
Western University Western University 

Scholarship@Western Scholarship@Western 

Digitized Theses Digitized Special Collections 

2011 

Medium Access Control Layer Implementation on Field Medium Access Control Layer Implementation on Field 

Programmable Gate Array Board for Wireless Networks Programmable Gate Array Board for Wireless Networks 

Ayman Ramzi Alghamdi 

Follow this and additional works at: https://ir.lib.uwo.ca/digitizedtheses 

Recommended Citation Recommended Citation 
Alghamdi, Ayman Ramzi, "Medium Access Control Layer Implementation on Field Programmable Gate 
Array Board for Wireless Networks" (2011). Digitized Theses. 3423. 
https://ir.lib.uwo.ca/digitizedtheses/3423 

This Thesis is brought to you for free and open access by the Digitized Special Collections at 
Scholarship@Western. It has been accepted for inclusion in Digitized Theses by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/digitizedtheses
https://ir.lib.uwo.ca/disc
https://ir.lib.uwo.ca/digitizedtheses?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F3423&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/digitizedtheses/3423?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F3423&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


Medium Access Control Layer 

Implementation on Field Programmable 

Gate Array Board for Wireless Networks

(Spine title: M A C  Layer Im plem entation on F P G A  for W N ) 

(Thesis form at: M onograph)

by

A ym an Ram zi A lgham di

Graduate Program  
in

Engineering Science 
Electrical and C om puter Engineering

A  thesis subm itted in partial fulfillment 
o f  the requirem ents for the degree o f  

M aster in Engineering Science

School o f  Graduate and P ostdoctora l Studies 
The University o f  W estern Ontario 

London, Ontario, Canada

(c) A ym an Algham di 2011



Certificate of Examination
THE UNIVERSITY OF WESTERN ONTARIO 

SCHOOL OF GRADUATE AND POSTDOCTORAL STUDIES 
C E R T IF IC A T E  OF E X A M IN A T IO N

C h ief A dvisor: Exam ining B oard:

Dr. Abdallah Shami Dr. Roger Khayat

A d v isory  C om m ittee: Dr. Abdelkader Ouda

Dr. Raveendra Rao

The thesis by
A ym an  R am zi A lgham di

entitled:
M ed iu m  A ccess C ontrol Layer Im plem entation on  Field Program m able 

G ate A rray B oard  for W ireless N etworks
is accepted in partial fulfillment of the 

requirements for the degree of 
M aster in Engineering Science

Date:
Chair of Examining Board 
Dr. K. Adamiak

U



Abstract
Triple play services are playing an important role in modern telecommunications 
systems. Nowadays, more researchers are engaged in investigating the most efficient 
approaches to integrate these services at a reduced level of operation costs. Field 
Programmable Gate Array (FPGA) boards have been found as the most suitable 
platform to test new protocols as they offer high levels of flexibility and customization. 
This thesis focuses on implementing a framework for the Triple Play Time Division 
Multiple Access (TP-TDMA) protocol using the Xilinx FPGA Virtex-5 board. This 
flexible framework design offers network systems engineers a reconfigiirable platform 
for triple-play systems development.

In this work, MicorBlaze is used to perform memory and connectivity tests 
aiming to ensure the establishment of the connectivity as well as board’s processor 
stability. Two different approaches are followed to achieve TP-TDMA implementa
tion: systematic and conceptual. In the systematic approach, a bottom-to-top design 
is chosen where four subsystems are built with various components. Each component 
is then tested individually to investigate its response. On the other hand, the concep
tual approach is designed with only two components, in which one of them is created 
with the help of Xilinx Integrated Software Environment (ISE) Core Generator. The 
system is integrated and then tested to check its overall response.

In summary, the work of this thesis is divided into three sections. The first 
section presents a testing method for Virtex-5 board using MicroBlaze soft processor. 
The following two sections concentrate on implementing the TP-TDMA protocol on 
the board by using two design approaches: one based on designing each component 
from scratch, while the other one focuses more on the system’s broader picture.

in



Acknowledgements
Dr. Abdallah Shami - For everything you have offered and your continuous support.

Dr. Roger Khayat,
Dr. Abdelkader Ouda,
Dr. Raveendra Rao,
Dr. Kazimierz Adamiak - For being in the Examination Board.

Dan Dechene,
Christopher Kennedy,
Tomasz Rybak,
Mahadevan Balakrishnan - For your feedback.

Thomas Daniel Wallace,
Abdelkader Abdessameud,
Abdou Ramadan Ali Ahmed,
Maysam Mirahmadi,
Andrew Roberts - For being an amazing labmates.

Ramzi and Azzah Alghamdi - This wouldn’t be achieved without you, thanks for 
being the best parents ever.

IV



Table of Contents

Certificate of Examination .......................................................................  ii

A bstract.......................     iii

Acknowledgements......................................................................................  iv

List of tables.....................................................................................................viii

List of figures...............................................................................................  ix

Acronyms ..................................................................................................... xii

1 Introduction............................................................................................  1
1.1 Research M otiv a tion ...................................................................................  1
1.2 Methods and C ontributions......................................................................  2
1.3 Thesis Organization......................................................................................  3

2 Background ............................................................................................  5
2.1 MAC L a y e r ...................................................................................................  5

2.1.1 Carrier Sense Multiple Access Protocols ...................................  6
2.1.2 Collision-free P rotocols...................................................................  9

2.2 Embedded System s......................................................................................  14
2.2.1 History of Embedded System s......................................................  15
2.2.2 Embedded Systems Characteristics............................................. 16
2.2.3 Xilinx Hardware Embedded S y stem s.......................................... 17
2.2.4 Xilinx Software Embedded System s............................................. 19
2.2.5 Xilinx MicroBlaze P rocessor...................................................  21

v



Table o f Contents

3 Literature Review.................................................................................. 23
3.1 Xilinx Virtex-5 LX110T Board.................................................................  23

3.1.1 Virtex-5 F P G A ................................................................................  25
3.1.2 DDR2 S O D IM M ............................................................................. 25
3.1.3 Differential Clock Input and Output with SMA Connectors . . 26
3.1.4 Oscillators.......................................................................................... 26
3.1.5 GPIO DIP Switches ......................................................................  26
3.1.6 User and Error L E D s......................................................................  26
3.1.7 User Pushbuttons............................................................................. 26
3.1.8 CPU Reset B u t to n .......................................................................... 27
3.1.9 RS-232 Serial P o r t .......................................................................... 27
3.1.10 10/100/1000 Tri-Speed Ethernet PHY ......................................  27
3.1.11 JTAG Configuration Port ............................................................   27
3.1.12 Onboard Power Supplies................................................................  27
3.1.13 Power, DONE, INIT Indicator L E D s .......................................... 27
3.1.14 Program Sw itch................................................................   29

3.2 MAC Implementation and MicroBlaze ...................................................  32
3.2.1 Implementation of MAC Layer on F P G A s ................................  32
3.2.2 Implementation of MAC on Other B o a r d s ................................  36
3.2.3 MicroBlaze Im plem entation.......................................................... 39

4 System Architecture.............................................................................  43
4.1 Board T esting................................................................................................  43
4.2 TP-TDM A Scheduler: Systematic A p p roach ........................................... 45

4.2.1 C ontroller.......................................................................................... 45
4.2.2 MEMORY B lo c k ............................................................................. 47
4.2.3 S ch edu ler.......................................................................................... 48
4.2.4 Frame C onstructor............................    49

4.3 TP-TDM A Scheduler: Conceptual A pproach...........................................  49
4.3.1 System’s Components Description................................................  50
4.3.2 Design Implementation with V H D L .............................................  56

5 R esults..................................................................................................... 57
5.1 Board Testing R e s u lt s ................................................................................  57

5.1.1 Results Presentation.......................................................................  57
5.1.2 Results Discussion ..........................................................................  60

5.2 The Systematic Approach R esults.............................................................  61
5.2.1 Results Presentation.......................................................................  61
5.2.2 Results D iscu ss ion ..........................................................................  66

5.3 The Conceptual Approach Results.............................................................  66
5.3.1 Results Presentation.......................................................................  66
5.3.2 Results D iscu ssion ........................................................................... 71

vi



Table of Contents

6 Future W ork ............................................................................................  73
6.1 What is Xilkernel.......................................................................................... 73
6.2 Customizing X ilk e rn e l................................................................................  74
6.3 Utilizing Xilkernel for TP-TDM A P ro to co l..............................................  75

7 Conclusion...............................................................................................  76

References.....................................................................................................  77

Appendices

A Configuration Vector D etails.............................................................  81

B Detailed Utilization Reports .............................................................. 84
B .l Utilization Reports for MicroBlaze D e s ig n .............................................  84
B.2 Utilization Reports for the Conceptual System Design.......................... 85

C User Constraints File for MicroBlaze Design.....................................  86

Curriculum Vitae.........................................................................................  87

vu



List of Tables

3.1 Connection and FPGA Pins [18]................................................................  28
3.2 Receiver/Transmitter Component Interface Signals [1 9 ] ......................  33
3.3 Throughput Performance of Network and MAC W RR [ 2 8 ] ................  39
3.4 Access Delay Performance of Network and MAC W RR [28 ]................  39

4.1 MicroBlaze Processor Specifications.......................................................... 45
4.2 Signal Description of the Ethernet Controller . .......................................  53

5.1 FPGA Usage Report - Device Utilization for MicroBlaze Testing . . .  60
5.2 FPGA Usage Report - Device Utilization for the Conceptual Design . 72

A . l Configuration Vector Bits Description[36]............................................... 81

B. l FPGA Usage Report - Device Utilization for MicroBlaze Testing: Fur
ther D e ta ils ...................................................................................................  84

B.2 FPGA Usage Report - Device Utilization for the Conceptual Design:
Further D e ta ils .............................................................................................  85

viii



List of Tables

3.1 Connection and FPGA Pins [18]................................................................  28
3.2 Receiver/Transmitter Component Interface Signals [1 9 ] ......................  33
3.3 Throughput Performance of Network and MAC W RR [ 2 8 ] ................  39
3.4 Access Delay Performance of Network and MAC W RR [28 ].................. 39

4.1 MicroBlaze Processor Specifications.................................................  45
4.2 Signal Description of the Ethernet Controller . .......................................  53

5.1 FPGA Usage Report - Device Utilization for MicroBlaze Testing . . .  60
5.2 FPGA Usage Report - Device Utilization for the Conceptual Design . 72

A . l Configuration Vector Bits Description[36]......................................  81

B. l FPGA Usage Report - Device Utilization for MicroBlaze Testing: Fur
ther D e ta ils ...................................................................................................  84

B.2 FPGA Usage Report - Device Utilization for the Conceptual Design:
Further D e ta ils .............................................................................................  85

vm



List of Figures

2.1 Example of an Embedded S ystem .............................................................  14
2.2 Xilinx Embedded Processors Evolution [17].............................................  18
2.3 IBM PowerPC 440 Processor......................................................................  19
2.4 Crossbar Technology in PowerPC 440 P rocessor...................................  19
2.5 Xilinx MicroBlaze P rocessor......................................................................  20
2.6 XPS P latform ................... ; .........................................................................  21
2.7 SDK Platform ................................................................................................  22

3.1 Virtex-5 FPGA ML50x Platform[18] ....................................................... 24
3.2 ML505 Platform (Front Side) [18] ...............................................   30
3.3 ML505 Platform (Back Side) [18]................................................................  31
3.4 PLCP and PMD [1 9 ] ...................................................................................  32
3.5 Hardware Demonstrator FPGA [2 0 ].......................................................... 34
3.6 WiMedia UWB [25]......................................................................................  37
3.7 Embedded GPS Receiver [32] ...................................................................  41

4.1 MicroBlaze processor used to test the b o a r d .......................................... 44
4.2 System’s Main C om pon en ts......................................................................  46
4.3 Fields of the Incoming F r a m e ...................................................................  46
4.4 Controller Detailed D esign .......................................................................... 47
4.5 MEMORY B lo c k .......................................................................................... 48
4.6 Scheduler for Straight Scheduler A pp roach .............................................  49
4.7 Frame Constructor Main B lock s ................................................................  50
4.8 TP-TDM A Algorithm ................................................................................  51
4.9 System Building Blocks - Ethernet Controller and Scheduler............. 52
4.10 Ethernet Controller Components and Signals.......................................... 54
4.11 Scheduler B lo c k ............................................................................................. 55
4.12 FSM Model for the S ch edu ler...................................................................  55

5.1 Board Testing R esu lt...................................................................................  59
5.2 Preamble C heck............................................................................................. 61
5.3 CRC C h e c k ...................................................................................................  62
5.4 Frame R ip p e r ................................................................................................  62
5.5 MEMORY Block Performing Writing O peration ...................................  63
5.6 MEMORY Block Performing Reading Operation...................................  63
5.7 Classifier O u tp u t .......................................................................................... 64

IX



List o f Figures

5.8 Prioritize Output - First T e s t ...................................................................  65
5.9 Prioritize Output - Second T e s t ................................................................  65
5.10 Frame Constructor Test .............................................................................  65
5.11 Ethernet Controller Performance .............................................................  67
5.12 Beacon and Voice Downloading States ..................................................  68
5.13 Video and Best Effort Downloading S ta te s ......................................   70
5.14 Best Effort Uploading States......................................................................  70
5.15 Voice Uploading S tates................................................................................  71
5.16 The System Moves to Reset State after reset is A s s e r te d ..................... 72

x



Acronyms

Xl



Acronyms

AC
ACE
ADC
AGC
AHB
AP
APB
ARQ
ASIC
BPI
BS
BSP
BSB
C /A
CDMA
CPLD
CPU
CSMA
CSMA/CA
CSMA/CD
CSMA/ECA

Access Categories
Advanced Configuration Environment
Analog to Digital
Apollo Guidance Computer
Advanced High performance Bus
Access Point
Advanced Peripheral Bus
Automatic Repeat Request
Application-specific Integrated Circuit
Byte-wide Peripheral Interface
Base Station
Board Support Package
Base System Builder
Coarse/Acquisition
Code Division Multiple Access
Complex Programmable Logic Device
Central Processing Unit
Carrier Sense Multiple Access
Carrier Sense Multiple Access with Collision Avoidance 
Carrier Sense Multiple Access with Collision Detection 
Carrier Sense Multiple Access with Enhanced Collision 
Avoidance

CT
CTS
CW
DAC
DCF
DCO
DDR

Computed Tomography 
Clear to Send 
Contention Windows 
Digital to Analog
Distributed Coordination Function 
Digitally Controlled Oscillator 
Double Data Rate

X ll



Acronyms

DIFS Distrusted Inter-frame Space
DIUC Downlink Interval Usage Code
DMA Direct Memory Access
DRM Downlink Request Management
DRMP Dynamically Reconfigurable MAC Processor
DSP Digital Signal Processing
DSSS Direct-sequence Spread Spectrum
DVI Digital Visual Interface
EDCA Enhanced Distributed Channel Access
EDCF Enhanced Distributed Coordination Function
EDK Embedded Development Kit
ELF Executable Linking Format
FDM Frequency-Division Multiplexing
FPGA Field Programmable Gate Array

FSL Fast Simplex Link
FSM Finite State Machine
FSU Frame Scheduling Unit
GMII Gigabit Media Independent Interface

GPS Global Positioning System
IDE Integrated Development Environment

I/O Input/Output
ISE Integrated Software Environment
JTAG Joint Test Action Group
LMB Local Memory Bus
MAC Medium Access Control
MPLB Master Processor Local Bus
MRI Magnetic Resonance Imaging
MDM MicroBlaze Debug Mode
MRX MAC Receiver module
MSC Message Sequence Chart
NSS Network Switching Subsystem
OFDM Orthogonal Frequency Division Multiplexing

X lll



Acronyms

OPB
PLB
PLCP
PMD
PROM
QoS
RFU
RGMII
RISC
RTOS
RTS
RX
SANE
SCSA
SDK
SDL
SDM
SDR
SG
SGMII
SIFS
SNR
SoC
SPI
SPLB
ss
SSRAM
TDM
TEMAC
TP-TDMA
TX
TXOP

On-chip Peripheral Bus
Processor Local Bus
Physical Layer Convergence Procedure
Physical Medium Dependent
Programmable Read Only Memory
Quality of Service
Reconfigurable Function Unit
Reduced Gigabit Media Independent Interface
Reduce Instruction Set Computer
Real Time Operating Systems
Request to Send
Receiver
Self Adaptive Networked computing Element
Single-Carrier Scheduling Algorithm
Software Development Kit
Specification and Description Language
Spatial Division Multiplexing
Software Defined Radio
Scheduling Group
Serial-GMII
Short Inter-frame Space
Signal to Noise Ratio
System-on-chip
Serial Peripheral Interface
Slave Processor Local Bus
Subscriber Station
Synchronous Static Random-access Memory
Time-Division Multiplexing
Tri-mode Ethernet MAC
Triple-Play Time Division Multiple Access
Transmitter
Transmission Opportunity

xiv



Acronyms

U ART
UGS
URMA
UWB
VOIP
WEP
WLAN
WRR
XML
XPS

Universal Asynchronous Receiver-Transmitter
Unsolicited Grant Service
Uplink Request Management Agent
Ultra- Wideband
Voice over Internet Protocol
Wired Equivalent Protection
Wireless Local Area Network
Weighted Round Robin
Extensible Markup Language
Xilinx Platform Studio

xv



1

Chapter 1 
Introduction

In the introduction chapter, the reader is exposed to the motivations behind the 
work implemented in this thesis, the contributions, and the thesis organization. This 
chapter is divided into three sections; the first section discusses the importance of 
triple-play services from a business point of view in terms of costs and effectiveness 
as a main research motivator. The second section presents the methods followed and 
the contributions achieved in this work. While the last section outlines the thesis 
organization in further detail.

1.1 Research Motivation
The main drive for the work done in this thesis is simply summarized in two as
pects. The first aspect can be seen through the recent increasing demand for triple 
play services being a reason for researchers to address this important field. Second, 
microcontrollers-based embedded systems allow easy modifications to the system’s 
configurations.

Recent advances in new telecommunication systems has led traditional markets 
to change the way they provide their services; the isolated standalone services ap
proach is no longer applicable; services integration is now becoming the keyword for 
network vendors [1]. However, technological limitations can be a barrier that slow 
down the integration of these services implementation; limitations include bandwidth 
coverage and bit-rate [2].

Looking at the Internet Protocol (IP) networking world, vendors are competing 
to fulfill the market’s demand for triple-play products and platforms, while service 
providers are being aggressive in marketing their new multimedia services. Video 
over IP is attracting much attention recently in two different forms: television (TV) 
channels being transmitted to customers over the IP network (IPTV) and Video on 
demand (VoD) in which users can request their favorite TV  shows to be streamed 
over the IP network [3].

With more focus on video communications, we can see that the video confer
encing market is facing a Perfect Storm [4]. This huge demand on video conferencing 
is driven by three factors: the advances in endpoint technologies, high expectations 
of users, and, finally, the improvements achieved in terms of speed, cost and network



Chapter 1: Introduction 2

availability. All these factors are integrated together to speed up the adoption of 
video conferencing in business environments. This huge demand could be seen in the 
rapid growth of leading vendors in terms of revenues, shipments, and profits [5].

Telecommunication companies have never been more interested in providing 
TV  entertainment services as they are now. In fact, they are not only interested 
in this market because of its profit, they actually have no choice but to get them
selves involved in the competition since cable companies are starting to dominate 
what telecommunication companies used to run, i.e., voice and data services. There
fore, offering the three services combined is the only way to keep customers loyal to 
their telecommunication providers [6]. Both cable and telecommunication companies 
provide triple-play services; however, they don’t use the same last mile approach in
frastructure. Telecommunication providers use mainly Digital Subscribe Lines (DSL), 
while cable carriers use Hybrid Fiber Coaxial (HFC) to reach a customer’s home.

Major operators are interested in next generation IP-based networks as they 
offer the most cost-effective and future-proof platforms to deliver triple-play services 
to their clients. That approach also will provide significant advantages in terms of 
building and maintaining costs when compared to the parallel networks approach 
(i.e., voice network, video network, and data network). Moreover, a study by Royal 
Bank of Canada (RBC) Capital Markets suggests that 48% of Americans who own 
flat screens are willing to buy cable TV from their telecom company rather than 
getting cable TV  from another company [7].

Configurable embedded systems are often referred to as FPGAs. They are 
considered future-oriented building bricks which allow a high level of customization 
of the hardware at reasonable costs. This makes them an effective factor for time- 
to-market by avoiding expensive redesigning of the board. Software modifications on 
the design will make the board ready to operate with changes [8].

1.2 Methods and Contributions
This section focuses on the methods followed and contributions achieved in this thesis. 
Mainly, two methods were followed to investigate the proposed ideas: the first method 
was to use a soft processor called MicroBlaze; while the second method was to write 
Very-high-speed integrated circuit Hardware Description Language (VHDL) codes 
in the ISE programming environment. Obviously, both products, MicroBlaze and 
ISE, are Xilinx property since the targeted board is also Xilinx’s. Through out this 
work, three contributions could be stated. The first contribution was achieved using 
MicroBlaze soft processor to test the board; while the other two contributions were 
more focused on designing schedulers for TP-TDMA.

The decision to use MicroBlaze to create a soft processor was not only made to 
test the board; in fact, it was also a try to investigate the possibility of using such a 
processor in designing a soft scheduler, which could be a good start for future work.



Chapter 1: Introduction 3

MicroBlaze was the hardware platform used to establish communication between 
the computer and the FPGA. By establishing this communication, the board was 
actually made ready to receive any set of instructions to deploy certain algorithms. 
Using MicroBlaze to test the board was only a starting point for the more expanded 
ambition of deploying scheduling algorithms using this soft processor. In addition to 
that, MicroBlaze is attractive to use since it is programmed using C language; which 
in turn brings a wider range of programmers in.

To implement a TP-TDMA scheduler, the two approaches were investigated 
using VHDL on ISE. The first approach was implemented through creating a complete 
bottom-to-top system design, then testing each component in the system individually. 
In this design, the system was constructed with four subsystems, each with a different 
number of components. The components were designed using VHDL, and tested 
by creating a test bench for each; inputs were fed individually to each component 
to observe the component’s response. The second approach could be thought of as 
being more of an integrated design. Two subsystems only were designed: the Ethernet 
Controller and the Scheduler. The Ethernet Controller used the advantage of the easy 
implementation of ISE Core Generator components; on the other hand, the Scheduler 
was designed using a Finite State Machine (FSM).

1.3 Thesis Organization
This thesis is composed of seven chapters. While the first chapter introduces the 
thesis, the remainder of this thesis is organized as follows:

• Chapter II provides a comprehensive background on the two main topics that 
this thesis covers. In the first section, Medium Access Control (MAC) layer 
protocols are investigated thoroughly by looking into the carrier sense multiple 
access as well as the collision-free protocols. The second section reviews em
bedded systems, with further details on the history of embedded systems and 
characteristics. After that, Xilinx hardware and software embedded systems are 
investigated.

• Chapter III aims to take the reader through a literature review covering two 
aspects; the Virtex 5 board and MAC layer implementation on boards. The 
first section provides a detailed description of the board’s FPGA as well as its 
peripherals. In the second section, a literature review is presented for MAC layer 
implementation on FPGA boards and other boards, as well as some highlights 
on the MicroBlaze processor.

• Chapter IV discusses the proposed system design in three sections. In the first 
section, the board is tested using MicroBlaze, while in the next two sections 
a scheduler design is proposed using two different approaches: Systematic and 
Conceptual.



Chapter 1: Introduction 4

• Chapter V presents the results obtained from the work done in chapter four. 
Similarly, it’s divided into three sections; each section presents the results 
achieved followed by further discussions.

• Chapter VI mainly provides a foundation for future work. The purpose of this 
chapter is to provide the starting step for designers who seek to implement 
scheduling tasks in general.

• Chapter VII concludes the thesis work by presenting the main observations 
made throughout this work.



5

Chapter 2 
Background

Implementing Medium Access Control (MAC) layer protocols on Field Programmable 
Gate Array (FPGA) boards requires a comprehensive understanding of the MAC 
layer’s functionality and protocols. The MAC layer’s functionality simply includes 
accomplishing two main tasks: packet addressing and channel access control. The 
MAC layer is often referred to as a sub-layer since it is considered the interface 
between the Logical Link Control sub-layer and the network’s physical layer. MAC 
protocols are implemented on hardware that is usually called the Medium Access 
Controller. Manufacturers of MAC controllers have benefited from recent advances 
in embedded systems technology allowing them to have a wide range of controllers 
on both single programmed boards as well as re-programmable boards.

This chapter will review the Medium Access Control (MAC) layer and em
bedded systems technologies. In the MAC layer section, carrier sense protocols are 
investigated including collision-detection and avoidance protocols. Also, collision-free 
protocols are studied through different protocols designed for IEEE 802.16 and IEEE 
802.11 technologies. In the embedded systems section, the history of these systems 
and their characteristics are briefly studied. After that, a detailed review of Xilinx 
hardware and software is presented, followed by a quick review of the MicroBlaze 
processor.

2.1 M A C  Layer
Network links are divided into two types: point-to-point link and broadcast link. A 
broadcast link can have multiple connected nodes sending and receiving using the 
same shared media. In such environments, the problem of choosing which node has 
the right to send/receive arises.

Multiple Access protocols are a set of protocols used to regulate the use of the 
shared media between nodes in the same network. Since all nodes in the network can 
transmit their frames simultaneously, some nodes may transmit at the same moment. 
As a result, the transmitted frames will collide. The collision problem leads to losing 
the frames involved in the collision, and to wasting the media’s bandwidth since the 
frames were not transmitted successfully. For that, it is of high importance to arrange 
transmission between active nodes in the network in order to utilize the bandwidth 
efficiently. Many multiple access protocols have been suggested; however, they all



Chapter 2: Background 6

can be classified into one of three categories: channel partitioning protocols, random 
access protocols, and taking-turns protocols.

Channel partitioning protocols are the protocols in which each node is assigned a 
dedicated transmission slot; Time-Division Multiplexing (TDM), Frequency-Division 
Multiplexing (FDM), and Code Division Multiple Access (CDMA) are examples of 
this class. In TDM, nodes are assigned a dedicated time slot, while in FDM nodes are 
assigned frequency slots. TDM and FDM share the same advantages and drawbacks. 
Both manage to avoid collisions by dividing the bandwidth fairly between the nodes, 
yet both limit the nodes in the network to a fixed bandwidth. This drawback is 
clearly seen as a principle disadvantage when only one node is active, i.e, bandwidth 
misusage. CDMA, on the other hand, avoids that problem by assigning different codes 
to each transmitting node. Having different codes, the network can transmit frames 
simultaneously between its nodes. Obviously, the receiver node should recognize the 
transmitter’s code.

Compared to channel partitioning protocols, random access protocols give the 
transmitting node the channels’ full bandwidth, and in case that collisions happen, 
the nodes involved will retransmit their frames until all frames have been successfully 
transmitted. Slotted ALOHA is a simple example of random access protocols. In 
slotted ALOHA, all frames are of the same size, time is divided into fixed slots, nodes 
can send their frames only at the beginning of a slot, and nodes are synchronized to 
recognize the beginning of a slot. When a node transmits its frame and detects a 
collision, the node retransmits its frame with a probability p in each slot after colli
sion occurred. Although slotted ALOHA has the advantage of being a decentralized 
system, it has a weak efficiency that can’t exceed 37% of the channel bandwidth when 
there is a large number of nodes connected.

Another example of the random access protocols is the Carrier Sense Multiple 
Access (CSMA) protocol. As it can be understood from its name, this protocol 
has a carrier sense feature in which the node listens to the channel before sending 
a message. If the channel is busy, the node waits for a random time, and then 
checks the channel’s availability again. The node will send only when the channel 
is idle. Two CSMA protocols are well investigated in the literature: CSMA with 
Collision Detection (CSMA/CD) and CSMA with Collision Avoidance (CSMA/CA). 
CSM A/CD is the media access protocol used in Ethernet, while CSM A/CA is the 
protocol used in wireless networks such as IEEE 802.11 [9].

2.1.1 Carrier Sense Multiple Access Protocols
As mentioned earlier, CSMA protocols are widely used in wired and wireless networks. 
In fact, they use similar approaches to reduce the possibility of having a collision. 
Now, we will explore the CSMA/CD protocol that is widely deployed in Ethernet 
networks. Then, we will focus on the CSMA/CA protocol, which will be followed by 
an enhanced version of the collision avoidance protocol.



Chapter 2: Background 7

2.1.1.1 Carrier Sense Multiple Access with Collision Detection

In CSM A/CD, a node will first check the channel availability; once the node verifies 
that the channel is idle, it’ll send its frame. While transmitting its frame, the node 
will keep listening to the channel. If a collision is detected, it will stop its transmission; 
then it will re-transmit using algorithms to calculate the waiting time (back off). The 
need for collision detection arises because of the channel propagation delay. When 
a node verifies that the channel is idle, it doesn’t guarantee that a collision will not 
occur. For example, while node A is transmitting a frame to node B, it is possible 
that node C has not yet received this transmission as a result of the propagation 
delay. Consequently, node C will assume that the channel is idle, and might start 
sending its frame leading to a collision. Therefore, CSMA/CD ceases transmission 
once a collision is detected to improve the network’s transmission performance.

CSM A/CD uses an algorithm called exponential back off to calculate the wait
ing time for re-transmitting in Ethernet. After the nth collision, the node chooses a 
random value K  such that:

{0 ,1 ,2 ,2m — 1}, where 

m — min(n, 10).

The waiting time is K*512. When collisions are detected, the node that detected it 
transmits a 48 bit jamming signal. The purpose of the jam signal is to inform all 
nodes sharing the media that a collision has occurred.

MAC protocol in 802.11 differs from the one in Ethernet in two main aspects. 
First, 802.11 networks use CSMA/CA. Second, 802.11 networks use link layer ac
knowledgment because of the frequent bit errors of wireless physical channels. In 
fact, there are two important reasons why CSMA/CD is not suitable for wireless net
works. The main reason is that CSMA/CD requires a dual detection ability, i.e., the 
ability to send and receive at the same time, which is not possible in wireless networks 
because of the huge difference in the signal strength of received and sent signals. The 
other reason is the hidden terminals problem in wireless networks, which makes the 
node unable to detect all collisions and transmissions. Because the 802.11 does not 
use CSM A/CD, 802.11 networks transmit the entire frame at once.

2.1.1.2 Carrier Sense Multiple Access with Collision Avoidance

Suppose a node in 802.11 has a frame to send, using CSMA/CA; the process will be 
as follows. The node will sense the media to check its availability; if the media is idle, 
the node transmits its frame after a period known as the Distrusted Inter-frame Space 
(DIFS). If the media is busy, the node chooses a random back off value and starts 
counting down to detect when the media is idle. The node remains idle until the 
counter reaches zero, and then starts transmitting its frame. After that, the sending 
node will wait for an acknowledgment from the receiving node. The receiving node



Chapter 2: Background 8

waits for a period known as the Short Inter-frame Space (SIFS) then sends back an 
acknowledgment. If the acknowledgment is received, the transmission is considered 
complete; otherwise, the sending node returns to a back off phase with a larger value.

In CSM A/CA, it is to be noted that even if the channel is idle, the node will 
have to wait for the counter to reach zero in order to start transmitting. The reason 
for that is to reduce the possibility of having a collision by letting each node to wait 
for a different amount of time. However, a collision might still occur in a wireless 
network as a result of the hidden terminals or a similar chosen back off time.

In order to avoid the hidden terminal problem, 802.11 MAC protocol suggests 
using Request to Send (RTS) and Clear to Send (CTS) control frames. When a node 
is about to transmit a frame, it first sends an RTS frame to the Access Point (AP) 
mentioning the required time for both of its frame of data and frame of acknowledg
ment. Then the AP sends a CTS frame to all the nodes connected to it in order to 
make all nodes aware of the transmission and give permission to the sending node to 
start transmitting. RTS and CTS frames not only help to resolve the hidden terminal 
problem, but also they ensure a clear transmission of the data and acknowledgment 
frames.

2.1.1.3 Carrier Sense Multiple Access with Enhanced Collision Avoid
ance

Since it’s a lightweight and decentralized protocol, CSM A/CA is suitable for IEEE 
802.11 networks. However, CSM A/CA does not utilize the transmission history in 
stations that have many queue of frames to send. In other words, the protocol can 
employ previous transmission attempts to effectively reduce the number of collisions 
in subsequent transmissions. This addition to the CSMA/CA is referred to as CSMA 
with Enhanced Collision Avoidance (CSMA/ECA). After a transition phase, CS- 
M A/ECA is able to offer a collision-free access protocol. It also works fairly with the 
existing CSM A/CA and is easy to implement without further computational modifi
cations.

The channel time in CSM A/CA is divided into three slot types: empty, suc
cessful, and collision. A slot belongs to the empty category if there is no frame to 
transmit; it belongs to the successful category if there is only one transmitted frame; 
and it belongs to the collision category if there is more than one transmitted frame. 
In the empty and collision slots, the channel time is considered wasted. After a colli
sion, the station has to wait (back off) in order to randomly choose another back off 
time. CSM A/ECA suggests choosing a deterministic back off time after a successful 
transmission in which the number of active stations is less than the value of the back 
off time. Conversely, the legacy CSMA/CA chooses a random back off time even after 
a successful transmission.

This slight modification in the CSM A/CA protocol led to a remarkable improve
ment in channel utilization. To verify that, [10] examined two simulation scenarios;



Chapter 2: Background 9

one in which half of the stations used CSMA/ECA while the other half used the legacy 
CSM A/CA; another simulation was performed with stations using CSMA/ECA pro
tocol only. In both scenarios, the channel utilization improved; however, the channel 
utilization’s improvement using pure CSMA/ECA was 0.8 to 1 compared to an av
erage of 0.8 in the first scenario. The reduction in the number of possible collisions 
was the reason for this improvement. Even though CSMA/ECA is likely to work as 
a collision-free system, it could still result in a collision in one of two situations: the 
entrance of a new station, or a channel error.

When a new station tries to start transmitting, i.e., become an active node, it 
may push the system back to the transition phase if its first transmission resulted in 
a collision. To avoid this, a smart entry approach can be deployed. A station should 
keep track of the empty slots in order to schedule its first transmission. In case there 
are no empty slots, the station should postpone its transmission until there is slot 
availability.

In a case where the channel is affecting the transmission reliability, CSMA/ECA 
performance can also be affected. CSMA/ECA deals with channel error in a similar 
manner as if it were a collision. It is to be noted that the affect of the channel error is 
greater on CSMA/ECA than it is on the legacy CSMA/CA. However, in comparing 
CSM A/CA performance under channel error to CSMA/ECA, the enhanced version 
is still better than the legacy version.

Other studies have used a similar approach to CSMA/ECA. In [11], an en
hancement was introduced to the IEEE 802.11 protocol called EBA. In this protocol, 
two fields are added to the MAC headers to inform the other stations about the 
back off value. Even though this approach reduces the rate of collisions, it requires 
modifications of the MAC headers leading to further complications.

2.1.2 Collision-free Protocols
After discussing CSMA protocols, we will now focus on collision-free protocols. In 
this section, the protocols for IEEE 802.16 and IEEE 802.11 will be investigated: the 
Single Carrier Scheduling Algorithm and Triple Play Time Division Multiple Access.

2.1.2.1 Collision-free Protocols for IEEE 802.16

The authors of [12] propose an uplink bandwidth allocation scheme for polling services 
where the Markov modulated Poisson process is applied. The limitation of this scheme 
is that it assumes a fixed bandwidth allocation at one Subscriber Station (SS) and 
considers only the outbound transmission scheduling. The drawback of this scheme 
is that it eliminates the consideration of a bandwidth request for each connection. 
In [13], a packet scheduling algorithm is introduced where fixed allocation, earliest 
deadline first, weighted fair queuing, and equal sharing schemes are applied. To 
achieve ultimate Quality of Service (QoS), this algorithm requires intelligent outbound



Chapter 2: Background 10

transmission scheduling at each SS since the bandwidth allocated to an SS is an 
aggregated grant for all the connections at the SS. Another QoS scheme is proposed 
by [14]; in this scheme, the BS bandwidth allocation and the outbound transmission 
scheduling are addressed. To provide QoS at the connection level, many functions 
are introduced but the strict QoS parameters are not considered.

2.1.2.2 Single Carrier Scheduling Algorithm for IEEE 802.16

IEEE 802.16 standard supports QoS allowing the service categorization to be decided 
by the vendor. However, in the implementation of QoS specific issues must be ad
dressed to achieve reliable and link-adaptive high rate transmission over the wireless 
channel. These issues include informing the BS about the connection level bandwidth 
for each SS; properly allocating the wireless resources among all SSs; and scheduling 
the transmissions over the shared channel for all SSs in such a way as to meet ter 
QoS requirements.

MAC scheduling services are differentiated into four types in order to accom
modate different service applications. The first type is the Unsolicited Grant Service 
(UGS), which supports real-time applications that require fixed-size periodical data 
packets such as T l/E l. This type of MAC scheduling is given QoS with a dedicated 
traffic rate, maximum latency, and tolerated jitter. Real-time Polling Service (rtPS) 
is the second type of MAC scheduling in which periodical variable-sized data packets 
such as Moving Pictures Experts Group (MPEG) are supported. The QoS require
ments for this type are: minimum traffic rate dedication, maximum sustained traffic 
rate, and maximum latency. The third type is the Non-real-time Polling Service 
(nrtPS), which supports non periodical variable-sized data that requires a minimum 
traffic rate such as File Transfer Protocol (FTP) applications. For this type, the QoS 
requirements are: minimum dedicated traffic rate, and maximum sustained traffic 
rate. Best Effort (BE) is the fourth type where data that doesn’t require a minimum 
service level is supported. This type’s QoS requires only minimum sustained traffic 
rate.

The UGS type is the only type that is delay sensitive among all the four types of 
MAC scheduling. As a result, the bandwidth dedicated to the BS for UGS is period
ically fixed. Downlink traffic can be also categorized using the same four scheduling 
types; however, since the BS has all the downlink traffic information, the scheduling 
design of the uplink traffic is the only challenge to be faced.

In designing an efficient QoS control scheme, several aspects have to be consid
ered* The BS should divide the downlink and the uplink frames properly to ensure 
that each SS uplink transmission window to meets its QoS requirements. Also, the BS 
should be informed periodically of how much bandwidth is required for each SS con
nection; this will help the BS manage its radio resources more efficiently. Moreover, 
the signaling overhead should be reduced for each connection bandwidth request. 
With these design aspects taken into consideration, the MAC protocol should be able



Chapter 2: Background 11

to provide a guaranteed QoS for each MAC scheduling service type, optimize a BS’s 
awareness about each connection bandwidth requirement, and reduce the operational 
overhead for each bandwidth request.

A proposed QoS control scheme for IEEE 802.16 called Single-Carrier Schedul
ing Algorithm (SCSA) [15] consists of two blocks: the Uplink Request Management 
Agent (URMA) and the Frame Scheduling Unit (FSU). The URMA is located at each 
SS and serves to communicate to the BS its SS connections bandwidth requests with 
minimum signaling overhead, and to assist in scheduling uplink transmissions at the 
SS. On the other hand, the FSU is located at the BS where it’s responsible for collect
ing information about each connection’s bandwidth needs in the network; performing 
resource allocations for each SS; defining a new frame based on the resource alloca
tion, and assisting to schedule downlink transmissions at the BS. It can be noticed 
that each SS URMA performs some functionalities locally at the SS instead of at the 
BS in order to reduce the overhead required for bandwidth requests.

The URMA consists of three modules: the service measurement module, the 
QoS enforcement module, and the SS request generation module. The service mea
surement module calculates the instant bandwidth request of each connection at the 
end of each uplink transmission window of the SS; that is done considering the con
nection’s queue length and the MAC headers required to transmit the backlogged 
traffic. The QoS enforcement module maintains a QoS timer running at the SS for 
each rtPS and nrtPS connection. This timer is synchronized with the SS’s system 
clock, where the measurement rate for a connection should be equal to the minimum 
reserved traffic rate.

The QoS enforcement module performs its operation in two steps. First, it 
divides the bandwidth request into two portions: bandwidth guaranteed and non
bandwidth guaranteed. This division is made for rtPS and nrtPS connections while 
BE connections are always given non-bandwidth guaranteed. Second, it further di
vides the bandwidth guaranteed portion into imminent and non-imminent parts de
pending on the maximum latency of the connection. The SS request generation 
module checks the service type of connections running at the SS and the output of 
the QoS enforcement module, then it generates three bandwidth requests for each SS.

At the BS end, FSU generates a new frame once it receives the prioritized 
bandwidth requests. To perform that step, three functional modules are involved: 
the Downlink Request Management (DRM) module, the resource allocation module, 
and the frame creation module. The DRM module acts in a similar maimer to the 
URMA at the SS except that the downlink connections with the same Downlink 
Interval Usage Code (DIUC) are grouped together in the next frame. Each connec
tion shares a common set of prioritized bandwidth requests and is referred to as a 
Scheduling Group (SG). For each SG, the resource allocation module allocates the 
transmission capacity according to its prioritized bandwidth request. After that, 
symbol assignments are made by converting the prioritized bandwidth requests of 
each SG into symbol needs. The last module in FSU, the frame creation module, is



Chapter 2: Background 12

translating the symbol assignments from the resource allocation module into timing 
information in terms of physical slots to create the new frame.

The SCSA scheme shifts some functionalities formerly performed by the BS 
to the SS in order to reduce signaling overhead. This helps to guarantee providing 
each connection with the QoS required. Also, with a cross-layer design for resource 
allocation, this scheme is capable of resisting wireless link degradation.

2.1.2.3 Triple-Play TDMA for IEEE 802.11

IEEE 802.l ie  networks use the Enhanced Distributed Coordination Function (EDCF) 
protocol to deliver triple-play services, i.e., voice, video, and data. However, this 
protocol is not capable of utilizing the channel resources efficiently [16]. When the 
network is at its full load, EDCF is able to achieve only 45% (as throughput) of the 
total dedicated bandwidth. The reason for such a waste in the bandwidth can be 
attributed to packets retransmission due to channel errors or collision, physical layer 
overhead, MAC layer overhead, and the contention mechanism. Therefore, EDCF 
protocol is not suitable for supporting triple-play services.

In order to meet triple-play services requirements by eliminating collisions and 
reducing MAC layer overhead, a Triple-Play Time Division Multiple Access (TP- 
TDM A) customized protocol is proposed to replace the 802.l ie  EDCF. This cus
tomized protocol is designed to meet specific system requirements; an Access Point 
(AP) connected to a cabled-hub with four subscriber stations as the network clients. 
TP-TDM A suggests a reduced header size to reduce the MAC layer header and an 
automatic repeat request (ARQ) to select the frame level. Packets are retransmit
ted in TP-TDM A based on the traffic priority, whereas voice is not because of time- 
sensitivity. The TP-TDMA downlink allows subscriber stations to downstream video, 
voice, and data while the uplink allows subscribers to upstream data and voice.

In the TP-TDMA protocol, the frames are structured as follows: the downlink 
frame consists of a beacon packet followed by four voice slots; then video and data 
traffic are divided dynamically in the remaining four slots. The uplink frame is 
also divided into four dynamically sized slots for the data traffic followed by four 
slots utilized for uplink voice traffic. Guard-intervals are used in order to avoid a 
collision between consecutive slots on both the downlink and uplink frames. These 
guard-intervals are also added to separate subscribers’ uplink slots. It is important to 
mention that each station of the four subscriber stations is assigned two slots during 
both the uplink and downlink frames.

TP-TDM A suggests a modified MAC header keeping the first two fields (the 
first four bytes) as they are in the legacy 802.lie . After those two fields, a Frame 
Control field of two bytes is added to denote the type of packet and the other packet 
fields. Receiver and Transmitter Address fields of one byte for each are then followed. 
In addressing those fields, the first four bits are assigned to the network id while the 
remaining four bits are assigned to the host id. The AP is reserved a unique host



Chapter 2: Background 13

address of 0x00 while subscriber stations are identified using particular bits for each 
station. Addressing fields are followed by sequencing fields; two fields each of which 
have two bytes are Video Sequence and Best-Effort Sequence, respectively. Similarly, 
those sequencing fields are also followed by two ARQ bitmap fields each of which 
has four bytes. Both sequencing and ARQ bitmap fields are used to support the 
retransmission. A Feedback field following the ARQ bitmap fields is used to provide 
information about the size of subscribers’ data buffer.

For efficient management of the wireless resources, TP-TDMA uses a dynamic 
bandwidth allocation scheme in which transmissions are scheduled based on traffic 
class. Slots are allocated with a fixed length in the downlink and uplink frames for the 
voice channel in order to provide a guaranteed delivery of voice traffic. Then, video 
and data packets, which are scheduled downstream for retransmission, are allocated 
the channel’s maximum number of retransmissions. This number can be configured 
separately for each class of traffic in such a way that any packet that exceeds this 
number will be discarded. Video stream traffic is scheduled using an algorithm in 
which downstream traffic is allocated based on the number of buffered packets for a 
specific station.

Packets that require retransmission are handled using a Selective-ARQ mecha
nism. While video and data are controlled by ARQ bitmap fields in the MAC headers, 
voice traffic does not use ARQ mechanism. The AP maintains different ARQ bitmaps 
for each station and traffic class. The ARQ bitmap size should not exceed the maxi
mum number of packets of a given class and destination transmitted during a frame 
transmission.

When comparing TP-TDMA to the legacy EDCF protocol, it can be found that 
the bound on frame delay of TP-TDMA is four times smaller than EDCF. Also, data 
throughput in TP-TDMA is higher than EDCF because of the dynamic utilization 
of lower bit rate video regions. This shows an admission control capability of TP- 
TDMA to manage the downlink/uplink data ratio. The overall throughput achieved 
by TP-TDM A is 28% higher than EDCF even though they are utilizing the same 
physical layer. However, EDCF has a higher percentage of successfully received voice 
packets compared to TP-TDMA. The reason is that voice packets in TP-TDMA are 
not retransmitted due to time-sensitivity.



Chapter 2: Background 14

Figure 2.1: Example of an Embedded System

2.2 Embedded Systems
Embedded systems can be defined as the systems that are designed to perform spe
cific and dedicated real-time tasks. The word embedded refers to the fact that those 
devices are usually built-in within a larger scale system as shown in Figure 2.1. Em
bedded systems play an important role nowadays in controlling many common devices 
in our life. Some of the main advantages to using embedded systems in designing a 
specific application are their flexibility and reliability, as well as the reduction in cost 
and size. Thus, manufacturers are using embedded systems for mass production and 
are gaining from their economical advantage. Regardless of the application’s size, 
embedded systems can be part of large scale applications, which benefit from the 
flexibility they offer. Embedded systems are involved in many aspects of our lives; 
they can be found in telecommunications systems, personal electronics, transporta
tion system, and in medical equipments.

Modern telecommunication systems utilize embedded systems extensively, e.g., 
in a cellular network. The Network Switching Subsystem (NSS) deploys a wide range 
of embedded systems to perform various functions such as identifying caller location. 
On the end user side, embedded systems are implemented extensively in mobile phones 
processors. In addition to that, modern networking systems, such as routers and 
switches, employ different forms of embedded systems to perform scheduling and 
forwarding tasks.

Personal electronics are considered by far the most consumers of embedded 
systems as they offer a great deal of efficiency and flexibility to the end users. Many 
electronic manufacturers nowadays are shifting their designs from being hardware- 
based to software-based systems. In other words, they tend to utilize the features



Chapter 2: Background 15

that are offered by embedded systems, i.e. simplicity and fast deployment. Examples 
of personal electronics include: MP3 players, videogame consoles, digital cameras, 
DVD players, and GPS receivers.

In transportation, embedded systems are used widely in both aviation and au
tomobiles. While advanced embedded systems are involved in the core design of au
tomatic guidance systems of new airplanes, they are also heavily deployed in aviation 
ground control systems for air traffic control. On the other hand, as the automo
bile industry shifts towards more hybrid vehicles, embedded systems involvement in 
the design of those vehicles increases rapidly. Moreover, in most transportation sys
tems, safety-related issues are mainly assigned to software-based systems, which are 
implemented physically in embedded systems.

In addition to the different uses of embedded systems in various fields, medi
cal technology also benefits from the features, which embedded systems offer; they 
are involved in a range of medical imaging scanning systems such as Computed To
mography (CT) and Magnetic Resonance Imaging (MRI). Moreover, wireless sensor 
networking utilizes the advances achieved in integrated circuits to implement sophis
ticated sensors on wireless subsystems, making it possible for companies to create 
more efficient and responsive systems.

2.2.1 History of Embedded Systems
The history of embedded systems dates back to the early years of single tasked com
puters, to the 1940-50s, when they were too large and expensive. However, as a result 
of computer evolution from electromechanical sequencers to the use of integrated cir
cuit technologies, embedded systems have evolved tremendously gaining from the 
development in transistors technology. As it’s always the case in technology; space, 
defense and military applications were the biggest motivators and also the largest 
consumers to encourage development in embedded systems.

The Apollo Guidance Computer (AGC) is the first known modern embedded 
system developed at the MIT Instrumentation Laboratory. At that time, the early 
1960s, the AGC took advantage of the new developments achieved in embedded sys
tems to reduce their size and weight; however, the AGC was considered the most 
risky part of the Apollo project since it involved the usage of new integrated circuit 
technologies. In 1961, using transistor logic and a hard disk, the D-17 guidance com
puter for the Minuteman missile was built. Five years later, the D-17 was replaced 
with a new computer for the Minuteman II missile. The design of this new computer 
was the first extensive use of integrated circuits and resulted in great cost reductions, 
allowing the prices of quad NAND gates to drop from $1000/each to $3/each.

The commercial sector was also gaining from the price reductions in the man
ufacturing of embedded systems, but also it was motivated by the improvements in 
processing power and the abilities of these systems. Intel introduced its first micro
processor, Intel 4004, in 1971. This microprocessor was simple in its design and was



Chapter 2: Background 16

intended for calculators and other small systems. As the cost of microcontrollers and 
microprocessors continued to drop, it became feasible to integrate (or replace) some 
circuitry components, such as variable capacitors, with microprocessors.

2.2.2 Embedded Systems Characteristics
Embedded systems have some distinguished characteristics separating them from 
general-purpose computers. These characteristics can be listed as follows:

• Embedded systems are designed to do specific tasks rather than being multi- 
tasked as it’s the case of personal computers. And since their nature is to have 
a limited number of tasks, some embedded systems can be simplified in terms 
of hardware design costs; in other words, when the performance requirements 
are low, hardware cost minimization can be achieved.

• Embedded systems are usually implemented in a bigger system to serve a more 
general purpose; they are not always standalone devices.

• Instructions for embedded systems are stored in read-only memories or flash 
memory chips; these sets of instructions are referred to as firmware.

The user interfaces of embedded systems vary depending on how sophisticated 
the system is. Therefore, while single-task systems have no user interface at all, other 
embedded systems can provide users with graphical user interfaces. Furthermore, 
complex systems have advanced interface screens allowing the users to interact with 
them by touch sensing. In contrast, some systems allow modifications in their be
havior to be achieved remotely through serial or network connections, i.e. through 
RS-232, USB or Ethernet cable. Typically, this approach is preferred when the user 
requires authentications to adjust the functionalities of the targeted system.

Embedded systems can be categorized as microprocessors and microcontrollers. 
The main difference between the two categories is that microcontrollers tend to have 
more peripherals on the chip while microprocessors have only the Central Processing 
Unit (CPU) on the chip. Obviously, the advantage of having more peripherals in 
microcontrollers’ design is to reduce the cost and size. In both, microcontrollers and 
microprocessors, basic CPU architectures are used, such as the Harvard architecture.

System-on-chip (SoC) is a common configuration of embedded systems in which 
a complete system of processors, multipliers, and interfaces are located on a single 
chip. This configuration can be implemented on an Application-specific Integrated 
Circuit (ASIC) or on a Field Programmable Gate Array (FPGA). As for FPGAs, 
designers use compliers, assemblers, and debuggers to develop embedded systems 
software. To communicate with the outside world, embedded systems use peripherals 
such as:

• Serial Communication Interface, such as: RS-232



Chapter 2: Background 17

• Debugging, such as: JTAG

• Universal Serial Bus, USB

• Networks, such as: Ethernet

• Analog to Digital/Digital to Analog: (ADC/DAC)

• Synchronous Serial Communication Interface, such as: SPI

• Multi-Media Cards, such as: Compact Flash

Since embedded systems are deployed in systems that are designed to run for 
years continuously, their reliability is always set to very high standards. For that, 
designers usually avoid introducing unreliable mechanical parts in their embedded 
systems, and they are put in operation only after being tested carefully several times. 
There are still some reliability concerns when the design involves having embedded 
systems. One of the concerns is that embedded systems in many cases cannot be 
shut down or easily accessed for repair; examples include space systems and undersea 
cables. Another concern is that those systems must be operating efficiently for safety 
reasons; examples include: aircraft navigation and reactor control. Also, in some 
cases, having these systems shut down will cost a large amount of money; this result 
can be seen clearly in stock markets and in automated sales.

Many techniques are being implemented to avoid, or to recover from, software 
bugs and errors in the hardware such as such the watchdog timer, redundant sub
systems, limp modes, trusted computing base, embedded hypervisor, and immunity 
aware programming. A watchdog timer resets the computer in case of errors; redun
dant subsystems are used to allow a switch over in case the main system fails; limp 
modes provide partial software functionality; the trusted computing base ensures high 
security and reliability.

2.2.3 Xilinx Hardware Embedded Systems
As a leading manufacturer of FPGAs, Xilinx continues to introduce innovated designs 
for embedded systems on FPGAs. The Xilinx design of embedded systems on FPGAs 
consists of three main objects[17]:

• FPGA hardware design; the hardware design requires, in most cases, having 
a processor and other FPGA hardware. Common processors used in Xilinx 
boards are MicroBlaze processor and PowerPC processor; more details about 
those processors are provided later.

• Software platform for processor system; platforms can be either a standalone 
platform supporting C language for instance or a third-party operating system, 
such as Linux.



Chapter 2: Background 18

Performance
Integration
Flexibility
Features

2000 2002 2004 2006 2008

Figure 2.2: Xilinx Embedded Processors Evolution [17]

• User software application in which the user writes an application for specific
functions to be performed.

For the hardware design, since 2000 Xilinx boards have allowed development 
engineers (Figure 2.2) to use two powerful processors: MicroBlaze (soft core) and 
PowerPC (hard core). MicroBalze was developed by Xilinx while PowerPC is IBM 
intellectual property; all Xilinx board families support MicroBlaze while only some 
boards of the Virtex family support PowerPC. In those Virtex boards, which have 
PowerPC processor integrated into the FPGA, crossbar technology is used to interface 
between the processor and the outside world.

As shown in Figure 2.3, PowerPC 440 is connected to a Double Data Rate 
(DDR) memory controller via a separate port called Memory Controller Interface 
(MCI) to improve system performance and enable access to larger memories. Also, 
the PowerPC 440 has Direct Memory Access (DMA) ports, which are generally used 
to connect to the Tri-mode Ethernet MACs (TEMAC). The Processor Local Bus v46 
(PLB v46) allows the PowerPC 440 to access any peripherals connected on the bus; 
while the master bus (MPLB) allows the processor to access peripherals connected 
to it, the slave bus (SPLB) allows other master buses connected to it to access the 
MPLB and the MCI memory.

The PLB v46 supports bus widths of up to 128 bits; however, it also supports 
dynamic bus sizing and programmable burst size. The crossbar technology, shown 
in Figure 2.4, is built up to allow for a dual five-to-one multiplexer; in other words, 
one of five masters can be connected to one of the two slaves independently and 
simultaneously.

The MicroBlaze processor, on the other hand, is a soft-logic processor; and, 
therefore, it runs in all Xilinx board families. Using block RAMs (BRAM), MicroBlaze 
can integrate instruction and data caches. On-chip BRAM is accessible via the 32-bit 
Local Memory Bus (LMB) allowing for low-latency access, while off-chip memories are



Chapter 2: Background 19

\VIRTEX
V ÿ

Figure 2.3: IBM PowerPC 440 Processor

Figure 2.4: Crossbar Technology in PowerPC 440 Processor

accessible via CacheLink to provide high-speed and low-latency access. MicroBlaze 
utilizes Fast Simplex Link (FSL) channels which are dedicated, unidirectional, and 
point-to-point FIFO; those channels are 32-bit wide. FSL can provide up to eight 
input and output interfaces; however, the latest version of Microblaze (7.30a) contains 
FSL channels that can provide up to sixteen interfaces. MicroBlaze is shown in 
Figure 2.5.

2.2.4 Xilinx Software Embedded Systems
To support implementing the hardware design, Xilinx introduced a software pack
age called the Embedded Development Kit (EDK) as its boards’ software platform. 
The kit contains all the PowerPC and Microblaze tools and documentation a de
signer might need. The Xilinx software package consists of two platforms: the Xilinx 
Platform Studio (XPS) and the Software Development Kit (SDK) [17]. EDK al
lows hardware development in XPS while software development is allowed in SDK. 
XPS manages the hardware design of the processor system component and other



Chapter 2: Background 20

Figure 2.5: Xilinx MicroBlaze Processor

peripherals in the design allowing the user to perform: hardware design, processor 
netlist generation, software design, software Board Support Package (BSP) genera
tion, software debugging, and hardware simulation. On the other hand, SDK is the 
software design environment in EDK; and therefore, software application creation, 
Linker Script creation, and .elf file creation are all made through SDK.

The XPS platform is shown in Figure 2.6. The leftmost side tab consists of 
three views: Project, Applications, and IP Catalog. The Project view shows the 
project’s current settings and allows access to processor projects files, such as the 
MHS file. On this tab, users can set a target device by changing the architecture, 
device size, package, or speed grade. The IP Catalog view enables the designer to 
add or remove peripherals. On the System Assembly view, the Bus Interface tab 
allows users to view component datasheets as well as configure them or change their 
parameters. Ports tabs show all ports connected to a specific component and allow 
users to reconnect components if needed.

For easier and faster creation of design projects, XPS introduces the Base Sys
tem Builder (BSB) wizard. Using BSB, the user first has to choose the targeted 
board from a list of Xilinx predefined boards or link the board definition to files if it 
was made by a third-party vendor. Then, the BSB will allow the user to configure 
the system either to be a single-processor or dual-processor system. After that, the 
processor type, clock frequency, bus clock, and debug interface will be configured. Fol
lowing that, the user can choose to add or remove peripherals and then configure the 
Input/Output (I/O ) interfaces such as Universal Asynchronous Receiver-Transmitter 
(UART).

SDK (shown in Figure 2.7) is an application development environment based 
on Java script and the open-source Integrated Development Environment (IDE) de
veloped by the Eclipse Consortium. It uses a similar compiler as XPS, but it provides 
clients with more functions and capabilities. Once a hardware design has been cre
ated; using XPS, an Extensible Markup Language (XML) file is exported to SDK



Chapter 2: Background 21

£  Ole yit iio<v PtPiect Hardware Saftware Device Cspfguraticn Oîtxg 3jpuiafcor> ^¿jrdow [JeIp

to be able to read the design configuration. The design procedure used in SDK to 
develop a software application for an XPS embedded system is as follows:

• An embedded system is designed using XPS, creating a XML file to be imported 
by SDK.

• SDK is launched and a workplace is created to read the XML netlist description 
file.

• SDK creates the board support package and then the software application 
project.

• In SDK, the user compiles applications for a specific board and then downloads 
the executable software to the targeted device.

• In the Integrated Software Environment (ISE) Project Navigator, the user will 
have access to the ELF file on the project.

• Programming file can now be generated.

2.2.5 Xilinx MicroBlaze Processor
The MicroBlaze is a Reduce Instruction Set Computer (RISC) embedded soft core 
processor that includes the following features [17]:

• 32-bit general purpose registers.



Chapter 2: Background 22

Figure 2.7: SDK Platform

• 30-bit instruction word with three operands and two addressing modes.

• Two 32-bit separate buses; one for instruction and the other one to function 
as a data bus. Both are compatible with the IBM PLB bus standard and are 
directly connected to on-chip RAM.

• Single-issue pipeline.

• Instruction and data cache.

• Hardware debug logic, MicroBlaze Debug Mode (MDM).

• Fast Simplex Link support.

• Hardware multiplier.

Instructions in MicroBlaze take one clock cycle; except for the load and store, 
and multiply which takes two clock cycles. Operating frequency is dependent on the 
board; for example, Virtex-6 operates at 307 MHz, while Virtex-5 operates at 245 
MHz.



23

Chapter 3 
Literature Review

Xilinx families of boards offer a wide range of boards for researchers in order to help 
them focus on the targeted objective. Some boards consume less power, while others 
offer higher performance capabilities. In comparing the two main board families that 
Xilinx offers, it can be observed that Virtex boards are more powerful in terms of 
performance while Spartan boards are considered a good choice for low total system 
cost and high-volume applications. More specifically, Virtex boards support a higher 
number of logic cells and embedded block RAM; while on the other hand, Spartan 
boards can optimize the targeted design if the performance requirements are not high. 
For example, Virtex-5 boards support up to 330,000 logic cells and up to 18 Mbits of 
embedded block RAM, while Spartan-6 boards support up to 150,000 logic cells and 
up to 4.8 Mbits of embedded block RAM.

This chapter is divided into two sections. The first section is devoted to dis
cussing Virtex-5 LX110T board while the the second section studies MAC layer im
plementation on boards as well as various MicroBlaze uses.

3.1 Xilinx Virtex-5 LX110T Board
The ML505 evaluation platform hosts a Virtex-5 Field Programmable Gate Array 
(FPGA) to enable designers to better interact with and explore the board’s capabil
ities. The ML505 board comes with various devices connected to the main FPGA 
ranging from memory components to Input/output ports such as RS323, Joint Test 
Action Group (JTAG) port or video output Digital Visual Interface (DVI). This eval
uation platform is among the other platforms manufactured by Xilinx in which they 
share the same printed-circuit board. These boards commonly have a wide range of 
features or components that makes them useful to test new designs or verify inter
face compatibilities. A generalized example block diagram of the board is shown in 
Figure 3.1. In the following sections, we will explore the main components of the 
XUP5V-LX110T board.



Chapter 3: Literature Review 24

CF PC4

Host
Peripheral
Peripheral

RJ-45

DigitaJ Audio

Une O ut/ 
Headphone
Mie In/Line In

D¥M Video Out 

Serial

Figure 3.1: Virtex-5 FPGA ML50x Platform[18]



Chapter 3: Literature Review 25

3.1.1 Virtex-5 FPGA
Virtex-5 FPGA is located at the center front side of the board (item number 1 in 
Figure 3.2), and can be configured in various modes: JTAG, Master Serial, Slave 
Serial, Master SelectMAP, Slave SelectMAP, Byte-wide Peripheral Interface (BPI) 
Up, BPI Down, and Serial Peripheral Interface (SPI) modes. To configure the FPGA, 
one of the following options can be used:

• Xilinx download cable (JTAG)

• System ACE controller (JTAG)

• Two Platform Flash Programmable Read Only Memory (PROM)

• Linear Flash memory

• SPI Flash memory

The JTAG chain starts with the PC4 connector (commonly referred to as J1 pin), 
followed by the two Platform Flash PROM (U4 and U5), then the Complex Pro
grammable Logic Device (CPLD) (U3), and it goes through the System Advanced 
Configuration Environment (ACE) controller (U2), and the FPGA (U l). This JTAG 
chain can be used to program and access the FPGA for hardware and software de- 
bugging.The other option to configure the FPGA is the Platform Flash PROM; when 
using this option, one of two configurations can be selected by using the least sig
nificant bits of the configuration address DIP switches. The Platform Flash PROM 
holds two configuration images; however, four images can be held using compression. 
The linear Flash memory option supports up to four configuration images, in which 
data stored in the linear flash is used to program the FPGA (BPI mode). Similarly, 
the SPI configuration option is achieved through using data stored in the SPI flash 
memory; however, the DIP switches must be set to 001 to enable this configuration.

3.1.2 DDR2 SODIMM
The DDR2 SODIMM is located on the back side of the board (item number 2 in 
Figure 3.3). The Memory Interface Generator (MIG) is used to interface the DDR2 
SODIMM using the MIG tool. The MIG tool is also responsible for generating the 
proper FPGA I /O  pin selections so that they are compatible with the DDR2 interface. 
DDR2 memory expansion is achieved by installing the SODIMM modules, which will 
enable a higher order address.



Chapter 3: Literature Review 26

3.1.3 Differential Clock Input and Output with SMA 
Connectors

Differential clock signals can be used to derive high-precision signals from the FPGA 
through 50D connectors. An external function generator or clock source can drive the 
differential clock inputs feeding the global clock input pins of the FPGA. In Figure 3.2, 
Differential Clock Output is shown as number 3.

3.1.4 Oscillators
The board uses one crystal oscillator socket (X I) as a standard LVTTL-type oscillator. 
The oscillator socket is powered by a 3.3V supply and a 100-MHz oscillator. The board 
also comes with a programmable clock generator device that can be used to generate 
different clocks for the FPGA and its peripherals:

• 27 MHz, 33 MHz, and a differential 200 MHz clock to the FPGA

• 25 MHz to the Ethernet PHY (U16)

• 14 MHz to the audio codec (U22)

• 27 MHz to the USB Controller (U23)

• 33 MHz to the Xilinx System ACE CF (U2)

The crystal oscillator socket (X I) can be seen in Figure 3.2 as number 4.

3.1.5 GPIO DIP Switches
GPIO DIP switches are located in the right-bottom cornor on the front side of the 
board (item number 6 in Figure 3.2). Eight general-purpose DIP switches are con
nected to the I /O  pins of the FPGA. These DIP switches are an active-high switches.

3.1.6 User and Error LEDs
The total number of LEDs, which are controlled by the FPGA is 15, in which they 
are active-high. Eight of them are general purpose LEDs situated in a row, five LEDs 
are located near the North-East-South-West-Center-oriented pushbuttons, and two 
error LEDs. All the LEDs are colored green except the two error LEDs which are 
colored red. These LEDs are referred to as number 7 in Figure 3.2.

3.1.7 User Pushbuttons
Located near on the front side of the board (shown as number 8 in Figure 3.2), five 
active-high pushbuttons serve as general purpose pushbuttons. These pushbuttons 
are arranged in a North-East-South-West-Center orientation.



Chapter 3: Literature Review 27

3.1.8 CPU Reset Button
In a set of three pushbuttons (shown as number 9 in Figure 3.2), the CPU reset 
button is the right most button and is an active-low.

3.1.9 RS-232 Serial Port
To allow communication between the FPGA and other devices, the board has one 
male DB-9 RS-232 serial port (shown as number 12 in Figure 3.2). Since it is wired 
as a host device, it requires a null modem cable to establish connectivity between 
the board and the computer (through the serial port). Its maximum communication 
data rate 115200 bits per second. The board also supports a secondary serial port 
through the header (J61).

3.1.10 10/100/1000 Tri-Speed Ethernet PHY
The board comes with an Ethernet interface manufactured by Marvell Alaska oper
ating at 10/100/1000 M b/s. Different interfacing modes are supported by the board: 
M il, GMII, RGMII (Reduced Gigabit Media Independent Interface), and SGMII 
(Serial-GMII). It is referred to as number 21 in Figure 3.2.

3.1.11 JTAG Configuration Port
Using the JTAG configuration port (J l), the FPGA can be programmed and de
bugged. The port supports the standard Xilinx Parallel Cable III, Parallel Cable 
IV, or Platform USB cable products. The JTAG port is referred to as number 24 in 
Figure 3.2.

3.1.12 Onboard Power Supplies
The power supply circuitry generates different voltage levels on the board including
0.9V, 1.0V, 1.8V, 2.5V, and 3.3V. For 1.0V, 1.8V, and 3.3V supplies, the Texas 
Instruments PTH08T2 regulator is used to drive them. The power circuitry is referred 
to as number 25 in Figure 3.2.

3.1.13 Power, DONE, INIT Indicator LEDs
The Power indicator (PW R  Good LED) is on to show that the proper 5V supply has 
been applied (referred to as number 27 in Figure 3.2. The DONE LED is connected 
to the DONE pin on the FPGA, and it ’s on when the FPGA has been successfully 
configured (referred to as number 28 in Figure 3.2). The INIT LED is on once the 
FPGA is powered-up and completed its internal power-on process (referred to as 
number 29 in Figure 3.2).



Chapter 3: Literature Review 28

Table 3.1: Connection and FPGA Pins [18]

Component Connector on Board Label FPGA Pin
Differential Clock J10 SMA_DIFF_CLKJN_P H14

J ll SMA_DIFF_CLKJN_N H15
J12 SMA_DIFF_CLK_OUT_P J20
J13 SMA_DIFF_CLK_OUT_N J21

Oscillators X I USER.CLK AH15
U8 CLK_33MHZ_FPGA AH17
U8 CLK-27MHZ.FPGA AG18
U8 CLK .FPG A.P L19
U8 CLK.FPGA.N K19

GPIO DIP Switches SW4 GPIO-DIP.SW1 U25
SW4 GPIO.DIP.SW 2 AG27
SW4 GPIO-DIP.SW 3 AF25
SW4 GPIO-DIP.SW 4 AF26
SW4 GPIO.DIP.SW 5 AF27
SW4 GPIO_DIP_SW6 AE26
SW4 GPIO.DIP-SW 7 AC25
SW4 GPIO_DIP_SW8 AC24

User and Error LEDs DS20 LED North AF13
DS21 LED East AG23
DS22 LED South AG12
DS23 LED West AF23
DS24 LED Center E8
DS17 GPIO LED 0 H18
DS16 GPIO LED 1 L18
DS15 GPIO LED 2 G15
DS14 GPIO LED 3 AD26
DS13 GPIO LED 4 G16
DS12 GPIO LED 5 AD25
D S ll GPIO LED 6 AD24
DS10 GPIO LED 7 AE24
DS6 Error 1 F6
DS6 Error 2 T10

User Pushbuttons SW10 N (GPIO North) U8
SW11 S (GPIO South) V8
SW12 E (GPIO East) AK7
SW13 W  (GPIO West) AJ7
SW14 C (GPIO Center) AJ6

CPU Reset Button SW7 CPU RESET E9



Chapter 3: Literature Review 29

3.1.14 Program Switch
This switch is connected to the FPG A’s Prog pin. Whenever this switch is pressed, it 
clears the F PG A ’s content. The program switch is seen as number 30 in Figure 3.2.



Chapter 3: Literature Review 30

Figure 3.2: ML505 Platform (Front Side)[18]



Chapter 3: Literature Review

ornt;



Chapter 3: Literature Review 32

LLC: Logic Link Control

Figure 3.4: PLCP and PMD [19]

3.2 M A C  Implementation and MicroBlaze
When it comes to MAC layer implementation, some designers choose to work with 
FPGA boards as they can provide a more optimal testing environment; however, ASIC 
boards on the serve as an alternative approach for more customized applications.

3.2.1 Implementation of MAC Layer on FPGAs
Voice over Internet Protocol (VOIP) is one of the most common services that mo
bile devices are providing nowadays. However, VOIP faces many challenges in which 
handoff latency between one access point to another is considered to be the main 
problem. [19] suggests a new solution to reduce handoff latency in IEEE 802.11 by 
adding some modifications to the mobile devices. The authors suggest two solutions: 
the first solution is to reduce channel scan time by limiting the devices to pre-informed 
channels that are known to be the most appropriate. The second solution is limiting 
the ability of the mobile devices to proceed with handoff only when the future access 
point has been already selected. With this second approach, handoff latency is min
imized since the access point has to allocate needed resources before the connection 
is established with the mobile device.

The model proposed by [19] consists of two additional sub layers namely: Phys
ical Layer Convergence Procedure (PLCP) and Physical Medium Dependent (PMD). 
The PLCP acts as the bridge between MAC and the radio transmission, while PMD 
transmits the bits it receives from the PLCP to the wireless medium. MAC im
plementation is achieved through a module architecture shown in Figure 3.4 where 
transmit and receive operations are done separately. Handshaking and interaction 
signals shown in the figure are described in Table 3.2.

The receiver decodes the PLCP and the PMD into various classes; in other 
words, it identifies whether the incoming frame is signalization, data, or control so 
that it can process them accordingly. The MAC receiver component processes probe



Chapter 3: Literature Review 33

Table 3.2: Receiver/Transmitter Component Interface Signals [19]

Signal Description
Clk
CanaLval
Order
Phy-start
SigJevel
Prob.data
Phys_data
Prob_reqst
Ack
ScanJini

Operation clock
Sets Channel value to physical layer
Used to order the answers in a well defined order
Physical layer notifies receiver start to receive data
Indicates the signal force coming from AP
M T receives the Probe Response frames coming from APs
Data signals from physical layer
Notifies transmitter send probe request frame
Notifies transmitter and acknowledgment frame
Indicates host that all channels has been scanned completely

response frames as well as controls the Signal to Noise Ratio (SNR) level in order to 
initialize and operate handoff. On the other hand, the transmitter generates probe 
requests over different channels for handoff initialization and allows following proce
dures: event detections, parameters buffering, and message generating.

[20] proposes an evaluation model for a wireless communication systems based 
on a hardware demonstrator using an FPGA. The main aim of this hardware-based 
demonstrator is to be as close as possible to wireless systems’ behavior in a real 
environment. The demonstration system consists of an FPGA and a soft processor 
called LEON3; in which the FPGA realizes the physical layer of orthogonal frequency 
division multiplexing (OFDM) while the LEON3 supports various MAC protocol 
evaluations in terms of energy efficiency, throughput, and time synchronization.

Figure 3.5 illustrates the basic structure inside the FPGA; the gray blocks are 
components imported from external libraries. The critical elements are intercon
nected via the Advanced High performance Bus (AHB) while low data rate tasks are 
connected via the Advanced Peripheral Bus (APB). Communication between the PC 
software and the LEON3 processor is achieved through a bridge between Plugin Bus 
and the APB.

The MAC layer tasks, such as packets retransmission and framing payload into 
a packet, are implemented using a LEON3 processor. Using a C language code, these 
tasks are implemented efficiently. For example, to trigger new attempts to access the 
medium, a timer is used. As shown in Figure 3.5, the LEON3 processor is composed 
of all the gray blocks such as the general purpose 10, and the UART. Essentially, all 
of these blocks act as supporters for the LEON3 CPU block shown in the figure.

One of the problems facing Wireless Local Area Network (WLAN) efficiency is 
the maximum throughput utilized by the MAC layer in which only 50%, if not less, is 
actually being utilized. Using Spatial Division Multiplexing (SDM) and two transmit 
antennas, [21] serves to improve the throughput efficiency by using three FPGAs: two 
for implementing the physical layer and one for the Enhanced Distributed Channel



Chapter 3: Literature Review 34

Figure 3.5: Hardware Demonstrator FPGA [20]

Access (EDCA) of the IEEE 802.l i e  MAC layer. By adding a new block performing 
acknowledgment, MAC layer efficiency is improved to achieve a throughput more than 
100Mbps.

When frames are received, the MAC Receiver module (M RX) checks the header 
information in order to categorize the incoming frames. Based on the traffic category, 
all frames are classified into four Access Categories (AC): real-time voice, real time 
video, best effort, and background work. According to the access categories, various 
channel access functions are called in to provide differentiated access right for each 
AC based on the traffic priority. In case a collision occurs, the internal channel 
collision control function raises the priority for that channel right access. The access 
right is provided by the transmission opportunity (TXO P), which defines a starting 
time and a maximum duration for each access in EDCA MAC. The acknowledgment 
block aggregates several ACK frames into one frame in order to improve the MAC 
efficiency. Moreover, RTS and CTS frames are used to decrease the probability of 
channel collision.

The authors of [21] tested their proposed prototype MAC functionality in a 
point-to-point scenario. They used the following Contention Windows (CW) to max
imize the throughput; CWmin =  7 and CWmax =  15. The data packet size used 
was 1828 bytes with 28 bytes as the MAC header and 14 bytes as the ACK; the 
MAC header rate was 216 Mbps while the ACK rate was 12 Mbps. The improvement 
achieved on MAC efficiency of the Distributed Coordination Function (DCF) is about 
28.5%, i.e., the improved throughput at the receiver is about 61.5 Mbps. Since the 
authors assumed no packet error in their analysis, the test results are lower than the



Chapter 3: Literature Review 35

theoretical ones for high data rates. The MAC throughput is not only affected by the 
physical data rate, but also it is affected by the packet error rate for a specific SNR.

The EDCA protocol is investigated to test how much improvement it can add 
to the MAC efficiency. The packet length is 1926 bytes with a 26 byte MAC header 
and 14 bytes as ACK; the MAC header rate was 192 Mbps while the ACK rate was 12 
Mbps. The throughput of the higher priority AC provides better performance since 
these packets are transmitted with smaller CW  values.

[22] designed an enhanced MAC protocol algorithm to assure sufficient QoS 
for high-speed wireless data and multimedia applications. The system is built using 
SDL to implement the main control function; PRISM II chipset and ETRI are used 
to build the physical layer while the MAC has been implemented using one Xilinx 
(Virtex board) and one RISC corechip. The enhanced protocol aims to support 
isochronous and asynchronous traffic in a wireless indoor environment. By adding 
a subset function, isochronous services are maintained via negotiating the required 
level of QoS when the connection is established.

In this protocol, the access point plays an important role in reserving the band
width for isochronous services using beacon packets which define the required timing 
and scheduling for those isochronous packets. This allows for dynamic bandwidth al
locations to support time-critical applications such VoIP. The authors of [22] decided 
to move the most time-critical function implementations to the FPGA, using VHDL 
as the coding method. Their MAC design is based on two processes: transmit process 
and receive process, in which each is implemented through a number of functions to 
manage outgoing and incoming traffic.

Considering efficient memory access, the microprocessor’s performance, and 
interface selection, the MAC prototype board is designed. Using a Synchronous 
Static Random-access Memory (SSRAM) and an ARM7DMI core, one cycle access 
operation and on-chip memory are achieved as well as high speed data processing with 
low power consumption. This MAC prototype has many features; they can be listed 
as: IEEE802.il compatibility, RISC processor for MAC control functionality, vast 
SRAM capacity, support o f two physical layers (Direct-sequence Spread Spectrum 
(DSSS) and OFDM), and embedded hardwired MAC logic.

The MAC processor is implemented using SDL, which can be converted to C 
or C+-f- language. W ith the help of a C compiler, an executable program is built 
using a runtime function library, which contains SDL constructs on the target device, 
scheduling functions, and implementation operations. To build the Wired Equivalent 
Protection (W EP) security algorithm, the authors call in external C functions and 
use hardwired logic in VHDL.

[23] introduced a prototype of Software Defined Radio (SDR), which supports 
Japanese PHS and IEEE 802.11 wireless standards. In their work, the authors show 
the hardware and software architecture of the prototype, which consists of a CPU, 
a Digital Signal Processing (DSP), and an FPGA. The design is portioned so that 
each component is assigned to specific tasks; in other words, the CPU executes the



Chapter 3: Literature Review 36

MAC functions, while the DPS and the FPGA perform physical layer tasks. The 
MAC layer is examined by analyzing the resulting throughput in order to evaluate 
the proposed prototype. The measurement method used was to establish one-to-one 
cable connection between the AP and the station.

In [24], the authors modeled a Wi-Fi transmitter’s MAC layer on VHDL. The 
design consisted of five main blocks: the Data Unit Interface block, the Controller 
block, the Payload Data Storage block, the MAC Header Register block, and the Data 
Processing block. In their work, the authors focused on two blocks: the Payload Data 
Storage and the Data Processing blocks.

The Payload Data Storage block is divided into two modules: the FIFO module 
and the Data length counter module. The FIFO acts as a synchronization module 
to ensure that the rate of entering data matches the rate in the system. The Data 
length counter module, as its name indicates, simply acts as a counter in order to 
ensure that a specific number of bits of the incoming data is transmitted. The Data 
Processing block is divided into three modules: Serializer, HEC, and CRC modules. 
The Serializer module simply converts parallel input data into serial output data. 
The HEC module produces the Head Error Check bits then transmits with the PLCP 
header. The CRC produces the Cyclic Redundancy Check 32-bit field, which helps 
in error free transmission.

To design a MAC layer for the Ultra-Wideband (UWB) in an FPGA, [25] 
proposes a MAC controller that consists of three units: a Processor Interface unit, a 
Control and Data unit, and a Management unit. The Processor Interface unit sends 
suitable signals to the Control and Data unit after decoding the received commands 
from the central processor. As its name suggests, the Control and Data unit is 
responsible for controlling signal lines, which are connected to the physical layer, as 
well as validating received data. The Management unit read/writes to the data lines 
in order to manage the physical layer. The MAC controller is also modeled as a Finite 
State Machine (FSM) of seven different states as shown in Figure 3.6.

3.2.2 Implementation of MAC on Other Boards
Application-Specific Integrated Circuits (ASIC) seem to not offer the most efficient 
approach to implementing various wireless MAC layer protocols on consumers hand
sets. Actually, using ASICs for such implementation would be another cost addition 
on the already expensive approach. Moreover, integrating different standards on a 
single handset using ASIC will lead to having a separate implementation for each 
standard. As the demand on advanced wireless devices grows, most manufacturers 
will tend to introduce devices capable of handling various wireless standards. How
ever, the consumer handset market has very strict requirements; such as being cheap, 
flexible, and power-efficient, making the implementation of those handsets even more 
complicated.



Chapter 3: Literature Review 37

Figure 3.6: WiMedia UWB [25]

This complexity problem is, in fact, applied to both MAC and physical layer 
standards. For that, [26] proposes a Dynamically Reconfigurable MAC Processor 
(DRM P) aiming to cope with all MAC protocols commonly using wireless protocols. 
The authors of [26] investigated three wireless standards: IEEE 802.11 (WiFi), IEEE 
802.16 (W iM AX), and IEEE 802.15.3 (WPAN). In their study, they found similari
ties between these standards in the structure and functionality including header and 
frame redundancy, and fragmentation. On the other hand, some differences in these 
standards were found including differences in Automatic Repeat Request (ARR) and 
R TS/C TS Handshake.

The idea behind the DRMP design is to partition the system into reconfigurable 
hardware and a general-purpose microprocessor. The reconfigurable hardware part 
of the system is basically restricted to time-critical functions such as packet process
ing operations involving transmission and reception. Most of these functions overlap 
with the three wireless standards considered, motivating faster performance as well 
as quicker implementation. Conversely, the microprocessor is confined to MAC man
agement and high-level control functions because these functions are not time-critical 
and are often better done in a software environment.

The MAC hardware has a critical subset that is active as long as the device 
is in operation mode. Timers, logic for detecting and reacting to events, and state- 
information storage and update functions are integrated into this critical subset. The 
DRMP dataflow module is designed to be able to provide a certain sequence of func
tions by using Reconfigurable Function Units (RFU) connected in different ways to 
achieve that. The main advantage of designing this dataflow in such a way is that it



Chapter 3: Literature Review 38

is scalable and requires less reconfiguration of data.
The DRMP implements the MAC layer using a function-specific RFUs which re

use hardware resources leading to better efficiency than FPGA or software. Moreover, 
RFUs reduce the number o f interconnections which will yield an improvement over 
FPGA implementation.

ZigBee is a standard that addresses remote sensing and monitoring applica
tions. [27] discusses a SoC implementation of ZigBee for MAC and the physical layer 
standard. The MAC layer is managed through an entity called the MLME that is 
responsible for objects related to the MAC; similarly, the physical layer is managed 
through an entity called the PLME, which manages objects related to the physical 
layer.

Two types of channel access mechanisms are allowed depending on the network 
configuration in which the superframe structure is used. When beacon messages are 
not enabled in the network, an unslotted CSMA-CA is used. The device will wait 
for a random backoff time before transmitting its data. If the channel is busy, the 
device will have to wait for another backoff time; otherwise, it can proceed with the 
transmission. When beacon messages are enabled in the network, the superframe 
structure is used. The superframe has one active portion and one inactive portion; 
transmission is made during the active portion while the device goes into low power 
mode during the inactive portion. In this configuration, devices are assigned to 
transmit in either guaranteed time slots or slotted CSMA-CA.

This configuration is implemented using Specification and Description Language 
(SDL) and the Message Sequence Chart (MSC). The authors used Telelogic’s TAU 
SDL Suite to extract the C code from the SDL file with some modifications to match 
the code for the 8-bit embedded microprocessor using a 16-bit address instead of the 
32-bit. These modifications led to a 70% reduction in the code size, implementing 
the MAC function with a memory code of 57 Kbytes. The system functionality was 
confirmed by sending and receiving MAC and physical primitives in the correct order.

3.2.2.1 Weighted Round Robin Scheduler

[28] illustrates how to design a distributed MAC Weighted Round Robin (W RR) 
scheduler imitating a network layer scheduler. W R R  is defined as the simplest ap
proximation of generalization processor sharing for a packet-based network. Each 
service share has a representative integer weight; for a specific session, the frame is 
calculated ahead of time by a server that utilizes the service share weights. Using 
this model, throughput performance can be estimated for a given station’s CW  size 
as well as calculating the CW  sizes for specific throughput.

The W R R  scheduler is implemented in the network layer of the access point of a 
WLAN; however, the design is considered a MAC layer scheduler instead. Two reasons 
explain the situation: first, from an uplink prospective, assuming no polling protocol 
is used, EDCF MAC is the only method to prioritize access to various stations.



Chapter 3: Literature Review 39

Table 3.3: Throughput Performance of Network and MAC W R R  [28]

Network Layer W R R  +  DCF MAC Layer W R R  +  EDCF
Throughput
B W 1/BW 1
B W 2/BW 1
B W 3/BW 1
B W 4/BW 1
B W 5/BW 1
B W 6/B W 1

0.78145 ±  0.00001 
1.0000 
0.4998 
0.2499 
0.1250 
0.0625 
0.0312

0.78875 ±  0.00003 
1.0000 
0.5002 
0.2479 
0.1238 
0.0619 
0.0307

Table 3.4: Access Delay Performance of Network and MAC W R R  [28]

Flow ID Ave (ms) Std 95% Cl MIN (ms) M AX (ms)
Layer 3 W R R 1 22.8 41.4 0.114 7.41 254

2 37.9 87.3 0.34 15 377
3 68.1 140 0.768 15 438
4 129 196 1.53 15 469
5 250 234 2.58 15 484
6 491 0.268 0.00417 483 492

MAC W R R 1 15 7.98 0.022 7.37 74.6
2 29.9 19.2 0.0748 7.37 606
3 60.7 45.4 0.251 7.37 1180
4 121 97.1 0.76 7.37 2280
5 224 188 2 7.37 5750
6 454 390 5.91 7.37 7910

Second, from a downlink prospective, higher throughput and smaller average access 
delays can be achieved with a MAC layer scheduler.

When comparing the throughput performances of MAC and network layers, [28] 
clarifies the fact that M AC’s can achieve a higher throughput since the time wasted 
in backoff is reduced as a result of the competition between multiple access instances. 
On the other hand, the delay of the MAC layer in W R R  of low priority flows is higher 
than what the network W R R  achieved. The reason for that is the need to retransmit 
more frequently as a result of the virtual resolution policy. Table 3.3 and Table 3.4 
show more results.

3.2.3 MicroBlaze Implementation
MicroBlaze is a 32-bit embedded soft processor built by Xilinx and implemented 
in their FPG A boards. It has a wide range of various uses; some developers use 
this processor as a scheduler for different network protocols, while others use it a as



Chapter 3: Literature Review 40

queuing system for various processes. In the literature, we found various applications 
for MicroBlaze including a Real Time Operating Systems (RTOS) scheduler, a Self 
Adaptive Networked computing Element (SANE) test bench, an embedded Global 
Positioning System (GPS) receiver, and a video streaming server. On the other 
hand, some researchers presented special modifications to the MicroBlaze processor 
to achieve specific targets. For example, [29] proposes a modified architecture of the 
Fast Simplex Link (FSL) bus to reduce the system size and improve the bus speed 
by 33%.

To investigate the advantages and disadvantages of different RTOS schedulers, 
[30] discusses three approaches to scheduler implementations. The first approach is 
called software-based (SoRTS) in which the implementation is built around a pro
cessor that runs the scheduler and other application tasks. The second approach is 
called software-software (Co-SoRTS) in which two processors co-exist; one processor 
for the scheduler and the other one for the application tasks. The third approach is 
called hardware-software (HaRTS) in which the processor runs the application tasks 
while the scheduler is built-in and hardware-based. To build these approaches, the 
authors used a Xilinx Virtex-II FPGA board, Xilinx EDK, and ModelSim. MicroB
laze was used to validate the implementation of the software scheduler, with a 50 
MHz operating frequency for prototyping purposes.

The first approach, SoRTS, is composed of six elements: MicroBlaze processor, 
Block RAM  memory, On-chip Peripheral Bus (OPB), a communication interface, 
interrupt and time control, and UART. The application tasks that are related to 
deadlines, task ID, period, or execution time are handled by MicroBlaze. The Block 
RAM  is used to store tasks scheduled to be executed and tasks that are waiting to 
be executed in two different data structures; the first is called the Ready queue and 
the other one is called the Idle queue. While the OPB allows communication between 
the components using its 32-bit bus, the communication interface allows the software 
to communicate with the hardware. In other words, by using the communication 
interface, the MicroBlaze’s RTOS and tasks applications can communicate with the 
interrupt and time control hardware. The UART provides a communication channel 
between the Xilinx board and the host computer.

The second approach, Co-SoRTS, is similar to the SoRTS architecture but has 
two MicroBlaze processors instead of one. The tasks which are stored in the Block 
RAM  are performed by one processor while the other processor is used as a RTOS 
scheduler. In the third approach, HaRTS, employs a dedicated hardware component 
for scheduling tasks instead of using a software approach. This dedicated compo
nent consists o f four main modules including a scheduler module, queue control, a 
communication interface, and time control. The scheduler module is built in three 
blocks: fail process, running process, and ready process. Using stored parameters in 
queue control, the scheduler module prioritize the tasks to be performed. The time 
management is handled by a time control module.



Chapter 3: Literature Review 41

RF-Front End SRAM
NJ1006A 64 Mbytesdii .... ai.....

Correlator
Module

MicroBlaze 
Soft Processor Core

XC2VP30 FPGA

~ u ...............
External interface 

Module

H E
Flash

32Mbytes

Figure 3.7: Embedded GPS Receiver [32]

In comparison, the author found that CPU utilization in the first approach, 
SoRTS, is affected by the increase in context switches time while the other two ap
proaches, Co-SoRTS and HaRTS, are not affected. In terms of register usages, HaRTS 
required the highest number o f registers in its communication interface, which was 
16 registers compared to two registers by SoRTS and three registers in their commu
nication interfaces.

[31] uses MicroBlaze to build a platform to investigate the SANE concept by 
using simple CPUs controlling the functionality of data processing blocks. The plat
form employs a MicroBlaze CPU along with common peripherals such as a DDR 
RAM controller and a RS232 interface. It also has a simple PicoBlaze CPU, which is 
used to schedule hardware path operations. This platform consists of three program
ming levels; the first level is done in MicroBlaze, second level is done in PicoBlaze, 
and the third is in the hardware.

To design a full GPS receiver using a single chip, [32] necessitates a system 
that is based on an FPGA hardware environment and MicroBlaze as the system’s 
software environment. As shown in Figure 3.7, the system consists of five main 
blocks. The RF chip acts as a down converter of the RF signal received to an IF 
digital 2-bit signal. The signal correlation is done by the hardware on the board; while 
MicroBlaze is responsible, for the baseband signal processing, the Coarse/Acquisition 
(C /A ) code generation and the Digitally Controlled Oscillator (DCO) increment. 
The SRAM is used to store temporary data, while the Flash chip stores the program. 
For communication with other devices, the external port module includes serial and 
debugging ports.

Aside from its powerful computational capabilities, the authors decided to im
plement their solution using this configuration, FPGA and MicroBlaze, since it will 
provide more flexibility in accommodating other positioning systems using about the 
same hardware. In other words, by updating and applying slight modifications to the



Chapter 3: Literature Review 42

software, a hybrid GPS/Galileo receiver can be achieved with dual frequency capa
bilities. Moreover, the FPGA approach could be used as a test bench for an ASIC 
design in the future.

The MicroBlaze processor functions in the GPS receiver are mainly; first, in
terfacing with the custom user-defined systems. Second, controlling and managing 
the acquisition and tracking phase increment. Third, computing navigation solutions, 
sending positions, and velocity and time information. The custom user-defined system 
refers to the correlator which was designed with the help of the Xilinx Tools Gener
ator. Some algorithms are implemented on MicroBlaze for managing and calculating 
the required navigation solutions.

[33] proposes a platform that enables the video streaming of a pipelined H.263 
encoded compression on an embedded FPGA board. Several proposed architectures 
have been suggested by designers in which they range from hardware-based to systems 
based fully on a processor. The MicroBlaze processor is used in this system to control 
the data flow and to instruct the writing/reading from memory.



43

Chapter 4
System Architecture

Indoor wireless networks, in most cases, are nothing but an extension of the corporate 
main Ethernet network. In other words, unreachable offices by the wired network are 
commonly connected to the main network through a wireless hub via an Ethernet 
port. Since the 90s, Ethernet dominated the wired LAN market by far, ahead of 
other technologies such as token ring. Therefore, designing a wireless MAC controller 
should take into consideration the Ethernet’s frame structure. However, implementing 
the MAC controller might require slight modifications on the standard Ethernet frame 
structure.

The first section of this chapter uses MicroBlaze soft processor to test the board, 
including its interfaces and memories. The second section introduces a strict scheduler 
with detailed designs of each component including the system’s memory block. This 
scheduler utilizes the type segment of the Ethernet frame for a different purpose than 
its original. In fact, the type segment is carrying the class of the payload’s traffic;
i.e., whether its voice, video, or best effort. The last section proposes a scheduler 
design with the help of Xilinx Ethernet controller; this scheduler actually implement 
an FSM model to prioritize the traffic based on its class.

4.1 Board Testing
To test the board, MicroBlaze soft processor offers a convenient approach to verify 
the board’s interfaces [34]. In addition to the memory components needed for the 
processor, it also has two Input/Output devices which are the RS-232 interface, and 
the 8-bit LED as shown in Figure 4.1.

As it can be seen in the figure, three types of buses are connecting the processor 
(microblaze) to other components. The upper set of buses are connected to the local 
memory’s controllers through two slave local buses: climb (data local memory bus) to 
dlmb.cntlr (dlmb controller) and ilmb (instruction local memory bus) to ilmb-cntlr 
(ilmb controller). The lower set of buses are connecting the processor to the periph
erals through master bus: rnb-plb (master bus processor local bus). Similar to local 
memory bus, mb_ plb is connected to to the processor via two buses: DPLB (Data 
plb) and IPLB (Instruction plb). This bus is connected to both slaves in this desgin: 
LEDs and RS232 via xps.gpio (XPS general purpose input output) and xps-uartlite



Chapter 4- System Architecture 44

'**» ash*

M M N J iM H ii 
m b _ p lb

I

m
'im '0 *prì&

EDK VERSION
ARCH
PART

G E N F R A T tD

SPECS
12 3 

vlrtexS

jtc5v1x110tfT1136-1 

M on A p r i l  19:01:35 2011

bus Intu ftêc* 

t h t r s d b u  $

KEY
SYMBOLS

H u s  c o n fine Ven t  f■•w n a i  Ports

^ j j^ j  m ts ie r o r in i t ia to i  M  in p u t

Ä .i.»ü ,.arg..
M  Incut

mss (or sfati»

Interrupt»

B u t  S ta n d trd

OCR

FCB

FSL

LU B

¡OPS
ÉLB

S O C M M U S E R  P2P 

X ibnx P2P

Figure 4.1: MicroBlaze processor used to test the board



Chapter 4 : System Architecture 45

(XPS UART lite) controllers, respectively. Finally, to debug the processor, the mdm 
(MicroBlaze Debug Module) is connected to the processor through DEBUG port.

The main aim of this test is to check the communication between the computer 
and the board through a testing word, and also to examine the internal memories as 
well as the LEDs. The following (Table 4.1) are the MicroBlaze’s system specifica
tions which were automatically generated by XPS wizard:

Table 4.1: MicroBlaze Processor Specifications

Created by Base System Builder Wizard for Xilinx EDK 12.3 Build EDK_MS3.70d
Target Board Custom
Family virtex5
Device xc5vlxll0t
Package ffll36
Speed Grade -1
Processor number 1
Processor 1 microblaze_0
System clock frequency 75.0
Debug Interface On-Chip HW Debug Module

4.2 T P -T D M A  Scheduler: Systematic Approach

The systematic approach will be discussed in the coming sections provides a deeper 
sight at the suggested system compared to the overall design will be suggested in 
the conceptual approach section. The system design here looks into a single com
munication setup between the base station and the wireless station regardless of its 
direction. The system consists of four main components as shown in Figure 4.2: 
Controller, MEMORY block, Scheduler, and Frame Constructor.

As it can be observed from the system, the Incoming Frame (shown in Fig
ure 4.3) is split into two segments where Frame Spec is sent to the Scheduler and 
Payload is stored in the MEMORY block. Once the Scheduler decides which Frame 
Spec to be transmitted, the Frame Constructor calls the associated Payload (using the 
Payload Tag generated initially by the Controller) and then constructs the Outgoing 
Frame.

4.2.1 Controller
The Controller (shown in Figure 4.4) consists of three blocks: Preamble Check block, 
CRC Check block, and the Frame Ripper block. The Preamble Check block performs 
mainly a comparison between the first 64 bits of the incoming frame with the standard



Chapter 4- System Architecture 46

Frame Speer

Figure 4.2: System’s Main Components

Figure 4.3: Fields of the Incoming Frame



Chapter 4- System Architecture 47

expected preamble of Ethernet frame. This comparison operation is implemented 
using an XO R  gate; if the result of the comparison is all zeros, then the frame preamble 
is correct. CRC Check block tests the incoming frame’s payload to check whether 
there were errors during the transmission. The CRC Check block contains multiple 
Wrapper Adders used to compare the CRC field with the payload. If the comparison 
result was all ones, then the CRC is correct, i.e., no errors during the transmission. 
At this stage, the incoming frame enters the Frame Ripper block which performs two 
main functions:

• Fragments the frame to two pieces, Frame Spec and Payload.

• Generates the Payload Tag.

The Frame Spec is actually carrying three fields of the incoming frame in addi
tion to the Payload Tag. Those three fields are: the destination address, the source 
address, and the type of this frame.

Incoming
Frame

Payload

Frame Spec:
Dest, Sour, Typ, 
Payload Tag

Figure 4.4: Controller Detailed Design

The Frame Spec is sent to the Scheduler while the Payload and the Payload 
Tag are sent to the MEMORY block. The Payload Tag is generated in order to keep 
a track of the payload associated with a particular Frame Spec; in addition to that, 
the Payload Tag is used as an address in the MEMORY block as well as a method to 
fetch the desired Payload from the MEMORY by the Frame Constructor.

4.2.2 MEMORY Block
The MEMORY block acts as a storage element to store the payload meanwhile 
scheduling processes are being performed. This block, as shown in Figure 4.5, consists



Chapter 4 : System Architecture 48

of a Defragmenter, multiple RAMs, and a Fragment. The Payload and the Payload 
Tag are sent by the Controller to the MEMORY block, where the Payload Tag is used 
to create the RAM  address in which the associated Payload will be stored.

The Defragmenter works as a splitter of the payload received from the Controller 
in which segments of 128 bits are sent to each RAM block with a copy of the Payload 
Tag to store that segment in a specific address. On the other hand, the Fragment 
receives the Payload Tag to be read from the Frame Constructor, and then calls it 
from the RAM  blocks to gather it in one segment to be sent to the Frame Constructor. 
It is to be noted that payload segments are stored in the same RAM address in each 
RAM block.

Payload Tag in Payload

I I
Defragmenter

Write input

Address to writeI

Read output

Fragment

Payload Tag out

Payload

Figure 4.5: MEMORY Block

4.2.3 Scheduler
The Scheduler, shown in Figure 4.6, consists of two main blocks; a Classifier and a 
Prioritize. The Classifier simply distinguishes different Frame Spec classes of traffic 
and then sends each Frame Spec to the Prioritize according to its class. Basically, 
the Classifier checks the first two bytes of the Typ signal; 0x0011 refers to a voice 
payload, 0x0022 refers to a video payload, and 0x0033 refers to best effort payload.

The Prioritize simply works as a strict scheduler in which only four segments 
are examined in order to sort them. Priority is always for voice payloads; once there 
are no voice payloads to schedule, video payloads are set as a second priority leaving



Chapter 4'- System Architecture 49

Frame Spte:
Dest, Sour, Typ, 
Payload Tag

Figure 4.6: Scheduler for Straight Scheduler Approach

best effort as the lowest priority. To explain how the Prioritize works, let’s consider 
an incoming frame of 4 segments. The first segment is of a video type (segment A), 
second is of best effort type (segment B), third is of voice type (segment C), and 
fourth is of best effort (segment D). The resulted outgoing frame should be sorted as 
follows: segment C, segment A, segment B, then segment D.

4.2.4 Frame Constructor
The final component of the system is the Frame Constructor. As its name suggests, 
it simply gathers all frame components and then constructs the frame to be ready for 
transmission. As shown in Figure 4.7, the Frame Spec is received from the Scheduler 
and then a copy of it is sent to the MEMORY block in order to call the associated 
payload with that Frame Spec. Once the payload is entering the Frame Constructor, 
a copy of the payload is sent to the CRC to generate the 32-bit CRC. The Frame 
Constructor provides Preamble and Frame Gap generation to form the final Ethernet 
outgoing frame.

4.3 T P -T D M A  Scheduler: Conceptual Approach

TP-TD M A protocol can be described through the algorithm shown in Figure 4.8. 
This protocol is designed for a customized system configuration in which a base 
station serves four clients. Each client receives its traffic (downloading frames) on 
segment-base according to the traffic class, while clients are allowed to upload their 
traffic similarly based on their class.

Voice traffic is assigned fixed-sized slots on both downlink and uplink frames, 
while video and best effort traffic is allocated their bandwidth according to the chan-



Chapter 4- System Architecture 50

Fram«Spec:
Dest, Sour, Typ, 
Payload Tag

Outgoing
Frame

Figure 4.7: Frame Constructor Main Blocks

nel availability. However, video traffic is prioritized over data traffic which will be 
queued for transmission once video packets are delivered. The downlink frame starts 
with a beacon packet to carry the scheduling information to all stations in the sys
tem. The MAC header contains both transmitter’s and receiver’s addresses which 
are distinguished using an addressing system of one byte to identify the station. In 
that byte, the first four bits are assigned to the network id while the last four bits 
are assigned to the station id.

To implement the TP-TD M A protocol using Xilinx Vertix-5 FPGA, the sys
tem’s building blocks consists of three subsystems; an Ethernet Controller, Memory, 
and a Scheduler as shown in Figure 4.9. The Ethernet Controller will simply receive 
Ethernet frames and process them so the Scheduler can sort them according to the 
traffic class. The traffic is fed to the system through a standard RJ45 LAN port, in 
which the Ethernet Controller will separate the payload from other frame’s sections. 
The payload will be stored in the memory while scheduling processes are taking place 
in the Scheduler.

4.3.1 System’s Components Description
As shown previously in Figure 4.9, the system consists of three components. The 
Ethernet Controller and the Scheduler will be discussed in further details in the 
following sub-sections.



Chapter 4-' System Architecture 51

Figure 4.8: TP-TD M A Algorithm



Chapter 4 ' System Architecture 52

Memory

Figure 4.9: System Building Blocks - Ethernet Controller and Scheduler

4.3.1.1 Ethernet Controller

Using ISE CORE Generator, an Ethernet Controller can be created either with the 
standard features or with customized features to suit the required design. Therefore, 
to design the Ethernet Controller for TP-TD M A protocol, the CORE Generator cre
ates The LogicCORETM IP Tri-Mode Ethernet Media Access Controller (TEMAC)
[35] with the following features. The physical interface type is chosen to be Gigabit 
Media Independent Interface (GMII) and the MAC speed is Tri speed, i.e. 1 Gbps, 
100 Mbps, or 10 Mbps. The client interface is designed to enable clocks at transmitter 
(TX ) and receiver (RX). Management interface is chosen to be accessed with a con
figuration vector containing all management details. Also, the controller is designed 
to have full-duplex communication and with no address filter.

As shown in Figure 4.10, the created Ethernet Controller consists of five com
ponents. The first two components are TX  and RX interfaces acting as the client 
interface facilitating communication between the upper layer and the Ethernet Con
troller. Clock/Speed Indicators receive the clock that will control the TX  and RX 
interfaces as well the reset signal to control the whole core. It is to be noted that 
the T X  and RX interfaces can have independent clocks. GMII Physical interface 
communicates with the physical layer to send frames to the upper layer and receive 
frames from the physical layer. The Configuration component is an essential compo
nent of this core; it has only one signal of 68-bits carrying all management settings
[36] . Further details about configuration vector are provided in Appendix A.

Table 4.2 describes all signals of the Ethernet Controller. When there is a frame 
to be transmitted on c l ie n te m a c tx d  port, the frame should be validated by having the 
port c lie n te m a c tx v ld  and c lie n te m a c tx e n a b le  high. After the first byte is transmitted, 
e m a c c lie n ttx a c k  goes high. When a frame is sent from the MAC to the RX interface, 
it will be received on e m a c c lie n tr x d  port.

On the physical side, frames are received to the MAC through p h y e m a c r x d  port; 
while they are transmitted to the physical side from the MAC through e m a c p h y tx d



Chapter 4- System Architecture 53

Table 4.2: Signal Description of the Ethernet Controller

Signal Description
clientemactxd (8)
clientemactxdvld
clientemactxenable
emacclienttxack
clientemacrxenable
emacclientrxd (8)
emacclientrxdvld
emacclientrxgoodframe
emacclientrxbadframe
reset
txgmiimiclk
rxgmiimiclk
speedislOO
speedislOlOO
phyemactxenable
phyemacrxd (8)
phyemacrxdv
emacphytxd (8)
emacphytxen
emacphytxer
tieemacconfigvec (68)

Frame data to be transmitted
Control signal for clientemactxd
Clock enable for TX  interface
Handshaking signal
Clock enable for RX interface
Received frame data
Control signal for emacclientrxd
To indicate good frame reception
To indicate bad frame reception
To reset the Ethernet controller
Clock for the transmission of data
Clock for the reception of data
Asserted when the Ethernet is operated at 100 Mbps
Asserted when the Ethernet is operated at 10 Mbps
Clock enable for GMII Physical interface
Received data from PHY
Control signal for phyemacrxd
Transmitted data to PHY
Enable control signal to PHY
Error control signal to PHY
Configuration management vector



Chapter 4 • ' System Architecture 54

emacclienttxack

emacclientrxd

emacclientrxdvld

emacclientrxgoodframe

emacclientrxbadframe

speedislOO

speedis10100

emacphytxd { to  PHY la y e r) 

emacphytxen 

emacphytxer

Figure 4.10: Ethernet Controller Components and Signals

port. Frames are transmitted on ports of 8-bits format as mentioned in Table 4.2.

4.3.1.2 Scheduler

The Scheduler is modeled as an FSM of 18 states shown in Figure 4.12. The principle 
idea of this FSM can be simplified as follows; StateOO is the reset state, StateOl is the 
beacon transmission state, State02-State05 are the voice downloading states, State06- 
State09 are the video and best effort downloading states, Statel0-Statel3 are best 
effort uploading states, Statel4-Statel7 are the voice uploading states.

In StateOO, the system forces reset port to go high and as a result the core 
resets all ports. Once t i m e -m a x  transition signal is high, i.e. the time limit to stay 
in StateOO expires, the system moves to StateOl in which it will broadcast a beacon 
message to all stations. Similarly, once t im e -b e a c o n  goes high, the system moves to 
Stat02. For State02-State05, the transition signal is t i m e - V O ; it goes high once the 
station sent its voice frame or the time limit has expired. For State06-State09, the 
transition signal is t i m e -V I B E \  it goes high once the station sent its video and best 
effort frame or the time limit has expired. For Statel0-Statel3, the transition signal 
is t i m e - u B E ; it goes high once the station uploaded its best effort frame or the time 
limit has expired. For Statel4-Statel7, the transition signal is t i m e - u V O ;  it goes high 
once the station uploaded its voice frame or the time limit has expired.



Chapter 4- System Architecture 55

emacclienttxack

emacclientrxd

emacclientrxdvld

emacclientrxgoodframe

emacclientrxbadframe

speedislOO

speedis10100

elk

Scheduler

____!

>  clientemactxdvld

— ► phyemacrxdv

8 ^ ^  tieemacconfigvec 

— ► reset

>  clkenable

Figure 4.11: Scheduler Block

reset \

-^ S ta te O ^ ------tin

f  time_beacon

from any 
state

time max ►( StateOI 1-

'  ..V  y
time beacon-

time_VO
\

State03

time_VO
\

time VOu

time_VIBE

r  1

time VIBE

time VO

*t State04

V,

time_VÖ

-time VO

time VIBE

State05

time_VO

X
State09 1— . I------------------- f State08 V --

\

\  "time VIBE

■( Statelo \
V J

time uB E /^/

tim eXlBE

Jl.
X

y  v
time VIBE

Ì
\  lime VIBE

time_uBE/

-1 Stateli

time uBE J \ .. X
time_uBE J

(  \
\

time uBË

State12 h

.  J  
J time uBE

»  l
time_uVO

y  i
-j State 17 J--x  1--------

V
X

time uVO time uVO

Statetô

timiuVÖ timejjVÖ

H State 15 j —^  1—

.J  )
time uVO

is '

State13

X
JL
State14

N

time uBE

‘ï ..
\  time_uVO

Figure 4.12: FSM Model for the Scheduler



Chapter 4 ■' System Architecture 56

4.3.2 Design Implementation with VHDL
Using VHDL, the system can be implemented by defining the memory and the Eth
ernet Controller as components added to the Scheduler. Since the memory is acting 
as an input data feeder, the code will use specific input frames in order to compare 
them to the resulted output. The code assigns specific time for the transition signals; 
in addition to that, a timer signal is acting as the checking signal whether the time 
limit has expired or not[37] [38]. Two signals perform the transition from one state 
to another; p r s t a t e  and n x s t a t e .  After declaring all involved signals, two timing 
processes are defined. One is the clock process, and the other one is the reset process; 
both of them use w a it f o r  command. There are two processes that make the transi
tion from one state to another as well as assigning all corresponding signals’ values 
at specific state[39].

The first process is sensitive to changes on the clock and reset signals. In this 
process, a counter signal (c o u n t )  is assigned the value that had been given to the 
timer of the current state. Once the timer equals to the count, the process moves to 
the next state and resets the count. However, if the reset signal is high, the process 
goes back to StateOO regardless of the counter’s value; also, it resets the count.

The second process is sensitive to changes on p r s t a t e .  Once p r s t a t e  is assigned 
a new value, i.e. the FSM moves to a different state, the process moves to the next 
state using case and when commands. All signals are assigned the corresponding 
values at that state. It can be noticed that t ie e m a c c o n fig v e c , c l ie n te m a c tx d , and 
p h y e m a c r x d  signals are the ones being assigned new values at each state. The signal 
t ie e m a c c o n fig v e c  contains the address of the frame’s destination (in the last 48 bits), 
c l ie n te m a c tx d  carries the frame sent from the upper layer to the MAC layer, while 
p h y e m a c r x d  carries the received frames from the physical layer.



57

Chapter 5 
Results

This chapter introduces and discusses the results obtained from the work of Chap
ter 4. The Results chapter is divided into three sections; similar to the approach 
followed in the System Architecture chapter. This chapter investigates the methods 
and approaches proposed to test the targeted board, as well as the scheduler design 
suggested for triple-play services.

The first section presents the testing results obtained using MicorBlaze soft pro
cessor. The aim of this test was to investigate the possibility of establishing commu
nication between the board and the computer as an initial step to utilize MicroBalze’s 
capabilities to program the board. The following sections present the results achieved 
for the proposed scheduler. In the second section, the systematic approach is exam
ined by testing each component of the design through applying various input signals 
to the system. Similarly, in section three, the conceptual approach is examined by 
testing both the Ethernet Controller and the Scheduler by applying various input 
signals to observe the system’s responses.

5.1 Board Testing Results

5.1.1 Results Presentation
Designing a MicroBlaze soft processor is a considerably smooth process thanks to XPS 
wizard. However, customizing that design to the targeted objective introduces some 
complications as to figuring out the specifications required to be given for hardware 
deployment on the board. In fact, the first step to implement the design on the board 
is to identify the processor’s external pins and associate them with the correct pins on 
the FPGA. That association is achieved by creating the ucf file, which stands for user 
constraints file. After adding the ucf file to the main design, the processor’s creation 
phase is completed; i.e. the hardware phase of creating the MicorBlaze processor is 
completed.

In order to program the processor, the design should be exported to SDK which 
will create the software application controlling the processor. SDK at this stage 
creates a hardware platform to match the processor’s design specifications that will 
allow C coding files (the software application) to instruct the processor. Once the



Chapter 5: Results 58

software application is checked, the code can be downloaded to the board. To observe 
the results, a Hyper Terminal session is established with the following specification:

• Bits per second: 115200.

• Data bits: 8.

• Parity: None.

• Stop bits: 1.

• Flow control: None.

The board is now connected to the computer using a serial cable via RS232 port, 
while the JTAG port is connected to the computer using the downloading cable. This 
concludes the physical setup on the board making it ready to receive the bit stream 
file.

The first test is intended to ensure that codes are correctly deployed on the 
board and then correctly sending associated messages back to the computer to be 
displayed on the Hyper Terminal. For that, the code simply runs a print function 
with a hello world message to be displayed as follows:

print ("Hello World");
The second test is intended to check the communication between the FPGA 

on one side and the peripherals in the processor on the other side. Peripherals in 
the design include the LED and the RS232, both of them are tested using different 
functions. The test starts with the following message:

print ("-- Entering main---");
Then the function to test peripherals is called and print the following message:

print("Running GpioOutputExample() for LEDS...");
If the communication is established correctly, the following message is printed on the 
screen:

print("GpioOutputExample PASSED.");
If not, the following is printed:

print("GpioOutputExample FAILED.");
After that, another function is called printing the following message: 

print("Running UartLiteSelfTestExample() for mdm_0...") ;



Chapter 5: Results 59

f̂J{iheîâ|J©̂ ts.̂ /5r:c/î«»îpriRhx »

. m . H : & H ' til * tri - if * 0
-  V  < p  *  =■■:..

pbrer "¿Z \  ^  D

__________ j±
1- applicationjO 
.world JO 
5
ieral_tests_D 
Inaries 
ldudes 
sòug

p gplojìeader.h 

çi testperiph.c 

2Ì uartlite_header,h 

ç| xgpto_tapp_example.c 

É  xuartlite_5©!ftest_öxarftple, 

5 Iscrlptld 
latone_bsp_0

S  mair.c \ &  xuarl:lte_selftest_exa 

i n t  m a in O

XCACHE_ENABLE_ICACHE( ) ;  
XCACHE~ENASLE~PCACftE l Ì

•* ''

& Ì xgpio_tapp..example,c

; & 4  * ■

[cj testperiph.c ^

p c in
» connection - Hyper Terminal

i d  Problems y] 

; program FP<3A

fite Edit View Cal Transfer Heb

O ô î  aQ e  Bi1

Hello World 
— Entering main—

Running GpioOutputExample() for LEDS... 
GpioOutputExample PASSED.

Running UartLiteSelfTestExample!) for mdm_0. 
UartLiteSelfTestExample PASSED 
— Exiting main—

EË101 C/C++ I • 

a î  Outlin Si 'V <*> Make I ^

A ^ Xs * *
.jy  stdio.h 
U  xparameters.h 
11 xenv_standak>ne,h 
Ï I  xbasic.types.h

a

Figure 5.1: Board Testing Result

Similar to the previous the function, this function checks the communication between 
the board and the computer through the RS232 to ensure that debug function is fea
sible. If the communication is established correctly, the following message is printed:

print("UartLiteSelfTestExample PASSED");
If not, the following is printed:

print("UartLiteSelfTestExample FAILED");
The following message concludes the test: 

print("-- Exiting main---
Figure 5.1 is a print screen of the test showing the results obtained. As it can 
been seen, the communication is established correctly and both tests’ results were 
successful. To evaluate the board’s utilization this design required, Table 5.1 provides 
some utilization figures and usages in terms of slice registers and look up tables (LUT). 
Further details are presented in Section B .l.



Chapter 5: Results 60

Table 5.1: FPGA Usage Report - Device Utilization for MicroBlaze Testing

Slice Logic Utilization Available Used (Utilization)
Number of Slice Registers 69,120 1,631 (2%)
Number of Slice LUTs 69,120 1,879 (2%)
Number of occupied Slices 17,280 965 (5%)
Number of bonded IOBs 640 12 (1%)
Number of BlockRAM /FIFO 148 8 (5%)
Number of BUFG/BUFGCTRLs 32 2 (6%)
Number of BSCANs 4 1 (25%)
Number of DSP48Es 64 3 (4%)
Number of PLL_ADVs 6 1 16%)

5.1.2 Results Discussion
The main objective of creating a MicroBlaze soft processor is to test the board’s 
connectivity with the computer and observe the communication results on the Hyper 
Terminal. The ’’ Hello World” message in Figure 5.1 shows that the code communi
cates properly with the processor, allowing the second test to focus on testing the 
peripherals only. Similarly, we can see that the LEDs test as well as the debug connec
tivity passed. Another observation can be made on the board’s utilization made by 
MicroBlaze as seen in Table 5.1. In that table, it can be easily concluded that Micor- 
Blaze’s consumption is relatively low, as only 2% is only consumed of the board’s 
Registers and LUTs.

Even though the MicroBlaze soft processor approach seems remarkably a smooth 
implementation approach, this soft processor requires a great deal of technical train
ing in order to utilize its capabilities. In addition to that, since MicroBlaze is an 
intellectual property of Xilinx, it makes it harder for academic researchers to get 
some of MicroBlaze’s features. However, MicroBlaze would still be a highly recom
mended approach to follow if there were no time frames to meet as it might be a 
time consuming process to search for available resources other than Xilinx training 
programs. Another obstacle was observed along with MicroBlaze implementation 
that in most tutorials Xilinx provides, only Spartan boards were the family of boards 
used. That created an obstacle for this research as Virtex board is the one targeted 
for the proposed design. For instance, obtaining the accurate pins’ assignments for 
MicoBlaze on Virtex board was by itself a lengthy search.



C h a p ter  5: R esu lts 61

5.2 The Systematic Approach Results

5.2.1 Results Presentation
This section examines the performance of each component in the design individually, 
rather than testing the overall system. As seen in Figure 4.2, the system consists 
of four subsystems; Controller, MEMORY Block, Scheduler, and Frame Constructor. 
Each component in the four subsystems will be tested separately by feeding predefined 
input signals and observe its response.

5.2.1.1 Controller

The first block in the Controller shown in Figure 4.4 is the Preamble Check block. 
As mentioned earlier, this block simply checks whether the first 64 bits of the frame 
are matching the standard Ethernet preamble. To test this block, a chain of frames 
are fed to the system to observe its output. In Figure 5.2, it can be seen that the 
preamble-check port is all zeros indicating that first frame’s preamble is correct (when 
the input frame is xOAAAAAAAAAAAAAAAB). On the other hand, the second 
and the third frames’ preambles are not matching the standard Ethernet preamble; 
therefore, the results on preamble-check port are not entirely zeros. Based on that, 
we can say that this block performs the required function by distinguishing correct 
preambles to indicate new incoming frames.

Figure 5.2: Preamble Check

The next block to test is the CRC Check block. Basically, this block checks the 
incoming frame’s payload whether it matches the values stored in the CRC field of 
that specific frame. The CR,C Check block uses multiple adders which are capable 
of wrapping around the last bit in case of overflow; hence the name Wrapper Adder. 
Figure 5.3 illustrates the functionally of this block. The results are obtained on port 
s; the first frame’s CRC check is not correct and therefore the values on port s are 
not entirely ones. Similarly, the values on port s for the third, fourth, sixth, and 
seventh frames are not entirely ones which indicates mismatching between payloads’ 
checksums and the CRC stored values. For the second and fifth frames, the CRC 
values are all ones indicating correct CRC Check.

Once a frame passes the preamble check and the CRC check, it enters the Frame 
Ripper block. As its name suggests, this block rips the frame into two pieces as shown



C h a p ter 5: R esu lts 62

Figure 5.3: CRC Check

in Figure 4.4. In fact, this block sends the payload to be stored in the MEMORY block 
meanwhile the system performs scheduling processes. Those scheduling processes are 
carried out on the Frame Spec which contains both the frame’s destination address 
and the source address as well as the type of this frame (voice, video, or best effort). 
In order to retrieve the payload once scheduling processes are done, the Frame Ripper 
generates a Payload Tag number for each payload. The Payload Tags are also included 
in the Frame Spec which is sent to the Scheduler. Payload Tags are also used in the 
MEMORY block as RAM addresses for the incoming payloads.

0444444444447. 0000000000000000

Figure 5.4: Frame Ripper

This block is tested to observe its response for incoming frames as shown in 
Figure 5.4. It’s worth noticing that there is an en port which serves as enabler of 
this block; in other words, this port activates the block once the preamble and CRC 
checks are performed and the results are accepted. It can be seen that all output ports 
(payload, payload-tag, and framespec) are reset once the en port is zero; i.e., the block 
is deactivated. It can be also observed from Figure 5.4 that the payload-tag acts as a 
counter for the incoming payloads. That is, once a new payload (new frame) arrives, 
this block generates a new tag for this payload in order to store it in the MEMORY 
block.

5.2.1.2 M EM O R Y Block

Figure 5.5 illustrates how payloads are stored in the MEMORY block. The system is 
designed to pick the RAM address from payload-out.tag port when we port is set to 
zero, while it picks the address from payload-inJag port when we port is set to one. 
In the first five clock cycles, the port we is set to zero; i.e., the MEMORY is reading 
whatever is stored in the associated RAM address. In the next five clock cycles, the



C h a p ter 5: R esu lts 63

port we is set to one which indicates that the MEMORY is storing whatever comes 
from the port payloadJn in the assigned address. Similar operations are performed 
on the next 20 clock cycles.

Figure 5.5: MEMORY Block Performing Writing Operation

The next figure shows how payloads are read on the payload.out port. In 
Figure 5.6, during first five clock cycles, the MEMORY block reads what was stored 
on the associated RAM address, which was in fact a payload of zeros. The next five 
cycles, it writes to another address a payload starts with two. Then, the next ten 
cycles reads what was sorted on the MEMORY’S address provided by payload-OuLtag 
port.

5.2.1.3 Scheduler

Figure? 5.7 illustrates how the Classifier works. To test this block, four Frame Spec’s 
are fed at a time. The block should put each Frame Spec on the correct port; i.e., 
voice Frame Spec should be put on frame-vo^out and so on. Since the block receives 
four Frame Spec’s at a time, its output ports are also capable of carrying four Frame 
Spec’s at a time. In case there was no Frame Spec to be filled, the block inserts zeros 
instead as shown on ports frame-vo.out and frame-vi-out in the first five cycles.

Frames sent from the Classifier enter the Prioritize on three ports along with 
their flag ports; frame.voCn with vo_flag and so on. In order to test the Prioritize 
block, two different input signals were fed at this block’s ports as follows:

1. First test patch; Figure 5.8

Figure 5.6: MEMORY Block Performing Reading Operation



C h a p ter  5: R esu lts 64

• frame.voJn[442:336] — zeros
• frame-voJn[335:224]  =  x04444444444444444444444444444
• frame.voJn[223:0] =  zeros
• vo.flag — 0100

• frame.vLin[44 7:336] =  xOl 111111111111111111111111111
• frame.vLin[335:224j — zeros
• frame.vLin[223:112] — x03333333333333333333333333333
• frame.vLin[l 11:0J =  zeros
• vLflag =  1010
• frame.be.in[447:112] =  zeros
• frame J)eAn[ll 1:0] =  x02222222222222222222222222222
• be.fiag =  0001

2. Second test patch; Figure 5.9

« frame-VoJn[44 :̂224]  =  zeros
• frame.vo_in[223:112] — xOBBBBBBBBBBBBBBBBBBBBBBBBBBBB
• frame.vo_in[lll:0] — zeros
• vo-fiag ~  0010

• frame.vLin[44 7:336] =  xODDDDDDDDDDDDDDDDDDDDDDDDDDDD
• frarae-vLin[335:112] =  zeros
• frame-vLin[lll:0] =  xOAAAAAAAAAAAAAAAAAAAAAAAAAAAA
• vLflag =  1001
• frame.be_in[447:336] =  zeros
• frame-beJn[335:224] =  xOCCCCCCCCCCCCCCCCCCCCCCCCCCCC
• frame.be Jn[223:0] =  zeros
• be.flag =  0100



C h a p ter 5: R esu lts 65

Name j Value ^

^ j|  fiame_voJn[447:Ci' ÛUO O O ÛO O O O O O O O CII

j». l |g  frame_vi_in[447:0J 111111111111111.

l | |  frame_bejn[447:0 O O O O O O O O Û O O O O O O I

► *11 v o „ f l a g [ 3 : 0 ] 0 1 0 0

► vi_flag[3:0] 1 0 1 0

►  b e _ f la g [ 3 ; 0 j 0 0 0 1

l | j  reset 0

c lo c k 0

frame_out[447:0] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 .

Figure 5.8: Prioritize Output - First Test

Name

I» i|Jj frame_vojn[447:0; 

^  frame_vijn[447:0] 

^  i% | frame_be_in[447:0.'

► ^ ¡f vo_flag[3:0]

► *fc§ vtjag[3:0]

► be_flag[3:0]

^  «set
l|j| dock

^  l |g  frame_out[447:0] 

UJ clock_period

Value

0000000 0 0 0 0 0 1

dddddddddddd.

0000000000001
0010

1001

0100

0
0
e e c c c c c c c c c c *  

1 0 0 0 0  p s

Figure 5.9: Prioritize Output - Second Test

5.2 .1 .4  Fram e C on stru ctor

The last subsystem to test is the Frame Constructor; however, as seen in Figure 4.7, 
the components used are mostly the same used for the Controller. Therefore, only 
the Frame Shaper is examined. Test performed on this block is shown in Figure 5.10; 
the frame.out port carries the outgoing frame after adding the preamble, CRC, des
tination, and source addresses.

Figure 5.10: Frame Constructor Test



Chapter 5: Results 66

5.2.2 Results Discussion
Since the purpose of this design approach is to test the system through testing each 
element in it individually, components were fed their inputs and tested with only 
focus on having the accurate output. In light of that, all components in each subsys
tem were in fact performing their tasks correctly. However, it’s worth noticing that 
the Prioritize had a remarkable initial response delay in both of the two tests were 
performed on it. In the first test, the Prioritize needed 95 ns to start responding, 
while it needed 115 ns in the second test.

This delay could actually be explained through the Prioritize design method 
itself. The Prioritize is designed using an FSM, in which 12 states were used. Each 
state was dedicated to check one segment of the four segments in each incoming 
frame (three incoming frames; voice, vidoe, and best effort). If the associated flag bit 
for a specific incoming segment is set high, then the next available segment on the 
output frame will be reserved for that incoming segment. This leads to checking every 
single incoming segment on the three incoming frame ports. For that, the system will 
need to go through 12 different states (in which each will require a clock cycle to be 
performed) leading to a remarkable initial delay.

5.3 The Conceptual Approach Results

5.3.1 Results Presentation
In the previous chapter, the conceptual approach system design proposes that the 
Ethernet Controller receives the incoming frames and then separates the payload 
from the other frame components in order to store the payload. This design consists 
of two main subsystems, along with the memory. To test the system, each subsystem 
is first tested individually to ensure that it works properly and then the integrated 
system is tested. At the end, the synthesis report is provided to examine the board’s 
utilization of this design.

5.3 .1 .1  T esting the E th ernet C on troller

The Ethernet Controller is tested by applying predefined values on specific ports. 
Those two ports represent the sent frame from the upper layer to the MAC layer, 
and the frame received from the physical layer to the MAC layer; clientemactxd and 
phyemacrxd respectively. Figure 5.11 is a snapshot of the resulted simulation. The 
purpose of this simulation is just to ensure that the Ethernet Controller is delivering 
frames correctly.

As shown in the Figure 5.11, a reset is applied for the first clock cycle to clear 
all stored values from previous simulations. The system starts to respond after 11.6 
ns, i.e. when emacphytxen signal goes high. By that time, the physical layer starts



Chapter 5: Results 67

Figure 5.11: Ethernet Controller Performance

to receive frames sent from the upper layer through the MAC core. Those frames are 
received at emacphytxd port and were fed initially from clientemactxd port as follows:

• at 1 ns =  11001100.

• at 6 ns =  11011101.

• at 11 ns =  11101110.

• at 16 ns =  01110111.

After 15.6 ns, the frames received from the physical layer are seen at the upper 
layer through emacclientrxd port; these frames were fed initially from phyemacrxd 
port. The actual testing values sent on phyemacrxd port are as follows:

• at 1 ns =  00010001.

• at 6 ns =  00100010.

• at 11 ns =  00110011.

• at 16 ns =  01000100.

It is worth noticing that the system is unstable for the first 25.6 ns, i.e., the 
values fed to the system are observed correctly at the output ports after 25.6 ns.



Chapter 5: Results 68

Figure 5.12: Beacon and Voice Downloading States

5.3 .1 .2  T esting  the Scheduler

As described in previous chapter, the Scheduler is designed to have time constraint at 
each state. Therefore, to test the Scheduler, a reset state is forced at a specific time 
to observe the response of the system. Also, transition signals are assigned different 
values to distinguish the behavior at each state. For that, the following assumptions 
are made:

• The clock period (clk_period) is 1 ns.

• Transition signals are as follows:

— time_beacon — 10,
— time.VO =  6,
— time_VIBE — 8,
— time_BEu =  7,
— time.VOu =  6,
— time_max =  10.

• A reset is applied at t — 250 ns.

The key element to control the Ethernet Controller’s behavior is the tieemac- 
configvec port; it actually contains specific bits in which RX or TX operations can be 
reset, half duplex mode be chosen, or MAC speed to be configured. As shown in Ap
pendix A, bits 48 to 67 are responsible to set the Ethernet Controller configuration.



Chapter 5: Results 69

In this test, bits 48 to 67 of tieernacconfigvec are chosen as follow: (x058204). This 
choice allows the Ethernet Controller to provide full duplex connectivity, enabling 
both RX and TX, MAC speed at 1 Gbps.

Figure 5.12 is showing the beacon and voice downloading states, State01-State05. 
It can be observed that the timer has different value in beacon state than the one 
it has when it’s in the voice downloading states. The port clientemactxd is assigned 
“0000 0001” while port phyemacrxd is assigned “1000 0001” during beacon state. As 
seen in the figure, the output signals are observed on emacphytxd and emacclientrxd, 
respectively. Similar to the beacon state, in the voice states the output signals are 
observed on emacphytxd and emacclientrxd, for the following input values:

• clientemactxd =  00000010 and phyemacrxd — 10000010

• clientemactxd =  00000011 and phyemacrxd =  10000011

• clientemactxd =  00000100 and phyemacrxd — 10000100

• clientemactxd — 00000101 and phyemacrxd =  10000101

In the next figure, Figure 5.13, the system moves to video and best effort down
loading states just after State05 (as the FSM suggests). The input values fed to the 
systems are as follows:

• clientemactxd =  00000110 and phyemacrxd — 10000110

• clientemactxd =  00000111 and phyemacrxd — 10000111

• clientemactxd =  00001000 and phyemacrxd =  10001000

• clientemactxd — 00001001 and phyemacrxd =  10001001

The system continues to move to the next states according to the FSM model. 
Figure 5.14 shows the best effort uploading states (Statcl0-Statel3). Also, the sys
tem’s output values are observed on emacphytxd and emacclientrxd for the following 
input values:

• clientemactxd =  00001010 and phyemacrxd =  10001010

• clientemactxd =  00001011 and phyemacrxd =  10001011

• clientemactxd — 00001100 and phyemacrxd =  10001100

• clientemactxd =  00001101 and phyemacrxd =  10001101



Chapter 5: Results 70

Figure 5.13: Video and Best Effort Downloading States

Figure 5.14: Best Effort Uploading States



Chapter 5: Results 71

Figure 5.15: Voice Uploading States

After that, the system moves to voice uploading states (Statel4-Statel7) as 
shown in Figure 5.15. In these states, the system is fed the following inputs:

• clientemactxd =  00001110 and phyemacrxd =  10001110

• clientemactxd =  00010000 and phyemacrxd — 10010000

• clientemactxd =  00010001 and phyemacrxd — 10010001

• clientemactxd — 00010010 and phyemacrxd =  10010010

After all voice frames are uploaded, the system goes back to StateOl. To test 
the system’s response to the reset state, a reset is forced as shown in Figure 5.16. 
In that figure, the system was at StateOl, but once a reset was applied, it moved 
to StateOO (reset state) and it can be seen that controlling signals went low. Those 
signals are: emacphytxen, phyemactxenable, clientemacrxenable, clientemactxenable, 
clientemactxdvld, and emacclienttxack. Finally, the utilization report is presented 
below in Table 5.2, further details are shown in Appendix B.2.

5.3.2 Results Discussion
This design approach has been tested for various transmission states, both the down
loading and uploading states. As seen in the previous section, the Ethernet Controller 
and the Scheduler performed as expected in terms of transmitting frames correctly. 
However, it can be observed that there is a delay in the Ethernet Controller’s response



Chapter 5: Results 72

Figure 5.16: The System Moves to Reset State after reset is Asserted 

Table 5.2: FPGA Usage Report - Device Utilization for the Conceptual Design

Slice Logic Utilization Available Used (Utilization)
Number of Slice Registers 
Number of Slice LUTs 
Number of occupied Slices 
Number of bonded IOBs

69.120
69.120 
17,280 
640

967 (1%) 
859 (1%) 
403 (2%) 
203 (31%)

especially as the system starts to receive input frames. This delay can be looked at 
through the core used to create this controller.

According to [40], the core is expected to have both transmit and receive path 
latencies. In the transmit path, the core tends to have maximum of 14 clock cycles 
latency; while in the receive path, the maximum latency can be 22 clock cycles. 
Moreover, there is a variation in latency of three clock cycles due to the crossing of 
clock domains within the core. These latency figures justifies the instability of the 
Ethernet Controller's performance at the initial stage of transmission.



73

Chapter 6 
Future Work

This chapter turns the focus towards a future approach to schedule prioritized tasks 
using a kernel running on MicroBlaze soft processor. Xilinx embedded processors 
(MicroBlaze and PowerPC processors) can utilize a modular kernel highly integrated 
with XPS and received with EDK software package. This short chapter covers mainly 
Xilkernel through three sections in which the first section introduces Xilkernel key 
features and functionalities. The second section briefly discusses the methods to 
customize Xilkernel to suit targeted applications. The third section briefly discusses 
how Xilkernel could be utilized to run TP-TDMA protocol.

6.1 W h at is Xilkernel

As Xilinx defines Xilkernel, “it is a small, robust, and modular kernel” [41]. Xilkernel 
is highly integrated with the Platform Studio framework and is a free software li
brary that is included in Xilinx Embedded Development Kit (EDK). Xilkernel allows 
designers a high degree of customization to achieve most optimum levels of size and 
functionality. Moreover, it’s compatible with MicroBlaze, PowerPC 405, and Pow
erPC 440 processors. Xilkernel IPC services can be used to implement higher level 
services (such as networking, video, and audio) and subsequently run applications 
using these services.

Xilkernel includes the following key features:

• It improves the scalability level by allowing functionality inclusion or exclusion 
for targeted system.

• Quick complete kernel configuration and deployment within minutes from inside 
of Platform Studio.

• Static thread creation that startup with the kernel.

• System call interface to the kernel.

• Exception handling for the MicroBlaze processor.

• Memory protection using MicroBlaze Memory Management (Protection) Unit 
(MMU) features when available.



Chapter 6: Future Work 74

6.2 Customizing Xilkernel

Xilkernel is highly customizable, users can change the modules and individual param
eters to suit their application. XPS Software Platform Settings dialog box provides 
an easy access to configuration settings for Xilkernel parameters. For a module to be 
customized in the kernel, a parameter with the name of the category set to TRUE 
must be defined in the Microprocessor Software Specification (MSS) file. A pthread 
can be customized as follows:

parameter config_pthread_support = true
If a configurable config_parameter for the module is not defined, that module will not 
be implemented. Commonly, these parameters and values are not manually set. In 
fact, once the information in the Software Platform Settings dialog box is entered, 
XPS generates the corresponding Microprocessor Software Specification (MSS) file 
entries automatically. The following is an MSS file snippet for configuring OS Xilk
ernel for a PowerPC processor system. The values in the snippet are sample values 
that target a hypothetical board [41]:

BEGIN OS
PARAMETER OS_NAME = xilkernel 
PARAMETER OS_VER = 3.00.a 
PARAMETER STDIN = RS232 
PARAMETER STDOUT = RS232 
PARAMETER proc_instance = ppc405_0 
PARAMETER conf ig__debug_support = true 
PARAMETER verbose = true 
PARAMETER systmr_spec = true 
PARAMETER systmr_freq = 100000000 
PARAMETER systmr_interval = 80 
PARAMETER sysintc_spec = system_intc 
PARAMETER config_sched = true 
PARAMETER sched_type = SCHED_PRIO 
PARAMETER n_prio = 6 
PARAMETER max_readyq = 10 
PARAMETER config_pthread_support = true 
PARAMETER max_pthreads = 10 
PARAMETER config_sema = true 
PARAMETER max_sem = 4 
PARAMETER max_sem_waitq = 10 
PARAMETER config_msgq = true 
PARAMETER num_msgqs = 1 
PARAMETER msgq__capacity = 10



Chapter 6: Future Work 75

PARAMETER
PARAMETER
PARAMETER
PARAMETER
PARAMETER
PARAMETER
PARAMETER
PARAMETER
END

config_bufmalloc = true
config_pthread_mutex = true
config_time = true
max_tmrs = 10
enhanced_features = true
config__kill = true
mem_table = ((4,30), (8,20))
static_pthread_table = ((shell_main,1))

6.3 Utilizing Xilkernel for T P -T D M A  Protocol

It was noticed in the proposed systematical approach that the Scheduler’s design 
(mainly the Prioritize component) could have been modified to improve the initial 
delay. However, that can just be a starting point to radically change the design from 
using a hardware-based programming language (VHDL) to a software-based approach 
using MicroBlaze soft processor and its kernel, Xilkernel.

The limitations the design suffered from could have been avoided if the scheduler 
was designed using MicroBlaze and Xilkernel. Using Xilkernel, the scheduler could 
be designed in two different scheduling modes, either round-robin or priority-driven. 
In round-robin mode, frames can be scheduled in a time-slice form through a single 
ready queue in which each process is implemented during a configured time slice 
before executing the next process in the queue. In priority-driven mode, the process 
that is at the top of the ready queue with the highest priority is executed first and 
so on. The highest priority is always assigned 0.

In the hypothetical example in Section 6.2, the system is configured to use a 
priority-driven mode with 6 different levels of priorities.The maximum number of 
processes that can be active in the ready queue is 10. The maximum number of 
software timers that the processor can use in this kernel is 10. These settings can 
only be activated if the associated parameter is set true, as follows:

PARAMETER config__sched = true 
PARAMETER sched_type = SCHED_PRIO 
PARAMETER n_prio = 6 
PARAMETER max_readyq = 10 
PARAMETER config_time = true 
PARAMETER max tmrs = 10



76

Chapter 7 
Conclusion

Triple-Play services are attracting more researchers to engage in investigating the 
possibilities of integrating these services and, as a result, reducing operation costs. 
To reach smooth integration, FPGA boards seem to be the most suitable platform 
as they have high levels of flexibility and customization. Therefore, choosing Xilinx 
Virtex-5 board offers a comfortable platform to implement the TP-TDMA protocol; 
in addition, it allows the testing of a new approach through using a soft processor on 
the board.

In summary, the work of this thesis took advantage of reconfigurable platforms 
to implement the TP-TDMA protocol; however, reconfigurable platforms can be used 
to implement a wide range of other protocols. The contributions achieved in this thesis 
can be listed as follows:

• Creating a MicroBlaze soft processor to test the board in which the processor 
was then deployed on a Virtex-5 board. That deployment was achieved through 
defining the accurate pin assignment on the FPGA. The main objective of 
creating a MicroBlaze soft processor was to test the board’s connectivity with 
the computer and to observe the communication results on the Hyper Terminal. 
It was observed that MicorBlaze’s consumption is relatively low, as only 2% of 
the board’s Registers and LUTs was consumed.

• Designing two different approaches to implement TP-TDMA protocol; the sys
tematic and the conceptual approaches. In the systematic approach, the tests 
were made on each component showed that the proposed design performs the 
required scheduling tasks as suggested by TP-TDMA protocol. Similarly, in the 
conceptual approach, the overall tests performed on the scheduler showed that 
this design also meets the proposed TP-TDMA protocol requirements.

• On the two proposed design approaches, initial response delays were observed. 
In the systematic approach, the design required the Prioritize to check every 
single incoming segment of the three incoming frame ports leading to forcing 
the system to go through 12 different states. While in the conceptual approach, 
the core used to create the Ethernet Controller has 14 clock cycles and a 22 
clock cycles latency in the transmit and receive paths, respectively.



77

References
[1] Anticipating opportunity in the triple-play market: Issues, possibilities and 

importance of standards-based technology. [Online], Available: www.visionael. 
com /  solutions /  whitepapers /  whitepaper_tripleplay_06.pdf

[2] D. Srefjord, S. Lindroos, and L. Karlsson. Triple play - a strat
egy for the convergence of home electronics in the Swedish market, 
[Online], Available: http://www.cse.chalmers.se/tsigas/Courses/DCDSeminar/ 
Files/triple_play _strategydatakomm_report.pdf

[3] C. Hellberg, G. Dylan, and T. Boyes, Broadband Network Architectures: Design
ing and Deploying Triple-Play Services, 1st ed. Prentice Hall, 2007.

[4] The perfect storm: Why video conferencing will dominate business 
communications, [Online], Available: http://www.glgroup.com/News/13329. 
html

[5] An emerging triple play: Video communications, managed services and 
unified communications. [Online]. Available: www.pgi.com/us/en/Brockmann_ 
Tripleplay_Report.pdf

[6] P. Kampanakis, M. Kallitsis, S. Sridharan, and M. Devetsikiotis. (2006) Triple 
Play - A Survey. [Online]. Available: http://www4.ncsu.edu/~mgkallit/files/ 
3PReportTechnicalL4.pdf

[7] Developing a holistic testing strategy for ensuring a successful iptv deployment. 
[Online], Available: http://www.ixiacom.com/pdfs/library/white_papers/iptv_ 
dev_holistic_testting_strategy.pdf

[8] Advantages of field programmable gate arrays. [Online]. Available: www.men. 
de /  docs-ext /  expertise/pdf/fpga_ad vantages.pdf

[9] J. Kurose and K. Ross, Computer networking: a top-down approach, 4th ed. 
Boston, MA: Pearson/Addison-Wesley, 2008.

[10] J. Barcelo, “CSMA/ECA: Carrier Sense Multiple Access with Enhanced Collision 
Avoidance,” Ph.D. dissertation, Universität Pompeu Fabra, Jan. 2009.

[11] J. Choi, J. Yoo, S. Choi, and C. Kim, “Eba: an enhancement of the ieee 802.11 dcf
via distributed reservation,” Mobile Computing, IEEE Transactions on, voi. 4, 
no. 4, pp. 378 390, july-aug. 2005.

http://www.visionael
http://www.cse.chalmers.se/tsigas/Courses/DCDSeminar/
http://www.glgroup.com/News/13329
http://www.pgi.com/us/en/Brockmann_
http://www4.ncsu.edu/~mgkallit/files/
http://www.ixiacom.com/pdfs/library/white_papers/iptv_
http://www.men


References 78

[12] D. Niyato and E. Hossain, “Queue-aware uplink bandwidth allocation and rate 
control for polling service in ieee 802.16 broadband wireless networks,” Mobile 
Computing, IEEE Transactions on, vol. 5, no. 6, pp. 668 -  679, june 2006.

[13] K. Wongthavarawat and A. Ganz, “Packet scheduling for QoS support in IEEE
802.16 broadband wireless access systems,” International Journal of Communi
cation Systems, vol. 16, no. 1, pp. 81 96, 2003.

[14] H. Alavi, M. Mojdeh, and N. Yazdani, “A quality of service architecture for ieee
802.16 standards,” in Communications, 2005 Asia-Pacific Conference on, oct. 
2005, pp. 249 253.

[15] X. Bai, A. Shami, and Y. Ye, “Robust qos control for single carrier pmp mode 
ieee 802.16 systems,” Mobile Computing, IEEE Transactions on, vol. 7, no. 4, 
pp. 416 429, april 2008.

[16] D. Dechene and A. Shami, “Experimental triple-play service delivery using com
modity wireless lan hardware,” in Communications, 2009. ICC ’09. IEEE Inter
national Conference on, june 2009, pp. 1 -5.

[17] Embedded Systems Development: Participant Guide, Xilinx, 2010, embd21000- 
12-wkbp-revl.

[18] ML505/ML506/ML507 Evaluation Platform - User Guide, Xilinx, Oct. 2009, 
ug347.

[19] M. Zaidi, J. Bhar, R. Ouni, and R. Tourki, “A new solution for micro-mobility 
management in 802.11 wireless Ians using fpga,” in Signals, Circuits and Systems, 
2008. SCS 2008. 2nd International Conference on, nov. 2008, pp. 1-7.

[20] S. Georgi, C. Prieske, and H. Rohling, “Cross layer hardware demonstrator for 
wireless communication based on a fpga,” in Scalable Computing and Com
munications; Eighth International Conference on Embedded Computing, 2009. 
SCAT COM-EMBEDDED COM ’09. International Conference on, sept. 2009, pp. 
9 13.

[21] H. Yu, K. Song, K. Ryu, Y. Kim, S. Min, and S. kyu Lee, “Design and fpga 
implementation of mimo-ofdm based wlan systems,” in Vehicular Technology 
Conference, 2006. VTC 2006-Spring. IEEE 63rd, vol. 3, may 2006, pp. 1333
1338.

[22] Y. Kim, H. Jung, H. H. Lee, and K. R. Cho, “Mac implementation for ieee 
802.11 wireless lan,” in ATM (ICATM 2001) and High Speed Intelligent Internet 
Symposium, 2001. Joint I±th IEEE International Conference on, 2001, pp. 191

195.



References 79

[23] T. Shono, II. Shiba, Y. Shirato, K. Uehara, K. Araki, and M. Umehira, “Per
formance of ieee 802.11 wireless lan implemented on software defined radio with 
hybrid programmable architecture,” in Communications, 2003. ICC '03. IEEE 
International Conference on, vol. 3, may 2003, pp. 2035 - 2040.

[24] A. Bhavikatti and S. Kulkarni, “Vhdl modeling of wi-fi mac layer for transmit
ter,” in Advance Computing Conference, 2009. IACC 2009. IEEE International, 
march 2009, pp. 1 -5.

[25] T. Y. Tse, “Wimedia uwb mac layer implementation in fpga,” in Wireless and 
Mobile Communications, 2009. ICWMC '09. Fifth International Conference on, 
aug. 2009, pp. 234 238.

[26] S. Nabi, C. Wells, and W. Vanderbauwhede, “A dynamically reconfigurable 
system-on-chip for implementing wireless macs,” in Research in Microelectronics 
and Electronics Conference, 2007. PRIME 2007. Ph.D., july 2007, pp. 37 40.

[27] S. Ji, W. II. Kim, C. Chung, and J. Kim, “A zigbee compliant baseband and 
mac processor,” in SOC Conference, 2007 IEEE International, sept. 2007, pp. 
87 90.

[28] J. Hui and M. Devetsikiotis, “Designing improved mac packet schedulers for
802.l ie  wlan,” in Global Telecommunications Conference, 2003. GLOBECOM 
'03. IEEE, vol. 1, dec. 2003, pp. 184 189.

[29] J. Lazanyi, “Instruction set extension using microblaze processor,” in Field Pro-
gramrnable Logic and Applications, 2005. International Conference on, aug. 2005, 
pp. 729 730.

[30] M. Vetromille, L. Ost, C. Marcon, C. Reif, and F. Hessel, “Rtos scheduler imple
mentation in hardware and software for real time applications,” in Rapid System 
Prototyping, 2006. Seventeenth IEEE International Workshop on, june 2006, pp. 
163 168.

[31] J. Kadlec, M. Danek, and L. Kohout, “Proposed architecture of configurable, 
adaptable soc,” in Signals and Systems Conference, 208. (ISSC 2008). IET Irish, 
june 2008, pp. 368 373.

[32] E. Wang, S. Zhang, Q. Hu, J. Yi, and X. Sun, “Implementation of an embedded 
gps receiver based on fpga and microblaze,” in Wireless Communications, Net
working and Mobile Computing, 2008. WiCOM '08. fth International Conference 
on, oct. 2008, pp. 1 4.

[33] G. Stewart, D. Renshaw, and M. Riley, “A low-cost, fpga based, video streaming 
server,” in Programmable Logic, 2007. SPL '07. 2007 3rd Southern Conference 
on, feb. 2007, pp. 187 190.



References 80

[34] Embedded Systems Development Lab Workbook: MicroBlaze Processor and 
Spartan-6 FPGA SP605 Board, Xilinx, 2010, embd21000-12-wkb-lab-sp605-revl.

[35] Tri-Mode Ethernet MAC v4-U Xilinx, Apr. 2009, ds297.

[36] Tri-Mode Ethernet MAC vf.3 - User Guide, Xilinx, Dec. 2009, ugl38.

[37] N. Zainalabedin, VHDL: Modular Design and Synthesis of Cores and Systems, 
3rd cd. McGraw Ilill, 2007.

[38] P. Ashenden, The Student Guide to VHDL, 2nd ed. Morgan Kaufman, 2008.

[39] V. Pedroni, Circuit Design with VHDL, 1st ed. MIT Press, 2004.

[40] Virtex-4 FPGA Embedded Tri-Mode Ethernet MAC - User Guide, Xilinx, Feb. 
2010, ug074.

[41] Xilkernel (v5.00a), Xilinx, Jun. 2010, ug708.



81

Appendix A
Configuration Vector Details

Configuration vector is composed of 68 bits. Following table provides description of 
the purpose of each bit in this vector.

Table A .l: Configuration Vector Bits Description[36]

Bit Description
47:0 Pause frame MAC Source Address [47:0]: This ” MAC Address” is used by 

the MAC core to match against the destination address of any incoming 
flow control frames, and as the source address for any outbound flow 
control frames. The bits in this vector field are ordered so that the least 
significant bit of the MAC Address (IEEE802.3 definition) is stored in the 
least significant bit of this vector field. Consequently, bit 0 of this field 
will differentiate between an individual or group (multicast) address. The 
transmission order within a MAC frame is to send the least significant 
bit of the MAC Address first. Consequently, bits 7-0 of this vector field 
will represent the first byte to appear in frame transmission.

48 Receiver Half Duplex: If T ,’ the receiver operates in half-duplex mode. 
If ’0,’ the receiver operates in full-duplex mode. If the TEMAC has been 
generated without half-duplex support then this input to the core will 
be unused.

49 Receiver VLAN Enable: When this bit is set to T ,1 VLAN tagged frames 
are accepted by the receiver.

50 Receiver Enable: If set to T ,’ the receiver block is operational. If set to 
’0,’ the block ignores activity on the physical interface RX port.

51 Receiver In-band FCS Enable: When this bit is T ,’ the MAC receiver 
will pass the FCS field up to the client as described in "Client-Supplied 
FCS Passing,” on page 60. When it is ’0,’ the MAC receiver will not pass 
the FCS field. In both cases, the FCS field will be verified on the frame.



A p p en d ix  A :  C on figu ration  V ector D eta ils 82

Bit
52

53

54

55

56

57

58

59

60

61

Description
Receiver Jumbo Frame Enable: When this bit is ’0,’ the receiver will not 
pass frames longer than the maximum legal frame size specified in IEEE 
802.3-2005 (’’ Maximum Permitted Frame Length,” on page 70). When 
it is ’1,’ the receiver will not have an upper limit on frame size.
Receiver Reset: When this bit is ’1,’ the receiver is held in reset. This 
signal is an input to the reset circuit for the receiver block.
Transmitter Interframe Gap Adjust Enable: If T ,’ and the MAC is set 
to operate in full-duplex mode, then the transmitter will read the value 
of the clientemactxifgdelay port and set the Interframe Gap accordingly. 
If ’0,’ the transmitter will always insert at least the legal minimum in
terframe gap.
Transmitter Half Duplex: If T ,’ the transmitter operates in half-duplex 
mode. If ’0,’ the transmitter operates in fullduplex mode. If the TEMAC 
solution has been generated without half-duplex support, this input to 
the core will be unused.
Transmitter VLAN Enable: When this bit is set to T ,’ the transmitter 
allows the transmission of VLAN tagged frames.
Transmitter Enable: When this bit is T ,’ the transmitter will be opera
tional. When it is ’0,’ the transmitter is disabled.
Transmitter In-Band FCS Enable: When this bit is T ,’ the MAC trans
mitter will expect the FCS field to be passed in by the client as described 
in ’’ Client-Supplied FCS Passing,” on page 67. When it is ’0,’ the MAC 
transmitter will append padding as required, compute the FCS and ap
pend it to the frame.
Transmitter Jumbo Frame Enable: When this bit is T ,’ the MAC trans
mitter will allow frames larger than the maximum legal frame length 
specified in IEEE 802.3-2005 to be sent. When set to ’0,’ the MAC 
transmitter will only allow frames up to the legal maximum to be sent. 
Transmitter Reset: When this bit is T ,’ the MAC transmitter is held 
in reset. This signal is an input to the reset circuit for the transmitter 
block.
Transmit Flow Control Enable: When this bit is T ,’ asserting the clien- 
temaepausereq signal causes the MAC core to send a flow control frame 
out from the transmitter as described in ’’Transmitting a Pause Con
trol Frame,” on page 77. When this bit is ’0,’ asserting the clientemac- 
pausereq signal will have no effect.



A p p en d ix  A :  C on figu ration  V ector  D eta ils 83

Bit Description
62 Receive Flow Control Enable; When this bit is ’1,’ received flow control 

frames will inhibit the transmitter operation as described in "Receiving 
a Pause Control Frame," on page 78. When it is ’0,’ received flow frames 
are passed up to the client.

63 Length/Type Error Check Disable: When this bit is ’ 1,’ the core will not 
perform the length/type field error checks as described in "Length/Type 
Field Error Checks,” on page 61. When it is set to ’0 / the length/type 
field checks will be performed; this is normal operation.

64 Address Filter Enable: When this bit is ’0 / the address filter is enabled. 
If it is set to T /  the address filter will operate in promiscuous mode. If 
the TEMAC solution has been generated without the optional Address 
Filter, this input to the core will be unused.

66:65 MAC Speed Configuration:
” 00” - 10 Mbps 
” 01” - 100 Mbps 
” 10” - 1 Gbps
When the TEMAC solution is generated for only 1 Gbps speed support, 
these inputs will be unused. When the TEMAC solution is generated for 
only 10 Mbps or 100 Mbps speed support, only bit 65 will be used to 
differentiate the speed: bit 66 will be unused.

67 Control Frame Length Check Disable: When this bit is set to T ,’ the 
core will not mark control frames as ’bad’ if they are greater than the 
minimum frame length.



Appendix B
Detailed Utilization Reports

.1 Utilization Reports for MicroBlaze Design

Table B.l: FPGA Usage Report - Device Utilization for MicroBlaze Testing
Further Details

Slice Logic Utilization Available Used (Utilization)
Number of Slice Registers 69,120 1,631 (2%)
- Number used as Flip Flops 1,627/1,631
- Number used as Latch-thrus 4/1,631
Number of Slice LUTs 69,120 1,879 (2%)
- Number used as logic 1,737/1,879
- Number used as Memory 138/1,879
Number of occupied Slices 17,280 965 (5%)
Number of bonded IOBs 640 12 (1%)
- Number of LOCed IOBs 12/12
Number of BlockRAM/FIFO 148 8 (5%)
- Number using BlockRAM only 8/8
Number of BUFG/BUFGCTRLs 32 2 (6%)
Number of BSCANs 4 1 (25%)
Number of DSP48Es 64 3 (4%)
Number of PLL_ADVs 6 1 16%)



A p p en d ix  B : D eta iled  U tilization  R eports 85

B.2 Utilization Reports for the Conceptual 
System Design

Table B.2: FPGA Usage Report - Device Utilization for the Conceptual Design:
Further Details

Slice Logic Utilization Available Used (Utilization)
Number of Slice Registers 
- Number used as Flip Flops

69,120 967 (1%) 
967/967

Number of Slice LUTs
- Number used as logic
- Number used as Memory

69,120 859 (1%)
845/859
13/859

Number of occupied Slices 17,280 403 (2%)
Number of bonded IOBs 640 203 (31%)



Appendix C
User Constraints File for MicroBlaze

Design

Net fpga_0_RS232_RX_pin L0C=AG15;
Net fpga_0_RS232_TX_pin LOC=AG20;
Net fpga_0__LEDS_GPI0_10_0_pin<0> L0C=H18;
Net fpga_0_LEDS_GPIO_IO_O_pin<l> L0C=L18;
Net fpga_0_LEDS_GPIO_IO_O_pin<2> L0C=G15;
Net fpga_0_LEDS_GPIO_IO_O_pin<3> LOC=AD26;
Net fpga_0_LEDS_GPIO_IO_O_pin<4> L0C=G16;
Net fpga_0_LEDS_GPIO_IO_O_pin<5> LOC=AD25;
Net fpga_0_LEDS_GPIO_IO_O_pin<6> LOC=AD24;
Net fpga_0_LEDS_GPIO_IO_O_pin<7> LOC=AE24;
Net fpga_0_clk_l_sys_clk_pin TNM_NET = sys_clk_pin; 
TIMESPEC TS_sys_clk_pin = PERIOD sys_clk_pin 100000 kHz; 
Net fpga_0_clk_l_sys_clk_pin LOC=AH15;
Net fpga_0_rst_l_sys_rst_pin TIG;
Net fpga_0_rst_l_sys_rst_pin LOC=E9;


	Medium Access Control Layer Implementation on Field Programmable Gate Array Board for Wireless Networks
	Recommended Citation

	tmp.1635207348.pdf.H68y2

