

Design and Implementation of a Multi-Agent Opportunistic

Grid Computing Platform

A dissertation submitted in fulfilment of the requirements for the degree

Master of Science

In

Computer Science

By

Raymond Muranganwa

 Supervisor: Prof M Thinyane

i

To:

My family for redefining purpose:-

ii

Declaration

I, Raymond Muranganwa declare that this dissertation and work presented herein is my own and

has been generated by me as the result of my own research.

[Dissertation Title]

Design and Implementation of a Multi-Agent Opportunistic Grid Computing Platform

 I confirm that:

1. This dissertation has not been submitted to any other institution for a degree

qualification;

2. This work was done only while in candidature for a research degree at this University;

3. I have acknowledged main sources of help.

Signed: ……………………………………

Date: ………………………………………

iii

Abstract

Opportunistic Grid Computing involves joining idle computing resources in enterprises into a

converged high performance commodity infrastructure. The research described in this

dissertation investigates the viability of public resource computing in offering a plethora of

possibilities through seamless access to shared compute and storage resources. The research

proposes and conceptualizes the Multi-Agent Opportunistic Grid (MAOG) solution in an

Information and Communication Technologies for Development (ICT4D) initiative to address

some limitations prevalent in traditional distributed system implementations.

Proof-of-concept software components based on JADE (Java Agent Development Framework)

validated Multi-Agent Systems (MAS) as an important tool for provisioning of Opportunistic

Grid Computing platforms. Exploration of agent technologies within the research context

identified two key components which improve access to extended computer capabilities. The

first component is a Mobile Agent (MA) compute component in which a group of agents interact

to pool shared processor cycles. The compute component integrates dynamic resource

identification and allocation strategies by incorporating the Contract Net Protocol (CNP) and

rule based reasoning concepts. The second service is a MAS based storage component realized

through disk mirroring and Google file-system’s chunking with atomic append storage

techniques.

This research provides a candidate Opportunistic Grid Computing platform design and

implementation through the use of MAS. Experiments conducted validated the design and

implementation of the compute and storage services. From results, support for processing user

applications; resource identification and allocation; and rule based reasoning validated the MA

compute component. A MAS based file-system that implements chunking optimizations was

considered to be optimum based on evaluations. The findings from the undertaken experiments

also validated the functional adequacy of the implementation, and show the suitability of MAS

for provisioning of robust, autonomous, and intelligent platforms. The context of this research,

ICT4D, provides a solution to optimizing and increasing the utilization of computing resources

that are usually idle in these contexts.

iv

Acknowledgements

I offer my deepest regards and thanks to all who contributed positively to the success of this

research.

I thank God for providing in abundance.

With immense gratitude, I acknowledge the support of my supervisor, Prof. Mamello Thinyane.

His interest, research ideas, constructive feedback and making time for consultations made the

research enjoyable. This supervision realized that it’s not always about getting there but the

person one becomes in the process.

Many thanks to the Head of Department, Mr. M.S Scott who gave me an opportunity to be part

of the team; and all staff members who were involved directly or indirectly; especially Prof. K.

Sibanda, Mr. Z. Shibeshi and Mr. S. Ngwenya. I shall continue with Ms. N. Moorosi for

bringing me close to the high performance systems domain; the skills gained are invaluable.

Great appreciation to my colleagues and friends; being there was enough; you inspired me to

keep on during tough times.

I express my love and gratitude to my parents and sisters for their prayers, motivation and

support.

Lastly, I acknowledge the financial support provided through the Telkom Centre of Excellence,

Department of Computer Science.

v

Contents

1 Introduction .. 1

1.1 Background ... 1

1.2 Research Context... 2

1.3 Research Rationale .. 2

1.4 Problem Identification ... 3

1.5 Aims and Objectives ... 4

1.6 Conclusion ... 5

2 Research Design... 6

2.1 Design.. 6

2.1.1 Philosophy and Approach ... 7

2.1.2 Strategy ... 7

2.1.3 Methods .. 8

2.1.3.1 Research Methodology .. 8

2.1.3.2 System Development Methodology ... 8

2.1.4 Agent Oriented Software Engineering ... 10

2.1.4.1 GAIA.. 11

2.1.4.2 MESSAGE ... 11

2.1.4.3 Tropos .. 12

2.1.4.4 JADE MAS Methodology.. 12

2.2 Conclusion ... 14

3 Distributed Computing... 15

3.1 Opportunistic Grids ... 15

3.1.1 Opportunistic Grids Characterization ... 15

3.1.2 Volunteer Computing ... 17

3.1.2.1 Folding@home .. 17

3.1.2.2 Storage@home ... 18

3.1.2.3 SETI@home... 18

3.1.2.4 Distributed.net .. 18

3.1.2.5 Bayanihan .. 19

3.1.2.6 Javelin .. 19

3.1.2.7 VC Challenges ... 19

vi

3.2 Grid Computing... 20

3.3 Cloud Computing .. 20

3.3.1 The Cloud Architecture .. 21

3.3.1.1 Essential Services... 21

3.3.1.2 Services and Deployment Contexts ... 22

3.3.2 The Cloud Realization .. 22

3.4 Distributed Storage .. 23

3.4.1 Google File System .. 24

3.4.1.1 GFS Architecture ... 24

3.5 Conclusion ... 25

4 Multi Agent Systems.. 26

4.1 Agent Technology ... 26

4.2 Multi-Agent Systems Rationale .. 26

4.3 FIPA Compliance .. 27

4.4 MAS Communication ... 27

4.4.1 KQML and KIF .. 28

4.4.2 FIPA ACL... 28

4.5 MAS Coordination .. 29

4.5.1 MAS Negotiation Strategies ... 29

4.6 MAS Challenges ... 31

4.7 MAS Development Platforms ... 31

4.7.1 Aglets .. 32

4.7.2 Anchor .. 32

4.7.3 Zeus .. 33

4.7.4 JADE MAS ... 33

4.7.4.1 JADE Architecture ... 33

4.7.4.2 Agent Tasks: Behaviours ... 34

4.7.4.3 JADE ACL ... 35

4.7.4.4 Debugging Tools .. 36

4.7.5 Platform Evaluation .. 37

4.8 MAS Development Bottlenecks .. 39

4.9 Multi-Agent Distributed Computing ... 40

vii

4.10 Code Mobility in Distributed and Multi-Agent Systems .. 41

4.10.1 Mobile Agent .. 41

4.10.1.1 Advantages of MA Paradigm ... 41

4.10.2 Remote Evaluation ... 42

4.11 Knowledge Presentation and Reasoning for MAS .. 42

4.11.1 Rule Reasoning ... 42

4.11.2 Rule Engines ... 43

4.11.2.1 SweetRules ... 44

4.11.2.2 F-OWL ... 45

4.11.2.3 Drools and Jess .. 45

4.12 Conclusion ... 45

5 MAOG Implementation Context and Requirements ... 46

5.1 The Siyakhula Living Lab (SLL) Context .. 46

5.2 MAOG Services and Requirements .. 47

5.2.1 Compute Component .. 48

5.2.2 Storage Component .. 48

5.2.2.1 Disk Mirroring File-System ... 48

5.2.2.2 C-AP File-System .. 49

5.2.3 Non-Functional MAOG Requirements .. 49

5.3 Conclusion ... 50

6 The MAOG System ... 51

6.1 Compute Component... 51

6.1.1 Mobile Agent Platform ... 51

6.1.1.1 MA Architecture .. 51

6.1.1.2 System Specifications .. 53

6.1.1.3 Agent Interactions .. 53

6.2 Storage Component ... 56

6.2.1 System and Requirement Analysis ... 57

6.2.2 Agent Identification .. 58

6.2.3 Agent Tasks .. 58

6.2.4 Storage Modules ... 60

6.2.5 DM File-System ... 60

viii

6.2.5.1 Upload Service: 1st Iteration .. 60

6.2.5.2 Upload Service: 2nd Iteration ... 63

6.2.5.3 Upload Service: 3rd Iteration .. 65

6.2.5.4 Download Service .. 67

6.2.6 C-AP File-System ... 68

6.2.6.1 Dynamic vs. Static Chunking .. 69

6.2.6.2 C-AP Upload Service ... 69

6.2.6.3 C-AP Download Service .. 71

6.3 Conclusion ... 73

7 MAOP Services ... 74

7.1 MA Component ... 74

7.1.1 Processing User Agent-PUA .. 74

7.1.2 Node Processing Agent-NPA ... 75

7.1.3 Processing Resolver Agent-PRA .. 76

7.1.4 Mobile Agent-MA .. 76

7.1.4.1 Processing Mobile Agent ... 77

7.1.5 Integration Exceptions .. 79

7.1.5.1 JADE and Drools: Exceptions ... 79

7.1.5.2 JADE and Jess: Exceptions .. 82

7.2 Storage Component ... 85

7.2.1 DM File-System: Upload Service... 85

7.2.1.1 SCUA ... 85

7.2.1.2 RA .. 86

7.2.1.3 SA .. 88

7.2.2 DM File-System: Download Service .. 89

7.2.2.1 SCUA ... 89

7.2.2.2 RA .. 90

7.2.2.3 SA .. 90

7.2.3 C-AP File-System: Upload Service .. 91

7.2.3.1 RA .. 91

7.2.3.2 SA .. 93

7.2.4 C-AP File-System: Download Service ... 94

ix

7.2.4.1 RA .. 94

7.2.4.2 SA .. 94

7.3 Conclusion ... 95

8 Results and Analysis .. 96

8.1 Compute Component... 96

8.1.1 Evaluation ... 96

8.2 MAOG File-Systems ... 98

8.2.1 Measurement Criteria ... 99

8.2.2 Experimentation.. 100

8.2.3 DM Service Evaluation .. 101

8.2.3.1 DM U_T1 Analysis .. 103

8.2.3.2 DM UTAT Analysis .. 106

8.2.3.3 DM U_RTT Analysis ... 108

8.2.3.4 DM DRTT Analysis ... 110

8.2.4 C-AP File-System Evaluation .. 111

8.2.4.1 C-AP U_TAT Analysis .. 111

8.2.4.2 C-AP URTT Analysis .. 113

8.2.4.3 C-AP DRTT Analysis .. 115

8.2.5 C-AP vs. DM File-System .. 117

8.3 Security.. 119

8.4 Conclusion ... 120

9 Conclusion and Future Work ... 121

9.1 Summary ... 121

9.2 Findings ... 121

9.3 Contributions ... 123

9.4 Limitations .. 125

9.5 Future Work .. 125

9.6 Publications ... 126

Bibliography ... 127

Appendix A - Compute Implementation Details .. 139

A. MA Platform... 139

A.1 Processing User Agent-PUA .. 139

x

A.2 Node Processing Agent-NPA ... 141

A.3 Processing Resolver Agent-PRA .. 142

A.4 MobileAgent.java ... 144

Appendix B - Storage Implementation Details ... 148

B. Storage Component .. 148

B.1 DM File-System: Upload Service ... 148

B.2 DM File-System: Download Service .. 154

B.3 C-AP File-System: Upload Service .. 158

B.4 C-AP File-System: Download Service ... 161

xi

List of Figures

Figure 1: The Research Onion [15] .. 6

Figure 2: Deductive Approach .. 7

Figure 3: Iterative Development ... 9

Figure 4: JADE MAS Methodology [22] ... 13

Figure 5: Cloud Definition [49] .. 21

Figure 6: GFS Architecture [54] ... 25

Figure 7: JADE Architecture .. 34

Figure 8: Message Object ... 35

Figure 9: Message Receive ... 36

Figure 10: RMA .. 36

Figure 11: Rule Engine Components .. 43

Figure 12: SLL Connectivity .. 47

Figure 13: MA Architecture.. 52

Figure 14: MA Use Case... 53

Figure 15: MA Infrastructure .. 54

Figure 16: Node utilisation ERD .. 55

Figure 17: MA Sequence Diagram ... 56

Figure 18: Storage Use Case ... 57

Figure 19: Agent Diagram .. 58

Figure 20: Storage Component Architecture .. 59

Figure 21: File Upload Service (1st iteration) ... 62

Figure 22: Sniffer Agent interaction capture .. 63

Figure 23: File Upload Service (2nd Iteration) .. 65

Figure 24: File Upload service (3rd Iteration) ... 66

Figure 25: File Download Service .. 68

Figure 26: File Download Service .. 70

Figure 27: File Download Service .. 72

Figure 28: MA Compute Project... 74

Figure 29: PMA GUI .. 75

Figure 30: Keeping track of source node .. 77

Figure 31: Initialising Drools in JADE ... 80

Figure 32: Drools Engine Instance ... 80

Figure 33: Migration Exception .. 81

Figure 34: Migration Exception .. 81

Figure 35: Drools 5.6.0 in JADE .. 82

Figure 36: Starting a JADE Runtime .. 83

Figure 37: Jess Instance .. 83

Figure 38: FilenotFoundException ... 83

Figure 39: Rule File to Bytes .. 84

Figure 40: IOException... 84

xii

Figure 41: Serialisation Exception .. 84

Figure 42: Output Stream.. 85

Figure 43: DM project .. 85

Figure 44: File Chooser .. 86

Figure 45: Upload Status .. 86

Figure 46: Handling SCUA Requests ... 87

Figure 47: Upload Service Implements .. 88

Figure 48: Storing Downloaded File... 89

Figure 49: File Retrieval ... 91

Figure 50: Chunking a file .. 92

Figure 51: Atomic Append Approach ... 93

Figure 52: Chunk Retrieval ... 95

Figure 53: Configuring Java ... 97

Figure 54: CNP Mechanism.. 97

Figure 55: Loading a PMA ... 98

Figure 56: Elementary Intervals.. 99

Figure 57: Upload Interactions ... 102

Figure 58: Download Interactions .. 102

Figure 59: DM_U_T1 ... 103

Figure 60: RA Error Log... 103

Figure 61: Regression Analysis .. 104

Figure 62: DM_U_T1 vs. File size Plot .. 104

Figure 63: Covariance ... 104

Figure 64: Pearson Coefficient ... 105

Figure 65: Significance Test ... 105

Figure 66: DM_U_TAT .. 106

Figure 67: Covariance ... 106

Figure 68: DM_U_TAT vs. File-size Plot .. 107

Figure 69: Test for Significance ... 108

Figure 70: DM U_RTT vs. File size Plot .. 108

Figure 71: Covariance test .. 109

Figure 72: Test for Significance ... 109

Figure 73: DM_D_RTT vs. File-size Plot .. 110

Figure 74: Covariance ... 110

Figure 75: Significant Test.. 111

Figure 76: C-AP U_TAT vs. File-size Plot .. 112

Figure 77: Covariance ... 112

Figure 78: Significance Test ... 113

Figure 79: Covariance ... 113

Figure 80: C-AP_U_RTT vs. File size Plot .. 114

Figure 81: Significance Test ... 115

Figure 82: C-AP DRTT vs. File Size Plot .. 115

Figure 83: Covariance ... 115

xiii

Figure 84: Significance Test ... 116

Figure 85: DM & C-AP Mean URTT ... 117

Figure 86: DM&C-AP Mean U_TATs ... 118

Figure 87: DM&C-AP Mean DRTT ... 118

xiv

List of Tables

Table 1: Grid Survey ... 16

Table 2: Grids and OGs Analysis [45] .. 20

Table 3: Grid and Cloud Compared .. 23

Table 4: Message Parameters [93] .. 35

Table 5: Agent Platforms [80] .. 38

Table 6: DM Upload Service Responsibilities.. 61

Table 7: Updated Agent Roles .. 63

Table 8: File Download responsibilities ... 67

Table 9: C-AP Responsibilities ... 69

Table 10: C-AP responsibilities .. 71

Table 11: PMA TAT ... 98

Table 12: DM_U_TAT Correlations .. 107

Table 13: Pearson Coefficient ... 109

Table 14: Pearson Coefficient ... 111

Table 15: Pearson Coefficient ... 112

Table 16: Pearson Coefficient ... 114

Table 17: Pearson Coefficient ... 116

xv

List of Abbreviations

ACC Agent Communication Channel

ACL Agent Communication Language

AID Agent Identifier

AMS Agent Management System

AOT Agent-Oriented Techniques

API Application Program Interface

C-AP Chunking with Atomic Append

CAP Community Access Point

CNP Contract Net Protocol

CPU Central Processing Unit

DA Database Agent

DAI Distributed Artificial Intelligence

DAN Digital Access Node

DF Directory Facilitator

DM Disk Mirroring

DRTT Download Round Trip Time

DSS Distributed Storage Systems

DTAT Download Turnaround Time

FIPA Foundation for Intelligent Physical Agents

GFS Google File System

HTTP Hypertext Transfer Protocol

IaaS Infrastructure as a Service

ICT Information and Communications Technology

ICT4D Information and Communication Technologies for Development

IIOP Inter-Object Resource Broker Protocol

IMTP Internal Message Transport Protocol

JADE Java Agent Development Platform Multi-Agent System)

KIF Knowledge Interchange Format

KQML Knowledge Query Manipulation Language

KR Knowledge Representation

KRR Knowledge Representation and Reasoning

LAN Local Area Network

MA Mobile Agent

MAC Media Access Control

MAs Mobile Agents

MAOG Multi-Agent Opportunistic Grid

MAS Multi-Agent Systems

MTP Message Transmission Protocol

MTS Message Transport Service

NCL Node Cumulative Load

NIST National Institute of Standards and Technology

NPA Node Processing Agent

OG Opportunistic Grid

OOT Object-Oriented Techniques

xvi

OSL Ordinal Sharing Learning

OWL Web Ontology Language

PaaS Platform as a Service

PMA Processing Mobile Agent

PMAGUI Processing Mobile Agent Graphical User Interface

PRA Processing Resolver Agent

PRS Production Rule Systems

PUA Processing User Agent

RA Resolver Agent

RDF Resource Description Framework

RIs Research Infrastructures

RMA Remote Monitoring Agent

RMI Remote Method Invocation

RTT Round Trip Time

RuleML Rule Modeling Language

SA Storage Agent

SaaS Software as a Service

SCUA Storage Component User Agent

SLA Service Level Agreement

SLL Siyakhula Living Lab

SS Storage Server

SSL Secure Socket Layer

SWRL Semantic Web Rule Language

TAT Turnaround Time

UML Unified Modelling Language

URL Universal Resource Locator

URTT Upload Round Trip Time

UTAT Upload Turnaround Time

VC Volunteer Computing

VSAT Very Small Aperture Terminal

WiMAX Worldwide Interoperability for Microwave Access

1

Chapter 1

1 Introduction

This chapter presents the research overview, context, objectives and rationale. The problem

identification section present challenges faced with emerging enterprises in hosting specific

systems and services. The discussions unfold open research questions which recommend ICT4D

infrastructures as alternative computing resources realized through MAS. Research aims and

objectives are laid out to complement the related questions.

1.1 Background

The rapid increase in multi-purpose access centers in recent years has heightened the use of

Information and Communication Technologies (ICTs) for socio-economic development [1].

ICTs play a key role as transformational tools for growth and spur of knowledge in developing

countries. A wealth of ICT4D initiatives have established formal and informal sector links

defying the information and communications sharing barriers [2]. As much as there is significant

optimism in ICTs as enablers for socio-economic sustenance in developing countries, research

has shown a considerably slow ICT4D uptake and drive [3], [4]. Lack of project implementation

blueprints for Information and Communications Technology (ICT) initiatives is a major

contributing factor [5]. However, researchers remain resolute that ICTs can play a crucial role in

bridging the technology gap [6], [7].

The development of roadmaps for utilizing Research Infrastructures (RIs) to include ICTs for

scientific research has provided and opened up opportunities for increased innovation. RIs are

physically distributed resources and services used by scientific communities for top-level

research. The infrastructures empower researchers by offering access to facilities irrespective of

ownership and location. The view of expanding ICT-based electronic infrastructures such as

Opportunistic Grids (OGs) and data centres support development thus strengthening the

industrial base of knowledge and technological expertise.

As computers are encompassing all facets of our lives with technological advancements, demand

is being felt for low-cost computational and storage resources. Commercial services such as

Amazon Elastic Compute Cloud (Amazon EC2) [8] and Google drive offer these on-demand

2

resources. Few services are built around ICTs compared to commercial applications; this is even

true in developed countries where technology is readily available [2]. Cooperative structuring of

ICTs foster the advent of approaches built on shared use of resources in diverse socio-economic

landscapes and in low-resource contexts. This creates sustainable partnerships for provisioning

of crucial services such as of e-Learning, e-Health and e-Government.

Exploration of Opportunistic Grid (OG) e-infrastructures exposed vast possibilities in seamless

integration of machine resources. OGs integrate computing resources from geographically

dispersed networked locations [9]. The vision for large-scale, transparent and pervasive sharing

of resources in diverse administrative domains can be a reality as a result of OGs. This research

focused on the design and implementation of a grid solution that harness resources from idle

non-dedicated computers in an ICT4D context. The platform as envisaged brings effective

computing inclusive of processing power and/or storage capabilities to ordinary users and

institutions as a substitute for expensive high performance systems.

1.2 Research Context

This study involved an investigation on the effectiveness of integrating low-cost commodity

resources into a converged ICT solution within an ICT4D research project (called Siyakhula

Living Lab) undertaken at a rural community of Dwesa in South Africa. Dwesa is a marginalized

rural community in the former Transkei region of the Eastern Cape about 400 kilometers from

East London [10]. The Siyakhula Living Lab (SLL) is an ICT4D initiative that thus far

principally uses schools in the community as test beds for deploying ICT infrastructures in the

area [11]. These ICT service centers (formally called Digital Access Nodes) were established on

ICT collaboration models. The models assume community participation in all project stages

thereby facilitating development in areas formerly lacking ICT services and infrastructures [12].

The SLL is seeking to capitalize on the potential of ICTs towards socio-economic development

in marginalized rural communities.

1.3 Research Rationale

The current network deployed in Dwesa consists of a Worldwide Interoperability for Microwave

Access (WiMAX) backbone network which connects about 16 digital access nodes (largely

schools). This provides a high-speed broadband island within the network with a back-haul link

3

to the Internet via Very Small Aperture Terminal (VSAT). Each of the Digital Access Nodes

(DANs) consists of a number of computers used by the community to access network services.

These computers are generally under-utilized mainly because they are only accessible during

school hours. The computers are usually idle because the students rarely use them and they are

not always accessible to the community even when the students are not using them. They are

typically used for very basic applications/services which don’t fully utilize the available capacity

(e.g. processor and storage). These idle computing resources provide a perfect opportunity to be

utilized in an OG setup. This research considers the MAOG solution on this type of network.

The research seeks to determine its feasibility and its technical adequacy. A successful

deployment of a grid in a rural marginalized community, such as Dwesa, would open up a

plethora of possibilities and opportunities. The grid solution in the research context enables

computing to previously marginalised backgrounds to participate in Internet-based volunteer

networks. By utilizing such an ICT facility, community members assume the role of producers

of services rather than being consumers primarily.

1.4 Problem Identification

An assortment of high performance systems (i.e. supercomputers) have been developed to satisfy

storage and floating point calculation demand of specific applications and projects (e.g. in

earthquake prediction and visualization simulations) [13]. While these distribute enhanced

computing resources, they nonetheless quickly become obsolete and cost organizations money in

anticipated downtimes [14]. The prospect of hosting such systems is unachievable for selected

users and enterprises due to high capital injection for short-lived life cycles as a main factor. The

costs scale from hardware, physical space, temperature-controlled facilities and maintenance

which prove this option not viable for large-scale adoption in non-enterprise contexts. On the

course to understand and investigate how standard ICT resources can be an alternative

computing resource in an OG setup context, the following research questions were explored in

this research:

1. Can low-cost commodity computers in ICT contexts be exploited for an OG setup?

2. What is the most appropriate distributed computing design and implementation for an

ICT4D OG?

4

OGs are typically based on utilization of heterogeneous resources which present challenges in

integrating the shared compute and storage resources. Primarily, it is mandatory to use these

resources only when they are idle. Also, the resources have erratic uptimes which disrupt grid

processes. A candidate technology for the implementation of the OG platform in an ICT4D

context is the MAS technology. MAOG proposes a scalable, adaptive and context aware

approach to dynamic resource identification and allocation in distributed heterogeneous

uncertain settings. As such, in addressing question two above, this research undertakes an

evaluation of the agent technology as a potential tool to ease the development of distributed

systems to include OGs in factual scenarios identified. Linked to the second research question,

the following sub-questions have been identified:

3. Is a MAS solution a feasible technology for implementation of the platform and does it

provide the necessary functional adequacy?

4. What is the most suitable MAS analysis and design methodology that can be utilised in

the implementation of such a MAS system?

5. How can agents reason about their execution environment to adapt the system to

dynamic environment changes? And what is the most suitable rule engine to implement

rule reasoning in MAS?

The design and implementation of software systems using agent-oriented approaches is

unquestionably challenging. A selection of domain independent concerns have to be identified

which range from how autonomous agents in dispersed environments interact and agents having

shared or conflicting goals. This document examined how ICT infrastructures can be utilised for

commodity grids to address key issues in particular enterprises operating on constrained budgets.

The adoption and validation of the MAS technique in addressing grid implementation challenges

were analysed.

1.5 Aims and Objectives

The main aim of this research was to determine the suitability and feasibility of MAS in the

provisioning of a distributed infrastructure which exploits idle shared computing resources. The

related sub-objectives are listed further on:

1. Determine the effectiveness of deploying an OG platform in the low-resourced contexts;

5

2. Undertake an extensive evaluation of the selected grid solution.

While this research is conceptualized in low-resources context, it is equally applicable to any

setting where idle computing resources can be combined into an OG infrastructure.

1.6 Conclusion

The main research concepts have been discussed in this chapter. To realize a MAOG system, the

underutilised machines in Dwesa were identified as a potential resource base for an OG setup.

Although the agent technology has exciting features such as scalability and context awareness in

distributed application development; addressing domain independent concerns was highlighted

as the main challenge.

6

Chapter 2

2 Research Design

This chapter details the study’s design based on the research onion metaphor. In this chapter

research questions and objectives are also turned into a research project. Discussions on the

research philosophy, approach and method will outline the design assumptions. Special attention

will be given to how MAS are unified with opportunistic computing to devise strategies for

utilizing shared machine capabilities in an ICT4D context. Literature in this chapter also address

research question 4 and motivates a MAS methodology that can be utilised for the MAOG

system development.

2.1 Design

Research activities contribute to discovery and confirmation of scientific knowledge. Techniques

for acquiring and analysing data represent only the final phase in a research design. Identifying a

research approach that is comprehensive and elaborate was crucial for this research. Hence the

Saunders et al research onion metaphor was adopted to guide the research design and

implementation process [15]. The research onion (Figure 1) is composed of six layers which

convert research questions and objectives into a research project.

Figure 1: The Research Onion [15]

7

The questions and objectives inform on choice of research philosophy, approach, strategy and

time horizons on which projects can be undertaken. Considering the research onion concepts

develops a coherent research design that is justifiable [15]. The onion layers examined by this

research are presented in proceeding subsections.

2.1.1 Philosophy and Approach

The research philosophy influences the course of the entire research. It incorporates assumptions

on suitable research methods which interpret the project views [16]. Positivism [17], [18] was

observed as a philosophical perspective consistent with aims, objectives and nature of this

research.

Positivism assumes that the observer and instruments are independent of the objectively given

reality. Positivism analyses phenomenon by making assumptions based on quantifiable measures

and hypothesis testing [16]. That is, positivists utilize deductive methods to test theories thus

gaining predictive understanding of these phenomenon [16]. The deductive method life cycle in

Figure 2 include: (1) development of a theory from previous findings (i.e. literature); (2)

derivation of hypothesis from theory; (3) making observations; and (4) confirmation of a claim

or rejecting hypothesis.

Figure 2: Deductive Approach

2.1.2 Strategy

After identifying the research philosophy and approach; the experiment strategy was chosen to

guide this project based on positivistic and deductive interpretations. Experiments create and

manipulate relationships between variables to check how system scenarios affect conclusions or

results [16]. Experiments were relevant in answering research questions of the form “how” or

“why” and investigating the performance of selected system components.

8

2.1.3 Methods

A mixed methods approach was considered in this layer. The technique was used to divide this

this study into two; research and system development methodologies to address specific research

questions outlined in chapter 1.

2.1.3.1 Research Methodology

The research examined opportunistic computing as a justifiable model to utilize ICT

infrastructures using Dwesa as a case study. Distributed computing surveys were conducted. The

questions (introduced in Section 1.4) answered in the related work section include:

1. Can low-cost commodity computers in ICT contexts be exploited for an OG setup?

2. What is the most appropriate distributed computing design and implementation for an

ICT4D OG?

A survey on these questions and related technologies achieved the following milestones:

i. Motivated the choice for Opportunistic Grid Computing;

ii. Clarified the research’s Opportunistic Grid Computing perspective;

iii. Contrasted opportunistic computing with other mainstream distributed computing

models;

iv. Considered the benefits of public resource computing in enterprises;

v. Proposed service types that can be realized on low-cost commodity resources.

Multiple visits to Dwesa were conducted in order to evaluate the ICT infrastructures and their

usage patterns. ICT4D field concerns such as unreliable power and erratic telecommunications

infrastructure that may affect an OG solution were confirmed during those visits.

2.1.3.2 System Development Methodology

The system development methodology was used to guide the design and implementation of the

MAOG system’s compute and storage components. The approach recommended the significance

of the agent technology in implementing specific distributed services. The research questions

reviewed to explore MAS in opportunistic computing include:

1. Is a MAS solution a feasible technology for implementation of the platform and does it

provide the necessary functional adequacy?

9

2. What is the most suitable MAS analysis and design methodology that can be utilised in

the implementation of such a MAS system?

3. How can agents reason about their execution environment to adapt the system to

dynamic environment changes? And what is the most suitable rule engine to implement

rule reasoning in MAS?

An agent oriented software engineering methodology by Nikraz et al (introduced in Section

2.1.4.4) was adopted for the analysis and design of MAOG services. The methodology

incorporates iterative development enabling developers to reconsider each stage flexibly.

Figure 3: Iterative Development

The system development methodology integrated the planning and implementation stages into

the agent software engineering methodology:

1. Planning: The step evaluated programming paradigms, rule engines and the agent-based

option as logical for this research. Literature review was conducted on:

i. Agent Technology;

ii. MAS Rationale;

iii. MAS Communication;

iv. MAS Coordination;

10

v. MAS Development Platforms;

vi. Agent Oriented Software Development;

vii. Knowledge Presentation and Reasoning in MAS.

From literature suitable rule engines, a design methodology and a MAS platform (JADE

MAS) were identified for the MAOG system implementation. The agent technology was

also established as viable in distributed applications based on related work.

2. Analysis: In the analysis stage research problems were introduced without solution

considerations. The following stages were included:

i. Agent type identification;

ii. Agent responsibility formulation;

iii. Acquaintance identification.

Use case diagrams and agent relationships deliverables shaped the foundation of the

analysis stage.

3. Design: The solutions to problems identified in the analysis step were considered in this

step. Agent interaction specification was the main activity. For agent types and their

responsibilities identified; related agent acquaintances relationships were defined. The

agent sequence diagrams designed enabled for easy transition into the implementation

stage.

4. Implementation: The MAOG compute and storage services were implemented using the

JADE platform. The Drools (Section 4.11.2.4) and Jess (Section 4.11.2.1) engines were

experimented with a specific compute component. Due to Drools integration issues

(documented in Section 7.1.5.1), Jess features were integrated for rule based reasoning.

5. Testing and Evaluation: The MAOG services were setup in an experimental

environment and evaluated.

2.1.4 Agent Oriented Software Engineering

Agent-Oriented Techniques (AOT) combine uniform approaches in the development of flexible

systems with complex behaviour [19]. That is, AOT support system analysis, design and

implementation stages with a distinct uniform theory namely that of agents. Agent participant

identification and behaviour refinement are considered in the design phases.

11

AOT foundation is deeply rooted in Object-Oriented Techniques (OOT). Specifically, AOT

from an engineering perspective is a specialization of OOT. However, according to Shoham

[20], OOT and AOT differ in the following ways: (i) the internal states of agents in AOT are

structured by mental notions (i.e. beliefs, goals and intentions) and entities communicate using a

universally defined communicative language; and (ii) OOT describe a system as composed of

modules which communicate and have separate methods of handling messages. Due to these

underlying variations, agent systems are analysed, designed and implemented differently.

Utilising a suitable development methodology in projects is crucial as it reduces system

development time. Most existing MAS design approaches are centred on top-down and object-

oriented methodologies. Using the two simultaneously has limitations, as agents and objects are

generalised differently; thus should be considered at separate levels [21], [22]. Since MAS

provide a means of problem solving in certain domains where some techniques lack; a

comprehensive software development methodology was imperative for this research. GAIA,

MESSAGE, TROPOS and the JADE MAS methodology are examples of guidelines used in

agent-oriented development.

2.1.4.1 GAIA

GAIA [23] is a theoretical framework to guide the development of MAS from analysis to design.

The approach is focused on the macro-level (societal) and micro-level (agent) aspects of

systems. GAIA has two analysis and three design models which omit specification collection

(i.e. requirement gathering) and implementation. Although the models are established; their

illustration is for a subset of the concepts necessary for agent oriented analysis [23]. The

methodology was extensively adopted but encountered its fair share of limitations in its

practicality to real world multi-agent contexts. Critically the approach was suitable for analysis

and design of closed MAS in which agents cooperate to achieve objectives in closed systems.

This factor sets it apart from current agent-based system setups owned by different stakeholders

and which interact for self-benefit or collaboration [23].

2.1.4.2 MESSAGE

MESSAGE (Methodology for Engineering Systems for Software Agents) [19] is a software

engineering approach which cover analysis and design of agent systems. The knowledge level

12

entities in MESSAGE are classified into Concrete Entity (consisting of agents, organisation,

roles and resource entities), Activity (task and interaction) and Mental State Entity (goal) classes.

The method “extends Unified Modelling Language (UML) by contributing with agent

knowledge level concepts and diagrams with notations to view them” [19]. From a structural

perspective “MESSAGE entities are objects with operations and attributes expressed by

methods”; the behavioural view illustrates them as state machines. Although MESSAGE extends

UML to manage agent interaction; the approach doesn’t have agent technology concepts at its

centre.

2.1.4.3 Tropos

Tropos [24] methodology applies agent concepts in all phases of development. Tropos is

founded on the following ideas [25]:

1. Agents and related mentalist concepts are used in all software development phases.

2. Requirement analysis facilitating for an understanding in the system environment set-up.

Principally Tropos consists of [25]:

 Early requirement analysis which analyses a problem by studying its organisational

setting;

 Late requirement analysis: the system is described in its environment inclusive of its

functionality;

 Architecture design: the different subsystems of the global architecture are defined.

Emphasis on requirements analysis distinguish Tropos from current MAS methodologies [25].

The methodology hasn’t been used for developing a fully-fledged MAS and lacks tools which

support the transition between phases [25].

2.1.4.4 JADE MAS Methodology

Nikraz et al proposed a methodology (shown in Figure 4) for analysis and design of MAS using

JADE [22]. Generic software engineering aspects are covered in the analysis stage with the latter

focused on the JADE platform. Contrary to current methodologies which extend object-oriented

methods, the JADE methodology is centred on agents specifically and the agent paradigm

abstractions.

13

Figure 4: JADE MAS Methodology [22]

Additionally, the top-down and bottom-up approaches included account for system capabilities

(e.g. legacy systems and people) and application requirements. This enable designers who are

new to JADE and the agent computing field to grasp quickly important concepts in MAS

14

development [22]. The Nikraz et al methodology was selected to guide the MAOG compute and

storage services development. The comprehensiveness of the methodology in the analysis and

design stages of MAS based on JADE motivated its adoption for this research. Also, its support

for top-down and bottom approaches enable people and target infrastructures in the research

context to be incorporated flexibly to realise a MAS infrastructure with real life application.

2.2 Conclusion

The research onion discussed in the previous sections provided an overview of all research

stages. This chapter presented the study in terms of the research and system development

methodologies. A MAS development methodology explained in terms of JADE was selected to

drive the development of the compute and storage services. The following chapters introduce the

distributed computing domain, MAS concepts and the ICT4D context in which the research is

undertaken.

15

Chapter 3

3 Distributed Computing

The literature foundations for this research are laid in this chapter and the relevant mainstream

paradigms. Background on the research topic is provided to show contributions the study offers

based on research conducted in the related area. The literature in this chapter address questions 1

and 2 introduced in Section 1.4. The main objective is to determine the effectiveness of

deploying an OG platform in low resourced contexts. Concepts in OGs and how they differ from

other computing paradigms are discussed. In this regard, this section elaborates the OG

perspective to confirm the research’s computing standpoint.

3.1 Opportunistic Grids

OGs also known as Desktop grids are distributed infrastructures which join idle resources from

users on the Internet to work on computational and storage resource constrained projects [26],

[27]. Computing in this model depends on ordinary resources to attain its goals, contrary to other

distributed systems wherein resources are dedicated for specific computational tasks. The

volunteered machines share a quota of their resources to form a geographically distributed

computing solution. Trends in production of multi-core processors in computers with enhanced

storage capabilities for affordable market value are evolving on a globally scale. A number of

these machines are connected by high speed connectivity which makes each computer a

potential volunteer node.

3.1.1 Opportunistic Grids Characterization

OGs are classified as either volunteer or enterprise systems based on platform support,

scalability and nature of resource providers [28]:

1. Platform: OGs are web and/or middleware based with respect to the platform running on

the resource provider. In web-based, volunteers download applications (e.g. java applets)

using web browsers and process applets using shared machines. The middleware

approach however requires resource providers to set-up applications which offer the

required service.

16

2. Scalability: Scalability classify OGs in two: Local Area Network (LAN) and Internet

based [29]. Internet-based are “characterized by anonymous resource providers,

connectivity issues, malicious resources and high security risks” [29]. LAN-based on the

other hand are governed by policy frameworks and have consistent connectivity.

Usually Volunteer Computing (VC) is internet-based and enterprise grids are LAN-

based.

3. Resource Provider: Resource types identify how resources are shared in distributed

systems. Volunteer and enterprise are the two primary support scenarios. VC

infrastructures rely on public users’ participation, whereas in enterprise computing; users

share resources involuntarily and are usually within a university or corporation.

Table 1 shows an overview of available OG systems in related classifications as discussed.

System Platform (Based) Scalability Resource Provider

Bayanihan [30] Web or Middleware Internet Volunteer

Boinc [31] Middleware Internet Enterprise

Condor Middleware LAN Enterprise

SETI@home [32] Middleware Internet Volunteer

Distributed.net [33] Middleware Internet Volunteer

Entropia [34] Middleware LAN or Internet Enterprise or Volunteer

QADPZ [35] Middleware LAN, Internet Enterprise

SZTAKI [36] Middleware LAN, Internet Enterprise

Javelin [37] Web Internet Volunteer

Folding@home [38] Web Internet Volunteer

Table 1: Grid Survey

The research focused on a platform founded on computing resources shared from different

heterogeneous environments. The resource provider characteristic was important in motivating

our design and approach in this research. From connected factors, VC was considered as

appropriate for this study. Although enterprise grids overcome volatility (i.e. robustness, security

and reliability) concerns; they are limited in computational power compared to the virtually

unlimited resources in VC [29].

17

3.1.2 Volunteer Computing

VC is established on computational and participative pillars. The computational aspect deals

with allocation and management of machine resources (e.g. storage and processing), with the

latter focused on motivations to contribute computer resources in projects [39].

Human factors in VC are important for distributed systems to achieve specific design goals.

Evidence from studies conducted on why people volunteer resources suggested the following

[40]:

1. Support for scientific goals: Computer resources are shared to support research goals

(e.g. such as in curing diseases and extra-terrestrial life search);

2. Credit: Some resource providers are into computer benchmarking and use VC as a

platform to publicize their machine performance.

To date a number of VC applications have produced resources comparable to a selection of

supercomputers and commercial file hosting services [41]. Related projects with millions of

users offering unmatched computing power and storage are currently being used in medicine,

bioinformatics, climate studies, astrophysics and molecular biology [2]. SETI@home [42] for

instance managed to gather 2.5 million years of processor time in a 7 year operation period [41].

Examples of recognized VC projects include: Folding@home [43], Storage@home [44],

Distributed.net [33], Bayanihan [30] and Javelin [37].

3.1.2.1 Folding@home

Folding@home is an active project that harvests processing cycles for folding simulations to

understand protein mis-folding oriented diseases and therapies [38]. The solution searches for an

alternative source of computational power to cater for “the combination of detail needed in the

simulations coupled with long timescales required to compare experiments” [38].

To share processor cycles, resource providers install client software and define when folding can

occur. A work unit is processed as follows [38]: (1) An installed client requests an assignment

server to assign it to a work-server; (2) client downloads a work-unit and computational core

required for processing from the web-server; and (3) client returns feedback on completion.

Although Folding@home is formalised in protein folding, the system has potential value in

different domains.

18

3.1.2.2 Storage@home

Storage@home is a “distributed storage infrastructure intended to solve the problem of backing

up and sharing petabytes of scientific results using a model of volunteer managed nodes” [44].

Traditional approaches to backing up data were not scaling with Folding@home generated data

which increased at a scale of 2 terabytes per month [44]. Contributions of ten gigabytes per

computer multiplied by thousands of computers were projected. The system anticipated

volunteers who participate in the community for at least 6 months earning points in the process.

A penalty was proposed for participants who exit without notice.

3.1.2.3 SETI@home

SETI (Search for Extra-Terrestrial Intelligence) is a scientific study which aims to determine the

existence of life outside earth [32]. An approach, radio SETI, which use radio telescopes to

listen on specific radio signals known not to occur naturally is used to provide evidence on extra-

terrestrial activity [42].

SETI@home enable anyone with an Internet connection and a computer to participate in radio

SETI data analysis when their computers are idle. The process is made possible through a client

program with a screen saver behaviour running on the volunteer’s machine. The screen saver

fetches data from a centralised server, analyses and reports on results. When a node is recalled,

the screen saver suspends and resumes analysis only when the machine reassumes the idle state.

The project hasn’t identified evidence of extra-terrestrial life yet, but has certainly established

the viability of public resource computing [42].

3.1.2.4 Distributed.net

Distributed.net pursues processing challenges by exploiting combined idle processing cycles

from member machines [33]. RSA security firm’s utilisation of the infrastructure to evaluate

vulnerabilities in encryption schemes attracted more participants to join [45]. Initial effort to

break the “RC5-56 portion of the RSA Secret-Key Challenge, a 56-bit algorithm” by the

company for a price was suspended due to “SYN flood attacks by participants on the server”

[46]. A new independent effort, Distributed.net focused on harnessing the power of home

computers towards academic and public interest projects was then developed. The deployment

19

moved for global distributed computing through participation, contribution of expertise,

processing power and bandwidth.

3.1.2.5 Bayanihan

Project Bayanihan shaped by the Filipino tradition of communal unity and cooperation “makes it

easy for ordinary people with little technology to cooperate in solving parallel problems” by

sharing their processing power [30]. Minimising effort and expertise in sharing nodes motivated

for a world-wide computing network.

In addition to Distributed.net achievements, Bayanihan introduced a web-based VC component.

The technology enabled developers to code “platform independent parallel applications in Java

and post them as web applets” where volunteers only require a web browser and a few

operations to join a computation [30]. When economic models are integrated, a survey in [30]

suggested a shift from the Bayanihan barter system to a commercial approach in which

computers become a commodity people can buy or trade in.

3.1.2.6 Javelin

Javelin is a Java-based project composed of brokers, clients and hosts [37]. A broker entity

“coordinates the demand and supply of computing resources”; with clients representing

processes requesting machine resources from hosts. The role of a client or host is dynamic in

certain situations. “A machine may serve as a Javelin host when it’s idle, while being a client

when its owner needs additional computing resources” [37]. By selecting a known broker

Universal Resource Locator (URL), “volunteers automatically share their machine capabilities

towards parallel computations” [37].

3.1.2.7 VC Challenges

This section highlights some issues faced in realizing VC applications. Some concerns in

existing projects are [28]:

1. Volatility: Shared nodes are not dedicated. They constantly join and exit projects during

work-flow operations. Hence uptime intervals are periodic and unpredictable.

2. Security: Volunteer systems should be secure in-order to attract people to share their

machines.

20

3. Failure: Projects are prone to faults due to their size and open nature. These scale from

nodes failure, data corruption and faulty network links.

4. Scalability: For public resource computing to be effective, speedups similar to available

computing technologies should be offered.

3.2 Grid Computing

Grid computing advanced through developments in parallel and high throughput computing [28].

The paradigm coordinate for problem solving using multiple-institutional resources to deliver

transparent and secure access to machine resources [47]. From definition, grids and OGs have

similarities. An OG can be viewed as a type of grid, but the models differ based on resource

types, connectivity, dedication, trust and failure. The detailed analysis of grid computing and OG

classes is shown in Table 2.

Table 2: Grids and OGs Analysis [45]

3.3 Cloud Computing

Cloud computing is a distributed model in which services are offered over the Internet on a pay

as you go basis [48]. The infrastructure is used within an organization as private clouds or leased

as utility computing services. In cloud environments software and infrastructure are offered as

services through technologies like web services and virtualization. By using these technologies,

21

abstracted storage, computational power and networking resources are seamlessly offered to end

users.

3.3.1 The Cloud Architecture

The National Institute of Standards and Technology (NIST) accepted definition of cloud

computing is based on essential characteristics, service models and deployment models [49].

Their architecture (in Figure 5) suggested a logical language to interpret the cloud based on its

main use cases.

Figure 5: Cloud Definition [49]

3.3.1.1 Essential Services

Cloud services have the following features which relate to or differ from traditional distributed

computing practices [49]:

1. On-demand-self-service: The service allow resource requestors to run computing

services without direct interaction with the service provider.

2. Broad network access: Enable heterogeneous devices and software services to be

accessed over the network through standard mechanisms.

3. Resource Pooling: Service provider resources are combined to aid in the consumer

multi-tenant model. Consumers can therefore access resources from an abstract level

without control or knowledge of physical resource whereabouts.

4. Rapid elasticity: Resources can be rapidly and elastically provisioned and this presents

an illusion of unlimited capabilities accessible at any time and quantity.

22

5. Measured Service: Resource metering enable transparency between service providers

and consumers through optimized resource usage.

3.3.1.2 Services and Deployment Contexts

Software, Platform and Infrastructure (as a service) are the main cloud services [49] with more

specialization and variations being offered for specific application contexts (e.g. Backend as a

service and Payments as a service). Software as a Service (SaaS) allow consumers to access

service provider applications through client devices. Consumers can deploy and enjoy

administrator privileges over their applications on Platform as a Service (PaaS) without

underlying cloud environment control. In Infrastructure as a Service (IaaS), the resource

requestor has control over storage, processing and networking to include deployed applications

[49].

Irrespective of the service models, four cloud deployment setups are used to cater for specific

requirements [49]:

1. Public Cloud: Public clouds are made available to the general public as a utility

computing service.

2. Private Cloud: The clouds mainly meet the daily needs of an organization and are

normally isolated from the public.

3. Community Clouds: Organizations with shared requirements can set up community

cloud to support a specific goal.

4. Hybrid Clouds: A hybrid cloud infrastructure is a fusion of two or more cloud

deployment models.

3.3.2 The Cloud Realization

Discussions in the distributed computing community have either established grid and cloud

computing as same phenomenon or clouds as being merely an extension of grid computing. This

is an excerpt from IBMs whitepaper by Kourpas [50]:

“Grid computing allows you to unite pools of servers, storage systems and networks into a single

large system so you can deliver the power of multiple-systems resources to a single user point

for a specific purpose. To a user the system appears to be a single enormous virtual computing

system.”

23

Is Cloud Computing then just another synonym for Grid computing?

Both models progress the vision for seamless access to pooled multi-computational resources.

However, there are differences on what makes a grid and cloud considering factors such as

virtualization, business and programming model. Table 3 shows the differences between grid

and cloud computing as discussed in [51]:

Characteristic Cloud Computing Grid Computing

Business Model -Utility computing service model - Project oriented

Utilisation -Implement virtualisation to

compute several tasks concurrently

-A single task is allocated to

multiple servers to execute

Programming

Model

-Mesh-up’s and scripting are used

as workflow technologies to

integrate services and applications

-Technologies used in parallel

programming are mainly used.

Table 3: Grid and Cloud Compared

The virtualisation technology separates cloud computing from grids. The technology provides an

abstraction which unifies compute, storage and networking as a pool of resources allowing for

services to be implemented on top [51]. This maximises computing power and resolve

challenges faced in grid computing where computations continuously communicate (e.g. in

parallel computing).

3.4 Distributed Storage

Distributed Storage Systems (DSS) are computer networks which provide reliable access to data

redundantly stored on a model of distributed nodes [52]. Analysis of bulk data sets to drive

scientific discoveries in research have improved the development of high-end DSS. An

alternative approach to these high-end storage services in recent years now harnesses the storage

potential from commodity workstations in the same way idle Central Processing Unit (CPU)

cycles are integrated in a number of VC projects [53]. The Google File System (GFS) is an

example of a scalable storage infrastructure that has realised the utility of inexpensive

commodity hardware [54]. To date the GFS is a useful platform for running the Bigtable system,

24

which is currently hosting a number of Google applications such as Google Maps, Google Code

Hosting and MapReduce [55], [56].

3.4.1 Google File System

GFS is a distributed system which allocates storage facilities to multiple clients. The commodity

hardware based file system offers a storage platform for Google’s research and data processing

needs [54]. The design space examined projected application workloads in traditional distributed

file systems. The following are essential to the system [54]:

1. Since cheap components are utilized; “constant monitoring, error detection, fault

tolerance and atomic recovery” [54] mechanisms were incorporated to handle system

failures;

2. Design assumptions such as I/O operations and block sizes were reconsidered to manage

exponential growths in data sets;

3. File access patterns by analysis programs and data streams motivated for atomic record

appends as a performance optimization strategy.

In addition to appends (which allow a number of clients to append data to a single file with

preserved append atomicity), GFS also offers snapshot, a mechanism to checkpoint current states

before experimenting with mutations [54].

3.4.1.1 GFS Architecture

The master, multiple clients and chunk-servers each typically running on a Linux distribution are

integral GFS components [54]. The client’s fixed-sized chunks identified by global chunk

handles are stored in chunk-servers as Linux files. Since GFS employs atomic record appends;

chunk data reads and writes are mainly depended on chunk handles and byte offsets. Replication

of individual chunks at a factor three increased the system’s fault tolerance and data redundancy.

To consistently handle client requests, GFS’s master retains access control information, file to

chunk mappings and chunk location file metadata [54].

Traditional file writes required a client to specify the data and byte offset to write data. The

redefined functionality however limits the client to data specification and isolates the client from

back-end byte offset logic. The GFS’s design redefinition reduced on complicated and expensive

synchronization as was experienced with traditional writes. GFS doesn’t provide assurance on

25

replicas being byte wise identical but only that data is written more than once at a GFS defined

byte offset [54].

For a file chunked and appended; Figure 6 shows the interactions in a read operation. A client

translates the filename and byte offset parameters to appended chunks into a chunk index. The

client then requests chunk-server replica locations from the master using the chunk index.

Leveraging the master returned data; the client queries for replicas in proximity. Chunk location

data is not saved persistently by the master but requested through master control messages send

each time chunk-servers join the cluster.

Figure 6: GFS Architecture [54]

3.5 Conclusion

This chapter presented and justified the research’s opportunistic computing perspective and its

classification in distributed computing. OGs were concluded as different from grid computing in

view of resource types, connectivity, dedication and trust characteristics. The VC paradigm was

then accepted as appropriate based on the nature of resource providers in the ICT4D context

within which the research is conducted. Examples VC projects and DSS which integrate

compute and storage resources were then revised. The cloud’s business model, programming

model and virtualisation technologies distinguished the model from all distributed computing

approaches considered.

26

Chapter 4

4 Multi Agent Systems

This chapter presents the MAS overview in terms of agent communication strategies,

coordination protocols and architectures. Literature on MAS approaches will be presented to

motivate the agent technology. The second part of the chapter will discuss on knowledge

presentation and reasoning in MAS. To explore ways in which MAOG services can adapt to

dynamic environments, rule based system concepts are analysed.

4.1 Agent Technology

Agents with goal and task interaction patterns in competitive and cooperative scenarios are

known as MAS. MAS offer reliable means of natural understanding, design and implementation

of complex distributed software. There are separate views on the definition and concepts around

agents. Genesereth [57] described agents as programs which interoperate using an expressive

language. Based on this idea, MAS were acknowledged as a pool of autonomous code

communicating using an Agent Communication Language (ACL). For MAS to achieve specific

objectives, Wooldridge and Jennings emphasized for proactive, responsive and social

characteristics in agents [58]:

 Pro-activeness classify agents as entities with goal-directed behaviour;

 Responsiveness specify agents’ ability to perceive and act to environment changes;

 The social attribute integrates interactivity between agents (and possibly humans).

The above properties summarize the weak notion of agents [22]. An area of active research and

widespread controversy known as strong agency assumes further humanistic and mental

properties (e.g. belief, desire and intention) [59].

4.2 Multi-Agent Systems Rationale

Distributed Artificial Intelligence (DAI) studies the creation and application of MAS in pursuit

of specific goals [60]. The domain has established inter-disciplinary concepts in artificial

intelligence, sociology and computer science. The study highlights the following incentives in

MAS [61]:

27

1. MAS offer parallelism, robustness and scalability. These are important in the integration

of knowledge sources and processing of data sets which cannot be handled by centralised

systems;

2. MAS build around artificial intelligence, psychology and sociology which propose

interactivity and intelligence as deeply coupled. MAS appreciate the coupling in both

ways; that is, interactivity allow agents to increase their intelligence and equally,

intelligence facilitates the efficiency of agent interactivity;

3. Exploring MAS from DAI helps understand agents from complex social phenomena (i.e.

emergent behaviour and collective intelligence);

4. Presently powerful computers and applications are becoming tightly linked with

innovations in long-range networks. MAS provide innovative ways for managing

connected computing infrastructures with insights from interconnecting existing legacy

systems.

4.3 FIPA Compliance

The Foundation for Intelligent Physical Agents (FIPA) [62] is a standardisation board which

promotes the effort of regulating agent technologies. FIPA is described as bundled up expertise

which is easily included in “complex systems with a high degree of interoperability” [63]. The

FIPA97 specifications defined normative rules which enabled for interoperability and

management of societies of agents [63]. Of importance was the agent platform reference model

which classifies key roles or agents required for platform management services. The Agent

Management System (AMS), Agent Communication Channel (ACC) and Directory Facilitator

(DF) are key agents/roles identified into the agent platform. The ACL for inter-agent

communication through message passing was also defined by “setting out the encoding,

semantics and pragmatics of the messages” [63].

4.4 MAS Communication

Agents require a universal language to define agent views and requirements. Specifically they

interact by using unique languages called Agent Communication Languages (ACLs). ACLs

originated from the need to model frameworks for agents to convey information in distributed

computing environments [64]. The communicative languages typically exist in the logical layer

above the transport protocols. Communication concerns at the data and message level are

28

handled by transport protocols with ACLs addressing communication on the social and

intentional layer [65]. The design basis of ACLs evolve around heterogeneity, coordination,

cooperation, interoperability, transparency and performance [64]:

1. Heterogeneity principle: Agents must communicate irrespective of the underlying

environment;

2. Coordination and cooperation highlight the need for unique ACLs in complex problem

solving. The ACL model should provide means of exchanging information on agent

knowledge and its environment;

3. Interoperability assures the need for ACLs in agent interoperability;

4. The complexity of underlying ACL specifications should be hidden from MAS.

Transparency underscores the need for ACL APIs which deprive agents from specific

details and sets interactions to a higher abstraction;

5. Performance states that it’s binding for ACL implementations to use system resources

efficiently (i.e. CPU and Memory).

The development of ACLs progressed from Knowledge Query Manipulation Language (KQML)

and Knowledge Interchange Format (KIF) to the most recent FIPA ACL.

4.4.1 KQML and KIF

KQML [66] is the first inter-project ACL proposed by the Advanced Research Projects

Agency’s Knowledge-Sharing Effort consortium. The knowledge sharing initiative comprise of

two components: the KIF which describes message content; and KQML dedicated to system

component interactions at runtime. Communication (message ID, sender and receiver), message

(performatives and message format) and content (ontology, content language, and message

content) are layers in KQML [64]. KQML support communication between agents with reserved

primitives called performatives with message content description defined by KIF.

4.4.2 FIPA ACL

The FIPA ACL is the most adopted and studied ACL which includes various characteristics of

KQML. FIPA ACL is lightly similar to KQML but differ in the syntax used to classify reserved

primitives. Messages in FIPA ACL are viewed as communicative acts which aim to achieve

certain actions [65]. FIPA ACL semantics based on the “speech act theory interprets human

29

natural language as requests, suggestions, commitments and replies” [67]. These communicative

acts describe communication as a function achieved by the act of communicating [68].

4.5 MAS Coordination

Agent negotiation is a decision making mechanism in which MAS jointly search for mutually

agreed solutions to problems in collaborative and competitive situations. These kinds of

interactions enable a group of agents to act and participate in a rational way. Agents require

interaction because:

 Agent goals can conflict with specific actions;

 Agents possess varying abilities and knowledge;

 Some system goals are achieved through collaborative effort.

A number of agent coordination strategies are proposed for task allocation. The English Auction,

Dutch Auction and CNP customized for specific domains complements a list of FIPA protocols

[69]. For cooperative problem solving in MAS applications, the CNP is the most utilized

[70],[71].

In the CNP coordination approach, agents assume manager and/or contractor roles. “A manager

provides a task to be processed, with contractors being agents with capabilities to solve the

problem” [48]. The agent responsibilities in the protocol are not defined prior. “Any agent can

be a manager by issuing call for proposals specifying the task allocation criteria” [48]. The

premise of CNP stems from the fact that if an agent doesn’t have adequate resources to solve an

allocated problem using native expertise, it decomposes the problem and discovers alternative

agents.

 4.5.1 MAS Negotiation Strategies

Negotiation strategies enable for flexible access to services in distributed systems. Wong and Yu

[72] introduce an architecture for multi-product supplier selection considering synergy between

products. Selecting suitable suppliers enhance performance since services are provided at the

right time. If purchases are in bulk, the design highlighted the possibility of synergy between

products which affect supplier choice. The efficiency of model was introduced in three phases

30

which include: product synergy determination, supplier pre-selection and negotiation-based final

selection [72].

An agent based negotiation mechanism for data storage and product information was discussed

in [73]. The e-commerce automated strategy addressed high data organization costs in cloud

environments. Agents with specific requirements were utilized by buyer and seller participants

which facilitated for a fast and reliable bilateral negotiation process. Users passed hash coded

requirements to secure the negotiation process. The report focused on the preliminary

application of MAS negotiation without the e-commerce specifics [73].

Zhang and Ren explored the Bayesian approach to agent preference prediction in bilateral multi-

issue negotiation. In competitive MAS, self-interested agents may hide their preferences which

complicate mutually beneficial negotiations. As per the paper, the Bayesian theory analyses

historical opponents’ offers to predict preference over negotiation issues. A counter offer

proposition algorithm was incorporated to facilitate in MAS mutual offers. The Bayesian

approach reduced the negotiation time and integrated utility to agents that implement the

functionality from conducted evaluations [74].

An et al [75] present a MAS based negotiation approach to dynamic resource allocation in

distributed settings such as clouds. Buyers and sellers interact simultaneously with representative

agents allowed to decommit from an agreement at a cost. The cost for agreement decommitment

improved the resource allocation mechanism. The use of bilateral bargaining and defining

heuristics to aid decision making provided a limited number of closed form results [75].

A basis for intelligent Service Level Agreement (SLA) bilateral bargaining between SaaS

brokers and multiple resource providers was introduced for cloud infrastructures [76]. The

research introduced SaaS brokers on behalf of customers to provide a one-stop-shop for offering

customer service. An investigation on counter offer generation strategies and decision making

heuristics introduced how the techniques are important in implementing specific goals [76].

Maclaren et al [77] discuss how MAS and CNP based SLA negotiations in grid computing

optimise infrastructures for efficient job scheduling. The CNP bidding mechanism enhanced grid

scheduling workflows since busy agents need not bid for a contract. To cater for emergent

31

failures in dynamic and heterogeneous distributed settings, SLA renegotiation mechanisms were

incorporated [77].

The MAOG perspective to resource negotiation differs from some strategies discussed. In the

same way, this research adopts the CNP to identify available agent components and therefore

idle shared resource capabilities with a different context of application.

4.6 MAS Challenges

The construction of purely goal directed or reactive agent based distributed applications is fairly

achievable. Challenges arise in implementing MAS which appreciate the balance between goal-

directed and reactive behaviour [78]. DAI then address questions on when and how agents

should cooperate or compete to meet design objectives [78]. Two routes based on the micro

(agent) and macro (group) levels are used to examine these questions [78], [79]:

 Bottom-up: Searches for “agent-level capabilities which result in interaction at the

overall group level”;

 Top-down: Searches for “specific group-level conventions or norms” which constrain the

interaction at individual agents’ level.

Further concerns arise on expressing logical relationships between the micro and macro levels.

The micro-macro problem present problems in MAS considering [78]:

 how communication is enabled by ACL communication languages;

 how decision making can be activated by utilizing knowledge provided by other agents;

 how reasoning on the state of the interaction environment can be integrated;

 The balance between local computation and communication.

Integrating solutions to these concerns in the MAOG solution through an agent development

methodology enabled for a solution with problem solving capabilities at the same time balancing

on the goal-directed and reactive behaviors.

4.7 MAS Development Platforms

To implement complex agent systems, MAS development platforms are required. In early years,

lack of environments where agents can communicate to achieve desired goals presented

32

obstacles to the proliferation of agent technologies [80]. Notwithstanding the availability of a

plethora of agent platforms, there is currently no definite consensus or a universal approach to

agent development in literature. The application contexts of multi-agent platforms depend on

characteristics such as standards compliance and scalability. There are roughly three classes of

agent platforms: those which specialize in internal agent reasoning, those that focus on inter-

agent communication, and Mobile Agents (MAs) [65]. Examples of agent development

environments include: Aglets, Anchor, JADE and Zeus.

4.7.1 Aglets

Aglets [81], [82] is an environment for implementing MAs in Java. The Aglets Core and Proxy

are the main platform components. All agent internal methods and variables are confined to the

Aglets Core; and the Proxy acts as an interface to the Core. Developing standalone MAs is

administered by the Aglets Workbench. The Aglets Building Environment comes with Tahiti

server and Fiji (Agent web launcher). Tahiti mainly provide mechanisms for agent dispatch and

mobility [83].

For agents to communicate, synchronous and asynchronous message passing methods are

implemented. The lack of good security mechanisms and scalability are major issues associated

with Aglets. The downside results in the state of Aglets not being saveable on any host, and

interoperability issues with other platforms [80].

4.7.2 Anchor

The Anchor [84] project developed by Lawrence Berkeley National Laboratory offers secure

management and transmission of MAs in distributed settings. Anchor based on Aglets abstracts

agents as Java objects which migrate between networked hosts encapsulating state and code.

Executions resume on reaching remote hosts. Within Anchor, the agent server run-time

environment conducts critical system functions (e.g. agent creation). The run-time environment

addresses trust, code integrity, fault tolerance and secure communication issues. The Secure

Socket Layer (SSL) and Akenti [85] provide functionality for mutual authentication and access

control on resources accessed respectively.

33

4.7.3 Zeus

Zeus [86], [87] simplifies the implementation of cooperative agent-based applications. The

platform complies with FIPA specifications, is open source and implemented in Java. The

approach views an agent as composed of three layers [86]:

 definition layer - an agent is viewed as an autonomous reasoning component;

 coordination layer - the agent is considered social;

 The organisational layer is focused on agent associations.

The platform presents agent coordination, rational agent theory and knowledge representation

concepts to practical concerns in constructing MAS. Research documented in [80], however

certified the platform’s lack of support for agent mobility as its main disadvantage.

4.7.4 JADE MAS

JADE MAS is a Java software for constructing peer-to-peer multi-agent applications. JADE

implements distributed interoperable systems through compliancy with FIPA standards [88],

[89]. The following characteristics are offered by the framework [90]:

1. Agents are autonomous and proactive: An agent has a single thread of execution

which is useful in agent life cycle control and automatic resolution of actions to perform;

2. Agents are loosely coupled: Agents communicate through asynchronous message

passing. An agent which initiates a communication addresses a receiver using an Agent

Identifier (AID). This eliminates the sender-receiver object reference dependency;

3. The system is peer-to-peer: An agent can join, leave or discover other agents in the

same platform by querying white and yellow page services. Individual agents can initiate

communication and can equally be objects of incoming messages.

4.7.4.1 JADE Architecture

The FIPA97 specification is the basis of JADE. The toolkit consists of runtime instances

(containers) distributed over the network [48]. The main-container is a unique runtime instance

which represents the bootstrap point of any platform. A single main-container exists in a

platform to register other containers. If a separate main-container is initialised elsewhere on the

network, it constitutes a standalone platform to which other containers can possibly register [48].

34

Figure 7: JADE Architecture

The “main-container is not a bottleneck in a platform, but it remains a single point of failure”

[90]. Two agents/roles hosted by the main-container are initialised each time JADE is executed

[90]:

1. AMS: the AMS administrates access to and use of a platform. Agents created in a

platform are required to register with AMS to acquire a valid AID.

2. DF: the agent implements a yellow page service. It is used by agents for service

registration. Agent subscriptions to be notified on specific platform service modifications

can also be defined.

4.7.4.2 Agent Tasks: Behaviours

Agent objects have a set of behaviours which execute specific actions. JADE behaviour

scheduling is non-pre-emptive. Developers hence resolve when behaviours execute or switch to

give precedence to others. The ability to activate and block specific methods in JADE makes the

scheduling process flexible. The following are JADE’s abstract behaviour classes [91]:

1. OneShotBehaviour: OneShotBehaviour is an operation designed to complete in one

execution step;

2. CyclicBehaviour: CyclicBehaviour execute continuously until an agent terminates. The

behaviour is suitable for functionality which executes in the background and wait for

specific requests;

3. TickerBehaviour: A TickerBehaviour class is implemented in an agent object to perform

actions which execute periodically as defined by a defined time interval.

4. GenericBehaviour: A GenericBehaviour executes sequential operations based on a status

value. The behaviour is useful when interacting agents are dependent on knowledge

35

provided by each party. In particular, the approach is commonly used to implement the

CNP negotiation mechanism (e.g. JADE book-trading example [92]).

4.7.4.3 JADE ACL

JADE complies with FIPA ACL message specifications which define mandatory performatives

required of all ACL messages [93]. Sender, receiver and message content parameters are also

defined. The attributes in Table 4 can be defined in an ACL message.

Parameter Category of Parameters

performative Type of communicative acts

sender Participant in communication

receiver Participant in communication

reply-to Participant in communication

content Content of Message

language Description of Content

encoding Description of Content

ontology Description of Content

protocol Control of conversation

Conversation-id Control of conversation

reply-with Control of conversation

in-reply-to Control of conversation

reply-by Control of conversation

Table 4: Message Parameters [93]

ACL messages are implemented as objects. The send method (Figure 8) is used to forward a

created message. Since agent communication is based on asynchronous message passing, active

agents are assigned mailboxes for storing inbound and outbound messages.

Figure 8: Message Object

36

Once a message reaches the preferred destination, the receive method reads the desired message

from a message queue. Defining a performative constructor (e.g. ACCEPT_PROPOSAL) in a

message template helps return messages matching a required pattern.

Figure 9: Message Receive

4.7.4.4 Debugging Tools

The development of platforms distributed across multiple hosts is simplified through an

assortment of debugging tools. The Remote Monitoring Agent (RMA), Sniffer Agent,

Introspector Agent and Dummy Agent are examples of debugging agents used in implementing

distributed JADE MAS applications:

 Remote Monitoring Agent: The RMA (Figure 10) provides a graphical management

console for monitoring and managing platforms. The visual agent is composed of three

node types: agent platform, agent and container. The tool integrates a tools menu in

which Dummy, Sniffer and Introspector agents can be launched [94].

Figure 10: RMA

 Sniffer Agent: The agent allow developers to analyse interactions between agents. To

intercept communication between targeted agents, a Sniffer Agent subscribes with the

AMS to receive notifications on specific platform events [94].

37

 Introspector agent: An Introspector Agent monitors agent life-cycles and message

queues. The functionality provide useful information on agent functionalities and

behaviours active in a platform [94].

 Dummy Agent: The Dummy Agent is useful mainly in the development stage. It tests

agent behaviours by sending custom ACL message stimuli [94].

4.7.5 Platform Evaluation

The use of MAS toolkits in distributed systems reduce development problems by isolating low-

level implementation constraints. Adopting suitable MAS platforms from various agent toolkits

depends on the problem domains. This section evaluates the MAS development environments

reviewed in Section 4.7 based on defined metrics. The guideline is composed of [80]: standard

compliance, communication techniques, license, security, migration techniques and agent

mobility.

 License: Although open source toolkits have compromises on features compared to

commercial environments; their availability allow for a larger developer base with access

to its functionality;

 Standard Compliance: Standardizing agent platforms augments interoperability in

agent-based applications. If an agent environment supports a reliable standard, its

scalability and utility increases;

 Communication Technique: Asynchronous communication is advantageous compared

to synchronous communication in MAS;

 Security: Security in agent toolkits make agent-based applications more attractive in

handling mission critical services;

 Agent Mobility: Agent mobility in distributed applications typically reduce network

traffic, increases responsiveness and supports disconnected computing (i.e. in MAs) [95];

 Migration Technique: Remote Method Invocation (RMI) enable function calls to

remotely located subroutines. Compared to a selection of remote execution approaches

(e.g. sockets), RMI consume more resources and time.

Table 5 shows the classification of agent platforms reviewed. Aglets and Anchor implement

resourceful agent migration techniques based on sockets. But poor security coupled with lack of

38

standardization in both platforms affects their interoperability and scalability. Though Zeus is

readily available, has good security and complies with FIPA specifications; the platform lacks

agent mobility capabilities.

Agent

Development

Toolkits

→

Aglets

Anchor

JADE

Zeus

Features↓

Licence Open-Source Available in

BSD license

Open-Source Open-Source

Standard Compliance MASIF SSL, X.509 FIPA,CORBA

FIPA

Communication Technique Synchronous ,

Asynchronous

Asynchronous Asynchronous Asynchronous

Security Poor Strong

security

Good Good

Agent Mobility Weak Weak Not-so-weak Supported

Migration Technique Socket Socket RMI Not supported

Table 5: Agent Platforms [80]

From a high level, JADE is favourable based on the evaluation metrics defined. Also, since

communication is vital for MAS to achieve specific objectives; the way agent platforms handle

communication and message services is important. The JADE Message Transport Service

(MTS) transparently selects a transport mechanism and an optimum protocol which achieves the

least message passing communication cost in MAS implementations [96].

Through the Message Transmission Protocol (MTP) and Internal Message Transport Protocol

(IMTP) JADE interfaces, additional protocols can be added to the already supported Java RMI,

Hypertext Transfer Protocol (HTTP) and Internet Inter-Object Resource Broker Protocol (IIOP)

which increases the flexibility and scalability of agent systems. Apart from the communication

services benefits, the ACC is integral by integrating system caches which eliminate the JADE

main-container as a platform bottleneck [96].

Moreover, JADE provides homogeneous add-ons which are network and Java version

independent. That is, the JADE run-time offers these add-ons for all Java environments (e.g.

39

Java Platform Enterprise Edition, Java Platform Micro Edition and Java Platform Standard

Edition). This feature enable designers to develop and reuse identical application code for

different platforms (e.g. Java mobile devices and computers) [96].

From the guideline and technical characteristics discussed, JADE was considered as a balanced

agent platform to implement the MAOG distributed services. Therefore the MAOG platform

will be built on the JADE MAS.

4.8 MAS Development Bottlenecks

MAS have the potential to improve the practice of designing and implementing distributed

applications. Characteristic problems are however linked with agent systems directly attributed

to agent-oriented software features. Mainly, MAS pursue specific system objectives while

maintaining consistent interaction with defined execution environments. Incorporating such

context awareness presents problems in designing software agents with stable support for both

proactivity and reactivity. Additionally context sensitive decision making in MAS may result in

uncertainty on which objective the agents pursue and methods to achieve the chosen objectives

[97].

While agent sub-systems in MAS are modularised as attaining specific objectives for the parent

system, the effects of their interactions are unpredictable. Primarily, the sub-systems resolve at

run-time on objectives which require interaction; and which agents to interact with. Hence

interaction aspects such as number, pattern, timing and outcome cannot be projected in advance.

Secondly, emergent behaviours due to collective interactions which cannot be decomposed in

terms of individual component’s behaviour yield unexpected individual and group behaviour

[97].

Less commitment in understanding the pragmatics of MAS development has been evident

considering the proliferation of agent technologies [98]. For the MAOG system viability,

pragmatic areas of agent system development such as social, conceptual, “analysis and design,

micro (agent) level, macro (society) level and implementation” [98] are considered in this

research.

40

4.9 Multi-Agent Distributed Computing

MAS have been extended to manage different distributed resources. Mobigrid, a framework for

MAs in grid environments based on InteGrade [99] was presented by Barbosa and Goldman

[100]. Aglets in the framework included support for encapsulating applications processed using

a network of workstations. To support computations, a manager component was incorporated to

keep track of agents submitted. From findings, the MA characteristic enabled InteGrade to reach

zero idleness and offer transparency to machines through reduced performance loss.

An agent system for energy resource scheduling in power systems with distributed resources was

proposed by Khambadkone et al [101]. The technology was applied to offer reliability and

efficiency in integrating alternative energy sources. Results from simulations show that the

system enabled for management of micro-sources with minimum operational cost.

Liu et al [102], proposed Ordinal Sharing Learning (OSL), a novel multi-agent reinforcement

learning method for load balancing in Grids. Due to complex and dynamic grid environment

characteristics, the approach avoids scalability issues by implementing multi-agent coordination

with limited communication. The simulation results validate OSL as comparable to some

centralized scheduling algorithms.

A minimalist decentralized algorithm for resource allocation in grid environments was suggested

by Galstyan et al [103]. The idea was considered in a system of heterogeneous reinforcement

learning agents which share resources for computational needs. Agents in the system only

received job completion times without direct communication between them. The experiments

recommended the effectiveness of reinforcement learning in improving quality of resource

allocation in heterogeneous distributed systems.

There is considerable attention in MAS approaches for problem solving. Similar to the MobiGrid

framework approach, this research extends the MA paradigm to process computationally

intensive applications but differ in the agent development platform used. In addition, the

anticipated MA module contains a rule based reasoning feature that enable workflows to be

relocated when nodes are recalled which prioritises resource provider activity on their shared

nodes.

41

4.10 Code Mobility in Distributed and Multi-Agent Systems

Code mobility is the ability of distributed systems to relocate code or objects from one host to

another. The related mobile code technologies are classified as weak or strong mobility based on

their ability to migrate the state of an executing thread. Strong mobility transfers code, data and

execution state across to remote hosts where execution resumes therein. Weak mobility on the

contrary allow only code and data to be moved [104]. Mobile code technologies don’t unfold

new functionality per se, but orchestrate for faster and flexible means of developing distributed

applications [104]. MA and Remote Evaluation (REV) paradigms are mobile code model

examples [48].

4.10.1 Mobile Agent

A MA is an executable code that moves amongst networked hosts according to the MA itinerary

to achieve certain actions on behalf of its creator [104]. The code and data state transfer during a

migration unlike the execution state. The program execution in this scenario suspends and waits

for a resume state on migration [105]. To include support for execution state saving, research

highlighted modifications to virtual machines, instrumentation of application source code and

byte code; and modification of Java platform debugger architecture as the four basic approaches

that can be utilized to capture the state of Java threads [106].

4.10.1.1 Advantages of MA Paradigm

The following are advantages offered by the MA paradigm in application development [80],

[106]–[108]:

1. Asynchronous and autonomous execution: Deployment of MAs with embedded tasks

that require continuous open connections result in low latency savings. MAs can be

invoked into networks where they operate independently and synchronously without

constant monitoring.

2. Fault tolerance and robustness: The agent’s reactivity allow for construction of fault

tolerant and robust distributed applications.

3. Bandwidth consumption: Network bandwidth usage is minimized as agents move

computation code to data which reduces intermediate results passing.

42

4. Heterogeneity: MAs offer optimum conditions for seamless system integration as they

are transport and hardware layer independent.

5. Dynamic adaptability: The agents through embedded functionality can perceive

changes in their execution environment and react autonomously to these changes.

4.10.2 Remote Evaluation

REV [109], [104] conceptualize distributed systems as composed of machines connected by a

communication link. In REV, a client sends instructions to a remote server with access to

resources required [48]. On completion, results are returned to a requestor machine. REV offer

flexibility in creating custom services, execution of complex tasks and is easier to implement

compared to MA based systems (i.e. that require state and code management) [104]. In relation

to client-server models, REV suggest that remote nodes do not only receive processing requests

from a client but also instructions required for performing the operations [105].

4.11 Knowledge Presentation and Reasoning for MAS

Knowledge Representation and Reasoning (KRR) describe how symbolic rules are used to

present knowledge. The acts of thinking using this knowledge introduce various aspects to the

reasoning process. A number of Knowledge Representation (KR) techniques have been

developed over the years, and these include formalizations from Artificial Intelligence and Web

computing domains (e.g. Web Ontology Language, Ontology Inference Layer and Description

Logic). A gap between what can be represented in theory and practical still exists and there is

constant and continuing exploration of novel KR techniques. There is also increasingly more

research exploring the coupling of KRR and MAS towards the development of knowledge-based

intelligent MAS.

4.11.1 Rule Reasoning

Production Rule Systems (PRS) are computer programs that consist of a set of rules (productions

or simple patterns) about predefined behaviours. PRS focus on solving problems by performing

rule based reasoning making use of expert knowledge composed of "if-then" statements stored

in rule bases [110].

A simple rule which represent knowledge about a specific domain is structured as follows:

43

If <conditions>

Then <conclusion>

The <conditions> specifies preconditions of a simple pattern with the <conclusion> representing

the action taken. A rule is said to be triggered when the rule's precondition matches the current

state of the world [111]. If a rule’s conclusion statement is reached, it is classified as fired.

PRS were the first Artificial Intelligence software with potential to match the decision-making

capabilities of human experts. An inference engine and knowledge base (facts and rules) sub-

systems make-up the core of a rule engine. The inference engine’s sole purpose is to match rules

in the knowledge base to well-known facts (data about current state or knowledge) to deduce

new facts with the latter (knowledge base) concerned with representation of facts and rules.

Rules and facts are stored in the production memory and working memory respectively. The

facts are declared in the working memory where they are altered regularly. In practical scenarios,

rules can enter a state of conflict when a rule system with large sets of rules and facts result in

many rules being true for the same fact assertion. In such cases the conflicting rules execution

order is managed by an Agenda [112]. The Agenda is a rule system component that utilize

conflict resolution strategies to determine which rules, “out of those that apply, have the highest

priority and should be fired first” [113].

.

Figure 11: Rule Engine Components

4.11.2 Rule Engines

Rule engines are computer programs that deliver KRR functionality and execute a defined cycle

made up of three states: match rules, select rules and execute rules [114]. An engine searches for

44

all rules satisfied by working memory contents. The various rule matches identified for

execution are jointly referred to as the conflict set. The instantiation of the rule is a

representative of the rule and a subset of matching data items [114].

When a conflict set is identified, it is converted to the select rules state where a selection strategy

is invoked to determine rules to execute. The selected instantiations of a rule are then moved to

the execute rules state where selected rules are fired [114]. There are two types of inference

methods [111]:

1. Forward chaining: is data driven; it initializes with availability of data in the working

memory and uses inference rules to obtain more data until a goal is reached. Pattern

matching is conducted in the working memory until if clause (antecedent) known to be

true is found. The engine then executes the then clause (consequent), subsequently

pushing the new information to its data.

2. Rule engines utilizing backward chaining search inference rules until a rule with a

consequent that matches a desired goal is identified. “If the rule antecedent is not known

to be true, then it is added to the list of goals” [114]. The pattern matching method is

goal-driven since the lists of goals determine rules to be selected [114].

Rule engines utilize algorithms such as Rete, Leaps and Treat. Rete is widely used in several

applications due to its efficiency in pattern matching. Rete algorithm [115] is implemented by

building a network of nodes and “creating an acyclic network of the rule premises; the so-called

Rete network” [116]. The algorithm allows state saving in matching and re-computes changes

only for modified facts. The matching process state is updated only as facts are added and

removed. Due to the state saving functionality, fewer facts are added or removed which

translates to a faster matching process.

4.11.2.1 SweetRules

SweetRules [117] is a set of tools for semantic web rules and ontologies revolving around the

Rule Modeling Language (RuleML) standard. The tools can be easily merged with distributed

rule-bases/ontologies due to their interoperability with various ontology languages such as the

Semantic Web Rule Language (SWRL) and Jena [118]. Recent SweetRules revisions

incorporate support for scalable backward and forward chaining.

45

4.11.2.2 F-OWL

F-OWL [119] is a Web Ontology Language (OWL) and Resource Description Framework

(RDF) engine implemented using Prolog logic programming language and a Flora-2 extension

(i.e. providing the F-logic frame-based layer). Primarily, F-OWL is a combination of an OWL

engine and a frame based system that is utilized for reasoning with OWL ontologies. An OWL

importer in F-OWL reads OWL ontology thereby extracting the RDF triples. After conversion of

the extracted RDF triples into an F-OWL’s supported format, the triples are fed into the F-OWL

engine. Flora rules defined in flora-2 language are then utilized for ontology consistency check

and knowledge extraction via resolution [119].

4.11.2.3 Drools and Jess

Drools [120] is the leading open source business rule management system and also a rule engine

that reacts to data changes and affords enhanced querying capabilities. Jess [117] also

implemented in Java develops software which can reason based on supplied declarative rules. A

Jess scripting environment for Java object creation, method initializations and Java interface

implementation is offered.

Drools and Jess extends the Rete algorithm (i.e. ReteOO) in pattern matching compared to

available inference engines. From Section 4.11.2, Rete algorithms state saving characteristics

translates to a faster matching process. Due to Rete support, Drools and Jess rule engines were

selected for rule based reasoning functionality.

4.12 Conclusion

The sections introduced MAS and rule based reasoning concepts in detail. From a survey JADE

was established as ideal for implementing the MAOG platform. The CNP was selected for task

and resource allocation negotiation from literature. Drools and Jess engines were identified as

attractive for integrating context awareness in MAS through the Rete algorithm support. The

chapter ended with a discussion on rule based technologies which adapt MAS to dynamic

uncertain environments. The next chapter introduces the MAS compute and storage services.

46

Chapter 5

5 MAOG Implementation Context and Requirements

This chapter introduces the grid solution through the fusion of reviewed technologies. The first

sections present the ICT4D context in which the research is conducted including its connectivity

and nature of resource providers. The chapter ends with a discussion on the prototypes and

generic requirements expected of the grid system.

5.1 The Siyakhula Living Lab (SLL) Context

Section 3.1 “Opportunistic Grids” highlighted the different usage contexts within which OGs

have been deployed. In the case of MAOG, the SLL ICT4D project is the primary target context

of implementation. This project provides the basis for the formalization of the requirements for

MAOG system based both on the environment factors (e.g. available computing infrastructure

and resources) and also usage profile of the computing resource in these contexts.

The SLL project is based in a rural community called Dwesa which is located in South Africa.

The project seeks to explore novel approaches in addressing societal challenges [5], [121]. The

primary approach towards addressing these societal challenges is through the deployment of

networked DANs, through which the community is able to access Internet based information and

services. The seventeen (17) deployed DANs largely consist of computer laboratories that have

been deployed at specific schools.

The SLL model relies on a wireless broadband island realised through a blend of fixed and

mobile WiMAX links connected to the Internet through VSAT technologies [122]. Alvarion

BreezeMAX WiMAX technologies were used to build the wireless local access loop and inter-

connecting the points of presence since fixed line infrastructures lack in the region [11]. The

Community Access Point (CAP) gateway running a Point-to-Point (PPP) client over Ethernet

(PPPoE) enables machines within schools to access the wider local network. Once a PPP client

for a school authenticates with an access concentrator and establishes a link; outgoing traffic

(e.g. VoIP traffic, Internet) is then routed to the next hop [11]. The SLL network structure is

shown in Figure 12.

47

Figure 12: SLL Connectivity

5.2 MAOG Services and Requirements

A MAOG system which offer transparent and pervasive grid user access to shared idle resources

in ICT4D contexts is presented in this work. The VC paradigm can open up computing to

previously marginalised backgrounds to participate in the power of Internet-based volunteer

networks and services.

The evolving trends in high performance computing and DSS (introduced in Section 3.4)

motivated the compute and storage services as crucial services that can be incorporated in the

MAOG system. The services were implemented and evaluated to recommend optimum

techniques for the Dwesa ICT4D context. Demonstrating the viability of the grid solution

through the fusion of introduced technologies was crucial in designing phase.

The compute and storage components identified for the MAOG system are listed further on:

1. Computational Component

a. MA compute component

48

2. Storage Component

a. Disk Mirroring (DM) file-system

b. Chunking with Atomic append (C-AP) file-system.

5.2.1 Compute Component

The MA and REV paradigms (introduced in Section 4.10) address limitations prevalent in

classic distributed computing architectures. The REV approach adopts the client-server model.

The model presents limitations considering the context within which the compute component is

formulated. The client in REV functions properly by sending instructions to servers (nodes) and

receiving responses. That is, the handshake in REV is continuous, where each request/response

requires a complete round trip across the network [108]. The method isn’t suitable for a VC

context as it incorporates some performance overheads.

In the MA paradigm the client doesn’t communicate with servers but migrates to the nodes.

Buchanan et al [108] discuss the following merits offered by the MA paradigm in distributed

applications:

 The migrations reduce bandwidth problems and eliminates repetitive request/response

handshakes by moving a transaction from client node to the server;

 The MA model solves against intermittent network connections as agents can be created

for offline computing and communicate results when applications are back online.

Inclusive of the above highlighted characteristics; a MA allows system level functionality (e.g.

rule based reasoning) to be integrated. In view of the discussed merits, the MA paradigm was

utilised for the design and implementation of the compute component.

5.2.2 Storage Component

This section introduce the MAS based file-systems which join shared disk space into one

distributed storage resource.

5.2.2.1 Disk Mirroring File-System

DM in storage systems “replicates logical disk drives onto separate physical hard disks to ensure

continuous availability” [123]. DM can also achieve data mirroring which makes exact copies of

files available on separate nodes in the same system. In node failures, the DSS can recover data

49

flexibly from volumes in proximity. Apart from high data availability through redundancy,

mirroring allow for concurrent reads which can significantly improve performance in specific

system circumstances [123]. The DM file-system was hence designed to explore error recovery

characteristics offered through data replication to address erratic shared storage availability.

5.2.2.2 C-AP File-System

The HTTP language’s file and drag-and-drop APIs utilize chunked uploading to address

problems associated with large file uploads. Uploads in excess of several gigabytes on unreliable

networks often leads to failure and increased upload times. To target users with slow Internet

connectivity, the APIs break files into fragments and send the chunks to upload servers.

The GFS utilizes chunked uploading to optimize on file size and network usage. The GFS also

extends the atomic append technique to optimize on file storage in distributed nodes. Contrary to

traditional storage approaches which write multiple data fragments in a region of storage; chunk

appends reduce client synchronizations resulting in high read speeds on accessing the individual

chunks. The C-AP file-system builds on the GFS’s optimizations (introduced in Section 3.4.1).

Considering the SLL network, sending file uploads as a series of chunks to volunteered nodes

can enhance file upload and download transfer speeds.

5.2.3 Non-Functional MAOG Requirements

This section outlines the MAOG non-functional requirements without emphasis on the

technology used. In software engineering, non-functional requirements are measures used to

validate system functionality [124]. The requirements are considered in design trade-offs when

designers specify structural and behavioural system aspects [125]. The following non-functional

requirements are inclusive for the compute and storage components:

1. Ease of setup: Shared compute and storage resources are integral to the system and

should be easy to set-up.

2. Requesting a service: The platforms should allow users to submit computational

applications and uploads easily.

3. Heterogeneity: The system services should be platform independent.

4. Autonomy: System workflows should prioritise resource provider activity on shared

nodes.

50

5. System Uptime: The systems should be readily available to provide required services.

6. Response and Turnaround time: the system should keep at minimum the time taken to

implement requested services.

7. Security: Message integrity and confidentiality are integral security measures in the

MAOG services.

5.3 Conclusion

The context within which this research is conducted was presented in this chapter. The

connectivity framework as introduced can support an integrated commodity computing resource

from shared resources in DANs. Specific compute and storage services including motivations

were hence presented to propose techniques in utilising these infrastructures. Generic non-

functional requirements universal for the identified services were then listed at the end.

51

Chapter 6

6 The MAOG System

In this chapter, the compute and storage services founded on the MAS methodology accepted in

Section 2.1.4.4 are introduced. The architectures, agent participants and acquaintance

relationships present the identified compute and storage services using the agent technology.

The MAOG services’ use case and sequence diagrams introduce the functional requirements of

key components identified.

6.1 Compute Component

The MA compute component which utilizes idle shared CPU cycles through VC is considered

and designed in this section. The main goal was to come up with a MAS infrastructure which

solves computationally intensive tasks using volunteered processor capabilities. The process of

designing the MA compute service is discussed in the following sub-sections.

6.1.1 Mobile Agent Platform

The MA platform’s architecture and its agent delegation model are discussed in the following

sub-sections. The CNP (introduced in Section 4.5) selects an optimum platform with readily

available processing cycles from a selection of shared nodes. The service also considered

resource provider activity on their shared nodes to avoid computations getting into their way.

The platform assumes that shared resources and their representative agents are connected via the

SLL network with easily detectable failures.

6.1.1.1 MA Architecture

The platform is composed of autonomous and collaborative agents with knowledge of their

deployment environment. The architecture defined by JADE and its features is shown in Figure

13. Processing User Agent (PUA), Processing Mobile Agent (PMA), Processing Mobile Agent

Graphical User Interface (PMA GUI), Node Processing Agent (NPA) and Processing Resolver

Agent (PRA) agent types with different capabilities and view of the system were designed. The

agents obtain and share knowledge required in solving compute oriented problems.

52

Figure 13: MA Architecture

The following are the descriptions of the main agent types and their responsibilities in the

infrastructure:

1. PUA: From a high level; PUA request processing resources matching a specific criterion

on behalf of users. Initiating the CNP mechanism, evaluation of proposed PRA bids and

contract allocation are the main primary execution steps;

2. PMA: This agent encapsulates the user problem and the rule based reasoning

functionality to be validated;

3. PMAGUI: The agent provides a graphical user interface for users to invoke, load and

deploy PMAs;

4. Database: The database stores shared node system information and CPU utilization

patterns provided by NPAs;

5. NPA: NPA detects node processor utilization dynamics and profiles the information in a

database;

6. PRA: The module identifies the SLL back-end shared nodes to the MA platform. In

responds to call for proposals, PRAs determine the aggregate processor load for shared

computers in their respective platforms and return the values as a bids to requestor PUAs.

53

6.1.1.2 System Specifications

This is discussed in consideration of two participating parties; users and resource providers.

Users execute their applications using resource provider machines. Both parties have access to

modules which define their roles in the platform. The non-functional requirements in Section

5.2.3 are equally applicable in this platform. The functional requirements which outline the main

behaviorally related interactions performed by the participants in dialog with the system include:

1. The CNP negotiation strategy should recommend an optimum computational platform;

2. A feature for selecting nodes, application loading and deployment should be integrated;

3. The system should monitor resource provider activity during problem solving to relocate

work-flows in an event of a node recall;

4. The system must provide feedback on the results to users.

Figure 14: MA Use Case

The actions performed by the participants in line with the expected functional requirements are

shown in Figure 14.

6.1.1.3 Agent Interactions

The MA component acquaintance interactions in problem solving are discussed in this section.

To assess the CNP approach, three MA platforms are connected by a proxy-server. The resultant

54

converged MA infrastructure and its sequence diagram are shown in Figure 15 and Figure 17

respectively. The following conditions were defined: (1) The proxy adds separate platforms

through their PRAs and (2) a resource provider shares a resource by initializing a NPA thereby

joining a node. The parameters shown in Figure 16 are updated in node_cpu_util_infos after a

defined interval.

Figure 15: MA Infrastructure

When a user initializes a PUA to request shared resources from the compute service; the user

oriented agent searches the DF for registered PRAs and encapsulates the identities in

INFORM_SCHEDULER_SERVICE. Call for proposals are then submitted to PRAs to identify

separate Node Cumulative Load (NCL) values of shared nodes managed in the identified

platforms. Provided the proposals are received, individual PRAs query local databases

(node_cpu_util_infos); calculates the NCL of shared nodes in the platforms and returns bids

(PROPOSE_AGGREGATE_LOAD_INFO) stating the mean NCLs to the PUA.

55

Figure 16: Node utilisation ERD

The requestor PUA then evaluates the bids and forwards an offer to an identified PRA with the

least NCL mean (i.e. PRA_2 in Figure 17). Turnaround times in processing workflows can be

reduced considerably by assigning a task to a platform with the least NCL. A suitable PRA then

provides identities of shared nodes in the related platform on accepting a contract.

The PUA invokes a PMAGUI when node identities are received enabling a grid user to load a

PMA, select node of preference and deploy the PMA to evaluate encapsulated problems. When

the PMA processes complete on the selected shared node without node recall or interrupt; the

PMA migrates back to report on computation results (e.g. transition return (result), Display

(results continual)).

If Node_1 in Figure 17 is recalled during application processing for instance, the PMA requests

for alternative nodes registered from the AMS. The AMS then checks and returns all nodes

identified to the PMA. The PMA then suspends its execution on the current node and moves its

application and data to an alternative node (e.g. Node_2). Results are then returned to the user

(e.g. transition return (result), Display (results_interrupted)) on successful completion.

56

Figure 17: MA Sequence Diagram

6.2 Storage Component

The DM and C-AP file-systems were designed to explore ways of integrating idle storage

resources. The terms shared resource and Storage Server (SS) are functionally interchangeable

and refer to shared nodes with free disk space.

57

6.2.1 System and Requirement Analysis

Users request shared disk space from the distributed file hosting service by running specific

system modules. The facility should enable these users to:

1. Query the system for shared machines offering free storage space;

2. Select files to upload and forward the content to identified resources;

3. Receive feedback on the storage operations.

Likewise an allowance for a user to retrieve the uploaded file without knowledge of where the

file is stored should be incorporated. In view of users and resource providers involved in the

realisation of the storage component; the following generic requirements are considered:

1. There should be simplicity in allowing resource providers to share their resources

towards the project;

2. Potential users should have seamless access to the storage system.

Participants with a machine and an active connection can interact with the system either as

volunteers or users based on the system modules they execute. Established on the system

requirements highlighted, a primary list of potential system interaction scenarios was laid out.

The modelled use case diagram is shown in Figure 18.

Figure 18: Storage Use Case

58

6.2.2 Agent Identification

This section identifies agents in the operation scenario as identified by the functional

requirements. In the agent identification process, the agent diagram is the key deliverable and

unlike in use cases the approach differentiates between human and external system components.

A typical agent diagram consists of [22]:

1. Agent Types: Represent the actual agents as circles;

2. Humans: Represent people who interact with the system. They are identified by an actor

symbol;

3. Resources: Represent external components which contribute towards a MAS under

development (represented as rectangles);

4. Acquaintances: Symbolise association between linked system components. Links in an

agent diagram are restricted to agents and resources/humans. Agents to agent

relationships are considered further in the design process.

Figure 19 is an agent diagram approach to system analysis.

Figure 19: Agent Diagram

6.2.3 Agent Tasks

The storage architecture applicable to the DM and C-AP file-systems is shown in Figure 20. The

capabilities of agents in the architecture are explained first in order to appreciate the platform

dynamics.

59

Figure 20: Storage Component Architecture

There are four agent types with different responsibilities in the storage infrastructure exclusive

of platform service roles: Storage Component User Agent (SCUA); Resolver Agent (RA);

Database Agent (DA)/database and Storage Agent (SA):

1. SCUA: SCUA acts as a gateway for users to request storage services from the file-

systems;

2. RA: The agent handles storage requests and identifies suitable SSs;

3. SysDA: The system database stores the SS system information on the underlying disk

utilisation. The data types stored are: PC name; Internet Protocol (IP) address; media

access control address (MAC-Address); platform; architecture; operating system version;

total swap space; free swap space; total disk space; free disk space; and usable disk

space;

4. LDA: The Locations Database stores parameters to uploaded files;

5. SA: SAs identify SSs to a storage platform. The agent is executed by resource providers

to donate their machines. In particular, the SA capabilities are summed up as follows:

a. The agent is responsible for uploading/downloading a file to/from SS;

60

b. The agent collects and stores the SS hardware stack information to a centralised

SysDA;

c. SA publishes the shared nodes capability to DF enabling for SS service

identification.

6.2.4 Storage Modules

This section discusses the storage designs and their communication models to achieve the

emphasized goals. The main events discussed are focused on the DM and C-AP file system

approaches to file storage introduced. The following were defined as pre-conditions:

1. Resource providers register their SAs to an active session;

2. Each SA’s AID and service names are defined as “storageagent”+MAC address. The

Media Access Control address (MAC address) is unique for each shared computer.

Associating the agent name and its DF registered service with the address, eliminates

conflict in service and agent name naming conventions; supports unique identification of

specific SA to SS relationships; and enable simplicity in developing agent functionality;

3. SAs register and update their SS information with a SysDA after a defined time interval;

4. The RA (broker service) is registered with the DF;

5. A user’s SCUA can identify the broker service in platform through the DF.

6.2.5 DM File-System

6.2.5.1 Upload Service: 1st Iteration

The DM file-system’s agent acquaintances and responsibilities are presented in an informal and

intuitive way in Table 6.

File Upload Steps (in Figure 21):

1. An initialized SCUA searches for a registered broker service (RA) from the platform’s

DF. A request for a SS with largest usable disk space from an identified RA is then

forwarded;

2. The RA receives the request and queries for a SS with the largest usable disk space from

SysDA. On extracting an identified optimum SS MAC address, the RA attaches the

61

string “storageagent” creating a “storageagent”+mac_address variable type matching

the SA agent and service names;

Agent Acquaintances and Responsibilities

SCUA a) Initiate user request for a file upload service;

b) Let the grid user select a file to upload;

 i) Convert selected file into acceptable message format;

c) Forward the selected file to identified SA for upload;

d) Notify user on the status of upload

RA a) Receive storage request from the SCUA;

b) Search for optimum SS from the DA/database;

c) Return optimum SS/SA AID to the SCUA.

DF a) Register SA and RA services.

SysDA a) Collect SS system information provided by SA.

SA a) Populate SS system information into SysDA;

b) Receive SCUA file upload requests;

i) Write received file into SS and return feedback.

Table 6: DM Upload Service Responsibilities

3. As “storageagent”+mac_address match with a unique SA service; RA uses the variable

to determine the availability and identity of a SS specific agent. If the SA is active, RA

then returns the SA AID to the SCUA;

4. The SCUA fetches and decodes the feedback. If a SS is available (e.g. If (SA_AID!

=Null), a file chooser is triggered enabling users to select a file to upload. The SCUA in

turn converts the selected file into a byte data type supported. On conversion, the file is

forwarded as a request to an identified SA;

5. The SA receives the request and writes the file to a SA’s defined SS directory. A reply is

then returned to the SCUA specifying the service handler identity (SA) and the remote

Filename defined;

6. The SCUA then shows the SA AID and remote file name parameters to an upload.

Design Limitations: 1st Iteration

The first iteration file upload service was captured by the sniffer agent as in Figure 22. At A in

Figure 22, the SysDA is queried for an optimum SS; B returns the SA AID to handle the upload

service; and stage C generalise the file chooser instance, file conversion and file forwarding to a

SA.

62

Figure 21: File Upload Service (1st iteration)

The design lacked redundancy in file storage since a single SA AID parameter is returned.

Sending an upload to RA for the module to resolve and handle the upload request to the SA was

viewed as convenient. This restricts the user machine participation in the service. It was also

important to deprive the user from backend technical processes and parameters to make the

system more user-friendly. These issues were considered in the second iteration.

63

Figure 22: Sniffer Agent interaction capture

6.2.5.2 Upload Service: 2nd Iteration

The second iteration file upload service resolved shortfalls highlighted in the previous section.

The updated acquaintance and responsibilities are shown in Table 7. The changes are highlighted

in italics.

Agent Acquaintances and Responsibilities

SCUA a) Requests upload service on behalf of user.

b) Let the grid user select a file to upload;

i. Convert selected file into accepted message format;

c) Forward file to RA;

d) Receive RA upload status and show upload feedback.

RA a) Receive SCUA uploaded file;

b) Search for optimum SSs from SysDA;

c) Forward file to identified SSs/SAs for storage;

d) Save file upload parameters in a database;

e) Return upload status to SCUA;

DF a) Register SA and RA services;

SysDA a) Store SS system information provided by SAs;

LDA a) Store file SS storage parameters;

SA a) Populate SS system information in SysDA;

b) Handle RA upload requests;

i. Write file in SS directory

c) Return uploads parameters to RA.

Table 7: Updated Agent Roles

To offer redundancy in file uploads, specific task delegation steps were reassigned.

64

 The following assumptions were also redefined:

1. Indirect interaction between SCUA and SA through the RA;

2. The SCUA’s AID parameter is preserved in the RA to SA upload round-trip interactions

to uniquely identify the sender and file upload locations in LDA;

File Upload Steps:

1. When a grid user initiates a SCUA, the agent invokes a file chooser to select a file. The

SCUA then converts the selected file into supported content. To query for storage

resources, SCUA searches the DF for broker services registered. From an identified RA,

the SCUA requests (N) SS with the largest usable disk space available from the identified

RA (N is the number of SS tagged as optimum). The SCUA AID and the file payload are

also specified in the request;

2. The RA receives the request from the SCUA and determines if the query matches its

primary capabilities. If conditions are satisfied, RA then retrieves the payload and queries

(e.g. Select (N*optimum_mac_addrs)) the SysDA for MAC addresses affiliated with (N)

optimum resources. Provided the N * SAs are online, RA encodes the file payload and

sends the requests to these SAs;

3. Typical RA requests are handled by SAs in the following way:

a. The request is decoded to identify the file payload;

b. The payload is extracted, validated and saved under a unique alias (Filename) in

the SS directory;

c. Each SA attaches the SS MAC address and saved file (Filename) identifier; and

returns the parameters to RA.

4. The RA receives the (N) SA parameters and saves the data in LDA uniquely identifiable

by the source SCUA AID. The file upload status is then returned to SCUA.

Design Limitations: 2nd Iteration

Selecting SSs based on largest usable disk space available in the design didn’t fully optimise the

storage capabilities offered. Considering a First Come First Served (FCFS) scheduling scenario

in which small file uploads are prioritised on SS with largest usable disk space compared to large

file sizes. The assumption results in specific SS being underutilised and over-utilized based on

the disk space available. Also, the sequence flow didn’t keep track of the user’s source file

65

name. Keeping track of the parameter enables the platform to reconstruct the exact file name and

its contents on download request. These recommendations were incorporated in the next

iteration.

Figure 23: File Upload Service (2nd Iteration)

6.2.5.3 Upload Service: 3rd Iteration

The third iteration merged a resource mapping function to identify SSs suitable for an upload

contrary to the approach where SSs with largest available storage are selected. The smaller the

file upload size the less free usable disk space required was the defined mapping criteria. The

inverse was assumed for a larger file size. The SCUA’s AID and an additional source filename

66

parameter were included in RA to SA upload round-trip interaction. The acquaintance and

responsibility table defined in the previous iteration was maintained. The updated sequence

diagram and steps which address the highlighted shortfalls are shown in Figure 24.

Figure 24: File Upload service (3rd Iteration)

67

File Upload Steps:

1. A grid user selects a file to upload through an invoked file chooser. SCUA then sends the

payload, its AID and an additional source filename parameter to RA;

2. RA acknowledges the SCUA request, retrieves the payload and calculates the file size.

The file size variable is parsed into a function which identifies suitable SSs from SysDA.

The identified SS MAC addresses are appended to a string as in the first iteration; RA

then sends the file payload, SCUA AID and an added source filename to SAs identified

for storage;

3. The SA processes steps 3a and 3b in Section 6.2.5.2 and returns file storage parameters

to RA. The parameters are then saved in a LDA with the SCUA AID as the primary key;

4. An upload status is then returned to the requestor.

6.2.5.4 Download Service

This service downloads a file uploaded in Section 6.2.5.3. The events are shown in Figure 25. A

file can be read from any of the redundant node/SS identified in the upload process.

Agent Acquaintances and Responsibilities

SCUA a) Request file on grid user’s behalf;

b) Forward SCUA AID to RA

c) Receive the file from RA and write the file locally

d) Show download status and local file path

RA a) Receive locations identifier to the redundantly stored file

b) Check for locations where the file is redundantly stored

c) Request file from identified SAs/SSs

d) Return file to SCUA

DF e) Register RA and SA services

LDA f) Provide locations to stored files and parameters;

SA a) Handle RA file download requests

i. Retrieve and return file to RA.

Table 8: File Download responsibilities

A download is handled by SCUA, LDA, DF and SA agents in the following way:

1. On user SCUA execution, the agent sends its AID to RA. The RA extracts the SCUA

AID and queries LDA to identify a record uniquely identified by the parameter. If the

record exists the RA retrieves the source filename, the different SS assumed Filenames

and SS MAC addresses associated with the file;

68

2. The RA then identifies the SA AIDs from the DF using MAC addresses extracted. If the

SAs/SSs are online the RA sends requests for file retrieval to the respective SAs;

3. The SAs retrieve the file name specified in the request and return the file payload to the

RA. Provided the (N) SAs feedbacks are received, the RA returns a single copy of the

file to the SCUA after checking the consistency of feedbacks returned;

4. At the SCUA, the agent extracts the source filename parameter; creates the original file

container and writes the file contents;

5. A download status including the path of the downloaded file is then presented to the user.

Figure 25: File Download Service

6.2.6 C-AP File-System

The C-AP file-system implements GFS’s performance optimizations presented by file striping

and atomic appends. This section details the file-system’s storage service which achieves

specific objectives.

69

6.2.6.1 Dynamic vs. Static Chunking

The C-AP file-system identified dynamic and static chunking methods as techniques that can be

used in the design of the storage service. This research defines the phrase “dynamic chunking”

as the ability of a storage service to devise a file striping coefficient based on the upload byte

size. Static striping on the other hand assumes a fixed chunk size for any upload. Utilising

dynamic chunking; isn’t lossless in byte conversions as was observed in design and code

considerations. Considering an upload with a byte length not divisible by a coefficient deduced;

this resulted in a file fragment being discarded and not accounted for. Due to ease of integration

and GFS performance optimisations the static chunking approach was adopted in the design and

implementation phases.

6.2.6.2 C-AP Upload Service

Agent Acquaintances and Responsibilities

SCUA a) Requests upload service on behalf of grid user

i. Let the grid user select a file to upload

b) Convert selected file into accepted message format

c) Forward file to RA

d) Receive RA upload status and show upload feedback

RA a) Receive SCUA uploaded file

i. Split file into chunks

b) Search for available SSs from SysDA

c) Forward chunked files to identified SSs/SAs for appends

d) Store SAs returned chunk locations and parameters in LDA

e) Return upload status to SCUA

DF a) Register SA and RA services;

SysDA a) Store SS system information provided by SAs;

LDA a) Store parameters to chunk locations

SA a) Save SS system information in SysDA;

b) Handle RA upload requests;

i. Append chunks to SS local file

ii. Compute the chunk byte offset

c) Returns upload parameters to RA.

Table 9: C-AP Responsibilities

The C-AP file-system has agent roles which support C-AP in handling uploads. The SCUA

responsibility in DM and C-AP file-systems remain consistent. Changes (shown in italics) to the

DM file-system’s agent responsibilities to realise introduced functionality are shown in Table 9.

The sequences for the upload service are shown in Figure 26.

70

Figure 26: File Download Service

File Upload Steps:

1. The SCUA sends a request to the RA; the message contains the user selected file and its

parameters;

71

2. The RA then computes the size of the file; determines the chunking factor and chunks the

file. When this is done, the broker service identifies available SSs from the database and

resolves their representative SA AIDs from extracted SS MAC address;

3. To identified SAs based on a mapping criteria, the RA pushes the chunk replicas at a

specific replication level;

4. A typical SA receives the chunk, appends it to an existing file, computes the append byte

offset and returns the status to the RA. The status includes the SS filename which

contains the chunk, the append byte offset and the SS’s MAC address;

5. Provided the RA receives all chunk append feedbacks; the parameters are saved in a

database uniquely identifiable by the requestor SCUA AID;

6. The Upload status is then returned to the SCUA via the RA.

6.2.6.3 C-AP Download Service

To download a test file uploaded using the approach in Section 6.2.6.2, the message passing

model which retrieves and reconstruct the user file is discussed here. The agent acquaintance

roles which vary from the DM file-system’s download service are shown in Table 10.

Agent Acquaintances and Responsibilities

SCUA a) Request file on grid user behalf

b) Forward SCUA AID to RA

c) Receive the file from RA and write the file locally

d) Show download status and local file path

RA a) Receive chunk locations identifier from SCUA

b) Check locations where chunks are stored from database

c) Request file from identified SAs/SSs

d) Join SA returned chunks and return file to SCUA

DF a) Register RA and SA services

LDA a) Provide locations to stored files and the parameters

SA a) Handle RA file download requests

i. Extract the chunk byte range specified by offset

ii. Return chunk to the RA

Table 10: C-AP responsibilities

File Download Steps:

1. A SCUA sends a download request to RA. The SCUA AID is encapsulated as a request

parameter;

72

2. The RA receives the request and searches for a chunk location database record which

matches the requestor’s AID. When located the MAC addresses of SS with chunks are

extracted and passed to the DF to identify SA AIDs. The RA then sends requests to these

SAs simultaneously to request for chunk retrievals. The byte offsets and destination file

names are specified as crucial parameters;

3. The SA accepts the request, accesses the SS file path and copies the chunk byte range

specified by the offset; the chunk is then returned to the RA;

4. Provided all chunk retrieval feedbacks are returned successfully; the RA appends the

chunks in sequence and returns the reconstructed file to the requestor (SCUA);

5. The SCUA writes the file locally and provides an upload status to the user.

Figure 27: File Download Service

73

6.3 Conclusion

This chapter justified the compute and storage methods proposed at a high level. The

architectures and acquaintance interactions show key patterns which highlight anticipated

functionality. The CNP and rule reasoning functionalities explained incorporate concepts viable

for dynamic resource identification and allocation in heterogeneous settings. The service

methods were analysed and explained in MAS contexts to aid transition into the implementation

stage.

74

Chapter 7

7 MAOP Services

The previous chapter identified key platform roles and relationships in the MAOG system.

Proof-of-concept prototypes which validate the technical sufficiency of designed services are

presented in this chapter. The designed components demonstrate the viability of agent

technologies in Opportunistic Grid Computing. The software agent codes which implement the

required functionality are presented in the following sections.

7.1 MA Component

The MA compute integrates shared processor resources into a low-cost commodity system. The

CNP and Jess rule engine implements resource identification, negotiation and decision making

in the distributed MAS to prioritise resource provider activity. The component assumes the

converged architecture introduced in Section 6.1.1.3. The MA project and its agent participants

is shown in Figure 28.

Figure 28: MA Compute Project

7.1.1 Processing User Agent-PUA

The PUA class extends a GUI agent. The agent requests and negotiates for resources to process

encapsulated functionality. The following are steps involved in this process (see Appendix A.1

for associated code snippets):

75

1. A PUA identifies PRAs registered with a proxy-server to identify a platform with shared

nodes least utilised; the PUA then sends call for proposals to identified PRAs

(PRA_AIDs[i]) to request platform node utilisation information (in Appendix A.1.3).

2. The PRAs respond with bids detailing the system load averages of nodes in the

respective platforms. Provided all bids are returned, PUA selects a bid with the least

mean system load average and extracts the source PRA AID (in Appendix A.1.4). A

contract is then allocated to an ideal PRA by sending an offer requesting the node

identities in the affiliated platform (see Appendix A.1.5 for code extract);

3. If a destination PRA accepts the offer and returns the shared node identities; a PMAGUI

(in Figure 29) initialises. The GUI prompts a user to load a PMA and sends the agent to

process in the preferred idle node.

Figure 29: PMA GUI

7.1.2 Node Processing Agent-NPA

The NPA is a node system daemon. Resource providers run the component to register node’s

CPU utilisation parameters (in Appendix A.1.8) with a centralised database (in Appendix A.1.7).

The parameters are registered (in Appendix A.1.9) for the first time on NPA start-up. To

constantly update the processor utilisation metrics, a TickerBehaviour executes after a defined

interval.

The most important metric is the system load average provided by the platform MXBean which

is an MBean for managing and monitoring Java virtual machines. The system load average for a

76

node computes the sum of runnable entities queued to available processors and the number of

runnable entities using the available processors averaged over a specific period of time. The

system load average takes values in the 0.0 to 1.0 range. The value (0.600) was defined as the

maximum value a Linux node is considered idle from experiments in view of the native Linux

threads requirements.

7.1.3 Processing Resolver Agent-PRA

JADE runtime instances provide an environment for PMA to execute when deployed. A PRA

identify these containers as a group of nodes. On start-up the PRA registers with a proxy-server

(in Appendix A.1.11). If a container is added or removed from the platform; the PRA

AMSSubscriber class listens on these events (in Appendix A.1.12) and maintains an updated list

of nodes in availableContainers.

In response to PUA call for proposals, a PRA calculates the mean system load average for active

nodes in a platform (in Appendix A.1.13). If the PRA is offered a contract based on a submitted

bid (in Appendix A.1.14); the agent returns availableContainers as an acknowledgement for an

offer (Appendix A.1.15).

7.1.4 Mobile Agent-MA

The MA integrates a reasoning component and user application. The design was driven by

concepts in exploring mobility [126]. Support for mobility is achieved through APIs and

methods which allow agents to decide on actions to perform independently [126]. The methods

offered by JADE to manage code relocations include [126]:

 doMove: The method is called to move an agent and takes the destination as a parameter

(i.e. doMove (location);

 beforeMove: The codes in method process before an agent moves to a defined location;

 AfterMove: The method is initialised on reaching the remote node.

The doClone, beforeClone and afterClone are specific for agent cloning. The MA code

fragments that implement the expected functionality are introduced in the next section.

77

7.1.4.1 Processing Mobile Agent

The PMA class extends a GUI agent. When node identities are returned by a PRA, a user loads a

PMA from the PMA GUI as in Figure 29. The void setup method (in Appendix A.1.16) executes

on loading a PMA. Registration of the ontology and language is handled by the init method (in

Appendix A.1.18).

The Jess rulesfile.clp file is attached as a fileinputstream to relocate with the PMA. The file

contains a rule the PMA loads into a rule engine’s working memory to reason about the

execution environment. If a benchmark system load average load is exceeded the rule is fired

and the rule component embedded recommends the PMA to relocate to an alternative idle node.

The container_array list (in Figure 30) keeps track of nodes traversed during PMA processing.

The report_results_sourcenode captures the sender’s JADE container for the PMA to migrate

back and report on compute results. The Main-Container is added initially to restrict the agent

from relocating to the main bootstrap point for processing.

Figure 30: Keeping track of source node

If a PMA is loaded, the PMA GUI SpawnAgent tab sets out the module to a selected

container/shared node. A user can alternatively kill the loaded PMA using the kill button. The

actions are implemented by the PMA GUI’s doMove and doDelete methods (in Appendix

A.1.17).

When a PMA is deployed, the afterMove method (in Appendix A.1.19) is called at the

destination container/node. The method initialises the Jess rule engine instance (in Appendix

A.1.21) after a defined interval and also includes code that checks if the recent migrated node is

the source computer in which case the PMA prints the computation results. A Jess rule file

(finalfile.clp) is written on the destination node to enable the PMA to reason about node CPU

utilisation patterns.

78

The defined rule which reasons on the execution environment is shown further on:

(deftemplate rulereasoning (slot cpuinfo))

(import java.lang.Double)

(defglobal ?*var* = 0)

(defrule rule-reasoning

 (rulereasoning {cpuinfo > 0.600000})

 =>

 (bind ?*var* "migrate")

 (halt))

The Simpson Rule class (in Appendix A.1.20) was used to test the processing capabilities of

PMA whilst reasoning on the execution environment. The application is initialised by

compute_application.main method. If a destination container to which an agent migrates match

the container_array.get (0) (sender container identity), the PMA reports on the compute results.

Provided a PMA rule reasoning component detects resource provider activity on the shared node

during processing; the agent’s rule engine fires a rule (defined in finalfile.clp) based on the fact

and instructs the PMA to migrate. If the system load average value is greater than 0.600000

(motivated in Section 7.1.2), the rule is fired and the Jess engine issues a “migrate” action to the

PMA. A sample PMA migration prompt on detecting user activity on the node is shown further

on:

==> f-0 (MAIN::rulereasoning (cpuinfo <Java-Object: java.lang.Double>))

==> Activation: MAIN:: rule-reasoning: f-0

FIRE 1 MAIN:: rule-reasoning f-0

Action = "migrate"

When the “migrate” directive is issued by the reasoning component, PMA requests for

alternative nodes from the AMS (in Appendix A.1.22). The containers returned are read into

Loc. Loc container identities are of the form “Container-1@kalibacktrack-Raymond”. The

doMove method accepts string identities of the nature “Container-1”. A substring is introduced

to trim the AMS retuned variables to suite the doMove method parameter specification. The new

container identifiers are then pushed into AMS_containers (in Appendix A.1.23).

79

The agent then selects container identities not traversed previously and selects a random node to

relocate to. If processing is uninterrupted, the numerical combinations (in Appendix A.1.20) are

processed until the agent migrates back to report on results (in Appendix A.1.24).

7.1.5 Integration Exceptions

Traditionally business logic (i.e. rules) in expert systems was implemented directly in

application code. A number of applications still have rules tightly coupled with applications. If

rules change, it’s required to modify all affected parts. Inference engines have since changed the

way business logic is implemented to solve problems associated with tightly coupled

applications.

Pattern matching of rules in inference engines is mainly non-deterministic. An effort to

parallelise the Rete algorithm in firing and/or matching stages is an area of active research.

Parallel firing of rules results in deterministic execution which has some limitations. Drools rule

engine has since revolutionised from 5.x to the recent 6.x series revisions which include an

enhanced version of the Rete algorithm (ReteOO). ReteOO supports concurrent and parallel

matching strategies.

In the following sub-sections, the research’s experience in integrating a PMA with Drools and

Jess is shared. The most adopted approach for rule based reasoning in JADE agents is Jess [127].

Due to the proliferation of Drools enabled applications motivated by its open source nature; this

research assessed the innovation Drools can offer when included in a PMA and possibly propose

it as a viable alternative for Jess.

7.1.5.1 JADE and Drools: Exceptions

A simple Drools instance which asserts a fact (“test”) into the working memory was utilised.

This was a preliminary test before rules and facts that match the PMA compute problem were

developed. The main idea was to match the test fact with a Test Drools Reasoning rule, returning

"Reason, Drools Reasoning Working!" when a rule is fired.

80

rule "Test Drools Reasoning"

 when

 message: Message (type=="test")

 then

 System.out.println ("Reason, Drools Reasoning

Working!");

End

Drools 5.3.0 packages were used to compile a PMA at the source node and setting up a Drools

runtime instance in a remote JADE container. The remote container was initialised as in Figure

31.

Figure 31: Initialising Drools in JADE

Figure 32: Drools Engine Instance

81

On deploying PMA with the Drools logic (in Figure 32); the agent died prematurely (shown in

Figure 33) on executing the afterMove method. A TickerBehaviour executed the Drools instance

in this case.

Figure 33: Migration Exception

Figure 34: Migration Exception

To identify the bug, a CyclicBehaviour was integrated to execute a Drools instance on

relocation. The agent died prematurely but with a detailed log (in Figure 34). Considering

ReteOO optimisations in concurrent and parallel matching strategies (introduced in Section

7.1.5); the research reviewed on the algorithm’s performance in development lists. Drools

version 5.3.0 doesn’t support concurrency majorly under the Class Field Accessor Cache and

Composite Class Loader as was concluded in [128].

82

The Class Field Accessor Cache (shown further on) issued the exception in Figure 34.

ClassName: ClassFieldAccessorCache

This is the method which throws Exception during concurrency. Highlighted Line number throws the

exception

public Class getClass(String className) {

try {

// Exception happens here. And This happens only during multithreading or concurrent calls.

return this.classLoader.loadClass(className);

}

catch (ClassNotFoundException e)

{throw new RuntimeDroolsException("Unable to resolve class '" + className + "'"); }

}

Drools revisions with a fix for multi-threading and concurrency are not defined explicitly [128].

Experienced Drools practitioners modify source code to suit their needs. Drools 5.6.0 with a

partial fix was highlighted as a possible solution. The research recompiled the PMA and

evaluated the agent with a remote container (created in Figure 35) running Drools 5.6.0. The

agent migration wasn’t successful as well in this scenario.

Figure 35: Drools 5.6.0 in JADE

Considering the time devoted to a Drools enabled PMA; the research explored Jess for rule

based reasoning. The work on JADE and Drools was documented for future work.

7.1.5.2 JADE and Jess: Exceptions

Jess was originally considered for implementing expert systems. In MAS, the engine is used to

build software which reason using knowledge supplied in the form of declarative rules. In

principle a JADE agent is single-threaded (from Section 4.7.4). The Jess Rete.run method

enables the engine to successively fire rules and return only when all rules are fired (when the

engine stops); therefore, meanwhile the calling thread will be blocked. If the calling thread is

blocked; then the entire single-threaded JADE agent will block [129]. The research incorporated

techniques that allow separate behaviours to be executed from within a PMA at different

83

instances based on the behaviour definitions to avoid thread blocking. A JADE container was

initialised at the destination node as follows:

Figure 36: Starting a JADE Runtime

It was anticipated that Jess can relocate its declarative rule file to a remote node to implement

rule reasoning. An attempt to relocate the component issued an exception (shown in Figure 38)

at the destination node.

Figure 37: Jess Instance

Figure 38: FilenotFoundException

84

To capture the declarative rule file across to the destination runtime environment, a

fileinputstream was defined (as in Figure 39).

Figure 39: Rule File to Bytes

Selecting a specific PMA method to create the file stream from the source was crucial. The most

sensible approach was to include fileinputstream in the beforeMove method. However an

exception in Figure 40 was observed on migration. Defining the fileinputstream in the PMA void

setup method resolved the exception.

Figure 40: IOException

The PMA was deployed to a remote node where processing and reasoning initiated properly.

Figure 41: Serialisation Exception

85

However, the agent didn’t migrate back to report on processing results due to an exception in

Figure 41. The PMA serialized a fileoutputstream directly or the stream was reachable from

objects being serialised. Declaring the stream as transient resolved the exception.

Figure 42: Output Stream

7.2 Storage Component

The software logic that implements the DM and C-AP file-system services are discussed in the

following sections.

7.2.1 DM File-System: Upload Service

The profile shown in Figure 43 specifies the agents and integral APIs for the DM file-system

upload service.

Figure 43: DM project

7.2.1.1 SCUA

The SCUA displays a file chooser (in Figure 44) when executed to locate a file and its name.

The SCUA then converts the file content into a JADE message data type supported (see

Appendix B.1.1 for code snippet).

86

Figure 44: File Chooser

The SCUA searches and stores DF returned broker services as RAs_AIDs (in Appendix B.1.2).

The SCUA then forwards its SCUA AID, the source filename and the file payload as

forwards_file_metadata to identified RAs (returned in RAs_AIDs). The forwards_file_metadata

parameters are important for the following reasons (see Appendix B.1.3 for parameters):

1. The SCUA AID uniquely identifies the parameters to stored files when an upload is

successful;

2. Source filename allow the platform to recreate the same file container on file download.

Java FileUtils converts file contents to byte arrays; hence the metadata on filename has to

be preserved separately.

If an upload is successful; Figure 45 shows an upload status returned by a RA (see Appendix

B.1.4 for code snippet).

Figure 45: Upload Status

7.2.1.2 RA

The RA registers (in Appendix B.1.5) with the DM file-system and responds to SCUA upload

requests. The agent receives and defines the SCUA content as file_metadata. From Figure 46,

87

the RA extracts the content and computes the size of the file uploaded to determine the nodes

appropriate for storage through the OPTIMISESTORAGE function.

Figure 46: Handling SCUA Requests

The SA AID and its services are defined as “storageagent”+mac_address as introduced in

Section 6.2.5.1. Apart from uniquely identifying SAs; the variable enables SA to SS relationship

mapping. Information stored in MySQL is extracted as strings. Storing SA AID objects provided

by a SA in a database table presented challenges as the string AID identifiers couldn’t be type

casted to standard JADE AID variables. SAs were hence configured to provide SS MAC

addresses to a MySQL database rather than their AIDs.

With reference to the OPTIMISESTORAGE function logic, if an upload is less than 60MB, a

RA identifies the MAC addresses of SSs with 100 GB disk space. The MAC addresses of all

shared nodes in a platform are identified by mac_address. MAC addresses in mac_address are

appended with “storageagent” which allow RA to identify their SA AIDs (storageagent

[count++]) from the DF. Three nodes are selected from the file-system for redundancy in file

storage. The RA then forwards an upload request which consists of SCUA AID, source filename

and file payload to chosen SAs (shown in Appendix B.1.7). A CyclicBehavior which listens on

SA feedbacks is simultaneously initialised on sending SA bound requests. An upload status is

then returned to the SCUA provided all SA feedbacks are returned.

88

7.2.1.3 SA

An upload service is dependent on message passing between RAs and SAs. A SA extracts the SS

MAC address and registers its service as "storageagent"+mac_address on start-up (code snippet

in Appendix B.1.10). The agent then extracts the disk utilisation parameters (in Appendix

B.1.11) and stores the parameters for the first time in a database. The registered SS information

is updated after a defined interval (in Appendix B.1.13). A directory that stores uploaded files is

also created in the SS home directory.

Figure 47: Upload Service Implements

From the RA received parameters in Figure 47; the SA retrieves the file payload and writes the

file in a SS under a new assigned alias (newname). The newname, SS MAC address, source file

name and SCUA AID are then returned back to the RA as an upload feedback.

89

7.2.2 DM File-System: Download Service

The service discussed in this section downloads a file uploaded in Section 7.2.1. The platform

assumes the same agent names but with different roles and negotiation patterns.

7.2.2.1 SCUA

A SCUA requests for broker services which identify locations to a stored file (see Appendix

B.2.1 for code snippet). From a selected broker service (RA_AIDs [0]) (in Appendix B.2.2); the

SCUA requests for an uploaded file by sending its AID.

Figure 48: Storing Downloaded File

In responds to a download request, RA returns the source filename and byte payload to the

SCUA. The SCUA’s CyclicBehaviour logic (in Figure 48) then accesses the user’s home

directory, creates a source file container (file name and extension) and writes the file byte

content. A download status is then provided to the user including the file path.

90

7.2.2.2 RA

The RA handles SCUA requests and identifies locations to an uploaded file. The RA service is

registered (in Appendix B.2.3) to receive SCUA download requests. To identify a requested file,

the RA receives the SCUA AID (in Appendix B.2.4) and queries a LocationsDatabase to identify

a record associated with the SCUA AID. The affiliated SS MAC addresses, SS filenames and the

source filename are then linked to the provided SCUA AID. The source filename to SS file name

matching parameters are then added systematically to an array list with the SS MAC addresses

bundled up in the locations parameter (see Appendix B.2.5 for code snippet).

The RA then appends the SS MAC addresses in locations to “storageagent” to identify the

associated SA AIDs from the DF (in Appendix B.2.6). If SA AIDs are identified, requests

containing SCUA AID, SS filename and source file name parameters are forwarded to identified

SAs (in Appendix B.2.7).

The CyclicBehaviour logic (in Appendix B.2.8) initiates and listens on download feedback

messages satisfying template definitions and assigns the responses to specific content objects

(e.g. downloadfeedback1). Provided the SCUA AID and source filename parameters match for

SA feedbacks; the file payload and source filename parameters are returned to a requestor SCUA

(see Appendix B.2.9 for code extract).

7.2.2.3 SA

The SA accepts download requests from the RA and retrieves the file specified. The registration

and updating of storage oriented node information is maintained as in Section 7.2.1.3. From

Figure 49, the RA receives download parameters and retrieves the SS filename including its

directory path. The file is then returned as extract_file. Since it is important for the file to assume

the same name and extension; an array list (Payload) that encapsulate the required content

(extract_file, source filename and SCUA AID) is defined. The Payload object is then enveloped

in a reply and returned to RA as a download feedback.

91

Figure 49: File Retrieval

7.2.3 C-AP File-System: Upload Service

A storage platform implementing the C-AP upload technique is introduced in this section. The

C-AP file-system varies from the DM file-system approach in the way file uploads are handled

through RA and SA agent types. The SCUA code remains unchanged for both DM and C-AP

file-systems. The code snippets for registering agents and detecting disk utilisation patterns are

also constant.

7.2.3.1 RA

The RA service is registered with the DF as in the DM file-system (Section 7.2.1.2). The RA

retrieves the file payload and computes its size when an upload request is forwarded by SCUA

(see Appendix B.3.1 for code snippet). The shared SS records registered in the nodeinfo

92

database are then selected by the RA (in Appendix B.3.2). For MAC addresses identified; the

associated SA AIDs are returned on querying the DF as a sharednodes variable.

Figure 50: Chunking a file

To initiate file chunking; the file payload and size calculated are parsed into the

chunkserver_func function (in Figure 50). The function reads in the file payload and splits the

payload into 10 MB chunks. On splitting the file, logic which maps the file size to the number of

SS/SA required for the file is selected. If a file is 10MB or less, the chunk replica is forwarded to

a single node/SA (in Appendix B.3.3). At most two SA AIDs and parameters are selected for a

file payload in the 11MB to 20MB range. The pattern is maintained up to the largest upload size

supported by the platform.

A CyclicBehaviour is initialised on forwarding the chunk replicas to identified SAs to listen on

append feedbacks. Templates and receive () methods in the behaviour are defined to extract

these responses. If all chunk append feedbacks for a file upload are returned, the

Savechunklocations function is called to save the parameters in a database (in Appendix B.3.4).

The MAC addresses, byte offsets and appended file names for each file chunk are stored as a

single object reducing on the number of fileappendchunklocations columns created (see

Appendix B.3.5 for code snippets).

93

7.2.3.2 SA

Figure 51: Atomic Append Approach

To validate the C-AP technique, the code in Figure 51 is executed as follows:

1. The agent defines the byte length of the local file before an append as file_length_b4 _

append;

2. If a RA request is non-zero; the SA extracts the chunk and appends it to the end of a SS

file;

3. The byte length of the new file is then computed to determine the last byte offset of an

atomic append. The resultant byte offset is then formulated and captured as a string value

append_offset;

4. The append parameter (append_params) which include the SS MAC address, chunk byte

offset and SS appended file name is encapsulated and returned as feedback to the RA.

94

7.2.4 C-AP File-System: Download Service

The C-AP file-system’s download service which recovers chunk appends and reconstructs an

uploaded file is described in this section.

7.2.4.1 RA

If RA is subject to a SCUA download request; the agent extracts all chunk parameters and

selects a record that matches the sender’s SCUA AID (in Appendix B.4.1). The returned string

chunk objects include a SS MAC address, SS file name and chunk byte offset parameters. To

uniquely identify the string chunk objects returned, the RA generates an individual array

comprised of a MAC address, SS file name and byte offset for each chunk location stored (code

extract in Appendix B.4.2).

For a chunk append associated with an array (i.e. Chunk1A_Tokens); the RA identifies the SS

MAC address where the file is hosted and resolves the related SA AID from the DF (in

Appendix B.4.3). If the SA AID is available the code envelops the parameters (SS file name and

chunk byte offset) and forwards a chunk retrieval request to the SA

A behaviour that listens on feedbacks is initialised simultaneously. To identify and extract chunk

responses the behaviour defines templates that match set conversation identities. If all chunk

units are returned, the chunk payloads are appended and the generated file is returned to SCUA

(in Appendix B.4.4). On reaching the SCUA, the file is written to the requesting user node.

7.2.4.2 SA

To handle chunk retrieval requests from RA, the code in Figure 52 is executed by a SA as

follows:

1. The agent extracts the string byte offset variable and defines start and end offsets;

2. The SS file name encapsulating the chunk is extracted; and the file is located in the SS

directory;

3. The byte length of the SS file is computed. The chunk is then copied into chunkfile by

specifying the start and end points of the byte file;

4. The chunk retrieved is then returned to the RA as feedback.

95

Figure 52: Chunk Retrieval

7.3 Conclusion

This chapter presented the MAOG compute and storage codes implemented to demonstrate the

DM and C-AP designed services. The agent components in the file-systems were developed on

JADE MAS. Base classes, methods and code fragments used to implement specific systems

including the CNP and rule based reasoning modules were discussed. The next chapter present

the experimentation conducted on the developed prototypes.

96

Chapter 8

8 Results and Analysis

The proof of concept prototypes designed and implemented are evaluated in this chapter. The

results are based on a number of experiments conducted in validating the multi-agent approach

to public resource computing. The MAOG services conceptualize a virtual low-cost commodity

grid founded on the VC paradigm. A discussion on the findings is presented in the following

sections.

8.1 Compute Component

The MA platform results are discussed in the following sub-sections.

8.1.1 Evaluation

The component is focused on the functional and technical adequacy of MAS in utilizing shared

processor capabilities. To assess the CNP in resource allocation, three platforms identified by

PRAs were set-up. The platforms were joined through a proxy-server. The MA platform and

proxy-server profiles are shown below.

Nodes running Linux with different processor specification were shared to platforms by running

resource provider NPAs. For a PMA to initialize successfully on migration, it was important to

Proxy Platform

97

initialize JADE containers on nodes running the same Java version. The underlying environment

was setup as in Figure 53.

Figure 53: Configuring Java

Figure 54: CNP Mechanism

Figure 54 shows the steps taken to validate the CNP mechanism when a PUA was loaded:

1. Lines 1-2: PUA request PRA services from the DF;

2. Lines 3-8: The PUA submits call for proposals to identified PRAs and obtains shared

node mean load averages as bids;

3. Lines 9-10: PUA offers a contract to PRA_2 and receives shared node information in

return.

The proxy profile in Figure 55 was displayed on loading a PMA and selecting a compute

resource. Turnaround Time (TAT) in processing was defined as the interval between PMA

deployment, application processing and return of results to the source node.

98

Figure 55: Loading a PMA

Random operations were induced during PMA processing on shared nodes to simulate resource

providers recalling nodes. The patterns were important to confirm the rule reasoning

functionality in automated remigrations to prioritize resource provider activity. Table 11 lists the

TATs recorded for a sample platform selected for compute tasks. Variations in node processor

capabilities, bandwidth and PMA migrations in processing were observed as the main factors

influencing the trend in TATs.

Deployment (n) 1 2 3 4 5 6

TAT (milliseconds) 71043 141875 141952 431137 70765 141821

Table 11: PMA TAT

Support for strong mobility which can be offered through Java thread capturing techniques

(detailed in Section 4.10.1) wasn’t integrated in the MA compute component. Although the

methods aren’t integral to this research, they have the potential to reduce the processing TATs

since computations reinitialize from previous captured state. The ability of PMAs to successfully

process embedded applications verified the functional and technical adequacy of the MA

paradigm. Additionally, the compute platform was adaptive to computing in heterogeneous

environments by: (1) integrating the CNP in resource identification and allocation; and (2)

adding a rule reasoning component to reason about changes in the execution environment.

8.2 MAOG File-Systems

The DM and C-AP file-systems were experimented to benchmark the storage services using

defined metrics. The processes aimed at recommending an optimum storage approach for an

99

ICT4D context based on quantifiable measures. Random files (i.e. 5,10,15…n MB) were

simulated to the platforms in an experimental environment. The files were generated as follows:

dd if=/dev/urandom of=filename.log bs=1M count=file size

The interaction intervals between SCUA, RA and SA were recorded. The times (milliseconds)

start when a SCUA request storage oriented services until feedback is returned. The overall

upload and download times are defined as Upload Round Trip Time (URTT) and Download

Round Trip Time (DRTT) based on a service requested. The Round Trip Times (RTTs) are

further broken down to account for elementary transitional times.

8.2.1 Measurement Criteria

The experimental environment was setup as in Section 6.2.3. Java’s System.currentTimeMillis ()

was utilised to calculate transition times in handling identified services. The transition times that

make up a RTT are shown in Figure 56.

Figure 56: Elementary Intervals

An upload interaction includes the following:

 U_T1: This is the time taken to forward a file payload to RA.

 U_T2: Include the time taken for RA to:

o identify suitable nodes (i.e. identified by MAC address from database);

o resolve the identities of the SAs affiliated with the nodes;

o send received file payload to identified SAs.

 U_T3: The time start when SAs receive RA requests until feedback is returned to RA.

100

 U_T4: This is the time taken to return feedback to a sender from RA.

 U_ ReponseTime: Is the overall response time. The value sums up U_T1,U_T2,U_T3

and U_T4 times.

A download request includes the following times:

 D_T1: the time taken for SCUA to send its AID to RA;

 D_T2: Interval start when RA receives the SCUA AID, identifies parameters to stored

file and sends a download request to SAs;

 D_T3: In the time range, a SA receives RA request, retrieves SS file/append and returns

the payload to RA;

 D_T4: Transition returns the file payload to SCUA;

 D_ ReponseTime: Is the response time for a download service.

The response times in handling upload and download requests are generalised as follows:

 U_ReponseTime=URTT = U_T1 + U_T2 + U_T3 + U_T4

 D_ReponseTime =DRTT = D_T1 + D_T2+ D_T3+ D_T4

The Turn Around Time (TAT) was introduced to compare on file read and write speeds

associated with developed storage methods implementing DM and C-AP. In addition the

parameter identifies: (1) the effects of erratic node connectivity on RTT; and (2) the filesystem

method that enhance perfomance in heterogeneous connectivity settings. For the upload and

download operations, the TAT is generalised as follows:

TAT = T2+T3

8.2.2 Experimentation

The DM and C-AP file-systems were evaluated based on metrics defined in the previous section.

The DRTT, URTT and UTAT were collected from simulations conducted on the two storage

systems. The main motivations for the parameters as reference points for evaluation include:

1. URTT: Allow deduction on the response time in requesting an upload service and

getting an upload feedback.

101

2. UTAT: Enable performance measurement between the mirroring and chunking

approaches proposed earlier which influence the URTT. The DTAT values weren’t

collected as the research assumed UTAT as adequate to validate and contrast the

identified storage approaches. The following assumption was defined in this regard:

UTAT≈DTAT.

3. DRTT: Defines the projected response times in requesting a download service.

A linear regression analysis was utilised to model the relationship between the file sizes (in MB)

and measurement metrics defined. The main interest was in how the explanatory variable (file

size) explain or change the response variables (measurement metrics). If plots of the variables

resemble a straight line, a linear relationship may be assumed. The following hypothesis was

stated for linear regression models tested:

H0: There is no linear relationship between explanatory and response variables

H1: Linear relationships exists between explanatory and response variables

The measures of the strength and direction of a linear model were then determined by the

covariance and the Pearson correlation coefficient. The Pearson product-moment coefficient

measures the degree of linear dependence between two variables. The coefficient gives values

between +1 and −1 inclusive; where 1 is total positive correlation, -1 is total negative correlation

and 0 is no correlation. The covariance, correlations and regression lines (lines of best fit) were

computed using the R project for statistical computing.

8.2.3 DM Service Evaluation

The message passing sequences to achieve specific objectives are identical in the DM and C-AP

file-systems. The DM file-system upload functionality is validated in Figure 57. The DM file-

system writes an identical file uploaded redundantly on three shared SSs selected from the

infrastructure. Lines 1-2 request RA identities from the DF. Line 3 sends an upload request

encapsulating the file payload. The SS MAC addresses and affiliated SA AIDs are resolved in

lines 4-9. In lines 10-15 the file is written in respective SSs. The upload feedback is returned to a

requestor SCUA in line 16.

102

Figure 57: Upload Interactions

The download service functional adequacy is certified in Figure 58. In lines 1-2 a SCUA

requests for RA identities. Line 3 forwards the SCUA AID to an identified RA; in lines 4-9,

MAC addresses are resolved into SA AIDs; in lines 10-15, download requests are forwarded to

SAs and the different copies of the same file are returned. A file is then returned to a user in line

16. In addition to URTT, DRTT and UTAT; the U_T1≈D_T1 value was recorded to test the

transfer rates of uploads and downloads between SCUA and RA.

Figure 58: Download Interactions

103

8.2.3.1 DM U_T1 Analysis

The mean transfer times (U_T1) against file size plot is shown in Figure 59. The 55 MB file size

was determined as the largest file category supported in the DM file-system before RAs broke at

approximately 60 MB. A sample RA error log is shown in Figure 60. The research hence defined

55 MB as the maximum file size supported on all storage services implemented.

Figure 59: DM_U_T1

Figure 60: RA Error Log

A simple linear regression analysis was modelled to determine the relationship between U_T1

and file size (in MB). The lm () function in R performed the initial step in the regression as in

Figure 61.

104

Figure 61: Regression Analysis

From the output, the least squares regression takes the form of: U_T1 = 180.88 + 49.26

(filesize). The model states that for a 1MB increment in file size; the U_T1 increase by a factor

of 49.46 milliseconds. A regression line superimposed on the data’s scatter plot using the abline

() function observed the graph shown below (Figure 62):

Figure 62: DM_U_T1 vs. File size Plot

There appeared to be a linear relationship between the variables from the scatter plot above. The

relationship between the variables was quantified by computing the covariance (in Figure 63):

Figure 63: Covariance

105

It was observed that the file size and U_T1 have variances of 325.00 and 2161235.21

respectively. The covariance of 16008.52 between the variables indicated a positive linear

relationship.

 filesizeMB DM_UT1

filesizeMB Pearson Correlation 1 .604*

Sig. (2-tailed) .038

N 12 12

DM_UT1 Pearson Correlation .604* 1

Sig. (2-tailed) .038

N 12 12

Figure 64: Pearson Coefficient

The Pearson coefficient (in Figure 64) concluded that there is an above average positive

correlation between file size and U_T1 equal to 0.604. The coefficient of determination (r

squared) which indicates how well the data fit the statistical model hence highlighted a 36.5 %

(r*r*100) variability in U_T1 explained by file size increments. The higher the r-squared value,

the better the model fits the data.

Figure 65: Significance Test

The summary () function was executed to test whether the slope of the regression is zero. A zero

value deems the model useless. From Figure 65, since the p-value (0.03752) is much less than

0.05, the model rejected the null hypothesis of no linear relationship between U_T1 and file size.

At 0.05 significance level there was sufficient evidence to conclude that the U_T1 have a

positive contribution to the upload service response time.

106

8.2.3.2 DM UTAT Analysis

The UTATs for different file uploads are plotted together with TAT pings in Figure 66. The

graph estimates how heterogeneous network connectivity affects the performance of distributed

file-systems. The UTATs for 40 MB and 45 MB file categories indicate a marked deviated from

expected values when TAT pings recorded minimum values. The plot illustrated that shared

node network connectivity fluctuations can affect the UTAT hence the overall file-system

performance.

Figure 66: DM_U_TAT

Figure 67: Covariance

A closer look at the covariance coefficient (in Figure 67) and scatter plot (in Figure 68) with

fitted regression line revealed a positive linear scaling in performance for the DM technique.

107

Figure 68: DM_U_TAT vs. File-size Plot

A strong linear correlation (0.996) between the file size and UTAT in Table 12 clarified a 99.2

% variability in UTAT explained by file size increments.

 filesizeMB DM_U_TAT

filesizeMB Pearson Correlation 1 .996**

Sig. (2-tailed) .000

N 11 11

DM_U_TAT Pearson Correlation .996** 1

Sig. (2-tailed) .000

N 11 11

Table 12: DM_U_TAT Correlations

Based on the UTAT intercept and file size estimates in Figure 69; the linear regression equation

indicates that for every additional 1MB in file size the UTAT increase by 18.26 milliseconds. At

α = 0.05 level, there is sufficient evidence to accept the hypothesis of linear relationship between

UTAT and file size for p-value= (1.577e-10) < 0.05.

108

Figure 69: Test for Significance

8.2.3.3 DM U_RTT Analysis

A clear picture of the URTT and file size correlation is shown in Figure 70. As expected, the

larger the file uploaded, the higher the URTT. A fitted regression model visually confirmed a

linear relationship in the data points.

Figure 70: DM U_RTT vs. File size Plot

The covariance (in Figure 71) on the fitted data described a positive linear relationship of

64223.83 between the URTT and file-size.

109

Figure 71: Covariance test

A strong linear correlation of 0.996 estimated a 99.2 % variability in the URTT explained by

simulated files.

 filesizeMB DM_U_RTT

filesizeMB Pearson Correlation 1 .996**

Sig. (2-tailed) .000

N 11 11

DM_U_RTT Pearson Correlation .996** 1

Sig. (2-tailed) .000

N 11 11

Table 13: Pearson Coefficient

The following were concluded from the model significance test (in Figure 72): (1) A 1 MB file

size increase results in a 233.541 milliseconds increase in URTT and (2) The model rejects the

null hypothesis of no linear relationship based on a non-zero p-value (1.27e-10) < 0.05. The

statistical model hence predicted an upload service with linear scaling in performance.

Figure 72: Test for Significance

110

8.2.3.4 DM DRTT Analysis

The data points for the download service in Figure 73 shows a linear relationship. The fitted

points are closer to the regression line up to the 30 MB file size and tend to be a bit spaced from

the line of best fit for file sizes greater.

Figure 73: DM_D_RTT vs. File-size Plot

An analysis on the covariance shows a larger positive linear relationship (74599.66) compared to

other associated covariance from related sample populations (U_T1, UTAT and URTT).

Figure 74: Covariance

The coefficient (in Table 14); close to 1 (one) illustrates a strong linear relationship. The file size

explain 97 % change in the download response time. However, since further inferences cannot

be made on the relationships and the linear model using Pearson’s coefficient; a significance test

was conducted as in Figure 75.

111

 filesizeMB DM_D_RTT

filesizeMB Pearson Correlation 1 .985**

Sig. (2-tailed) .000

N 11 11

DM_D_RTT Pearson Correlation .985** 1

Sig. (2-tailed) .000

N 11 11

Table 14: Pearson Coefficient

From the output, the download response time increase by 271.27 milliseconds for a single unit

increase in file size. The model accept the alternative hypothesis of linear relationship in DRTT

and file size for p = 3.518e-08. Therefore the download service’s performance scales to increase

in file size.

Figure 75: Significant Test

8.2.4 C-AP File-System Evaluation

The evaluations described in this step detail the storage system’s performance in offering

specific services. The section evaluates the C-AP technique performance benefits in contrast to

the DM approach using linear regression analysis on collected data.

8.2.4.1 C-AP U_TAT Analysis

The fitted regression model (in Figure 76) shows a linear relationship in the population sample.

This correlation hence assumes a linear scaling in the C-AP technique’s performance.

112

Figure 76: C-AP U_TAT vs. File-size Plot

Observing the covariance output (in Figure 77); it was concluded that the UTAT and file size

have a positive linear correlations of 5695.6.

Figure 77: Covariance

A further analysis on the correlation coefficient (in Table 15) specified a strong linear correlation

in the UTAT and file size with 94.2 % of the variability in the UTAT explained by file size.

 filesizeMB CAP_U_TAT

filesizeMB Pearson Correlation 1 .971**

Sig. (2-tailed) .000

N 11 11

CAP_U_TAT Pearson Correlation .971** 1

Sig. (2-tailed) .000

N 11 11

Table 15: Pearson Coefficient

The test shown in Figure 78 describes a regression equation of the form: UTAT = -179.932 +

20.711 (filesize). For a 1MB increase in file size, the UTAT change is negligible (-159.221). The

change is significantly small compared to the UTAT coefficient (18.26 milliseconds) for the DM

113

file-system inferred in Section 8.2.3.2. This implies that C-AP considerably increase

performance in the C-AP file-system compared to the DM file-system’s mirroring approach.

Figure 78: Significance Test

At α = 0.05 level, the null hypothesis is rejected for the sample population at p-value = 6.683e-

07. Hence the TAT transition in the upload service scales linearly to an increase in file size.

8.2.4.2 C-AP URTT Analysis

The UTAT from the previous section projected a significant reduction in the URTT for the C-AP

file-system upload service. The URTT and file size graph was computed as in Figure 80. From a

high level, a linear relationship is confirmed from the plot and the covariance (in Figure 79).

Figure 79: Covariance

From the correlation test (in Table 16); a strong linear correlation coefficient close to one (0.968)

was observed, explaining a 93.7 % variability in the URTT influenced by the file size.

114

Figure 80: C-AP_U_RTT vs. File size Plot

 filesizeMB CAP_U_RTT

filesizeMB Pearson Correlation 1 .968**

Sig. (2-tailed) .000

N 11 11

CAP_U_RTT Pearson Correlation .968** 1

Sig. (2-tailed) .000

N 11 11

Table 16: Pearson Coefficient

A summary on the regression model in Figure 81 shows a small -232.13 milliseconds increase in

the URTT caused by file size increase. The increment in URTT is considerably small compared

to a similar metric (233.541 milliseconds in Section 8.2.3.3) computed for the DM file-system.

From the analysis it is concluded that the C-AP file-system upload service response time is

optimal in offering upload services.

At the 0.05 significance level the linear regression model concluded a linear relationship in

upload service’s scaling to increase in file size uploaded and performance of the C-AP file

system at p-value = 9.908e-07.

115

Figure 81: Significance Test

8.2.4.3 C-AP DRTT Analysis

The download service’s plotted points (in Figure 82) are scattered about the regression line

which resemble a linear relationship. A positive linear relationship is confirmed in Figure 83.

Figure 82: C-AP DRTT vs. File Size Plot

Figure 83: Covariance

116

An inference on the correlation approved a linear correlation in the test data. 97.6 % of the trend

in DRTT is accounted for by the explanatory variable with the remainder explained by other

factors.

 filesizeMB CAP_D_RTT

filesizeMB Pearson Correlation 1 .988**

Sig. (2-tailed) .000

N 11 11

CAP_D_RTT Pearson Correlation .988** 1

Sig. (2-tailed) .000

N 11 11

Table 17: Pearson Coefficient

Based on the p-value=1.384e-08 (in Figure 84); the statistical analysis rejected the null

hypothesis of no linear relationship between the DRTT and file sizes.

Figure 84: Significance Test

From the regression equation (DRTT = -2289.95 + 247.89 (filesize)) formulated; it is established

that a single unit increase in file size effects an insignificant (-2041.62) increase in the response

time of the download service. This implies a close to constant response time in all file download

categories for file chunks appended. Compared to the DM file-system download service

coefficient rise (271.27 milliseconds in Section 8.2.3.4); the linear regression model accepts the

C-AP file-system as optimal in offering download services.

117

8.2.5 C-AP vs. DM File-System

The linear regression analysis in Section 8.2.4 proved the C-AP file-system ideal for offering

storage services compared to the DM file-system. The analysis in this section complements the

linear regression deductions by comparing the C-AP and DM file-systems side by side. The C-

AP file-system outperforms the DM file-system upload service in the same experimental

environment configurations (from Figure 85). The contributing factor to the performance gap in

addition to the storage methods was attributed to the JADE internal environment (detailed in

Section 9.4).

For DM file-system experiments; the argument (-jade_core_messaging_MessageManager_max

queuesize<bytesize>) was defined on initialising the platforms to support file simulations greater

than the default 10 MB internal queue threshold [130]. From the graph, it’s likely that the

measure impacted negatively on the DM file-system performance.

Figure 85: DM & C-AP Mean URTT

The C-AP performs well than the DM method as evidenced in the curve lag shown in Figure 86.

In reference to JADE MAS, chunking optimised the default internal queue size (10MB) thereby

incorporating high scalability and performance in message passing.

118

Figure 86: DM & C-AP Mean U_TATs

From Figure 87, it is observed that the C-AP file-system’s DRTT curve delays behind the DM

file-system’s DRTT up to the 30 MB file size and continues with the trend from the 45 MB file-

size. The pattern broke for the 35 MB and 40 MB file size range which requires 4 nodes for

chunk appends. Node delays in returning chunk feedbacks is the likely cause since C-AP DRTT

depends on all chunk responses being returned for a download to be successful. The remark is

however trivial to disprove the overall optimality demonstrated by the C-AP download service.

Figure 87: DM & C-AP Mean DRTT

119

From the tests (in Section 8.2.4), the C-AP file-system operations were desirable based on the

linear regression analysis model. In contexts where shared nodes have reliable connectivity; the

C-AP service platforms are effective since the networking guarantees chunk feedback return.

This is endorsed by GFS setting in which the C-AP technique is originally proposed [54]. In

settings with erratic connectivity frameworks the DM file-system may be optimal as redundantly

stored file replicas are identical and can be accessed from any available host. Based on the

proof-of-concepts evaluations discussed, the C-AP file-system was concluded as technically

sufficient independent of JADE environment performance concerns.

8.3 Security

This research introduced security as crucial in open distributed MAS. The JADE-S add-on [131]

provided a means for integrating message integrity and confidentiality through signature and

encryption guarantee. Selectively, signatures ensure message integrity and identity of the

message originator. Encryption on the other hand enables for confidentiality by protecting

message data from eavesdropping. Participant users in the system simply request a message to

be signed or check whether a received message has been signed to extend the functionalities.

Concerning JADE-S, support in JADE is implemented as a set of services [131]:

 jade.core.security.SecurityService: The service provide crypto engines and agent key

pairs management functionality in addition to authentication;

 jade.core.security.permission.PermissionService: The service checks if agent actions

performed (e.g. sending messages, migration to other containers) are actually authorized;

jade.core.security.signature.SignatureService: The service signs and validates

incoming signed messages when requested by the sender and receiver respectively;

 jade.core.security.encryption.EncryptionService: The service encrypts messages

when defined by the sender and decrypt incoming encrypted messages.

In order to activate JADE-S services that match the security requirements proposed for the

MAOG system; the SecurityService, SignatureService and EncyprtionService arguments where

parsed in agent runtime initializations.

120

8.4 Conclusion

The evaluation of compute and storage components investigated on the functional and technical

adequacy of the MAOG services. The MA component’s CNP identified an optimum platform to

assign a computation resulting in reasonable turnaround times in application processing. The

fluctuation in these times observed MA code relocations which validated the rule reasoning

functionality encapsulated. The C-AP file-system was concluded as optimum in offering storage

services due to its optimisation of JADE MAS default configurations. However, the DM file-

system scalability was affected greatly by adopting the mirroring approach to file storage with

reference to the defined measurement criteria.

121

Chapter 9

9 Conclusion and Future Work

This chapter reports on the research goal as presented in chapter 1. The research summary,

findings, contributions, limitations and future work prospects are discussed. A research paper

published in this work is underlined at the end.

9.1 Summary

OGs join compute and storage resources matching the capabilities of high performance and file

hosting systems. The related projects solve problems in compute intensive and data storage

setups utilising volunteered and idle shared machines. Considering the nature of resource

providers and connectivity, it’s often complex to join nodes and prioritise resource providers in

modern distributed applications. It was hence valuable to explore context aware strategies in a

specific MAOG service.

Agent technologies provide means of natural understanding, designing and implementation of

autonomous distributed applications. Scholarly views consider proactivity and responsiveness as

key for agent technologies to achieve their goals and objectives. A review justified MAS as

autonomous codes that communicate using unique communication languages. To confirm the

MAS approach, commitment in understanding the pragmatic areas of agent development such as

analysis and design, micro (agent) level and macro (society) level were considered. Integrating

agent negotiation and reasoning reduce transaction costs in resource identification and

allocation. To this end automation enabled for proactivity and reactivity in the MAOG services

analysed.

9.2 Findings

As stated in the introductory chapter, the main research aim was to investigate the use of MAS

technology in Opportunistic Grid Computing. To address the research questions highlighted, the

onion metaphor transformed research questions into this research project. The high level

processes explained by the onion layers in addressing the questions are summarized further on:

122

1. Can low-cost commodity computers in ICT contexts be exploited for an OG setup?

An ICT infrastructure in Dwesa founded on low-cost machine resources was

recommended as theoretically feasible from the SLL connectivity framework reviewed in

Section 5.1. The research activities detailed in Section 2.1.3.1 evaluated the nature of

resources, resource providers and domain specific concerns (e.g. unreliable power, need

for increased redundancy) that may affect an OG platform solution.

2. What is the most appropriate distributed computing design and implementation for an

ICT4D OG?

The research question was addressed in Chapter 3. Section 3.1.1 accepted VC as a

significant approach based on the nature of resource providers and resources identified.

The Cloud and Grid computing literature foundations were then reviewed in Sections 3.2

and 3.3 to justify the research’s computing perspective in distributed computing. Section

3.2 established OGs as different from grid computing in view of resource types,

connectivity, dedication and trust characteristics. Section 3.3.2 discussions on the

business, programming and virtualisation technologies distinguished the cloud model

from all distributed computing approaches considered. Research questions 1 and 2

confirmed the distributed computing perspective and the deployment context of the

MAOG system.

3. Is a MAS solution a feasible technology for implementation of the platform and does it

provide the necessary functional adequacy?

Chapter 4 presented the agent technology concepts in terms of standard compliance;

communication strategies and protocols; coordination and development pitfalls. A

comparative analysis of MAS development platforms in Section 4.7 motivated the

JADE MAS platform’s adoption for the MAOG development using the methodology

assumed in Section 2.1.4.4. By incorporating the mobile code paradigm (in Section

4.10); the MA compute, DM file-system and the C-AP file-system designed and

implemented in Chapters 6 and 7 formalised the functional adequacy of the services.

123

4. What is the most suitable MAS analysis and design methodology to be utilized in the

implementation of such a MAS system?

Section 2.1.4 compared various MAS methodologies and adopted a methodology by

Nikraz et al for the system development stage. The methodology includes people and

legacy systems through the support for the top-down and bottom-up approaches.

5. How can agents reason about their execution environment to adapt the system to

dynamic environment changes? And what is the most suitable rule engine to implement

rule reasoning in MAS?

In addition to proactive, responsive and social characteristics recognised in MAS

(detailed in Section 4.1), Section 4.11 introduced knowledge presentation and reasoning

concepts that enable agents to reason on supplied knowledge using symbolic rules. Jess

inference engine was selected for rule based reasoning due to integration issues

encountered with Drools (Issues in Section 7.1.5.1).

In this dissertation, a multi-agent grid solution was realised. The platform services were tested in

experimental set-ups. To adapt the platforms to unreliable settings, the MA component validated

the effectiveness of CNP and rule reasoning. The storage component made up of C-AP and DM

file-systems was introduced for storage oriented services.

The tests performed on the MA compute show the effectiveness of CNP in intelligent resource

identification and allocation to offer lower response times in computations. Rule reasoning

expressed in Jess presented a means of interpreting execution environment changes to prioritise

resource provider activity. The functionality solves possible conflicts in which deployed

workflows would have to be resubmitted on node recalls or failures.

For an increase in file size in related services; the DM file-system’s response and turnaround

times demonstrated poor scalability and performance. File storage optimisations through GFS’s

C-AP recommended the C-AP file-system services.

9.3 Contributions

The main contributions of this research are presented here:

124

1. A model for harvesting networked resources founded on public resource computing

Section 3.1 motivated the research’s Opportunistic grid model considering the nature of

resource providers. An account of available projects harnessing compute and storage

resources for scientific research was highlighted in Section 3.1.2 to motivate the

feasibility of the model in the research context.

2. Validation of the CNP for resource identification and allocation in an open market

structure based on bids and contract allocation

The CNP negotiation mechanism in Section 4.5.1 was effective in identifying readily

available compute resources that can process a compute application using donated

processor resources. The results from Section 8.1.1 validated the effectiveness of the

market structure in enabling reduced turnaround times in application processing.

3. Demonstration of rule based reasoning in MAS to incorporate context awareness in

distributed applications using Jess

The Jess rule engine was utilised for reasoning in the MA compute system. The most

crucial functionality identified in the design phase (discussed in Section 6.1) prioritised

resource provider activity on donated nodes. In this scenario the inference engine

instance encapsulated in the processing code was effective in detecting user activity on a

processing node and relocating computations. The detailed technical details in handling

the proposed services are documented in Section 7.1.4.1.

4. Confirming the efficiency of MAs in handling compute services

The MA paradigm’s ability to encapsulate applications and processing using idle CPU

was confirmed in Section 6.1. The developed MA processing component processed a test

application in Appendix A.1.1.

5. Implementation of DM and C-AP file-systems and their evaluation to identify the best

approach for an ICT4D setting

The DM and C-AP file-systems were designed and implemented in Sections 6.2 and 7.2

respectively. From the evaluations in Sections 8.2.3, 8.2.4 and 8.2.5 the C-AP file-

systems was established as a best approach for the ICT4D background. The C-AP file-

system’s optimisation of the 10 MB JADE MAS queue size derived from the GFS

chunking approach (discussed in 3.4.1) was stated as a crucial design method.

125

9.4 Limitations

In JADE, ACL messages are inserted into an OutBox (internal queue) before forwarding.

Dedicated threads extract these messages from the OutBox and deliver them to defined receivers

[130]. The OutBox size hence depends the number of messages to be forwarded and the content

encapsulated. The default queue threshold in JADE is defined as 10MB [130]. When an OutBox

memory exceeds 10MB generally a multi-agent system becomes slow. The observation was

particularly important in simulating different file sizes to developed file-systems in an

experimental environment. In the tests, jade_core_messaging_MessageManager_maxqueuesize

<byte size> argument was defined to increase the threshold on running agents in the JADE

containers. Considering the messaging feature discussed, JADE performance might not scale to

storage requests involving large files.

9.5 Future Work

The research described in this dissertation has formalised the potential of ICTs in socio-

economic development through sharing of expertise. Developments in distributed computing are

creating new insights for extending the MAOG platform functionality. By separating the

deployment context, confirmed ideas can support many distributed computing models such as

Clouds. The described research also identified promising guidelines for future exploration:

6. File-system operations: Criticism might be levelled against the lack of completeness in

actions expected for a file hosting service. The MAS based file-systems designed,

implemented and evaluated included the download and upload as key actions. Further

integration will include pending operations (i.e. file deletion and platform refresh).

7. JADE’s internal queue size: The evaluation of DM file-system services modified the

Outbox queue sizes to accommodate file uploads and downloads greater than the JADE

default. The modification could have presented some anomalies in the disk mirroring

technique to storage. It would be interesting to determine the coefficient of error

combined in measurements and their effect on the overall results.

8. Evaluation of MA and REV approaches: Future research will design and implement a

MAS based REV compute component. The component will be evaluated with the MA

compute developed.

126

9. Permissions and authentication: Future development will consider authentication and

permissions in the developed services.

9.6 Publications

The following journal was published in this research:

10. R. T. Muranganwa and M. Thinyane, “Design of a multi-agent opportunistic grid

computing platform,” Multiagent Grid Syst., no. 10, pp. 199–212, 2014.

127

Bibliography

[1] M. Rahimpour, “Computer Assisted Language Learning(CALL),” International Journal

of Instructional Technology and Distance Learning, vol. 8, no. 1, pp. 3–9, 2011.

[2] S. Marshall and T. Wal, “Collaboration as a critical success factor in using ICT for

capacity building and community development,” International Journal of Education and

Development using Information and Communication Technology, vol. 1, no. I, pp. 2–4,

2005.

[3] S. Bailur, “The Complexities of Community Participation in ICT for Development

Projects:The Case of ‘Our Voices,’” in International Conference on Social Implications of

Computers in Developing Countries, 2007, pp. 1–17.

[4] D. Gichoya, “Factors Affecting the Successful Implementation of ICT Projects in

Government,” The Electronic Journal of e-Government, vol. 3, no. 4, pp. 175–184, 2005.

[5] M. Siphiwosami, N. Mamba, and N. Isabirye, “Information Technology for Development

A Framework to Guide Development Through ICTs in Rural Areas in South Africa,”

Information Technology for Development, pp. 1–16, 2014.

[6] N. K. Roy, “ICT –Enabled Rural Education in India,” International Journal of

Information and Education Technology, vol. 2, no. 5, pp. 525–529, 2012.

[7] J. C. Sipior and B. T. Ward, “Bridging the Digital Divide for e-Government inclusion : A

United States Case Study,” The Electronic Journal of e-Government, vol. 3, no. 3, pp.

137–146, 2005.

[8] S. Yi, D. Kondo, and A. Andrzejak, “Reducing Costs of Spot Instances via Checkpointing

in the Amazon Elastic Compute Cloud,” in International Conference on Cloud

Computing, 2010, pp. 236 – 243.

[9] L. Ponciano and F. Brasileiro, “Assessing Green Strategies in Peer-to-Peer Opportunistic

Grids,” Journal of Grid Computing, vol. 11, no. 1, pp. 129–148, 2013.

[10] “Siyakhula Living Lab:Project Overview.” [Online]. Available: http://siyakhulall.org/.

[Accessed: 29-Mar-2015].

128

[11] L. Dalvit, I. Siebörger, and H. Thinyane, “The expansion of the Siyakhula Living Lab: A

holistic perspective,” in Lecture Notes of the Institute for Computer Sciences, Social-

Informatics and Telecommunications Engineering, 2012, pp. 228–238.

[12] S. Marshall and W. Taylor, “Facilitating the use of ICT for community development

through collaborative partnerships between universities, governments and communities,”

International Journal of Education and Development using ICT, vol. 1, no. 1, 2005.

[13] Mark Baker, Ed., “Cluster Computing White Paper,” in IEEE Computer Society Task

Force on Cluster Computing (TFCC), 2000.

[14] N. Hritonenko and Y. Yatsenko, “Creative Destruction of Computing Systems :Analysis

and Modeling,” Journal of Supercomputing, vol. 38, no. 2, pp. 143–154, 2006.

[15] M. Saunders, P. Lewis, and A. Thornhill, “Research Onion,” in Research Methods for

Business Students, Pearson Education, Ed. 2009, pp. 136–162.

[16] A. Håkansson, “Portal of Research Methods and Methodologies for Research Projects and

Degree Projects,” in International Conference on Frontiers in Education: Computer

Science and Computer Engineering, 2013.

[17] N. J. Salkind, Exploring research, 6th ed. Pearson International Edition, 2006.

[18] M. Myers, Qualitative research in Business and Management. SAGE Publication Inc.

London, UK., 2009.

[19] G. Caire, J. Stark, W. Coulier, F. Garijo, J. Gomez, F. Leal, R. Evans, F. Garijo, J. Pavon,

E. Vargas, P. Kearney, and P. Massonet, “Agent Oriented Analysis using MESSAGE /

UML,” in Lecture Notes in Computer Science, G. Weiss and P. Ciancarini, Eds. Springer-

Verlag, 2001, pp. 119–135.

[20] Y. Shohan, “Agent Oriented Programming,” Stanford University Technical Report

STAN-CS-90-1335, Stanford, 1990.

[21] M. Wooldridge, An Introduction to Multiagent Systems. 2002.

[22] M. Nikraz, G. Caireb, and B. Parisa A., “A Methodology for the Analysis and Design of

Multi-Agent Systems using JADE,” International Journal of Computer Systems Science

and Engineering, no. 2, p. 21, 2006.

129

[23] M. Wooldridge, N. R. Jennings, and D. Kinny, “The Gaia Methodology for Agent-

Oriented Analysis and Design,” Journal of Autonomous Agents and Multi-Agent Systems,

vol. 3, pp. 285–312, 2000.

[24] “Tropos Methodology.” [Online]. Available: http://www.troposproject.org. [Accessed:

28-Feb-2015].

[25] P. Giorgini, M. Kolp, J. Mylopoulos, and M. Pistore, “The Tropos Methodology: An

Overview,” in Methodologies and Software Engineering for Agent Systems, Kluwer

Academic Press, 2003, p. 505.

[26] D. P. Anderson and G. Fedak, “The Computational and Storage Potential of Volunteer

Computing,” in IEEE International Symposium on Cluster Computing and the Grid, 2006,

pp. 73–80.

[27] I. C. Wu, C. Chen, P. H. Lin, G. C. Huang, L. P. Chen, D. J. Sun, Y. C. Chan, and H. Y.

Tsou, “A volunteer-computing-based grid environment for connect6 applications,” in

International Conference on Computational Science and Engineering, 2009, vol. 1, pp.

110–117.

[28] S. Choi, H. Kim, E. Byun, M. Baik, S. Kim, C. Park, and C. Hwang, “Characterizing and

Classifying Desktop Grid,” in IEEE International Symposium on Cluster Computing and

the Grid, 2007, pp. 743–748.

[29] Z. Constantinescu, “A Desktop Grid Computing Approach for Scientific Computing and

visualisation,” Norwegian University of Science and Technology, 2008.

[30] L. F. G. Sarmenta and S. Hirano, “Bayanihan: building and studying web-based volunteer

computing systems using Java,” Future Generation Computer Systems, vol. 15, pp. 675–

686, 1999.

[31] D. P. Anderson, “BOINC: A system for public-resource computing and storage,” in

International Workshop on Grid Computing, 2004, pp. 4–10.

[32] “SETI@home.” [Online]. Available: http://setiathome.ssl.berkeley.edu/. [Accessed: 21-

Feb-2015].

[33] “Distributed.net.” [Online]. Available: www.distributed.net/. [Accessed: 23-Feb-2015].

130

[34] A. Chien, B. Calder, S. Elbert, and K. Bhatia, “Entropia : architecture and performance of

an enterprise desktop grid system,” Journal of Parallel and Distributed Computing, vol.

63, pp. 597–610, 2003.

[35] M. Vladoiu and Z. Constantinescu, “Development Journey of QADPZ - A Desktop Grid

Computing Platform,” International journal of Computers, Communicatuons & Control,

vol. 4, no. 1, pp. 82–91, 2009.

[36] P. Kacsuk, J. Kovacs, Z. Farkas, A. C. Marosi, G. Gombas, and Z. Balaton, “SZTAKI

Desktop Grid (SZDG): A flexible and scalable desktop grid system,” Journal of Grid

Computing, vol. 7, no. 4, pp. 439–461, Sep. 2009.

[37] B. O. Christiansen, P. Cappello, M. F. Ionescu, M. O. Neary, K. Schauser, and D. Wu,

“Javelin: Internet-Based Parallel Computing Using Java,” Concurrency and Computation:

Practice and Experience, vol. 9, no. 11, pp. 1139–1160, 1997.

[38] A. L. Beberg, D. L. Ensign, G. Jayachandran, S. Khaliq, and V. S. Pande,

“Folding@home: Lessons from eight years of volunteer distributed computing,” in IEEE

International Parallel and Distributed Processing Symposium, 2009, pp. 1–8.

[39] O. Nov, D. Anderson, and O. Arazy, “Volunteer computing: a model of the factors

determining contribution to community-based scientific research,” in International

conference on World wide web, 2010, pp. 741–750.

[40] D. P. Anderson, “ACM Crossroads,” Volunteer Computing: the ultimate cloud, pp. 7–10,

Mar-2010.

[41] D. P. Anderson, C. Christensen, and B. Allen, “Designing a Runtime System for

Volunteer Computing,” in IEEE Computer, 2006.

[42] D. Anderson, J. Cobb, E. Korpela, and M. Lebofsky, “SETI @ home,” Communications

of the ACH, vol. 45, no. 11, pp. 56–61, 2002.

[43] “Folding@home.” [Online]. Available: http://folding.stanford.edu/. [Accessed: 17-Feb-

2015].

[44] A. L. Beberg and V. S. Pande, “Storage@home: Petascale Distributed Storage,” in IEEE

International Parallel & Distributed Processing Symposium, 2007, pp. 1–6.

131

[45] “RSA.” [Online]. Available: http://www.emc.com/domains/rsa/. [Accessed: 23-Feb-

2015].

[46] “Distributed.net:History.” [Online]. Available:

http://en.wikipedia.org/wiki/Distributed.net. [Accessed: 22-Feb-2015].

[47] S. Choi, H. Kim, E. Byun, M. Baik, S. Kim, C. Park, and C. Hwang, “Characterizing and

classifying desktop grid,” in IEEE International Symposium on Cluster Computing and

the Grid, 2007, pp. 743–748.

[48] R. T. Muranganwa and M. Thinyane, “Design of a multi-agent opportunistic grid

computing platform,” Multiagent and Grid Systems, no. 10, pp. 199–212, 2014.

[49] P. Mell and T. Grance, “The NIST Definition of Cloud Computing Recommendations of

the National Institute of Standards and Technology,” Nist Special Publication, vol. 145, p.

7, 2011.

[50] E. Kourpas, “Grid Computing: Past, Present and Future - An Innovation Perspective,”

2006.

[51] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud Computing and Grid Computing 360-

Degree Compared,” in Grid Computing Environments Workshop, 2008, pp. 1–10.

[52] A. Dimakis, Y. Wu, M. . Wainwright, and K. Ramchandran, “Network Coding for

Distributed Storage Systems,” IEEE Transactions on Information Theory, vol. 56, no. 9,

pp. 4539–4551, 2010.

[53] Y. Wang and A. Merchant, “Proportional-share scheduling for distributed storage

systems,” in 5th USENIX Conference on File and Storage Technologies, 2007, p. 4.

[54] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,” ACM SIGOPS

Operating Systems Review, vol. 37, no. 5. p. 29, 2003.

[55] “BigTable.” [Online]. Available: https://en.wikipedia.org/wiki/BigTable. [Accessed: 03-

Apr-2015].

132

[56] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach, M. Burrows, T. Chandra, A.

Fike, and R. Gruber, “BigTable: A Distributed Storage System for Structured Data,” ACM

Transactions on Computer Systems, vol. 26, no. 2, 2008.

[57] M. R. Genesereth, “Software Agents,” Communications of the ACH, vol. 37, no. 7, 1994.

[58] N. R. Jennings, K. Sycara, and M. Wooldridge, “A Roadmap of Agent Research and

Development,” Autonomous Agents and Multi-Agent Systems, vol. 1, no. 1, pp. 275–306,

1998.

[59] Shoham and Y, “Agent-oriented programming,” Artificial Intelligence, vol. 60, no. 1, pp.

51–92, 1993.

[60] G. Weiss, Ed., Multiagent Systems:A Modern Approach to Distributed Modern Approach

to Artificial Intelligence. MIT Press Cambridge, Massachusetts, 2000.

[61] G. Weiß, “Adaptation and Learning in Multi-Agent Systems: Some Remarks and a

Bibliography,” in IJCAI Workshop on Adaption and Learning in Multi-Agent Systems,

1995, pp. 1–21.

[62] “FIPA.” [Online]. Available: http://www.fipa.org/. [Accessed: 31-Mar-2015].

[63] F. Bellifemine, A. Poggi, and G. Rimassa, “JADE–A FIPA-compliant agent framework,”

in Conference on the Practical Application of Intelligent Agents and Multi-agent

Technology, 1999, pp. 97–108.

[64] M. T. Kone, A. Shimazu, and T. Nakajima, “The State of the Art in Agent

Communication,” Knowledge and Information Systems, vol. 2, no. 3, pp. 259–284, 2000.

[65] B. Chaib-draa and F. Dignum, “Trends in Agent Communication Language,”

Computational Intelligence, vol. 18, no. 2, pp. 89–101, May 2002.

[66] T. Finin, R. Fritzson, D. McKay, and R. McEntire, “KQML as an Agent Communication

Language,” in International Conference on Information and knowledge Management,

1994, pp. 456–463.

[67] J. R. Searle, Speech Acts: An Essay in the Philosophy of Language. Cambridge: The

University Press, 1969.

133

[68] B. Fabio, C. Giovanni, and G. Dominic, Developing Multi-Agent Systems with JADE.

John Wiley & Sons, 2007.

[69] A. Liekna, E. Lavendelis, and A. Grabovskis, “Experimental Analysis of Contract NET

Protocol in Multi-Robot Task Allocation,” Applied Computer Systems, vol. 13, no. 1, pp.

6–14, 2012.

[70] R. G. Smith, “The Contract Net Protocol: High Level Communication and Control in a

Distributed Problem Solver,” in IEEE Transactions on Computers, 1980, pp. 1104–1113.

[71] R. Davis and R. G. Smith, “Negotiation as a Metaphor for Distributed Problem Solving,”

Artificial Intelligence, vol. 20, no. 1, pp. 63–109, 1983.

[72] C. Yu and T. N. Wong, “A multi-agent architecture for multi-product supplier selection in

consideration of the synergy between products,” International Journal of Production

Research, 2015.

[73] A. More, S. Vij, and D. Mukhopadhyay, “Agent Based Negotiation using Cloud - an

Approach in E-Commerce,” in ICT and Critical Infrastructure: Proceedings of the 48th

Annual Convention of Computer Society of India- Vol I, Springer International Publishing,

2014, pp. 489–496.

[74] J. Zhang, F. Ren, and M. Zhang, “Bayesian-based preference prediction in bilateral multi-

issue negotiation between intelligent agents,” Knowledge-Based Systems, pp. 108–120,

2015.

[75] B. An, V. Lesser, D. Irwin, and M. Zink, “Automated Negotiation with Decommitment

for Dynamic Resource Allocation in Cloud Computing,” in International Conference on

Autonomous Agents and Multiagent Systems, 2010, pp. 981–988.

[76] S. K. Garg, R. Buyya, and S. Versteeg, “Automated SLA Negotiation Framework for

Cloud Computing,” in IEEE/ACM International Symposium on Cluster, Cloud, and Grid

Computing, 2013, pp. 235–244.

[77] D. Ouelhadj, J. Garibaldi, J. Maclaren, R. Sakellariou, and K. Krishnakumar, “A Multi-

agent Infrastructure and a Service Level Agreement Negotiation Protocol for Robust

Scheduling in Grid Computing,” in Advances in Grid Computing - EGC 2005 Lecture

Notes in Computer Science, Springer Verlag, 2005, pp. 651–660.

134

[78] G. Weiss, Ed., Multiagent Systems:A Modern Approach to Distributed Modern Approach

to Artificial Intelligence. MIT Press Cambridge, Massachusetts, 2000.

[79] B. Moulin and B. Chaib-Draa, “An overview of distributed artificial intelligence,” in

Foundations of Distributed Artificial Intelligence, G. M. . O’Hare and N. . Jennings, Eds.

New York: John Wiley & Sons Inc, 1996, pp. 3–55.

[80] A. Singh, D. Juneja, and A. K. Sharma, “Agent Development Toolkits,” International

Journal of Advancements in Technology, vol. 2, no. 1, pp. 158–164, 2011.

[81] G. Nguyen, T. Dang, L. Hluchy, M. Laclavik, Z. Balogh, and I. Budinska, “Agent

Platform Evaluation and Comparison.” Institute of informatics, Slovak Academy of

Sciences, Pellucid 5FP IST -2001-34519, pp. 1–11, 2002.

[82] P. E. Clements, T. Papaioannou, and J. Edwards, “Aglets: Enabling the virtual enterprise,”

in International Conference on Managing Enterprises-Stakeholders, Engineering,

Logistics and Achievement, 1997.

[83] S. Fischmeister, G. Vigna, and R. A. Kemmerer, “Evaluating the Security Of Three Java-

Based Mobile Agent Systems,” in IEEE Mobile Agents Lecture, Springer, 2001.

[84] S. S. Mudumbai, W. Johnston, and A. Essiari, “Anchor Toolkit- A Secure Mobile Agent

System,” in eScholarship.

[85] M. R. Thompson, A. Essiari, and S. Mudumbai, “Certificate-Based Authorization Policy

in a PKI Environment,” ACM Transactions on Information and System Security, vol. 6,

no. 4, pp. 566–588, 2003.

[86] H. S. Nwana, L. C. Lee, D. T. Ndumu, J. C. Collis, and I. R. Ipswich, “Zeus : A Toolkit

and Approach for Building Distributed Multi-Agent Systems,” Applied Artifical

Intelligence Journal, vol. 13, pp. 129–186, 1999.

[87] D. Camacho, R. Aler, C. Castro, and J. M. Molina, “Performance Evaluation of Zeus ,

JADE and SkeletonAgent Frameworks,” in IEEE International Conference on Systems,

Man and Cybernetics, 2002.

[88] “JADE.” [Online]. Available: Http://jade.tilab.com/. [Accessed: 15-Mar-2015].

135

[89] R. C. Nicol and P. D. O’Brien, “FIPA — Towards a Standard for Software Agents,” BT

Technology Journal, vol. 16, no. 3, pp. 51–59, 1998.

[90] B. Fabio, C. Giovanni, and G. Dominic, “JADE and the Agents Paradigm,” in Developing

Multi-Agent Systems with JADE, 2007, pp. 29–34.

[91] B. Fabio, C. Giovanni, and G. Dominic, “Agent Tasks,” in Developing Multi-Agent

Systems with JADE, 2007, pp. 57–62.

[92] “JADE book-trading Example.” [Online]. Available: https://github.com/bluezio/jade-

booktrading. [Accessed: 04-Apr-2015].

[93] “FIPA ACL Message Structure Specification,” 2002. [Online]. Available:

http://www.fipa.org/specs/fipa00061/SC00061G.pdf. [Accessed: 04-Apr-2015].

[94] B. Fabio, C. Giovanni, and G. Dominic, “Admin and Debugging Tools,” in Developing

Multi-Agent Systems with JADE, 2007, pp. 42–50.

[95] A. Bieszczad, “Mobile Agents for Network Management,” in IEEE Communications

Survey, 1998, vol. 1.

[96] J. Huang and B. H. Far, “Information Collection and Survey: Infrastructure, APIs, and

Software Tools for Agent-based Systems (An Overview of JADE),” 2003.

[97] N. R. Jennings, “Agent-Based Computing : Promise and Perils,” in International Joint

Conference on Artificial Intelligence, 1997, pp. 1429–1436.

[98] M. Wooldridge and N. R. Jennings, “Pitfalls of Agent-Oriented Development,” in

International Conference on Autonomous Agents, 1998, pp. 385–391.

[99] F. Kon, A. Goldchleger, A. Goldman, M. Finger, and C. Bezerra, “Grid middleware

leveraging idle computing power of desktop machines,” in Concurrency and

Computation:Practice and Experience, 2002, pp. 1–12.

[100] A. Karmouch, L. Korba, and E. R. M. Madeira, “Mobigrid*:Framework for Mobile

Agents on Computer Grid environments,” in Mobility Aware Technologies and

Applications, 2004, pp. 147–157.

136

[101] J. M. Solanki, S. Khushalani, and N. N. Schulz, “A multi-agent solution to distribution

systems restoration,” IEEE Transactions on Power Systems, vol. 22, no. 3, pp. 1026–

1034, 2007.

[102] J. Wu, X. Xu, P. Zhang, and C. Liu, “A novel multi-agent reinforcement learning

approach for job scheduling in Grid computing,” Future Generation Computer Systems,

vol. 27, no. 5, pp. 430–439, 2011.

[103] A. Galstyan, K. Czajkowski, and K. Lerman, “Resource allocation in the Grid using

reinforcement learning,” in International Joint Conference on Autonomous Agents and

Multiagent Systems, 2004, vol. 3, pp. 1314–1315.

[104] A. Carzaniga, G. Pietro Picco, G. Vigna, and U. C. S. Barbara, “Is Code Still Moving

Around ? Looking Back at a Decade of Code Mobility,” in International Conference on

Software Engineering, 2007, pp. 9–20.

[105] H. Kumar and A. K. Verma, “Comparative Study of Distributed Computing Paradigms,”

International Journal of Information Technology, vol. 1, no. 2, pp. 97–100, 2009.

[106] R. F. Lopes and F. Da Silva, “Migration Transparency in a Mobile Agent Based

Computational Grid,” in International Conference on Simulation, Modeling and

Optimisation, 2005, pp. 31–36.

[107] D. B. Lange and M. Oshima, “Seven good reasons for mobile agents,” Communications of

the ACM. 1999.

[108] W. J. Buchanan, M. Naylor, and A. V. Scott, “Enhancing network management using

mobile agents,” in International Conference and Workshop on the Engineering of

Computer Based Systems, 2000, pp. 218–226.

[109] J. Stamos and G. Gifford, “Remote Evaluation,” in ACM Transactions on Programming

Languages and Systems, 1990, pp. 537–565.

[110] M. R. Lee, “An Exception Handling of Rule-Based Reasoning Using Case-Based

Reasoning,” Journal of Intelligent and Robotic Systems, vol. 35, no. 3, pp. 327–338, 2002.

[111] J. Prentzas and L. Hatzilygeroudis, “Categorizing Approaches Combining Rule-Based and

Case- Based Reasoning,” Expert Systems, vol. 24, no. 2, pp. 97–122, 2007.

137

[112] K. Walzer, T. Breddin, and M. Groch, “Relative Temporal Constraints in the Rete

Algorithm for Complex Event Detection,” in International Conference on Distributed

Event-Based Systems, 2008, pp. 147–155.

[113] S. Lin and X. Huang, “Rule-Based Systems,” in International Conference of Computer

Science, Environment, Ecoinformatics, and Education, 2011, p. 58.

[114] S. Singh and R. Karwayun, “A Comparative Study of Inference Engines,” in International

Conference on Information Technology: New Generations, 2010, pp. 53–57.

[115] C. L. Forgy, “Rete : A Fast Algorithm for the Many Pattern/Many Object Pattern Match

Problem,” Artificial Intelligences, vol. 19, no. 1, pp. 17–37, 1982.

[116] K. Walzer, M. Groch, and T. Breddin, “Time to the Rescue - Supporting temporal

reasoning in the rete algorithm for complex event processing,” in International conference

on Database and Expert Systems Applications, 2008, pp. 635–642.

[117] Bhansali and B. N. Grosof, “Extending the SweetDeal Approach for e-Procurement Using

SweetRules and RuleML,” in Rules and Rule Markup Languages for the Semantic Web

Lecture Notes in Computer Science , Springer Berlin Heidelberg, 2005, pp. 113–129 .

[118] J. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, and K. Wilkinson, “Jena:

Implementing the Semantic Web Recommendations,” in International World Wide Web

Conference on Alternate Track Papers & Posters, 2004, pp. 74–83.

[119] Y. Zou, T. Finin, and H. Chen, “F-OWL: An Inference Engine for Semantic Web,” in

Formal Approaches to Agent-Based Systems Lecture Notes in Computer Science ,

Springer Berlin Heidelberg, 2005, pp. 238–248.

[120] “Drools(BRMS).” [Online]. Available: http://www.drools.org/. [Accessed: 20-Feb-2015].

[121] S. Conger, “Knowledge Management for Information and Communications Technologies

for Development Programs in South Africa,” Information Technology for Development,

no. August 2014, pp. 1–22, May 2014.

[122] M. Thinyane, A. Terzoli, H. Thinyane, S. Hansen, and S. Gumbo, “Living Lab

Methodology as an Approach to Innovation in ICT4D: The Siyakhula Living Lab

Experience,” in IST-Africa 2012, 2012, pp. 1–9.

138

[123] “Disk Mirroring.” [Online]. Available: https://en.wikipedia.org/wiki/Disk_mirroring.

[Accessed: 03-Mar-2015].

[124] “Non-functional requirement.” [Online]. Available: http://en.wikipedia.org/wiki/Non-

functional_requirement. [Accessed: 06-Jun-2015].

[125] D. Gross and E. Yu, “Evolving System Architecture to Meet Changing Business Goals: an

Agent and Goal-Oriented Approach,” ICSE-2301 Workshop: From Software

Requirements to Architectures. pp. 16–21.

[126] “Exploring mobility.” [Online]. Available:

http://www.iro.umontreal.ca/~vaucher/Agents/Jade/. [Accessed: 23-Jun-2015].

[127] “Rule Engine Intergration.” [Online]. Available: http://jade.tilab.com/doc/tutorials/jade-

jess/jade_jess.html.

[128] “Drools Development List.” [Online]. Available:

https://issues.jboss.org/browse/DROOLS-538.

[129] “Jade and Jess.” [Online]. Available: http://jade.tilab.com/doc/tutorials/jade-

jess/jade_jess.html.

[130] “JADE limitation.” [Online]. Available: http://jade.tilab.com/support/faq/what-does-the-

warning-messagemanager-queue-size-10000000-mean/. [Accessed: 02-Mar-2015].

[131] “JADE Security.” [Online]. Available:

http://jade.tilab.com/doc/tutorials/JADE_Security.pdf.

139

Appendix A - Compute Implementation Details

A. MA Platform

The following are code snippets of the different agents implemented in the MA compute

Platform. The detailed functionality of the agent components are discussed in Section 7.1.

A.1 Processing User Agent-PUA

Appendix A.1.2: PRA DF Search

Appendix A.1.3: CFP Forwarding

140

Appendix A.1.4: PUA Bid Evaluation

Appendix A.1.5: Contract Allocation

Appendix A.1.6: Initialising PMA GUI

141

A.2 Node Processing Agent-NPA

Appendix A.1.7: CPU Utilisation Database

Appendix A.1.8: CPU utilisation parameters

Appendix A.1.9: CPU info Registration

142

Appendix A.1.10: Updating CPU info

A.3 Processing Resolver Agent-PRA

Appendix A.1.11: PRA Registration

Appendix A.1.12: AMSSubscriber

143

Appendix A.1.13: System load Average Calculation

Appendix A.1.14: Returns a bid

Appendix A.1.15: Accepting Contract

144

A.4 MobileAgent.java

Appendix A.1.16: MA void setup

Appendix A.1.17: doMove () and doDelete ()

145

Appendix A.1.18: init () method

Appendix A.1.19: afterMove ()

Appendix A.1.20: Simpson Rule Class

146

Appendix A.1.21: Initializing Jess

Appendix A.1.22: Resolve AMS Containers

147

Appendix A.1.23: Resolve Alternative Shared Nodes

Appendix A.1.24: Reporting on Results

148

Appendix B - Storage Implementation Details

B. Storage Component

B.1 DM File-System: Upload Service

Appendix B.1.1: File chooser

Appendix B.1.2: Identify Broker Services

149

Appendix B.1.3: Request_nodes Behaviour

Appendix B.1.4: Feedback Dialogue

150

Appendix B.1.5: PRA Registration

Appendix B.1.6: OPTIMISESTORAGE logic

151

Appendix B.1.7: Sending Uploads to SAs

Appendix B.1.8: SS 1 feedback

152

Appendix B.1.9: Upload Feedback Return

Appendix B.1.10: SA Service Registration

153

Appendix B.1.11: nodeinfo SS Parameters

Appendix B.1.12: SS Information Registration

Appendix B.1.13: System Information Updates

154

Appendix B.1.14: Creating an Upload Folder

B.2 DM File-System: Download Service

Appendix B.2.1: Broker Service search

Appendix B.2.2: Download Request

155

Appendix B.2.3: RA Service Registration

Appendix B.2.4: Extract SCUA AID

Appendix B.2.5: Parameters to Stored file

156

Appendix B.2.6: Deriving SA AID from locations

Appendix B.2.7: SA bound Requests

157

Appendix B.2.8: Receive Feedbacks

Appendix B.2.9: Return File to SCUA

158

B.3 C-AP File-System: Upload Service

Appendix B.3.1: Handling SCUA Request

Appendix B.3.2: Selecting Shared SS

159

Appendix B.3.3: Selecting a node

160

Appendix B.3.4: Append Feedbacks

Appendix B.3.5: Savechunklocations function

161

B.4 C-AP File-System: Download Service

Appendix B.4.1: Chunk Locations

Appendix B.4.2: Chunk Arrays

162

Appendix B.4.3: SA Request

Appendix B.4.4: Reconstructing a File

