the MPS model [9], which has

been introduced with the corrected solution in Chapter 3. The multi-priority

MPS model consists of a number of groups of distributed LQs and a central

server with a PS queue. The PS server performs like an WiMAX SS sched-

uler and LQs like multiple connections. Group-p LQs contain Mp LQs with

priority p, p = 1, 2, . . . , P , where P is the lowest priority. Hence, we can assign

different priorities to the different WiMAX services. The central server runs

prioritized round robin processor sharing among LQs by allowing no more

than one message from each LQ to be present in the PS queue. Only when

the service of an entire message is completed, is its LQ allowed to transfer

another message into the PS queue. The model is shown in Fig. 5.3, with
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P = 3,M1 = M2 = M3 = 3 as an example.

Figure 5.3: WiMAX SS delay analysis using the MPS model.

As we described in Chapter 3, MPS is a discrete-time model whereby time

is divided into equal-length time-slots. It assumes that messages arriving at

the LQs consist of an integral number of packets, each requiring a service

time of a single time-slot. It further assumes the following:

1. For each p, the numbers of priority p messages arriving at a LQ within

each time-slot are i.i.d. and are also independent of arrivals to other

LQs.

2. The number of packets contained in a message (the message length) are

discrete i.i.d. for each priority. The distribution of message lengths may

be different for different priorities.

3. The transmission of a message can only be interrupted by messages from
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higher priorities or from other connections of the same priority after the

current packet is completely transmitted, i.e. until the end of this time-

slot.

The mean delay Dp(n) of a priority p message of length n packets is simply

given by

Dp(n) = Lp + Sp(n), (5.1)

where Lp is the mean time spent by a priority p message in its LQ, and Sp(n) is

the mean time of a priority p message, consisting of at least n packets, spends

in the PS queue to complete services of n packets. Note that Lp is not related

to the message length n.

Let the random variable ap represent the number of priority p message

arrivals within a time-slot to any priority p LQ. We denote the mean of ap as

āp. Let the random variable bp be the priority p message length with the mean

b̄p. Since a packet transmission requires a time-slot , bp also represents the

message transmission time in units of time-slot. Let C2
a,p and C2

b,p represent

the squared coefficients of variation for ap and bp respectively. According to

(3.7), we have:

Sp(x) =
x

1− εp−1 − Mp−1

Mp
ρp

− δp, (5.2)

where, λp = Mpāp, ρp = λpb̄p and εp =
∑p

i=1 ρi. Using the result (3.13):

Lp =
νp/ρp +

∑p
i=1 νi/(1− εp)

2(1− εp−1)
− [b̄p(1 + C2

b,p) + 1]/2

1− εp−1 − Mp−1

Mp
ρp

+ δp +
1

2
, (5.3)

we obtain

Dp(n) =
νp/ρp +

∑p
i=1 νi/(1− εp)

2(1− εp−1)
+

n− [b̄p(1 + C2
b,p) + 1]/2

1− εp−1 − Mp−1

Mp
ρp

+
1

2
, (5.4)
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where νp = ρpb̄p(C
2
b,p + λpC

2
a,p/Mp). The overall mean priority p message delay

is simply given by Dp(b̄p).

We assume WiMAX admission control is strictly applied in order to avoid

system overload. Hence, only the admitted connections are involved in the fol-

lowing discussion. We also assume that an SS is granted sufficient bandwidth

to serve the admitted connections. Then, this MPS model can be used directly

to calculate the mean message delay under our priority-based fair scheduling

algorithm. As UGS works with unsolicited granting, we do not need to con-

sider scheduling the UGS service. Connections belonging to rtPS, nrtPS and

BE are assigned with priorities 1, 2 and 3, respectively.

By (5.4), we are able to examine the impact on the message delay due

to multiple WiMAX service classes. Even when the nrtPS or BE loads are

changed, rtPS messages still receive the same service rate because of priority

protection. In other words, the mean message delay of rtPS service is only

affected by its traffic characteristics such as arrival rate, message length and

their variation. However, for nrtPS and BE, their delay performance would

also be affected by higher priority traffic.

5.5 Model Evaluation

In this section, the model will be validated by simulation. We first present

the traffic model of a typical application of each scheduling service. We then

describe the simulation environment used to validate the MPS model. Based

on these traffic models, simulation and analytical results for different traffic

loads are compared.
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5.5.1 Traffic Models

A considerable amount of research on traffic modelling has been carried out

to investigate the characteristics of different traffic sources for various com-

munication networks [192, 193, 194, 195]. Here, we refer to their results.

VoIP with silence suppression is a typical application of an rtPS service.

It is usually modelled as an exponential ON/OFF source, where the source

alternates between an ON and an OFF state. For a talk spurt, the source is in

the ON state during which it generates data at a constant rate. For a silence

period, the source is in the OFF state implying that no data is generated. The

durations of the ON and OFF states are exponentially distributed with their

own mean values. For nrtPS, an example application is web access. A possi-

ble model for web access is to have the message arrivals modelled as a Poisson

process and the message size following a cut-off Pareto distribution [181] with

shape parameter, scale parameter and cut-off threshold. Finally, the com-

monly used Poisson arrival process with exponentially distributed message

sizes is chosen as a model for a BE traffic source. The parameters of each

traffic source used in this work are listed in Table 5.1.

5.5.2 Simulation Model

The analytical model is validated using the ns2 [189] simulation tool. In the

simulation, CBQ objects implement a packet-by-packet round-robin processor

sharing within the same priority class. The CBQ buffer size in the simulation

is made large enough so that it corresponds to the equivalent assumptions of

our analytical model. The simulation has the following settings:

• An aggregate bandwidth of 0.25 Mbits/s is assumed to be granted to and

shared by all connections of an SS.
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Traffic
sources

Arrival process Message size distribution Priority
level

VoIP
source

Exponential ON/OFF:
mean OFF period: 1.67s;
mean ON period: 1.34s
(one packet per 20ms
during ON).

Deterministic, the size:
66 bytes.

1

Web
source

Poisson, mean inter-
arrival time: 5s.

cut-off Pareto: shape pa-
rameter α=1.1; Minimum
message (scale parame-
ter): 4.5k bytes; Max-
imum message (cut-off
threshold): 2M bytes.

2

BE
traffic

Poisson. Exponential, the mean
size: 1500 bytes.

3

Table 5.1: Arrival processes and message size distributions of the traffic
sources with a priority arrangement

• The above-mentioned traffic models are used to generate input traffic.

The generated message size under continuous exponential and Pareto

distributions is rounded to the nearest integral number of bytes.

• The operation of the scheduler follows what are discussed in Section 5.3.

• The overall utilisation is limited to be less than unity during the simu-

lation in order to ensure that the system remains stable.

• The simulations keep the records of time when a message is generated

and when the whole message is completely served, then, use them in the

statistic function to calculate the mean message delay. Each set of input

parameters will be run six times independently for confidence intervals.
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5.5.3 Simulation and Numerical Results

We consider three scenarios according to different traffic loads. Analytical

results and simulation results are compared in each scenario and presented

in Fig. 5.4 to Fig. 5.7, respectively. Confidence intervals of 95% based on a

Student’s t-test are obtained for all of the simulation results. The range of

the confidence interval of each point on the simulation curves is within 7.5%

which is hardly noticeable on the figures.

Firstly, we fix the load of nrtPS and BE traffic, and investigate the effect

of the load of rtPS on the mean message delay by increasing the number of

ON/OFF sources. Traffic of lower priorities (nrtPS and BE) contribute about

50% of the load, and each priority has one source. We set the mean inter-

arrival time of the BE traffic to be 0.133s, the mean message sizes of nrtPS and

BE traffic as 20.6 kbytes and 1500 bytes, C2
b,2 = 8 and C2

b,3 = 1 respectively. The

number of VoIP sources increases from one to ten and each of these has the

same traffic parameter values: b̄1 = 66 bytes and C2
b,1 = 0. Results obtained

from the simulation and analytical models are shown in Fig. 5.4 and Fig.

5.5. It can be seen that the simulation and analytical results are in good

agreement, particularly for the nrtPS and BE traffic. Some divergency at high

VoIP loading as the traffic of multiple VoIP connections modelled as Poisson

for obtaining analytical results, in fact, has some correlation. But for nrtPS

and BE message sizes are big, this effect is not significant.

In the second scenario, rtPS and BE traffic are fixed but the nrtPS traffic is

changed by increasing the number of connections. We have four VoIP sources

and one BE source in this scenario. Parameters of the BE traffic are set to

be the same as in the first scenario: the mean inter-arrival time is 0.133s and

the mean message size is 1500 bytes. The number of web sources increases
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Figure 5.4: Comparison between analytical results and simulation results for
VoIP packet delay.

Figure 5.5: nrtPS and BE message delays under different rtPS traffic loads.

from one to four. Fig. 5.6 shows the delay for rtPS traffic is not affected much

by the change of nrtPS loads. However, as the web source traffic features big

message sizes and big variations in size, even increasing one connection leads

to a dramatic growth in the BE traffic delay.

Finally, we keep the same load for rtPS and nrtPS traffic. Three VoIP

sources and two web sources are used in this scenario. Another three sources

of BE traffic change the total load with variable inter-arrival times. Fig. 5.7
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Figure 5.6: WiMAX message delays under different nrtPS traffic loads.

is plotted for this case. As expected, the loading of BE traffic does not affect

the message delays of other higher priority traffic.

Figure 5.7: WiMAX message delays under different BE traffic loads.

5.6 Conclusions

In this chapter, we have presented a priority-based fair scheduling algorithm

for WiMAX uplink traffic at SS and modelled it by a multiservice multiqueue
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processor sharing model, MPS queueing system, so that a closed-form approx-

imation is available to approximate WiMAX mean message delays for various

service classes. The model has been validated by simulation.

To apply the model, it is important to choose suitable traffic models to rep-

resent the characteristics of different traffic sources. At the same time, the

first two moments of arrival processes and message size distributions can be

available for the analytical solution. In the simulation, we use VoIP silence

suppression as for the case of rtPS service. Note that VoIP packet arrivals

are not i.i.d.. However, the traffic of multiple VoIP connections can modelled

as Poisson according to the research in [192]. In the scenario one of simula-

tions, we can see that some divergency between the simulation results and

the obtaining analytical results at high VoIP loading, as the real traffic ar-

rival process has some correlation. But the effect is not significant since the

Poissson approximation is reasonable and nrtPS and BE message sizes are

big.

Using the model we have studied various effects of traffic loading on the

performance of various services. Our results show that, as expected, the mean

message delay can be seriously affected by high traffic loads; however, the

delay for real-time services can be maintained at an acceptable level if they

are protected by a priority mechanism from the non-real time traffic loads.

Moreover, we have also demonstrated the effect of traffic burstiness on delay

performance. The proposed model provides a tractable method for operators to

manage and dimension their WiMAX systems for uplink multimedia traffic.
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Conclusions

This dissertation has been an investigation of MAC modelling issues in the

design and development of wireless networks with multimedia services. The

main objective has been to study multiservice multiqueue PS models and to

apply these models to analyse delay performance in wireless applications.

Current scheduling algorithms for multimedia wireless networks have been

considered mostly for non-realtime services and faced the problem of complex-

ity of computation and lack of the analytical models to evaluate the perfor-

mance. We proposed a multipriority PS discipline at the scheduler of wireless

networks to handle multiple services, so the delay requirement of real-time

service can be protected by the priority assignment. This multipriority PS

scheduling policy is simple to implement at the scheduler. Moreover, the ana-

lytical models are suitable for dimensioning purposes.

We investigated multiservice multiqueue models, MPS and PBSQ, to anal-

yse the delay performance in a system following the multipriority PS disci-

pline. The analytical models incorporate important parameters to charac-

terise different network traffic. Based on a comprehensive description of the

MPS mdoel, we demonstrate and correct a subtle incongruity for the delay

113
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in a local queue of [9]. Also, we developed the PBSQ model to extend the

analysis of the ordinary multiservice PS scheduling policy to the analysis of a

priority-based service quanta scheduling policy, where a priority-based service

quantum is given by the PS server at each time rather than a fixed quantum.

A good closed-form approximation of the mean message delay was obtained in

Chapter 3.

We validated the new model using simulations and carried out a numer-

ical study to demonstrate the effects of different parameters. Results show

that the priority-based service quanta scheduling policy can improve delay

performance of large size requests if they are given a larger service quantum

than ordinary multiservice PS scheduling. It does so, however, at the cost of

an additional delay for smaller sized requests if they have relatively smaller

service quanta. Also, an efficiency increase can be achieved by reducing the

overhead.

The work recommends a simple, but practical, choice for wireless MAC

scheduling. At the same time, multiservice multiqueue PS models are avail-

able to apply to the general performance analysis of MAC protocols with QoS

specifications. When a MAC structure is capable of service differentiation, the

scheduler can assign priorities for different traffic and perform as a multipri-

ority PS server to transmit data. The above mentioned analytical results can

be used to answer two fundamental questions for the CAC, i.e., how to prop-

erly allocate the bandwidth required for transmission over a multimedia wire-

less link, and if the CAC should accept the new connections. The decision is

subject to realistic traffic conditions and meeting specified QoS requirements.

We carried out studies using the multiservice multiqueue model for wire-

less applications, the following areas have been considered in detail: MAC

layer QoS architectures including issues in the design and performance spec-
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ification; network stability for analysis; service types and the alterations to

their traffic models. Using the research results presented, the thesis chapters

have established analytical methods leading to the development of specific

guidelines for the dimensioning of wireless multimedia networks.

In PTT over GPRS/GSM networks, the MPS model has been applied to

estimate the delay of PTT packets. We considered a common scenario for

GPRS/GSM networks, where the bandwidth is given to all traffic and the par-

tial sharing channel allocation scheme is adopted to handle GSM voice calls

and GPRS (including PTT) packets. Under a quasi-stationary assumption,

the use of the MPS model is invoked for all GPRS/GSM traffic. The PTT voice

packet delay can be estimated by our analytical model. Moreover, for GPRS

traffic, the cases of with and without priority for PTT service have been stud-

ied using the same model. The work shows that there is good protection for

the PTT delay by reserving of channels and through priority assignment. Our

solution for the mean packet delay can also be used directly to quantify the

effect of retransmissions.

We also applied the MPS model to WiMAX networks. Based on the QoS

architecture, we proposed a priority-base fair scheduling for the SS scheduler.

Through modelling of this scheduling algorithm’s operation at SS under the

traffic from specified WiMAX services, some guidelines for the delay analysis

have been provided for WiMAX provisioning. A closed-form approximation of

the mean message delay is obtained for various WiMAX service classes. The

model enables the performance study of the effects due to traffic loading and

burstiness. We demonstrated that our proposed scheduling algorithm pro-

vides an effective protection for the delay of real-time traffic. Although high

traffic loads and burstiness seriously affect the mean message delay, the delay

of real-time services can be kept at an acceptable level. Therefore, a tractable



CHAPTER 6. CONCLUSIONS 116

method for use by WiMAX operators is available for system management and

dimensioning.

6.1 Summary of Contributions

A final list of the contributions by this thesis is given below:

• Development of a generalised multiservice multiqueue PS model that

allows different service quanta to be used for different types of services.

• Correction of an incongruity in the literature associated with the deter-

mination of the delay for the developed MPS model.

• Development of a multiservice multiqueue PS model to analyse PTT

packet delay that takes into account GSM voice traffic and GPRS data

traffic in GPRS/GSM networks.

• An analytical solution for PTT retransmissions in GPRS/GSM networks.

• A study of PTT packet delay in PTT over an GPRS/GSM network using

ns-2 and C++ simulators.

• Development of a priority-based scheduling discipline applied at the SS

in WiMAX networks.

• An analytical study of the message delay under priority-based schedul-

ing in a WiMAX network.

• Design and implementation of a simulation model for WiMAX message

delays using ns-2.
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6.2 Future Research

Significant improvements to the development of multiservice multiqueue PS

models have been made in this work. However, there are still some inter-

esting issues remaining that need to be further studied and addressed. In

conclusion, we comment on some of these areas for future research.

6.2.1 Enhanced Models

It might be possible to derive an exact expression for the PBSQ model, al-

though whether such an exact expression would significantly improve on the

accuracy of the model is questionable.

We have shown the efficacy of the multiservice multiqueue PS models to

accurately predict delay performance through using them for wireless applica-

tions considered in this thesis, but it is not conclusive proof of their universal

suitability. In the specific approach taken in this thesis, there is further work

remaining in the development of more comprehensive extended models un-

der more general assumptions, such as traffic models, that are applicable to a

wider range of wireless systems.

Thus far, the PBSQ model has been developed only under the assumption

of a Poisson arrival process. It is our hope that an extension can be made for

more general arrival processes and service distributions. If there is a more

generalised model only using the first two statistical moments of real traffic,

the model can be used as a tool whenever an accurate traffic model is avail-

able. Validation of such models could be done by simulation using data traces.

Such work will largely improve the applicability of the model.

In the PBSQ model, the parameter Np is set arbitrarily. We know that

large values of Np will affect the delay results. An alternative effort that can
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be made is relating Np to some measurable statistic, such as the statistic of

an aggregate data stream. If it is not feasible to estimate the parameters of

the real aggregate traffic, an estimate may be derived from the requirements

of individual sources contributing to the traffic.

6.2.2 More Applications

Two applications of multiservice multiqueue PS models have been addressed

in Chapters 4 and 5 of this thesis. However, some other wireless applications

of these models exist, such as the IEEE 802.11e protocol. The standard de-

fines two new MAC modes to support up to eight-priority traffic classes that

map directly to the RSVP protocol. Therefore, our multiservice PS scheduling

policy can be implemented at the scheduler of 802.11e networks and the delay

performance can be modelled.

6.2.3 Effects of Further MAC Scheduling and Modelling

Issues

Although focusing on a single layer is the usual approach for protocol design

and analysis, recent research has involved capturing the interactions across

different layers, such as the interaction between the MAC and PHY layers.

Some of these research results are being proposed for MAC scheduling as a

potential way to improve the performance of wireless networks. As cross-layer

interaction affects overall system performance, there are many open questions

of quantitative analysis for the performance modelling of such approaches. A

further study of new models should involve the effect of these interactions.

In wireless networks, since traffic demands might change rapidly and the

mechanism does not always perform under stable channel conditions, it is dif-
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ficult to achieve end-to-end QoS just by working on a single simple scheduling

algorithm. One must consider a good combination of CAC and scheduling al-

gorithms as well. The CAC and its co-worked scheduling policy are equally

important. Hence, it is expected that the optimal solution should take into ac-

count these issues at the MAC layer, though some foundation modelling work

is essential for network operators.
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CDMA Code Division Multiple Access
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WiMAX Worldwide Interoperability for Microwave Access
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Appendix

Two theorems in the MPS model

We prove the solution for Lp with our correction [see Section 3.4.1]

εp−1 + ρp
Mp−1

Mp

1− εp−1 − ρp
Mp−1

Mp

.

never be negative in the MPS model, i.e. the mean waiting time of priority p

message in the LQ Lp ≥ 0. Following the notation in Table 3.1, the priority

p = 1, 2, . . . , P and 1 is the highest priority. For a priority p, we have

Mp the number of LQs Mp = 1, 2, 3, . . .;

b̄p the mean of packet size bp, where bp = 1, 2, 3, . . ., so b̄p ≥ 1 ;

āp the mean of arrival rate ap, where āp < 1 because bp ≥ 1 and 0 < ρp < 1;

Var(ap) = E(a2
p)− ā2

p the variance of ap;

Var(bp) = E(b2
p)− b̄2

p the variance of bp;

C2
b,p the squared coefficient of variation of bp;

C2
a,p the squared coefficient of variation of ap;

λp = Mpāp;

ρp = λpb̄p, and 0 < ρp < 1;

εp =
∑p

i=1 ρi;

νp = ρpb̄p(C
2
b,p + λpC

2
a,p/Mp).
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Theorem 1: Lp < Lp+1

Firstly, we prove the higher priority has the shorter waiting time than the

lower priority , i.e. Lp < Lp+1, when the parameters of traffic are same for two

priorities. The modified Lp with the incongruity correction is:

Lp =
νp/ρp +

∑p
i=1 νi/(1− εp)

2(1− εp−1)
−

[b̄p(1 + C2
b,p) + 1]/2− (εp−1 + ρp

Mp−1

Mp
)

1− εp−1 − ρp
Mp−1

Mp

+
1

2
. (1)

As priorities p and p + 1 with same parameters, ρp+1 = ρp and νp+1 = νp.

Moreover, εp+1 − εp = ρp. Comparing Lp+1 with Lp, we obtain:

Lp+1 − Lp =
νp

(1− εp+1)(1− εp)(1− εp−1)
− ρp[b̄p(1 + C2

b,p)− 1]/2

(1− εp + ρp

Mp
)(1− εp+1 + ρp

Mp
)
. (2)

For Mp = 1, 2, . . . , we have

Lp+1 − Lp >
νp

(1− εp+1)(1− εp)(1− εp−1)
− ρp[b̄p(1 + C2

b,p)− 1]/2

(1− εp)(1− εp+1)

= ρp

νp/ρp − (1− εp−1)[b̄p(1 + C2
b,p)− 1]/2

(1− εp+1)(1− εp)(1− εp−1)
.

When the system is stable,
∑P

i=1 ρi = εP < 1, we just need to prove the top of

above equation never being negative. For 0 ≤ εp−1 < 1, we also have

νp

ρq

− (1− εp−1)[
b̄p(1 + C2

b,p)

2
− 1

2
]

≥ b̄pC
2
b,p + b̄pāpC

2
a,p −

b̄p

2
− b̄pC

2
b,p

2
+

1

2

=
1

2
b̄pC

2
b,p + b̄p(āpC

2
a,p −

1

2
+

1

2b̄p

).
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As b̄pC
2
b,p/2 ≥ 0, we only need to test if:

āpC
2
a,p −

1

2
+

1

2b̄p

≥ 0.

We have:

āpC
2
a,p −

1

2
+

1

2b̄p

=
E(a2

p)− ā2
p − āp

āp

+ 1− 1

2
+

1

2b̄p

=
E(a2

p)− āp

āp

+ (1− āp − 1

2
+

1

2b̄p

).

As āp = ρ/(Mpb̄p), we have:

1− āp − 1

2
+

1

2b̄p

= 1− ρ

Mpb̄p

− 1

2
+

1

2b̄p

=
b̄p − 2ρ/Mp + 1

2b̄p

=
b̄p − ρ/Mp + 1− ρ/Mp

2b̄p

> 0.

as b̄p ≥ 1 and ρ/Mp < 1. Then, we only need to prove if E(ap)− āp ≥ 0. As

āp =
∑

ap:P(ap)>0

apP(ap),

E(a2
p) =

∑

ap:P(ap)>0

a2
pP(ap),

and ap is an integer random number of arrivals, ap = 1, 2, 3, . . ., E(a2
p) ≥ āp.

Therefore, we prove

b̄p(āpC
2
a,p −

1

2
+

1

2b̄p

) > 0,

and Lp+1 − Lp > 0. (3)
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Thus, we have the theorem for all priorities p in the MPS model:

Lp < Lp+1. (4)

Theorem 2: Lp ≥ 0 for all priority p

Secondly, we prove Lp ≥ 0 for all priority p based on Theorem 1 obtained

before. If for the highest priority 1, L1 ≥ 0, for all priorities p, we have Lp ≥ 0.

Using the modified result in (1), for the highest priority, we have

L1 =
ν1/ρ1 + ν1/(1− ρ1)

2
− [b̄1(1 + C2

b,1) + 1]/2− M1−1
M1

ρ1

1− M1−1
M1

ρ1

+
1

2

=
ν1/ρ1

2(1− ρ1)
− [b̄1(1 + C2

b,1) + 1]/2− M1−1
M1

ρ1

1− M1−1
M1

ρ1

+
1

2

=

ν1

ρ1
(1− M1−1

M1
ρ1)− [b̄1(1 + C2

b,1) + 1](1− ρ1) + 2M1−1
M1

ρ1(1− ρ1) + (1− ρ1)(1− M1−1
M1

ρ1)

2(1− ρ1)(1− M1−1
M1

ρ1)

=
(b̄1C

2
b,1 + ā1b̄1C

2
a,1)(1− ρ1 + ρ1

M1
) + (2M1−1

M1
ρ1 − b̄1 − b̄1C

2
b,1 − 1 + 1− M1−1

M1
ρ1)(1− ρ1)

2(1− ρ1)(1− M1−1
M1

ρ1)

=
(b̄1C

2
b,1 + ā1b̄1C

2
a,1)(1− ρ1) + ρ1

M1
(b̄1C

2
b,1 + ā1b̄1C

2
a,1) + (M1−1

M1
ρ1 − b̄1 − b̄1C

2
b,1)(1− ρ1)

2(1− ρ1)(1− M1−1
M1

ρ1)

=
(1− ρ1)(ā1b̄1C

2
a,1 − b̄1 + M1−1

M1
ρ1) + ρ1

M1
(b̄1C

2
b,1 + ā1b̄1C

2
a,1)

2(1− ρ1)(1− M1−1
M1

ρ1)
.
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Let us see if the top of above equation is not negative.

(1− ρ1)(ā1b̄1C
2
a,1 − b̄1 +

M1 − 1

M1

ρ1) +
ρ1

M1

(b̄1C
2
b,1 + ā1b̄1C

2
a,1)

= (1− ρ1)(b̄1[
E(a2

1)− ā2
1

ā1

− 1 + ā1(M1 − 1)]) +
ρ1

M1

(b̄1C
2
b,1 + ā1b̄1C

2
a,1)

= (1− ρ1)(b̄1[
E(a2

1)− ā1

ā1

− ā1 + ā1(M1 − 1)]) + b̄1ā1(b̄1C
2
b,1 + ā1b̄1C

2
a,1)

= (1− ρ1)(b̄1[
E(a2

1)− ā1

ā1

+ ā1(M1 − 1)]) + b̄1ā1(b̄1C
2
b,1 + ā1b̄1C

2
a,1 − 1 + ρ1)

= (1− ρ1)(b̄1[
E(a2

1)− ā1

ā1

+ ā1(M1 − 1)]) + b̄1ā1(b̄1C
2
b,1 + b̄1

E(a2
1)− ā2

1

ā1

− 1 + ρ1)

= (1− ρ1)(b̄1[
E(a2

1)− ā1

ā1

+ ā1(M1 − 1)]) + b̄1ā1(b̄1C
2
b,1 + b̄1

E(a2
1)− ā1

ā1

− ā1 + ρ1).

In above equation, 1 − ρ1 > 0, M1 ≥ 1 and E(a2
1) ≥ ā1. Also, as M1, b̄1 ≥ 1,

ρ1 ≥ ā1. Thus, we have

(1− ρ1)(ā1b̄1C
2
a,1 − b̄1 +

M1 − 1

M1

ρ1) +
ρ1

M1

(b̄1C
2
b,1 + ā1b̄1C

2
a,1) ≥ 0,

(5)

and

L1 ≥ 0. (6)

According to Theorem 1, we have

Lp < Lp+1.

Therefore, we can prove

Lp ≥ 0, for all p. (7)


