65 research outputs found

    Agent-based Computing in Java

    Get PDF
    Agents are powerful, autonomous entities capable of performing simple, or vastly complex, operations individually or in groups of agent systems. Their capabilities extend significantly as mobile agents distributed across a network. Agent-based computing is a widely used technology with a broad range of applications, particularly in distributed computing and agent-based modeling. Many types of systems can be designed using the different architectures that define how they act, communicate, migrate, and more. This paper surveys agent-based computing, their architectures, and efforts at the standardization of certain aspects of the technology. It explores an existing framework called Jade through the lens of a demonstration based on the Sugarscape model, implemented using Jade’s library. Finally, it presents a new framework, called NOMAD, a simple barebones framework which comprises the most essential components needed for a mobile agent framework. With it, a user can quickly and more deeply understand the vital challenges agent systems must address, such as communication and code mobility, and the solutions needed to be implemented. They’ll be able to use the framework to extend its capabilities, create new components, and build powerful agent systems of their own

    Agent-based virtual organization architecture

    Get PDF
    The purpose of this paper is to present the applicability of THOMAS, an architecture specially designed to model agent-based virtual organizations, in the development of a multiagent system for managing and planning routes for clients in a mall. In order to build virtual organizations, THOMAS offers mechanisms to take into account their structure, behaviour, dynamic, norms and environment. Moreover, one of the primary characteristics of the THOMAS architecture is the use of agents with reasoning and planning capabilities. These agents can perform a dynamic reorganization when they detect changes in the environment. The proposed architecture is composed of a set of related modules that are appropriate for developing systems in highly volatile environments similar to the one presented in this study. This paper presents THOMAS as well as the results obtained after having applied the system to a case study

    Regionally distributed architecture for dynamic e-learning environment (RDADeLE)

    Get PDF
    e-Learning is becoming an influential role as an economic method and a flexible mode of study in the institutions of higher education today which has a presence in an increasing number of college and university courses. e-Learning as system of systems is a dynamic and scalable environment. Within this environment, e-learning is still searching for a permanent, comfortable and serviceable position that is to be controlled, managed, flexible, accessible and continually up-to-date with the wider university structure. As most academic and business institutions and training centres around the world have adopted the e-learning concept and technology in order to create, deliver and manage their learning materials through the web, it has become the focus of investigation. However, management, monitoring and collaboration between these institutions and centres are limited. Existing technologies such as grid, web services and agents are promising better results. In this research a new architecture has been developed and adopted to make the e-learning environment more dynamic and scalable by dividing it into regional data grids which are managed and monitored by agents. Multi-agent technology has been applied to integrate each regional data grid with others in order to produce an architecture which is more scalable, reliable, and efficient. The result we refer to as Regionally Distributed Architecture for Dynamic e-Learning Environment (RDADeLE). Our RDADeLE architecture is an agent-based grid environment which is composed of components such as learners, staff, nodes, regional grids, grid services and Learning Objects (LOs). These components are built and organised as a multi-agent system (MAS) using the Java Agent Development (JADE) platform. The main role of the agents in our architecture is to control and monitor grid components in order to build an adaptable, extensible, and flexible grid-based e-learning system. Two techniques have been developed and adopted in the architecture to build LOs' information and grid services. The first technique is the XML-based Registries Technique (XRT). In this technique LOs' information is built using XML registries to be discovered by the learners. The registries are written in Dublin Core Metadata Initiative (DCMI) format. The second technique is the Registered-based Services Technique (RST). In this technique the services are grid services which are built using agents. The services are registered with the Directory Facilitator (DF) of a JADE platform in order to be discovered by all other components. All components of the RDADeLE system, including grid service, are built as a multi-agent system (MAS). Each regional grid in the first technique has only its own registry, whereas in the second technique the grid services of all regional grids have to be registered with the DF. We have evaluated the RDADeLE system guided by both techniques by building a simulation of the prototype. The prototype has a main interface which consists of the name of the system (RDADeLE) and a specification table which includes Number of Regional Grids, Number of Nodes, Maximum Number of Learners connected to each node, and Number of Grid Services to be filled by the administrator of the RDADeLE system in order to create the prototype. Using the RST technique shows that the RDADeLE system can be built with more regional grids with less memory consumption. Moreover, using the RST technique shows that more grid services can be registered in the RDADeLE system with a lower average search time and the search performance is increased compared with the XRT technique. Finally, using one or both techniques, the XRT or the RST, in the prototype does not affect the reliability of the RDADeLE system.Royal Commission for Jubail and Yanbu - Directorate General For Jubail Project Kingdom of Saudi Arabi

    Development of an autonomous distributed multiagent monitoring system for the automatic classification of end users

    Get PDF
    The purpose of this study is to investigate the feasibility of constructing a software Multi-Agent based monitoring and classification system and utilizing it to provide an automated and accurate classification for end users developing applications in the spreadsheet domain. Resulting in, is the creation of the Multi-Agent Classification System (MACS). The Microsoft‘s .NET Windows Service based agents were utilized to develop the Monitoring Agents of MACS. These agents function autonomously to provide continuous and periodic monitoring of spreadsheet workbooks by content. .NET Windows Communication Foundation (WCF) Services technology was used together with the Service Oriented Architecture (SOA) approach for the distribution of the agents over the World Wide Web in order to satisfy the monitoring and classification of the multiple developer aspect. The Prometheus agent oriented design methodology and its accompanying Prometheus Design Tool (PDT) was employed for specifying and designing the agents of MACS, and Visual Studio.NET 2008 for creating the agency using visual C# programming language. MACS was evaluated against classification criteria from the literature with the support of using real-time data collected from a target group of excel spreadsheet developers over a network. The Monitoring Agents were configured to execute automatically, without any user intervention as windows service processes in the .NET web server application of the system. These distributed agents listen to and read the contents of excel spreadsheets development activities in terms of file and author properties, function and formulas used, and Visual Basic for Application (VBA) macro code constructs. Data gathered by the Monitoring Agents from various resources over a period of time was collected and filtered by a Database Updater Agent residing in the .NET client application of the system. This agent then transfers and stores the data in Oracle server database via Oracle stored procedures for further processing that leads to the classification of the end user developers. Oracle data mining classification algorithms: Naive Bayes, Adaptive Naive Bayes, Decision Trees, and Support Vector Machine were utilized to analyse the results from the data gathering process in order to automate the classification of excel spreadsheet developers. The accuracy of the predictions achieved by the models was compared. The results of the comparison showed that Naive Bayes classifier achieved the best results with accuracy of 0.978. Therefore, the MACS can be utilized to provide a Multi-Agent based automated classification solution to spreadsheet developers with a high degree of accuracy

    Model Driven Development of Agents for Ambient Intelligence

    Get PDF
    En esta tesis se define un proceso dirigido por modelos para el desarrollo de sistemas de Inteligencia Ambiental (AmI) basados en agentes auto-gestionados que pueden ser ejecutados en los dispositivos más usuales de los entornos AmI, teléfonos inteligentes o sensores. Nuestra solución está centrada en una arquitectura de MAS totalmente distribuida y descentralizada, gracias a la integración de los agentes en los dispositivos heterogéneos que suelen formar parte de un sistema AmI

    Interactive Multiagent Adaptation of Individual Classification Models for Decision Support

    Get PDF
    An essential prerequisite for informed decision-making of intelligent agents is direct access to empirical knowledge for situation assessment. This contribution introduces an agent-oriented knowledge management framework for learning agents facing impediments in self-contained acquisition of classification models. The framework enables the emergence of dynamic knowledge networks among benevolent agents forming a community of practice in open multiagent systems. Agents in an advisee role are enabled to pinpoint learning impediments in terms of critical training cases and to engage in a goal-directed discourse with an advisor panel to overcome identified issues. The advisors provide arguments supporting and hence explaining those critical cases. Using such input as additional background knowledge, advisees can adapt their models in iterative relearning organized as a search through model space. An extensive empirical evaluation in two real-world domains validates the presented approach

    Multi-agent communication for the realization of business-processes

    Get PDF
    As Internet and information technologies expand further into daily business activities, new solutions and techniques are required to cope with the growing complexity. One area that has gained attention is systems and organizations interoperability and Service Oriented Architectures (SOA). Web Services have grown as a preferred technology in this area. Although these techniques have proved to solve problems of low level integration of heterogeneous systems, there has been little advance at higher levels of integration like how to rule complex conversations between participants that are autonomous and cannot depend on some ruling or orchestrating system. Multi-agent technology has studied techniques for content-rich communication, negotiation, autonomous problem solving and conversation protocols. These techniques have solved some of the problems that emerge when integrating autonomous systems to perform complex business processes. The present research work intends to provide a solution for the realization of complex Business Process between heterogeneous autonomous participants using multi-agent technology. We developed an integration of Web Services and agent-based technologies along with a model for creating conversation protocols that respect the autonomy of participants. A modeling tool has been developed to create conversation protocols in a modular and reusable manner. BDI-Agents implementations that communicate over Web Services are automatically generated out of these models.Internet und Informationstechnik finden immer mehr Verwendung in alltäglichen Geschäftsaktivitäten und als Folge dessen, werden neue Lösungen und Verfahren gebraucht, um der steigenden Komplexität gerecht zu werden. Insbesondere Bereiche wie System- und Organizations- Interoperabilität, wie auch dienst-orientierte Architekturen (SOA) haben demzufolge mehr Aufmerksamkeit bekommen. Dabei sind Web Services zur bevorzugten Technologie geworden. Tatsächlich haben diese Techniken Probleme in niedrigeren Ebenen gelöst, die beim lntegrieren von heterogenen Systemen entstehen. Allerdings gab es bisher weniger Fortschritte in höheren Ebenen, wie der Regelung von komplexen Dialogen zwischen Teilnehmern, die aufgrund ihrer Autonomie, sich nicht nach anderen kontrollierenden oder orchestrierenden Systemen richten lassen. Multiagenten-Systeme haben Bereiche wie inhaltreiche Kommunikation, Handel, autonome Problemlösung und Interaktionsprotokolle im Detail geforscht. Diese Techniken haben Probleme gelöst, die beim Ausführen von komplexen Geschäftsprozessen auftreten. Die vorliegende Doktorarbeit beabsichtigt, mit Verwendung von Multiagenten-Technologien, eine Lösung für die Umsetzung von komplexen Geschäftsprozessen zwischen heterogenen autonomen Teilnehmern bereitzustellen. Wir haben eine Integrationslösung für Web Services und agenten-basierte Technologien zur Verfügung gestellt, zusammen mit einem Model für die Erstellung von Interaktions-Protokollen, die die Autonomie der Teilnehmer berücksichtigt. Ein Modellierungstool wurde entwickelt, um modulare und wiederverwendbare Interaktionsprotokolle gestalten zu können. Aus diesen Modellen kann man auch Implementierungen automatisch erzeugen lassen, welche BDI-Agenten, die über Web Services kommunizieren, verwenden

    Pervasive handheld computing systems

    Get PDF
    The technological role of handheld devices is fundamentally changing. Portable computers were traditionally application specific. They were designed and optimised to deliver a specific task. However, it is now commonly acknowledged that future handheld devices need to be multi-functional and need to be capable of executing a range of high-performance applications. This thesis has coined the term pervasive handheld computing systems to refer to this type of mobile device. Portable computers are faced with a number of constraints in trying to meet these objectives. They are physically constrained by their size, their computational power, their memory resources, their power usage, and their networking ability. These constraints challenge pervasive handheld computing systems in achieving their multi-functional and high-performance requirements. This thesis proposes a two-pronged methodology to enable pervasive handheld computing systems meet their future objectives. The methodology is a fusion of two independent and yet complementary concepts. The first step utilises reconfigurable technology to enhance the physical hardware resources within the environment of a handheld device. This approach recognises that reconfigurable computing has the potential to dynamically increase the system functionality and versatility of a handheld device without major loss in performance. The second step of the methodology incorporates agent-based middleware protocols to support handheld devices to effectively manage and utilise these reconfigurable hardware resources within their environment. The thesis asserts the combined characteristics of reconfigurable computing and agent technology can meet the objectives of pervasive handheld computing systems

    Multi-Agent Systems

    Get PDF
    This Special Issue ""Multi-Agent Systems"" gathers original research articles reporting results on the steadily growing area of agent-oriented computing and multi-agent systems technologies. After more than 20 years of academic research on multi-agent systems (MASs), in fact, agent-oriented models and technologies have been promoted as the most suitable candidates for the design and development of distributed and intelligent applications in complex and dynamic environments. With respect to both their quality and range, the papers in this Special Issue already represent a meaningful sample of the most recent advancements in the field of agent-oriented models and technologies. In particular, the 17 contributions cover agent-based modeling and simulation, situated multi-agent systems, socio-technical multi-agent systems, and semantic technologies applied to multi-agent systems. In fact, it is surprising to witness how such a limited portion of MAS research already highlights the most relevant usage of agent-based models and technologies, as well as their most appreciated characteristics. We are thus confident that the readers of Applied Sciences will be able to appreciate the growing role that MASs will play in the design and development of the next generation of complex intelligent systems. This Special Issue has been converted into a yearly series, for which a new call for papers is already available at the Applied Sciences journal’s website: https://www.mdpi.com/journal/applsci/special_issues/Multi-Agent_Systems_2019

    Design and implementation of a multi-agent opportunistic grid computing platform

    Get PDF
    Opportunistic Grid Computing involves joining idle computing resources in enterprises into a converged high performance commodity infrastructure. The research described in this dissertation investigates the viability of public resource computing in offering a plethora of possibilities through seamless access to shared compute and storage resources. The research proposes and conceptualizes the Multi-Agent Opportunistic Grid (MAOG) solution in an Information and Communication Technologies for Development (ICT4D) initiative to address some limitations prevalent in traditional distributed system implementations. Proof-of-concept software components based on JADE (Java Agent Development Framework) validated Multi-Agent Systems (MAS) as an important tool for provisioning of Opportunistic Grid Computing platforms. Exploration of agent technologies within the research context identified two key components which improve access to extended computer capabilities. The first component is a Mobile Agent (MA) compute component in which a group of agents interact to pool shared processor cycles. The compute component integrates dynamic resource identification and allocation strategies by incorporating the Contract Net Protocol (CNP) and rule based reasoning concepts. The second service is a MAS based storage component realized through disk mirroring and Google file-system’s chunking with atomic append storage techniques. This research provides a candidate Opportunistic Grid Computing platform design and implementation through the use of MAS. Experiments conducted validated the design and implementation of the compute and storage services. From results, support for processing user applications; resource identification and allocation; and rule based reasoning validated the MA compute component. A MAS based file-system that implements chunking optimizations was considered to be optimum based on evaluations. The findings from the undertaken experiments also validated the functional adequacy of the implementation, and show the suitability of MAS for provisioning of robust, autonomous, and intelligent platforms. The context of this research, ICT4D, provides a solution to optimizing and increasing the utilization of computing resources that are usually idle in these contexts
    corecore