Western University

Scholarship@Western

Digitized Theses Digitized Special Collections

2011

Medium Access Control Layer Implementation on Field
Programmable Gate Array Board for Wireless Networks

Ayman Ramzi Alghamdi

Follow this and additional works at: https://ir.lib.uwo.ca/digitizedtheses

Recommended Citation

Alghamdi, Ayman Ramzi, "Medium Access Control Layer Implementation on Field Programmable Gate
Array Board for Wireless Networks" (2011). Digitized Theses. 3423.
https://ir.lib.uwo.ca/digitizedtheses/3423

This Thesis is brought to you for free and open access by the Digitized Special Collections at
Scholarship@Western. It has been accepted for inclusion in Digitized Theses by an authorized administrator of
Scholarship@Western. For more information, please contact wiswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/digitizedtheses
https://ir.lib.uwo.ca/disc
https://ir.lib.uwo.ca/digitizedtheses?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F3423&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/digitizedtheses/3423?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F3423&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Medium Access Control Layer
Implementation on Field Programmable

Gate Array Board for Wireless Networks

(Spine title: MAC Layer Implementation on FPGA for WN)

(Thesis format: Monograph)

by

Ayman Ramzi Alghamdi
}

/:u

Graduate Program
in
Engineering Science
Electrical and Computer Engineering

A thesis submitted in partial fulfillment
of the requirements for the degree of
Master in Engineering Science

School of Graduate and Postdoctoral Studies
The University of Western Ontario
London, Ontario, Canada

© Ayman Alghamdi 2011

Certificate of Examination

THE UNIVERSITY OF WESTERN ONTARIO
SCHOOL OF GRADUATE AND POSTDOCTORAL STUDIES
CERTIFICATE OF EXAMINATION

Chief Advisor: ' _ Examining Board:
Dr. Abdallah Shami Dr. Roger Khayat
Advisory Committee: Dr. Abdelkader Ouda

Dr. Raveendra Rao

The thesis by
Ayman Ramzi Alghamdi
entitled:
Medium Access Control Layer Implementation on Field Programmable
Gate Array Board for Wireless Networks
is accepted in partial fulfillment of the
requirements for the degree of
Master in Engineering Science

Date:

Chair of Examining Board
Dr. K. Adamiak

ii

Abstract

Triple play services are playing an important role in modern telecommunications
systems. Nowadays, more researchers are engaged in investigating the most efficient
approaches to integrate these services at a reduced level of operation costs. Field
Programmable Gate Array (FPGA) boards have been found as the most suitable
platform to test new protocols as they offer high levels of flexibility and customization.
This thesis focuses on implementing a framework for the Triple Play Time Division
Multiple Access (TP-TDMA) protocol using the Xilinx FPGA Virtex-5 board. This
flexible framework design offers network systems engineers a reconfigurable platform
for triple-play systems development.

In this work, MicorBlaze is used to perform memory and connectivity tests
aiming to ensure the establishment of the connectivity as well as board’s processor
stability. Two different approaches are followed to achieve TP-TDMA implementa-
tion: systematic and conceptual. In the systematic approach, a bottom-to-top design
is chosen where four subsystems are built with various components. Each component
is then tested individually to investigate its response. On the other hand, the concep-
tual approach is designed with only two components, in which one of them is created
with the help of Xilinx Integrated Software Environment (ISE) Core Generator. The
system is integrated and then tested to check its overall response.

In summary, the work of this thesis is divided into three sections. The first
section presents a testing method for Virtex-5 board using MicroBlaze soft processor.
The following two sections concentrate on implementing the TP-TDMA protocol on
the board by using two design approaches: one based on designing each component
from scratch, while the other one focuses more on the system’s broader picture.

iil

Acknowledgements

Dr. Abdallah Shami - For everything you have offered and your continuous support.

Dr. Roger Khayat,

Dr. Abdelkader Ouda,

Dr. Raveendra Rao,

Dr. Kazimierz Adamiak - For being in the Examination Board.

Dan Dechene,

Christopher Kennedy,

Tomasz Rybak,

Mahadevan Balakrishnan - For your feedback.

Thomas Daniel Wallace,

Abdelkader Abdessameud,

Abdou Ramadan Ali Ahmed,

Maysam Mirahmadi,

Andrew Roberts - For being an amazing labmates.

Ramzi and Azzah Alghamdi - This wouldn’t be achieved without you, thanks for
being the best parents ever.

iv

Table of Contents

Certificate of Examination o0, ii
Abstract e e e e e e e e e e e e e e e e e e iii
Acknowledgements i i e e e iv
List oftables e e e e e e e e e e e e e viii
List of figures ¢« v v v v v v v v v et v e e et e e e e ix
ACIONYIMS 4 v v v v v v o v o o o o a s ot ot st o oo o e e as R xii
1 Introduction ¢ i v i i v i it i i et et e e 1
1.1 Research Motivation, 1
1.2 Methods and Contributions 2
1.3 Thesis Organization. 3

2 Background C e e e e e e e e e e e e e 5
21 MACULayer i v i it 5
2.1.1 Carrier Sense Multiple Access Protocols 6

2.1.2 Collision-free Protocols, 9

2.2 Embedded Systems e 14
2.2.1 History of Embedded Systems 15

2.2.2 Embedded Systems Characteristics 16

2.2.3 Xilinx Hardware Embedded Systems 17

2.2.4 Xilinx Software Embedded Systems 19

2.2.5 Xilinx MicroBlaze Processor 21

Table of Contents

3 Literature Review i i i i i i i e e e 23
3.1 Xilinx Virtex-5 LX110T Board 23
311 Virtex-5 FPGA 25
3.1.2 DDR2SODIMM i i, 25
3.1.3 Differential Clock Input and Output with SMA Connectors . . 26
314 Oscillators e 26

3.1.5 GPIODIP Switches 26
316 UserandError LEDs 26
3.1.7 User Pushbuttons 26
318 CPUResetButton 27
3.1.9 RS-232SerialPort 27
3.1.10 10/100/1000 Tri-Speed Ethernet PHY 27
3.1.11 JTAG Configuration Port 27
3.1.12 Onboard Power Supplies 27
3.1.13 Power, DONE, INIT Indicator LEDs 27
3.1.14 Program Switch e e 29

3.2 MAC Implementation and MicroBlaze 32
3.2.1 Implementation of MAC Layer on FPGAs 32
3.2.2 Implementation of MAC on Other Boards 36
3.2.3 MicroBlaze Implementation 39

4 System Architecture i, 43
41 Board Testing o 43
4.2 TP-TDMA Scheduler: Systematic Approach 45
421 Controller e 45
422 MEMORYBlock 47
423 Scheduler 48
424 Frame Constructor 49

4.3 TP-TDMA Scheduler: Conceptual Approach 49
4.3.1 System’s Components Description 50
4.3.2 Design Implementation with VHDL 56

5 Results v i i v i i it it e e e e e e e e e 57
5.1 Board Testing Results &7
5.1.1 Results Presentation 57
5.1.2 Results Discussion 60

5.2 The Systematic Approach Results 61
5.2.1 Results Presentation 61
5.2.2 Results Discussion 66

5.3 The Conceptual Approach Results. 66
5.3.1 Results Presentation 66
53.2 Results Discussion 71

vi

Table of Contents

6 Future Work vt i v i i i e it e e e e e e 73
6.1 Whatis Xilkernel Lo 73
6.2 Customizing Xilkernel 74
6.3 Utilizing Xilkernel for TP-TDMA Protocol 75

7 Conclusion i v i i v vt i e e e e e e e e e e 76

References e e e e e e e e e e e e e Y (4

Appendices

A Configuration Vector Details 81

B Detailed Utilization Reports o0 84
B.1 Utilization Reports for MicroBlaze Design 84
B.2 Utilization Reports for the Conceptual System Design 85

C User Constraints File for MicroBlaze Design 86

Curriculum Vitae v ¢« v o ittt it e e e et 87

vii

3.1
3.2
3.3
3.4

4.1
4.2

5.1
5.2

Al
B.1

B.2

List of Tables

Connection and FPGA Pins [18]
Receiver/Transmitter Component Interface Signals [19]
Throughput Performance of Network and MAC WRR [28]
Access Delay Performance of Network and MAC WRR [28]

MicroBlaze Processor Specifications
Signal Description of the Ethernet Controller

FPGA Usage Report - Device Utilization for MicroBlaze Testing . . .
FPGA Usage Report - Device Utilization for the Conceptual -Design .

Configuration Vector Bits Description[36]

FPGA Usage Report - Device Utilization for MicroBlaze Testing: Fur-
ther Details e

FPGA Usage Report - Device Utilization for the Conceptual Design:
Further Details,

viii

3.1
3.2
3.3
3.4

4.1
4.2

5.1
5.2

Al
B.1

B.2

List of Tables

Connection and FPGA Pins [18]
Receiver/Transmitter Component Interface Signals [19]
Throughput Performance of Network and MAC WRR [28]
Access Delay Performance of Network and MAC WRR 28]

MicroBlaze Processor Specifications
Signal Description of the Ethernet Controller

FPGA Usage Report - Device Utilization for MicroBlaze Testing . . .
FPGA Usage Report - Device Utilization for the Conceptual Design .

Configuration Vector Bits Description[36]

FPGA Usage Report - Device Utilization for MicroBlaze Testing: Fur-
ther Details
FPGA Usage Report - Device Utilization for the Conceptual Design:
Further Details

viii

2.1
2.2
2.3
24
2.5
2.6
2.7

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

5.1
5.2
5.3
5.4
5.5
5.6
5.7

List of Figures

Example of an Embedded System 14
Xilinx Embedded Processors Evolution [17] 18
IBM PowerPC 440 Processor« v v v i v v i 19
Crossbar Technology in PowerPC 440 Processor 19
Xilinx MicroBlaze Processor 20
XPS Platform e e e e e e e e e 21
SDK Platform o e e e e 22
Virtex-5 FPGA ML50x Platform[18] 24
ML505 Platform (Front Side){18] S 30
ML505 Platform (Back Side)[18] 31
PLCPand PMD [19]32
Hardware Demonstrator FPGA [20] 34
WiMedia UWB [25] oo 37
Embedded GPS Receiver [32) 41
MicroBlaze processor used to test the board 44
System’s Main Components 46
Fields of the Incoming Frame 46
Controller Detailed Design 47
MEMORY Block i e 48
Scheduler for Straight Scheduler Approach 49
Frame Constructor Main Blocks 50
TP-TDMA Algorithm, 51
System Building Blocks - Ethernet Controller and Scheduler 52
Ethernet Controller Components and Signals 54
Scheduler Block 55
FSM Model for the Scheduler 55
Board Testing Result 59
Preamble Check 61
CRCCheck ittt 62
Frame Ripper 62
MEMORY Block Performing Writing Operation 63
MEMORY Block Performing Reading Operation 63
Classifier Output i 64

List of Figures

5.8 Prioritize Output - First Test 65
5.9 Prioritize Output - Second Test 65
5.10 Frame Constructor Test 65
5.11 Ethernet Controller Performance 67
5.12 Beacon and Voice Downloading States 68
5.13 Video and Best Effort Downloading States 70
5.14 Best Effort Uploading States 70
5.15 Voice Uploading States 71
5.16 The System Moves to Reset State after reset is Asserted 72

Acronyms

Acronyms

AC
ACE

ADC

AGC

AHB

AP

APB

ARQ

ASIC

BPI

BS

BSP

BSB

C/A
CDMA
CPLD
CPU
CSMA
CSMA/CA
CSMA/CD
CSMA/ECA

CT
CTS
Ccw
DAC
DCF
DCO
DDR

Access Categories

Advanced Configuration Environment

Analog to Digital

Apollo Guidance Computer

Advanced High performance Bus

Access Point

Advanced Peripheral Bus

Automatic Repeat Request

Application-specific Integrated Circuit

Byte-wide Peripheral Interface

Base Station

Board Support Package

Base System Builder

Coarse/Acquisition

Code Division Multiple Access

Complex Programmable Logic Device

Central Processing Unit

Carrier Sense Multiple Access

Carrier Sense Multiple Access with Collision Avoidance
Carrier Sense Multiple Access with Collision Detection
Carrier Sense Multiple Access with Enhanced Collision
Avoidance '

Computed Tomography

Clear to Send

Contention Windows

Digital to Analog

Distributed Coordination Function

Digitally Controlled Oscillator

Double Data Rate

xii

- Acronyms

DIFS
DIUC
DMA
DRM
DRMP
DSP
DSSS
DVI
EDCA
EDCF
EDK
ELF
FDM
FPGA
FSL
FSM
FSU
GMI1
GPS
IDE
1/0
ISE
JTAG
LMB
MAC
MPLB
MRI
MDM
MRX
MSC
NSS
OFDM

Distrusted Inter-frame Space
Downlink Interval Usage Code
Direct Memory Access

Downlink Request Management
Dynamically Reconfigurable MAC Processor
Digital Signal Processing
Direct-sequence Spread Spectrum
Digital Visual Interface

Enhanced Distributed Channel Access
Enhanced Distributed Coordination Function
Embedded Development Kit
Ezecutable Linking Format
Frequency-Division Multiplezing
Field Programmable Gate Array

Fast Simplex Link

Finite State Machine

Frame Scheduling Unit

Gigabit Media Independent Interface
Global Positioning System

Integrated Development Environment
Input/Output

Integrated Software Environment
Joint Test Action Group

Local Memory Bus

Medium Access Control

Master Processor Local Bus
Magnetic Resonance Imaging
MicroBlaze Debug Mode

MAC Receiver module

Message Sequence Chart

Network Switching Subsystem
Orthogonal Frequency Division Multiplezing

xiii

Acronyms

OPB
PLB
PLCP
PMD
PROM
QoS
RFU
RGMII
RISC
RTOS
RTS
RX
SANE
SCSA
SDK
SDL
SDM
SDR
SG
SGMII
SIFS
SNR
SoC
SPI
SPLB
SS
SSRAM
TDM
TEMAC
TP-TDMA
TX
TXOP

On-chip Peripheral Bus

Processor Local Bus

Physical Layer Convergence Procedure
Physical Medium Dependent
Programmable Read Only Memory
Quality of Service

Reconfigurable Function Unit

Reduced Gigabit Media Independent Interface
Reduce Instruction Set Computer

Real Time Operating Systems

Request to Send

Receiver

Self Adaptive Networked computing Element
Single-Carrier Scheduling Algorithm
Software Development Kit

Specification and Description Language
Spatial Division Multiplezing

Software Defined Radio

Scheduling Group

Serial-GMII

Short Inter-frame Space

Signal to Noise Ratio

System-on-chip

Serial Peripheral Interface

Slave Processor Local Bus

Subscriber Station

Synchronous Static Random-access Memory
Time-Division Multiplezing

Tri-mode Ethernet MAC

Triple-Play Time Division Multiple Access
Transmitter

Transmission Opportunity

xiv

Acronyms

UART
UGS
URMA
UWB
VOIP
WEP
WLAN
WRR
XML
XPS

Universal Asynchronous Receiver- Transmitter
Unsolicited Grant Service

Uplink Request Management Agent

Ultra- Wideband

Voice over Internet Protocol

Wired Equivalent Protection

Wireless Local Area Network

Weighted Round Robin

FExtensible Markup Language

Xilinz Platform Studio

XV

Chapter 1
Introduction

In the introduction chapter, the reader is exposed to the motivations behind the
work implemented in this thesis, the contributions, and the thesis organization. This
chapter is divided into three sections; the first section discusses the importance of
triple-play services from a business point of view in terms of costs and effectiveness
as a main research motivator. The second section presents the methods followed and
the contributions achieved in this work. While the last section outlines the thesis
organization in further detail. '

1.1 Research Motivation

The main drive for the work done in this thesis is simply summarized in two as-
pects. The first aspect can be seen through the recent increasing demand for triple
play services being a reason for researchers to address this important field. Second,
microcontrollers-based embedded systems allow easy modifications to the system’s
configurations.

Recent advances in new telecommunication systems has led traditional markets
to change the way they provide their services; the isolated standalone services ap-
proach is no longer applicable; services integration is now becoming the keyword for
network vendors [1]. However, technological limitations can be a barrier that slow
down the integration of these services implementation; limitations include bandwidth
coverage and bit-rate [2].

Looking at the Internet Protocol (IP) networking world, vendors are competing
to fulfill the market’s demand for triple-play products and platforms, while service
providers are being aggressive in marketing their new multimedia services. Video
over IP is attracting much attention recently in two different forms: television (TV)
channels being transmitted to customers over the IP network (IPTV) and Video on
demand (VoD) in which users can request their favorite TV shows to be streamed
over the IP network [3].

With more focus on video communications, we can see that the video confer-
encing market is facing a Perfect Storm [4]. This huge demand on video conferencing
is driven by three factors: the advances in endpoint technologies, high expectations
of users, and, finally, the improvements achieved in terms of speed, cost and network

Chapter 1: Introduction 2

availability. All these factors are integrated together to speed up the adoption of
video conferencing in business environments. This huge demand could be seen in the
rapid growth of leading vendors in terms of revenues, shipments, and profits [5].

Telecommunication companies have never been more interested in providing
TV entertainment services as they are now. In fact, they are not only interested
in this market because of its profit, they actually have no choice but to get them-
selves involved in the competition since cable companies are starting to dominate
what telecommunication companies used to run, i.e., voice and data services. There-
fore, offering the three services combined is the only way to keep customers loyal to
their telecommunication providers [6]. Both cable and telecommunication companies
provide triple-play services; however, they don’t use the same last mile approach in-
frastructure. Telecommunication providers use mainly Digital Subscribe Lines (DSL),
while cable carriers use Hybrid Fiber Coaxial (HFC) to reach a customer’s home.

Major operators are interested in next generation IP-based networks as they
offer the most cost-effective and future-proof platforms to deliver triple-play services
to their clients. That approach also will provide significant advantages in terms of
building and maintaining costs when compared to the parallel networks approach
(i.e., voice network, video network, and data network). Moreover, a study by Royal
Bank of Canada (RBC) Capital Markets suggests that 48% of Americans who own
flat screens are willing to buy cable TV from their telecom company rather than
getting cable TV from another company [7].

Configurable embedded systems are often referred to as FPGAs. They are
considered future-oriented building bricks which allow a high level of customization
of the hardware at reasonable costs. This makes them an effective factor for time-
to-market by avoiding expensive redesigning of the board. Software modifications on
the design will make the board ready to operate with changes [8].

1.2 Methods and Contributions

This section focuses on the methods followed and contributions achieved in this thesis.
Mainly, two methods were followed to investigate the proposed ideas: the first method
was to use a soft processor called MicroBlaze; while the second method was to write
Very-high-speed integrated circuit Hardware Description Language (VHDL) codes
in the ISE programming environment. Obviously, both products, MicroBlaze and
ISE, are Xilinx property since the targeted board is also Xilinx’s. Through out this
work, three contributions could be stated. The first contribution was achieved using
MicroBlaze soft processor to test the board; while the other two contributions were
more focused on designing schedulers for TP-TDMA.

The decision to use MicroBlaze to create a soft processor was not only made to
test the board; in fact, it was also a try to investigate the possibility of using such a
processor in designing a soft scheduler, which could be a good start for future work.

Chapter 1: Introduction 3

MicroBlaze was the hardware platform used to establish communication between
the computer and the FPGA. By establishing this communication, the board was
actually made ready to receive any set of instructions to deploy certain algorithms.
Using MicroBlaze to test the board was only a starting point for the more expanded
ambition of deploying scheduling algorithms using this soft processor. In addition to
that, MicroBlaze is attractive to use since it is programmed using C language; which
in turn brings a wider range of programmers in.

To implement a TP-TDMA scheduler, the two approaches were investigated
using VHDL on ISE. The first approach was implemented through creating a complete
bottom-to-top system design, then testing each component in the system individually.
In this design, the system was constructed with four subsystems, each with a different
number of components. The components were designed using VHDL, and tested
by creating a test bench for each; inputs were fed individually to each component
to observe the component’s response. The second approach could be thought of as
being more of an integrated design. Two subsystems only were designed: the Ethernet
Controller and the Scheduler. The Ethernet Controller used the advantage of the easy
implementation of ISE Core Generator components; on the other hand, the Scheduler
was designed using a Finite State Machine (FSM).

1.3 Thesis Organization

This thesis is composed of seven chapters. While the first chapter introduces the
thesis, the remainder of this thesis is organized as follows:

e Chapter II provides a comprehensive background on the two main topics that
this thesis covers. In the first section, Medium Access Control (MAC) layer
protocols are investigated thoroughly by looking into the carrier sense multiple
access as well as the collision-free protocols. The second section reviews em-
bedded systems, with further details on the history of embedded systems and
characteristics. After that, Xilinx hardware and software embedded systems are
investigated.

e Chapter III aims to take the reader through a literature review covering two
aspects; the Virtex 5 board and MAC layer implementation on boards. The
first section provides a detailed description of the board’s FPGA as well as its
peripherals. In the second section, a literature review is presented for MAC layer
implementation on FPGA boards and other boards, as well as some highlights
on the MicroBlaze processor.

e Chapter IV discusses the proposed system design in three sections. In the first
section, the board is tested using MicroBlaze, while in the next two sections
a scheduler design is proposed using two different approaches: Systematic and
Conceptual.

e

Chapter 1: Introduction 4

e Chapter V presents the results obtained from the work done in chapter four.
Similarly, it’s divided into three sections; each section presents the results
achieved followed by further discussions.

e Chapter VI mainly provides a foundation for future work. The purpose of this
chapter is to provide the starting step for designers who seek to implement
scheduling tasks in general.

e Chapter VII concludes the thesis work by presenting the main observations
made throughout this work.

Chapter 2
Background

Implementing Medium Access Control (MAC) layer protocols on Field Programmable
Gate Array (FPGA) boards requires a comprehensive understanding of the MAC
layer’s functionality and protocols. The MAC layer’s functionality simply includes
accomplishing two main tasks: packet addressing and channel access control. The
MAC layer is often referred to as a sub-layer since it is considered the interface
between the Logical Link Control sub-layer and the network’s physical layer. MAC
protocols are implemented on hardware that is usually called the Medium Access
Controller. Manufacturers of MAC controllers have benefited from recent advances
in embedded systems technology allowing them to have a wide range of controllers
on both single programmed boards as well as re-programmable boards.

This chapter will review the Medium Access Control (MAC) layer and em-
bedded systems technologies. In the MAC layer section, carrier sense protocols are
investigated including collision-detection and avoidance protocols. Also, collision-free
protocols are studied through different protocols designed for IEEE 802.16 and IEEE
802.11 technologies. In the embedded systems section, the history of these systems
and their characteristics are briefly studied. After that, a detailed review of Xilinx
hardware and software is presented, followed by a quick review of the MicroBlaze
processor.

2.1 MAC Layer

Network links are divided into two types: point-to-point link and broadcast link. A
broadcast link can have multiple connected nodes sending and receiving using the
same shared media. In such environments, the problem of choosing which node has
the right to send/receive arises.

Multiple Access protocols are a set of protocols used to regulate the use of the
shared media between nodes in the same network. Since all nodes in the network can
transmit their frames simultaneously, some nodes may transmit at the same moment.
As a result, the transmitted frames will collide. The collision problem leads to losing
the frames involved in the collision, and to wasting the media’s bandwidth since the
frames were not transmitted successfully. For that, it is of high importance to arrange
transmission between active nodes in the network in order to utilize the bandwidth
efficiently. Many multiple access protocols have been suggested; however, they all

Chapter 2: Background 6

can be classified into one of three categories: channel partitioning protocols, random
access protocols, and taking-turns protocols.

Channel partitioning protocols are the protocols in which each node is assigned a
dedicated transmission slot; Time-Division Multiplexing (TDM), Frequency-Division
Multiplexing (FDM), and Code Division Multiple Access (CDMA) are examples of
this class. In TDM, nodes are assigned a dedicated time slot, while in FDM nodes are
assigned frequency slots. TDM and FDM share the same advantages and drawbacks.
Both manage to avoid collisions by dividing the bandwidth fairly between the nodes,
yet both limit the nodes in the network to a fixed bandwidth. This drawback is
clearly seen as a principle disadvantage when only one node is active, i.e, bandwidth
misusage. CDMA, on the other hand, avoids that problem by assigning different codes
to each transmitting node. Having different codes, the network can transmit frames
simultaneously between its nodes. Obviously, the receiver node should recognize the
transmitter’s code.

Compared to channel partitioning protocols, random access protocols give the
transmitting node the channels’ full bandwidth, and in case that collisions happen,
the nodes involved will retransmit their frames until all frames have been successfully
transmitted. Slotted ALOHA is a simple example of random access protocols. In
slotted ALOHA, all frames are of the same size, time is divided into fixed slots, nodes
can send their frames only at the beginning of a slot, and nodes are synchronized to
recognize the beginning of a slot. When a node transmits its frame and detects a
collision, the node retransmits its frame with a probability p in each slot after colli-
sion occurred. Although slotted ALOHA has the advantage of being a decentralized
system, it has a weak efficiency that can’t exceed 37% of the channel bandwidth when
there is a large number of nodes connected.

Another example of the random access protocols is the Carrier Sense Multiple
Access (CSMA) protocol. As it can be understood from its name, this protocol
has a carrier sense feature in which the node listens to the channel before sending
a message. If the channel is busy, the node waits for a random time, and then
checks the channel’s availability again. The node will send only when the channel
is idle. Two CSMA protocols are well investigated in the literature: CSMA with
Collision Detection (CSMA/CD) and CSMA with Collision Avoidance (CSMA/CA).
CSMA/CD is the media access protocol used in Ethernet, while CSMA/CA is the
protocol used in wireless networks such as IEEE 802.11 [9].

2.1.1 Carrier Sense Multiple Access Protocols

As mentioned earlier, CSMA protocols are widely used in wired and wireless networks.
In fact, they use similar approaches to reduce the possibility of having a collision.
Now, we will explore the CSMA/CD protocol that is widely deployed in Ethernet
networks. Then, we will focus on the CSMA/CA protocol, which will be followed by
an enhanced version of the collision avoidance protocol.

Chapter 2: Background 7

2.1.1.1 Carrier Sense Multiple Access with Collision Detection

In CSMA/CD, a node will first check the channel availability; once the node verifies
that the channel is idle, it’ll send its frame. While transmitting its frame, the node
will keep listening to the channel. If a collision is detected, it will stop its transmission;
then it will re-transmit using algorithms to calculate the waiting time (back off). The
need for collision detection arises because of the channel propagation delay. When
a node verifies that the channel is idle, it doesn’t guarantee that a collision will not
occur. For example, while node A is transmitting a frame to node B, it is possible
that node C has not yet received this transmission as a result of the propagation
delay. Consequently, node C will assume that the channel is idle, and might start
sending its frame leading to a collision. Therefore, CSMA/CD ceases transmission
once a collision is detected to improve the network’s transmission performance.

CSMA/CD uses an algorithm called exponential back off to calculate the wait-
ing time for re-transmitting in Ethernet. After the nth collision, the node chooses a
random value K such that:

{0,1,2,2™ — 1}, where

m = min(n, 10).

The waiting time is K*512. When collisions are detected, the node that detected it
transmits a 48 bit jamming signal. The purpose of the jam signal is to inform all
nodes sharing the media that a collision has occurred.

MAC protocol in 802.11 differs from the one in Ethernet in two main aspects.
First, 802.11 networks use CSMA/CA. Second, 802.11 networks use link layer ac-
knowledgment because of the frequent bit errors of wireless physical channels. In
fact, there are two important reasons why CSMA /CD is not suitable for wireless net-
works. The main reason is that CSMA/CD requires a dual detection ability, i.e., the
ability to send and receive at the same time, which is not possible in wireless networks
because of the huge difference in the signal strength of received and sent signals. The
other reason is the hidden terminals problem in wireless networks, which makes the
node unable to detect all collisions and transmissions. Because the 802.11 does not
use CSMA/CD, 802.11 networks transmit the entire frame at once.

2.1.1.2 Carrier Sense Multiple Access with Collision Avoidance

Suppose a node in 802.11 has a frame to send, using CSMA/CA,; the process will be
as follows. The node will sense the media to check its availability; if the media is idle,
the node transmits its frame after a period known as the Distrusted Inter-frame Space
(DIFS). If the media is busy, the node chooses a random back off value and starts
counting down to detect when the media is idle. The node remains idle until the
counter reaches zero, and then starts transmitting its frame. After that, the sending
node will wait for an acknowledgment from the receiving node. The receiving node

Chapter 2: Background 8

waits for a period known as the Short Inter-frame Space (SIFS) then sends back an
acknowledgment. If the acknowledgment is received, the transmission is considered
complete; otherwise, the sending node returns to a back off phase with a larger value.

In CSMA/CA, it is to be noted that even if the channel is idle, the node will
have to wait for the counter to reach zero in order to start transmitting. The reason
for that is to reduce the possibility of having a collision by letting each node to wait
for a different amount of time. However, a collision might still occur in a wireless
network as a result of the hidden terminals or a similar chosen back off time.

In order to avoid the hidden terminal problem, 802.11 MAC protocol suggests
using Request to Send (RTS) and Clear to Send (CTS) control frames. When a node
is about to transmit a frame, it first sends an RTS frame to the Access Point (AP)
mentioning the required time for both of its frame of data and frame of acknowledg-
ment. Then the AP sends a CTS frame to all the nodes connected to it in order to
make all nodes aware of the transmission and give permission to the sending node to
start transmitting. RTS and CTS frames not only help to resolve the hidden terminal
problem, but also they ensure a clear transmission of the data and acknowledgment
frames.

2.1.1.3 Carrier Sense Multiple Access with Enhanced Collision Avoid-
ance

Since it’s a lightweight and decentralized protocol, CSMA/CA is suitable for IEEE
802.11 networks. However, CSMA/CA does not utilize the transmission history in
stations that have many queue of frames to send. In other words, the protocol can
employ previous transmission attempts to effectively reduce the number of collisions
in subsequent transmissions. This addition to the CSMA/CA is referred to as CSMA
with Enhanced Collision Avoidance (CSMA/ECA). After a transition phase, CS-
MA/ECA is able to offer a collision-free access protocol. It also works fairly with the
existing CSMA /CA and is easy to implement without further computational modifi-
cations.

The channel time in CSMA/CA is divided into three slot types: empty, suc-
cessful, and collision. A slot belongs to the empty category if there is no frame to
transmit; it belongs to the successful category if there is only one transmitted frame;
and it belongs to the collision category if there is more than one transmitted frame.
In the empty and collision slots, the channel time is considered wasted. After a colli-
sion, the station has to wait (back off) in order to randomly choose another back off
time. CSMA/ECA suggests choosing a deterministic back off time after a successful
transmission in which the number of active stations is less than the value of the back
off time. Conversely, the legacy CSMA/CA chooses a random back off time even after
a successful transmission.

This slight modification in the CSMA /CA protocol led to a remarkable improve-
ment in channel utilization. To verify that, [10] examined two simulation scenarios;

Chapter 2: Background 9

one in which half of the stations used CSMA /ECA while the other half used the legacy
CSMA/CA; another simulation was performed with stations using CSMA/ECA pro-
tocol only. In both scenarios, the channel utilization improved; however, the channel
utilization’s improvement using pure CSMA/ECA was 0.8 to 1 compared to an av-
erage of 0.8 in the first scenario. The reduction in the number of possible collisions
was the reason for this improvement. Even though CSMA/ECA is likely to work as
a collision-free system, it could still result in a collision in one of two situations: the
entrance of a new station, or a channel error.

When a new station tries to start transmitting, i.e., become an active node, it
may push the system back to the transition phase if its first transmission resulted in
a collision. To avoid this, a smart entry approach can be deployed. A station should
keep track of the empty slots in order to schedule its first transmission. In case there
are no empty slots, the station should postpone its transmission until there is slot
availability.

In a case where the channel is affecting the transmission reliability, CSMA/ECA
performance can also be affected. CSMA/ECA deals with channel error in a similar
manner as if it were a collision. It is to be noted that the affect of the channel error is
greater on CSMA/ECA than it is on the legacy CSMA/CA. However, in comparing
CSMA/CA performance under channel error to CSMA/ECA, the enhanced version
is still better than the legacy version.

Other studies have used a similar approach to CSMA/ECA. In [11], an en-
hancement was introduced to the IEEE 802.11 protocol called EBA. In this protocol,
two fields are added to the MAC headers to inform the other stations about the
back off value. Even though this approach reduces the rate of collisions, it requires
modifications of the MAC headers leading to further complications.

2.1.2 Collision-free Protocols

After discussing CSMA protocols, we will now focus on collision-free protocols. In
this section, the protocols for IEEE 802.16 and IEEE 802.11 will be investigated: the
Single Carrier Scheduling Algorithm and Triple Play Time Division Multiple Access.

2.1.2.1 Collision-free Protocols for IEEE 802.16

The authors of [12] propose an uplink bandwidth allocation scheme for polling services
where the Markov modulated Poisson process is applied. The limitation of this scheme
is that it assumes a fixed bandwidth allocation at one Subscriber Station (SS) and
considers only the outbound transmission scheduling. The drawback of this scheme
is that it eliminates the consideration of a bandwidth request for each connection.
In [13], a packet scheduling algorithm is introduced where fixed allocation, earliest
deadline first, weighted fair queuing, and equal sharing schemes are applied. To
achieve ultimate Quality of Service (QoS), this algorithm requires intelligent outbound

Chapter 2: Background 10

transmission scheduling at each SS since the bandwidth allocated to an SS is an
aggregated grant for all the connections at the SS. Another QoS scheme is proposed
by [14]; in this scheme, the BS bandwidth allocation and the outbound transmission
scheduling are addressed. To provide QoS at the connection level, many functions
are introduced but the strict QoS parameters are not considered.

2.1.2.2 Single Carrier Scheduling Algorithm for IEEE 802.16

IEEE 802.16 standard supports QoS allowing the service categorization to be decided
by the vendor. However, in the implementation of QoS specific issues must be ad-
dressed to achieve reliable and link-adaptive high rate transmission over the wireless
channel. These issues include informing the BS about the connection level bandwidth
for each SS; properly allocating the wireless resources among all SSs; and scheduling
the transmissions over the shared channel for all SSs in such a way as to meet ter
QoS requirements.

MAC scheduling services are differentiated into four types in order to accom-
modate different service applications. The first type is the Unsolicited Grant Service
(UGS), which supports real-time applications that require fixed-size periodical data
packets such as T1/E1. This type of MAC scheduling is given QoS with a dedicated
traffic rate, maximum latency, and tolerated jitter. Real-time Polling Service (rtPS)
is the second type of MAC scheduling in which periodical variable-sized data packets
such as Moving Pictures Experts Group (MPEG) are supported. The QoS require-
ments for this type are: minimum traffic rate dedication, maximum sustained traffic
rate, and maximum latency. The third type is the Non-real-time Polling Service
(nrtPS), which supports non periodical variable-sized data that requires a minimum
traffic rate such as File Transfer Protocol (FTP) applications. For this type, the QoS
requirements are: minimum dedicated traffic rate, and maximum sustained traffic
rate. Best Effort (BE) is the fourth type where data that doesn’t require a minimum
service level is supported. This type’s QoS requires only minimum sustained traffic
rate.

The UGS type is the only type that is delay sensitive among all the four types of
MAC scheduling. As a result, the bandwidth dedicated to the BS for UGS is period-
ically fixed. Downlink traffic can be also categorized using the same four scheduling
types; however, since the BS has all the downlink traffic information, the scheduling
design of the uplink traffic is the only challenge to be faced.

In designing an efficient QoS control scheme, several aspects have to be consid-
ered. The BS should divide the downlink and the uplink frames properly to ensure
that each SS uplink transmission window to meets its QoS requirements. Also, the BS
should be informed periodically of how much bandwidth is required for each SS con-
nection; this will help the BS manage its radio resources more efficiently. Moreover,
the signaling overhead should be reduced for each connection bandwidth request.
With these design aspects taken into consideration, the MAC protocol should be able

Chapter 2: Background 11

to provide a guaranteed QoS for each MAC scheduling service type, optimize a BS’s
awareness about each connection bandwidth requirement, and reduce the operational
overhead for each bandwidth request.

A proposed QoS control scheme for IEEE 802.16 called Single-Carrier Schedul-
ing Algorithm (SCSA) [15] consists of two blocks: the Uplink Request Management
Agent (URMA) and the Frame Scheduling Unit (FSU). The URMA is located at each
SS and serves to communicate to the BS its SS connections bandwidth requests with
minimum signaling overhead, and to assist in scheduling uplink transmissions at the
SS. On the other hand, the FSU is located at the BS where it’s responsible for collect-
ing information about each connection’s bandwidth needs in the network; performing
resource allocations for each SS; defining a new frame based on the resource alloca-
tion, and assisting to schedule downlink transmissions at the BS. It can be noticed
that each SS URMA performs some functionalities locally at the SS instead of at the
BS in order to reduce the overhead required for bandwidth requests.

The URMA consists of three modules: the service measurement module, the
QoS enforcement module, and the SS request generation module. The service mea-
surement module calculates the instant bandwidth request of each connection at the
end of each uplink transmission window of the SS; that is done considering the con-
nection’s queue length and the MAC headers required to transmit the backlogged
traffic. The QoS enforcement module maintains a QoS timer running at the SS for
each rtPS and nrtPS connection. This timer is synchronized with the SS’s system
clock, where the measurement rate for a connection should be equal to the minimum
reserved traffic rate.

The QoS enforcement module performs its operation in two steps. First, it
divides the bandwidth request into two portions: bandwidth guaranteed and non-
bandwidth guaranteed. This division is made for rtPS and nrtPS connections while
BE connections are always given non-bandwidth guaranteed. Second, it further di-
vides the bandwidth guaranteed portion into imminent and non-imminent parts de-
pending on the maximum latency of the connection. The SS request generation
module checks the service type of connections running at the SS and the output of
the QoS enforcement module, then it generates three bandwidth requests for each SS.

At the BS end, FSU generates a new frame once it receives the prioritized
bandwidth requests. To perform that step, three functional modules are involved:
the Downlink Request Management (DRM) module, the resource allocation module,
and the frame creation module. The DRM module acts in a similar manner to the
URMA at the SS except that the downlink connections with the same Downlink
Interval Usage Code (DIUC) are grouped together in the next frame. Each connec-
tion shares a common set of prioritized bandwidth requests and is referred to as a
Scheduling Group (SG). For each SG, the resource allocation module allocates the
transmission capacity according to its prioritized bandwidth request. After that,
symbol assignments are made by converting the prioritized bandwidth requests of
each SG into symbol needs. The last module in FSU, the frame creation module, is

Chapter 2: Background 12

translating the symbol assignments from the resource allocation module into timing
information in terms of physical slots to create the new frame.

The SCSA scheme shifts some functionalities formerly performed by the BS
to the SS in order to reduce signaling overhead. This helps to guarantee providing
each connection with the QoS required. Also, with a cross-layer design for resource
allocation, this scheme is capable of resisting wireless link degradation.

2.1.2.3 Triple-Play TDMA for IEEE 802.11

IEEE 802.11e networks use the Enhanced Distributed Coordination Function (EDCF)
protocol to deliver triple-play services, i.e., voice, video, and data. However, this
protocol is not capable of utilizing the channel resources efficiently [16]. When the
network is at its full load, EDCF is able to achieve only 45% (as throughput) of the
total dedicated bandwidth. The reason for such a waste in the bandwidth can be
attributed to packets retransmission due to channel errors or collision, physical layer
overhead, MAC layer overhead, and the contention mechanism. Therefore, EDCF
protocol is not suitable for supporting triple-play services.

In order to meet triple-play services requirements by eliminating collisions and
reducing MAC layer overhead, a Triple-Play Time Division Multiple Access (TP-
TDMA) customized protocol is proposed to replace the 802.11e EDCF. This cus-
tomized protocol is designed to meet specific system requirements; an Access Point
(AP) connected to a cabled-hub with four subscriber stations as the network clients.
TP-TDMA suggests a reduced header size to reduce the MAC layer header and an
automatic repeat request (ARQ) to select the frame level. Packets are retransmit-
ted in TP-TDMA based on the traffic priority, whereas voice is not because of time-
sensitivity. The TP-TDMA downlink allows subscriber stations to downstream video,
voice, and data while the uplink allows subscribers to upstream data and voice.

In the TP-TDMA protocol, the frames are structured as follows: the downlink
frame consists of a beacon packet followed by four voice slots; then video and data
traffic are divided dynamically in the remaining four slots. The uplink frame is
also divided into four dynamically sized slots for the data traffic followed by four
slots utilized for uplink voice traffic. Guard-intervals are used in order to avoid a
collision between consecutive slots on both the downlink and uplink frames. These
guard-intervals are also added to separate subscribers’ uplink slots. It is important to
mention that each station of the four subscriber stations is assigned two slots during
both the uplink and downlink frames.

TP-TDMA suggests a modified MAC header keeping the first two fields (the
first four bytes) as they are in the legacy 802.11e. After those two fields, a Frame
Control field of two bytes is added to denote the type of packet and the other packet
fields. Receiver and Transmitter Address fields of one byte for each are then followed.
In addressing those fields, the first four bits are assigned to the network id while the
remaining four bits are assigned to the host id. The AP is reserved a unique host

Chapter 2: Background 13

address of 0x00 while subscriber stations are identified using particular bits for each
station. Addressing fields are followed by sequencing fields; two fields each of which
have two bytes are Video Sequence and Best-Effort Sequence, respectively. Similarly,
those sequencing fields are also followed by two ARQ bitmap fields each of which
has four bytes. Both sequencing and ARQ bitmap fields are used to support the
retransmission. A Feedback field following the ARQ bitmap fields is used to provide
information about the size of subscribers’ data buffer.

For efficient management of the wireless resources, TP-TDMA uses a dynamic
bandwidth allocation scheme in which transmissions are scheduled based on traffic
class. Slots are allocated with a fixed length in the downlink and uplink frames for the
voice channel in order to provide a guaranteed delivery of voice traffic. Then, video
and data packets, which are scheduled downstream for retransmission, are allocated
the channel’s maximum number of retransmissions. This number can be configured
separately for each class of traffic in such a way that any packet that exceeds this
number will be discarded. Video stream traffic is scheduled using an algorithm in
which downstream traffic is allocated based on the number of buffered packets for a
specific station.

Packets that require retransmission are handled using a Selective-ARQ mecha-
nism. While video and data are controlled by ARQ bitmap fields in the MAC headers,
voice traffic does not use ARQ mechanism. The AP maintains different ARQ bitmaps
for each station and traffic class. The ARQ bitmap size should not exceed the maxi-
mum number of packets of a given class and destination transmitted during a frame
transmission. ,

When comparing TP-TDMA to the legacy EDCF protocol, it can be found that
the bound on frame delay of TP-TDMA is four times smaller than EDCF. Also, data
throughput in TP-TDMA is higher than EDCF because of the dynamic utilization
of lower bit rate video regions. This shows an admission control capability of TP-
TDMA to manage the downlink/uplink data ratio. The overall throughput achieved
by TP-TDMA is 28% higher than EDCF even though they are utilizing the same
physical layer. However, EDCF has a higher percentage of successfully received voice
packets compared to TP-TDMA. The reason is that voice packets in TP-TDMA are
not retransmitted due to time-sensitivity.

Chapter 2: Background 14

Figure 2.1: Example of an Embedded System

2.2 Embedded Systems

Embedded systems can be defined as the systems that are designed to perform spe-
cific and dedicated real-time tasks. The word embedded refers to the fact that those
devices are usually built-in within a larger scale system as shown in Figure 2.1. Em-
bedded systems play an important role nowadays in controlling many common devices
in our life. Some of the main advantages to using embedded systems in designing a
specific application are their flexibility and reliability, as well as the reduction in cost
and size. Thus, manufacturers are using embedded systems for mass production and
are gaining from their economical advantage. Regardless of the application’s size,
embedded systems can be part of large scale applications, which benefit from the
flexibility they offer. Embedded systems are involved in many aspects of our lives;
they can be found in telecommunications systems, personal electronics, transporta-
tion system, and in medical equipments.

Modern telecommunication systems utilize embedded systems extensively, e.g.,
in a cellular network. The Network Switching Subsystem (NSS) deploys a wide range
of embedded systems to perform various functions such as identifying caller location.
On the end user side, embedded systems are implemented extensively in mobile phones
processors. In addition to that, modern networking systems, such as routers and
switches, employ different forms of embedded systems to perform scheduling and
forwarding tasks.

Personal electronics are considered by far the most consumers of embedded
systems as they offer a great deal of efficiency and flexibility to the end users. Many
electronic manufacturers nowadays are shifting their designs from being hardware-
based to software-based systems. In other words, they tend to utilize the features

Chapter 2: Background 15

that are offered by embedded systems, i.e. simplicity and fast deployment. Examples
of personal electronics include: MP3 players, videogame consoles, digital cameras,
DVD players, and GPS receivers.

In transportation, embedded systems are used widely in both aviation and au-
tomobiles. While advanced embedded systems are involved in the core design of au-
tomatic guidance systems of new airplanes, they are also heavily deployed in aviation
ground control systems for air traffic control. On the other hand, as the automo-
. bile industry shifts towards more hybrid vehicles, embedded systems involvement in
the design of those vehicles increases rapidly. Moreover, in most transportation sys-
tems, safety-related issues are mainly assigned to software-based systems, which are
implemented physically in embedded systems.

In addition to the different uses of embedded systems in various fields, medi-
cal technology also benefits from the features, which embedded systems offer; they
are involved in a range of medical imaging scanning systems such as Computed To-
mography (CT) and Magnetic Resonance Imaging (MRI). Moreover, wireless sensor
networking utilizes the advances achieved in integrated circuits to implement sophis-
ticated sensors on wireless subsystems, making it possible for companies to create
more efficient and responsive systems.

2.2.1 History of Embedded Systems

The history of embedded systems dates back to the early years of single tasked com-
puters, to the 1940-50s, when they were too large and expensive. However, as a result
of computer evolution from electromechanical sequencers to the use of integrated cir-
cuit technologies, embedded systems have evolved tremendously gaining from the
development in transistors technology. As it’s always the case in technology; space,
defense and military applications were the biggest motivators and also the largest
consumers to encourage development in embedded systems.

The Apollo Guidance Computer (AGC) is the first known modern embedded
system developed at the MIT Instrumentation Laboratory. At that time, the early
1960s, the AGC took advantage of the new developments achieved in embedded sys-
tems to reduce their size and weight; however, the AGC was considered the most
risky part of the Apollo project since it involved the usage of new integrated circuit
technologies. In 1961, using transistor logic and a hard disk, the D-17 guidance com-
puter for the Minuteman missile was built. Five years later, the D-17 was replaced
with a new computer for the Minuteman II missile. The design of this new computer
was the first extensive use of integrated circuits and resulted in great cost reductions,
allowing the prices of quad NAND gates to drop from $1000/each to $3/each.

The commercial sector was also gaining from the price reductions in the man-
ufacturing of embedded systems, but also it was motivated by the improvements in
processing power and the abilities of these systems. Intel introduced its first micro-
processor, Intel 4004, in 1971. This microprocessor was simple in its design and was

Chapter 2: Background 16

intended for calculators and other small systems. As the cost of microcontrollers and
microprocessors continued to drop, it became feasible to integrate (or replace) some
circuitry components, such as variable capacitors, with microprocessors.

2.2.2 Embedded Systems Characteristics

Embedded systems have some distinguished characteristics separating them from
~ general-purpose computers. These characteristics can be listed as follows:

¢ Embedded systems are designed to do specific tasks rather than being multi-
tasked as it’s the case of personal computers. And since their nature is to have
a limited number of tasks, some embedded systems can be simplified in terms
of hardware design costs; in other words, when the performance requirements
are low, hardware cost minimization can be achieved.

¢ Embedded systems are usually implemented in a bigger system to serve a more
general purpose; they are not always standalone devices.

e Instructions for embedded systems are stored in read-only memories or flash
memory chips; these sets of instructions are referred to as firmware.

The user interfaces of embedded systems vary depending on how sophisticated
the system is. Therefore, while single-task systems have no user interface at all, other
embedded systems can provide users with graphical user interfaces. Furthermore,
complex systems have advanced interface screens allowing the users to interact with
them by touch sensing. In contrast, some systems allow modifications in their be-
havior to be achieved remotely through serial or network connections, i.e. through
RS-232, USB or Ethernet cable. Typically, this approach is preferred when the user
requires authentications to adjust the functionalities of the targeted system.

Embedded systems can be categorized as microprocessors and microcontrollers.
The main difference between the two categories is that microcontrollers tend to have
more peripherals on the chip while microprocessors have only the Central Processing
Unit (CPU) on the chip. Obviously, the advantage of having more peripherals in
microcontrollers’ design is to reduce the cost and size. In both, microcontrollers and
microprocessors, basic CPU architectures are used, such as the Harvard architecture.

System-on-chip (SoC) is a common configuration of embedded systems in which
a complete system of processors, multipliers, and interfaces are located on a single
chip. This configuration can be implemented on an Application-specific Integrated
Circuit (ASIC) or on a Field Programmable Gate Array (FPGA). As for FPGAs,
designers use compliers, assemblers, and debuggers to develop embedded systems
software. To communicate with the outside world, embedded systems use peripherals
such as:

e Serial Communication Interface, such as: RS-232

Chapter 2: Background 17

e Debugging, such as: JTAG
e Universal Serial Bus, USB

Networks, such as: Ethernet

Analog to Digital/Digital to Analog: (ADC/DAC)

Synchronous Serial Communication Interface, such as: SPI

Multi-Media Cards, such as: Compact Flash

Since embedded systems are deployed in systems that are designed to run for
years continuously, their reliability is always set to very high standards. For that,
designers usually avoid introducing unreliable mechanical parts in their embedded
systems, and they are put in operation only after being tested carefully several times.
There are still some reliability concerns when the design involves having embedded
systems. One of the concerns is that embedded systems in many cases cannot be
shut down or easily accessed for repair; examples include space systems and undersea
cables. Another concern is that those systems must be operating efficiently for safety
reasons; examples include: aircraft navigation and reactor control. Also, in some
cases, having these systems shut down will cost a large amount of money; this result
can be seen clearly in stock markets and in automated sales.

Many techniques are being implemented to avoid, or to recover from, software
bugs and errors in the hardware such as such the watchdog timer, redundant sub-
systems, limp modes, trusted computing base, embedded hypervisor, and immunity
aware programming. A watchdog timer resets the computer in case of errors; redun-
dant subsystems are used to allow a switch over in case the main system fails; limp
modes provide partial software functionality; the trusted computing base ensures high
security and reliability.

2.2.3 Xilinx Hardware Embedded Systems

As a leading manufacturer of FPGAs, Xilinx continues to introduce innovated designs
for embedded systems on FPGAs. The Xilinx design of embedded systems on FPGAs
consists of three main objects[17]:

e FPGA hardware design; the hardware design requires, in most cases, having
a processor and other FPGA hardware. Common processors used in Xilinx
boards are MicroBlaze processor and PowerPC processor; more details about
those processors are provided later.

e Software platform for processor system; platforms can be either a standalone
platform supporting C language for instance or a third-party operating system,
such as Linux.

Chapter 2: Background 18

Performance
Integration
Flexibility
Features

2000 2002 2004 2006 2008

Figure 2.2: Xilinx Embedded Processors Evolution [17]

= User software application in which the user writes an application for specific
functions to be performed.

For the hardware design, since 2000 Xilinx boards have allowed development
engineers (Figure 2.2) to use two powerful processors: MicroBlaze (soft core) and
PowerPC (hard core). MicroBalze was developed by Xilinx while PowerPC is IBM
intellectual property; all Xilinx board families support MicroBlaze while only some
boards of the Virtex family support PowerPC. In those Virtex boards, which have
PowerPC processor integrated into the FPGA, crossbar technology is used to interface
between the processor and the outside world.

As shown in Figure 2.3, PowerPC 440 is connected to a Double Data Rate
(DDR) memory controller via a separate port called Memory Controller Interface
(MCI) to improve system performance and enable access to larger memories. Also,
the PowerPC 440 has Direct Memory Access (DMA) ports, which are generally used
to connect to the Tri-mode Ethernet MACs (TEMAC). The Processor Local Bus v46
(PLB v46) allows the PowerPC 440 to access any peripherals connected on the bus;
while the master bus (MPLB) allows the processor to access peripherals connected
to it, the slave bus (SPLB) allows other master buses connected to it to access the
MPLB and the MCI memory.

The PLB v46 supports bus widths of up to 128 bits; however, it also supports
dynamic bus sizing and programmable burst size. The crossbar technology, shown
in Figure 2.4, is built up to allow for a dual five-to-one multiplexer; in other words,
one of five masters can be connected to one of the two slaves independently and
simultaneously.

The MicroBlaze processor, on the other hand, is a soft-logic processor; and,
therefore, it runs in all Xilinx board families. Using block RAMs (BRAM), MicroBlaze
can integrate instruction and data caches. On-chip BRAM is accessible via the 32-bit
Local Memory Bus (LMB) allowing for low-latency access, while off-chip memories are

Chapter 2: Background 19

\VIRTEX

V'y

Figure 2.3: IBM PowerPC 440 Processor

Figure 2.4: Crossbar Technology in PowerPC 440 Processor

accessible via CacheLink to provide high-speed and low-latency access. MicroBlaze
utilizes Fast Simplex Link (FSL) channels which are dedicated, unidirectional, and
point-to-point FIFO; those channels are 32-bit wide. FSL can provide up to eight
input and output interfaces; however, the latest version of Microblaze (7.30a) contains
FSL channels that can provide up to sixteen interfaces. MicroBlaze is shown in
Figure 2.5.

2.2.4 Xilinx Software Embedded Systems

To support implementing the hardware design, Xilinx introduced a software pack-
age called the Embedded Development Kit (EDK) as its boards’ software platform.
The kit contains all the PowerPC and Microblaze tools and documentation a de-
signer might need. The Xilinx software package consists of two platforms: the Xilinx
Platform Studio (XPS) and the Software Development Kit (SDK) [17]. EDK al-
lows hardware development in XPS while software development is allowed in SDK.
XPS manages the hardware design of the processor system component and other

Chapter 2: Background 20

Figure 2.5: Xilinx MicroBlaze Processor

peripherals in the design allowing the user to perform: hardware design, processor
netlist generation, software design, software Board Support Package (BSP) genera-
tion, software debugging, and hardware simulation. On the other hand, SDK is the
software design environment in EDK; and therefore, software application creation,
Linker Script creation, and .elf file creation are all made through SDK.

The XPS platform is shown in Figure 2.6. The leftmost side tab consists of
three views: Project, Applications, and IP Catalog. The Project view shows the
project’'s current settings and allows access to processor projects files, such as the
MHS file. On this tab, users can set a target device by changing the architecture,
device size, package, or speed grade. The IP Catalog view enables the designer to
add or remove peripherals. On the System Assembly view, the Bus Interface tab
allows users to view component datasheets as well as configure them or change their
parameters. Ports tabs show all ports connected to a specific component and allow
users to reconnect components if needed.

For easier and faster creation of design projects, XPS introduces the Base Sys-
tem Builder (BSB) wizard. Using BSB, the user first has to choose the targeted
board from a list of Xilinx predefined boards or link the board definition to files if it
was made by a third-party vendor. Then, the BSB will allow the user to configure
the system either to be a single-processor or dual-processor system. After that, the
processor type, clock frequency, bus clock, and debug interface will be configured. Fol-
lowing that, the user can choose to add or remove peripherals and then configure the
Input/Output (1/0) interfaces such as Universal Asynchronous Receiver-Transmitter
(UART).

SDK (shown in Figure 2.7) is an application development environment based
on Java script and the open-source Integrated Development Environment (IDE) de-
veloped by the Eclipse Consortium. It uses a similar compiler as XPS, but it provides
clients with more functions and capabilities. Once a hardware design has been cre-
ated; using XPS, an Extensible Markup Language (XML) file is exported to SDK

Chapter 2: Background 21

£ Oe vyit iiov PtPiect Hardware Saftware Device Cspfguraticn Oftxg Jjpuiafor> ~jrdow [Jelp

to be able to read the design configuration. The design procedure used in SDK to
develop a software application for an XPS embedded system is as follows:

An embedded system is designed using XPS, creating a XML file to be imported
by SDK.

SDK is launched and a workplace is created to read the XML netlist description
file.

SDK creates the board support package and then the software application
project.

In SDK, the user compiles applications for a specific board and then downloads
the executable software to the targeted device.

In the Integrated Software Environment (ISE) Project Navigator, the user will
have access to the ELF file on the project.

Programming file can now be generated.

2.2.5 Xilinx MicroBlaze Processor

The MicroBlaze is a Reduce Instruction Set Computer (RISC) embedded soft core
processor that includes the following features [17]:

32-bit general purpose registers.

Chapter 2: Background 22

Figure 2.7: SDK Platform

< 30-bit instruction word with three operands and two addressing modes.

e Two 32-bit separate buses; one for instruction and the other one to function
as a data bus. Both are compatible with the IBM PLB bus standard and are
directly connected to on-chip RAM.

= Single-issue pipeline.

= Instruction and data cache.

< Hardware debug logic, MicroBlaze Debug Mode (MDM).
e Fast Simplex Link support.

< Hardware multiplier.

Instructions in MicroBlaze take one clock cycle; except for the load and store,
and multiply which takes two clock cycles. Operating frequency is dependent on the
board; for example, Virtex-6 operates at 307 MHz, while Virtex-5 operates at 245
MHz.

23

Chapter 3
Literature Review

Xilinx families of boards offer a wide range of boards for researchers in order to help
them focus on the targeted objective. Some boards consume less power, while others
offer higher performance capabilities. In comparing the two main board families that
Xilinx offers, it can be observed that Virtex boards are more powerful in terms of
performance while Spartan boards are considered a good choice for low total system
cost and high-volume applications. More specifically, Virtex boards support a higher
number of logic cells and embedded block RAM; while on the other hand, Spartan
boards can optimize the targeted design if the performance requirements are not high.
For example, Virtex-5 boards support up to 330,000 logic cells and up to 18 Mbits of
embedded block RAM, while Spartan-6 boards support up to 150,000 logic cells and
up to 4.8 Mbits of embedded block RAM.

This chapter is divided into two sections. The first section is devoted to dis-
cussing Virtex-5 LX110T board while the the second section studies MAC layer im-
plementation on boards as well as various MicroBlaze uses.

3.1 Xilinx Virtex-5 LX110T Board

The ML505 evaluation platform hosts a Virtex-5 Field Programmable Gate Array
(FPGA) to enable designers to better interact with and explore the board’s capabil-
ities. The ML505 board comes with various devices connected to the main FPGA
ranging from memory components to Input/output ports such as RS323, Joint Test
Action Group (JTAG) port or video output Digital Visual Interface (DVI). This eval-
uation platform is among the other platforms manufactured by Xilinx in which they
share the same printed-circuit board. These boards commonly have a wide range of
features or components that makes them useful to test new designs or verify inter-
face compatibilities. A generalized example block diagram of the board is shown in
Figure 3.1. In the following sections, we will explore the main components of the
XUP5V-LX110T board.

Chapter 3: Literature Review 24
CF PC4
| &
Host
CPLD Sync System ACE Use Peripheral
Misc. Glue Logic SRAM Controfler Controller Peripheral
10
32 g 10{100/1000
— 18 I Ethernet PHY RJ-45
SPl| | ptatiorm Flash —
16 SO-DIMM
= Digital Audio
GPIO = o3 |3 ™
. =l 8] |2 ACa7 Line Out/
{ButtorVLED/DIP Switch) § K o }3 Ao CODEL Heacohone
&
Piezo/Speaker szl ‘Eﬂ % 3 L a5 = 16 32 Mic In/Line In
YGA Input
PLL Clock fézn?rattor Codec
Plus User Oscillator
DVI Cutput .
—e DV Video Qut
System Monitor l Codec
Virtex-5 f Serial
A LXT/SXT/FXT RS-252 XCVA
(Differential InfOut Clocks) FPGA Battery and
Fan Header
Dual PS/2 16 X 32
Character LCD

GTP: 2 Serial ATA

GTP: 4 SMA

GTP: 4 SFP

GTP:PCle 1x

Y usericsus
5

2

[xaiHeader | [1ic EEPROM |

Figure 3.1: Virtex-5 FPGA ML50x Platform[18]

- Chapter 8: Literature Review 25

3.1.1 Virtex-5 FPGA

Virtex-5 FPGA is located at the center front side of the board (item number 1 in
Figure 3.2), and can be configured in various modes: JTAG, Master Serial, Slave
Serial, Master SelectMAP, Slave SelectMAP, Byte-wide Peripheral Interface (BPI)
Up, BPI Down, and Serial Peripheral Interface (SPI) modes. To configure the FPGA,
one of the following options can be used:

e Xilinx download cable (JTAG)

e System ACE controller (JTAG)

e Two Platform Flash Programmable Read Only Memory (PROM)
o Linear Flash memory

e SPI Flash memory

The JTAG chain starts with the PC4 connector (commonly referred to as J1 pin),
followed by the two Platform Flash PROM (U4 and U5), then the Complex Pro-
grammable Logic Device (CPLD) (U3), and it goes through the System Advanced
Configuration Environment (ACE) controller (U2), and the FPGA (U1). This JTAG
chain can be used to program and access the FPGA for hardware and software de-
bugging.The other option to configure the FPGA is the Platform Flash PROM; when
using this option, one of two configurations can be selected by using the least sig-
nificant bits of the configuration address DIP switches. The Platform Flash PROM
holds two configuration images; however, four images can be held using compression.
The linear Flash memory option supports up to four configuration images, in which
data stored in the linear flash is used to program the FPGA (BPI mode). Similarly,
the SPI configuration option is achieved through using data stored in the SPI flash
memory; however, the DIP switches must be set to 001 to enable this configuration.

3.1.2 DDR2 SODIMM

The DDR2 SODIMM is located on the back side of the board (item number 2 in
Figure 3.3). The Memory Interface Generator (MIG) is used to interface the DDR2
SODIMM using the MIG tool. The MIG tool is also responsible for generating the
proper FPGA 1/0 pin selections so that they are compatible with the DDR2 interface.
DDR2 memory expansion is achieved by installing the SODIMM modules, which will
enable a higher order address.

Chapter 3: Literature Review 26

3.1.3 Differential Clock Input and Output with SMA
Connectors

Differential clock signals can be used to derive high-precision signals from the FPGA
through 502 connectors. An external function generator or clock source can drive the
differential clock inputs feeding the global clock input pins of the FPGA. In Figure 3.2,
Differential Clock Output is shown as number 3.

3.1.4 Oscillators

The board uses one crystal oscillator socket (X1) as a standard LVTTL-type oscillator.
The oscillator socket is powered by a 3.3V supply and a 100-MHz oscillator. The board
also comes with a programmable clock generator device that can be used to generate
different clocks for the FPGA and its peripherals:

e 27 MHz, 33 MHz, and a differential 200 MHz clock to the FPGA
¢ 25 MHz to the Ethernet PHY (U16) |
e 14 MHz to the audio codec (U22)

e 27 MHz to the USB Controller (U23)

e 33 MHz to the Xilinx System ACE CF (U2)

The crystal oscillator socket (X1) can be seen in Figure 3.2 as number 4.

3.1.5 GPIO DIP Switches

GPIO DIP switches are located in the right-bottom cornor on the front side of the
board (item number 6 in Figure 3.2). Eight general-purpose DIP switches are con-
nected to the I/O pins of the FPGA. These DIP switches are an active-high switches.

3.1.6 User and Error LEDs

The total number of LEDs, which are controlled by the FPGA is 15, in which they
are active-high. Eight of them are general purpose LEDs situated in a row, five LEDs
are located near the North-East-South-West-Center-oriented pushbuttons, and two
error LEDs. All the LEDs are colored green except the two error LEDs which are
colored red. These LEDs are referred to as number 7 in Figure 3.2.

3.1.7 User Pushbuttons

Located near on the front side of the board (shown as number 8 in Figure 3.2), five
active-high pushbuttons serve as general purpose pushbuttons. These pushbuttons
are arranged in a North-East-South-West-Center orientation.

Chapter 3: Literature Review 27

3.1.8 CPU Reset Button

In a set of three pushbuttons (shown as number 9 in Figure 3.2), the CPU reset
button is the right most button and is an active-low.

3.1.9 RS-232 Serial Port

To allow communication between the FPGA and other devices, the board has one
male DB-9 RS-232 serial port (shown as number 12 in Figure 3.2). Since it is wired
as a host device, it requires a null modem cable to establish connectivity between
the board and the computer (through the serial port). Its maximum communication
data rate 115200 bits per second. The board also supports a secondary serial port
through the header (J61).

3.1.10 10/100/1000 Tri-Speed Ethernet PHY

The board comes with an Ethernet interface manufactured by Marvell Alaska oper-
ating at 10/100/1000 Mb/s. Different interfacing modes are supported by the board:
MII, GMII, RGMII (Reduced Gigabit Media Independent Interface), and SGMII
(Serial-GMII). It is referred to as number 21 in Figure 3.2.

3.1.11 JTAG Configuration Port

Using the JTAG configuration port (J1), the FPGA can be programmed and de-
bugged. The port supports the standard Xilinx Parallel Cable III, Parallel Cable
IV, or Platform USB cable products. The JTAG port is referred to as number 24 in
Figure 3.2.

3.1.12 Onboard Power Supplies

The power supply circuitry generates different voltage levels on the board including
0.9V, 1.0V, 1.8V, 2.5V, and 3.3V. For 1.0V, 1.8V, and 3.3V supplies, the Texas
Instruments PTHO8T2 regulator is used to drive them. The power circuitry is referred
to as number 25 in Figure 3.2.

3.1.13 Power, DONE, INIT Indicator LEDs

The Power indicator (PWR Good LED) is on to show that the proper 5V supply has
been applied (referred to as number 27 in Figure 3.2. The DONE LED is connected
to the DONE pin on the FPGA, and it’s on when the FPGA has been successfully
configured (referred to as number 28 in Figure 3.2). The INIT LED is on once the
FPGA is powered-up and completed its internal power-on process (referred to as
number 29 in Figure 3.2).

- Chapter 3: Literature Review 28

Table 3.1: Connection and FPGA Pins (18]

Component Connector on Board | Label FPGA Pin
Differential Clock J10 SMA_DIFF_CLK_IN_P H14
J11 SMA_DIFF_CLK_IN_N H15
J12 SMA_DIFF_CLK_OUT_P | J20
J13 SMA_DIFF_CLK_QUT.N | J21
Oscillators X1 USER_CLK AH15
U8 CLK_33MHZ_FPGA AH17
U8 CLK27TMHZ_FPGA AGI18
U8 CLK_FPGA_P L19
U8 CLK_ FPGA.N K19
GPIO DIP Switches | SW4 GPIO_DIP_.SW1 U25
SW4 GPIO_DIP_SW2 AG27
SW4 GPIO_DIP_SW3 AF25
SW4 GPIO_DIP_SW4 | AF26
SW4 GPIO_DIP_SW5 AF27
SW4 GPIO_DIP_SW6 AE26
SW4 GPIO_DIP_SW7 | AC25
SW4 GPIO_DIP_SW8 AC24
User and Error LEDs | DS20 LED North AF13
DS21 LED East AG23
DS22 LED South AGI12
DS23 LED West AF23
DS24 LED Center E8
DS17 GPIO LED 0 Hi8
DS16 GPIO LED 1 L18
DS15 GPIO LED 2 G15
DS14 GPIO LED 3 AD26
DS13 _ GPIO LED 4 G16
DS12 GPIO LED 5 AD25
DS11 GPIO LED 6 AD24
DS10 GPIO LED 7 AE24
DS6 Error 1 F6
DS6 Error 2 T10
User Pushbuttons SW10 N (GPIO North) U8
SW11 S (GPIO South) V8
SW12 E (GPIO East) AK7
SW13 W (GPIO West) AJ7
SW14 C (GPIO Center) AJ6
CPU Reset Button SW7 - | CPU RESET E9

Chapter 8: Literature Review 29

3.1.14 Program Switch

This switch is connected to the FPGA’s Prog pin. Whenever this switch is pressed, it
clears the FPGA'’s content. The program switch is seen as number 30 in Figure 3.2.

Chapter 3: Literature Review

Systam ACE Reset

‘ e Ciff Input Pair
e

Figure 3.2: ML505 Platform (Front Side)[18]

31

Literature Review

Chapter 3

PEaid. Sat
$EHE
Rt

S FeT

fi

3t

SEVEE B

i

bt

FISE Frerta et iy

1

Figure 3.3

ML505 Platform (Back Side)[18]

Chapter §: Literature Review 32

| LLC: Logic Link Control I

I il

JU JL

MAC

| Physical Layer:PLCP and PMD |

Figure 3.4: PLCP and PMD [19]

3.2 MAC Implementation and MicroBlaze

When it comes to MAC layer implementation, some designers choose to work with
FPGA boards as they can provide a more optimal testing environment; however, ASIC
boards on the serve as an alternative approach for more customized applications.

3.2.1 Implementation of MAC Layer on FPGAs

Voice over Internet Protocol (VOIP) is one of the most common services that mo-
bile devices are providing nowadays. However, VOIP faces many challenges in which
handoff latency between one access point to another is considered to be the main
problem. [19] suggests a new solution to reduce handoff latency in IEEE 802.11 by
adding some modifications to the mobile devices. The authors suggest two solutions:
the first solution is to reduce channel scan time by limiting the devices to pre-informed
channels that are known to be the most appropriate. The second solution is limiting
the ability of the mobile devices to proceed with handoff only when the future access
point has been already selected. With this second approach, handoff latency is min-
imized since the access point has to allocate needed resources before the connection
is established with the mobile device.

The model proposed by [19] consists of two additional sub layers namely: Phys-
ical Layer Convergence Procedure (PLCP) and Physical Medium Dependent (PMD).
The PLCP acts as the bridge between MAC and the radio transmission, while PMD
transmits the bits it receives from the PLCP to the wireless medium. MAC im-
plementation is achieved through a module architecture shown in Figure 3.4 where
transmit and receive operations are done separately. Handshaking and interaction
signals shown in the figure are described in Table 3.2.

The receiver decodes the PLCP and the PMD into various classes; in other
words, it identifies whether the incoming frame is signalization, data, or control so
that it can process them accordingly. The MAC receiver component processes probe

Chapter 3: Literature Review 33

Table 3.2: Receiver/Transmitter Component Interface Signals [19]

Signal Description

Clk Operation clock |

Canal.val | Sets Channel value to physical layer

Order Used to order the answers in a well defined order

Phy_start | Physical layer notifies receiver start to receive data

Sig-level Indicates the signal force coming from AP

Prob_data | MT receives the Probe Response frames coming from APs
Phys.data | Data signals from physical layer

Prob_regst | Notifies transmitter send probe request frame

Ack Notifies transmitter and acknowledgment frame

Scan_fini Indicates host that all channels has been scanned completely

response frames as well as controls the Signal to Noise Ratio (SNR) level in order to
initialize and operate handoff. On the other hand, the transmitter generates probe
requests over different channels for handoff initialization and allows following proce-
dures: event detections, parameters buffering, and message generating.

[20] proposes an evaluation model for a wireless communication systems based
on a hardware demonstrator using an FPGA. The main aim of this hardware-based
demonstrator is to be as close as possible to wireless systems’ behavior in a real
environment. The demonstration system consists of an FPGA and a soft processor
called LEON3; in which the FPGA realizes the physical layer of orthogonal frequency
division multiplexing (OFDM) while the LEON3 supports various MAC protocol
evaluations in terms of energy efficiency, throughput, and time synchronization.

Figure 3.5 illustrates the basic structure inside the FPGA; the gray blocks are
components imported from external libraries. The critical elements are intercon-
nected via the Advanced High performance Bus (AHB) while low data rate tasks are
connected via the Advanced Peripheral Bus (APB). Communication between the PC
software and the LEON3 processor is achieved through a bridge between Plugin Bus
and the APB.

The MAC layer tasks, such as packets retransmission and framing payload into
a packet, are implemented using a LEON3 processor. Using a C language code, these
tasks are implemented efficiently. For example, to trigger new attempts to access the
medium, a timer is used. As shown in Figure 3.5, the LEON3 processor is composed
of all the gray blocks such as the general purpose 10, and the UART. Essentially, all
of these blocks act as supporters for the LEON3 CPU block shown in the figure.

One of the problems facing Wireless Local Area Network (WLAN) efficiency is
the maximum throughput utilized by the MAC layer in which only 50%, if not less, is
actually being utilized. Using Spatial Division Multiplexing (SDM) and two transmit
antennas, [21] serves to improve the throughput efficiency by using three FPGAs: two
for implementing the physical layer and one for the Enhanced Distributed Channel

Chapter 8: Literature Review 34

[srampanf | tepse | mem

E | T P

o] DQbus
> T
FIFO
) bridge
3
[rros |} [Apmacs |

Figure 3.5: Hardware Demonstrator FPGA [20]

Access (EDCA) of the IEEE 802.11e MAC layer. By adding a new block performing
acknowledgment, MAC layer efficiency is improved to achieve a throughput more than
100Mbps.

When frames are received, the MAC Receiver module (MRX) checks the header
information in order to categorize the incoming frames. Based on the traffic category,
all frames are classified into four Access Categories (AC): real-time voice, real time
video, best effort, and background work. According to the access categories, various
channel access functions are called in to provide differentiated access right for each
AC based on the traffic priority. In case a collision occurs, the internal channel
collision control function raises the priority for that channel right access. The access
right is provided by the transmission opportunity (TXOP), which defines a starting
time and a maximum duration for each access in EDCA MAC. The acknowledgment
block aggregates several ACK frames into one frame in order to improve the MAC
efficiency. Moreover, RTS and CTS frames are used to decrease the probability of
channel collision.

The authors of [21] tested their proposed prototype MAC functionality in a
point-to-point scenario. They used the following Contention Windows (CW) to max-
imize the throughput; CW,,,;, = 7 and CWp,qz = 15. The data packet size used
was 1828 bytes with 28 bytes as the MAC header and 14 bytes as the ACK; the
MAC header rate was 216 Mbps while the ACK rate was 12 Mbps. The improvement
achieved on MAC efficiency of the Distributed Coordination Function (DCF) is about
28.5%, i.e., the improved throughput at the receiver is about 61.5 Mbps. Since the
authors assumed no packet error in their analysis, the test results are lower than the

Chapter 3: Literature Review 35

theoretical ones for high data rates. The MAC throughput is not only affected by the
physical data rate, but also it is affected by the packet error rate for a specific SNR.

The EDCA protocol is investigated to test how much improvement it can add
to the MAC efficiency. The packet length is 1926 bytes with a 26 byte MAC header
and 14 bytes as ACK; the MAC header rate was 192 Mbps while the ACK rate was 12
Mbps. The throughput of the higher priority AC provides better performance since
these packets are transmitted with smaller CW values.

[22] designed an enhanced MAC protocol algorithm to assure sufficient QoS
for high-speed wireless data and multimedia applications. The system is built using
SDL to implement the main control function; PRISM II chipset and ETRI are used
to build the physical layer while the MAC has been implemented using one Xilinx
(Virtex board) and one RISC corechip. The enhanced protocol aims to support
isochronous and asynchronous traffic in a wireless indoor environment. By adding
a subset function, isochronous services are maintained via negotiating the required
level of QoS when the connection is established.

In this protocol, the access point plays an important role in reserving the band-
width for isochronous services using beacon packets which define the required timing
and scheduling for those isochronous packets. This allows for dynamic bandwidth al-
locations to support time-critical applications such VoIP. The authors of [22] decided
to move the most time-critical function implementations to the FPGA, using VHDL
as the coding method. Their MAC design is based on two processes: transmit process
and receive process, in which each is implemented through a number of functions to
manage outgoing and incoming traffic.

Considering efficient memory access, the microprocessor’s performance, and
interface selection, the MAC prototype board is designed. Using a Synchronous
Static Random-access Memory (SSRAM) and an ARM7DMI core, one cycle access
operation and on-chip memory are achieved as well as high speed data processing with
low power consumption. This MAC prototype has many features; they can be listed
as: IEEE802.11 compatibility, RISC processor for MAC control functionality, vast
SRAM capacity, support of two physical layers (Direct-sequence Spread Spectrum
(DSSS) and OFDM), and embedded hardwired MAC logic.

The MAC processor is implemented using SDL, which can be converted to C
or C++ language. With the help of a C compiler, an executable program is built
using a runtime function library, which contains SDL constructs on the target device,
scheduling functions, and implementation operations. To build the Wired Equivalent
Protection (WEP) security algorithm, the authors call in external C functions and
use hardwired logic in VHDL.

[23] introduced a prototype of Software Defined Radio (SDR), which supports
Japanese PHS and IEEE 802.11 wireless standards. In their work, the authors show
the hardware and software architecture of the prototype, which consists of a CPU,
a Digital Signal Processing (DSP), and an FPGA. The design is portioned so that
each component is assigned to specific tasks; in other words, the CPU executes the

Chapter 8: Literature Review 36

MAC functions, while the DPS and the FPGA perform physical layer tasks. The
MAC layer is examined by analyzing the resulting throughput in order to evaluate
the proposed prototype. The measurement method used was to establish one-to-one
cable connection between the AP and the station.

In [24], the authors modeled a Wi-Fi transmitter’s MAC layer on VHDL. The
design consisted of five main blocks: the Data Unit Interface block, the Controller
block, the Payload Data Storage block, the MAC Header Register block, and the Data
Processing block. In their work, the authors focused on two blocks: the Payload Data
Storage and the Data Processing blocks.

The Payload Data Storage block is divided into two modules: the FIFO module
and the Data length counter module. The FIFO acts as a synchronization module
to ensure that the rate of entering data matches the rate in the system. The Data
length counter module, as its name indicates, simply acts as a counter in order to
ensure that a specific number of bits of the incoming data is transmitted. The Data
Processing block is divided into three modules: Serializer, HEC, and CRC modules.
The Serializer module simply converts parallel input data into serial output data.
The HEC module produces the Head Error Check bits then transmits with the PLCP
header. The CRC produces the Cyclic Redundancy Check 32-bit field, which helps
in error free transmission.

To design a MAC layer for the Ultra-Wideband (UWB) in an FPGA, [25]
proposes a MAC controller that consists of three units: a Processor Interface unit, a
Control and Data unit, and a Management unit. The Processor Interface unit sends
suitable signals to the Control and Data unit after decoding the received commands
from the central processor. As its name suggests, the Control and Data unit is
responsible for controlling signal lines, which are connected to the physical layer, as
well as validating received data. The Management unit read/writes to the data lines
in order to manage the physical layer. The MAC controller is also modeled as a Finite
State Machine (FSM) of seven different states as shown in Figure 3.6.

3.2.2 Implementation of MAC on Other Boards

Application-Specific Integrated Circuits (ASIC) seem to not offer the most efficient
approach to implementing various wireless MAC layer protocols on consumers hand-
sets. Actually, using ASICs for such implementation would be another cost addition
on the already expensive approach. Moreover, integrating different standards on a
single handset using ASIC will lead to having a separate implementation for each
standard. As the demand on advanced wireless devices grows, most manufacturers
will tend to introduce devices capable of handling various wireless standards. How-
ever, the consumer handset market has very strict requirements; such as being cheap,
flexible, and power-efficient, making the implementation of those handsets even more
complicated.

Chapter 8: Literature Review 37

DATA_EN_2+0

Figure 3.6: WiMedia UWB [25]

This complexity problem is, in fact, applied to both MAC and physical layer
standards. For that, [26] proposes a Dynamically Reconfigurable MAC Processor
(DRMP) aiming to cope with all MAC protocols commonly using wireless protocols.
The authors of [26] investigated three wireless standards: IEEE 802.11 (WiFi), IEEE
802.16 (WiMAX), and IEEE 802.15.3 (WPAN). In their study, they found similari-
ties between these standards in the structure and functionality including header and
frame redundancy, and fragmentation. On the other hand, some differences in these
standards were found including differences in Automatic Repeat Request (ARR) and
RTS/CTS Handshake.

The idea behind the DRMP design is to partition the system into reconfigurable
hardware and a general-purpose microprocessor. The reconfigurable hardware part
of the system is basically restricted to time-critical functions such as packet process-
ing operations involving transmission and reception. Most of these functions overlap
with the three wireless standards considered, motivating faster performance as well
as quicker implementation. Conversely, the microprocessor is confined to MAC man-
agement and high-level control functions because these functions are not time-critical
and are often better done in a software environment.

The MAC hardware has a critical subset that is active as long as the device
is in operation mode. Timers, logic for detecting and reacting to events, and state-
information storage and update functions are integrated into this critical subset. The
DRMP dataflow module is designed to be able to provide a certain sequence of func-
tions by using Reconfigurable Function Units (RFU) connected in different ways to
achieve that. The main advantage of designing this dataflow in such a way is that it

Chapter 3: Literature Review 38

is scalable and requires less reconfiguration of data.

The DRMP implements the MAC layer using a function-specific RFUs which re-
use hardware resources leading to better efficiency than FPGA or software. Moreover,
RFUs reduce the number of interconnections which will yield an improvement over
FPGA implementation.

ZigBee is a standard that addresses remote sensing and monitoring applica-
tions. [27] discusses a SoC implementation of ZigBee for MAC and the physical layer
standard. The MAC layer is managed through an entity called the MLME that is
responsible for objects related to the MAC; similarly, the physical layer is managed
through an entity called the PLME, which manages objects related to the physical
layer.

Two types of channel access mechanisms are allowed depending on the network
configuration in which the superframe structure is used. When beacon messages are
not enabled in the network, an unslotted CSMA-CA is used. The device will wait
for a random backoff time before transmitting its data. If the channel is busy, the
device will have to wait for another backoff time; otherwise, it can proceed with the
transmission. When beacon messages are enabled in the network, the superframe
structure is used. The superframe has one active portion and one inactive portion;
transmission is made during the active portion while the device goes into low power
mode during the inactive portion. In this configuration, devices are assigned to
transmit in either guaranteed time slots or slotted CSMA-CA.

This configuration is implemented using Specification and Description Language
(SDL) and the Message Sequence Chart (MSC). The authors used Telelogic’s TAU
SDL Suite to extract the C code from the SDL file with some modifications to match
the code for the 8-bit embedded microprocessor using a 16-bit address instead of the
32-bit. These modifications led to a 70% reduction in the code size, implementing
the MAC function with a memory code of 57 Kbytes. The system functionality was
confirmed by sending and receiving MAC and physical primitives in the correct order.

3.2.2.1 Weighted Round Robin Scheduler

[28] illustrates how to design a distributed MAC Weighted Round Robin (WRR)
scheduler imitating a network layer scheduler. WRR is defined as the simplest ap-
proximation of generalization processor sharing for a packet-based network. Each
service share has a representative integer weight; for a specific session, the frame is
calculated ahead of time by a server that utilizes the service share weights. Using
this model, throughput performance can be estimated for a given station’s CW size
as well as calculating the CW sizes for specific throughput.

The WRR scheduler is implemented in the network layer of the access point of a
WLAN; however, the design is considered a MAC layer scheduler instead. Two reasons
explain the situation: first, from an uplink prospective, assuming no polling protocol
is used, EDCF MAC is the only method to prioritize access to various stations.

e

Chapter 3: Literature Review 39

Table 3.3: Throughput Performance of Network and MAC WRR [28]

Network Layer WRR + DCF | MAC Layer WRR + EDCF
Throughput | 0.78145 + 0.00001 0.78875 £ 0.00003
BW1/BW1 | 1.0000 1.0000
BW2/BW1 | 0.4998 0.5002
BW3/BW1 | 0.2499 0.2479
BW4/BW1 | 0.1250 0.1238
BW5/BW1 | 0.0625 0.0619
BW6/BW1 | 0.0312 0.0307

Table 3.4: Access Delay Performance of Network and MAC WRR [28]

Flow ID | Ave (ms) | Std | 95% CI | MIN (ms) | MAX (ms)
Layer 3 WRR | 1 22.8 414 |0.114 7.41 254
2 37.9 87.3 |0.34 15 377
3 68.1 140 | 0.768 15 438
4 129 196 1.53 15 469
5 250 234 | 2.58 15 484
6 491 0.268 | 0.00417 | 483 492
MAC WRR |1 15 7.98 10.022 |7.37 74.6
2 29.9 19.2 | 0.0748 | 7.37 606
3 60.7 45.4 | 0.251 7.37 1180
4 121 97.1 |0.76 7.37 2280
) 224 188 | 2 7.37 5750
6 454 390 |5.91 7.37 7910

Second, from a downlink prospective, higher throughput and smaller average access
delays can be achieved with a MAC layer scheduler.

When comparing the throughput performances of MAC and network layers, [28]
clarifies the fact that MAC’s can achieve a higher throughput since the time wasted
in backoff is reduced as a result of the competition between multiple access instances.
On the other hand, the delay of the MAC layer in WRR of low priority flows is higher
than what the network WRR achieved. The reason for that is the need to retransmit
more frequently as a result of the virtual resolution policy. Table 3.3 and Table 3.4
show more results.

3.2.3 MicroBlaze Implementation

MicroBlaze is a 32-bit embedded soft processor built by Xilinx and implemented
in their FPGA boards. It has a wide range of various uses; some developers use
this processor as a scheduler for different network protocols, while others use it a as

Chapter 3: Literature Review 40

queuing system for various processes. In the literature, we found various applications
for MicroBlaze including a Real Time Operating Systems (RTOS) scheduler, a Self
Adaptive Networked computing Element (SANE) test bench, an embedded Global
Positioning System (GPS) receiver, and a video streaming server. On the other
hand, some researchers presented special modifications to the MicroBlaze processor
to achieve specific targets. For example, [29] proposes a modified architecture of the
Fast Simplex Link (FSL) bus to reduce the system size and improve the bus speed
by 33%.

To investigate the advantages and disadvantages of different RTOS schedulers,
[30] discusses three approaches to scheduler implementations. The first approach is
called software-based (SoRTS) in which the implementation is built around a pro-
cessor that runs the scheduler and other application tasks. The second approach is
called software-software (Co-SoRTS) in which two processors co-exist; one processor
for the scheduler and the other one for the application tasks. The third approach is
called hardware-software (HaRTS) in which the processor runs the application tasks
while the scheduler is built-in and hardware-based. To build these approaches, the
authors used a Xilinx Virtex-II FPGA board, Xilinx EDK, and ModelSim. MicroB-
laze was used to validate the implementation of the software scheduler, with a 50
MHz operating frequency for prototyping purposes.

The first approach, SoRTS, is composed of six elements: MicroBlaze processor,
Block RAM memory, On-chip Peripheral Bus (OPB), a communication interface,
interrupt and time control, and UART. The application tasks that are related to
deadlines, task ID, period, or execution time are handled by MicroBlaze. The Block
RAM is used to store tasks scheduled to be executed and tasks that are waiting to
be executed in two different data structures; the first is called the Ready queue and
the other one is called the Idle queue. While the OPB allows communication between
the components using its 32-bit bus, the communication interface allows the software
to communicate with the hardware. In other words, by using the communication
interface, the MicroBlaze’s RTOS and tasks applications can communicate with the
interrupt and time control hardware. The UART provides a communication channel
between the Xilinx board and the host computer.

The second approach, Co-SoRTS, is similar to the SoRTS architecture but has
two MicroBlaze processors instead of one. The tasks which are stored in the Block
RAM are performed by one processor while the other processor is used as a RTOS
scheduler. In the third approach, HaRTS, employs a dedicated hardware component
for scheduling tasks instead of using a software approach. This dedicated compo-
nent consists of four main modules including a scheduler module, queue control, a
communication interface, and time control. The scheduler module is built in three
blocks: fail process, running process, and ready process. Using stored parameters in
queue control, the scheduler module prioritize the tasks to be performed. The time
management is handled by a time control module.

Lot

Chapter §: Literature Review 41

XC2VP30: FPGA

RF-Front End SRAM
NJ1006A 64Mbytes.

S S § S

! 1

i OPB Bu ;

] N

1| Correlator MicroBlaze ;

| Module Soft Processor Core | !
1

i i

' '

External Interface Flash
Module 32Mbytes

Figure 3.7: Embedded GPS Receiver [32]

In comparison, the author found that CPU utilization in the first approach,
SoRTS, is affected by the increase in context switches time while the other two ap-
proaches, Co-SoRTS and HaRTS, are not affected. In terms of register usages, HaRTS
required the highest number of registers in its communication interface, which was
16 registers compared to two registers by SoRTS and three registers in their commu-
nication interfaces.

[31] uses MicroBlaze to build a platform to investigate the SANE concept by
using simple CPUs controlling the functionality of data processing blocks. The plat-
form employs a MicroBlaze CPU along with common peripherals such as a DDR
RAM controller and a RS232 interface. It also has a simple PicoBlaze CPU, which is
used to schedule hardware path operations. This platform consists of three program-
ming levels; the first level is done in MicroBlaze, second level is done in PicoBlaze,
and the third is in the hardware.

To design a full GPS receiver using a single chip, [32] necessitates a system
that is based on an FPGA hardware environment and MicroBlaze as the system’s
software environment. As shown in Figure 3.7, the system consists of five main
blocks. The RF chip acts as a down converter of the RF signal received to an IF
digital 2-bit signal. The signal correlation is done by the hardware on the board; while
MicroBlaze is responsible, for the baseband signal processing, the Coarse/Acquisition
(C/A) code generation and the Digitally Controlled Oscillator (DCO) increment.
The SRAM is used to store temporary data, while the Flash chip stores the program.
For communication with other devices, the external port module includes serial and
debugging ports.

Aside from its powerful computational capabilities, the authors decided to im-
plement their solution using this configuration, FPGA and MicroBlaze, since it will
provide more flexibility in accommodating other positioning systems using about the
same hardware. In other words, by updating and applying slight modifications to the

Chapter 3: Literature Review 42

software, a hybrid GPS/Galileo receiver can be achieved with dual frequency capa-
bilities. Moreover, the FPGA approach could be used as a test bench for an ASIC
design in the future.

The MicroBlaze processor functions in the GPS receiver are mainly; first, in-
terfacing with the custom user-defined systems. Second, controlling and managing
the acquisition and tracking phase increment. Third, computing navigation solutions,
sending positions, and velocity and time information. The custom user-defined system
refers to the correlator which was designed with the help of the Xilinx Tools Gener-
ator. Some algorithms are implemented on MicroBlaze for managing and calculating
the required navigation solutions.

[33] proposes a platform that enables the video streaming of a pipelined H.263
encoded compression on an embedded FPGA board. Several proposed architectures
have been suggested by designers in which they range from hardware-based to systems
based fully on a processor. The MicroBlaze processor is used in this system to control
the data flow and to instruct the writing/reading from memory.

43

Chapter 4
System Architecture

Indoor wireless networks, in most cases, are nothing but an extension of the corporate
main Ethernet network. In other words, unreachable offices by the wired network are
commonly connected to the main network through a wireless hub via an Ethernet
port. Since the 90s, Ethernet dominated the wired LAN market by far, ahead of
other technologies such as token ring. Therefore, designing a wireless MAC controller
should take into consideration the Ethernet’s frame structure. However, implementing
the MAC controller might require slight modifications on the standard Ethernet frame
structure.

The first section of this chapter uses MicroBlaze soft processor to test the board,
including its interfaces and memories. The second section introduces a strict scheduler
with detailed designs of each component including the system’s memory block. This
scheduler utilizes the type segment of the Ethernet frame for a different purpose than
its original. In fact, the type segment is carrying the class of the payload’s traffic;
i.e., whether its voice, video, or best effort. The last section proposes a scheduler
design with the help of Xilinx Ethernet controller; this scheduler actually implement
an FSM model to prioritize the traffic based on its class.

4.1 Board Testing

To test the board, MicroBlaze soft processor offers a convenient approach to verify
the board’s interfaces [34]. In addition to the memory components needed for the
processor, it also has two Input/Output devices which are the RS-232 interface, and
the 8-bit LED as shown in Figure 4.1.

As it can be seen in the figure, three types of buses are connecting the processor
(microblaze) to other components. The upper set of buses are connected to the local
memory’s controllers through two slave local buses: dimb (data local memory bus) to
dlmb_cntlr (dlmb controller) and ilmb (instruction local memory bus) to ilmb_cntir
(ilmb controller). The lower set of buses are connecting the processor to the periph-
erals through master bus: mb_plb (master bus processor local bus). Similar to local
memory bus, mb_ plb is connected to to the processor via two buses: DPLB (Data
plb) and IPLB (Instruction plb). This bus is connected to both slaves in this desgin:
LEDs and RS232 via zps_gpio (XPS general purpose input output) and zps_uartlite

Chapter 4:

System Architecture

44

EDK VERSION

ARCH o T vitexs
PART ’) x¢Svixt Wﬂﬂ 1 36-7
GENERATED Mon Apr 11 19:01:38 2011

Figure 4.1: MicroBlaze processor used to test the board

b

Chapter 4: System Architecture 45

(XPS UART lite) controllers, respectively. Finally, to debug the processor, the mdm
(MicroBlaze Debug Module) is connected to the processor through DEBUG port.

The main aim of this test is to check the communication between the computer
and the board through a testing word, and also to examine the internal memories as
well as the LEDs. The following (Table 4.1) are the MicroBlaze’s system specifica-
tions which were automatically generated by XPS wizard:

Table 4.1: MicroBlaze Processor Specifications

Created by Base System Builder Wizard for Xilinx EDK 12.3 Build EDK_MS3.70d

Target Board Custom

Family virtexd

Device xchvix110t

Package ff1136

Speed Grade -1

Processor number 1

Processor 1 microblaze_0

System clock frequency | 75.0

Debug Interface On-Chip HW Debug Module

4.2 TP-TDMA Scheduler: Systematic Approach

The systematic approach will be discussed in the coming sections provides a deeper
sight at the suggested system compared to the overall design will be suggested in
the conceptual approach section. The system design here looks into a single com-
munication setup between the base station and the wireless station regardless of its
direction. The system consists of four main components as shown in Figure 4.2:
Controller, MEMORY block, Scheduler, and Frame Constructor.

As it can be observed from the system, the Incoming Frame (shown in Fig-
ure 4.3) is split into two segments where Frame Spec is sent to the Scheduler and
Payload is stored in the MEMORY block. Once the Scheduler decides which Frame
Spec to be transmitted, the Frame Constructor calls the associated Payload (using the
Payload Tag generated initially by the Controller) and then constructs the Qutgoing
Frame.

4.2.1 Controller

The Controller (shown in Figure 4.4) consists of three blocks: Preamble Check block,
CRC Check block, and the Frame Ripper block. The Preamble Check block performs
mainly a comparison between the first 64 bits of the incoming frame with the standard

Chapter 4: System Architecture 46

Frame Spec:

1ncoming Dest, Sour, Typ, (S

Frame

Se) peojied

Outgoing

'MEMORY IS

Figure 4.2: System’s Main Components

Figure 4.3: Fields of the Incoming Frame

Chapter 4: System Architecture 47

expected preamble of Ethernet frame. This comparison operation is implemented
using an XOR gate; if the result of the comparison is all zeros, then the frame preamble
is correct. CRC Check block tests the incoming frame’s payload to check whether
there were errors during the transmission. The CRC Check block contains multiple
Wrapper Adders used to compare the CRC field with the payload. If the comparison
result was all ones, then the CRC is correct, i.e., no errors during the transmission.
At this stage, the incoming frame enters the Frame Ripper block which performs two
main functions:

e Fragments the frame to two pieces, Frame Spec and Payload.
o Generates the Payload Tag.

The Frame Spec is actually carrying three fields of the incoming frame in addi-
tion to the Payload Tag. Those three fields are: the destination address, the source
address, and the type of this frame.

i 4 Preamble R Frame Frame Spec:
neoming Check CRC Check Ripper ; § Dest, Sour, Typ,
Frame B - ppe ~ Payload Tag

Payload Tag
Payload

Figure 4.4: Controller Detailed Design

The Frame Spec is sent to the Scheduler while the Payload and the Payload
Tag are sent to the MEMORY block. The Payload Tag is generated in order to keep
a track of the payload associated with a particular Frame Spec; in addition to that,
the Payload Tag is used as an address in the MEMORY block as well as a method to
fetch the desired Payload from the MEMORY by the Frame Constructor.

4.2.2 MEMORY Block

The MEMORY block acts as a storage element to store the payload meanwhile
scheduling processes are being performed. This block, as shown in Figure 4.5, consists

Chapter 4: System Architecture 48

of a Defragmenter, multiple RAMs, and a Fragment. The Payload and the Payload
Tag are sent by the Controller to the MEMORY block, where the Payload Tag is used
to create the RAM address in which the associated Payload will be stored.

The Defragmenter works as a splitter of the payload received from the Controller
in which segments of 128 bits are sent to each RAM block with a copy of the Payload
Tag to store that segment in a specific address. On the other hand, the Fragment
receives the Payload Tag to be read from the Frame Constructor, and then calls it
from the RAM blocks to gather it in one segment to be sent to the Frame Constructor.
It is to be noted that payload segments are stored in the same RAM address in each
RAM block.

Payload

Payload Tag in

Defragmenter

Address to write

4 RAM
128x1024 EW 128x1024

Payload Tag out

Fragment

Payload

Figure 4.5: MEMORY Block

4.2.3 Scheduler

The Scheduler, shown in Figure 4.6, consists of two main blocks; a Classifier and a
Prioritize. The Classifier simply distinguishes different Frame Spec classes of traffic
and then sends each Frame Spec to the Prioritize according to its class. Basically,
the Classifier checks the first two bytes of the Typ signal; 0x0011 refers to a voice
payload, 0x0022 refers to a video payload, and 0x0033 refers to best effort payload.
The Prioritize simply works as a strict scheduler in which only four segments
are examined in order to sort them. Priority is always for voice payloads; once there
are no voice payloads to schedule, video payloads are set as a second priority leaving

Chapter 4: System Architecture 49

Frame Spec: o . - . L .

Dest, Sour, Typ, ¥ Classifier Prioritize K& Frame Spec:

Paviond To - Dest, Sour, Typ,
\ B Payload Tag

N

Figure 4.6: Scheduler for Straight Scheduler Approach

best effort as the lowest priority. To explain how the Prioritize works, let’s consider
an incoming frame of 4 segments. The first segment is of a video type (segment A),
second is of best effort type (segment B), third is of voice type (segment C), and
fourth is of best effort (segment D). The resulted outgoing frame should be sorted as
follows: segment C, segment A, segment B, then segment D.

4.2,4 Frame Constructor

The final component of the system is the Frame Constructor. As its name suggests,
it simply gathers all frame components and then constructs the frame to be ready for
transmission. As shown in Figure 4.7, the Frame Spec is received from the Scheduler
and then a copy of it is sent to the MEMORY block in order to call the associated
payload with that Frame Spec. Once the payload is entering the Frame Constructor,
a copy of the payload is sent to the CRC to generate the 32-bit CRC. The Frame
Constructor provides Preamble and Frame Gap generation to form the final Ethernet
outgoing frame.

4.3 TP-TDMA Scheduler: Conceptual Approach

TP-TDMA protocol can be described through the algorithm shown in Figure 4.8.
This protocol is designed for a customized system configuration in which a base
station serves four clients. Each client receives its traffic (downloading frames) on
segment-base according to the traffic class, while clients are allowed to upload their
traffic similarly based on their class.

Voice traffic is assigned fixed-sized slots on both downlink and uplink frames,
while video and best effort traffic is allocated their bandwidth according to the chan-

Chapter 4: System Architecture 50

Frame Spec:
Dest, Sour, Typ,
Payload Tag

Payload

Preamble Outgoing
Frame
Frame

Shaper

ame Gap . |

Figure 4.7: Frame Constructor Main Blocks

nel availability. However, video traffic is prioritized over data traffic which will be
queued for transmission once video packets are delivered. The downlink frame starts
with a beacon packet to carry the scheduling information to all stations in the sys-
tem. The MAC header contains both transmitter’s and receiver’s addresses which
are distinguished using an addressing system of one byte to identify the station. In
that byte, the first four bits are assigned to the network id while the last four bits
are assigned to the station id.

To implement the TP-TDMA protocol using Xilinx Vertix-5 FPGA, the sys-
tem’s building blocks consists of three subsystems; an Ethernet Controller, Memory,
and a Scheduler as shown in Figure 4.9. The Ethernet Controller will simply receive
Ethernet frames and process them so the Scheduler can sort them according to the
traffic class. The traffic is fed to the system through a standard RJ45 LAN port, in
which the Ethernet Controller will separate the payload from other frame’s sections.
The payload will be stored in the memory while scheduling processes are taking place
in the Scheduler.

4.3.1 System’s Components Description

As shown previously in Figure 4.9, the system consists of three components. The
Ethernet Controller and the Scheduler will be discussed in further details in the
following sub-sections.

Chapter 4: System Architecture

s

</Beacon packk .
&nlto all clients,

~

Base transmits VO
packet to client

TN
e

" vo

/
downloading timer '
\explred or transmission,~ |

\mpleted -~ repeated for!
each client |

Base transmits VIBE
packets to client

i /,// .
' VIBE
:. / downloading tlmer\

“~..expired or transmission

e completed
~

repeated for:
each client

Switch to RX

Client transmits BE
packet to base

uploadmg tlmer i
~~.expired or transmlssmn '

N completed
e repeated for:

each client |

Client transmits VO
packets |

No

.
P vO \\
.~ uploading timer ™~
“..expired or transmissio
“._completed
.

repeated for:
each client !

Transmission
Completed

Figure 4.8: TP-TDMA Algorithm

Chapter 4: System Architecture 52

LAN
port

Figure 4.9: System Building Blocks - Ethernet Controller and Scheduler

4.3.1.1 Ethernet Controller

Using ISE CORE Generator, an Ethernet Controller can be created either with the
standard features or with customized features to suit the required design. Therefore,
to design the Ethernet Controller for TP-TDMA protocol, the CORE Generator cre-
ates The LogicCORETM IP Tri-Mode Ethernet Media Access Controller (TEMAC)
[35] with the following features. The physical interface type is chosen to be Gigabit
Media Independent Interface (GMII) and the MAC speed is Tri speed, i.e. 1 Gbps,
100 Mbps, or 10 Mbps. The client interface is designed to enable clocks at transmitter
(TX) and receiver (RX). Management interface is chosen to be accessed with a con-
figuration vector containing all management details. Also, the controller is designed
to have full-duplex communication and with no address filter.

As shown in Figure 4.10, the created Ethernet Controller consists of five com-
ponents. The first two components are TX and RX interfaces acting as the client
interface facilitating communication between the upper layer and the Ethernet Con-
troller. Clock/Speed Indicators receive the clock that will control the TX and RX
interfaces as well the reset signal to control the whole core. It is to be noted that
the TX and RX interfaces can have independent clocks. GMII Physical interface
communicates with the physical layer to send frames to the upper layer and receive
frames from the physical layer. The Configuration component is an essential compo-
nent of this core; it has only one signal of 68-bits carrying all management settings
[36]. Further details about configuration vector are provided in Appendix A.

Table 4.2 describes all signals of the Ethernet Controller. When there is a frame
to be transmitted on clientemactzd port, the frame should be validated by having the
port clientemactzvld and clientemactzenable high. After the first byte is transmitted,
emacclienttzack goes high. When a frame is sent from the MAC to the RX interface,
it will be received on emacclientrzd port.

On the physical side, frames are received to the MAC through phyemacrzd port;
while they are transmitted to the physical side from the MAC through emacphytzd

Chapter 4: System Architecture

33

Table 4.2: Signal Description of the Ethernet Controller

. tieemacconfigvec (68)

Signal Description

clientemactxd (8) Frame data to be transmitted
clientemactxdvld Control signal for clientemactxd
clientemactxenable Clock enable for TX interface
emacclienttxack Handshaking signal

clientemacrxenable Clock enable for RX interface
emacclientrxd (8) Received frame data

emacclientrxdvld Control signal for emacclientrxd
emacclientrxgoodframe | To indicate good frame reception
emacclientrxbadframe | To indicate bad frame reception

reset To reset the Ethernet controller
txgmiimiclk Clock for the transmission of data
rxgmiimiclk Clock for the reception of data
speedis100 Asserted when the Ethernet is operated at 100 Mbps
speedis10100 Asserted when the Ethernet is operated at 10 Mbps
phyemactxenable Clock enable for GMII Physical interface
phyemacrxd (8) Received data from PHY
phyemacrxdv Control signal for phyemacrxd
emacphytxd (8) Transmitted data to PHY

emacphytxen Enable control signal to PHY
emacphytxer Error control signal to PHY

Configuration management vector

Chapter 4: System Architecture 54

{from UPPER layer) clientemactxd e — emacclienttxack
clientemactxdvid

clientemactxenable

8—> emacclientrxd
emacclientrxdvid
clientemacrxenable - emacclientrxgoodframe

~» emacclientrxbadframe

reset
txgmiimiiclk e

- » speedis100
.............. » speedis10100
rxgmiimiictk

phyemactxenable ————|
emacphytxd {to PHY layer)
P emacphytxen
(from PHY layer) phyemacrxd —-8
phyemacrxdv

—-m emacphytxer

tieemacconfigvec emmS8

Figure 4.10: Ethernet Controller Components and Signals

port. Frames are transmitted on ports of 8-bits format as mentioned in Table 4.2.

4.3.1.2 Scheduler

The Scheduler is modeled as an FSM of 18 states shown in Figure 4.12. The principle
idea of this FSM can be simplified as follows; State00 is the reset state, State01 is the
beacon transmission state, State02-State05 are the voice downloading states, State06-
State09 are the video and best effort downloading states, Statel0-Statel3 are best
effort uploading states, Statel4-Statel7 are the voice uploading states.

In State00, the system forces reset port to go high and as a result the core
resets all ports. Once time_maz transition signal is high, i.e. the time limit to stay
in State00 expires, the system moves to State0l in which it will broadcast a beacon
message to all stations. Similarly, once time_beacon goes high, the system moves to
Stat02. For State02-State05, the transition signal is time_VO; it goes high once the
station sent its voice frame or the time limit has expired. For State06-State(09, the
transition signal is tzme_VIBE; it goes high once the station sent its video and best
effort frame or the time limit has expired. For Statel0-Statel3, the transition signal
is time_uBE; it goes high once the station uploaded its best effort frame or the time
limit has expired. For Statel4-Statel7, the transition signal is time_uVO; it goes high
once the station uploaded its voice frame or the time limit has expired.

Chapter 4: System Architecture

emacclienttxack clientemactxdvld
_ phyemacrxdv
emacclientrxd =8
emacclientrxdvid
esmGlumlp ticemacconfigvec
emacclientrxgoodframe
emacclientrxbadframe
reset
speedis100
speedis10100 clkenable
clk
Figure 4.11: Scheduler Block
fii"n;s_ acon
=
State01 4
~
\ ‘ B
‘ tme eaco “time_VO / lee_VU / “ime Vﬁ f time_VO

ra;et o oy 3 L \ A \
! h !
i Steteoz\ﬁ) I——’@atem\ / ' State04 nj | Stateos\)('/
| _/ AN f o N
) —y .
ms’t';f.eny : time_VO b time_VO ' L——ﬂime_vo

time_VO

/!-\ time_VIBE // L\ tlma_TVIBE l\ time_VIBE i\
{ State08 f\ L————{ Stateoa | L———/Smeoﬁ\~\
\ N

time_VOu | \;——\smcew b
. \\"iirﬂp_VI'BE k tlma VIBE i tlme VIBE \/_i_i@f'a’_'VIBE
time_VIBE—
v S { ¥ Ty
/' ~ time, uBE/ \ time_uBE/" \ time_uBE, N\
,,<\ Statew\————-—J -i Statet1 }——————J/rﬁateﬂ r————J r{Sta(eﬂ
- e)
time_uBE /) uma uBE /A time. uBE’"’j time_ uBE'
(i o time_uBE
//!\ time_uvo) T time_uvO llme uvo
L————{ State17 L——(Staxe16\~\ S(ata15 L~~ '———Gtateﬂ
. \/) R \
‘\ Tlime _uVo' ‘\llme'u\l’O i s"'uVO

Figure 4.12: FSM Model for the Scheduler

Chapter {: System Architecture 56

4.3.2 Design Implementation with VHDL

Using VHDL, the system can be implemented by defining the memory and the Eth-
ernet Controller as components added to the Scheduler. Since the memory is acting
as an input data feeder, the code will use specific input frames in order to compare
them to the resulted output. The code assigns specific time for the transition signals;
in addition to that, a timer signal is acting as the checking signal whether the time
limit has expired or not[37][38]. Two signals perform the transition from one state
to another; pr_state and nz_state. After declaring all involved signals, two timing
processes are defined. One is the clock process, and the other one is the reset process;
both of them use wait for command. There are two processes that make the transi-
tion from one state to another as well as assigning all corresponding signals’ values
at specific state[39].

The first process is sensitive to changes on the clock and reset signals. In this
process, a counter signal (count) is assigned the value that had been given to the
timer of the current state. Once the timer equals to the count, the process moves to
the next state and resets the count. However, if the reset signal is high, the process
goes back to State00 regardless of the counter’s value; also, it resets the count.

The second process is sensitive to changes on pr_state. Once pr_state is assigned
a new value, i.e. the FSM moves to a different state, the process moves to the next
state using case and when commands. All signals are assigned the corresponding
values at that state. It can be noticed that tieemacconfigvec, clientemactzd, and
phyemacrzd signals are the ones being assigned new values at each state. The signal
tieemacconfigvec contains the address of the frame’s destination (in the last 48 bits),
clientemactzd carries the frame sent from the upper layer to the MAC layer, while
phyemacrzd carries the received frames from the physical layer.

a7

Chapter 5
Results

This chapter introduces and discusses the results obtained from the work of Chap-
ter 4. The Results chapter is divided into three sections; similar to the approach
followed in the System Architecture chapter. This chapter investigates the methods
and approaches proposed to test the targeted board, as well as the scheduler design
suggested for triple-play services.

The first section presents the testing results obtained using MicorBlaze soft pro-
cessor. The aim of this test was to investigate the possibility of establishing commu-
nication between the board and the computer as an initial step to utilize MicroBalze’s
capabilities to program the board. The following sections present the results achieved
for the proposed scheduler. In the second section, the systematic approach is exam-
ined by testing each component of the design through applying various input signals
to the system. Similarly, in section three, the conceptual approach is examined by
testing both the Ethernet Controller and the Scheduler by applying various input
signals to observe the system’s responses.

5.1 Board Testing Results

5.1.1 Results Presentation

Designing a MicroBlaze soft processor is a considerably smooth process thanks to XPS
wizard. However, customizing that design to the targeted objective introduces some
complications as to figuring out the specifications required to be given for hardware
deployment on the board. In fact, the first step to implement the design on the board
is to identify the processor’s external pins and associate them with the correct pins on
the FPGA. That association is achieved by creating the ucf file, which stands for user
constraints file. After adding the ucf file to the main design, the processor’s creation
phase is completed; i.e. the hardware phase of creating the MicorBlaze processor is
completed.

In order to program the processor, the design should be exported to SDK which
will create the software application controlling the processor. SDK at this stage
creates a hardware platform to match the processor’s design specifications that will
allow C coding files (the software application) to instruct the processor. Once the

Chapter 5: Results 58

software application is checked, the code can be downloaded to the board. To observe
the results, a Hyper Terminal session is established with the following specification:

¢ Bits per second: 115200.

e Data bits: 8.

Parity: None.

Stop bits: 1.

Flow control: None.

The board is now connected to the computer using a serial cable via RS232 port,
while the JTAG port is connected to the computer using the downloading cable. This
concludes the physical setup on the board making it ready to receive the bit stream
file.

The first test is intended to ensure that codes are correctly deployed on the
board and then correctly sending associated messages back to the computer to be
displayed on the Hyper Terminal. For that, the code simply runs a print function
with a hello world message to be displayed as follows:

print ("Hello World");

The second test is intended to check the communication between the FPGA
on one side and the peripherals in the processor on the other side. Peripherals in
the design include the LED and the RS232, both of them are tested using different
functions. The test starts with the following message:

print ("---Entering main---");
Then the function to test peripherals is called and print the following message:
print ("Running GpioOutputExample() for LEDS...");

If the communication is established correctly, the following message is printed on the
screen:

print ("GpioOutputExample PASSED.");

If not, the following is printed:

print ("GpioOutputExample FAILED.");

After that, another function is called printing the following message:

print ("Running UartLiteSelfTestExample() for mdm_0...");

Chapter 5: Results 59

beriphecal tests Disrofiestperiph.e - Xl £

archi Rue . PRfend %

LR ieE @ e e
R e i :

K -0 Q@

plorer Sﬁn\k) =Y [mainie [2) suartite_selftest_exa - (£ xgnio_tapp_example.c j [@) testperiph.c 52 ke b5 10
P4 v int main() R I
.

y_.application_0 M stdioh

world_0 % xparameters.h

N XCACHE_ENABLE_ICACHE () ; ;= xenv_standakane.h

~eral_tests_D - - ‘ %l ybasic_typesh

harie-s - XCAC ENABLE DCACHE H -

\eludes i connection - Hyper Terminal

rinpe
etug PEINT He. Edt View Cal . Transfer. Help

;ﬁvlﬂo_header.h D@ o3 05 &

¢ testperiph.¢
uartlite_header.h

o} [Hello Horld

& xopio_tapp_example.c ~--Entering main-—-

B xuartite_selftast_example.c .

R lscript g Running GpioOutputExample() for LEDS...
lalone_bsp_0

s} {GpioOutputExample PASSED.

i '|Running UartlLiteSelfTestExample() for mdm_0...
UartLiteSelfTestExample PASSED
'R |~—Exiting main---

Figure 5.1: Board Testing Result

Similar to the previous the function, this function checks the communication between
the board and the computer through the RS232 to ensure that debug function is fea-
sible. If the communication is established correctly, the following message is printed:

print ("UartLiteSelfTestExample PASSED");
If not, the following is printed:

print ("UartLiteSelfTestExample FAILED");
The following message concludes the test:

print ("---Exiting main---");.

Figure 5.1 is a print screen of the test showing the results obtained. As it can
been seen, the communication is established correctly and both tests’ results were
successful. To evaluate the board’s utilization this design required, Table 5.1 provides
some utilization figures and usages in terms of slice registers and look up tables (LUT).
Further details are presented in Section B.1.

Chapter 5: Results 60

Table 5.1: FPGA Usage Report - Device Utilization for MicroBlaze Testing

Slice Logic Utilization Available | Used (Utilization)
Number of Slice Registers 69,120 1,631 (2%)
Number of Slice LUTs 69,120 1,879 (2%)
Number of occupied Slices 17,280 965 (5%)
Number of bonded I0Bs 640 12 (1%)

Number of BlockRAM/FIFO 148 8 (5%)

Number of BUFG/BUFGCTRLs | 32 2 (6%)

Number of BSCANs 4 1 (25%)

Number of DSP48Es 64 3 (4%)

Number of PLL_ADVs 6 1 16%)

5.1.2 Results Discussion

The main objective of creating a MicroBlaze soft processor is to test the board’s
connectivity with the computer and observe the communication results on the Hyper
Terminal. The ”Hello World” message in Figure 5.1 shows that the code communi-
cates properly with the processor, allowing the second test to focus on testing the
peripherals only. Similarly, we can see that the LEDs test as well as the debug connec-
tivity passed. Another observation can be made on the board’s utilization made by
MicroBlaze as seen in Table 5.1. In that table, it can be easily concluded that Micor-
Blaze’s consumption is relatively low, as only 2% is only consumed of the board’s
Registers and LUTs.

Even though the MicroBlaze soft processor approach seems remarkably a smooth
implementation approach, this soft processor requires a great deal of technical train-
ing in order to utilize its capabilities. In addition to that, since MicroBlaze is an
intellectual property of Xilinx, it makes it harder for academic researchers to get
some of MicroBlaze’s features. However, MicroBlaze would still be a highly recom-
mended approach to follow if there were no time frames to meet as it might be a
time consuming process to search for available resources other than Xilinx training
programs. Another obstacle was observed along with MicroBlaze implementation
that in most tutorials Xilinx provides, only Spartan boards were the family of boards
used. That created an obstacle for this research as Virtex board is the one targeted
for the proposed design. For instance, obtaining the accurate pins’ assignments for
MicoBlaze on Virtex board was by itself a lengthy search.

Chapter 5: Results 61

5.2 The Systematic Approach Results

5.2.1 Results Presentation

This section examines the performance of each component in the design individually,
rather than testing the overall system. As seen in Figure 4.2, the system consists
of four subsystems; Controller, MEMORY Block, Scheduler, and Frame Constructor.
Each component in the four subsystems will be tested separately by feeding predefined
input signals and observe its response.

5.2.1.1 Controller

The first block in the Controller shown in Figure 4.4 is the Preamble Check block.
As mentioned earlier, this block simply checks whether the first 64 bits of the frame
are matching the standard Ethernet preamble. To test this block, a chain of frames
are fed to the system to observe its output. In Figure 5.2 it can be seen that the
preamble_check port is all zeros indicating that first frame’s preamble is correct (when
the input frame is xX0OAAAAAAAAAAAAAAAB). On the other hand, the second
and the third frames’ preambles are not matching the standard Ethernet preamble;
therefore, the results on preamble_check port are not entirely zeros. Based on that,
we can say that this block performs the required function by distinguishing correct
preambles to indicate new incoming frames.

0 500 ps
AARRAARARBARERABITTTTTITI1 { AREAAMARAAAR

ps S
DD000CO[HO00N0D T DODONOGNRO0DG00A,

o i
. B -AA_:-_S_—

Figure 5.2: Preamble Check

The next block to test is the CRC Check block. Basically, this block checks the
incoming frame’s payload whether it matches the values stored in the CRC field of
that specific frame. The CRC Check block uses multiple adders which are capable
of wrapping around the last bit in case of overflow; hence the name Wrapper Adder.
Figure 5.3 illustrates the functionally of this block. The results are obtained on port
s; the first frame’s CRC check is not correct and therefore the values on port s are
not entirely ones. Similarly, the values on port s for the third, fourth, sixth, and
seventh frames are not entirely ones which indicates mismatching between payloads’
checksums and the CRC stored values. For the second and fifth frames, the CRC
values are all ones indicating correct CRC Check.

Once a frame passes the preamble check and the CRC check, it enters the Frame
Ripper block. As its name suggests, this block rips the frame into two pieces as shown

Chapter 5: Results 62

4 000 ps

FFEFFERF

ABABAARAAARAS :j ABAGBARA - GREAD Y ARAABABARRA | ;
99995555
1 ok Q

1B ck_peried 1000 fs

Figure 5.3: CRC Check

in Figure 4.4. In fact, this block sends the payload to be stored in the MEMORY block
meanwhile the system performs scheduling processes. Those scheduling processes are
carried out on the Frame Spec which contains both the frame’s destination address
and the source address as well as the type of this frame (voice, video, or best effort).
In order to retrieve the payload once scheduling processes are done, the Frame Ripper
generates a Payload Tag number for each payload. The Payload Tags are also included

in the Frame Spec which is sent to the Scheduler. Payload Tags are also used in the
MEMORY block as RAM addresses for the incoming payloads.

Figure 5.4: Frame Ripper

This block is tested to observe its response for incoming frames as shown in
Figure 5.4. It’s worth noticing that there is an en port which serves as enabler of
this block; in other words, this port activates the block once the preamble and CRC
checks are performed and the results are accepted. It can be seen that all output ports
(payload, payload_tag, and frame_spec) are reset once the en port is zero; i.e., the block
is deactivated. It can be also observed from Figure 5.4 that the payload_tag acts as a
counter for the incoming payloads. That is, once a new payload (new frame) arrives,
this block generates a new tag for this payload in order to store it in the MEMORY
block.

5.2.1.2 MEMORY Block

Figure 5.5 illustrates how payloads are stored in the MEMORY block. The system is
designed to pick the RAM address from payload_out_-tag port when we port is set to
zero, while it picks the address from payload.in_tag port when we port is set to one.
In the first five clock cycles, the port we is set to zero; i.e., the MEMORY is reading
whatever is stored in the associated RAM address. In the next five clock cycles, the

Chapter 5: Results 63

port we is set to one which indicates that the MEMORY is storing whatever comes
from the port payload_in in the assigned address. Similar operations are performed
on the next 20 clock cycles.

1 PaY _oul]
T ck_penod

Figure 5.5: MEMORY Block Performing Writing Operation

The next figure shows how payloads are read on the payload_out port. In
Figure 5.6, during first five clock cycles, the MEMORY block reads what was stored
on the associated RAM address, which was in fact a payload of zeros. The next five
cycles, it writes to another address a payload starts with two. Then, the next ten
cycles reads what was sorted on the MEMORY’s address provided by payload_out_tag
port.

5.2.1.3 Scheduler

Figure 5.7 illustrates how the Classifier works. To test this block, four Frame Spec’s
are fed at a time. The block should put each Frame Spec on the correct port; i.e.,
voice Frame Spec should be put on frame_vo_out and so on. Since the block receives
four Frame Spec’s at a time, its output ports are also capable of carrying four Frame
Spec’s at a time. In case there was no Frame Spec to be filled, the block inserts zeros
instead as shown on ports frame_vo_out and frame_vi_out in the first five cycles.

Frames sent from the Classifier enter the Prioritize on three ports along with
their flag ports; frame_vo_in with vo_flag and so on. In order to test the Prioritize
block, two different input signals were fed at this block’s ports as follows:

1. First test patch; Figure 5.8

Figure 5.6: MEMORY Block Performing Reading Operation

Chapter 5: Results 64

Figure 5.7: Classifier Output

o frame_vo_in[447:336] = zeros

o frame_vo_in[3385:224] = x04444444444444444444444444444
o frame_vo_in[223:0] = zeros

e vo_flag = 0100

o frame_vi_in[447:386] = x01111111111111111111111111111
o frame_vi_in[335:224] = zeros

o frame_viin[228:112] = x03333333333333333333333333333
o frame_vi_in[111:0] = zeros

e vi_flag = 1010

o frame_be_in[447:112] = zeros

o frame_be_in[111:0] = x02222222222222222222222222222

e be_flag = 0001

2. Second test patch; Figure 5.9

o frame_vo_in[{47:224] = zeros

e frame_vo_in[223:112] = xX0BBBBBBBBBBBBBBBBBBBBBBBBBBBB
e frame_vo_in[111:0] = zeros

e vo_flag = 0010

o frame_vi_in[447:336] = x0DDDDDDDDDDDDDDDDDDDDDDDDDDDD
o frame_vi_in[335:112] = zeros

o frameviiin[111:0] = xOAAAAAAAAAAAAAAAAAAAAAAAAAAAA
e vi_flag = 1001

o frame_be_in[447:386] = zeros

o frame_be_in[335:224] = x0CCCCCCCCCCCCCCCCCCCCCCCCCCCC
o frame_be_in[223:0] = zeros

e be_flag = 0100

Chapter 5: Results 65

» PA frame_vi i 0} 1112320101120120 f
» P frame_be_in[447:0} 000000000600000]
» B4 vo_flagl3:0} 0100
» P4 i flag[3:0] 1010
p P be_flag[3:0]

1By reset

1 clock

» B4 frame_out[447:0)

i) clock_period

» B4 frame_vo_n[447:0] 0000000000001

“

» B4 frame_vi_in[447:0]§ dadddddddddd. 3dddddaad: TAAN Y, i 333584,

| U | “_“

» P4 frame_be_in{447:0] 0000000000001 OGO X c 0 DOY0 JUUOJUGL
m““_

. N B — E—
| S———

i » B be_flag3:0] 0100

s reset o
18 clock 0
» P4 frame_out[447:0] | cceeccccceced

1€ dock_period 10000 ps

Figure 5.9: Prioritize Output -~ Second Test

5.2.1.4 Frame Constructor

The last subsystem to test is the Frame Constructor; however, as seen in Figure 4.7,
the components used are mostly the same used for the Controller. Therefore, only
the Frame Shaper is examined. Test performed on this block is shown in Figure 5.10;
the frame_out port carries the outgoing frame after adding the preamble, CRC, des-
tination, and source addresses.

1e dk_period

Figure 5.10: Frame Constructor Test

Chapter 5: Results 66

5.2.2 Results Discussion

Since the purpose of this design approach is to test the system through testing each
element in it individually, components were fed their inputs and tested with only
focus on having the accurate output. In light of that, all components in each subsys-
tem were in fact performing their tasks correctly. However, it’s worth noticing that
the Prioritize had a remarkable initial response delay in both of the two tests were
performed on it. In the first test, the Prioritize needed 95 ns to start responding,
while it needed 115 ns in the second test.

This delay could actually be explained through the Prioritize design method
itself. The Prioritize is designed using an FSM, in which 12 states were used. Each
state was dedicated to check one segment of the four segments in each incoming
frame (three incoming frames; voice, vidoe, and best effort). If the associated flag bit
for a specific incoming segment is set high, then the next available segment on the
output frame will be reserved for that incoming segment. This leads to checking every
single incoming segment on the three incoming frame ports. For that, the system will
need to go through 12 different states (in which each will require a clock cycle to be
performed) leading to a remarkable initial delay.

5.3 The Conceptual Approach Results

5.3.1 Results Presentation

In the previous chapter, the conceptual approach system design proposes that the
Ethernet Controller receives the incoming frames and then separates the payload
from the other frame components in order to store the payload. This design consists
of two main subsystems, along with the memory. To test the system, each subsystem
is first tested individually to ensure that it works properly and then the integrated
system is tested. At the end, the synthesis report is provided to examine the board’s
utilization of this design.

5.3.1.1 Testing the Ethernet Controller

The Ethernet Controller is tested by applying predefined values on specific ports.
Those two ports represent the sent frame from the upper layer to the MAC layer,
and the frame received from the physical layer to the MAC layer; clientemactzd and
phyemacrzd respectively. Figure 5.11 is a snapshot of the resulted simulation. The
purpose of this simulation is just to ensure that the Ethernet Controller is delivering
frames correctly.

As shown in the Figure 5.11, a resct is applied for the first clock cycle to clear
all stored values from previous simulations. The system starts to respond after 11.6
ns, i.e. when emacphytzen signal goes high. By that time, the physical layer starts

Chapter 5: Results 67

&

1§ dentemachudad
L;ig [t 8 ack,

» P chysmacrcd7:0) | 00rt000
g o 0

Figure 5.11: Ethernet Controller Performance

to receive frames sent from the upper layer through the MAC core. Those frames are
received at emacphytzd port and were fed initially from clientemactzd port as follows:

e at 1 ns = 11001100.
e at 6 ns = 11011101.
e at 11 ns = 11101110.
e at 16 ns = 01110111.

After 15.6 ns, the frames received from the physical layer are seen at the upper
layer through emacclientrzd port; these frames were fed initially from phyemacrzd
port. The actual testing values sent on phyemacrzd port are as follows:

e at 1 ns = 00010001.
e at 6 ns = 00100010.
e at 11 ns = 00110011.
e at 16 ns = 01000100.

It is worth noticing that the system is unstable for the first 25.6 ns, i.e., the
values fed to the system are observed correctly at the output ports after 25.6 ns.

Chapter 5: Results 68

i %

9
1
1
1
1
1
1
1

lgv, e fade

Figure 5.12: Beacon and Voice Downloading States

5.3.1.2 Testing the Scheduler

As described in previous chapter, the Scheduler is designed to have time constraint at
each state. Therefore, to test the Scheduler, a reset state is forced at a specific time
to observe the response of the system. Also, transition signals are assigned different
values to distinguish the behavior at each state. For that, the following assumptions
are made:

e The clock period (clk_period) is 1 ns.
¢ Transition signals are as follows:

— time_beacon = 10,

— time_ VO = 6,
— time_VIBE = §,
— time_BEu = 7,
— time_VOu = 6,

— time_max = 10.
e A reset is applied at t = 250 ns.

The key element to control the Ethernet Controller’s behavior is the treemac-
configuec port; it actually contains specific bits in which RX or TX operations can be
reset, half duplex mode be chosen, or MAC speed to be configured. As shown in Ap-
pendix A, bits 48 to 67 are responsible to set the Ethernet Controller configuration.

Chapter 5: Results 69

In this test, bits 48 to 67 of ticemacconfigvec are chosen as follow: (x058204). This
choice allows the Ethernet Controller to provide full duplex connectivity, enabling
both RX and TX, MAC speed at 1 Gbps.

Figure 5.12 is showing the beacon and voice downloading states, State01-State05.
It can be observed that the timer has different value in beacon state than the one
it has when it’s in the voice downloading states. The port clientemactzd is assigned
“0000 0001” while port phyemacrzd is assigned “1000 0001” during beacon state. As
seen in the figure, the output signals are observed on emacphytzd and emacclientrzd,
respectively. Similar to the beacon state, in the voice states the output signals are
observed on emacphytzd and emacclientrzd, for the following input values:

o clientemactzd = 00000010 and phyemacrzd = 10000010
e clientemactzd = 00000011 and phyemacrzd = 10000011
e clientemactzd = 00000100 and phyemacrzd = 10000100

e clientemactzd = 00000101 and phyemacrzd = 10000101

In the next figure, Figure 5.13, the system moves to video and best effort down-
loading states just after State05 (as the FSM suggests). The input values fed to the
systems are as follows:

e clientemactzd = 00000110 and phyemacrzd = 10000110
e clientemactzd = 00000111 and phyemacrzd = 10000111
e clientemactzd = 00001000 and phyemacrzd = 10001000

e clientemactzd = 00001001 and phyemacrzd = 10001001

The system continues to move to the next states according to the FSM model.
Figure 5.14 shows the best effort uploading states (Statcl0-Statel3). Also, the sys-
tem’s output values are observed on emacphytzd and emacclientrzd for the following
input values:

e clientemactzd = 00001010 and phyemacrzd = 10001010
e clientemactzd = 00001011 and phyemacrzd = 10001011
e clientemactzd = 00001100 and phyemacrzd = 10001100

e clientemactzd = 00001101 and phyemacrzd = 10001101

Chapter 5: Results 70

T 000
y S

Fersed

B phicetnmr o 7:0)
%

Figure 5.13: Video and Best Effort Downloading States

190 (00 pa 195000 ps

sﬁ reset
Ty emacphrtaen
1 phrematsenakis

Gertutnar vepstie

chertemstaansbis
igy reogprandck
iy Bxgvane .

dernomact o Bid

wrrchent? cack,

sheld

Figure 5.14: Best Effort Uploading States

Chapter 5: Results 71

| Be_stakn

igh nx state

Figure 5.15: Voice Uploading States

After that, the system moves to voice uploading states (Statel4-Statel7) as
shown in Figure 5.15. In these states, the system is fed the following inputs:

e clientemactzd = 00001110 and phyemacrzd = 10001110
e clientemactzd = 00010000 and phyemacrzd = 10010000
o clientemactzd = 00010001 and phyemacrzd = 10010001

e clientemactzd = 00010010 and phyemacrzd = 10010010

After all voice frames are uploaded, the system goes back to State01. To test
the system’s response to the reset state, a reset is forced as shown in Figure 5.16.
In that figure, the system was at State0Ol, but once a reset was applied, it moved
to State00 (reset state) and it can be seen that controlling signals went low. Those
signals are: emacphytzen, phyemactrenable, clientemacrzenable, clientemactrenable,
clientemactzdvld, and emacclienttzack. Finally, the utilization report is presented
below in Table 5.2, further details are shown in Appendix B.2.

5.3.2 Results Discussion

This design approach has been tested for various transmission states, both the down-
loading and uploading states. As seen in the previous section, the Ethernet Controller
and the Scheduler performed as expected in terms of transmitting frames correctly.
However, it can be observed that there is a delay in the Ethernet Controller’s response

Chapter 5: Results 72

4
{
1
1
11
1
1
1
]

Figure 5.16: The System Moves to Reset State after reset is Asserted

Table 5.2: FPGA Usage Report - Device Utilization for the Conceptual Design

Slice Logic Utilization Available | Used (Utilization)
Number of Slice Registers | 69,120 967 (1%)

Number of Slice LUTs 69,120 859 (1%)

Number of occupied Slices | 17,280 403 (2%)

Number of bonded I0Bs | 640 203 (31%)

especially as the system starts to receive input frames. This delay can be looked at
through the core used to create this controller.

According to [40], the core is expected to have both transmit and receive path
latencies. In the transmit path, the core tends to have maximum of 14 clock cycles
latency; while in the receive path, the maximum latency can be 22 clock cycles.
Moreover, there is a variation in latency of three clock cycles due to the crossing of
clock domains within the core. These latency figures justifies the instability of the
Ethernet Controller’s performance at the initial stage of transmission.

73

Chapter 6
Future Work

This chapter turns the focus towards a future approach to schedule prioritized tasks
using a kernel running on MicroBlaze soft processor. Xilinx embedded processors
(MicroBlaze and PowerPC processors) can utilize a modular kernel highly integrated
with XPS and received with EDK software package. This short chapter covers mainly
Xilkernel through three scctions in which the first section introduces Xilkernel key
features and functionalities. The second section briefly discusses the methods to
customize Xilkernel to suit targeted applications. The third section briefly discusses
how Xilkernel could be utilized to run TP-TDMA protocol.

6.1 What is Xilkernel

As Xilinx defines Xilkernel, “it is a small, robust, and modular kernel” [41]. Xilkernel
is highly integrated with the Platform Studio framework and is a free software li-
brary that is included in Xilinx Embedded Development Kit (EDK). Xilkernel allows
designers a high degree of customization to achieve most optimum levels of size and
functionality. Moreover, it’s compatible with MicroBlaze, PowerPC 405, and Pow-
erPC 440 processors. Xilkernel IPC services can be used to implement higher level
services (such as networking, video, and audio) and subsequently run applications
using these services.

Xilkernel includes the following key features:

e It improves the scalability level by allowing functionality inclusion or exclusion
for targeted system.

e Quick complete kernel configuration and deployment within minutes from inside
of Platform Studio.

e Static thread creation that startup with the kernel.
e System call interface to the kernel.
e Exception handling for the MicroBlaze processor.

e Memory protection using MicroBlaze Memory Management (Protection) Unit
(MMU) features when available.

Chapter 6: Future Work 74

6.2 Customizing Xilkernel

Xilkernel is highly customizable, users can change the modules and individual param-
eters to suit their application. XPS Software Platform Settings dialog box provides
an easy access to configuration settings for Xilkernel parameters. For a module to be
customized in the kernel, a parameter with the name of the category set to TRUE
must be defined in the Microprocessor Software Specification (MSS) file. A pthread
can be customized as follows:

parameter config_pthread_support = true

If a configurable config_parameter for the module is not defined, that module will not
be implemented. Commonly, these parameters and values are not manually set. In
fact, once the information in the Software Platform Settings dialog box is entered,
XPS generates the corresponding Microprocessor Software Specification (MSS) file
entries automatically. The following is an MSS file snippet for configuring OS Xilk-
ernel for a PowerPC processor system. The values in the snippet are sample values
that target a hypothetical board [41]:

BEGIN OS

PARAMETER OS_NAME = xilkernel
PARAMETER OS_VER = 3.00.a

PARAMETER STDIN = RS232

PARAMETER STDOUT = RS232

PARAMETER proc_instance = ppc405_0
PARAMETER config_debug_support = true
PARAMETER verbose = true

PARAMETER systmr_spec = true
PARAMETER systmr_freq = 100000000
PARAMETER systmr_interval = 80
PARAMETER sysintc_spec = system_intc
PARAMETER config_sched = true
PARAMETER sched_type = SCHED_PRIO
PARAMETER n_prio = 6

PARAMETER max_readyq = 10

PARAMETER config_pthread_support = true
PARAMETER max_pthreads = 10
PARAMETER config_sema = true
PARAMETER max_sem = 4

PARAMETER max_sem_waitg = 10
PARAMETER config_msgqg = true
PARAMETER num_msgqgs = 1

PARAMETER msgqg_capacity = 10

Chapter 6: Future Work 75

PARAMETER config_bufmalloc = true

PARAMETER config_pthread_mutex = true

PARAMETER config_time = true

PARAMETER max_tmrs = 10

PARAMETER enhanced_features = true

PARAMETER config_kill = true

PARAMETER mem_table = ((4,30), (8,20))

PARAMETER static_pthread_table = ((shell_main, 1))
END

6.3 Utilizing Xilkernel for TP-TDMA Protocol

It was noticed in the proposed systematical approach that the Scheduler’s design
(mainly the Prioritize component) could have been modified to improve the initial
delay. However, that can just be a starting point to radically change the design from
using a hardware-based programming language (VHDL) to a software-based approach
using MicroBlaze soft processor and its kernel, Xilkernel.

The limitations the design suffered from could have been avoided if the scheduler
was designed using MicroBlaze and Xilkernel. Using Xilkernel, the scheduler could
be designed in two different scheduling modes, either round-robin or priority-driven.
In round-robin mode, frames can be scheduled in a time-slice form through a single
ready queue in which each process is implemented during a configured time slice
before executing the next process in the queue. In priority-driven mode, the process
that is at the top of the ready queue with the highest priority is executed first and
so on. The highest priority is always assigned 0.

In the hypothetical example in Section 6.2, the system is configured to use a
priority-driven mode with 6 different levels of priorities.The maximum number of
processes that can be active in the ready queue is 10. The maximum number of
software timers that the processor can use in this kernel is 10. These settings can
only be activated if the associated parameter is set true, as follows:

PARAMETER config_sched = true
PARAMETER sched_type = SCHED_PRIO
PARAMETER n_prio = 6

PARAMETER max_readyqg = 10
PARAMETER config_time = true
PARAMETER max_tmrs = 10

76

Chapter 7
Conclusion

Triple-Play services are attracting more researchers to engage in investigating the
possibilities of integrating these services and, as a result, reducing operation costs.
To reach smooth integration, FPGA boards seem to be the most suitable platform
as they have high levels of flexibility and customization. Therefore, choosing Xilinx
Virtex-5 board offers a comfortable platform to implement the TP-TDMA protocol;
in addition, it allows the testing of a new approach through using a soft processor on
the board.

In summary, the work of this thesis took advantage of reconfigurable platforms
to implement the TP-TDMA protocol; however, reconfigurable platforms can be used
to implement a wide range of other protocols. The contributions achieved in this thesis
can be listed as follows:

e Creating a MicroBlaze soft processor to test the board in which the processor
was then deployed on a Virtex-5 board. That deployment was achieved through
defining the accurate pin assignment on the FPGA. The main objective of
creating a MicroBlaze soft processor was to test the board’s connectivity with
the computer and to observe the communication results on the Hyper Terminal.
It was observed that MicorBlaze’s consumption is relatively low, as only 2% of
the board’s Registers and LUTs was consumed.

e Dcsigning two different approaches to implement TP-TDMA protocol; the sys-
tematic and the conceptual approaches. In the systematic approach, the tests
were made on each component showed that the proposed design performs the
required scheduling tasks as suggested by TP-TDMA protocol. Similarly, in the
conceptual approach, the overall tests performed on the scheduler showed that
this design also meets the proposed TP-TDMA protocol requirements.

e On the two proposed design approaches, initial response delays were observed.
In the systematic approach, the design required the Prioritize to check every
single incoming segment of the three incoming frame ports leading to forcing
the system to go through 12 different states. While in the conceptual approach,
the core used to create the Ethernet Controller has 14 clock cycles and a 22
clock cycles latency in the transmit and receive paths, respectively.

7

References

[1] Anticipating opportunity in the triple-play market: Issues, possibilities and
importance of standards-based technology. [Online]. Available: www.visionael.
com/solutions/whitepapers/whitepaper_tripleplay 06.pdf

[2] D. Srefjord, S. Lindroos, and L. Karlsson. Triple play - a strat-
egy for the convergence of home electronics in the swedish market.
[Online]. Available: http://www.cse.chalmers.se/tsigas/Courses/DCDSeminar/
Files/triple_play strategydatakomm report.pdf

[3] C. Hellberg, G. Dylan, and T. Boyes, Broadband Network Architectures: Design-
ing and Deploying Triple-Play Services, 1st ed. Prentice Hall, 2007.

[4] The perfect storm: Why video conferencing will dominate business
communications. [Online]. Available: http://www.glgroup.com/News/13329.
html

[5] An emerging triple play: Video communications, managed services and
unified communications. [Online]. Available: www.pgi.com/us/en/Brockmann_
Tripleplay _Report.pdf

[6] P. Kampanakis, M. Kallitsis, S. Sridharan, and M. Devetsikiotis. (2006) Triple
Play - A Survey. [Online]. Available: http://wwwd4.nesu.edu/~mgkallit/files/
3PReportTechnicall.4.pdf

[7] Developing a holistic testing strategy for ensuring a successful iptv deployment.
[Online]. Available: http://www.ixiacom.com/pdfs/library/white_papers/iptv._
dev_holistic_testting_strategy.pdf

[8] Advantages of field programmable gate arrays. [Online]. Available: www.men.
de/docs-ext /expertise/pdf/fpga_advantages.pdf

[9] J. Kurose and K. Ross, Computer networking: a top-down approach, 4th ed.
Boston, MA: Pearson/Addison-Wesley, 2008.

[10] J. Barcelo, “CSMA/ECA: Carrier Sense Multiple Access with Enhanced Collision
Avoidance,” Ph.D. dissertation, Universitat Pompeu Fabra, Jan. 2009.

[11] J. Choi, J. Yoo, S. Choi, and C. Kim, “Eba: an enhancement of the ieee 802.11 dcf
via distributed reservation,” Mobile Computing, IEEE Transactions on, vol. 4,
no. 4, pp. 378 - 390, july-aug. 2005.

http://www.visionael
http://www.cse.chalmers.se/tsigas/Courses/DCDSeminar/
http://www.glgroup.com/News/13329
http://www.pgi.com/us/en/Brockmann_
http://www4.ncsu.edu/~mgkallit/files/
http://www.ixiacom.com/pdfs/library/white_papers/iptv_
http://www.men

References 78

[12]

[13]

[14]

D. Niyato and E. Hossain, “Queue-aware uplink bandwidth allocation and rate
control for polling service in ieee 802.16 broadband wireless networks,” Mobile
Computing, IEEE Transactions on, vol. 5, no. 6, pp. 668 - 679, june 2006.

K. Wongthavarawat and A. Ganz, “Packet scheduling for QoS support in IEEE
802.16 broadband wireless access systems,” International Journal of Communi-
cation Systems, vol. 16, no. 1, pp. 81-96, 2003.

H. Alavi, M. Mojdeh, and N. Yazdani, “A quality of service architecture for ieee
802.16 standards,” in Communicalions, 2005 Asia-Pacific Conference on, oct.
2005, pp. 249 253.

X. Bai, A. Shami, and Y. Ye, “Robust qos control for single carrier pmp mode
ieee 802.16 systems,” Mobile Computing, IEFFE Transactions on, vol. 7, no. 4,
pp. 416 429, april 2008.

D. Dechene and A. Shami, “Experimental triple-play service delivery using com-
modity wireless lan hardware,” in Communications, 2009. ICC ’09. IEEE Inter-
national Conference on, june 2009, pp. 1 -5.

Embedded Systems Development: Participant Guide, Xilinx, 2010, embd21000-
12-wkbp-revl.

ML505/ML506/ML507 Evaluation Platform - User Guide, Xilinx, Oct. 2009,
ug347.

M. Zaidi, J. Bhar, R. Ouni, and R. Tourki, “A new solution for micro-mobility
management in 802.11 wireless lans using fpga,” in Signals, Circuits and Systems,
2008. SCS 2008. 2nd International Conference on, nov. 2008, pp. 1 -7.

S. Georgi, C. Prieske, and H. Rohling, “Cross layer hardware demonstrator for
wireless communication based on a fpga,” in Scalable Computing and Com-
munications; Eighth International Conference on Embedded Computing, 2009.
SCALCOM-EMBEDDEDCOM’09. International Conference on, sept. 2009, pp.
9 13.

H. Yu, K. Song, K. Ryu, Y. Kim, S. Min, and S. kyu Lee, “Design and fpga
implementation of mimo-ofdm based wlan systems,” in Vehicular Technology
Conference, 2006. VTC 2006-Spring. IEEE 63rd, vol. 3, may 2006, pp. 1333
1338.

Y. Kim, H. Jung, H. H. Lee, and K. R. Cho, “Mac implementation for icee
802.11 wireless lan,” in ATM (ICATM 2001) and High Speed Intelligent Internet
Symposium, 2001. Joint Jth IEEE International Conference on, 2001, pp. 191
195.

References 79

[23]

[24]

125]

[33]

T. Shono, H. Shiba, Y. Shirato, K. Uehara, K. Araki, and M. Umehira, “Per-
formance of ieee 802.11 wireless lan implemented on software defined radio with
hybrid programmable architecture,” in Communications, 2003. ICC 03. IFFE
International Conference on, vol. 3, may 2003, pp. 2035 - 2040.

A. Bhavikatti and S. Kulkarni, “Vhdl modeling of wi-fi mac layer for transmit-
ter,” in Advance Computing Conference, 2009. IACC 2009. IEEE International,
march 2009, pp. 1 -5.

T. Y. Tse, “Wimedia uwb mac layer implementation in fpga,” in Wireless and
Mobile Communications, 2009. ICWMC 09. Fifth International Conference on,
aug. 2009, pp. 234 238.

S. Nabi, C. Wells, and W. Vanderbauwhede, “A dynamically reconfigurable
system-on-chip for implementing wireless macs,” in Research in Microelectronics
and FElectronics Conference, 2007. PRIME 2007. Ph.D., july 2007, pp. 37 40.

S. Ji, W. II. Kim, C. Chung, and J. Kim, “A zigbee compliant baseband and
mac processor,” in SOC Conference, 2007 IEEE International, sept. 2007, pp.
87 -90.

J. Hui and M. Devetsikiotis, “Designing improved mac packet schedulers for
802.11e wlan,” in Global Telecommunications Conference, 2003. GLOBECOM
'08. IEEE, vol. 1, dec. 2003, pp. 184 - 189.

J. Lazanyi, “Instruction set extension using microblaze processor,” in Field Pro-
grammable Logic and Applications, 2005. International Conference on, aug. 2005,
pp- 729 730.

M. Vetromille, L. Ost, C. Marcon, C. Reif, and F. Hessel, “Rtos scheduler imple-
mentation in hardware and software for real time applications,” in Rapid System
Prototyping, 2006. Seventeenth IEEFE International Workshop on, june 2006, pp.
163 168.

J. Kadlec, M. Danek, and L. Kohout, “Proposed architecture of configurable,
adaptable soc,” in Signals and Systems Conference, 208. (ISSC 2008). IET Irish,

june 2008, pp. 368 - 373.

E. Wang, S. Zhang, Q. Hu, J. Yi, and X. Sun, “Implementation of an embedded
gps receiver based on fpga and microblaze,” in Wireless Commaunications, Net-
working and Mobile Computing, 2008. WiCOM ’08. 4th International Conference
on, oct. 2008, pp. 1 4.

G. Stewart, D. Renshaw, and M. Riley, “A low-cost, fpga based, video streaming
server,” in Programmable Logic, 2007. SPL °07. 2007 3rd Southern Conference
on, feb. 2007, pp. 187 190.

References 80

134] Embedded Systems Development Lab Workbook: MicroBlaze Processor and
Spartan-6 FPGA SP605 Board, Xilinx, 2010, embd21000-12-wkb-lab-sp605-revl.

135] Tri-Mode Ethernet MAC v4.1, Xilinx, Apr. 2009, ds297.
[36] Tri-Mode Ethernet MAC v4.3 - User Guide, Xilinx, Dec. 2009, ugl38.

[37] N. Zainalabedin, VHDL: Modular Design and Synthesis of Cores and Systems,
3rd ed. McGraw Hill, 2007.

[38] P. Ashenden, The Student Guide to VHDL, 2nd ed. Morgan Kaufman, 2008.
[39] V. Pedroni, Circuit Design with VHDL, 1st ed. MIT Press, 2004.

[40] Virtez-4 FPGA Embedded Tri-Mode Ethernet MAC - User Guide, Xilinx, Feb.
2010, ug074.

[41] Xilkernel (v5.00a), Xilinx, Jun. 2010, ug708.

Contfiguration vector is composed of 68 bits. Following table provides description of

Appendix A
Configuration Vector Details

the purpose of each bit in this vector.

Table A.1: Configuration Vector Bits Description[36]

Bit

Description

47:0

48

49

20

51

Pause frame MAC Source Address [47:0]: This ”MAC Address” is used by
the MAC core to match against the destination address of any incoming
flow control frames, and as the source address for any outbound flow
control frames. The bits in this vector field are ordered so that the least
significant bit of the MAC Address (IEEE802.3 definition) is stored in the
least significant bit of this vector field. Consequently, bit 0 of this field
will differentiate between an individual or group (multicast) address. The
transmission order within a MAC frame is to send the least significant
bit of the MAC Address first. Consequently, bits 7-0 of this vector field
will represent the first byte to appear in frame transmission.

Receiver Half Duplex: If '1,” the receiver operates in half-duplex mode.
If ’0,” the receiver operates in full-duplex mode. If the TEMAC has been
gencrated without half-duplex support then this input to the core will
be unused.

Receiver VLAN Enable: When this bit is set to ’1,” VLAN tagged frames
are accepted by the receiver.

Receiver Enable: If set to "1, the receiver block is operational. If set to
'0,” the block ignores activity on the physical interface RX port.
Receiver In-band FCS Enable: When this bit is '1,” the MAC receiver
will pass the FCS field up to the client as described in ”Client-Supplied
FCS Passing,” on page 60. When it is ’0,” the MAC receiver will not pass
the FCS ficld. In both cases, the FCS field will be verified on the frame.

Appendiz A: Configuration Vector Details

82

Bit

Description

52

o4

13}

56

o7

58

59

60

61

Receiver Jumbo Frame Enable: When this bit is '0,” the receiver will not
pass frames longer than the maximum legal frame size specified in IEEE
802.3-2005 ("Maximum Permitted Frame Length,” on page 70). When
it is '1,” the receiver will not have an upper limit on frame size.
Receiver Reset: When this bit is '1,” the receiver is held in reset. This
signal is an input to the reset circuit for the receiver block.

Transmitter Interframe Gap Adjust Enable: If '1,” and the MAC is set
to operate in full-duplex mode, then the transmitter will read the value
of the clientemactxifgdelay port and set the Interframe Gap accordingly.
If ’0,” the transmitter will always insert at least the legal minimum in-
terframe gap.

Transmitter Half Duplex: If ’1,” the transmitter operates in half-duplex
mode. If 0, the transmitter operates in fullduplex mode. If the TEMAC
solution has been generated without half-duplex support, this input to
the core will be unused.

Transmitter VLAN Enable: When this bit is set to '1,” the transmitter
allows the transmission of VLAN tagged frames.

Transmitter Enable: When this bit is ’1,” the transmitter will be opera-
tional. When it is ’0,” the transmitter is disabled.

Transmitter In-Band FCS Enable: When this bit is ’1,” the MAC trans-
mitter will expect the FCS field to be passed in by the client as described
in ” Client-Supplied FCS Passing,” on page 67. When it is '0,” the MAC
transmitter will append padding as required, compute the FCS and ap-
pend it to the frame.

Transmitter Jumbo Frame Enable: When this bit is ’1,” the MAC trans-
mitter will allow frames larger than the maximum legal frame length
specified in IEEE 802.3-2005 to be sent. When set to '0,” the MAC
transmitter will only allow frames up to the legal maximum to be sent.
Transmitter Reset: When this bit is '1,” the MAC transmitter is held
in reset. This signal is an input to the reset circuit for the transmitter
block.

Transmit Flow Control Enable: When this bit is ’1,” asserting the clien-
temacpausereq signal causes the MAC core to send a flow control frame
out from the transmitter as described in ”Transmitting a Pause Con-
trol Frame,” on page 77. When this bit is '0,” asserting the clientemac-
pausereq signal will have no effect.

Appendiz A: Configuration Vector Details

83

Bit

Description

62

63

64

66:65

67

Receive Flow Control Enable: When this bit is '1," received flow control
frames will inhibit the transmitter operation as described in ”Receiving
a Pause Control Frame,” on page 78. When it is 0, received flow frames
are passed up to the client.

Length/Type Error Check Disable: When this bit is ’1,” the core will not
perform the length/type field error checks as described in "Length/Type
Field Error Checks,” on page 61. When it is set to ’0,’ the length/type
ficld checks will be performed; this is normal operation.

Address Filter Enable: When this bit is '0,” the address filter is enabled.
If it is set to '1,” the address filter will operate in promiscuous mode. If
the TEMAC solution has been generated without the optional Address
Filter, this input to the core will be unused.

MAC Speed Configuration:

700" - 10 Mbps
701” - 100 Mbps
710”7 - 1 Gbps

When the TEMAC solution is generated for only 1 Gbps speed support,
these inputs will be unused. When the TEMAC solution is generated for
only 10 Mbps or 100 Mbps speed support, only bit 65 will be used to
differentiate the speed: bit 66 will be unused.

Control Frame Length Check Disable: When this bit is set to 1, the
core will not mark control frames as 'bad’ if they are greater than the
minimum frame length.

Appendix B
Detailed Utilization Reports

Further Details

B.1 Utilization Reports for MicroBlaze Design

Table B.1: FPGA Usage Report - Device Utilization for MicroBlaze Testing:

Slice Logic Utilization Available | Used (Utilization)
Number of Slice Registers 69,120 1,631 (2%)
- Number used as Flip Flops 1,627/1,631
- Number used as Latch-thrus 4/1,631
Number of Slice LUTs 69,120 1,879 (2%)
- Number used as logic 1,737/1,879
- Number used as Memory 138/1,879
Number of occupied Slices 17,280 965 (5%)
Number of bonded 10Bs 640 12 (1%)

- Number of LOCed 10Bs 12/12
Number of BlockRAM/FIFO 148 8 (5%)

- Number using BlockRAM only 8/8
Number of BUFG/BUFGCTRLs | 32 2 (6%)
Number of BSCANs 4 1 (25%)
Number of DSP48Es 64 3 (4%)
Number of PLL_ADVs 6 1 16%)

84

Appendiz B: Detailed Utilization Reports

B.2 Utilization Reports for the Conceptual
System Design

Table B.2: FPGA Usage Report - Device Utilization for the Conceptual Design:
Further Details

Slice Logic Utilization Available | Used (Utilization)
Number of Slice Registers 69,120 967 (1%)

- Number used as Flip Flops 967/967

Number of Slice LUT's 69,120 859 (1%)

- Number used as logic 845/859

- Number used as Memory 13/859

Number of occupied Slices 17,280 403 (2%)

Number of bonded 10Bs 640 203 (31%)

Appendix C
User Constraints File for MicroBlaze
Design

Net fpga_0_RS232_RX_pin LOC=AG1l5;

Net fpga_0_RS232_TX_pin LOC=AG20;

Net fpga_0O_LEDS_GPIO_I0_O_pin<0> LOC=H18;

Net fpga_O_LEDS_GPIO_IO_O_pin<l> LOC=L18;

Net fpga_0O_LEDS_GPIO_IO_O_pin<2> LOC=G1l5;

Net fpga_O_LEDS_GPIO_IO_O pin<3> LOC=AD26;

Net fpga_0O_LEDS_GPIO_IO_O_pin<4> LOC=Gle;

Net fpga_O_LEDS_GPIO_IO_O_pin<5> LOC=AD25;

Net fpga_O_LEDS_GPIO_IO_O_pin<é6> LOC=AD24;

Net fpga_O0_LEDS_GPIO_IO_O_pin<7> LOC=AE24;

Net fpga_0_clk_1_sys_clk_pin TNM_NET = sys_clk_pin;
TIMESPEC TS_sys_clk_pin = PERIOD sys_clk_pin 100000 kHz;
Net fpga_0_clk_1_sys_clk_pin LOC=AH15;

Net fpga_0O_rst_1_sys_rst_pin TIG;

Net fpga_O_rst_1_sys_rst_pin LOC=EY;

86

	Medium Access Control Layer Implementation on Field Programmable Gate Array Board for Wireless Networks
	Recommended Citation

	tmp.1635207348.pdf.H68y2

