
Regionally Distributed Architecture for
Dynamic e-Learning Environment

(RDADeLE)

by

Saleh Saeed AlZahrani

Software Technology Research Laboratory
Faculty of Technology

De Montfort University, Leicester, UK

This thesis is submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

Computer Sciences

2010

Abstract

e-Learning is becoming an influential role as an economic method and a flexible

mode of study in the institutions of higher education today which has a presence

in an increasing number of college and university courses. e-Learning as system of

systems is a dynamic and scalable environment. Within this environment, e-learning

is still searching for a permanent, comfortable and serviceable position that is to be

controlled, managed, flexible, accessible and continually up-to-date with the wider

university structure. As most academic and business institutions and training centres

around the world have adopted the e-learning concept and technology in order to cre-

ate, deliver and manage their learning materials through the web, it has become the

focus of investigation. However, management, monitoring and collaboration between

these institutions and centres is limited.

Existing technologies such as grid, web services and agents are promising better

results. In this research a new architecture has been developed and adopted to make

the e-learning environment more dynamic and scalable by dividing it into regional

data grids which are managed and monitored by agents. Multi-agent technology

has been applied to integrate each regional data grid with others in order to pro-

duce an architecture which is more scalable, reliable, and efficient. The result we

refer to as Regionally Distributed Architecture for Dynamic e-Learning Environment

(RDADeLE).

ii

Our RDADeLE architecture is an agent-based grid environment which is com-

posed of components such as learners, staff, nodes, regional grids, grid services and

Learning Objects (LOs). These components are built and organised as a multi-agent

system (MAS) using the Java Agent Development (JADE) platform. The main role

of the agents in our architecture is to control and monitor grid components in order

to build an adaptable, extensible, and flexible grid-based e-learning system.

Two techniques have been developed and adopted in the architecture to build LOs’

information and grid services. The first technique is the XML-based Registries

Technique (XRT). In this technique LOs’ information is built using XML registries

to be discovered by the learners. The registries are written in Dublin Core Metadata

Initiative (DCMI) format. The second technique is the Registered-based Services

Technique (RST). In this technique the services are grid services which are built

using agents. The services are registered with the Directory Facilitator (DF) of a

JADE platform in order to be discovered by all other components. All components

of the RDADeLE system, including grid service, are built as a multi-agent system

(MAS). Each regional grid in the first technique has only its own registry, whereas in

the second technique the grid services of all regional grids have to be registered with

the DF.

We have evaluated the RDADeLE system guided by both techniques by building

a simulation of the prototype. The prototype has a main interface which consists of

iii

the name of the system (RDADeLE) and a specification table which includes Number

of Regional Grids, Number of Nodes, Maximum Number of Learners connected to

each node, and Number of Grid Services to be filled by the administrator of the

RDADeLE system in order to create the prototype.

Using the RST technique shows that the RDADeLE system can be built with

more regional grids with less memory consumption. Moreover, using the RST tech-

nique shows that more grid services can be registered in the RDADeLE system with

a lower average search time and the search performance is increased compared with

the XRT technique. Finally, using one or both techniques, the XRT or the RST,

in the prototype does not affect the reliability of the RDADeLE system.

iv

Declaration

I declare that the work described in this thesis is original work undertaken by me

for the degree of Doctor of Philosophy, at the Faculty of Technology, De Montfort

University, Leicester, United Kingdom.

No part of the material described in this thesis has been submitted for the award of

any other degree or qualification in this or any other university or college of advanced

education.

This thesis is written by me and produced using LATEX

Saleh S. AlZahrani

Leicester, United Kingdom. 2010

v

List of Publications

Published papers:

1. Saleh AlZahrani, Aladdin Ayesh, and Hussein Zedan. Multi-agent Based Dy-

namic e-Learning Environment. International Journal of Information Technol-

ogy and Web Engineering (IJITWE). Vol. 4, Issue 2. ITJ5072. June 2009.

2. Saleh AlZahrani, Aladdin Ayesh, and Hussein Zedan, Regionally Distributed

Architecture for Dynamic e-Learning Environment (RDADeLE), Conference

Paper, IEEE Proceeding HSI’08, 1-4244-1543, Krakow, Poland 2008.

3. Saleh AlZahrani, Aladdin Ayesh, and Hussein Zedan, Multi-Agent System

Based Regional Data Grid, Conference Paper, IEEE Proceeding ICCES’08, 1-

4244-2116, Cairo, Egypt 2008.

vi

Dedication

To my mother and father:

To my father who passed away before seeing me complete my PhD and my mother

who taught me much and is waiting in anticipation for my PhD,

for their endless love.

To my family:

Who have supported me and shown understanding and patience during the research

years.

vii

Acknowledgements

First and foremost, my deepest gratitude is for ALLAH for all his blessings, without

which my work would not have been possible.

I would also like to express my sincere gratitude for my supervisor Dr. Aladdin

Ayesh at De Montfort University, Leicester, UK, for his guidance, ideas, valuable

direction and support throughout my research study. I am deeply indebted to him

for his insights and suggestions about the thesis topic and for valuable supervision at

various stages of my work. He has helped me in many ways and has developed my

academic thinking, problem solving and technical writing which will be very helpful

in my future work and research.

A grateful acknowledgement should be mentioned for Prof. Hussein Zedan at De

Montfort University, Leicester, UK, for his ideas, encouragement and support. His

support has greatly inspired me to complete this work in the required time.

I would also like to thank my sponsor Royal Commission For Jubail and Yanbu

(RCJY) in Saudi Arabia, especially Dr. Musleh AlOtaibi, Director General of the

Royal Commission in Jubail.

Special thanks to my wife for her great support and patience. She had to sacrifice

a lot of time and endure with patience to help me through difficulties during the

research period.

I am grateful for the support and assistance that I have received from all members

viii

of the STRL research groups in DMU, especially, Dr. Omar Al-Dabbas. I have

benefitted from many discussions and collaboration with them.

Last, but most certainly not least, I would like to express my gratefulness to my

friends and colleagues who helped me to overcome many troubles and supported me

during the research.

Saleh S. AlZahrani

ix

List of Acronyms

AA Administrative Agent
AAII Australian Artificial Intelligent Institute
AAP April Agent Platform
ABLE Agent Building and Learning Environment
ACL Agent Communication Language
ADK Agent Development Kit
ADL Advanced Distributed Learning
AICC The Aviation Industry CBT Committee
AMS Agent Management System
ANM Agent Network Manager
ANS Agent Name Server
AOD Agent-Oriented Development
AOP Agent-Oriented Programming
AOSE Agent-Oriented Software Engineering
API Application Program Interface
ARIADNE the Alliance of Remote Instructional Authoring and Distribution Net-

works for Europe
ASA Agent Service Adapter
AUML Agent Unified Modeling Language
BDI Belief-Desire-Intention (typically of agent architectures)
CBT Computer-Based Training
CCLRC Council for the Central Laboratory of the Research Councils
CERN European Organisation for Nuclear Research
CGSP China Grid Support Platform
CPU Central Processing Unit
CT Container Table
DCMI Dublin Core Meta-data Initiative
DESIRE Design and Specification of Interacting Reasoning components
DF Directory Facilitator
DFS Distributed File System
DNS Domain Name System
ECAR Educause Center for Applied Research
EGEE Enabling Grid for E-Science
EPL Eclipse Public License
EPSRC Engineering and Physical Sciences Research Council
ESESGrid Engineering Structure Experiment and Simulation Grid
FIPA Foundation for Intelligent Physical Agents
FIPA-OS Foundation for Intelligent Physical Agents - Open Source

x

GADT Global Agent Descriptor Table
GARA General-purpose Architecture for Reservation and Allocation
GGF Global Grid Forum
GIG Grid Infrastructure Group
GIS Grid Information Service
GPEL Grid Process Execution Language
GPFS General Parallel File System
GPL GNU General Public License
GRAM Grid Resource Access and Management Protocol
GridFTP Grid File Transfer Protocol
GRIP Grid Resource Information Protocol
GSML Grid Service Markup Language
HTTP Hypertext Transfer Protocol
ICMP Internet Control Message Protocol
IEEE Electronic and Electronic Engineers
IJITWE International Journal of Information Technology and Web Engineering
IMS Instructional Management Standards
J2ME Java 2 Platform, Micro Edition
JADE Java Agent Development Framework
JAS Java Agent Service
JATLite Java Agent Template, Lite
JISC Joint Information Systems Committee
JNDI Java Naming and Directory Interface
JVM Java Virtual Machine
KIF Knowledge Interchange Format
KQML Knowledge Query Manipulation Language
KSA Kingdom of Saudi Arabia
LA Learner Agent
LAN Local Area Network
LCMM Life Cycle Management Model
LDAP Lightweight Directory Access Protocol
LEAP Lightweight Extensible Agent Platform
LGPL GNU Lesser General Public License
LMS Learning Management Systems
LO Learning Object
LOM IEEE Learning Object Meta-data
LTSC Learning Technology Standard Committee
MAF Mobile Agent Facility
MAS Multi-Agent System
MaSE The Multi-agent System Engineering
MIDP Mobile Information Device Profile

xi

MIPS Million Instructions Per Second
MTP Message Transport Protocol
MVC Model,View Controller
NA Node Agent
NFS Network File System
NGS National Grid Service
NWICG Northwest Indiana Computational Grid
OAA Open Agent Architecture
OGF Open Grid Forum
OGSA Open Grid Service Architecture
OGSI Open Grid Services Infrastructure
OMG Object Management Group
OMT Object-Modeling Technique
OOD Object-Oriented Development
OOP Object-Oriented Programming
ORB Object Request Broker
P2P Peer to Peer
PDA Personal Digital Assistant
RA Regional Agent
RDADeLE Regionally Distributed Architecture for Dynamic e-Learning Environ-

ment
RDF Resource Description Format
RMA Remote Monitoring Agent
RMI Remote Method Invocation
ROADMAP Role Oriented Analysis and Design for Multi-Agent Programming
RST Registered-based Service Technique
SA Service Agent
SAML Security Assertion Markup Language
SCORM Sharable Content Object Reference Model
SDSS Sloan Digital Sky Survey
SIRENE Sharing Infrastructure and Resources in Europe
SL Semantic Language
SMTP Simple Mail Transfer Protocol
SOAP Simple Object Access Protocol
SPEC Standard Performance Evaluation Corporation)
SQL Structured Query Language
STFC Science and Technology Facilities Council
SWAP Simple Work-fow Access Protocol
TCP/IP Transmission Control Protocol/Internet Protocol
UDDI Universal Description, Discovery and Integration
UDP User Datagram Protocol

xii

UML Unified Modeling Language
URI Uniform Resource Identifier
VPN Virtual Private Network
W3C World Wide Web Consortium
WAN Wide Area Network
WG Work Group
WS-
Addressing

Web Services Addressing

WS-BPEL Web Services - Business Process Execution Language
WSCI Web Service Choreography Interface
WSDL Web Service Description Language
WSFL Web Service Flow Language
WSInspection Web Services Inspection Language
WSRF Web Services Resource Framework
WS-Security Web Services Security
WUN Worldwide Universities Network
WWW World Wide Web
XACML Extensible Access Control Markup Language
XML Extensible Markup Language
XRT XML-based Registries Technique

xiii

Contents

Abstract ii

Declaration v

List of Publications vi

Dedication vii

Acknowledgements viii

List of Acronyms x

List of Tables xxiii

List of Figures xxiv

1 Introduction 1

1.1 Motivation and Significance . 1

1.2 Problem Statement . 3

1.2.1 Research Question . 5

1.3 Research Contributions . 7

1.4 Research Methodology . 8

1.5 Thesis Organisation . 9

2 Grid Computing 10

2.1 Introduction . 10

2.2 How Grid Computing Works . 11

2.3 Characteristics of Grid Computing 12

2.4 Grid Category . 14

xiv

2.4.1 Computational Grid . 14

2.4.2 Data Grid . 15

2.4.3 Cluster Grids . 17

2.4.4 Enterprise Grids . 17

2.4.5 Extraprise Grids . 17

2.4.6 Global Grids . 18

2.5 Grid Architecture . 18

2.6 Data Grid Applications . 21

2.6.1 UK National Grid Service (NGS) 21

2.6.2 The Sakai Project . 22

2.6.3 Enabling Grid for E-SciencE (EGEE) Project 22

2.6.4 Sloan Digital Sky Survey (SDSS) Project 22

2.6.5 TeraGrid . 23

2.7 Web and Grid Services . 23

2.8 Grid Service Tools . 27

2.8.1 Middleware Tools . 28

2.8.1.1 Globus Toolkit . 28

2.8.1.2 JC-Grid . 28

2.8.1.3 Grid-Gain . 29

2.8.1.4 Jini-Middleware . 29

2.8.2 Languages for Grid Services Specification and Composition . . 29

2.8.3 Grid Simulators . 32

2.8.3.1 MicroGrid . 32

2.8.3.2 Gridsim . 33

xv

2.8.3.3 Simgrid . 35

2.9 Review of Data Grid Technology towards E-learning Requirements . . 37

2.10 Summary . 38

3 Agents-based Computing 39

3.1 Introduction . 39

3.2 Agent Technology Overview . 40

3.2.1 Characteristics of Agents . 41

3.2.2 Classifications of Software Agents 42

3.2.3 Main Agent Architectures . 44

3.2.3.1 Reactive Architecture 46

3.2.3.2 Cognitive Architecture 46

3.2.3.3 Hybrid Architecture 47

3.2.4 Agent Communications . 47

3.2.4.1 Speech Acts . 48

3.2.4.2 Knowledge Query and Manipulation Language (KQML) 48

3.2.4.3 Knowledge Interchange Format (KIF) 49

3.2.4.4 FIPA-Agent Communication Language (FIPA-ACL) . 50

3.2.4.5 Ontologies . 50

3.2.5 Agent Interaction Protocols 51

3.2.5.1 Coordination Protocols 51

3.2.5.2 Cooperation Protocols 51

3.2.5.3 Contract Net . 51

3.2.5.4 Market Mechanisms 52

3.2.5.5 Blackboard Systems 52

xvi

3.2.5.6 Negotiation . 53

3.3 Agent Design and Development Methodologies and Languages 53

3.3.1 Terminology . 53

3.3.2 Agent-oriented Methodologies 54

3.3.2.1 Gaia . 54

3.3.2.2 Prometheus . 55

3.3.2.3 Tropos . 56

3.3.2.4 Multi-agent System Engineering(MaSE) 56

3.3.2.5 Role Oriented Analysis and Design for Multi-Agent
Programming(ROADMAP) 57

3.3.3 Object-oriented Based Methodologies 57

3.3.3.1 Australian Artificial Intelligent Institute (AAII) . . . 57

3.3.3.2 Agent Unified Modeling Language (AUML) 58

3.3.4 Other Methodologies . 58

3.3.4.1 (Design and Specification of Interacting Reasoning Com-
ponents(DESIRE) . 58

3.3.4.2 MAS-CommonKADS 59

3.3.5 Programming Languages . 59

3.3.6 AOP Versus OOP . 60

3.4 Multi-agent Systems (MAS) . 61

3.4.1 Characteristics of Multi-agent Environments 61

3.4.2 Applications of Multi-agent Systems (MAS) 61

3.5 Agents Role in Grid Computing . 62

3.5.1 Grid Resource Discovery . 63

3.5.2 Data Acquisition and Retrieval 63

xvii

3.5.3 Provision Internal Processing in Grid Environment 64

3.6 Agent Platforms and Simulators . 64

3.6.1 IBM Aglets Workbench . 65

3.6.2 Concordia . 65

3.6.3 Odyssey . 66

3.6.4 Voyager . 66

3.6.5 JATLite . 67

3.6.6 Agent Development Kit . 68

3.6.7 April Agent Platform . 69

3.6.8 Comtec Agent Platform . 69

3.6.9 FIPA-OS . 69

3.6.10 Grasshopper . 70

3.6.11 JACK Intelligent Agents . 70

3.6.12 JAS (Java Agent Services API) 71

3.6.13 ZEUS . 71

3.6.14 JADE Platform . 72

3.6.15 Lightweight Extensible Agent Platform (LEAP) 74

3.6.16 Agent Platforms Comparison 75

3.7 Review of Agent Technology towards E-learning Requirements 76

3.8 Summary . 77

4 Architectural Design of Regionally Distributed Architecture for
Dynamic e-Learning Environment (RDADeLE) 80

4.1 Introduction . 80

4.2 Requirement Analysis . 81

xviii

4.2.1 Previous e-Learning Architectures 82

4.2.2 Context and Motivation . 84

4.2.3 Requirements for Dynamic RDADeLE Environment 89

4.2.4 The Architectural Data Standards in the RDADeLE System . 90

4.2.4.1 Standards of Learning Objects (LOs) Content Distri-
butions . 91

4.2.4.2 Metadata Standards 92

4.3 The Computational Model of The RDADeLE System 92

4.3.1 The Entities . 93

4.3.2 The Mechanisms . 96

4.4 RDADeLE Architecture Components 98

4.4.1 Regional Grid Structure . 101

4.5 Contents and Services Management 103

4.6 Fault-Tolerance with Replicated Information Service 105

4.7 Review of existing e-learning architecture towards RDADeLE Require-
ments . 106

4.8 Summary . 107

5 RDADeLE Agents’ Specifications 108

5.1 Introduction . 108

5.2 The RDADeLE Knowledge Representation 109

5.3 RDADeLE Agents’ Relationships . 109

5.3.1 Communication . 109

5.3.2 Agent Relationships . 110

5.4 RDADeLE Scenarios . 112

5.4.1 XRT Scenario . 112

xix

5.4.2 RST Scenario . 113

5.5 MAS-based RDADeLE . 115

5.6 Functions and Descriptions of RDADeLE Agents 119

5.6.1 Administrative Agents . 120

5.6.1.1 Administrative Agent Architecture 122

5.6.1.2 Administrative Agent Design Model) 123

5.6.1.3 Administrative Agent Algorithms 124

5.6.2 Regional Agents . 125

5.6.2.1 Regional Agent Architecture 127

5.6.2.2 Regional Agent Design Model 129

5.6.2.3 Regional Agent Algorithms 130

5.6.3 Node Agents . 131

5.6.3.1 Node Agent Architecture 132

5.6.3.2 Node Agent Design Model 133

5.6.4 Service Agents . 135

5.6.4.1 Service Agent Architecture 135

5.6.4.2 Service Agent Design Model 137

5.6.5 Learner Agents . 137

5.6.5.1 Learner Agent Architecture 138

5.6.5.2 Learner Agent Design Model 139

5.7 Review of RDADeLE agents’ specifications towards RDADeLE Re-
quirements . 140

5.8 Summary . 141

6 RDADeLE Implementation 142

xx

6.1 Introduction . 142

6.2 RDADeLE System Configuration . 143

6.2.1 JADE Platform Configuration 145

6.2.2 Configuration of Learning Objects’ information and Grid Services146

6.2.2.1 The XML-based Registries Technique (XRT) 146

6.2.2.2 The Registered-based Services Technique (RST) . . . 148

6.2.3 Grid Environment Configuration 150

6.2.4 Node Configuration . 151

6.2.5 Information Service . 152

6.2.6 Regional Policy Configuration 152

6.3 Simulation Validation . 153

6.3.1 Verification of Grid Configuration 153

6.3.2 Verification of LOs’ Information and Grid Service Configuration 156

6.3.3 Verification of Searching for Learning Objects’ Information and
Grid Services . 158

6.3.4 Verification of Regional Policy Application 161

6.4 Review of RDADeLE implementation towards RDADeLE Requirements163

6.5 Summary . 164

7 Results and Evaluation 165

7.1 Introduction . 165

7.2 Deployment Environment Setup . 166

7.3 Scalability . 166

7.3.1 Number of Regional Grids (Non-Main Containers) 167

7.3.2 Number of Grid Services Agents 173

xxi

7.3.3 Discussion . 174

7.4 Reliability . 176

7.4.1 Discussion . 181

7.5 Efficiency in Searching for Learning Objects’ Information and Grid
Services . 182

7.5.1 Searching for Learning Objects’ Information 182

7.5.2 Searching for Registered-based Grid Services 183

7.5.3 Discussion . 186

7.6 Review of RDADeLE implementation result towards RDADeLE Re-
quirements . 186

7.7 Summary . 187

8 Conclusion 188

8.1 Summary . 188

8.2 Contributions . 189

8.3 Future Work . 192

Bibliography 194

A Java Code of RDADeLE implementation 207

xxii

List of Tables

2.1 Properties of the Main Grid Simulators 36

2.2 Comparison of Some Main Grid Simulators 36

3.1 Main Agent Architectures . 46

3.2 OOP versus AOP . 78

3.3 Main Characteristics of Major Agent Platforms 78

3.4 Comparisons of Some Agent Platforms 79

4.1 Administrative Regions of the Kingdom of Saudi Arabia 85

4.2 Distribution of Universities, Colleges and Institutions Among Admin-
istrative Regions of the Kingdom of Saudi Arabia 86

4.3 World and the Kingdom of Saudi Arabia Population (thousands) . . . 87

6.1 Components of Regional Grids . 154

7.1 Scalability of Number of Regional Grids Using the XRT Technique . . 170

7.2 Scalability of Number of Regional Grids Using the RST Technique . . 172

7.3 Scalability of Number of Grid Services Agents 174

7.4 Mean Search Time for Different Numbers of Registries Using the XRT
Technique . 182

7.5 Mean Search Time for Different Registered Services Using the RST
Technique . 184

xxiii

List of Figures

2.1 How Grid Works . 12

2.2 Layer of Grid Architecture . 20

2.3 Web Services Architecture . 25

2.4 Open Grid Services Architecture (OGSA) 26

2.5 Open Grid Services Infrastructure (OGSI) 27

3.1 KQML Structure . 49

3.2 UML JADE Architecture . 74

4.1 Administrative Regions in the Kingdom of Saudi Arabia 86

4.2 RDADeLE System Deployment in the Administrative Regions in the
Kingdom of Saudi Arabia . 89

4.3 RDADeLE Overview . 99

4.4 Architecture of Regional Grid Node of RDADeLE 102

4.5 Contents and Services Management 104

4.6 Fault-Tolerance With Replicated Information Service 106

5.1 Class Diagram Association . 111

5.2 XRT Scenario in RDADeLE . 114

5.3 RST Scenario in RDADeLE . 116

5.4 Hierarchical Agent Organisation of MAS-based RDADeLE 118

5.5 Administrative Agent Architecture 123

xxiv

5.6 Registration of Regional Grid . 124

5.7 Listing of Registered Regional Grids 124

5.8 Regional Agent Architecture . 128

5.9 Search Request for LOs’ Information 129

5.10 Registration of Node . 129

5.11 Node Agent Architecture . 134

5.12 Registration of Learner . 134

5.13 Service Agent Architecture . 136

5.14 Registration of Grid Service . 137

5.15 Learner Agent Architecture . 139

5.16 Search Request for Grid Services . 140

6.1 Agent Types . 145

6.2 JADE Platform . 146

6.3 The XML-based Registries Technique (XRT) 147

6.4 DCMS Meta-data Example . 148

6.5 The Registered-based Services Technique (RST) 149

6.6 Regional Grid Configuration . 151

6.7 Node Properties . 151

6.8 Regional Policy . 153

6.9 Regional Grid Verification . 155

6.10 All Regional Grids (Containers) . 155

xxv

6.11 Components of Arab League . 155

6.12 Components of European Union . 156

6.13 Components of Indian Subcontinent 157

6.14 Registry Content List . 158

6.15 Java Code for Building and Registering Grid Service 159

6.16 Verification of XML Search in One Registry 160

6.17 Verification of XML Search in Three Registries 160

6.18 Verification of Registered Services Search 161

6.19 Applying Regional Policy in the XRT Technique 162

6.20 Applying Regional Policy in the RST Technique 163

7.1 The Case Study Data Using RST Technique 168

7.2 Extension of Riyadh Regional Grid 168

7.3 Regional agent “Riyadh0@RDADeLE” Serving Sub-regional Grid “Riyadh0”169

7.4 Regional agent “Riyadh1@RDADeLE” Serving Sub-regional Grid “Riyadh1”170

7.5 Regional agent “Riyadh2@RDADeLE” Serving Sub-regional Grid “Riyadh2”170

7.6 Number of Regional Grids Against Memory Consumption Using the
XRT Technique . 171

7.7 Error of Maximum Number of Regional Grids Using the XRT Technique171

7.8 Number of Regional Grids Against Memory Consumption Using the
RST Technique . 172

7.9 Error of Maximum Number of Regional Grids Using the RST Technique172

xxvi

LIST OF FIGURES

7.10 Comparison of Regional Grid Scalability using the XRT and the RST
Techniques . 173

7.11 Error of Maximum Number of Registered Grid Services in a Regional
Grid . 174

7.12 The Command Line to Store DF Catalogue into a Database 175

7.13 Fault Tolerance Without Replicated Main Containers 178

7.14 Fault Tolerance with Replicated Main Containers 179

7.15 Activating Replication Services on Master Main Container 180

7.16 Generating Replication of Main-Container Producing Main-Container-1180

7.17 Generating Replication of Main-Container Producing Main-Container-2181

7.18 Number of Registries Against Mean Search Time Using the XRT Tech-
nique . 183

7.19 Number of Registered Services Against Mean Search Time Using the
RST Technique . 185

7.20 Mean Search Time Comparison . 185

xxvii

Chapter 1

Introduction

e-Learning as a complex system is becoming influential in higher education today and

is increasingly used in college and university courses. Although the e-learning sys-

tem is a dynamic environment, it is still searching for a permanent, comfortable and

serviceable position that is to be controlled, monitored, managed, flexible, accessible

and continually up-to-date with the wider university structure. Once synonymous

with distance learning, e-learning has quickly evolved to include not only courses

that are taught primarily online and over a distance, but also to include traditional

courses that have been enhanced with electronic elements which are called hybrid

courses. According to the Educause Center for Applied Research (ECAR) respon-

dent summary, 70% of all U.S. institutions offer distance learning and 80% of U.S.

institutions offer hybrid courses [109].

1.1 Motivation and Significance

With the emergence of the Internet as the backbone of global communication and

information exchange, greater attention has been paid to controlling, managing and

monitoring complex systems and system of systems1. e-Learning systems are one ex-

ample of complex and large scale systems. An abundance of information is currently

presented to learners, employees and the general public by either applying conven-

tional or advanced (electronic) methods. Many academic institutions and training

centres worldwide are embracing web-delivered instruction. In recent years, new pub-

1Modern systems that comprise system of systems problems are not monolithic, rather they have
five common characteristics: operational independence of the individual systems, managerial
independence of the systems, geographical distribution, emergent behavior and evolutionary de-
velopment [129].

1

1.1 Motivation and Significance

lic and private universities have been established to offer degree programs delivered

exclusively online.

Involvement of data grid and agent technology as support for e-learning is ben-

eficial in advancing controlling, managing and monitoring this paradigm [104] [92].

Data grid is one of the most interesting fields about the interaction of data within

the grid environment. Data grid is a grid computing system that deals with large

amounts of controlled, shared and managed distributed data. An intelligent agent is

a software agent that exhibits some form of artificial intelligence that assists users

and acts on their behalf in performing repetitive computer-related tasks.

The research aim is to integrate data grid technology with agent technology in the

education and business fields by producing the managed and monitored Regionally

Distributed Architecture for Dynamic e-Learning Environment (RDADeLE) system.

This paradigm exploits facilities of the grid and the intelligent agent to search and

analyse information collected from all over the grid environment.

While our work is applied generally we have taken the Kingdom of Saudi Ara-

bia (KSA) as our case study. There are many reasons to adopt and embrace the

RDADeLE system. These reasons can be seen in the following areas:

1. Demographics: an increase in the number of students requires opening of more

universities and colleges which in turn require more faculty staff. For instance,

the KSA has 252 government and private universities and colleges that grant

bachelor, master and doctorate degrees in different fields. The number of reg-

istered students in 2009 in universities and colleges, under the umbrella of the

Higher Education (HE) and the Technical and Vocational Training Corpora-

tion (TVTC), was more than 666662 students, and the number of faculty staff

was more than 27964 members [28]. These statistics of the education system

in the KSA provide us an indication of growing number of students, faculty

2

1.2 Problem Statement

staff, universities, colleges and institutions which encourage us to build a ro-

bust managed, monitored and dynamic system.

2. Economics: Building a robust and dynamic system which helps in organising

and controlling institutions, their activities and their components will allow for

a more cost effective accommodation of students in institutions.

3. Information: A large amount of information is available on the web; this should

be exploited by organising and sharing it between different environments of

universities and colleges.

1.2 Problem Statement

We will list the existing problems and issues which will be resolved by our e-leaning

model and architecture which is based on both agent and grid technologies. The

learning process is evolving rapidly and the tools which are used in the learning

process are evolving as well. Managing and monitoring such a system of systems

(e.g. e-learning system) is not easy. The difficulty of managing and monitoring

system of systems comes from managing and monitoring an increasing number of their

components and elements. Besides that, to manage and monitor system of systems

it requires interoperability between technologies which are used in such systems.

In the World Wide Web, there are many environments which are adopted to fa-

cilitate learning services over the internet. These web services use different kinds

of technology and language to present services to learners. Architectures of these

environments differ from each other depending on the needs of learners in each envi-

ronment. Since learners interact with a large amount of information over the internet

and a large number of components, focus in this research will be on managing and

monitoring the components and the activities in the e-learning systems as a complex

3

1.2 Problem Statement

system. This leads us to integrate both the data grid environment with software

agents in the e-learning environment context.

We cite in particular the most important issues of managing and monitoring

complex and large systems without attributing any specific meaning to the order in

which they are listed:

• Flexible grid-based learning architecture: Most of the conceptual architectures

of grid-based learning environments concentrate on computational grid [34].

Researchers have paid a little attention to data grids when applying techniques

in order to handle the LOs.

• Flexible and efficient agent-based learning architecture: Agents can provide a

useful abstraction in the e-learning environment as well as provide services that

are dynamic and robust. Using features of the agent is strongly recommended

in the grid-based e-learning environment.

• Relationship to diagrammatical Unified Modeling Language (UML): As UML

has gained wide acceptance, we argue that it is helpful to allow translation UML

diagrams in any proposal of formal framework of grid/web and agent services.

• Integration of heterogeneous systems’ capabilities in data distribution context:

The major challenge which researchers are facing in grid technology is how

different systems could be integrated to each other in order to accomplish a

grid service among them.

• There is a general consensus that pedagogy and learning methodologies are now

inextricably linked with technology. The nature of these interactions, however,

remains little understood and there is a need for much more research into the

impact of online learning techniques on the actual learning experience. The

4

1.2 Problem Statement

various responses to the Task Force survey indicated a growing acceptance,

that technology can be used successfully to enhance learning irrespective of the

mode in which learning takes place [109].

Our investigations will focus on adopting and adapting appropriate approaches of

integrating data grids with agent technology in an e-learning context and deploying

them as a framework for specifying and validating distributed data grid services so

the framework can be managed and monitored. After this phase, we will focus on

establishing rules and policies for each regional grid as well as for the global grid

within an e-learning environment. Finally, the reflective model has to be enriched

with management and monitoring capabilities using agent technology to manage and

monitor the e-learning system. All phases are validated with implementation guided

by case studies. In some detail, the conceptual framework we are endeavouring to

develop in this thesis enjoins the following characteristics:

• Integrating data grid technology with intelligent agent technology within an

e-learning context in order to provide grid service.

• Deriving conceptual model behaviours from UML activity and sequence dia-

grams which depict activity flows.

• Developing policies and rules which govern the regional grids’ environment as

well as global grids.

• Building infrastructure which manages and monitors the e-learning environ-

ment.

1.2.1 Research Question

Based on what we have presented earlier the research question is:

5

1.2 Problem Statement

How can we produce a dynamic, extensible and flexible
architecture which is capable of managing and monitor-
ing the e-learning environment as a system of systems?

This question gives rise to further questions. These are:

• Managing

– How can agents work dynamically within systems of systems and e-learning

systems?

– How does the agent technology work to manage and monitor all the sys-

tem’s elements (e.g. data resources, nodes, and learners)?

• Extensibility

– How can the e-learning system be scalable?

– What is the role of grid technology in the e-learning system?

• Flexibility

– How does the agent technology facilitate ease of use in e-learning systems?

– What is the role of agent technology in searching for LOs’ information and

grid services?

• Fault Tolerance

– How can the e-learning system detect failures?

– How can the e-learning system work properly despite failures?

6

1.3 Research Contributions

1.3 Research Contributions

This thesis presents three main novel contributions. The first is producing a dynamic

architecture for the e-learning environment based on both grid and agent technolo-

gies which is called the RDADeLE system (See chapter 4). The RDADeLE system

controls and monitors regional grids which are systems which could have subsystems

comprising system of systems. The RDADeLE system controls all elements of these

systems using agent technology which helps to accomplish processes of a dynamic and

scalable environment such as the e-learning environment. The e-learning environment

is dynamic and scalable since a large number of entities (e.g. nodes, resources, learn-

ers) connect and disconnect to it at anytime. Using agents in the RDADeLE system

enriches it to be dynamic since agent technology has this ability. These agents can

easily connect and disconnect from the RDADeLE system.

The second contribution is to produce a designing approach of data grid by di-

viding a whole grid into regional grids which are distributed (See chapter 4). The

benefit of division is applicable for any dynamic and scalable environment. The di-

vision in the RDADeLE system is provided not only for division itself. It is provided

to minimise problems of the whole project (i.e. distributed data grid) by determining

and solving problems associated to each regional grid. Moreover, division is provided

to build an autonomous regional grid especially in dynamic environments such as

e-learning. The division has been adopted in RDADeLE in order to build a system of

systems. Eventually, RDADeLE will combine these regional grids to build the whole

system.

The third contribution is to produce a new agent-based grid simulator as a con-

cept of designs and ideas prescribed in this thesis (See chapter 6). The RDADeLE

system prototype simulates two techniques of composing and searching for LOs’ in-

7

1.4 Research Methodology

formation and grid services. The first technique is the XML-based Registries

Technique (XRT). Learning objects’ information in this technique are built us-

ing XML meta-data registries. The second technique is the Registered-based

Services Technique (RST). Grid services in this technique may have the LOs’

information which can lead to learning objects’ material. Moreover, grid services are

built using agents that are registered so that they may be discovered.

1.4 Research Methodology

The following steps summarise the methodology used to achieve the goals of this

research:

• Initially, an extensive study in grid and agent technology is employed, especially

in the area of designing architectures.

• The primary goal of the extensive study is to identify and establish the con-

crete boundary of designing an appropriate architecture for an e-learning envi-

ronment which is an agent-based data grid and consequently to determine the

scope and the starting point of this research.

• An experimental evaluation is carried out based on the JADE platform to

narrow down the research area and to identify deficiency in the existing archi-

tecture. This is achieved by analysis through simulation.

• Based on the starting point of this research, which is improving the performance

of the e-learning environment, RDADeLE is developed and the result is our

novel approach which is implemented and evaluated.

• A simulation is executed for the RDADeLE system with an analysis and com-

parison study of its performance.

8

1.5 Thesis Organisation

1.5 Thesis Organisation

This thesis is organised into eight chapters including this chapter. The following is a

brief description of the remaining chapters of this thesis.

Chapter 2 outlines an overview of grid computing which reflects the literature re-

view. This includes definitions of grid services, data grid, tools and languages used

in grid services, relationships between grid services and web services, semantic grid,

and some data grid applications.

Chapter 3 outlines an overview of agent-based computing which reflects the lit-

erature review. This includes an overview of agent technology, agent design and

development methodologies, multi-agent systems, and agent applications.

Chapter 4 presents the RDADeLE system which is the new architecture for e-

learning environments. This includes motivation, an architecture overview, compo-

nents of the architecture and their functionalities. Also the regional grid is presented

and described.

Chapter 5 presents the agent specifications which includes specifications of all types

of agents used in the RDADeLE system.

Chapter 6 presents the implementation of the RDADeLE system. The implemen-

tation includes the prototype and simulation of the RDADeLE system.

Chapter 7 presents the results of the research including evaluation. The results of

the numerical implementation and testing of concepts of the RDADeLE system are

presented at the end of the chapter.

Chapter 8 presents the conclusions and the future work of the research.

9

Chapter 2

Grid Computing

Objectives

• Review the definition, architecture, types and aims of grid

computing.

• Present some data grid applications.

• Discuss the differences between web and grid services.

• Review various types of grid service tools, languages and sim-

ulators.

2.1 Introduction

Grid computing provides an environment where a widely distributed scientific and

academic community shares its resources across different administrative and organisa-

tional domains. The purpose of grid computing is to facilitate large-scale computing,

data-intensive computing, and to provide for collaboration in a wide variety of dis-

ciplines. Grid computing, therefore, enables the creation of a virtual environment

which facilitates physical resources across different administrative domains in order

to be beneficial. These resources are then abstracted into computing or storage units

that can be transparently accessed and shared by large numbers of remote users.

The characteristics of grid computing is an attractive factor to be exploited in

order to solve many problems in many fields. Those characteristics are not only CPU

utilisation for high-performance computing environments but also about data man-

10

2.2 How Grid Computing Works

agement. Amazon and Google have built their own gird software to manage the grow-

ing number of transactions. Acxiom’s environment grid had grown to 6,000 Linux

nodes, processing more than 50 billion AbiliTec transactions per month (AbiliTec

is a data-integration application)[144]. Many business and commercial entities, for

instance British Broadcasting Corporation (BBC), transfer large files regularly, and

work with grid technologies to make their data accessible at high speed across dis-

tributed networks. On data retrieval over different incompatible communication pro-

tocols some progress has been achieved in this field, especially in GridFTP [9]. This

chapter presents an overview of grid computing covering the characteristics, applica-

tions, architectures, and grid tools.

2.2 How Grid Computing Works

Grids rely on middleware [7], which is advanced software/hardware that ensures seam-

less communication between distributed resources. Grids deploy powerful discovery

services that discover unused resources across the grid in order to exploit them. Users

have to verify their identities to access the grid through software interfaces running

on their own computers. After authentication, the user will be able to describe the

job to the grid resource broker, which is at the heart of the grid. The resource bro-

ker will find available resources that best fit the user’s needs and job or application

requirements by communicating with both the information service, to query informa-

tion about software and hardware currently available, and the replica catalogue, to

determine the location of required data. Once the application has selected the appro-

priate resources for the job, or has made advance reservations on selected resources,

the job is submitted to those resources for execution. Finally, the resource broker

sends the results back to the user as shown in Figure 2.1. All of these transitions are

done transparently for the user, who perceives the grid as a single large and powerful

11

2.3 Characteristics of Grid Computing

computer [110][85].

Figure 2.1: How Grid Works

2.3 Characteristics of Grid Computing

Grid computing aims to achieve the following goals [55] [15]:

• Sharing of distributed and heterogeneous computing resources be-

longing to different organisations.

Grid computing is the sharing, selection and aggregation of a group of re-

sources such as supercomputers, mainframes, storage systems, data sources

and management systems that operate in a network of computation [99] [3].

It promotes the sharing of distributed resources that may be heterogeneous in

nature. The primary benefit of grid computing is the ability to coordinate and

share distributed and heterogeneous resources such as Sharing Infrastructure

and Resources in Europe (Sirene) [2]. Sirene is a cooperative association be-

12

2.3 Characteristics of Grid Computing

tween twelve European countries whose purpose is to share their infrastructure

and resources.

• Exploitation of underutilised resources

In most organisations and companies there are large numbers of underutilised

computing resources. Most of these resources are busy less than 5% of the time.

Also, in some organisations these resources are relatively idle. Grid computing

is designed to exploit these underutilised resources and increase the efficiency

of resource usage. Users can also rent the resources that reside on the grid for

executing their computationally intensive applications instead of purchasing

their own dedicated (and expensive) resources.

• Enablement and simplification of collaboration among different or-

ganisations

Another capability of grid computing is the provision of an environment for col-

laboration between organisations. Grid computing enables very heterogeneous

and distributed systems to work together, thereby simplifying collaboration be-

tween different organisations by providing direct access to computers, software

and data storage.

• Provision of a single login service with secure access to grid resources

while protecting security for both users and remote sites

Grids provide a single login service to all users over all distributed resources

using grid authentication mechanisms. They also provide secure access to any

information anywhere over any type of network. This is achieved by providing

access control mechanisms which govern these resources.

• Provision of resource management, information services, monitoring

13

2.4 Grid Category

and secure data transportation

The shared resources and networks involved in grid computing are difficult

to manage and monitor, but grid computing is able to meet these challenges

because of its architecture and protocols.

• Designed to solve major problems

Grids are designed to exploit underutilised resources, meaning that they can

employ a large number of them to solve a major problem such as weather fore-

casting. These resources may be high capability devices such as high capacity

disk storage and high performance computing.

• Provision of quick results, delivered more efficiently

The other attractive feature of grid computing is getting a result quickly and

more efficiently, because it enables parallel processing; it may also have high

capability devices. With grid computing, businesses can efficiently utilise com-

puting and data resources and combine them for large capacity workloads.

2.4 Grid Category

Grid computing is becoming increasingly popular, with applications in many areas

such as science and engineering. Grids have generally been categorised from the

perspective of application as well as topology [16]. There are two wellknown types of

grid: computational grid and data grid.

2.4.1 Computational Grid

A computational grid is a collection of computing resources that may represent com-

puters on multiple networks and locations, heterogeneous platforms and separate

14

2.4 Grid Category

administrative domains with several owners. The purpose of a grid is to run very

large applications. In this type of grid, most machines are high performance servers.

The resources are aggregated so as to act as a unified processing resource. Compu-

tational grids emerged as a new paradigm for distributed computing. They promote

the sharing of distributed resources that may be heterogeneous in nature and are

created to solve complex engineering and scientific problems such as forecasting the

weather and managing stock markets [55]. The increase in the speed and reliability

of networks, in addition to the use of distribution protocols, is an important factor

that has led to the use of grids, which enable users to remotely utilise resources

owned by different providers. Computational grids fall into the categories of dis-

tributed supercomputing and high throughput computing depending on how they

utilise resources. In the former, the grid executes the jobs in parallel on various

resources, reducing completion times. Jobs requiring this category of grid are those

that present large problems. By contrast, high throughputs increase job completion

rates. The Northwest Indiana Computational Grid (NWICG)1 is an example of a

computational grid which offers three universities high speed and high bandwidth

connection computational services and storage and data resources.

2.4.2 Data Grid

In this type of grid, a large amount of data is distributed and/or replicated to remote

sites, potentially worldwide. In general, a data grid refers to a system responsible

for storing data and providing access to parties authorised to share it. In other

words, data grids provide an infrastructure for creating new information data repos-

itories such as data warehouses or digital libraries that are distributed across several

networks [85]. The aim of data grids is to overlap with heterogeneous distributed

1The Northwest Indiana Computational Grid, http://dev.nwicgrid.org.

15

2.4 Grid Category

database systems, which deal with various kinds of database management systems

such as hardware, operating systems and network connections distributed across a

heterogeneous environment. Data grid provides infrastructures to support data stor-

age, discovery, handling, publication and manipulation. Enterprise data usually pos-

sess the characteristics of large scale, dynamic, autonomous, and distributed data

sources. In the academic world, there is a desire to share expensive experimental

data in order to coordinate research. In the business world, the need for data shar-

ing is even more urgent, reasons include the requirement for business data to be in

real-time for applications such as e-marketing, where it is very important to main-

tain an up-to-date and consistent product catalogue. The objective of data grids as

presented in [43] is to integrate heterogeneous data archives into a distributed data

management “grid”, in order to identify services for high performance, distributed,

data-intensive computing, and to enable users to elicit relevant information from the

distributed databases. Data grids are compatible with computational grids and can

integrate storage and computation. One practical application of a data grid is the

EU’s DataGrid2. This is a project financed by the European Union that relies upon

developing computational grid technologies allowing distributed files, databases, com-

puters, scientific tools and devices. The main goal of data grids is to build the next

generation of computing infrastructure in order to develop and test the technological

infrastructure that will enable the sharing of large-scale databases.

There is another category which is based on size. They are Cluster Grids, Enter-

prise Grids, Extraprise Grids, and Global Grids.

2The DataGrid Project, http://eu-datagrid.web.cern.ch/eu-datagrid/.

16

2.4 Grid Category

2.4.3 Cluster Grids

These are the smallest grids in size and scope. They are designed to solve problems

for particular groups of people within the same department. They are implemented

within campus intranets by incorporating PC’s, data and servers to maximise the use

of computer resources and to increase user job throughput. Cluster grids can there-

fore operate within a heterogeneous environment consisting of mixed server types,

operating systems and workloads. Resources can be accessed at a particular point

known within the grid which has only one job queue [58].

2.4.4 Enterprise Grids

Sometimes referred to as campus grids, these are collections of cluster grids; they

enable inter-organisational cooperation. Enterprise grids allow departments to share

resource collection under common policies without necessarily having to address the

security and global policy management issues associated with global grids. For exam-

ple, managers of IT departments in organisations might have dedicated computing

resources. An enterprise grid would collect these resources from managers so that

they would be shared by all concerned, even though they are owned by different

people. This can be achieved through polices implemented within the environment.

Sharing on this larger scale captures unused resources and makes them available to

all authorised grid users.

2.4.5 Extraprise Grids

These connect two or more enterprise grids and, therefore, have several security do-

mains. Every grid is autonomic and has its own access policies. Security management

and resource management become both very difficult and more important in such an

environment. Extraprise grids are set up between companies acting in partnership,

17

2.5 Grid Architecture

and between their networks and their customers. In this grid implementation, Virtual

Private Networks (VPN) are used to make resources available. Some terms used by

vendors to refer to Extraprise grids are [55]: Extra grids, used by IBM to enable

sharing of resources with external partners through VPNs. Partner grids, used

by platform computing to define grids between organisations with similar industries

that need to collaborate on projects in order to reach a common goal.

2.4.6 Global Grids

This is a collection of enterprise and cluster grids connected by the Internet. Global

grids offer a global view by virtualisation of distributed systems, especially in academia,

where team members collaborate using systems that are geographically dispersed.

2.5 Grid Architecture

The traditional distributed technologies do not support an integrated approach to

the wide variety of required services and resources, and they lack the flexibility and

control needed to enable the type of resource sharing necessary. There is a need to

define a grid software infrastructure to support the heterogeneous aspects of the grid.

In [58] [56] [65], the grid strongly emphasises interoperability, as it is vital to ensure

that virtual organisation participants can dynamically share heterogeneous resources.

The grid infrastructure is based on a standard open architecture which facilitates ex-

tensibility, interoperability, portability and code sharing. This architecture organises

components into layers, as shown in Figure 2.2 [58]. Components within each layer

share common characteristics, but can build on the capabilities and behaviours of

any lower layer.

• Fabric Layer

18

2.5 Grid Architecture

The fabric layer comprises the resources in the grid. This resource can be

either a logical resources such as a distributed file system, computer cluster

or distributed computer pool, or a physical resource such as computational

resources, storage systems, catalogues, network resources and sensors.

This layer provides the lowest level of access to actual native resources and im-

plements the low-level mechanisms that allow those resources to be accessed and

used. More specifically, those mechanisms must include at least state enquiry

and resource management mechanisms, each of which must be implemented for

a large variety of local systems.

• Connectivity layer

The connectivity layer provides the core communication and authentication

protocols required for grid-specific network transactions. These protocols pro-

vide cryptographically secure mechanisms for verifying the identified grid users

and resources. Many communication protocols in the connectivity layer are

drawn from TCP/IP protocols stack such as IP [123], ICMP [124], TCP[121],

UDP [122] and DNS [105].

• Resource Layer

This layer builds on the connectivity layer to implement protocols that enable

the use and sharing of individual resources such as the Grid Resource Access

and Management protocol (GRAM) used to allocate and monitor resources.

More specifically, two fundamental components of this layer are information

protocols, for querying the state of a resource by calling fabric layer functions

to control and access resources, and management protocols, used to negotiate

access to a resource.

19

2.5 Grid Architecture

• Collective Layer

This layer provides protocols such as the Grid Resource Information Protocol

(GRIP) for interacting across collections of resources. In other words, it focuses

on the coordination of multiple resources. It includes directory, co-allocation,

scheduling, brokerage, monitoring and diagnostics, data replication, software

discovery, community accounting and payment services.

• Application Layer

This is the final layer in grid architecture, and contains the user applications

that operate in a grid environment. It includes the languages and frameworks.

These frameworks may themselves define protocols such as Simple Workflow

Access Protocol (SWAP) [140], services, and/or an Application Program Inter-

face (API).

Figure 2.2: Layer of Grid Architecture

20

2.6 Data Grid Applications

2.6 Data Grid Applications

The possible applications to which data grids are being put are increasing to the

extent that there can be said to be a definite trend towards this type of computing.

Scientists and researchers use them for processing large amounts of data, while in

the business world the number of grids is increasing exponentially. Most businesses

have their own websites that detail their activities and offer services. Information,

the central component in the field of education, is often transmitted electronically. In

all these cases, the information stored remains no more than simply data distributed

across different environments. Data grids provide the essential element of organisa-

tion, sharing and control. They comprise one of the most interesting fields by which

data within a grid is manipulated. Some applications of data grids in various fields

are as follows.

2.6.1 UK National Grid Service (NGS)

The National Grid Service (NGS)3 provides UK researchers with coherent electronic

access to computational and data-based resources for their research, regardless of

location. The NGS is funded by the Joint Information Systems Committee (JISC),

the Engineering and Physical Sciences Research Council (EPSRC) and the Council for

the Central Laboratory of the Research Councils (CCLRC). The NGS was created in

October 2003 and entered full production in September 2004. It is led and coordinated

by the Science and Technology Facilities Council (STFC) in collaboration with the

Universities of Manchester, Oxford and Edinburgh and the White Rose Grid at the

University of Leeds. Researchers in different institutions across the UK can use

its electronic infrastructure to obtain standardised access to computing and data

resources and large scale facilities, as well as collaborating with colleagues from other

3National Grid Service (NGS), http://www.grid-support.ac.uk.

21

2.6 Data Grid Applications

countries.

2.6.2 The Sakai Project

Sakai4 is a free, open source online Collaboration and Learning Environment used

to support teaching and learning, ad hoc group collaboration, support for portfolios

and research collaboration. The community that uses Sakai often also provides the

developers that create and improve it.

2.6.3 Enabling Grid for E-SciencE (EGEE) Project

The Enabling Grids for E-sciencE (EGEE)5 project integrates applications from many

scientific fields to provide scientists from more than 90 institutions in 32 countries

with a seamless grid infrastructure that operates 24 hours a day. EGEE’s grid of more

than 20,000 CPUs containing some 5 petabytes (5 million Gb) of storage provides

the solution to the time and resource constraints of traditional IT infrastructures. It

can run an average of 20,000 concurrent jobs. This capacity means that it is users’

needs rather than system constraints that decide the use to which the grid is put.

The grid provides large storage capacity, a wide range of bandwidth and computing

power that answers all needs.

2.6.4 Sloan Digital Sky Survey (SDSS) Project

The most ambitious astronomical survey project ever undertaken, SDSS 6 is part of

a change in the way science is conducted. It now processes vast amounts of data

very quickly, so that it has become feasible for SDSS to map a quarter of the sky,

producing detailed 3-D images of the more than 100 million celestial objects in that

4Sakai project, http://sakaiproject.org/.
5The Enabling Grids for E-science (EGEE) project, http://www.eu-egee.org/.
6The Sloan Digital Sky Survey (SDSS), http://www.sdss.org/.

22

2.7 Web and Grid Services

segment, as well as determining their positions and brightness. Its range extends to

the 10,000 known quasars at the edge of the visible universe.

2.6.5 TeraGrid

TeraGrid7 is an open scientific discovery infrastructure combining leadership class

resources at eleven partner sites to create an integrated, persistent computational

resource coordinated through the University of Chicago’s Grid Infrastructure Group

working in partnership with Indiana University and several computing centres includ-

ing the National Center for Supercomputing Applications, as well as the University

of Chicago/Argonne National Laboratory and the National Center for Atmospheric

Research.

2.7 Web and Grid Services

Emerging web services provide a framework for application-to-application interaction

that grants access to business-to-business, e-science, and e-government services over

the Internet. These services will allow a more extensive use of the web’s functionality

by supporting automated processes involving machine-to-machine cooperation and

interaction.

There are so many service types which are provided to users in order to fulfil their

needs. These services include organisation services, web services and grid services.

The organisation services come from utilities which are provided by the organisation.

On the other hand, web and grid services come from utilities which are provided by

web and grid respectively. These services are provided to users after they go through

some processes and procedures using some specific tools.

7TeraGrid project, http://www.teragrid.org/.

23

2.7 Web and Grid Services

A grid service is a web service that complies to a set of conventions that de-

fine how a client interacts with a grid service. These conventions, and other Open

Grid Services Architecture (OGSA) mechanisms associated with grid service creation

and discovery, provide for the controlled, fault resilient, and secure management of

the distributed and often long-lived state that is commonly required in advanced

distributed applications [128].

Web services and grid services are related strongly to each other. Grid services

use the same standards as web services. However, there are more tools and standards

used to create grid services. These tools are responsible for the main operations which

include, for example, managing, monitoring, scheduling resources and services within

the grid environment.

As defined by the World Wide Web Consortium [38], a web service is a software

system identified by a Uniform Resource Identifier (URI) which is designed to support

interoperable machine-to-machine interaction over a network. It has an interface that

is capable of being described in a machine processable format (specifically WSDL).

Other systems interact with the web service in a manner prescribed by its description

using Simple Object Access Protocol (SOAP) messages, typically conveyed using

Hypertext Transfer Protocol (HTTP) with an Extensible Markup Language (XML)

serialization in conjunction with other web-related standards. In [111] a web service

is an interface that describes a collection of electronic operations that are network

accessible through standardized XML messaging. It provides a set of functionalities to

business and individuals and enables universal accesses to these functionalities. Web

services has moved from a tightly coupled system to a loosely coupled system using

existing web protocols, such as HTTP and Simple Mail Transfer Protocol (SMTP).

Web services architecture consists of three entities:

• Service Providers: service providers create web services and publish these

24

2.7 Web and Grid Services

services to the outside world by registering the services with service brokers

using a registry.

• Service brokers: service brokers maintain a registry of published services.

• Service Requesters: Service requesters find required services by searching

the service broker’s registry. Requesters then bind their applications to the

service provider to use particular services.

Figure 2.3 illustrates the interaction between service providers, service brokers,

and service requesters in the publication, discovery, and consumption of web services

[126].

Figure 2.3: Web Services Architecture

The construction and creation of grid services depend on web services and other

standards. The introduction of the Open Grid Services Architecture (OGSA) is

evidence of the success of web services as a model for distributed computation, with

the Open Grid Services Infrastructure (OGSI) as an interaction model for grid services

[13].

25

2.7 Web and Grid Services

Figure 2.4 shows the OGSA Schemas which include OGSA services and Open

Grid Service Infrastructure (OGSI) [54].

Figure 2.4: Open Grid Services Architecture (OGSA)

The OGSA has been embraced by The Open Grid Forum (OGF)8 as the blueprint

for standards-based grid computing. OGSA Work Group (OGSA-WG) defines the

OGSA as follows: Open: is the process used to develop standards that achieve

interoperability. Grid: is the integration, virtualization, and management of services

and resources in a distributed, heterogeneous environment. Services: is delivering

functionality as loosely coupled, interacting services aligned with industry-accepted

web service standards. Architecture: the components, their organizations and

interactions, and the design philosophy used.

The OGSA is a model to enable the integration of services and resources across

distributed, heterogeneous, dynamic environments and communities. The OGSA was

initiated by the Globus Project [54] and IBM to align grid technologies with Web

8The Open Grid Forum is an open community committed to driving the rapid evolution and
adoption of applied distributed computing, http://www.ogf.org/.

26

2.8 Grid Service Tools

services technologies. The OGSA model adopts three web services standards [141]

which are Simple Object Access Protocol (SOAP), Web Service Description Language

(WSDL) and Web Services Inspection Language (WSInspection).

The OGSI defines mechanisms for creating, managing, and exchanging informa-

tion among entities called grid services in order to build on both grid and web services

technologies. The OGSI also introduces standard factory and registration interfaces

for creating and discovering grid services [143]. The OGSI mechanisms associated

with grid service creation and discovery provide for the controlled, fault-resilient, and

secure management of the distributed and often long-lived state that is commonly

required in advanced distributed applications. Figure 2.5 illustrates the role of OGSI

to support grid services.

Figure 2.5: Open Grid Services Infrastructure (OGSI)

2.8 Grid Service Tools

The grid services tools are categorized into three parts. The first is grid middleware

tools, the second is languages for grid services specification and composition, and the

third is grid simulators.

27

2.8 Grid Service Tools

2.8.1 Middleware Tools

There is some existing open source grid projects which have been used as middleware

within grid environments. These include:

2.8.1.1 Globus Toolkit

The open source Globus9 toolkit is a fundamental enabling technology for grids. It

combines the facility to securely share resources including computing power, databases

and other tools with the preservation of local autonomy. It is at the centre of a half-

billion dollar international science and engineering project industry, and forms the

framework for leading IT companies’ commercial grid products. The toolkit includes

software for security, information infrastructure, resource management, data man-

agement, communication, fault detection and portability.

2.8.1.2 JC-Grid

JC-Grid10 is a framework that combines the computing power of several workstations,

including PCs and Macs, to create ad hoc grids. It requires only the installation

of Java Runtime and is not reliant on any OS system, making it practicable for

any job requiring a large amount of CPU processing power. File transfers are done

via the framework, reducing the need for file system sharing capabilities such as

NFS. Workstations can be added or taken away at runtime without the job being

interrupted.

9The Globus Alliance is a community of organizations and individuals developing fundamental
technologies behind the Grid, http://www.globus.org/.

10JC-Grid is a Java Grid Computing, http://jcgrid.sourceforge.net.

28

2.8 Grid Service Tools

2.8.1.3 Grid-Gain

Grid-Gain11 is a computational grid product that allows the execution of a piece of

code to be parallelised onto a set of computing resources that can be of any kind,

including laptops or desktops, workstations, rack-servers, mainframes or any other

resource with a capacity greater than Java 4 and that is compatible with Java Virtual

Machine (JVM). The resources do not have to be compatible with each other, and

can usually be local, enterprise-based and/or global. Grid-Gain enables the power of

grid computing to be used for applications that are much more basic and small-scale

than highly complex ones such as oil exploration, financial risk computations and

weather forecasting.

2.8.1.4 Jini-Middleware

Jini technology12,as a service-oriented architecture for a programming model which

is based on Java technology, combines well-behaved network services and clients into

secure distributed systems. The architecture can build the kind of adaptive, scalable,

evolvable and flexible network system required in dynamic computing environments.

2.8.2 Languages for Grid Services Specification and Compo-

sition

As we have mentioned before grid services rely on web services in specifications and

compositions. Thus grid services use most web services languages. However there

are other languages used for grid services besides web services languages. These

languages include Grid Service Markup Language (GSML) and Grid Process Exe-

11GridGain Technologies started in Pleasanton, CA in 2005 by the group of people that realized
that traditional grid computing solutions are still largely inadequate for the majority of businesses,
http://www.gridgain.com.

12The Community Resource for Jini technology, http://www.jini.org.

29

2.8 Grid Service Tools

cution Language (GPEL). The following are protocols and languages which are used

to describe and compose communicate grid services:

• Grid Service Markup Language (GSML): Grid Service Markup Language

(GSML) [94]is an XML-based grid programming language, which allows end-

users to program a grid on demand.

• Grid Process Execution Language (GPEL): Grid Process Execution Lan-

guage (GPEL) [147] is a new grid description language which is proposed based

on Business Process Execution Language for Web Services language BPEL4WS.

GPEL is an XML-based language defined by a set of XML schemas.

• Hypertext Transfer Protocol (HTTP): Hypertext Transfer Protocol (HTTP)

is a protocol for distributed, collaborative, hypermedia information systems

[48]. Its use for retrieving hypertext documents, led to the establishment of

the World Wide Web in 1990 by English physicist Tim Berners-Lee. There are

two major versions, HTTP/1.0 and HTTP/1.1. HTTP/1.1 may be faster as it

takes time to set up such connections.

• Simple Object Access Protocol (SOAP): SOAP is an XML-based message

protocol [102], which is specified in a W3C specification. Moreover, the likely

technology to provide a communication framework for transport XML-based

messages anywhere across the net is SOAP which facilitates the communication

between web services and their clients.

• Web Services Description Language (WSDL): WSDL 1.1 describes the

messages going in and out of a service [33]. “Cut and Paste” mechanisms pro-

vide for interface composition, in the absence of the more advanced WSDL 2.0

constructs. The WSDL document uses the following elements in the definition

30

2.8 Grid Service Tools

of network services: Types, Message, Operation, Port Type, Binding, Port and

Service.

• Universal Description, Discovery and Integration (UDDI): UDDI is a

XML-based global [36], public or private online directory which enables business

or individuals to list businesses that they provide as a service provider and to

be discovered by other services around the globe. UDDI is an extensible data

model that is designed to work with any service description language such

as WSDL. Services in the registry have to be well classified according to their

functionality in order to allow requesters to find services that satisfy their needs.

• WS-Addressing: Web Services Addressing (WS-Addressing) provides the

mechanism for locating and accessing a service or a resource [66]. It con-

sists of two components: a structure used to communicate a reference to a web

service endpoint, and a set of message addressing properties, which associate

addressing information with a particular message.

• WS-Security: Web Services Security (WS-Security) is a communications pro-

tocol providing a means for applying security to web services [50]. SOAP Mes-

sage Security 1.0 specification provides enhancements to SOAP messaging, giv-

ing message integrity and confidentiality in end-to-end interactions.

• Security Assertion Markup Language (SAML): When partners or ser-

vices need to communicate role or authorization attributes over the network

[113], SAML is used to encode the assertions. Extensible Access Control

Markup Language (XACML) is used to encode the assertions as well. X.509

Certificates are used as the token profile for SOAP message authentication.

• Web Service Flow Language (WSFL): Web Service Flow Language was

31

2.8 Grid Service Tools

created by IBM [93]. It is an XML-based language which provides the mecha-

nism to deal with complex interactions between one or more services that act

both as clients and servers, thus provides support for a business process.

• Web Services Business Process Execution Language (WS-BPEL): WS-

BPEL is a modified version of Business Process Execution Language for Web

services (BPEL4WS) [76],which has been recently defined to describe composi-

tions of services based on the business process model. WS-BPEL specification

builds on IBM’s WSFL (Web Service Flow Language) and Microsoft’s XLANG

(Web service for Business Process design) which allows a mixture of the block

structured and graph structured process models.

2.8.3 Grid Simulators

Many applications use simulation, including the examination of natural or human sys-

tems’ functioning by modelling them, the improvement of technological performance,

safety engineering, testing, training and education. Simulation can be used as a fore-

casting tool and as a means of discovering and exploring alternative environments

and options. Of the few tools designed to simulate grid computing environments, the

leading ones are MicroGrid, Gridsim and Simgrid.

2.8.3.1 MicroGrid

This flexible tool allows researchers to experiment on heterogeneous physical re-

sources. It supports grid applications using the Globus Grid middleware infrastructure[136].

Its basic architecture consists of the following elements:

• Virtualization: This provides a virtual grid environment by intercepting all

direct uses of resources or information services made by the application, es-

32

2.8 Grid Service Tools

pecially mediating all operations that identify resources name, to use and/or

recover information about them.

• Global coordination: The virtual time module in MicroGrid can determine the

maximum rate at which simulation is practicable by calculating from the desired

virtual and actual resources employed (both CPU capacity and bandwidth/la-

tency) to achieve a balanced simulation across distributed resources.

• Resource simulation: Each of the individual resources comprising the simula-

tion must also be simulated correctly and must provide real-time performance

feedback. The simulation must proceed at the same rate as the virtual time

employed by the simulation. While many resources may turn out to be vital,

computing and communication provide the initial focus.

The MicroGrid simulator has been written in the C programming language. Al-

though the simulation builds a virtual grid environment it is not an agent-based

platform.

2.8.3.2 GridSim

The GridSim toolkit [27] comprehensively enables simulation of a heterogeneous as-

sortment of resources, users, applications, resource brokers and schedulers. It can be

used to simulate application schedulers for single or multiple administrative domain

distributed computing systems such as clusters and Grids. Resource brokers (i.e.

grid application schedulers), each of which is dedicated to an individual user, locate,

select and collect a heterogeneous resource set in order to customise the results for

that user’s requirements and purposes. All users’ jobs go through the central sched-

uler, which can flexibly adjust resource allocation in order to raise system utilisation

or prioritise certain users. Among the many functions of GridSim are:

33

2.8 Grid Service Tools

• the modelling of heterogeneous types of resources.

• the modelling of resources operating under space- or time-shared mode.

• the definition of resource capability in the form of MIPS (Million Instructions

Per Second) as per SPEC (Standard Performance Evaluation Corporation)

benchmark.

• the location of resources in any time zone.

• the mapping of weekends and holidays depending on resources’ local time in

order to model non-Grid (i.e. local) workloads.

• advance booking of resources.

• simulation of applications with different parallel application models.

• the ability to perform heterogeneous, CPU or I/O intensive application tasks.

• a limitless number of application jobs that can be submitted to a resource.

• the ability to submit jobs from several users simultaneously to the same re-

source. This feature helps in building schedulers that can use different market-

driven economic models for selecting services competitively.

• the specification of network speed between resources.

• the support of simulation of both static and dynamic schedulers.

• the statistical recording and analysis of all or selected operations using GridSim

statistical analysis methods.

GridSim is written in Java. Although the SimGrid simulator builds virtual grid

environments, it is not an agent-based platform.

34

2.8 Grid Service Tools

2.8.3.3 SimGrid

SimGrid [91] provides a set of core abstractions and functionalities that can be used

to easily build simulators for specific application domains and/or computing envi-

ronment topologies. This allows the simulation of arbitrary performance fluctuations

and observe real resources due to background load. SimGrid implements the following

core abstractions:

• Agent: An agent is an entity that makes scheduling decisions. It is defined by

a code, private data and the location at which it executes jobs.

• Location: A location (or host) is the place in the simulated topology at which

an agent runs. Thus it is defined by a computational resource, a number of

mailboxes that enable communication with other agents, and private data that

can be only accessed by agents at the same location.

• Task: A task is an activity of the simulated application. For the moment it

can be a computation and/or a data transfer. A task is defined by the amount

of computing power required, the data size, and data itself.

• Path: The low-level, original SimGrid layer in the software did not provide

any abstraction for message routing among locations. This made the user’s

simulation of complex platforms much harder. SimGrid now provides a routing

abstraction so that the user (and the scheduler) can rely on a logical platform

topology rather than targeting the physical topology directly. A path is an

agglomeration of communication resources representing a set of physical net-

work links. Locations are then interconnected through paths. The simulated

application cannot access links directly (likewise, that a real application does

notchoose which routers its packets go through).

35

2.8 Grid Service Tools

• Channel: Channel Communication between agents is embedded in the channel

abstraction. A channel embodies the concept of communication ports opened

by agents at locations.

SimGrid has been written in Java. SimGrid does use agents, but only for schedul-

ing.

Table 2.1 shows some properties of some of the main grid simulators.

Table 2.1: Properties of the Main Grid Simulators
Tool Organisation Properties
MicroGrid University of

California at San
Diego, U.S.A.

Runs emulations by executing actual applica-
tion code on the virtual Globus Grid and
thus requires more time to complete the ap-
plication, emulates the Globus Grid environ-
ment for resource management, http://www-
csag.ucsd.edu/projects/grid/

GridSim University of Mel-
bourne, Australia

Supports simulation of space-based and
time-based, large-scale resources in the
grid environment, simulates economy-
based resource scheduling systems in grids,
http://www.gridbus.org/gridsim/

SimGrid University of
California at San
Diego, U.S.A.

Simulates single or multiple scheduling enti-
ties and timeshared systems operating in a
grid computing environment, simulates dis-
tributed grid applications for resource scheduling,
http://grail.sdsc.edu/projects/simgrid/

Table 2.2 compares some of the main grid simulators.

Table 2.2: Comparison of Some Main Grid Simulators
Design MicroGrid GridSim SimGrid
Simulated systems Grid, resource

scheduling sys-
tems

Grid, resource
scheduling sys-
tems

Grid, resource
scheduling sys-
tems

Usage Emulator Simulator Simulator
Programming
framework

Structured Object-oriented Object-oriented

36

2.9 Review of Data Grid Technology towards E-learning Requirements

2.9 Review of Data Grid Technology towards E-

learning Requirements

Management is one of the major requirements for the e-learning architecture. Man-

agement is the ability to manage and share distributed data resources authorised un-

der different domains. Data grid technology, the subject of the chapter, has been used

successfully to manage system of systems and e-learning environments. E-learning

environment, as system of system, need to manage storage resources. For example

in [2] the heterogeneous distributed data resources are shared using grid middleware.

Using grid middleware (OGSA-DAI), without alteration, will guarantee management

and extensibility of data resource in the e-learning architecture. This means there is

no enhancement of data grid is necessary.

The second requirement for the e-learning architecture is extensibility. Extensi-

bility refers to the scalability of the e-learning architecture. A scalable architecture

has the ability to accommodate increase number of data resources. Using grid mid-

dleware enriches the e-learning architecture to facilitate large-scale data-intensive

computing and to provide for collaboration in a wide variety of disciplines. For ex-

ample UK National Grid Service (NGS) and Enabling Grid for E-SciencE (EGEE)

project, discussed in section 2.6, have used data grid technology to provide access to

data resources and large scale facilities and provide large storage capacity. This grid

middleware can also be used to ensure scalability in an e-learning architecture.

The remaining two requirements are flexibility and fault tolerance. These are not

addressed by grid standards and implementations so a different solution and tech-

niques are required. Research has revealed that agent technology has the properties

required for these two requirements. Agent technology and how they address the

requirements is the subject of chapter 3. The conclusion is that data grid is an ap-

37

2.10 Summary

propriate technology which will support the management and scalability requirement

in an e-learning architecture.

2.10 Summary

This chapter surveyed the background to and related work on grid computing espe-

cially data grid. It described grid computing, including characteristics, architectures,

and categories. This is followed by a survey of data grid applications, web and grid

services, and grid tools and programming languages. Finally grid simulators are then

surveyed, including McroGrid, GridSim and SimGrid.

38

Chapter 3

Agents-based Computing

Objectives

• Review the definition, architecture, types of agent computing.

• Present agent designing and development methodologies and

languages.

• Present characteristics and applications of multi-agent sys-

tems.

• Discuss agent roles in grid computing.

• Review agent platforms, simulators and comparisons.

3.1 Introduction

Since the 1990s, research and development in agent-based systems has been an impor-

tant and active area in information technology. The reason is that agent technology

provides flexible, autonomous, dynamic, and distributed domains. The concept of

an agent has been applied in many fields such as computer networks, software engi-

neering, artificial intelligence, human-computer interaction, distributed and concur-

rent systems, mobile systems, computer-supported cooperative work, control systems,

data mining, decision support, information retrieval and management, and electronic

commerce [97]. This chapter presents an agent technology overview, agent design

and development methodologies and languages, multi-agent systems, roles of agents

39

3.2 Agent Technology Overview

in grid computing, and agent platforms and simulators.

3.2 Agent Technology Overview

There is no agreement or universally accepted definition of the term agent. One

definition specifies an agent is any entity that perceives its environment through

sensors and acts on the environment based on its own reasoning capability; this

definition includes human, robotic and software agents [127]. Agent technology has

been exploited heavily on the web through applications in many fields including

industry, business, education and training.

There are application domains where agent technologies play a crucial role. These

applications include grid computing, where multi-agent system enable efficient use

of the resources of high-performance computing infrastructure in science, engineer-

ing, medical and commercial applications; electronic business, where agent-based

approaches support the automation and semi-automation of information gathering

activities and purchase transactions over the Internet; the semantic web and grid,

where agents provide services; bioinformatics and computational biology; monitoring

and controlling other systems; resource management and military and manufactur-

ing applications [97]. There are different impacts of agent technology in application

domains which include assistance in designing of complex and distributes systems,

a source technology in computing systems and a model for complex of real world

systems. One of the most well-known agent applications [87] is video games, which

have become a large part of many peoples’ lives. The application of agent technology

in video games has many aspects. One of the obvious benefits of video games is the

elimination of risk to human life involved in any real-world application. They also

make an excellent testbed for techniques in artificial intelligence. However, there are

some general attributes and characteristics distinguish agents.

40

3.2 Agent Technology Overview

3.2.1 Characteristics of Agents

Agents have many features which make them suitable to be applied in many appli-

cations. The following are some of the main characteristics of agents [23]:

• Autonomy:

Agents are entities capable of committing effective operations in dynamic and

open environments. Agents are used in environments in which they interact and

cooperate with other agents. The autonomy and degree of autonomy has been

defined by some paper authors which included in [100]. In multi-agent systems,

agents can be distinguished from objects in that they are autonomous entities

capable of exercising choice over their actions and interactions. Agents cannot,

therefore, be directly invoked like objects. However, they may be constructed

using object technology.

• Adaptability and proactiveness:

Adaptability is the change in behaviour so that it becomes suitable to a new

situation. Proactiveness is the capablility of taking the initiative, not driven

solely by events. The agent can be designed to obtained adaptable architecture

[42] in order to use this features in its operations.

• Mobility:

An agent could be roaming around and within a system on a specific route.

This is the mobility which gives agents ability to migrate to a remote system,

perform the tasks and then return the results. Mobile agent modeling can use

ontology for interrelationships design [31]. The agent has been used heavily

in the internet to support the internet applications on the internet framework

[39].

41

3.2 Agent Technology Overview

• Persistence:

Persistent agents do not die after the task is completed they remain alive until

the system terminates it. It can live on local or remote processing sites.

• Goal Orientation:

Each agent has been designed to fulfil a goal or aim. More advanced and

complex agent types are dedicated for a specific goal for instance Belief-Desire-

Intention (BDI) agents.

• Communication, Collaboration, Cooperation:

Agents have standards communication protocols in order to communicate with

each other or to communicate with other components inside or outside its plat-

form. Communicative features are important to enable agents to collaborate

and cooperate in order to achieve goals.

• Flexibility:

Flexibility could be in the design, behaviour or in the manner in which the

agent interacts. This feature allows agents to be flexible problem solvers.

3.2.2 Classifications of Software Agents

Agents are generally classified, whether the criteria be level of mobility (i.e. static or

mobile), role, hybrid philosophy, exhibition of ideal and primary attributes such as

autonomy, cooperation and learning, and the presence of a symbolic reasoning model

such as deliberative or reactive. The following classification is based on the topology

[114]:

• Collaborative Agents:

Cooperation between agents requires the development of a mutual understand-

ing and sharing regarding the task in hand and the goal towards which they are

42

3.2 Agent Technology Overview

working. This kind of agent may have to negotiate in order to reach agreement

on some matters. Filtering email is one application of collaborative agents [89].

• Interface Agents

Pattie Maes in [150], a key proponent of this class of agent, has defined it as

“Computer programs that employ artificial intelligence techniques in order to

provide assistance to a user dealing with a particular application. The metaphor

is that of a personal assistant who is collaborating with the user in the same

work environment”. The interface agent is used in the internet search engines

[5] to support users in finding exactly the information consistent with his/her

interest.

• Mobile Agents

Mobile agents are computational software processes capable of moving within

a specific route or networks such as the WWW [114]. They have the ability

to transport themselves from one machine to another. A mobile agent may

interact with other agents and foreign hosts in order to gather information and

return to its home after having performed the duties prescribed by the user.

Mobile Agent can be used in many fields. But the security problem [131] of

mobile agents is a barrier for applications.

• Information/Internet Agents

Information agents may be static or mobile [114], non-cooperative or social,

and they may or may not have the capacity to learn. Hence, they have no stan-

dardised mode of operation. Information agents’ main function is to gather

information, report what they retrieve from the WWW and return that infor-

mation to where it came from. The last few years have witnessed a high rate

of growth in revenue from single-item online auctions popularised by eBay and

43

3.2 Agent Technology Overview

similar websites [30] which are considered as applications of internet agents.

• Reactive Agents

This kind of agent responds in real time to changes in the environment. They do

not possess internal, symbolic models of their environments. Brooks (1986) and

Chapman (1987) first expounded their characteristics. Many theories, architec-

tures and languages to describe this type of agent have since been developed.

They are seen as simple, interacting with other agents in basic ways. Reactive

agents has been used in many fields one of which is in [67] the manufacturing

process control.

• Hybrid Agents

Hybrid (or layered) agents are a combination of two or more kinds of agent

[114]. This is important since some applications need special kinds of agents in

order to meet their requirements. Assets are amplified and deficiencies reduced

by combining two types of agent to produce hybrids. Virtual environments

[146] is an example of the hybrid agents applications.

• Smart Agents

Smart agents have the ability to learn and to gain experience as they react

and/or interact with their external environment [114]. This kind of agent is

both collaborative and autonomous. These features impart some degree of

intelligence to these agents. Smart agent has been used in web knowledge

mining [119] in the WWW field.

3.2.3 Main Agent Architectures

Maes defines an agent architecture as: [98] “A particular methodology for building

agents. It specifies how the agent can be decomposed into the construction of a set

44

3.2 Agent Technology Overview

of component modules and how these modules should be made to interact. The total

set of modules and their interactions has to provide an answer to the question of

how the sensor data and the current internal state of the agent determine the actions

and future internal state of the agent. An architecture encompasses techniques and

algorithms that support this methodology.”

Kaelbling [82]considers an agent architecture to be “A specific collection of soft-

ware (or hardware) modules, typically designated by boxes with arrows indicating

the data and control flow among the modules. A more abstract view of an architec-

ture is as a general methodology for designing particular modular decompositions for

particular tasks.”

Fundamental objects of an agent architecture include:

• Agent: The Agent class defines the agent. An instance of this class exists for

each agent executing a job on a given agent host.

• Agent Host: An agent host keeps track of all the agents executing jobs in the

system. It will interact with other agent hosts to transfer an agent from one

system to another.

• Agent Interface: An instance of this class envelopes an agent and provides

access to it via a well-defined interface. It is also the primary conduit for

communication between agents. An agent interface instance is the only agent

which interacts with other agents executing on a given host.

• Agent Identity: An instance of this class uniquely identifies an agent. Agents

use this information to identify the agents with whom they are interested in

collaborating.

Table 3.1 presents attributes of main agent architectures [47]:

45

3.2 Agent Technology Overview

Table 3.1: Main Agent Architectures
Type of architecture Approach Subordination structure
Horizontal modular Horizontal functional Hierarchical
Blackboard Functional Hierarchical (Meta)
Subsumption Vertical functional Hierarchical
Competitive task Vertical functional Hierarchical (Competition)
Production rules Functional Hierarchical (Meta)
Classifier Vertical functional Hierarchical
Connectionist Vertical functional Egalitarian
Dynamic system Vertical functional Egalitarian
Multi-agent Object/functional Egalitarian

Three main agent architectures will be presented in more detail. They are reactive,

cognitive and hybrid architectures.

3.2.3.1 Reactive Architecture

Reactive architecture does not include a central symbolic world model, and does

not use complex symbolic reasoning. In 1985 Rodney Brooks, a researcher at MIT,

outlined an architecture, called subsumption architecture, for building agents. Sub-

sumption architecture is a hierarchy of task-accomplishing behaviours, each of which

competes with others. Lower layers represent more primitive kinds of behaviour

and have precedence over layers further up the hierarchy. Examples of this type of

architecture are PENGI, situated automata, and Agent Network Architecture [150].

3.2.3.2 Cognitive Architecture

Cognitive architecture is mainly used for a broad, multiple-level, multiple-domain

analysis of cognition and behavior which is essential structure and process of a

broadly-scoped domain-generic computational cognitive model [112] [138]. A cogni-

tive architecture provides a solid framework for more detailed modeling of cognitive

phenomena, through specifying essential structures, divisions of modules, relations

46

3.2 Agent Technology Overview

between modules, and a variety of other aspects [137]. There are some famous cog-

nitive architectures which include ACT-R , CLARION, CHREST, PRODIGY and

SOAR.

3.2.3.3 Hybrid Architecture

In order to build a hybrid agent, it must be taken into account that architecture

is composed of subsystems [149] which are arranged into a hierarchy of interacting

layers. There are two examples of this kind of architecture, InteRRaP and Touring

Machines. The control flow within layers may be horizontal or vertical layering. In

horizontally layered architectures, the software layers are each directly connected

to the sensory input and action output. In vertically layered architectures, sensory

input and action output are each dealt with by, at most, one layer. The hybrid agent

architecture in [139] includes both reactive and deliberative architectures.

3.2.4 Agent Communications

Agents have the ability to communicate with other agents, applications, and humans.

The communication includes sending and receiving messages in order to achieve the

goals of themselves or of the society/system in which they exist. Communication can

enable the agents to coordinate their actions and behaviours to build more coherent

systems. The degree of coordination is the extent to which they avoid unnecessary

activities. Cooperation is coordination among non-antagonistic agents, while negoti-

ation is coordination among competitive agents. Communication protocol is specified

by a data structure with the following five fields [148]:

• Sender.

• Receiver(s).

47

3.2 Agent Technology Overview

• Language in the protocol.

• Encoding and decoding functions.

• Actions to be taken by receiver(s).

3.2.4.1 Speech Acts

Computational agents use spoken human communication as the model for communi-

cation. Speech act theory [14] [130] is the basis for analysing human communication.

Speech act theory views humans’ natural language as actions, such as requests, sug-

gestions, commitments, and replies. A speech act [148] has three aspects which are

Locution (the physical utterance by the speaker), Illocution (the intended meaning of

the utterance by speaker), and Perlocution (the action that results from the locution).

Speech act theory uses the term performative to identify the illocutionary force

of utterance. Performative verbs may include promise, report, convince, insist, tell,

request, and demand. Speech act theory helps define the type of message by using

the concept of the illocutionary force, which constrains the semantics of the commu-

nication act itself. The sender’s intended communication act is clearly defined, and

the receiver has no doubt as to the type of message sent.

3.2.4.2 Knowledge Query and Manipulation Language (KQML)

The knowledge query and manipulation language (KQML) is a protocol for exchang-

ing information and knowledge. KQML is both a message format and a message-

handling protocol to support run-time knowledge sharing among agents [49]. All

information for understanding the content of the message is included in the commu-

nication itself. Figure 3.1 [148] shows KQML structure.

48

3.2 Agent Technology Overview

Figure 3.1: KQML Structure

The terms :content, :language, and :ontology determine the semantics of the mes-

sage. Other arguments, including :sender, :receiver, :reply-with, and :in-reply-to, are

parameters of the message passing. The semantics of the message is defined by the

fields :content (the message itself), :language (the language in which the message

is expressed), and :ontology (the vocabulary of the “words” in the message). The

language in a KQML is not restricted to one language. Knowledge Interchange For-

mat (KIF) is used to express the messages. Other languages such as PROLOG, LISP,

SQL can be used. The KQML performatives are organised into seven categories which

include for example basic query performatives (such as evaluate, ask-one, ask-all), re-

sponse performatives (such as reply, sorry), and networking performatives (such as

register, unregister, forward, broadcast).

3.2.4.3 Knowledge Interchange Format (KIF)

The ARPA Knowledge Sharing Effort has produced the Knowledge Interchange For-

mat (KIF) [63] logic language for describing the information content transmitted and

the conceptual vocabularies. The KIF is a particular logic language which has been

proposed as a standard to describe things within some systems such as experts sys-

tems, databases, and intelligent agents. KIF language has some advantages which

include understandability and translation. Understandability means that it is read-

able by both computer systems and people. Translation means the KIF language

49

3.2 Agent Technology Overview

could be a means or mediator between other expression languages. KIF can be used

to describe procedures to write programs for agents to follow in order to achieve

desired aims. The KIF has been used in composition of web services [60].

3.2.4.4 FIPA-Agent Communication Language (FIPA-ACL)

Foundation for Intelligent Physical Agents (FIPA) ACL is based on speech act theory.

KQML and FIPA ACL messages look syntactically identical.

A FIPA ACL message contains a set of one or more message parameters which

include for example sender, receiver, performative and content which is expressed

in a content language, such as FIPA-SL or FIPA-KIF [52]. The only parameter

that is mandatory in all ACL messages is the performative (i.e. the type of the

communicative act of the ACL message) which includes for example Inform, Request,

Agree, Refuse and Failure.

3.2.4.5 Ontologies

Using the same language in communication between agents is not sufficient for un-

derstanding between them. Agents need to use same terminology [46]. Ontology is

defined as a specification of the objects, concepts, and relationships in an area of

interest. The ontology must describe the relationship. The classes and relationships

must be represented in the ontology; but the instances of classes need not be repre-

sented. The agent’s developer must use a specific ontology to represent the agent’s

knowledge. All agents that share the same ontology for knowledge representation

have an understanding of the word in the agent communication language.

50

3.2 Agent Technology Overview

3.2.5 Agent Interaction Protocols

Interaction protocols administrate the exchange of a series of messages among agents

(conversation). The objective of the protocols is to maximize the utilities of the

agents [125]. The following are the main interaction protocols:

3.2.5.1 Coordination Protocols

In a multi-agent environment coordination between agents is recommended for many

reasons [148]. These reasons include to satisfy group goals, work properly with limited

resources, dependency between agents’ actions, and to complete system activities. It

appears that coordination is important in an environment which distributes both

control and data. Agent Coordination Context (ACC) is used to support interaction

between an individual agent and the MAS as a whole [107].

3.2.5.2 Cooperation Protocols

Cooperation protocols are used to decompose and then distribute tasks [148]. This

approach can reduce the complexity of tasks since smaller subtasks require less capa-

ble agents and fewer resources. The system designer programs the system to include

task decomposition during implementation. The following mechanisms are some com-

monly used to distribute tasks: Contract Net, Market Mechanism and Blackboard.

Prometheus methodology - a methodology for agent-oriented software engineering -

has been extended to support agent cooperation [8].

3.2.5.3 Contract Net

The contract net protocol is an interaction protocol for cooperative problem solving

among agents [148]. It is based on finding an appropriate agent to work on a given

task. The manager agent announces a task that needs to be performed, receives and

51

3.2 Agent Technology Overview

evaluates bids from contractor agents, and awards a contract to a suitable contrac-

tor. The contractor agent receives task announcements, evaluates its capabilities to

respond, responds, and performs the task if its bid is accepted. Many applications

have adopted contract net protocol in their systems, for example in Manufacturing

Systems [72].

3.2.5.4 Market Mechanisms

Market mechanisms are needed when there are a large number of unknown agents

[148]. Computational economies approach is based on market mechanisms and are

effective for coordinating the activities of many agents with minimal direct commu-

nication between agents. There are two types of agents, consumers and producers.

Consumers exchange goods and producers transform some goods into other goods.

Some manufacture systems have adopted Market Mechanism in their systems [106].

3.2.5.5 Blackboard Systems

The idea of a Blackboard system is based on the concept of a blackboard as a

workspace for agents (called Knowledge Source KS) for developing a solution for

a problem [148]. Agents participate cooperatively to solve a problem by posting its

expertise on the blackboard. The problem is solved when there is sufficient infor-

mation to make a contribution. The following are some important characteristics

of blackboard systems: independence of expertise, diversity in problem-solving tech-

niques, flexible representation of blackboard information, common interaction lan-

guage, event-based activation, need for control, and incremental solution generation.

There are some applications of the Blackboard system in the e-learning environment

[96] especially in the investigations of issues related to the e-learning environment.

52

3.3 Agent Design and Development Methodologies and Languages

3.2.5.6 Negotiation

Negotiation is a process between two or more agents to reach a joint decision, each

agent trying to reach an individual objective [148]. Negotiation has the following

major features: the language used by participating agents, the protocol followed by

the agents as they negotiate, the decision process that each agent uses to determine

its positions, concessions, and criteria for agreement. Environment-centered and

agent-centered approaches are two techniques of negotiation systems. Attributes

of negotiation mechanism include efficiency, stability, simplicity, distribution, and

symmetry. There are many negotiation applications in the agent field, one example

is that negotiation strategy is used in automated processes [135].

3.3 Agent Design and Development Methodolo-

gies and Languages

Agents and multi-agent systems are relatively new area. There is no standard defi-

nition of agent and multi-agent systems. Hence, there is no specific methodology for

designing and the development of agent and multi-agent systems. The following are

some current agent-based software engineering methodologies [46]. But before that

we will present some agent related terminologies.

3.3.1 Terminology

Being a relatively new research field, agent-based software engineering currently has

a set of closely related terms used in research papers, we will thus try to clarify and

explain the terms and their relations below. Agent-Oriented Programming (AOP)

is seen as an improvement and extension of Object-Oriented Programming (OOP).

Since the word “Programming” is attached, it means that both concepts are close

to the programming language and implementation level. The term “Agent-Oriented

53

3.3 Agent Design and Development Methodologies and Languages

Programming” was introduced by Shoham in 1993 [145]. Agent-Oriented Develop-

ment (AOD) is an extension of Object-Oriented Development (OOD). The word

“Development” is sometimes interpreted as “Programming”, on the other hand it

is frequently interpreted to include the full development process that covers the re-

quirement specification and design, in addition to the programming itself. Software

Engineering with Agents, Agent-Based Software Engineering, Multi-agent Systems

Engineering (MaSE) and Agent-Oriented Software Engineering (AOSE) are seman-

tically equivalent terms, but MaSE refers to a particular methodology and AOSE

seems to be the most widely used term. The difference between AOSE and AOD, is

that AOSE also covers issues such as re-use and maintenance of the agent-system in

addition to the development of the system itself. However, to be on the safe side, one

should omit the use of the term AOD since it can easily be misinterpreted, as pointed

out earlier (due to the different interpretations). The term Agent-based Computing

can be applied to describe all issues related to agent-oriented software engineering,

but it also covers issues regarding how and what agents compute.

3.3.2 Agent-oriented Methodologies

Agent-oriented methodologies include Gaia, Prometheus, Tropos, MaSE, and ROADMAP.

3.3.2.1 Gaia

The Gaia methodology for agent-oriented analysis and design has been presented by

Wooldridge, Jennings and Kinny [151] [152]. Gaia is a general methodology that

supports both the micro-level (agent structure) and macro-level (agent society and

organisation structure) of agent development, it is however no “silver bullet” approach

since it requires that inter-agent relationships (organisation) and agent abilities are

static at run-time. The motivation behind Gaia is that existing methodologies fail

54

3.3 Agent Design and Development Methodologies and Languages

to represent the autonomous and problem-solving nature of agents; they also fail

to model agents’ ways of performing interactions and creating organisations. Using

Gaia, software designers can systematically develop an implementation-ready design

based on system requirements. The first step in the Gaia analysis process is to find

the roles in the system, and the second is to model interactions between the roles

found. Roles consist of four attributes: responsibilites, permissions, activities and

protocols. Responsibilites are of two types: liveness and safety properties. Role of

liveness properties is to add something positive to the system, and role of safety

properties is to prevent something detrimental happening to the system. Permissions

represents what the role is allowed to do, in particular, which information it is allowed

to access. Activities are tasks that a role performs without interacting with other

roles. Protocols are the specific patterns of interaction, e.g. a seller role can support

different auction protocols, e.g. English auction. Gaia has formal operators and

templates for representing roles and their associated attributes, it also has schemas

that can be used for the representation of interactions [145].

3.3.2.2 Prometheus

The Prometheus methodology includes three design phases [117], where artifacts are

produced which are used in both production of skeleton code for implementation, and

for debugging and testing. The system specification phase focuses on identifying the

basic functionalities of the system, along with inputs (percepts), outputs (actions)

and any important shared data sources. The architectural design phase uses the

outputs from the previous phase to determine which agents the system will contain

and how they will interact. The detailed design phase looks at the internals of each

agent and how it will accomplish its tasks within the overall system.

The Prometheus and INGENIAS methodologies have been customised to take

55

3.3 Agent Design and Development Methodologies and Languages

advantage of both approaches in developing agent-based applications [62].

3.3.2.3 Tropos

The Tropos is a software development methodology founded on the key concepts of

agent-oriented software development [64]. Specifically, Tropos emphasizes concepts

for modelling and analysis during the early requirements phase. Tropos is an agent-

oriented software development methodology founded on two novel features. First, the

methodology is defined in terms of the concepts of agent, goal, and related mentalistic

notions. These notions are used to support all software development phases, from

early requirements analysis to implementation. Second, a crucial role is given to early

requirements analysis that precedes prescriptive requirements specification. Tropos

supports earlier phases of software development compared to other agent and object

oriented methodologies.

The Tropos methodology has been extended to enhance its ability to support high

variability design through the explicit modelling of alternatives [120]. Moreover, it

adopts an extended notion of agent capability and proposes a refined Tropos design

process.

3.3.2.4 Multi-agent System Engineering(MaSE)

MaSE is architecture-independent and models a system in terms of goals, roles,

agents, tasks, and conversations [46]. Two main stages are included in MaSE: anal-

ysis and design. The analysis stage consists of three steps: capturing goals, creating

use case and refining roles. The second part of the methodology deals with the de-

sign of the system and consists of four steps. The first step [40] is creating agent

classes, mapping roles to agent classes in an agent-class diagram. The second step

is constructing conversations and defining coordination protocols. The third step

56

3.3 Agent Design and Development Methodologies and Languages

is assembling agent classes and defining the agent architecture and its components.

The final step is system designing, creating actual agent instances based on the agent

classes which are the output of the previous step.

3.3.2.5 Role Oriented Analysis and Design for Multi-Agent Program-

ming(ROADMAP)

The ROADMAP methodology extends Gaia and focuses on developing complex open

systems giving special emphasis to the societal aspects of the multi-agent system [81].

ROADMAP has features which include support for requirements gathering, explicit

models to describe the domain knowledge and the execution environment, levels of

abstraction during the analysis phase, the facilitation of iterative decomposition of

the system, explicit models and representations of social aspects and individual agent

characteristics, from the analysis phase to the final implementation and runtime

reflection, and modeling mechanisms to reason and change the social aspects and

individual agent characteristics at runtime. ROADMAP consists of two phases: the

specification and analysis phase, and the design phase.

3.3.3 Object-oriented Based Methodologies

These kind of methodologies include AAII and AUML. AAII is the Australian Arti-

ficial Intelligent Institute and AUML is Agent Unified Modeling Language which is

expansion of Unified Modeling Language (UML).

3.3.3.1 Australian Artificial Intelligent Institute (AAII)

Australian Artificial Intelligent Institute (AAII) originated this methodology and was

developed by David Kinny 1996. AAII is based on the BDI paradigm and provides

an internal and external prospective of multi-agent systems [21]. AAII builds on

57

3.3 Agent Design and Development Methodologies and Languages

object-oriented models. AAII provides a specialized set of models: the agent and the

interaction models capture the notion of roles, responsibilities, services and control

relationships between agents at the external level and the belief, goal and plan models

to design BDI agents at the internal level.

3.3.3.2 Agent Unified Modeling Language (AUML)

The Unified Modeling Language (UML) unifies and formalizes the methods of many

object-oriented approaches, including Booch, Rumbaugh (OMT), Jacobson, and Odell

[18]. UML is standard language for constructing, visualizing, specifying and docu-

menting the artefacts of a software system, and for business modelling and other

non-software systems. Odell, along with colleagues, explored Agent UML (AUML)

an extension of UML, to model agent-based applications [20][115]. UML provides

an insufficient basis for modeling agents and agent-based systems, and this is due to

two reasons: Firstly, compared to objects, agents are active because they can take

the initiative and have control over whether and how they process external requests.

Secondly, agents do not only act in isolation but in cooperation or coordination with

other agents. Multiagent systems are social communities of interdependent members

that act individually.

3.3.4 Other Methodologies

The last class of methodologies includes approaches such as DESIRE and MAS-

CommonKADS.

3.3.4.1 Design and Specification of Interacting Reasoning Components(DESIRE)

The compositional multi-agent design method DESIRE supports the design of component-

based autonomous interactive agents [24]. Both the intra-agent functionality and the

58

3.3 Agent Design and Development Methodologies and Languages

inter-agent functionality are explicitly modelled. DESIRE supports the conceptual

design and specification of both dynamic and static aspects of agent behaviour. DE-

SIRE views the individual agents and the overall system as compositional structures

hence all functionality is designed in terms of interacting, compositionally structured

components.

3.3.4.2 MAS-CommonKADS

MAS-CommonKADS [77] [46] extends the models defined in CommonKADS, adding

techniques from object-oriented methodologies and from protocol engineering to de-

scribe the agent protocols [29]. The methodology consists of three main phases. The

first phase, called conceptualization, deals with extracting the basic system require-

ments from the user. In the analysis phase a number of models are developed. These

models include agent, task, expertise, and coordination models. In the third phase,

called design, the architecture of the system and the individual agents are defined

creating the design model.

3.3.5 Programming Languages

There are many languages supporting agent-oriented programming. These program-

ming languages include agent-oriented programming (AOP), AGENT0 programming

language, concurrent METATEM, AgentSpeak(L) and APRIL. The AOP is based

on a mentalistic view of agents and was first attempted by Shoham, 1993 to cre-

ate a pure agent-oriented language. It promotes a societal view of computation

and allows the direct programming of agents in terms of their mental state. The

AGENT0 programming language was developed by Shoham as an implementation

of the AOP paradigm. AGENT0 allows the specification of an agent in terms of a

set of beliefs, capabilities, commitments, and a set of commitment rules. Concurrent

59

3.3 Agent Design and Development Methodologies and Languages

METATEM [51] is a multi-agent system programming language based on linear tem-

poral logic. It consists of currently executing agents whose behaviour is implemented

using executable temporal logic and communicate via asynchronous broadcast mes-

sage passing. AgentSpeak is logic-based approach programming language that allows

the specification of BDI agents. It is based on a restricted first order language with

events and actions. APRIL is a symbolic programming language that is designed

for writing mobile, distributed and agent-based systems. It is compiled into byte

code which is then interpreted by the APRIL runtime engine. Besides that, there are

some tools and environments which support agent developers which are mostly based

on the Java programming language [46]. These include ZEUS toolkit, Java Agent

Development (JADE), JACK Intelligent Agents, Java Agent Template (JATLite),

Open Agent Architecture (OAA), Foundation for Intelligent Physical Agents-Open

Source (FIPA-OS), IBM’s Agent Building and Learning Environment (ABLE), and

AgentBuilder.

3.3.6 AOP Versus OOP

Object-oriented programming (OOP) is slightly different from agent-oriented pro-

gramming (AOP). AOP is a specialised form of OOP which enables objects to become

agents that have a defined mental state (beliefs, commitments, and capabilities) and

send messages to one another using speech act theory. Some modelling techniques and

ideas from object-oriented software engineering are adapted because object-oriented

modelling techniques are not directly applicable to agent systems, and agents are

more complex than objects [74] [116]. Speech act theory categorizes speech, dis-

tinguishing between informing, requesting, offering, accepting, rejecting, competing,

and so on. Each type of communicative act involves different presuppositions and

has effects. The table 3.2 summarizes the relation between AOP and OOP [133].

60

3.4 Multi-agent Systems (MAS)

3.4 Multi-agent Systems (MAS)

There is no fixed definition of a multi-agent system, only an agreement on the most

common features like multiple agents acting in one environment, each agent having

specific goals, communications are between agents themselves and between agents and

the environment and actions affect the common environment of all agents in order to

solve problems which are difficult or impossible for an individual agent to solve. On

the other hand there are some definitions of a multi-agent system [78] which are rather

descriptive like: “An agent is a self contained problem solving entity (implemented in

hardware, software or a mixture of the two) which exhibits the following properties

autonomy, social ability, responsiveness, and proactiveness”.

3.4.1 Characteristics of Multi-agent Environments

Multi-agent environments have different characteristics which for example include

having infrastructure specifying communication and interaction protocols, open and

have no centralized design, having autonomous and distributed agents, flexible and

extensible.

3.4.2 Applications of Multi-agent Systems (MAS)

There exists many potential industrial and commercial applications for multi-agent

systems. Here are some of the applications of multi-agent systems [148]:

• Electronic commerce and electronic markets, where “buyer” and “seller” agents

purchase and sell goods on behalf of their users.

• Information handling in information environments like the Internet, where mul-

tiple agents are responsible, e.g. for information filtering, gathering, and retriev-

ing.

61

3.5 Agents Role in Grid Computing

• Optimization of industrial manufacturing and production processes.

• Analysis of business processes within or between enterprises, where agents rep-

resent the people or departments in different stages and at different levels.

• Electronic entertainment and interactive, virtual reality-based computer games,

where agents represent characters who play against each other or against hu-

mans.

• Social simulation is using agents as an experimental tool. The agents can be

used to simulate the behaviour of human societies. Individual agents can be

used to represent individual people or organisations.

Other agent applications include:

• User Interface Agents: Microsoft Office Assistant.

• Business process Agents: Data-driven work-flow management.

• Information Management Agents:

– Email filtering agents.

– Web browsing assistant.

– Notification agents.

– Resource discovery agents.

3.5 Agents Role in Grid Computing

Agent technology is increasingly being used in many recent web-based enterprise ap-

plications especially for applications dealing with and managing data resources, e.g.

data grid. Agent technology is used in computational grid and data grid applications

62

3.5 Agents Role in Grid Computing

to enrich them with efficiency and effectiveness. There are many examples of appli-

cations, systems, and projects which use agent technology to facilitate the functions

of those applications. These examples include:

3.5.1 Grid Resource Discovery

Resource discovery can allow the system to be aware of which resources have been

added and which are available. This is done by organization of all information about

resources and the status about systems. Available resources in grids usually come

from different administrative systems. Using the resource-centric P2P model for grid

resource will help to discover resources in the grid environment. To deal with the

heterogeneity of allocation semantics within the grid environment, a heterogeneous

society of software agents is used. The resource agent layer is a society of agents, these

agents respond to receive requests from grid applications and get the corresponding

resource from administrative systems (AS), namely deploy grid software on AS [153]

[17].

3.5.2 Data Acquisition and Retrieval

Data acquisition and retrieval is used widely nowadays. An example of data acqui-

sition and retrieval is ESESGrid (Engineering Structure Experiment and Simulation

Grid) [95]. Data acquisition systems in ESESGrid is based on self-adapting MAS

(Multiple Agent System) and designs the registration and access of agents based

on WS-Management. The architecture of ESESGrid consists of four layers, Local

Site, Agent Layer, Grid Core Service Layer, and Client Side. All agents in the Agent

Layer are responsible for the real-time experimental data management and access.

Those agents collaborate each other, serve each other, resolve conflict between dif-

ferent agents distinct behaviors through competition or negotiation, then complete a

63

3.6 Agent Platforms and Simulators

common task. Agent Layer makes data acquisition more easy and flexible. This layer

consists of two main components, the Agent Service Adapter (ASA) for configuring

and initializing agents and the Agent Network Manager (ANM) that functions as a

client to the ASA and helps deploy specific topologies.

3.5.3 Provision Internal Processing in Grid Environment

Agents play a significant role in grid internal processing. An example of agents that

provide assistance in grid internal processing is ChinaGrid Support Platform (CGSP).

Agent layer has been added to ChinaGrid Support Platform (CGSP) system services

[79]. Agents within this layer can be implemented in the Web Services Resource

Framework (WSRF) specification as a web service resource in order to extend the

autonomy and interoperability for the CGSP system. Two kinds of agents were

defined which are Functional Agents and Interoperable Agents. The first kind is

Functional Agents whcih are for the internal processing for grid platform. They

have different roles to help CGSP systems managing the resources and running jobs.

Functional Agents refer to Provisioning Agent, Execution Agent (Job Agent) and

Transferring Agent. The second type is Interoperable Agents which are motivated

by the interoperation with other existing heterogeneous grid platforms.

3.6 Agent Platforms and Simulators

Agent platforms are used to provide more realistic modeling of agents in the real

world. The platform becomes necessary for agents to communicate with each other

using appropriate protocols, notify agent’s presence to a platform, present common

standards for agents to work together, and to produce interoperable multi-agent

systems.

There are many agent platforms that have been developed and used to build

64

3.6 Agent Platforms and Simulators

multi-agent systems. Those platforms are considered as agent building tools. The

platforms are different from each other according to their features, abilities, and

common standards.

Table 3.3 summaries main agent platforms and their characteristics:

3.6.1 IBM Aglets Workbench

IBM Japan is developing a framework for Java Agent Applets. Some of their work has

been submitted to the Object Management Group (OMG) for consideration in regard

to OMGs request for a Mobile Agent Facility (MAF) [88]. Aglets Workbench is a

visual environment for building network-based applications that use mobile agents to

search for, access and manage corporate data and other information. Aglets Work-

bench is a very versatile tool for creating secure mobile agent-based applications,

however it does not deal with the important issue of implementing coordination,

cooperation and coherence in agent-based applications.

3.6.2 Concordia

The Mitsubishi Electric Information Technology Center of America has developed a

Java-based framework for development and management of network efficient mobile

agent applications for accessing information anytime, anywhere, and on any device

[103]. Concordia offers a flexible scheme for dynamic invocation of arbitrary method

entry points within a common agent application. It provides support for agent per-

sistence and recovery and guarantees the transmission of agents across a network.

Concordia has also been designed to provide for fairly complete security coverage

from the outset. Though Concordia provides a useful set of services for implement-

ing agent mobility, security, persistence and transmission , it does not provide any

methodology to specify how agents in a multiagent system coordinate, cooperate and

65

3.6 Agent Platforms and Simulators

negotiate to bring about a coherent solution.

3.6.3 Odyssey

Odyssey1 is General Magic’s initial implementation of mobile agents in Java. It

borrows from many of General Magics concepts in the Telescript tool set. Odyssey

is an agent system implemented as a set of Java class libraries that provide support

for developing distributed, mobile applications. Odyssey technology implements the

concepts of places and agents. It models a network of computers, however large, as

a collection of places. A place offers a service to the mobile agents that enter it. A

communicating application is modeled as a collection of agents. Each agent occupies

a particular place. However, an agent can move from one place to another, thus

occupying different places at different times. Agents are independent in that their

procedures are performed concurrently. Odyssey provides Java classes for mobile

agents and stationary places. Odyssey agents are Java threads. They rely on the

same security services as all other Java applications. The developer must adhere to

a very rigid structure while implementing mobile applications. Unlike IBM Aglets

and Concordia, it does not provide an extensive security mechanism. Also, just

like Aglets and Concordia, it is communication centric and does not provide any

classes for defining the social behavior of agents. Odyssey does not support broadcast

communication and speech-act messaging.

3.6.4 Voyager

Voyager2 is a Java-based agent-enhanced Object Request Broker (ORB) developed

by ObjectSpace Inc. It allows Java programmers to quickly and easily create sophis-

1Odyssey, Odyssey Frequently Asked Questions, http://www.genmagic.com/agents/odyssey-
faq.html, General Magic Inc., 1997.

2Voyager, Voyager Technical Review, http://www.objectspace.com/voyager/voyager white papers.html,
ObjectSpace Inc., 1997.

66

3.6 Agent Platforms and Simulators

ticated network applications using both traditional and agent-enhanced distributed

programming techniques. It provides for creation of both autonomous mobile agents

and objects. Voyager agents roam a network and continue to execute as they move.

Voyager can remotely construct and communicate with any Java class, even third

party libraries, without source. It allows seamless support for object mobility. Once

created, any serializable object can be moved to a new location, even while the object

is receiving messages. Messages sent to the old location are automatically forwarded

to the new location. Voyager is a very efficient tool for constructing agent-based

distributed applications, but it suffers from the same drawbacks as Aglets, Concor-

dia, and Odyssey. It does not provide any classes for defining the social behavior of

agents. Voyager does not support broadcast communication and speech-act messag-

ing. It does not pay any specific attention to providing security.

3.6.5 JATLite

JATLite3 is being developed by the Computer Science Department at Stanford Uni-

versity. It provides a set of Java packages that facilitates agent framework develop-

ment using the Java language. JATLite supports Speech Acts and provides basic

communication tools and templates for developing agents that exchange KQML mes-

sages through TCP/IP. It defines a special construct called an Agent Name Server

(ANS) which stores all the names and addresses of existing agents. When an agent is

created and connected to the network, it first registers with the ANS. In registering,

the agent passes the ANS its name, port number and the domain of its local host. If

an agent knowingly terminates, it first sends a remove address message to the ANS,

which echoes the message to all the other agents. JATLite also provides special Agent

Router functionality which allows Java applets to exchange messages with any reg-

3JATLite, JATLite overview, http://java.stanford.edu/java agent/htmlJATLiteOverview.html/,
Stanford University, 1997.

67

3.6 Agent Platforms and Simulators

istered agent on the Internet. Though JATLite does provide essential functionality

required for building a multiagent application, it does not define a methodology for

specifying the social behavior of agents. Moreover, the concepts of the ANS and

the Agent Router are inherently centralized in nature. Each time an agent joins the

system it has to register with ANS and when it leaves the system, the ANS has to

be informed. All communication must go through the Agent Router. Thus, any

application developed using JATLite cannot be truly scalable.

Following is a list of major, publicly available implementations of agent platforms

which conform to the FIPA Specifications:

3.6.6 Agent Development Kit

The author of Agent Development Kit is a private company called Tryllian BV.

Tryllian introduces the latest release of the Agent Development Kit (ADK), a mo-

bile component-based development platform that allows you to build reliable and

scalable industrial strength applications [53]. The ADK features dynamic tasking,

JXTA-based P2P architecture with XML message-based communication that sup-

ports FIPA and SOAP, Java Naming and Directory Interface (JNDI) directory ser-

vices, using a reliable, lightweight runtime environment based on Java. These allow

Java developers to easily build, deploy and manage secure, large-scale distributed

solutions that operate regardless of location, environment or protocol, enabling an

adaptive, dynamic response to changes. The ADK runs on any environment support-

ing Java 2 Standard Edition version 1.3.1. A subset of its functionality is available

for J2ME MIDP (Mobile Information Device Profile). There is a commercial license

and free research license available for selected projects.

68

3.6 Agent Platforms and Simulators

3.6.7 April Agent Platform

The authors of the April Agent platform are Jonathan Dale and Johnny Knotten-

belt. The April Agent Platform (AAP) is a FIPA-compliant agent platform that is

designed to be a lightweight and powerful solution for developing agent-based sys-

tems [53]. It is written using the April programming language and the InterAgent

Communication System (IMC), and provides many features to accelerate the devel-

opment and deployment of agents and agent platforms. The AAP requires the April

programming language and the ICM to be installed, and runs either on Linux, Unix

or Windows. It is GNU General Public License (GPL).

3.6.8 Comtec Agent Platform

The author of the Comtec Agent platform are Information-Technology Promotion

Agency, Japan and Communication Technologies. The Comtec Agent platform is an

open-source platform, compatible with FIPA agent communication, which manages

agent message transport and some other applications [53]. Unique to the Comtec

Platform is the implementation of FIPA Ontology Service and Agent/Software Inte-

gration, which require Semantic Language (SL2) as the content language. It requires

JDK 1.2 or higher and it is GNU General Public License (GPL).

3.6.9 FIPA-OS

The author of FIPA-OS is software development company with expertise in intelli-

gent agents called Emorphia with association of other contributors. FIPA-OS was

the first Open Source implementation of the FIPA standard and has now recorded

thousands of downloads [53]. Dedicated developers from around the world have con-

tributed to numerous bug fixes and upgrades, leading to over 10 formal new releases.

FIPA-OS now supports most of the FIPA experimental specifications currently un-

69

3.6 Agent Platforms and Simulators

der development. With the new in depth developer guides, it is an ideal starting

point for any agent developer wishing to benefit from FIPA technology. FIPA-OS

2 is a component-based toolkit implemented in 100% pure Java. One of the most

significant contributions received is a small, footprint version of FIPA-OS, aimed at

Personal Digital Assistants (PDAs) and smart mobile phones, which has been devel-

oped by the University of Helsinki as part of the IST project, Crumpet. It requires

Java virtual machine and the license is Eclipse Public License (EPL).

3.6.10 Grasshopper

Grasshopper is an open 100% Java-based mobile intelligent agent platform, which is

compliant to both available international agent standards, namely the OMG MASIF

(Mobile Agent System Interoperability Facilities) and FIPA specifications [53]. Grasshop-

per includes two optional open source extensions providing the OMG MASIF and

FIPA standad interfaces for agent/platform interoperability. It requires java virtual

machine.

3.6.11 JACK Intelligent Agents

The authors of JACK Intelligent Agents are Autonomous Decision-making Software

and Agent Oriented Software AOS Ltd (AOS Group’s UK company)4. It is the world’s

leading autonomous systems development platform. It has a proven track record

in the development of applications that interact with a complex and ever-changing

environment. JACK consists [26] of architecture-independent facilities, plus a set

of plug-in components that address the requirements of specific agent architectures.

The plug-ins supplied with version 1.2, released at the end of October 1998, include

support for the BDI model.

4Autonomous Decision-making Software AOS Ltd, http://www.agent-
software.com/products/index.html.

70

3.6 Agent Platforms and Simulators

3.6.12 JAS (Java Agent Services API)

The authors of JAS are Fujitsu, Sun, IBM, HP, Spawar, InterX, Institute of Hu-

man and Machine Cogtnition, Comtec and Verizon. The Java Agent Services (JAS)

project defines an industry standard specification and API for the deployment of

agent platform-service infrastructures [53]. It is an implementation of the FIPA Ab-

stract Architecture within the Java Community Process initiative and is intended to

form the basis for creating commercial grade applications based on FIPA specifica-

tions. Specifically, the project consists of a Java API (in the javax.agent namespace)

for deploying open platform architectures that support the plug-in of third-party plat-

form service technology. The API provides interfaces for message creation, message

encoding, message transport, directory and naming. This design is intended to en-

sure that a JAS based system deployment remains transparent to shifts in underlying

technology without causing interruption to service delivery and therefore the business

process. The project also delivers a Reference Implementation of the API, including

sample services for Remote Method Invocation (RMI), Lightweight Directory Access

Protocol (LDAP), and HTTP. The forthcoming Technology Compatibility Kit will

ensure compliance of all JAS based implementations. It requires java virtual machine

(1.1 minimum). It is Open Specification License v0.4 and Common Public License

v0.5.

3.6.13 ZEUS

ZEUS is an Open Source agent system entirely implemented in Java, developed by

BT Labs and can be considered a toolkit for constructing collaborative multi-agent

applications. ZEUS provides support for generic agent functionality and has sophis-

ticated support for the planning and scheduling of an agent’s actions [53]. More-

over, ZEUS provides facilities for supporting agent communications using FIPA ACL

71

3.6 Agent Platforms and Simulators

(Agent Communication Language) as the message transport and TCP/IP sockets as

the delivery mechanism. ZEUS also provides facilities for building agents in a visual

environment and support for redirecting agent behavior. The ZEUS approach to

planning and scheduling involves representing goals and actions using descriptions

that include the resources they require and the pre-conditions that need to be met in

order to function. This allows goals to be represented using a chain of actions that

have to be fulfilled before the goal can be met. This action chain is built up using

a process of backwards chaining. As ZEUS uses the latest Swing GUI components

it will run on any platform that has had a JDK1.2 (aka JDK2) virtual machine in-

stalled. Each host machine should also be capable of TCP/IP communication, but

there is no need for any middleware services to be installed. So far ZEUS has been

successfully tested on Windows 95/98/NT4 and Solaris platforms.

3.6.14 JADE Platform

JADE platform has many features which have encouraged us to choose it as the

platform of our prototype. JADE has the ability to build agents-based distributed

systems which are suitable for grid systems, agents have the ability to control other

system components, heterogeneous entities communication, security, and interoper-

ability with other agents. JADE is the middleware developed by TILAB 5 for the

development of distributed multi-agent applications. The intelligence, the initiative,

the information, the resources and the control can be fully distributed on mobile

terminals as well as on computers in the fixed network [44].

JADE is implemented in version 1.2 of JAVA (Jade 3.7 latest version July 2009)

and has no further dependency on third-party software. It requires Java virtual

5Telecom Italia Lab is the R&D branch of the Telecom Italia Group and is responsible for promot-
ing technological innovation by scouting new technologies, carrying out and assessing feasibility
studies, and developing prototypes and emulators of new services and products.Telecom Italia has
conceived and developed JADE, and originated the Open Source Community in February 2000.

72

3.6 Agent Platforms and Simulators

machine (1.2 minimum) and it is Lesser General Public License (LGPL). JADE is

an ideal platform on which to implement our model in order to present concepts and

objectives of our research. In [32], authors have proven some features of the JADE

platform. These features include efficiency, effectiveness, and scalability. The features

are limited by standard limitations of Java programming language and other factors

which include processor speed, amount of available memory and speed of network

connection. Experiments with thousands of agents and thousands of ACL messages

have been implemented effectively. Hence, these features of the JADE platform are

needed in our model in order to present concepts and objectives of our research.

The JADE platform is composed of agent containers that can be distributed over

a network [19]. Agents live in containers which provide the JADE run-time and all

the services needed for hosting and executing agents. There is a special container,

called the “Main Container”, which represents the bootstrap point of a platform.

The main container is the first to be launched and all other containers must join to

it by registering with it. As a bootstrap point, the main container has the following

special responsibilities:

• Managing the container table (CT), which is the registry of the object references

and transporting addresses of all container nodes composing the platform.

• Managing the global agent descriptor table (GADT), which is the registry of

all agents present in the platform, including their current status and location.

• Hosting the Agent Management System (AMS) and the Directory Facilitator

(DF), the two special agents that provide the agent management and white

page service, and the default yellow page service of the platform, respectively.

The Agent Management System (AMS) provides the naming service (i.e. ensures

that each agent in the platform has a unique name) and represents the authority in

73

3.6 Agent Platforms and Simulators

the platform (for instance it is possible to create/kill agents on remote containers by

requesting that to the AMS). According to the FIPA architecture, this is the agent

that is responsible for managing the platform and providing the white-page service.

The DF provides a Yellow Pages service by means of which an agent can find

other agents providing the services it requires in order to achieve its goals. According

to the FIPA architecture, this is the agent that provides the yellow-page service.

Figure 3.2 shows the relationship between the main architectural elements of

JADE using a UML diagram [19].

Figure 3.2: UML JADE Architecture

3.6.15 Lightweight Extensible Agent Platform (LEAP)

LEAP (Lightweight Extensible Agent Platform (IST-1999-10211)) is a development

and run-time environment for Intelligent Agents, and is the precursor of the sec-

ond generation of FIPA compliant platforms [53]. It represents a major technical

challenge - it aims to become the first integrated agent development environment

capable of generating agent applications in the ZEUS environment and executing

74

3.6 Agent Platforms and Simulators

them on run-time environments derived from JADE, implemented over a large fam-

ily of devices (computers, PDA and mobile phones) and communication mechanisms

(TCP/IP, WAP). In this way LEAP benefits from the advanced design-time features

of ZEUS and the lightweight and extensible properties of JADE. It requires java

virtual machine.

3.6.16 Agent Platforms Comparison

Agent platform is a technological architecture which provides the environment in

which agents can exist and operate in order to achieve their goals. The agent platform

may additionally support the development of agents and agent-based applications.

Table 3.4 is a comparison study of some agent platforms. The criteria has

been determined in the study based on characteristics of optimal e-learning sys-

tem (RDADeLE system) to come up with a dependable comparison study. They

are 4 criteria which include high performance, policy enabled, FIPA-compliant and

heterogeneity.

The comparison study includes 20 different agent platforms and simulators. These

agent platforms and simulators are different in the programming language in which

they are written in, the purpose and needs of users and characteristics. From the

table 3.4 although specifications of the Practionist and the JADE are similar there are

two differences. The first one is that the Practionist works on top of the JADE and

Prolog which means that the Practionist depends on the JADE. The other difference

is that the Practionist produces BDI agents only. Moreover, JADE is well supported

(documentation, mailing list, platform updates), free and popular platform. It is

important that an agent platform foresees the use of mobile devices to have a light-

weighted release. The JADE platform has a light-weighted release which is called

Lightweight Extensible Agent Platform (LEAP).

75

3.7 Review of Agent Technology towards E-learning Requirements

3.7 Review of Agent Technology towards E-learning

Requirements

In this chapter, we have presented agent technology. The first major requirement

is management. Part of the management is monitoring all components of the e-

learning architecture. Indeed, monitoring components of the e-learning architecture is

indispensable because to keep the architecture must adapt itself according to changes

in the e-learning environment. Using agent technology in the prototype of e-learning

promises better results in monitoring its components. It has been show in [92] that

the Monalisa distributed system is monitored, controlled and optimized using agent

technology. Therefore agent technology is the choice for monitoring components in

the architecture.

The third major requirement of the architecture is flexibility. Flexibility refers to

the composing and searching for LOs’s information and services in the context archi-

tecture. Two techniques, XML-based Registries Technique (XRT) and Registered-

based Services Technique (RST), have been developed and implemented to compose

and search for LOs’information and services in chapter 7. The difference between two

techniques is that the data source information in the second technique is published

as service agents. The result of conducting two techniques shows that using the RST

technique the RDADeLE environment can be built with more regional grids with less

memory consumption. Meanwhile, It shows that more grid services could be regis-

tered in the RDADeLE system with less mean search time using the RST technique.

The search performance increases using the RST technique compared with the XRT

technique.

The fourth major e-learning requirement is fault tolerance. Fault tolerance is a

crucial issue in distributed and dynamic systems. The e-learning architecture, as an

76

3.8 Summary

e-learning system, needs to bind all administrative regions of the Kingdom of Saudi

Arabia with each other and with their components in order to maintain reliability to

become more robust and reliable. Choosing an appropriate agent platform to assist

the architecture to become more reliable and robust is strongly recommended. [32]

and [82] shows that JADE agent platform is efficient, scalable and reliable. Fur-

thermore, using the JADE agent platform to generate the required agents in the

e-learning system is recommended in order to monitor the environment agents and

then help the e-learning architecture to become more flexible and reliable. There are

many R&D (Research and Development) projects have used and using JADE. For

example, these are some projects use the JADE: AgentCities, TeSCHeT, PRIMO,

IMAGE,MicroGrids, E-Commerce Agent Platform (E-CAP). The conclusion is that

agent technology can support the flexibility and fault tolerance requirements of the

e-learning architecture, with the JADE as the agent platform.

3.8 Summary

This chapter surveyed the background to and related work on agent-base computing.

It described agent technology, including classification of agents, agent architectures,

and agent interaction protocols. This is followed by a survey of agent design and

development. Multi-agent systems are then described. Afterwards, a survey of agents

role in grid computing is presented. Finally, agent platforms and simulators are

presented with a comparison study between them.

77

3.8 Summary

Table 3.2: OOP versus AOP
Basic unit OOP object AOP agent
Parameters defining state of
basic unit

unconstrained beliefs, commitments, capa-
bilities, choices...

Process of computation message passing and
response methods

message passing and re-
sponse methods

Types of message unconstrained inform, request, offer,
promise, decline...

Constraints on methods none honesty, consistency...

Table 3.3: Main Characteristics of Major Agent Platforms
Platform Company URL Main characteristics
ADK Tryllian www.tryllian.com BPM focused
Enago IKV++ www.ikv.de Mobile; academic
FIPA-OS emorphia www.emorphia.com Meeting scheduler
Jack AOS www.agent-

software.com
Generic; academic

Jackdaw Calico Jack www.calicojack.co.uk Generic; mobile focus
Jade Telecom Italia jade.tilab.com Generic; academic
ZEUS BT www.bt.com Research oriented

78

3.8 Summary

Table 3.4: Comparisons of Some Agent Platforms
Agent Platforms High

Perfor-
mance

Policy
Enabled

FIPA-
compliant

Heterogeneity Security

JACK Yes Yes Yes n/a n/a
ADK n/a n/a Yes No Yes
Cougaar n/a n/a No Yes Yes
Cybele Yes Yes No n/a n/a
Agent Factory n/a Yes Yes Yes Yes
3APL n/a n/a Yes No No
FIPA-OS n/a n/a Yes Yes No
AgentBuilder Yes n/a No No n/a
MadKit n/a No No n/a Yes
DIET Agents Yes n/a No n/a Yes
JIAC No n/a Yes n/a Yes
SAGE Yes n/a Yes n/a Yes
Lost Wax Yes Yes n/a Yes n/a
Semoa n/a Yes Yes Yes Yes
A-Globe Yes n/a No No n/a
ABLE Yes Yes Yes n/a Yes
Practionist Yes Yes Yes Yes Yes
AgentScape Yes n/a n/a Yes Yes
ZEUS Yes n/a Yes Yes n/a
JADE Yes Yes Yes Yes Yes

79

Chapter 4

Architectural Design of Regionally

Distributed Architecture for Dynamic

e-Learning Environment (RDADeLE)

Objectives

• Review requirement analysis.

• Present motivation for building the RDADeLE system.

• Discuss the computational model of the RDADeLE system.

• Present contents and services management.

• Discuss fault-tolerance with replicated information service in

the RDADeLE system.

4.1 Introduction

The RDADeLE system has been constructed for controlling and managing large sys-

tems for instance systems of systems and e-learning systems. Although there are an

increasing number of e-learning systems nowadays, some of these systems still have

hidden technical problems which remain undiscovered. Unfortunately, many special-

ists who are responsible for dealing with and enhancing these systems are not aware

of some practical barriers and problems which prevent gaining full benefits of using

them. These practical problems include an increase in information flow, accumula-

tion of work in specific points and a loss of connections between different parties and

80

4.2 Requirement Analysis

elements within each system and between systems. It is essential that these problems

are solved, and one of the ways to solve them is to embed different technologies such

as grid and agent in the RDADeLE system.

The grid community focuses on brawn: infrastructure, tools, and applications for

reliable and secure resource sharing within dynamic and geographically distributed

virtual organizations. In contrast, the agents community focuses on brain: au-

tonomous problem solvers that can act flexibly in uncertain and dynamic environ-

ments. Agent systems require robust infrastructure and grid systems require au-

tonomous, flexible behaviors [57]. Thus systems based on agent and grid technology

are capable of controlling and managing their components in order to become reliable,

scalable and dynamic.

This new e-learning architecture combines both grid and agent technologies to

produce the RDADeLE system. This can be done by defining different classes of

agents comprising the Administrative Agent which works as a grid information service

and other agents used to control components of the e-learning system. The latter are

the Regional Agent, the Node Agent, the Learner Agent and the Service Agent. This

chapter presents requirement analysis, computational model which is guided by a

case study, the architecture of RDADeLE and its components, contents and services

management and fault-tolerance.

4.2 Requirement Analysis

Designing an effective architecture requires thorough analysis. Users and environment

needs are the most important factors to be considered. The following are highlights

of analysis taken as guidelines for producing the RDADeLE architecture:

81

4.2 Requirement Analysis

4.2.1 Previous e-Learning Architectures

By reviewing many papers in the field of e-learning, there are numerous architec-

tures and platforms which have been adopted as testbeds and prototypes. One of

these is a Learning Management System based on the Life Cycle Management Model

(LCMM) of e-learning courseware [71]. This model concentrates on analysis, de-

sign, development, delivery and measurement of courseware content activities known

collectively as Sharable Content Object Reference Model(SCORM) - within the e-

learning environment. This architecture does not include collaboration with other

learning management systems on other sites. Another e-learning architecture was

proposed based on workflow using fuzzy Petri nets [84]. This architecture takes ac-

count of the processes of academic study activities which means that it navigates the

learning resources (i.e. Learning Objects (LOs)), adapting to each learners pace by

formal description of their learning path and the application of workflow technology

in building and implementing workflow of courses in the service environment. Also,

this architecture does not consider the LO service as a grid service. Another archi-

tecture called an Architecture of Virtual Environment for E-Learning (AVEE) which

depicts the virtual environment of e-learning and integrates a media stream into the

learning environment (virtual reality); it is based on the MVC architecture (Model,

View Controller) [73]. This architecture limits its usage between institutes and sites.

An approach for designing an adaptive multi-agent architecture of e-learning sys-

tem has been adopted in [69]. The design applies various technologies, integrating

them in a flexible and efficient way to support their adaptation in e-learning envi-

ronments. The approach is based on an intelligent blackboard model for content

presentation and learning strategy planning. The intelligent blackboard includes

three levels of interfaces through which the structure of e-learning courses can be

defined. This approach does not include data grid in its architecture and does not

82

4.2 Requirement Analysis

intend to control and manage the e-learning system as a system of systems.

In [70] an agent-based design for a learning environment using the Prometheus

methodology and JACK platform has been presented. The architecture is divided

into three spaces which are individual space, collaborative space and cooperative

space. The system evaluates its impacts at different levels such a pedagogic, social

and economic. The system depicts the epistemic and cognitive profile of the learner

to adapt according to its capacities. This system does not use data grid in its archi-

tecture and does not intend to control and manage the e-learning system as a system

of systems.

Modelling of human learners using agents has been investigated in [132]. Agents

can facilitate personalised learning. Agents, which replaces the human instructors,

control an e-learning environment and exploits a self organising map (SOM) in order

to achieve the learning goal. The goal of the study was to suppor the argument

that e-learning environments are feasible and can significantly assist dissemination of

knowledge within modern educational settings.

In [25] the author proposed an agent-oriented extensible framework based on

Extensible Markup Language (XML) for building a hypermedia e-learning system

available on the World Wide Web. The implementation focused on deploying mobile

agents that can exchange information in a flexible way via XML-based documents

such as RDF assertions and SOAP messages.

The Multi-Agent System for E-Learning and Skill Management (MASEL) was

described in [61]. The MASEL performs tasks which include for example (1) support-

ing Chief Learning Officers in defining roles, associated competencies and required

knowledge level; (2) managing the skill map of the organization; (3) evaluating human

resources’ competence gaps; (4) supporting employees in filling the competence gaps

related to their roles; (5) creating personalised learning paths according to feedback

83

4.2 Requirement Analysis

that users provide to optimise the acquisition of required competencies. A prototype

was developed using JADE (Java Agent DEvelopment Framework).

In [6] the author proposed architecture for an e-learning system based on mobile

agent technology. The learner’s actions were monitored by a mobile agent in the

e-learning system. Two functions were performed: (1) the mobile agent identified

optimal learning conditions and (2) noted the areas of weak knowledge. The pro-

posed architecture focused on the process of composing personalised content for an

individual user and developing courses.

4.2.2 Context and Motivation

With the emergence of the internet as the backbone of global communication and

information exchange, greater attention has been paid to e-learning. Many academic

institutions and training centres worldwide are embracing web-delivered instruction.

In recent years, new public and private universities have been established to offer

degree programs delivered exclusively online. In the Kingdom of Saudi Arabia (KSA)

[12] there are many reasons to adopt and embrace the RDADeLE architecture, the

following are some of those reasons:

1. The KSA covers an area of 2,149,690 sq.km, and is divided into 13 adminis-

trative regions (See table 4.1 and map figure 4.1). This large area of different

administrative regions requires systems to control and manage them. The ad-

ministrative regions of the KSA [1] are based on the regional government system

and are regarded as the basis for collection, distribution, and publication of geo-

graphical and statistical data. The RDADeLE system needs to be divided into

many segments (regions) according to the administrative regional divisions.

The division is not provided for division sake only, it is provided to minimise

problems of the whole project by determining and solving problems associated

84

4.2 Requirement Analysis

with each segment. Besides that, division is provided to build autonomous seg-

ments. Eventually, the system will combine these segments to build the whole

system. This approach has been embraced to build the required RDADeLE

system. The segments in the RDADeLE system are supposed to be regional

grids which correspond to the administrative regions of the KSA.

Table 4.1: Administrative Regions of the Kingdom of Saudi Arabia

No. Administrative Region Headquarter

1 Riyadh Region Riyadh City
2 Makkah Region Makkah City
3 Madinah Region Madinah City
4 Qasim Region Buraydah City
5 Eastern Region Dammam City
6 Asir Region Abha City
7 Tabouk Region Tabouk City
8 Hail Region Hail City
9 Northern Border Region Arar City
10 Jizan Region Jizan City
11 Najran Region Najran City
12 Baha Region Baha City
13 Al-Jouf Region Sikaka City

2. Information: The KSA has 252 government and private universities and colleges

that grant bachelor, master and doctorate degrees in different fields (See table

4.2). The increasing number of universities, colleges and institutions will result

in massive amounts of information on the web assuming that education will

be delivered via the internet as well as traditional methods. This information

should be exploited by organising and sharing it between different environments

of universities, colleges and institutions using distributed regional grids.

3. Demographics: According to a United Nations study in 2006 [108], the world’s

population is increasing; the KSA certainly follows this trend. Table 4.3 illus-

85

4.2 Requirement Analysis

Figure 4.1: Administrative Regions in the Kingdom of Saudi Arabia

Table 4.2: Distribution of Universities, Colleges and Institutions Among Adminis-
trative Regions of the Kingdom of Saudi Arabia

Administrative Re-
gion

Number of Institu-
tions

Number of students

Riyadh Region 57 183807
Makkah Region 40 178428
Madinah Region 16 46540
Qasim Region 22 32289
Eastern Region 30 76798
Asir Region 22 49745
Tabouk Region 9 11354
Hail Region 8 12487
Northern Border Region 5 9244
Jizan Region 10 24375
Najran Region 9 9344
Baha Region 10 14696
Al-Jouf Region 14 17555

Total 252 666662

86

4.2 Requirement Analysis

trates these changes. This means that more universities, colleges and institu-

tions will open.

Table 4.3: World and the Kingdom of Saudi Arabia Population (thousands)

Year 2007 2015 2025 2050

World 6671226 7295135 8010509 9191287
Saudi Arabia 24735 29265 34797 45030

The education system in the KSA is divided into three main categories: gen-

eral education, technical and vocational education, and higher education [4].

General education is under the supervision of the Ministry of Education, which

was established in 1954. General education consists of six years of elemen-

tary school, beginning at the age of six, three years of intermediate and three

years of general secondary school. Technical and vocational education is under

the supervision of the Technical and Vocational Training Corporation (TVTC)

which has more than 40 technical colleges and more than 120 other technical

and vocational institutions [142]. Higher education is under the supervision

of the Ministry of Higher Education. The number of registered students in

2009 in universities and colleges under the umbrella of higher education and

technical and vocational education, was 666662 students, and the number of

faculty staff was 27964 members [28]. These figures indicate an increase in the

number of students and faculty staff in universities, colleges and institutions in

the KSA. Table 4.2 shows the distribution of universities, colleges, institutions

and students among the 13 administrative regions of the KSA.

We concentrate on all institutions which are supervised by the Ministry of

Higher Education. We can adopt the RDADeLE system to be adapted and

deployed to control and manage universities, colleges, faculty staff and students

87

4.2 Requirement Analysis

of this category within the administrative regions of the KSA.

4. Economics: According to the International Monetary Fund’s World Economic

Outlook Report, April 2009, the KSA and 154 more countries were considered

as developing countries which have been described as nations with a low level

of material well being. Controlling and managing e-learning environments will

encourage education institutions to use e-learning technology. Using e-learning

technology will reduce the number of students who use traditional classes in

academic institutions to pursue their studies. Therefore, budgets dedicated

to running institutions and training centres will be reduced. In the economical

context, internal migration to big cities will be limited if e-learning is adopted by

academic institutions. Using e-learning will actively prevent young people from

migrating from rural areas to cities, considering that communication technology

is accessible in most inhabited areas. Preventing internal migration of people

from rural areas to big cities will increase the economy of these areas which in

turn will increase the economy of the whole country.

5. Society and culture: In the KSA, King Faisal faced public resistance against

female education. He was not initially able to convince people of his views

[68]. In 1963, King Faisal commanded the official force to keep girls’ schools

open. Although there is not a single verse in the Holy Quran which forbids the

education of women, some parents prevented their daughters or sisters from

pursuing higher or even secondary education. This was on account of some

local tribal traditions which mandated segregation of genders [75] and social

conservatism. An increase in using and adopting e-learning architectures in

academic institutions will generously help tackle these problems. Hence, girls

can pursue higher education using the web without attending actual classes.

88

4.2 Requirement Analysis

These statistics related to the education system in the KSA motivates us to build

a robust system in order to organise, control and manage e-learning in the KSA.

Figure 4.2 shows the deployment of the RDADeLE system in the administrative

regions in the KSA. The map shows that there are 13 regional grids corresponding

to the number of the administrative regions (See table 4.1).

Figure 4.2: RDADeLE System Deployment in the Administrative Regions in the
Kingdom of Saudi Arabia

4.2.3 Requirements for Dynamic RDADeLE Environment

In order to produce such an effective and dynamic model to tackle issues related to

controlling and managing complex and large scale systems, we consider three main

criteria which must be adopted in the model.

The first criteria is the adaptability which is an important factor in dynamic and

complex systems. Adaptability is the ability of the RDADeLE system to adapt itself

efficiently and quickly to changing circumstances. An adaptive system is able to adapt

its behaviour according to changes in its environment or in parts of the system itself.

89

4.2 Requirement Analysis

Since there are so many parties and components that affect and contact with the

e-learning environment, RDADeLE needs to adapt to these changes. Agent features

will help the systems to be adaptable.

The second criteria is the flexibility, which is another factor needed in dynamic

systems. Flexibility is the ability of a system to respond to potential internal or

external changes affecting its value delivery, in a timely and cost-effective manner.

Thus, flexibility for the RDADeLE system is the ease with which the system can re-

spond in a manner to increase such value delivery. Embeded agents in the RDADeLE

system will help the system to be flexible.

The third criteria is the scalability, a factor that a dynamic system depends on.

In the RDADeLE architecture, the data grid has been divided into regional grids.

The regional grids with its middlewares (e.g. OGSA and OGSI) are responsible for

scalability, reliability and integration of data grids within a grid environment. A

large-scale grid system can create added value such as connecting large numbers of

resources, allowing them to be utilised and thereby enabling new services [54].

Communication within the RDADeLE system is another important factor. Use

of agent technology to resolve this problem is highly recommended; this led us to

produce a dynamic architecture.

4.2.4 The Architectural Data Standards in the RDADeLE
System

Data sharing has become an increasingly important aspect within the data grid en-

vironment. Many systems face the critical challenge of sharing information. This

issue is amplified in the system of systems where the components, e.g. regional grids,

require data exchange to operate and for the overall system of systems to work. Data

standards are fundamental to the seamless exchange of data and they help improve

90

4.2 Requirement Analysis

the ability to exchange data efficiently and accurately. They also assist data users

to understand, interpret, and use data appropriately. Data standards improve the

quality and ability of sharing in complex and system of systems environments by

increasing data compatibility, improving the consistency and efficiency of data col-

lection and reducing data redundancy. In the RDADeLE system, we adopted the

Sharable Content Object Reference Model (SCORM) to design the content distribu-

tion of Learning Objects (LOs) in the regional grids and the Dublin Core Metadata

Element Set (DCMES) to design the index of the LOs (i.e. LOs’ information).

4.2.4.1 Standards of Learning Objects (LOs) Content Distributions

The Learning Object (LO) was defined by the Learning Technology Standard Com-

mittee (LTSC) of the Institute of Electronic and Electronic Engineers (IEEE) as “any

entity, digital or non digital, that may be used for learning, education or training”

[37]. It was noted that LOs are extensively used by well known corporations such as

Cisco and Microsoft. AT&T Business Learning Services also adopt this technology

for internal and customer training [80] [35].

Several standards have been developed for the purpose of learning objects’ con-

tent distributions. There are some common standards used in the e-learning field.

These standards include Sharable Content Object Reference Model (SCORM) which

was generated by the Advanced Distributed Learning (ADL) initiative. ADL has

made rapid progress via incorporation due to the efforts of the Instructional Man-

agement Standards (IMS), The Aviation Industry CBT (Computer-Based Training)

Committee (AICC), the Alliance of Remote Instructional Authoring and Distribution

Networks for Europe (ARIADNE), and the IEEE Learning Technology Standards

Committee into a single harmonised reference model for learning design and delivery.

91

4.3 The Computational Model of The RDADeLE System

4.2.4.2 Metadata Standards

When we talk about LOs, we usually refer to metadata. Metadata is used to make

LOs reusable, sharable, storable and manageable in a repository such as an archive.

The most popular metadata standards that provide cataloguing, searching and reuse

of resources are the Dublin Core Metadata Element Set (DCMES) and the IEEE

Learning Object Metadata (LOM). Nowadays, search engines use catalogue concepts

to structure web page contents. Having information about the content makes it easier

for humans and computers to classify a resource.

On one hand, the IEEE LOM organises its 60 elements into nine categories:

general, life cycle, meta-metadata, technical, educational, rights, relation, annotation

and classification. On the other hand, the current version of DCMES comprises 15

well-defined elements for describing the core information properties: title, creator,

subject, description, publisher, contributor, date, type, format, identifier, source,

language, relation, coverage, and rights [101].

4.3 The Computational Model of The RDADeLE

System

For many years, learning methods have been traditional, considering teachers who

are providers and transmitters to learners of educational information, as the centre of

the learning process [59]. Transferring traditional learning methods to e-learning and

web based technologies plays a significant role in the learning and teaching process.

e-Learning is the employment of technology to aid and enhance learning. It can be as

simple as high school students watching a video documentary in class or as complex

as an entire university course provided online [41].

In order to present a clear view of the RDADeLE system we will present its

92

4.3 The Computational Model of The RDADeLE System

computational model which will be guided by the KSA case study. Our computational

model comprises entities and mechanisms. Entities include regional grids, nodes,

learners, data resources and policy, while mechanisms include communication, timing

and failure mechanism.

4.3.1 The Entities

Entities are the main components of our computational model which include regional

grids, nodes, data resources and policy. Each of these entities is an object as follows:

1. Regional grids : Regional grids are the entity which comprise the entire grid in a

distributed fashion. In our case study there are 13 regional grids corresponding

to the 13 administrative regions in the KSA. Each regional grid is supposed

to be a “container” which keeps track of and connections between the regional

grid’s components. From the agent platform point of view the “container” is

the place where agents live. Regional grid components include nodes, learners,

grid services, data and policy. The Regional grid is responsible for the activities

within its area using some grid middlewares. One of these activities which we

are concerned about in the case study in our research is search provision. The

search process is for LOs’ information and grid services. The search process is

performed by the Regional Agent, which manages the regional grid, responding

to requests from learners within or outside the regional grid. Moreover, regional

grid’s agents manage its components to show some kind of autonomy.

2. Nodes : Nodes are the entities which manage learners connected with them

using the Node Agent within a regional grid. Local Area Network (LAN)

and Wide Area Network (WAN) are network capabilities which are used for

communication between nodes. Capabilities and roles of a node depend on

93

4.3 The Computational Model of The RDADeLE System

the type of node in each regional grid. There are two types of node which

are computation node and storage node. The function of computation nodes

is the processing of jobs and applications. Computation nodes could be in a

cluster, mainframe, high performance computer or a desktop which are capable

of executing applications on many processors, maintaining registry (i.e. index

of LOs) and policy of the regional grid and performing job request.

Storage nodes are the machines which are responsible for storing and providing

data to other nodes inside the grid environment. The most common storage

type is secondary storage using hard disk drives or other permanent storage

media such as tape drives. Different types of file systems exist which will

handle the storage and organisation processes for the data across the nodes of

the regional grid network. Network File System (NFS), Distributed File System

(DFS) and General Parallel File System (GPFS) are some popular network file

systems.

In our case study both types of node represent institutions within the adminis-

trative region. An institution could have more nodes than others consequently

an administrative region could have more nodes that others. The number of

nodes in a particular administrative region depends on the the size of that ad-

ministrative region and the number of institutions. For instance, the Riyadh

region has more nodes than the other 12 administrative regions in the KSA,

this is because the Riyadh region had more than 57 universities and colleges

and more than 183807 registered students in 2009 [28]. None of the other 12

administrative regions had more than this number of institutions and registered

students.

3. Data resources : The data resources are distributed among regional grids and

94

4.3 The Computational Model of The RDADeLE System

are stored in storage nodes. The data we are concerned with is the LOs which

are sharable and accessible under the policy of a regional grid. The LOs are

stored in one node or more within a regional grid. The owner of the data has

the right to maintain and determine the policy for the data. The policy on data

resources could be read only, migrated, written and copied.

In our case study, data of each administrative region is distributed among nodes

within that region. For instance, the Eastern province region has more than

30 universities and colleges and more than 76798 registered students, all data

belonging to these universities and colleges are distributed within the Eastern

province region. The same concept is applied for the other 12 administrative

regions.

4. Policy : Policy is defined to be sets of rules, principles and practices explicated

by one or more owners of a resource about how resources can be accessed and

used. Policy is used to explain how security is implemented in an organisation

and how an organisation manages, protects and distributes resources. Resource

policies are stored in a separate media storage as an XML file. Each regional

grid has its own policy which is based on the properties of that regional grid.

Policy includes policy of regional grid data and applications.

In our case study there are differences in the policy of each administrative re-

gion. Although the main education policy in the KSA is a common policy some

administrative regions have their own policy regarding their regional grid data.

The difference in policies appear between countries, not within one country.

95

4.3 The Computational Model of The RDADeLE System

4.3.2 The Mechanisms

A mechanism manages and controls the RDADeLE system components using for

instance, the following three mechanisms: communication, timing and failure.

1. Communication Mechanism: Communication between objects is needed in or-

der for them to perform their activities. The aim of communication is to trans-

port messages from one object to another in order to exchange and transmit

information and data between those objects. Also, communication is used to

help discover failures. Remote Procedure Calls (RPC) is the means of commu-

nication between sending and receiving objects. Communication may be either

synchronous or asynchronous.

In our model, interactions between regional grids (containers) use Remote

Method Invocation (RMI) and messaging services between the RDADeLE en-

tities (i.e. agents) is performed using Message Transport Protocol (MTP).

MTP manages all message exchange within and between platforms. Message-

based asynchronous communication is the basic form of communication between

agents. Using asynchronous communication in sending and receiving messages

does not block synchronous communication. Asynchronous communication is

useful in situations when it is possible for an object to retrieve replies later.

The MTP transport FIPA-ACL messages between agents which contain a set

of one or more message parameters. The parameters include performative (e.g.

Request, Inform and Failure), sender, receiver and content.

2. Timing Mechanism: After a search request has been submitted, it starts looking

for desired information from all over the regional grids. The search process runs

in each regional grid. The regional grid node is responsible for the search request

(i.e. the search process runs on regional grid node). A time is supposed to be

96

4.3 The Computational Model of The RDADeLE System

determine for each search request by each regional grid based on properties of

that regional grid. If the search result is not obtained within the determined

time the regional grid node informs the search sender that the allowed time for

search has expired and gives the search sender the option to send the request

again or ask the regional grid to perform another search request after killing

the previous request.

In our case study, if a learner in the Riyadh administrative region sends a

search request to all administrative regions including the Riyadh region, each

administrative region allows a determined time for the search request. This is

very important in raising the performance of the RDADeLE system.

3. Failure Mechanism: Failures in complex and distributed systems can be un-

predictable. In these environments the probability of failure is high, for the

following reasons:

• Complex and distributed systems combine an immense amount of hard-

ware and software components.

• Complex and distributed systems could consist of heterogeneous entities,

which can lead to failure when they interact.

• Complex and distributed systems are dynamic, with components con-

stantly joining and leaving the system.

Fault tolerance is an essential function for complex and large environments

in order to avoid the loss of computation, data and results. Fault tolerance

mechanisms provide failure detection and failure handling. Keeping track of

and connections between entities of a system plays a big role in the system

coherence and control. The importance of this issue appears in complex and

97

4.4 RDADeLE Architecture Components

large systems which deal with large amount of components and entities. Our

RDADeLE model assumes that tracks or connections of the system components

and entities may fail at any time. In our RDADeLE model, since agents control

all components and entities of the e-learning system keeping track of all of them

is the main role of fault tolerance. Information Service (IS) of the RDADeLE

system (Main Container) keeps track of all agents and all “containers” (regional

grids) which are connected to it. Replication of IS (Main Container) will guar-

antee the tracks and connections between RDADeLE agents and “containers”

(regional grids).

In our case study, replication of IS (Main Container) will produce many repli-

cated main containers to which all 13 administrative regions (containers) are

supposed to be connected. The topology of connections between the Main

Container and replicated main containers is ring topology.

The Main Container and replicated main containers will arrange themselves in

a logical ring so that whenever one of them fails, the others will notice and

act accordingly. Containers (regional grids) will then be able to connect to the

platform through any of the active main containers; the different copies will

evolve together using cross-notification.

Detection occurs using cross-notification between connected replicated contain-

ers when the Main Container or a replicated main container fails. Consequen-

tially, non-failed containers will arrange themselves in a logical ring.

4.4 RDADeLE Architecture Components

The RDADeLE architecture was designed to achieve and fulfill its aims and objectives

which include controlling and managing complex systems and system of systems.

98

4.4 RDADeLE Architecture Components

Figure 4.3 shows an overview of the RDADeLE architecture which consists mainly

of agents which live in the Information Service (IS) (i.e. container) to provide the

internal structure. These agents are triggered when the state of the RDADeLE

environment is changed or when a request is initiated by a user. The user in the

architecture refers to a learner or a requester representative. The user sends requests

through a portal (e.g. a web) which provides a user interface. The portal is a means

to enable the user to send a request and receive a response to and from the system.

Figure 4.3: RDADeLE Overview

The brick cylinder shape represents the information services for the RDADeLE

system. There is one Main Information Service (Main Container) and many infor-

mation service (containers) which reside in each regional grid. Whereas the regular

cylinder shape represents the registry of each regional grid. The registry of each

99

4.4 RDADeLE Architecture Components

regional grid leads to the contents of desired LOs which are queried by requesters.

Dotted lines show the request path which travels to all regional grids connected

to the RDADeLE system in order to search for LOs’ information or grid services.

The path also shows the results returning to the user. The dotted line between the

portal and the Main Information Service represents the path used by the requester to

obtain regional grids which are currently connected to the RDADeLE system. Using

data grids and portals enables learners, employees and the general public to search

for and collect information about LOs, courses, grid service, and degree plans from

regional grids from all over the RDADeLE environment.

The square shapes represent nodes. Nodes represent a computation node or a

data resource node and locations of servers which provide computation processes or

repository of LOs’ information/grid services. Each regional grid has one or more

server which represents one or more academic institution or training centre.

The container of each regional grid works as an Information Service (IS) of all

nodes within the regional grid. The solid lines (without arrows) show the control

flow between components, for example, IS (container) in regional grid1 controls nodes

labeled “1” and “2” within the regional grid. The solid lines with arrows in both sides

show the data flow, for example, there is data flow between registry and data resource

nodes labeled “1”. On one hand, the role of one type of agent within each regional

grid is both to help users to search and retrieve LOs’ information/grid services and

control data passing in/out from regional grids according to assigned constraints

which are part of the properties of regional grids. On the other hand, the role of

another type of agent is to update each regional registry.

The RDADeLE system is a multi agent system which is designed using a hierar-

chical structure of agents. We have adopted this approach in order to build dynamic

and robust distributed data grids (i.e. regional grids). We consider that agents in the

100

4.4 RDADeLE Architecture Components

RDADeLE system are intelligent and autonomous. There are many reasons for this

view. Firstly, intelligence is required in such multi-task systems. Secondly, intelligent

agents support the execution of tasks in an optimal timescale. Autonomous agents

can perform tasks in pursuit of a goal without direct supervision or control. These

types of agents are necessary in the RDADeLE dynamic architecture.

4.4.1 Regional Grid Structure

Each regional grid represents one or more educational institutions and training centres

[12] within an administrative region. Figure 4.4 has been derived from figure 4.3

which shows two regional grids, regional grid1 and regional grid2. Figure 4.4 shows

the components of regional grid2 which consists of its registry, Regional Information

Service (RIS) and three nodes, Node3, Node4 and Node5. Node4 and Node5 are data

resource nodes, whereas Node3 is a computational node. Contents of LOs and grid

services are stored in the data resource nodes, labeled Node4 and Node5, which are

accessed and retrieved by requesters through the registry.

The RIS keeps track of and connections between the regional grid’s components,

i.e. Node3, Node4 and Node5. The solid lines (without arrows) connect the RIS

with Node3, Node4 and Node5. The computational node, labeled Node3, has the

grid middleware which helps in managing and organising the data grid within the

regional grid. The solid lines (without arrows) connect Node3 with both Node4 and

Node5. Maintaining the registry and searching for LOs’ information and grid services

is performed by agents which live in the RIS. The solid lines with arrows on both

sides connect the RIS with the registry to represent communications between agents

and registries.

The purpose of distributing the registries in the architecture is based on an ap-

proach which will be explained in this section. There are two approaches which could

101

4.4 RDADeLE Architecture Components

Figure 4.4: Architecture of Regional Grid Node of RDADeLE

be adopted in the architecture. The first is to create a central global registry. The

content of this global registry is the contents of all registries in each regional grid.

Users can discover all LOs in all regional grids via the global registry. At the same

time, registries in each regional grid are used to discover only that particular grid’s

LOs. Users can access global and regional registries to discover LOs. The second

approach is based on assigning one regional registry for each regional grid. In this

approach there is no central registry with which to discover LOs. Instead, regional

registries are used to discover regional LOs.

In RDADeLE, components of each regional grid represent the active entities, while

the regional grids support the infrastructure in the following ways:

• A member may dynamically connect and disconnect from RDADeLE.

• A regional grid is always supposed to be connected to RDADeLE.

102

4.5 Contents and Services Management

• Each regional grid has one registry which publishes all LOs connected to it.

• A registry of a particular regional grid is updated according to the number of

LOs which are added to or removed from the regional grid.

• Each regional grid has its own constraints which are considered part of its

properties. These constraints control information flow from and to regional

grids.

There are many different reasons for dividing our architecture into regional grids

(regional segments) which include the following; such a division helps to produce

a sound structure which allows the designer a flexible approach in the design of

constraint-based segments. The other reason is that regional grids could include one

or more countries which have common properties (e.g. cultural factor). This will

ease the way for any institution or training centre to connect to a regional grid with

similar properties. Another reason for dividing our architecture is that it provides

a flexible constraint setting for particular regional grids, which is useful in utilising

each regional grid in particular, and the whole global grid in general. Division has

been adopted in the RDADeLE system in order to reduce problems or congestion

that may occur. Moreover, if for any reason a single regional grid is disconnected

from the RDADeLE system it will not affect other regional grids in particular and

the whole system in general.

4.5 Contents and Services Management

The architecture encapsulates educational materials inside grid services which sat-

isfies the demands of interoperability and reusability [118]. In a typical invocation

of a web service, a client may use the UDDI Registry (Universal Description, Dis-

covery and Integration), but in the architecture the client may use the registry for

103

4.5 Contents and Services Management

invocation of grid services. e-Learning content is published in the content registry in

order to be accessible to requesters. The UDDI Protocol is used to find a server that

hosts a grid service. A Learning Management System (LMS) is accessible via a web

page to authenticate learners and search for LOs’ information/grid services using

agent assistance and grid middleware. Grid middleware includes Open Grid Ser-

vices Architecture - Data Access and Integration (OGSA-DAI) and OGSI-complaint

interfaces (OGSI- Data Service) which utilise programmes languages such as XML

Schema, XPath, XQuery and XSLT (Figure 4.5).

Figure 4.5: Contents and Services Management

Datasets within regional grids are managed and controlled by both Data Grid

Management Systems (DGMS) and agents. The agents’ role in this context is to pro-

vide the means to simplify activities within regional grids. Functions that could be

performed by agents include updating registries, searching for LOs’ information/grid

services, and authentication. Updating registries is indispensable in the e-learning

environment in order to provide requesters with the correct and updated LOs’ in-

formation. The update is performed in two situations. Firstly, when LOs’ authors

104

4.6 Fault-Tolerance with Replicated Information Service

update the LOs’ repository; and secondly, when the LOs are added to or removed

from the regional grid. Another agent function is to be responsible for authentication

of both the LMS and DGMS middleware via a single logon. All other LMS capa-

bilities (discussion, chat, progress monitoring, accounting, course management and

authoring) are considered to be web services[118].

4.6 Fault-Tolerance with Replicated Information

Service

Fault tolerance is one of the main requirements that must be done when deploying

real-world applications. Non-main containers of the JADE agent platform correspond

to a regional grid whereas the Main Container corresponds to the information service

of the RDADeLE system. The Main Container is used to house key platform services

such as AMS and DF. This is a potential single point of failure that must be effectively

managed to ensure the RDADeLE environment remains fully operational even in the

event of Main Container failure. Consequentially, we make sure that all regional

grids and their components in the RDADeLE system are fully operational even in

the event of a failure of Information Service (IS). Replication of IS is an optimal

technique which will be adopted. IS reflects information about all resources (regional

grids and their components) in the RDADeLE system. Using this technique, it is

possible to replicate any number of information services, which will arrange IS in

a logical ring so that whenever one of them fails, the others will notice and act

accordingly. The different copies will evolve together using cross-notification [19].

Figure 4.6 shows this technique. More detail will be provided in chapter 7, section

7.4.

105

4.7 Review of existing e-learning architecture towards RDADeLE
Requirements

Figure 4.6: Fault-Tolerance With Replicated Information Service

4.7 Review of existing e-learning architecture to-

wards RDADeLE Requirements

A number of existing e-learning architectures have been reviewed as possible can-

didate architectures which address the RDADeLE requirements in section 4.2. The

RDADeLE architecture requirements are management, extensibility, flexibility and

fault tolerance. Existing e-learning architectures do not include all these require-

ments; in particular, the following points highlight deficiencies of existing systems:

1. The architecture in [71] does not include collaboration with other learning man-

agement systems on other sites.

2. Learning Objects LOs are not considered as services.

3. Limitations usage between institutions and sites.

4. Data grid technology is not used.

5. Limitations usage of agents to mobile agents.

In contrast, the RDADeLE architecture satisfies the requirements by integrating

data grid technology with agent technology. The first requirement is management

of data resources. Management of data resources in the RDADeLE architecture is

106

4.8 Summary

carried out using data grid middleware without alterations so that all distributed data

resources across a heterogeneous environment are managed (covered in chapter 2).

Part of the management is monitoring all components of the RDADeLE architecture.

The monitoring is carried out using agents which control and represent e-learning

components such as regional grid, learners and nodes (covered in chapter 3).

The second requirement is the extensibility (scalability). Extensibility in data

resources is carried out using data grid middleware without alterations to facilitate

large-scale data-intensive computing and to provide large storage capacity so that all

different types of data resources appear as a unified data resource which are shared

between grid users (covered in chapter 2).

The third and fourth requirements, flexibility and fault tolerance respectively,

are carried out using agent technology which has been covered in chapter 2. The

conclusion is that the RDADeLE architecture does not have deficiencies which exist

in existing e-learning architectures.

4.8 Summary

This chapter provided an overview of the architecture of the RDADeLE system. It

started with requirement analysis which includes the previous e-learning architecture,

motivation, and standards of learning objects and its meatdata standards. Then, it

described the computational model of the RDADeLE system guided by the KSA case

study. Afterwards, it described architecture components and regional structure of the

RDADeLE system. Finally, it described contents and services management and fault

tolerance of the RDADeLE system.

107

Chapter 5

RDADeLE Agents’ Specifications

Objectives

• Review knowledge representation of the RDADeLE agents.

• Present two different scenarios in the RDADeLE system.

• Discuss the MAS approach in the RDADeLE system.

• Present functions and descriptions of the RDADeLE agents.

5.1 Introduction

The development of intelligent agent programs and expert systems is often labour in-

tensive, time consuming and expensive, involving a number of knowledge formatting

steps which include knowledge acquisition, knowledge analysis, system design and

system implementation. During knowledge analysis and system design a knowledge

level specification is produced. The knowledge level is an abstract knowledge system

or agent specification which allows a knowledge engineer to describe the behaviour of

the system under development in terms of its knowledge without making a commit-

ment to its implementation architecture. Once the knowledge level representation is

completed, it is transformed into an application.

This chapter presents RDADeLE agents relationships, which include communica-

tions and relationships between RDADeLE agents, the two RDADeLE scenarios, the

MAS approach in the RDADeLE system and the architecture for each agent in the

system.

108

5.2 The RDADeLE Knowledge Representation

5.2 The RDADeLE Knowledge Representation

We have adopted hierarchical knowledge representation in the RDADeLE system.

This is because hierarchical knowledge representation is inheritable knowledge, which

centres on relationships and shared attributes between kinds or classes of objects.

These features are urgently needed in the RDADeLE system, since it is dynamic,

large and complicated. Using hierarchical representation simplifies reasoning by lim-

iting the number of distinguishing elements we have to deal with, reducing complex-

ity, and thinking at a higher level of abstraction where possible [22]. Object-oriented

programming languages such as C++ and Java provide a natural framework for rep-

resenting knowledge as objects and for manipulating those objects. The hierarchical

representation of knowledge is different from other kinds of representation, including

procedural and relational representation.

5.3 RDADeLE Agents’ Relationships

RDADeLE is a multi-agent system in which agents communicate with each other in

order to complete and process their tasks. There are relations between these agents

which give us a clear view of the RDADeLE system. This section begins by intro-

ducing the types of communication, then considers relationships among RDADeLE

agents.

5.3.1 Communication

Communication is the essential means by which agents cooperate and coordinate in

order to achieve goals. In a decentralized multi-agent system environment, there are

different types of communication, which include Agent to Human, Agent to Agent,

Agent to Non-Agent (object), and Agent to Environment.

109

5.3 RDADeLE Agents’ Relationships

• Agent to Human: Agents may communicate with a human in different ways,

such as through textual dialogs. Agents that communicate with humans are

usually named interface or user agents. They serve users by accepting queries

and returning the results to them.

• Agent to Agent: Communication between agents can be established through

the communication components of their architecture. They exchange messages

using predefined mechanisms and protocols.

• Agent to Non-Agent: agents may also be able to communicate with non-agents

(e.g. databases, applications, and middleware) through their names and ad-

dresses.

• Agent to Environment: An agent may be able to communicate with an envi-

ronment, including the type of operating system that it runs on.

5.3.2 Agent Relationships

One of the most obvious features of multi-agent systems is cooperation and collabora-

tion between agents. In RDADeLE, agents control and administrate grid components,

which include regional grids, users (learners and staff), grid services, information ser-

vices and nodes. In order for the RDADeLE system to be dynamic, flexible and

reliable, the agents communicate and cooperate among themselves. Figure 5.1 shows

the relationships between RDADeLE agents.

Depending upon the architecture of RDADeLE, as shown in figure 5.1, the ad-

ministrative agent class associates with one or more regional agents (regional grids).

This means that at least one regional grid must exist to build the RDADeLE system.

A regional agent relates to one or more node agents. There are some circumstances

where there could be no node within a regional grid, for example in the case of no

110

5.3 RDADeLE Agents’ Relationships

Figure 5.1: Class Diagram Association

111

5.4 RDADeLE Scenarios

institution being registered to a regional grid. In order to operate the RDADeLE sys-

tem, there should be at least one learner to initiate requests. It is possible that there

could be no learner related to a node, for example where no learner is registered to

an institution. There is a one-to-many relationship between the regional agent class

and the grid service class “GridService”. This means that there exists one or more

grid services in the Directory Facilitator (DF) within a regional grid. Furthermore,

it is possible that there could be no grid service related to a regional grid, where no

grid service has been registered with the DF within a regional grid.

5.4 RDADeLE Scenarios

As we will see in detail in chapter 6, there are two techniques for composing and

searching for LOs’ information and grid services: the XML-based Registries

Technique (XRT) and the Registered-based Services Technique (RST). The

following subsections present two RDADeLE scenarios, each based on one of these

techniques:

5.4.1 XRT Scenario

The first scenario corresponds to the XRT. The administrative agent initiates the

creating of regional agents (regional grids) via the Agent Management System (AMS).

AMS is an agent ready-made by the JADE platform which provides the naming

service (i.e. ensures that each agent in the platform has a unique name) and represents

the authority in the platform; for instance, it is possible to create/kill agents in

remote containers by request to the AMS. This agent and the administrative agent

are responsible for managing the platform and providing the white-page service. Once

regional agents are created, they perceive the LOs’ information and regional policy by

parsing the registry (which contains the LOs’ information) and policy files of their own

112

5.4 RDADeLE Scenarios

regional grid. Regional agents need to be authenticated in order to be registered for

further needs. The authentication and registration are performed by administrative

agents. Once regional agents are registered, they create their own components, which

comprise node and learner agents. Each regional agent is responsible for registering

nodes connected to it. The node agent is registered after its creation by the regional

agent, while the learner agent is registered after its creation by the node agent.

The aim of node agents is to maintain registry and node property files performed

by authorised members of staff. Node agents perceive LOs’ information and node

property by parsing registry and node property files. One of the main tasks of a

node agent is registering learners connected to it. Learner agents are initiated when

a learner sends a request. These requests include a search for the LOs’ information

and a list of all connected regional grids. The search request is sent to all connected

regional agents in order to retrieve required LOs’ information from registries of all

regional grids based on the regional policy. The list request is sent to administrative

agents to list all connected (registered) regional grids. Figure 5.2 shows this first

scenario.

5.4.2 RST Scenario

The second scenario corresponds to the RST, which differs from XRT in three ways:

• There are no registries for regional grids. Instead, there are grid services which

are registered and kept in the DF. This is an agent ready-made by the JADE

platform which provides a Yellow Pages service by means of which an agent can

find other agents providing the services it requires in order to achieve its goals.

• The service agents (i.e. grid service agents) need to be registered with the DF.

• The search requests for grid services from learners are fulfilled by learner agents

113

5.4 RDADeLE Scenarios

Figure 5.2: XRT Scenario in RDADeLE

114

5.5 MAS-based RDADeLE

from the DF.

The administrative agent initiates the creation of regional agents (regional grids).

Once regional agents are created, they perceive regional policy by parsing the policy

files of their own regional grid. In a process similar to that under the first scenario,

regional agents must to be authenticated in order to be registered for further needs.

The authentication and registration are performed by administrative agents. Once

regional agents are registered they create their own components, which comprise

node, learner and service agents. Regional agents are responsible for registering nodes

connected to them. The node agent is registered after its creation by a regional agent

and the learner agent is registered after its creation by a node agent. The aim of

the service agents is to describe the grid service by embedding the service type and

property in order to be registered in the DF. One of the aims of node agents is

to maintain node properties and this process is initiated by authorised members of

staff. Node agents perceive node properties by parsing node property files. One of the

main tasks of a node agent is registering learners connected to it. Learner agents are

initiated when a learner sends a request which will include a search for grid services

and a list of all connected regional grids. The search request is sent to the DF agent

in order to retrieve the required grid services, based on the regional policy. The

list request is sent to administrative agents to list all connected (registered) regional

grids. Figure 5.3 shows this second scenario.

5.5 MAS-based RDADeLE

We intend to create a dynamic e-learning environment which depends on data grid

and multi-agent technologies. In the architecture, services are distributed, since each

regional data grid has its own registry. However, there could be many requests from

115

5.5 MAS-based RDADeLE

Figure 5.3: RST Scenario in RDADeLE

116

5.5 MAS-based RDADeLE

the portal which would cause a bottleneck in the services. Using distributed agents

in this context will help in resolving part of this problem. Agents in the architecture

have been designed to be autonomous. In order to make agents autonomous and

have flexible behaviours, they have to be reactive and social. Reactivity means that

an agent can perceive its environment and respond in a timely fashion. Agents

perceive the learning environment through the requesters (i.e. learners) and service

providers (institutions). Sociability means that agents are capable of interacting and

communicating with other agents and humans. Agents in the architecture, in a social

context, satisfy these features in interaction with requesters and in communication

with each other.

The primary concern of the MAS-based RDADeLE environment is the interac-

tion of agents themselves and their relationships with their environment. These

relationships are created in order to introduce a dynamic environment. Controlling

and organising agents’ behaviours is another aspect of producing a dynamic envi-

ronment. The multi-agent environment plays a major role in relationships between

regional grids themselves and between components within each regional grid. The

main role of the multi-agent environment in regional grids is to build a dynamic,

intelligent and collaborative environment [90].

The multi-agent structure used here is hierarchical (i.e. layered). This approach

is ideal for solving large-scale, complex problems. Hierarchical structures have been

adopted and studied in many fields of research including scientific computing and

business processing. The basic idea of a hierarchical structure is that a complex sys-

tem can be divided into subsystems; the overall behaviour of the system is determined

by its subsystems, which perform sub-functions [134]. The Hierarchical layered MAS

has three layers, the upper, middle and bottom levels, as shown in figure 5.4.

Agents need to receive behavioural instructions, whether from agents at higher

117

5.5 MAS-based RDADeLE

Figure 5.4: Hierarchical Agent Organisation of MAS-based RDADeLE

levels in the hierarchical structure or from other environmental components (e.g.

learners), and receive support from agents at lower-levels to perform their tasks. In

the model, administrative agents correspond to the upper-level agents, responsible

for controlling and managing other agents at lower levels, who in turn are responsible

for regional grid communication. Regional grids correspond to middle level agents,

which are responsible for supporting activities within regional grids. Regional grid

components (i.e. nodes, learners and grid services) correspond to bottom level agents,

which are considered to be sensors of the environment.

Agent architecture is essentially a map of the internals of an agent. It includes the

agent’s data structure, the operations that may be performed on such data structures

and control of the flow between them. There are many agent architectures which

have been adopted in numerous applications. These include logic-based architecture,

reactive architecture, belief-desire-intention architecture (BDI), layered architecture

and deliberative architecture. Subsumption architecture is arguably the best-known

reactive agent architecture [148], in which agent decision making is achieved through

the interaction of a number of behaviours. All agents in the RDADeLE environment

118

5.6 Functions and Descriptions of RDADeLE Agents

are subsumption agents. This type of agent has a behaviour-based architecture which

decomposes complicated intelligent behaviours into many simple behaviours, which

in turn are organised into layers.

5.6 Functions and Descriptions of RDADeLE Agents

We have adopted the Prometheus methodology to construct the RDADeLE system.

The Prometheus methodology consists of three phases: system specification, archi-

tectural design and detailed design phases. As stated above, there are agents at three

levels. These are upper-level, middle-level and bottom-level agents [11]. The upper

and middle levels consist of one type each: administrative and regional agents re-

spectively. The bottom-level consists of three types: node agents, service agents and

learner agents. Hence the RDADeLE system comprises five distinct agent types:

• Administrative Agent.

• Regional Agent.

• Node Agent.

• Service Agent.

• Learner Agent.

In the model, the upper-level (administrative) are responsible for monitoring and

controlling the middle-level (regional) agents. These are intermediate agents which in

turn are responsible for monitoring and controlling the behaviour of a regional zone

whose components include a number of bottom-level agents node agents, service

agents and learner agents. This means that the primary role of these agents is

monitoring and controlling behaviours throughout the whole environment.

119

5.6 Functions and Descriptions of RDADeLE Agents

In a regional grid, possible requests can be represented as a set

R = {r0, r1, r2, ...rk} . (5.1)

Once the learner agent perceives the request, it will send the request to other

agents (most requests go to regional agents as search requests) to be fulfilled. Ac-

cordingly, these respond to each request as an action. Agent capabilities can be

represented by a set of actions:

A = {a0, a1, a2, ...al} . (5.2)

The set of regional agents (i.e. regional grids) is as follows:

RG = {rg0, rg1, rg2, ...rgm} . (5.3)

For each learner request, there exist constraints which form a set of constraints:

C = {c0, c1, c2, ...cp} . (5.4)

This process of agent action generation can be represented as a function:

action : R X C −→ A (or an = action (rn, cn)) . (5.5)

This process of agent actions in responding to requests is distributed among re-

gional agents according to the following function:

∑n
i=0 an = action (rn, cn)

m− 1
. (5.6)

5.6.1 Administrative Agents

Administrative agents, with AMS and DF agents, provide an information service for

the RDADeLE system. The administrative agent is the first agent created to build

120

5.6 Functions and Descriptions of RDADeLE Agents

and monitor the RDADeLE system. It creates regional agents (regional grids) to

build the RDADeLE system, while regional agents in turn build its components (i.e.

nodes, learners and grid services). The administrative agent supplies authentica-

tion services for regional grids to register with the RDADeLE system. Meanwhile,

the administrative agent controls and manages agents at the lower level (i.e. regional

agents) and collects and preserves information about the system, including registered

regional grids and the capacity of the RDADeLE system. Furthermore, it is responsi-

ble for registering regional grids with the RDADeLE system. This information helps

in searching for LOs’ information and grid services.

The administrative agent is described in a tuple, as follows:

AA =< cr, e > (5.7)

where:

• (cr) is a control request and

• (e) is an entity.

The control request (cr) includes the creating, termination, (de)registerion and

authentication of regional agents. The entity (e) is a regional agent. The adminis-

trative agent has some functions, which are summarised as follows:

1. Monitoring the RDADeLE system.

2. Creating regional agents (regional grids).

3. Authenticating the regional grid that connects it to the RDADeLE system.

4. Registering/deregistering the regional grid on request from the regional agent.

5. Listing all registered regional grids upon request from learners.

121

5.6 Functions and Descriptions of RDADeLE Agents

5.6.1.1 Administrative Agent Architecture

Figure 5.5 shows the administrative agent architecture. The agent has six main

components, which are:

1. Interpreter and dispatcher.

2. Creation.

3. Authentication.

4. Registration.

5. Listing.

6. Collector and dispatcher.

The first component is the interpreter and dispatcher, which receives incoming

messages to the administrative agent from outside. The messages are interpreted

and dispatched to the next component. The aim of the message will be identified

as goals, then translated into plans to fulfil these goals. The plans here are agent

behaviours and actions. The behaviours are constructed in cooperation with other

agents if needed. The first action accomplished by the administrative agent is to

create regional agents (regional grids). The creation behaviour is performed using

the creation component. The newly created regional agents must be authenticated

in order to be registered (connected) to the RDADeLE system. The authentication

behaviour will be executed through the authentication component. The registration

behaviour will take place in order to register the regional agent. The registration

process, which includes both behaviour registration and deregistration, is performed

through the registration component. The listing component is responsible for list-

ing all registered regional grids upon request from learners. The last component

122

5.6 Functions and Descriptions of RDADeLE Agents

is the collector and dispatcher, which is responsible for collecting all results of other

components and forming the appropriate message to be dispatched outside the agent.

Figure 5.5: Administrative Agent Architecture

5.6.1.2 Administrative Agent Design Model

The aim of the agent’s behaviour is to receive messages from other agents to fulfil

the request it receives and then send back the appropriate acknowledgment. These

messages include two requests: registration and listing request. Figure 5.6 shows

the design model of the registration request using AUML. The administrative agent

fulfils the request to register the regional grid to the RDADeLE system (request from

regional grid).

Figure 5.7 shows the design model of the listing request using AUML. The ad-

ministrative agent fulfils the request to list all registered regional grids (request from

123

5.6 Functions and Descriptions of RDADeLE Agents

Figure 5.6: Registration of Regional Grid

learners).

Figure 5.7: Listing of Registered Regional Grids

5.6.1.3 Administrative Agent Algorithms

Monitoring the RDADeLE system is another task of the administrative agent. The

following two algorithms, each corresponding to a behaviour, explain how the admin-

istrative agent monitors the RDADeLE system:

First, in Algorithm 1, “TickerBehaviour” behaviour is performed periodically ev-

ery 20 seconds to inform the RDADeLE system’s administrator of the current situa-

tion of the system. numberOfTotalAgents is a HashMap of String and Integer which

124

5.6 Functions and Descriptions of RDADeLE Agents

contains regional names and the total numbers of their components. maxNumberOfA-

gents is the maximum number of agents that can be accommodated in one regional

grid, which is 3000.

Algorithm 1 TickerBehaviour Algorithm in the Administrative Agent

for each connected regional grid do
if numberOfTotalAgents ≥ (maxNumberOfAgents −
(maxNumberOfAgents ∗ 0.1)) then

Print ‘‘The current capacity of the regional grid is 90% of its
full capacity’’

end if
end for

The second behaviour, in Algorithm 2, is “CyclicBehaviour”, which is performed

periodically to receive messages from other agents. The message type INFORM NUMBER AGENTS

determines the type of the message and informs the administrative agent of the cur-

rent number of agents which live in a particular regional grid.

Algorithm 2 CyclicBehaviour Algorithm in the Administrative Agent

msg ← receive()
type← msg.getUserDefinedParameter(MSG TY PE)
if type = INFORM NUMBER AGENTS then

content← msg.getContent()
sender ← msg.getSender()
numberOfTotalAgents← (sender, content)

end if

5.6.2 Regional Agents

Since we have two techniques for composing and searching for LOs’ information and

grid services, i.e. XRT and RST, we have two kinds of regional agent, providing

the XRT regional agent and RST regional agent respectively. The former is respon-

sible for dealing with the registry of LOs’ information, while RST regional agent is

responsible for dealing with registered grid services. Both agents have the same ar-

chitecture and behaviour, except that the RST regional agent does not have a search

125

5.6 Functions and Descriptions of RDADeLE Agents

component. These two agent types control the components of regional grids and

work as regional grid facilitators. Registering nodes connected to the regional grid is

performed by regional agents. Regional grids include registries of LOs’ information

and grid services, which is delivered to learners upon search request. The search

results are delivered to learners according to the policies (constraints) which were set

by authorised member of staff of each regional grid.

The regional agent can again be described in a tuple, as follows:

RA =< rgn, cr, e, se, c > (5.8)

where:

• (rgn) is the regional grid name,

• (cr) is the control request,

• (e) is the entity,

• (se) is the search parameter and

• (c) is the constraint.

The regional grid name (rgn) is a unique name. The control request (cr) includes

creating, terminating, authenticating and registering/deregistering regional grid com-

ponents. The entity (e) is the agent to be controlled (e.g. node, learner agents). The

search parameter (se) includes the keywords used in searching for LOs’ information.

The constraint (c) is the policy of a regional grid which is applied in delivering this

information. The regional agent has a number of functions, which can be summarised

as follows:

1. Creating components of the regional grid (i.e. node, learner, and service agents).

126

5.6 Functions and Descriptions of RDADeLE Agents

2. Registering nodes upon request from the node agent.

3. Parsing the registry file (which contains the metadata of LOs’ information in

the current regional grid).

4. Parsing the policy file.

5. Searching for desired LOs’ information.

5.6.2.1 Regional Agent Architecture

Figure 5.8 shows the regional agent architecture. There are six main components of

the agent:

1. Interpreter and dispatcher.

2. Creation.

3. Registration.

4. Parsing.

5. Search.

6. Collector and dispatcher.

The first component is the interpreter and dispatcher, which receives incoming

messages to the regional agent from outside. These are interpreted and dispatched

to the next component. The aim of each message will be identified as goals and

translated into plans to fulfil these goals. The plans here are agent behaviours and

actions. The behaviours are constructed in cooperation with other agents if needed.

The first action accomplished by the regional agent is the creation of its components,

which include node, learner and service agents. The creation behaviour is performed

127

5.6 Functions and Descriptions of RDADeLE Agents

using the creation component. The registration behaviour will take place after the

creation process in order to register the newly created node agent. The registration is

performed through the registration component. The next operation is parsing both

registry of LOs’ information - if the technique used is XRT - and the policy of the

current regional grid. The parsing process is performed via the parsing component.

If the behaviour is a search query - if the technique used is XRT - the behaviour

will be executed through the search component. For example, the message from the

learner is a search request which will be transformed into a search goal. The aim of

the search request is to search for LOs’ information, which is translated into a plan.

Subsequently, the plan is executed as a behaviour. The search process contacts the

registry to look for the LOs’ information. The last component is the collector and

dispatcher, which is responsible for collecting the results of other all components,

then forming the appropriate message to be dispatched outside the agent.

Figure 5.8: Regional Agent Architecture

128

5.6 Functions and Descriptions of RDADeLE Agents

5.6.2.2 Regional Agent Design Model

A cyclic behaviour is added to each registered regional agent -if XRT is used- in

order to enable and help learners to search for LOs’ information using keywords.

Figure 5.9 shows the design model of the search request for LOs’ information using

AUML.

Figure 5.9: Search Request for LOs’ Information

The node agent sends a registration request to the regional agent in order to

connect itself to the RDADeLE system and receives acknowledgment messages from

it. Figure 5.10 shows the design model of the registration request using AUML.

Figure 5.10: Registration of Node

129

5.6 Functions and Descriptions of RDADeLE Agents

5.6.2.3 Regional Agent Algorithms

The regional agent plays a role in monitoring the RDADeLE system in cooperation

with the administrative agent. The following two algorithms, each corresponding to a

behaviours, explain how the regional agent cooperates with the administrative agent

to monitor the RDADeLE system:

First, in Algorithm 3, the “TickerBehaviour” behaviour is performed periodically

every 10 seconds to request current numbers of components connected to each node

connected to it. numberOfLearners is a HashMap of String and Integer which con-

tains node names and total numbers of their components. This behaviour calculates

the number of components of the regional grid, totalAgents, then sends it to the

administrative agent. Components of the regional grid include nodes, learners and

services.

Algorithm 3 TickerBehaviour Algorithm in the Regional Agent

totalNumberOfLearners← 0
for each connected node do

msg ← ACLMessage.REQUEST
msg.addReceiver(node)
msg.addUserDefinedParameter(REQEUST GET LEARNERS)
send(msg)
totalNumberOfLearners ← (totalNumberOfLearners +
numberOfLearners.get(node))

end for
totalAgents ← (totalNumberOfLearners + nodeAgents.size() +
serviceAgents.size())
msge← ACLMessage.INFORM
msge.addReceiver(administrative)
msge.addUserDefinedParameter(INFORM NUMBER AGENTS)
msge.setContent(totalAgents)
send(msg)

The second behaviour, in Algorithm 4, is “CyclicBehaviour”, which is performed

periodically to receive messages from other agents. The message type INFORM GET LEARNER

determines the type of message which informs the regional agent of the current num-

ber of agents which live in a particular node.

130

5.6 Functions and Descriptions of RDADeLE Agents

Algorithm 4 CyclicBehaviour Algorithm in the Regional Agent

msg ← receive()
type← msg.getUserDefinedParameter(MSG TY PE)
if type = INFORM GET LEARNER then

content← msg.getContent()
sender ← msg.getSender()
numberOfLearners← (sender, content)

end if

The RDADeLE system reduces its limits for monitoring and controling the whole

environment which is termed the scalability. The scalability feature of the RDADeLE

system is performed via cooperation between agents, of which one is the regional

agent. The scalability of the system is performed by dividing the regional grid into

sub-regional grids. The RDADeLE system checks the capacity of each regional grid

periodically and checks the capacity before adding a new node to a regional grid. The

regional agent checks its capacity before adding a new node to it. If the capacity of a

regional grid has reached its limit, it requests the administrative agent to create a new

sub-regional grid to accommodate new nodes, learners and grid services. Algorithm

5 is the reaction of the regional agent when it wants to add a new node and there

is no available space, since it has reached its limit, considering that nodeAgents is

a HashMap of String and Agent ID (AID), which contains current node names and

addresses:

5.6.3 Node Agents

A node agent controls a node in a single regional grid, which represents a member

of staff of an institution authorised to maintain registries and node properties. The

registering of learners connected to a node is performed by the node agent.

The node agent can also be described in a tuple, as follows:

NA =< nn, rg, pr > (5.9)

131

5.6 Functions and Descriptions of RDADeLE Agents

Algorithm 5 Extension Algorithm in the Regional Agent

1: learnersOfAllNodes← 0
2: regionalCapacity ← 0
3: for each connected node do
4: learnersOfAllNodes ← (learnersOfAllNodes +

numberOfLearners.get(node))
5: end for
6: regionalCapacity ← (learnersOfAllNodes + nodeAgents.size())
7: if regionalCapacity < maxNumberOfAgents then
8: Call createNewAgent(nodeName,‘‘com.salehsz.agent.Node",arguments)
9: else

10: Print ‘‘The capacity of regional grid is full.’’
11: Print ‘‘New sub-regioanl grid will be created and the node will

be attached to it.’’
12: Call Administrative.createRegional(0,1,0,newRegionalName)
13: end if

where:

• (nn) is the node name (i.e. authorised member of staff),

• (rg) is the registry of a regional grid and

• (pr) is the properties of the node.

The parameters of the equation are (nn), which is the node name, (rg), which

is the registry of a the regional grid, and (pr), which is the properties of the node,

including node type, operating system, CPU, memory and available times. The node

agent has a number of functions which are summarised as follows:

1. Parsing registry and node property files.

2. Maintaining registry and node property files by an authorised member staff.

5.6.3.1 Node Agent Architecture

Figure 5.11 shows the node agent architecture. The agent has five main components:

1. Interpreter and dispatcher.

132

5.6 Functions and Descriptions of RDADeLE Agents

2. Registration.

3. Parsing.

4. Maintaining.

5. Collector and dispatcher.

The first component is the interpreter and dispatcher, which receives incoming

messages to the node agent from outside. These are interpreted and dispatched to the

next component. The aim of each message will be identified as goals and translated

into plans to fulfil these goals. The plans here are the agent behaviours and actions

of the agent. The behaviours are constructed in cooperation with other agents if

needed. The registration behaviour takes place in order to register the newly created

learner agent and is performed through the registration component. The role of the

parsing component in the node agent architecture is to parse both registry and node

property files. If the behaviour is maintaining request, it will be executed through

the maintaining component. Maintaining includes maintaining the registry file, grid

services information and node property files. The last component is the collector and

dispatcher, which is responsible for collecting the results of all other components and

forming the appropriate message to be dispatched outside the agent.

5.6.3.2 Node Agent Design Model

A learner agent sends a registration request to the node agent in order to connect

itself to the RDADeLE system and receives an acknowledgment messages from it.

Figure 5.12 shows the design model of the registration request using AUML.

133

5.6 Functions and Descriptions of RDADeLE Agents

Figure 5.11: Node Agent Architecture

Figure 5.12: Registration of Learner

134

5.6 Functions and Descriptions of RDADeLE Agents

5.6.4 Service Agents

The service agent exists only in the RST scenario. This agent controls the grid

service in each regional grid to be discovered by learners.

The service agent can also be described in a tuple, as follows:

SA =< sn, des, own, st > (5.10)

where:

• (sn) is the service name,

• (des) is the service description

• (own) is the service owner and

• (st) is the service state.

The parameters of the equation are (sn) which is the service name and is denoted

as the unique name, the service description (des) which includes service type and

properties, the service owner (own), which is the regional grid to which the service

belongs, and the state of the service (st), which can take either of the following values:

registered or deregistered. The aim of the service agent is to register the grid service

with its description with the DF, for discovery and maintainance purposes.

5.6.4.1 Service Agent Architecture

Figure 5.13 shows the architecture of the service agent, which has three main com-

ponents:

1. Interpreter and dispatcher.

2. Registration.

135

5.6 Functions and Descriptions of RDADeLE Agents

3. Collector and dispatcher.

The interpreter and dispatcher receives incoming messages to the node agent from

outside. These are interpreted and dispatched to the next component. The aim of

each message is identified as goals and translated into plans to fulfil these goals. The

plans here are agent behaviours and actions. The behaviours are constructed in coop-

eration with other agents if needed. The behaviour is the registration request, which

will be executed through the registration component. The registration component

registers grid services and their descriptions with the DF, which may be expanded

using a database. Grid service description includes type, name, owner and proper-

ties. The last component is the collector and dispatcher, which is responsible for

collecting the results of all other components and forming the appropriate message

to be dispatched outside the agent.

Figure 5.13: Service Agent Architecture

136

5.6 Functions and Descriptions of RDADeLE Agents

5.6.4.2 Service Agent Design Model

The aim of the agent is to register a grid service with the DF. First, an authorised staff

member sends a request to register a new grid service. The service agent receives the

request, then registers the service after determining its description. The agent then

sends the service description to the DF agent to be kept for future use. An inform

message then sent to the authorised staff member to acknowledge the registration

result. Figure 5.14 shows the design model of the request to register a grid service

using AUML.

Figure 5.14: Registration of Grid Service

5.6.5 Learner Agents

A leaner agent controls a learner and works as a learner facilitator, sending a queries

about LOs’ information, registered grid services and lists of connected regional grids.

Learner agents can also be described in a tuple, as follows:

LA =< ln, r > (5.11)

where:

137

5.6 Functions and Descriptions of RDADeLE Agents

• (ln) is the learner’s name and

• (r) is the request.

Each learner name (ln) is a unique name. Requests from learners (r) include

searching for the LOs’ information, grid services and listing registered regional grids.

The functions of the learner agent can be summarised as follows:

1. Sending search requests for LOs’ information to all registries of regional grids,

which applies to the XRT.

2. Sending search requests for registered grid services, which applies to the RST.

3. Sending list requests to the administrative agent to list all registered regional

grids.

5.6.5.1 Learner Agent Architecture

Figure 5.15 shows the architecture of the learner agent, which has three main com-

ponents:

1. Interpreter and dispatcher.

2. Search for grid services in DF.

3. Collector and dispatcher.

This learner agent architecture description applies to the RST. The first com-

ponent is the interpreter and dispatcher which receives incoming messages to the

node agent from outside. These are interpreted and dispatched to the next compo-

nent. The aim of each message is identified as goals and translated into plans to

fulfil these goals. The plans here are agent behaviours and actions. The behaviours

138

5.6 Functions and Descriptions of RDADeLE Agents

are constructed in cooperation with other agents if needed. The behaviour, which is

searching for registered grid services in the DF, will be executed through the Search

DF component. In order to perform the search request, this component requires

certain information, including agent description, service description, type of service

and properties of the service, all of which is encapsulated in a template. The last

component is the collector and dispatcher, which is responsible for collecting the re-

sults of all other components and forming the appropriate message to be dispatched

outside the agent. Learner agent architecture in the the (XRT) does not have a

search component, which exists in the regional agent architecture, as stated above.

Figure 5.15: Learner Agent Architecture

5.6.5.2 Learner Agent Design Model

The aim of the agent is to search for registered grid services in the DF. Figure

5.16 shows the design model of the search request using AUML. The agent has a

139

5.7 Review of RDADeLE agents’ specifications towards RDADeLE
Requirements

behaviour type named CyclicBehaviour, whereby it receives incoming messages and

distinguishes between them by message type. The first message is the response to

the search request and the second is the response listing all registered regional grids.

Figure 5.16 shows the design model of the search request for grid services using

AUML.

Figure 5.16: Search Request for Grid Services

5.7 Review of RDADeLE agents’ specifications to-

wards RDADeLE Requirements

This chapter covered the required agent types and their specifications in the RDADeLE

architecture. There are five types of agents: administrative agent, regional agent,

node agent, service agent and learner agent. Monitoring e-learning system is part

of the management requirement which is the first requirement. The administrative

agent, regional agent and node agent cooperate with each other to monitor the com-

ponents of the RDADeLE architecture. The administrative agent keeps monitor the

e-learning system periodically in order to manage the whole system. Monitoring is

part of the first requirement which is management.

140

5.8 Summary

Flexibility is the second requirement of the architecture. Flexibility includes two

parts: flexibility in service composition and flexibility in searching for LOs’ informa-

tion. Service agent is created in the e-learning system to compose services using agent

to control and represent LOs’ information. This is an important factor in e-learning

system to become flexible in service composition. Regional agent and learner agent

are used to facilitate search request from requesters.

5.8 Summary

This chapter has provided an overview of the architecture of the RDADeLE system.

It began with account of the relationships between agents, which include the different

types of communication in the RDADeLE system. Next, it described two scenarios,

using the XML-based Registries Technique and the Registered-based Services Tech-

nique respectively. It then described the MAS in the RDADeLE system. This was

followed by a description of the functions and descriptions of the RDADeLE agents.

141

Chapter 6

RDADeLE Implementation

Objectives

• Present the RDADeLE system configuration.

• Present validation of the simulation .

• Present verification of the RDADeLE system.

6.1 Introduction

There are many simulators, platforms and languages for developing grid and agent

systems. These tools are usually built according to developers’ aims and objectives

or to users’ specified requirements, i.e. they are domain specific and not based on our

needs and requirements. A comparative study of these simulators and platforms has

been presented in chapter 2, section 2.8, and in chapter 3, section 3.6. The JADE

platform has been chosen to simulate an agent-based grid environment in order to

prove the concept of building a controlled dynamic agent-based grid environment.

Building a real system is not easy, especially if the system is complicated and

requires the integration of many technologies. The RDADeLE system requires the

functionalities and cooperation of many parties. It also incorporates the grid and

agent technologies which we name an agent-based grid. It is difficult to test the

system using real parties and components, because it requires resources like regional

grids and their components whose, preparing would consume time, effort and budget.

Thus we have built the system using JADE which is an ideal platform to implement

142

6.2 RDADeLE System Configuration

our model in order to present the concepts and objectives of our research. This tool

is written in Java and was built on our computational and architecture model, as

described in chapter 4.

This chapter describes the implementation of the RDADeLE system [10]. It

discusses the simulation of an agent-based grid environment to show our resource

management and the performance of the system with and without service agents.

Features of our simulation and an explanation of how the simulation works and is

configured are presented in section 6.2. The system verification is demonstrated

by considering the difference in performance with and without the effect of service

agents, in section 6.3.

6.2 RDADeLE System Configuration

Before we start describing our simulation we must establish what simulation means:

it is defined as “attempting to predict aspects of the behaviour of some system by

creating an approximate model for it”1. There are advantages in building simulators,

which include:

• There is no need to build a real system, which is not easy and requires money,

time, hardware and people.

• A large number of experiments can be run and more easily controlled.

• There are possibilities for teaching, training and modelling.

The RDADeLE system prototype simulates two techniques for composing and

searching for LOs’ information and grid services, as stated in chapter 5. A compara-

tive study is presented later in this chapter. The first technique is the XML-based

1ProModel Corporation. What is simulation? http://www.promodel.com/challenge/simulation.asp.

143

6.2 RDADeLE System Configuration

Registries Technique (XRT), in which LOs’ information is built using XML meta-

data registries. The second technique is the Registered-based Services Tech-

nique (RST), whereby grid services are built using agents that are registered with

the DF to be discovered. There are a number of components and mechanisms which

should be included in the prototype to achieve a realistic simulated environment.

The components are the main interface used to create the simulation, regional grids,

grid services, information service, nodes and learners. The mechanisms are commu-

nication, termination, timing and failure.

The grid components, which are managed and controlled by agents, include re-

gional grids, nodes and learners. Grid services are represented as agents, as we will

describe next. The types of agents used in the RDADeLE system are:

• Administrative agents: Administrative agents create regional agents to build

the RDADeLE system. They supply authentication services for regional grids

and they control and manage the grid environment.

• Regional agents: Regional agents create regional grid components (i.e. node,

learner and service agents). Each agent controls a single regional grid which

includes a registry of LOs’ information. The regional grid is authenticated to

be registered via the administrative agent.

• Node agents: Each node agent controls a node in a single regional grid which

represents a member staff of an institution authorised to update registries

and/or node properties.

• Service agents: Each service agent represents a grid service in each regional

grid to be discovered by learners. These agents exist only when the RST is

used.

144

6.2 RDADeLE System Configuration

• Learner agents: A learner agent works as a facilitator for a learner who seeks

LOs’ information or grid services or who sends a query about the regional grid

to which they are connected.

Figure 6.1 shows types of agents in the RDADeLE system.

Figure 6.1: Agent Types

6.2.1 JADE Platform Configuration

Figure .3.2 in chapter 3, section 3.6 shows that the JADE architecture consists of

the following main elements: AgentPlatform, MainContainer and Container. In our

RDADeLE architecture, the main container has the following three agents by de-

fault: the Agent Management system (AMS), the Directory Facilitator (DF) and the

Remote Monitoring Agent (RMA), which allows control of the life cycle of the agent

platform and of all the registered agents. Besides the AMS, the DF and the RMA

in the main container, we have created the administrative agent which is the first

145

6.2 RDADeLE System Configuration

type of agents to have been created for the RDADeLE system. The distributed ar-

chitecture of JADE also allows remote controlling, where the GUI is used to control

the execution of agents and their life cycles from a remote host. A single normal

container (non-main container) represents only one regional grid in the RDADeLE

system. Figure .6.2 shows the JADE Remote Agent Management GUI screen, which

explains the initial status of the JADE platform, containing only the main container.

These three agents control the RDADeLE system and work as an information service.

Figure 6.2: JADE Platform

6.2.2 Configuration of Learning Objects’ information and

Grid Services

The simulation was conducted using two techniques (XRT and RST) for composing

and searching for LOs’ information and grid services. The following subsections offer

a detailed account of these techniques and the two resulting simulations:

6.2.2.1 The XML-based Registries Technique (XRT)

In XRT, LOs’ information is built as XML meta-data registries, which we assume

to have been already built before running the prototype. Using this technique, there

are many steps in the simulation of the agent-base grid environment. The first step

is building the RDADeLE system through the GUI main interface, as shown in figure

6.3. Once the main interface has been initiated, the JADE platform launches, as

146

6.2 RDADeLE System Configuration

shown in figure 6.2. The main interface consists of the name of the system in the

title bar and all fields of the system needed for the simulation, namely “Number

of Regional Grids”, “# of Nodes”, “Max # Number of Learners connected to each

node”, “Regional Grid Name” and the “Create” button.

Figure 6.3: The XML-based Registries Technique (XRT)

Once the number of regional grids is entered in the field marked “Number of

Regional Grids”, a specification table appears on the main interface and is completed

by entering the desired grid specification. The table consists of four columns to be

completed in order to create the RDADeLE system. The first column is the sequence

number of the regional grid “Regional Grid”, the second is the number of nodes “# of

Nodes”, the third is the maximum number of learners connected to each node “Max

of Learners connected to each node” and the last is the name of the regional grid

“Regional Grid Name”. Finally, the “Create” button is pressed to build the system.

Once the “Create” button has been pressed the RDADELE system and other

components will be initiated and start functioning. There will be one interface for

regional grid, an interface for each node agent and an interface for each learner, result-

ing in three types of interface, named regional interface, node interface and learner

147

6.2 RDADeLE System Configuration

interface respectively. The regional interface represents the system administrator

who are authorised to add new nodes. The node interface represents the staff in an

institution who are authorised to add new learners and update both the registry of

the regional grid it belongs to and the node properties. The learner interface allows

a learner in a particular regional grid to request LOs’ information or inquire about

connected regional grids at any time during the simulation.

The structure of the meta-data XML registry file of LOs’ information is based

on the Dublin Core Metadata Element Set (DCMES), which is the most popular

metadata standard, allowing cataloguing, searching and reuse of resources. Figure

6.4 shows an example of DCMES meta-data.

Figure 6.4: DCMS Meta-data Example

6.2.2.2 The Registered-based Services Technique (RST)

When the RST is used, the grid services are composed using agents, which represent

grid services in the RDADeLE system. As figure 6.5 shows, there is a column in the

specification table labeled “# of Grid Services” which does not appear in the main

interface of the XRT. This column determines the number of grid services in each

148

6.2 RDADeLE System Configuration

regional grid in order to build grid services. In this technique, all grid services (agents)

from all the regional grids are registered with the DF of the JADE platform, making

it easier and more efficient for learners to search for them. However, each grid service

belongs to a regional grid (i.e. the ownership of each grid service is the regional grid

to which it belongs).

Figure 6.5: The Registered-based Services Technique (RST)

The following are some properties of a grid service which are needed in composing

and registering it to the DF:

• Name: The name of service is composed of two parts: first, the agent name

of the service owner, which is the regional agent name, and second the name

of agent creating the service. For example, the name of the first agent which

creates the grid service in the Riyadh regional grid is named “Riyadhgridser-

vice1”.

• Type: The type of service which will be presented. The type of service in our

case is grid. For example, the type of any service is “Grid Service”.

• Ownership: The ownership is the regional grid to which the grid service belongs.

For example, the ownership of the grid service named “Riyadhgridservice1” is

“Riyadh”.

149

6.2 RDADeLE System Configuration

• Language: the language in which a message in the agents is expressed. In our

case the language is the default language which is Semantic Language (SL0).

• Ontologies: The ontology is used in an agent message to represent agents’

knowledge. All agents that share the same ontology for knowledge representa-

tion have an understanding of the word in the agent communication language.

• Protocols: These are interaction protocols for the service.

• Properties: Other agents may search the DF, based on the properties of the

services provided, which have unique names and types as part of the service

description.

6.2.3 Grid Environment Configuration

The building of this simulation includes a specification table in the main interface to

determine the specifications of the regional grids. The first row specifies the number

of nodes in the first regional grid, the maximum number of learners connected to

each node of that grid and the regional grid name, while the second row contains

the equivalent specifications for the second regional grid, and so on for the remaining

regional grids. In this way, all regional grids are configured, resulting in the grid

environment shown in figure 6.6. The main interface allows us to change the number

of regional grids by typing in a new number in the field labeled “Number of Regional

Grids” and then to add the specifications for each new regional grid. We can also

edit and change each regional grid specification; hence we can change the number

of nodes, the maximum number of learners connected to each node and the regional

grid name.

150

6.2 RDADeLE System Configuration

Figure 6.6: Regional Grid Configuration

6.2.4 Node Configuration

Our tool can simulate the nodes by configuring their properties. It does this by de-

termining their names, their regionals, node types, operating system, CPU, memory,

and available times. This information is assigned to the node by parsing the node

property XML file which contains these properties and can be read by the node. The

node name is determined automatically by the RDADeLE system, as a combination

of regional name and node name. For example, “Riyadhnode1” is the name of the

first node in the Riyadh regional grid. The node type can be any of the following:

personal computer, mainframe, or cluster. The value of the the tag “cpu” is the speed

of the CPU, “memory” is the size of memory and “available times” is one or many

time intervals during which the node will be available and can receive jobs. Figure

6.7 shows the node properties of node1 in the Riyadh regional grid.

Figure 6.7: Node Properties

151

6.2 RDADeLE System Configuration

6.2.5 Information Service

An information service is an indispensable component in grid computing [83]. In our

simulation, the main container works as an information service for the RDADeLE

system. It has three default agents to control agents composing the RDADeLE

system in the JADE environment. These default agents are the the AMS, the DF

and the RMA. Besides AMS and DF in the main container, we have created an

“Administrative agent” according to the requirements of the RDADeLE system. This

keeps tracks of the regional agents which control regional grids. The administrative

agent helps the process of search for LO’s information by discovering all regional

grids connected to the RDADeLE system.

6.2.6 Regional Policy Configuration

As stated in chapter 4, section 4.2, there is a policy (constraints) for each regional grid,

based on regional demographic, economic, social and cultural factors. We assume that

the policy of each regional grid has already been built and saved in the regional grid

policy XML file. There is one policy file for each regional grid. Once a regional grid

has been created and joined the RDADeLE system, the policy file is parsed to be

read by the regional agent in order to be applicable. The policy file consists of many

elements. These elements are demographics, society, culture, data grid policy (read,

write, move, copy), application policy (use, move, copy), and grid policy (exclusive

execution, add data, add application). Figure 6.8 shows the regional grid policy for

the Riyadh regional grid.

152

6.3 Simulation Validation

Figure 6.8: Regional Policy

6.3 Simulation Validation

The simulator is validated by showing that the RDADeLE system works and does

what learners really require in line with the system’s aims and objectives. The fol-

lowing four subsections describe the methods used to validate aspects of RDADeLE

and evaluate the simulation.

6.3.1 Verification of Grid Configuration

To verify the grid configuration we consider the following scenario. The grid is com-

posed of three regional grids, each represented as a normal container. The first

regional grid represents the Arab League and consists of at least 22 nodes (22 coun-

tries); the second represents the European Union and consists of at least 27 nodes

(27 countries); and the third represents the Indian Subcontinent and consists of at

least 7 nodes (7 countries).

The naming of regional grids and nodes is based on the following procedure: The

Regional Grids Set (RGS) contains sequence numbers of all regional grids in the

RDADeLE system and Nodes Set (NS) contains the sequence numbers of all nodes

in each regional grid. An element in RGS is denoted (r), and (n) is an element in

NS. The names of the remaining nodes are based on the following equation:

153

6.3 Simulation Validation

∀r ∈ RGS, n ∈ NS : regionalrnoden (6.1)

For the purpose of verification, name of regional grid (i.e. container name) will be

generated automatically based on the above equation, thus the system administrator

will enter the regional grid name (i.e. the main interface does not contain the column

labeled “Regional Grid Name”). Table 6.1 illustrates the grid specification and shows

the corresponding agent and container names.

Table 6.1: Components of Regional Grids
Regional Grids and Nodes Corresponding

agent name
Container Name

Arab League regional1 Regional-Grid1
European Union regional2 Regional-Grid2
Indian Subcontinent regional3 Regional-Grid3
First node (country) in Arab
League

regional1node1 Regional-Grid1

Second node (country) in Arab
League

regional1node2 Regional-Grid1

First node (country) in European
Union

regional2node1 Regional-Grid2

Second node (country) in European
Union

regional2node2 Regional-Grid2

First node (country) in Indian Sub-
continent

regional3node1 Regional-Grid3

Second node (country) in Indian
Subcontinent

regional3node2 Regional-Grid3

Figure 6.9 shows the main interface, which contains the specification of a grid

completed in order to create the prototype of the scenario.

Figure 6.10 shows the main container and non-main containers which correspond

to the regional grids of the scenario.

Figure 6.11 shows some of the components of the first non-main container, which

correspond to the nodes and learners of the Arab League regional grid.

Figure 6.12 shows some of the components of the second non-main container,

154

6.3 Simulation Validation

Figure 6.9: Regional Grid Verification

Figure 6.10: All Regional Grids (Containers)

Figure 6.11: Components of Arab League

155

6.3 Simulation Validation

which correspond to the nodes and learners of the European Union regional grid.

Figure 6.12: Components of European Union

Figure 6.13 shows some of the components of the third non-main container, which

correspond to the nodes and learners of the Indian Subcontinent regional grid.

6.3.2 Verification of LOs’ Information and Grid Service Con-
figuration

As stated earlier, there are two techniques in building and accessing LOs’ information

and grid services in the RDADeLE system: XRT and RST. In the XRT, LOs are

reached by searching their metadata registry XML files. Registries are read by both

the regional agent and the node agent if needed. On one hand, the regional agent

reads its registry file to be ready for learners to search for LOs’ information, while

the node agent reads its regional grid registry for it to be maintained (read, write,

update,...) in order to bring the registries up to date for searching. Only authorised

members of staff are eligible and responsible for maintaining the registries. Figure

156

6.3 Simulation Validation

Figure 6.13: Components of Indian Subcontinent

6.4 shows the DCMES meta-data example adopted here.

Figure 6.14 illustrates a node interface, which shows content of registry in the

“regional1” regional grid on the screen after reading them in response to the command

show.

In The RST, grid services are reached by searching for registered service agents

in the DF. In this technique, grid services are built as agents. For the purpose of

research we have already built these limited services as follows:

1. Create an agent named “GridService” as a grid service.

2. Determine service description, which includes (Type) and (Name). The (Type)

of service we intend to build to be embedded in the agent is “Grid Service”.

The Name of the service is a combination of localname and type.

3. Determine properties (keywords) of the service. The properties consist of two

elements, which are (Name) and (Value). In our case the (Name) is “Conden-

157

6.3 Simulation Validation

Figure 6.14: Registry Content List

sation” and the (Value) is “Chemistry”.

4. Add the above service to the “GridService” agent using the addServices()

method.

5. Register the agent with the DF using the register method.

Figure 6.15 shows the Java code which builds and registers the grid service.

6.3.3 Verification of Searching for Learning Objects’ Infor-

mation and Grid Services

Searching for LOs’ information and grid services is performed using a similar com-

mand pattern in both techniques, as follows title:subject through the learner interface.

The keyword title is the lesson name, and the subject is the module or the course

name.

The XRT technique provides a flexible way to search and restore LOs’ information

from all over the grid environment using regional grid registries. This technique

searches for corresponding words in tags, titles and subjects using the keywords

158

6.3 Simulation Validation

Figure 6.15: Java Code for Building and Registering Grid Service

above. The search looks for the title keyword first, then for the subject if this is not

found. The result is composed of two parts:

1. The name of the regional grid where the keywords are found.

2. The keywords themselves, title and subject which are searched for by a learner.

For the purpose of verification we conducted the test twice, for two scenarios. In the

first scenario, the RDADeLE system had only one regional grid (one registry file).

The content of the registry of this regional grid is shown in figure 6.4, while figure

6.16 shows the search result using the learner interface.

The second scenario is that the RDADeLE system has 3 regional grids (3 reg-

istry files). The content of the registry of this regional grid is shown in figure 6.4,

except that the value of the “subject” tag under the tile “Networking” is “Comput-

ing3” instead of “Computing”. Figure 6.17 shows the search result using the learner

interface.

The RST technique provides a fast way of searching for pre-registered services

(grids in our case) which may lead to LO materials. These grid services are registered

159

6.3 Simulation Validation

Figure 6.16: Verification of XML Search in One Registry

Figure 6.17: Verification of XML Search in Three Registries

160

6.3 Simulation Validation

with the DF. For the purpose of the verification test, all registered grid services are

the same. The properites of grid services comprises title and subject, which have the

values “Condensation” and “Chemistry” respectively (See figure 6.15). We assume

that the RDADeLE system is composed of only two regional grids and that the

number of registered grid services in the first and second regional grids is 4 and 3

respectively. The total number of registered grid services is thus 7.

Figure 6.18 shows a learner’s search for registered grid services and the result

through the learner interface.

Figure 6.18: Verification of Registered Services Search

6.3.4 Verification of Regional Policy Application

Regional policy has been configured in the RDADeLE system in order to provide

autonomy for the regional grids. At the same time, the policy controls the data flow

between the RDADeLE system components. Verification tests were conducted for

161

6.3 Simulation Validation

both the XRT and the RST techniques; however, we believe that more research

needs to be conducted into regional policy, which we consider to be part of our future

work.

The verification of regional policy application was tested under the following as-

sumptions for both techniques: the number of regional grids created is 3 and the

value of the ‘data grid policy’ element in the policy files of the first and third regional

grids is read, a value which permits the reading of the data grid from the correspond-

ing regional grid, whereas the value of this element in the policy file of the second

regional grid is notread, which does not permit the data grid to be read from the

corresponding regional grid.

Figure6.19 shows the result of applying the regional policy in the XRT tech-

nique.

Figure 6.19: Applying Regional Policy in the XRT Technique

Figure 6.20 shows the result of the application of the regional policy in the RST

technique, assuming that 3 grid services belong to regional grid 1, 4 grid services to

regional grid 2 and 5 to regional grid 3.

162

6.4 Review of RDADeLE implementation towards RDADeLE
Requirements

Figure 6.20: Applying Regional Policy in the RST Technique

6.4 Review of RDADeLE implementation towards

RDADeLE Requirements

This chapter covered the implementation of RDADeLE prototype. The developed

prototype used in the implementation has been validated and verified against some

factors to build a similar e-learning environment, conduct enough experiments, and

obtain results from experiments to judge on RDADeLE architecture. Grid environ-

ment has been configured to meet the first and the second requirements management

and extensibility.

The third requirement is the flexibility. Verification of composition of LOs’ in-

formation and service has been conducted to proof that the RDADeLE architecture

is more flexible using both techniques XRT and RST. Meanwhile, verification of

searching for LOs’ information and services has been conducted to proof that the

RDADeLE architecture is more flexible using both techniques XRT and RST.

163

6.5 Summary

6.5 Summary

This chapter has described the simulation of the RDADeLE system as an agent-based

grid environment. It explains how the simulation was configured and how it worked,

including configuration of LOs’ information and grid services, nodes, information

services and regional policy. Validation of the simulation included verification of grid

configuration, of both LOs’ information and grid service configuration, verification of

the search process and regional policy.

164

Chapter 7

Results and Evaluation

Objectives

• Present the specifications of the testing environment.

• Present the RDADeLE system scalability, reliability and effi-

ciency in searching for LO’s information and grid services.

• Discuss evaluation of scalability, reliability and efficiency of

the RDADeLE system.

7.1 Introduction

The study of the results of this thesis is presented in this chapter including the eval-

uation of the RDADeLE system in scalability, reliability and efficiency in searching

for LO’s information and grid services. The two techniques of composing and search-

ing for LOs’ information and grid services, the XRT technique and the RST

technique, have been evaluated.

Firstly, scalability in the RDADeLE system has been examined against some fac-

tors such as number of regional grids and number of registered services agents. Those

factors has been evaluated against memory consumption. Secondly, reliability of the

RDADeLE system has been tested which includes fault-tolerance using replicated

information service, type of connections between regional grids and how these con-

nections are maintained in case of a failure. Finally, efficiency in searching for LOs’

information and grid services has been evaluated. The efficiency has been tested to

165

7.2 Deployment Environment Setup

evaluate an increase in the number of registries and grid service agents against mean

search time in milliseconds.

We have adopted the RDADeLE system in Saudi Arabia as a case study in our

evaluation. This provides us a clear view of the impact of the RDADeLE system in

controlling and managing e-learning systems within the Saudi Arabian environment

in particular, and all over the world in general.

7.2 Deployment Environment Setup

We conducted experiments in our simulation with different regional grids, grid ser-

vices and LOs’ information. All of these components have been modeled and con-

trolled using agent technology. Each regional grid has many nodes which are con-

nected to it and each node has many learners which are connected to it. The goal of

our simulation is to analyse the impact of agent technology within the grid environ-

ment on e-learning systems in the Kingdom of Saudi Arabia. For the evaluation we

used a desktop PC with the following specifications:

Pentium (R) 4 CPU IV, 3.0 GHz, 0.99 GB RAM

Microsoft Windows XP Professional (SP2)

Java 1.6.0 11

JADE v3.5

7.3 Scalability

In telecommunications and software engineering, scalability is a desirable property to

have in a system, a network, or a process, which indicates its ability to either handle

growing amounts of work in an efficient manner, or to be readily enlarged. For

166

7.3 Scalability

example, it can refer to the capability of a system to increase total throughput under

an increased load when resources (typically hardware) are added. The scalability is

an important feature which exposes limitations of a system [86].

The scalability of our RDADeLE system has been examined against factors such

as number of regional grids and number of grid services.

7.3.1 Number of Regional Grids (Non-Main Containers)

In our case study there are 13 administrative regions in the Kingdom of Saudi Ara-

bia. The RDADeLE system in this case has 13 regional grids. Each regional grid is

represented as a non-main container. Regional agents play a major role in the overall

performance of the RDADeLE system. One of the regional agents’ roles is the pro-

vision of search process of LOs’ information in the XRT technique. The number

of regional agents in our case study could be more than 13, which depends upon the

number of learners within each regional grid. If there is an increase in the number

of learners within a single regional grid the RDADeLE system increases the number

of regional agents in order to serve learners’ requests. As a result of the increase in

the number of regional agents the RDADeLE system will extend the regional grid by

dividing it into sub-regional grids (sub-system). We assume that one regional agent

serves no more than 3000 elements (i.e. node, learner and grid service agents).

For the purpose of testing we reduce the maximum number of elements which

are served by one regional agent to 100. The reason for this reduction is that we

do not have the sufficient resources to accomplish the experiment and 100 elements

is deemed to be sufficient to prove the concept through our case study. We assume

that we are building the system which composes of two regional grids, “Riyadh” and

“Makkah”. We will create more than 100 elements (260 in our case) in the regional

grid “Riyadh” to show the action of the RDADeLE system as shown in figure 7.1.

167

7.3 Scalability

Whereas the “Makkah” regional grid will accommodate less than 100 learners (6 in

our case).

Figure 7.1: The Case Study Data Using RST Technique

Once we press the “Create” button, the RDADeLE system will extend the “Riyadh”

regional grid to become three sub-regional grids “Riyadh0”, “Riyadh1” and “Riyadh2”

as shown in figure 7.2.

Figure 7.2: Extension of Riyadh Regional Grid

Eventually each sub-regional grid, “Riyadh0”, “Riyadh1” and “Riyadh2”, ac-

commodates a certain number of nodes, learners and grid services. In relation to

the number of nodes, learners and grid services the “Riyadh0” and “Riyadh1” sub-

regional grids accommodate 80 learners, 4 nodes and 17 grid services each. Whereas

regional grid “Riyadh2” accommodates 40 learners, 2 nodes and 16 grid services.

The following algorithm shows the mechanism of scalability of the RDADeLE

system during the creation of the system considering the NumberOfNodes, Num-

berOfLearners and NumberOfGridServices entered by the system administrator:

168

7.3 Scalability

Algorithm 6 Scalability Algorithm

1: for each regional grid do
2: totalNumberOfagents ← (NumberOfNodes ∗ NumberOfLearners) +

NumberOfNodes + NumberOfGridServices
3: if totalNumberOfagents > maxNumberOfAgents then
4: numOfSubRegional← ceiling(totalNumberOfagents/maxNumberOfAgents)
5: interval1 ← ceiling(NumberOfNodes/numOfSubRegional) {determine

number of nodes for each sub-regional grid}
6: interval3 ← ceiling(NumberOfGridServices/numOfSubRegional)

{determine number of grid services for each sub-regional grid}
7: for each sub-regional grid do
8: determine sub-regional grid name (RegionalNameNew)
9: Call Administrative.createRegional (interval3, interval1,

NumberOfLearners, RegionalNameNew)
10: end for
11: else
12: Call Administrative.createRegional (NumberOfGridServices,

NumberOfNodes, NumberOfLearners, RegionalName)
13: end if
14: end for

The sub-regional grid “Riyadh0” is served by the regional agent “Riyadh0@RDADeLE”

as shown in figure 7.3.

Figure 7.3: Regional agent “Riyadh0@RDADeLE” Serving Sub-regional Grid
“Riyadh0”

The sub-regional grid “Riyadh1” is served by the regional agent “Riyadh1@RDADeLE”

as shown in figure 7.4.

Finally, the sub-regional grid “Riyadh2” is served by the regional agent “Riyadh2@RDADeLE”

as shown in figure 7.5.

For the purpose of testing the RDADeLE system, Table 7.1 illustrates the scal-

ability of a number of regional grids the RDADeLE system can generate using the

169

7.3 Scalability

Figure 7.4: Regional agent “Riyadh1@RDADeLE” Serving Sub-regional Grid
“Riyadh1”

Figure 7.5: Regional agent “Riyadh2@RDADeLE” Serving Sub-regional Grid
“Riyadh2”

XRT technique, assuming that each regional grid (non-main container) has only one

node and one learner. Moreover, table 7.1 shows the volume of memory consumption

according to the number of regional agents.

Table 7.1: Scalability of Number of Regional Grids Using the XRT Technique
Containers Memory Consumption (Bytes)
50 9656520
100 19834464
150 33168776
200 49480080

The graph in figure 7.6 shows the relationship between increasing the volume of

memory consumption against the number of regional agents using the XRT tech-

nique.

The error message in figure. 7.7 appears at regional grid number 238. This

message indicates that there are insufficient resources used in the experiment (i.e. no

170

7.3 Scalability

Figure 7.6: Number of Regional Grids Against Memory Consumption Using the
XRT Technique

available space in JVM which is limited by the available memory).

Figure 7.7: Error of Maximum Number of Regional Grids Using the XRT Technique

Table 7.2 illustrates the scalability of a number of regional grids the RDADeLE

system can generate using the RST technique assuming that each regional grid

(non-main container) has only one node, one learner, and one service.

The graph in figure 7.8 shows the relationship between increasing memory con-

sumption and the number of regional grids using the RST technique.

The error message in figure 7.9 appears at regional grid 415. This message indi-

cates that there are insufficient resources used in the experiment (i.e. no available

space in JVM which is limited by the available memory).

171

7.3 Scalability

Table 7.2: Scalability of Number of Regional Grids Using the RST Technique
Containers Memory Consumption (Bytes)
50 5809000
100 9746064
150 14307280
200 21657088
250 26549720
300 32489592
350 35362656
400 41166744

Figure 7.8: Number of Regional Grids Against Memory Consumption Using the
RST Technique

Figure 7.9: Error of Maximum Number of Regional Grids Using the RST Technique

172

7.3 Scalability

The graph in figure 7.10 shows the difference in memory consumption using both

techniques, the XRT and the RST. It shows that more regional grids can connect

to the RDADeLE system with a decrease in memory consumption using the RST

technique.

Figure 7.10: Comparison of Regional Grid Scalability using the XRT and the RST
Techniques

7.3.2 Number of Grid Services Agents

All grid services agents with their descriptions are registered with the DF. The DF

is assumed to be located in the Riyadh administrative region where the RDADeLE

platform is initiated. The DF is accessed by all learners from all 13 administrative

regions. For the purpose of testing we assume that the number of regional grids in the

following test is 1. Table 7.3 illustrates the scalability of the number of grid services

(with their descriptions) which are registered with the DF, the amounts of memory

these descriptions can allocate, and number of threads.

The maximum number of grid services agents that can be created in one regional

173

7.3 Scalability

Table 7.3: Scalability of Number of Grid Services Agents
Grid Services Memory Consumption

(Bytes)
Number of Threads

100 486312 138
200 1526928 238
300 1987152 339
400 2299344 438
500 4163584 540
600 4164728 641
700 4901768 739
800 5673232 840
900 6470984 938
1000 7237992 1039
1500 10760088 1537
2000 14135256 2034

grid (non-main container) is 2365 services. The error in figure 7.11 occurs when

more than 2365 services agents are created. This message indicates that there are

insufficient resources used in the experiment (i.e. no available space in JVM which

is limited by the available memory).

Figure 7.11: Error of Maximum Number of Registered Grid Services in a Regional
Grid

7.3.3 Discussion

In order to reduce the limitations of the RDADeLE system which have appeared in

the previous experiments, we suggest the following:

• Since the JADE platform is a distributed platform we can activate several

non-main containers on different hosts and spread agents across them in each

administrative region. This could be deployed as each non-main container cor-

responds to each institution within each administrative region. For instance,

174

7.3 Scalability

there could be more than 252 non-main containers which correspond to the

total number of institutions among the 13 administrative regions as shown in

table 4.2. In this way we attain a highly scalable system. This is the approach

adopted in critical applications in Telecom Italia.

• It is not recommended that we create a high number of agents in one container

(for example 5000 agents). We should spread agents across different containers

considering the above mentioned point about containers across different hosts.

JADE is highly scalable on top of distributed architectures and we want to

avoid placing everything into a single Java Virtual Machine (JVM). Non-main

containers can then be launched on the same host, or on remote hosts, that

connect themselves with the main container of the agent platform, resulting

in a distributed system that appears to be a single agent platform from the

outside.

• We can increase the number of services agents registered with the DF by keep-

ing the DF catalogue in a database, for instance the DF can be configured to

store its catalogue directly into a database (e.g. Oracle database management

system) which enables us to register millions of agents with the DF. The follow-

ing command line will launch a JADE main container with a DF that will store

the DF catalogue into a HSQLDB1 database. The database will be started

automatically together with JADE, provided that the HSQLDB libraries can

be found in the CLASSPATH [45].

Figure 7.12: The Command Line to Store DF Catalogue into a Database

1HSQLDB (Hyper Structured Query Language Database) is a relational database management
system written in Java.

175

7.4 Reliability

• We may eliminate learner agents from the RDADeLE system and allow learners

to use their own available resources (e.g. PCs) to communicate with other

RDADeLE agents.

• The graph in figure 7.10 shows the difference in memory consumption using

both techniques, the XRT and the RST. It shows that using the RST

technique the RDADeLE environment can be built with more regional grids

with less memory consumption.

7.4 Reliability

The RDADeLE system should maintain reliability in order to bind all administrative

regions of the Kingdom of Saudi Arabia with each other and with their components.

Maintaining reliability insures that the RDADeLE system is robust enough to control

all administrative regions. An introduction to system reliability in chapter 4, section

4.6 has been presented. Keeping track of administrative, regional, node, learner

and service agents maintains information service within the main container which is

located in the Riyadh administrative region. JADE distributed architecture relies

on the main container to coordinate all other components (regional grids in our

case) and to keep together the whole platform. Though most JADE operations are

decentralized, there are some essential features that are supported only by the main

container. These features are [45]:

• Managing the Container Table which is the set of all the components that

comprise the distributed platform.

• Managing the Global Agent Descriptor Table which is the set of all the agents

hosted by the distributed platform, together with their current location.

176

7.4 Reliability

• Managing the Message Transport Protocol (MTP) table which is the set of all

deployed MTP endpoints, together with their deployment location.

• Hosting the platform Agent Management System (AMS) agent and the Direc-

tory Facilitator (DF) agent.

If the main container terminates or otherwise becomes unavailable to the other plat-

form containers, all the above features will thus become unavailable and this severely

hampers platform operations.

To keep the RDADeLE system fully operational, even in the event of a failure of

the main container, main container replication is adopted which is part of the JADE

feature. Using this technique, it is possible to start any number of main containers

(a master main container actually holding the AMS and a number of backup main

containers), which will arrange themselves in a logical ring so that whenever one of

them fails, the others will notice and act accordingly. Non-main containers will then

be able to connect to the platform through any of the active main containers; the

different copies of the main container will evolve together using cross-notification.

Figure 7.13 shows that the RDADeLE system has a star topology without main

container replication, while figure 7.14 shows the topology of the RDADeLE system

changes into a ring of stars with main container replication.

Figure 7.14 shows that three main container nodes are arranged in a ring, and

each node monitors its neighbor in the fault-tolerant configuration. Moreover, the

figure shows that non-main containers can be arbitrarily spread among the available

main container nodes. Any non-container is connected to exactly one main container

node and in the absence of failures it is completely unaware of all the other copies. If

the node Main-Container-1 fails, the node Main-Container-2 will notice and inform

all the other main container nodes (in this case only the Main-Container). Then, a

177

7.4 Reliability

Figure 7.13: Fault Tolerance Without Replicated Main Containers

smaller ring will be rebuilt with the remaining main container nodes (Main-Container

and Main-Container-2).

When a main container node fails, there will generally be some orphaned non-main

containers, in our case study, supposing Main-Container-1 fails, Northern Border

Region Container, Baha Region Container, Al-Jouf Region Container and Najran

Region Container will become orphans. When an orphan container detects that its

main container node is not available anymore, it attaches itself to another main

container node, for this to succeed, a non-main container must know the list of all

the main container nodes present in the platform.

JADE supports two policies in distributing the main container node list to non-

main containers. The first option is to activate the Address-Notification service on

all main container nodes and on the non-main containers. This service will detect

additions and removals to the main container nodes’ ring and update the address

178

7.4 Reliability

Figure 7.14: Fault Tolerance with Replicated Main Containers

179

7.4 Reliability

list of all non-main containers involved. The second option is to pass the address

list to a starting non-main container with the (-smaddrs) command line argument.

This approach avoids generating notification traffic towards non-main containers but

assumes a fixed list of main container nodes, which is known beforehand.

In order to build a fault tolerant platform we start by activating replication ser-

vices on the master main container which is named Main-Container in a host machine

named host1 assuming that there are two copies of main container, named Main

Container-1 and Main Container-2, on two other host machines named host2 and

host3 respectively.

The command in figure 7.15 starts a master main container node (i.e. Main-

Container) on machine host1 and activates the Main-Replication and Address-Notification

services on it. The name of the platform is RDADeLE which is determined by the

option (-name).

Figure 7.15: Activating Replication Services on Master Main Container

The command in figure 7.16 uses the (backupmain) option to specify that the

newly started node (i.e. Main-Container-1) is a main container, but does not make a

new platform on its own. Rather, this new node is to join an existing platform that

is specified by the (-host), (-port) and (name) options.

Figure 7.16: Generating Replication of Main-Container Producing Main-Contain-
er-1

The command in figure 7.17 uses the (backupmain) option to specify that the

newly started node (i.e. Main-Container-2) is a third main container, exporting a

180

7.4 Reliability

Service Manager address on host host3, port 1099. This new node is to join an

existing platform that is specified by the (-host), (-port) and (name) options.

Figure 7.17: Generating Replication of Main-Container Producing Main-Contain-
er-2

7.4.1 Discussion

• To make the RDADeLE system more reliable we suggest that each regional

grid has a main container. The main container of each regional grid connects

to many non-main containers. These non-main containers represent institution

nodes within each administrative region. In turn each node as a non-container,

within each administrative region, has many agents which represent learners.

This scenario is one of our suggestions which can be adopted in the future.

• Replica catalogues which are provided by the grid middleware could be useful

for the agent layer to maintain storage nodes that the administrator configured.

Replica catalogues update their information regarding data resources as to when

mobility occurs and it maps logical file names to physical locations on grid

resources. A resource broker contacts a replica catalogue to query information

about data locations.

• All other non-main containers should connect to the replicated main container

of its respective regional grid. This is to complete the process of replication.

• Using one or both techniques, the XRT and the RST, in the prototype does

not affect the reliability of the RDADeLE system.

181

7.5 Efficiency in Searching for Learning Objects’ Information and Grid
Services

7.5 Efficiency in Searching for Learning Objects’

Information and Grid Services

To measure time intervals the method System.currentTimeMillis() is used. The pre-

cision of its return value depends on many factors, and to obtain more precise values

we conducted the experiment ten times to calculate the mean search time.

7.5.1 Searching for Learning Objects’ Information

We have tested the RDADeLE prototype against a number of registries which con-

tain meta-data of LOs assuming that there is 1 node and 1 learner. Each admin-

istrative region of the Kingdom of Saudi Arabia has only one registry which con-

tains information about LOs in that administrative region. The test has been con-

ducted 10 times for each specific number of registries. The system returns the error

(java.lang.OutOfMemoryError: Java heap space) when the number of registries ex-

ceeds 200. Table 7.4 shows the mean search time on a different numbers of registries.

The first column in the table is the number of registries where the search command

performs a search process and the second column is the mean search time in millisec-

onds.

Table 7.4: Mean Search Time for Different Numbers of Registries Using the XRT
Technique

Number of Registries Mean Search Time (Milliseconds)
20 135.9
40 250.2
60 389.4
80 618.7
100 898.4
120 1018.7
140 1225
160 1551.7
180 2021.9
200 2692

182

7.5 Efficiency in Searching for Learning Objects’ Information and Grid
Services

The graph in figure 7.18 shows the relationship between mean search time (in

milliseconds) and numbers of registries using the XRT technique. The graph

shows that the mean search time for LOs’ information is increased with a increase in

the number of registries of administrative regions.

Figure 7.18: Number of Registries Against Mean Search Time Using the XRT
Technique

7.5.2 Searching for Registered-based Grid Services

We have tested the RDADeLE prototype against a number of registered grid services

assuming that there is 1 regional grid, 1 node and 1 learner. All grid services are

registered within the DF which is located in the main container in the Riyadh admin-

istrative region. The test has been conducted 10 times for each specific number of

registered grid services. The system returns the error (java.lang.OutOfMemoryError:

Java heap space) when the number of registered grid services exceeds 4000. Table

7.5 shows the mean search time for different numbers of registered services. The

first column in the table is the number of registered services where the search com-

183

7.5 Efficiency in Searching for Learning Objects’ Information and Grid
Services

Table 7.5: Mean Search Time for Different Registered Services Using the RST
Technique

Number of Grid Services Mean Search Time (Milliseconds)
20 37.2
40 48.6
60 59.1
80 69.7
100 80.9
120 91.2
140 102.5
160 113.9
180 124.4
200 137.5
300 231.3
400 268.8
500 392.3
600 471.9
700 466.9
800 525.2
900 635.9
1000 751.4

mand performs a search process and the second column is the mean search time in

milliseconds.

The graph in figure 7.19 shows the relationship between mean search time (in

milliseconds) and number of registered services using the RST technique. The

graph shows that with an increase in the number of grid services registered with the

DF there is a corresponding increase in mean search time for grid services..

The graph in figure 7.20 shows the difference in mean search time using both the

XRT and the RST techniques. It shows that more grid services can be registered in

the RDADeLE system with less mean search time using the RST technique. The

search performance increases using the RST technique compared with the XRT

technique.

184

7.5 Efficiency in Searching for Learning Objects’ Information and Grid
Services

Figure 7.19: Number of Registered Services Against Mean Search Time Using the
RST Technique

Figure 7.20: Mean Search Time Comparison

185

7.6 Review of RDADeLE implementation result towards RDADeLE
Requirements

7.5.3 Discussion

In order to reduce the limitations of the RDADeLE system we suggest the following:

• To avoid low performance or even system crashes we have to avoid setting

the variable maxResult of the DF search constraint to large values (This is

applicable to the RST technique). Instead we recommend a distributed

platform to activate several containers on different hosts and spread agents

across them.

• We can merge both techniques, XRT and RST, in the prototype and transform

some registries into registered services. The transformation reduces the number

of registries, which take less time in searching for grid services.

• The graph in figure 7.20 shows the difference in mean search time using both

techniques, XRT and RST. It shows that more grid services could be regis-

tered in the RDADeLE system with less mean search time using the RST

technique. The search performance increases using the RST technique

compared with the XRT technique.

7.6 Review of RDADeLE implementation result

towards RDADeLE Requirements

This chapter covered the analysis of results to evaluate the RDADeLE architecture.

Experiments have been conducted against some factors using both techniques XRT

and RST. The second requirement is the extensibility. The result of conducting ex-

periments showed that using the RST technique the RDADeLE environment can be

built with more regional grids with less memory consumption. Meanwhile an algo-

rithm has been developed and implemented to provide the RDADeLE architecture

186

7.7 Summary

the scalability it needs. The aim of the algorithm is to divide a regional grid into

sub-regional grid in case of the increase of connected components to that regional

grid. By dividing required regional grids into sub-regional grids we come up with a

scalable system of systems.

The second requirement is the flexibility. The result of conducting experiments

showed that more grid services could be registered in the RDADeLE system with less

mean search time using the RST technique. The search performance increases using

the RST technique compared with the XRT technique.

The third requirement is the fault tolerance. In this chapter, we have reviewed

and discussed reliability of the RDADeLE architecture. Fault tolerance with cross-

notification mechanisms in the RDADeLE architecture provides failure detection and

failure handling. Keeping track of and connections between entities of a system

plays a big role in the system coherence and control. Replication of the RDADeLE

architecture Information Service and the Main Container guarantee the connections

between regional grids with each other and connections between components of each

regional grid.

7.7 Summary

This chapter has provided the simulation for the RDADeLE system to evaluate our

system scalability against number of regional grids and number of grid services with

simulation results. Afterwords, reliability of the RDADeLE system has been pre-

sented with results and discussion. Finally, efficiency of the search process has been

evaluated with results and discussion.

187

Chapter 8

Conclusion

8.1 Summary

The work presented in this thesis provides an insight into the world of building a

dynamic architecture for an e-learning environment which is composed of both grid

technology and agent computing. The current description of includes state of the art

languages, middleware, and platforms which are used in grid and agent computing.

e-Learning systems are examples of large, complex systems, and systems of sys-

tems. Building robust and dynamic systems for e-learning environments require

cooperation between many parties. Grid and agent technologies are one of the best

combinations to build robust and dynamic systems for e-learning environments. Grid

computing is a specialised instance of a distributed system. It is characterised by geo-

graphically diverse computer and data resources, these resources are under the control

of different administrative domains with different policies and levels of security, and a

heterogeneous hardware resource base consisting of components such as processing el-

ements, storage and network. Grid computing is highly dynamic in nature. Whereas,

agent technology has many features and characteristics that encourage us to adopt it

in the RDADeLE architecture. Characteristics include autonomy, adaptability and

proactivity, mobility, persistency, goal orientation, communication, collaboration, co-

operation, and flexibility.

In this research, we have developed a dynamic and distributed architecture for an

e-learning environment based on both grid and agent technologies. This architecture

exploits features of both data grid and agent technologies to create an architecture

188

8.2 Contributions

which is more manageable, extensible, flexible and fault tolerant. Scalable data

resources of the architecture are built and managed based on data grid technology.

The entities of the architecture (e.g. nodes, learners, services) are built and controlled

based on agent technology to become flexible and fault tolerant. This distributed

architecture allows regional grids to connect to each other, and allows their resources

to communicate with each other in order to exchange data between such resources

and the search for LOs’ information and grid services.

8.2 Contributions

The RDADeLE architecture requirements are management, extensibility, flexibility

and fault tolerance. The RDADeLE architecture which address these requirements

has produced a number of new contributions. These contributions include:

1. The RDADeLE architecture has been built for the purpose of controlling and

monitoring regional grids applicable for e-learning systems. We consider these

regional grids as systems, which could have subsystems. The RDADeLE archi-

tecture controls all elements of these systems using agent technology. In our

e-learning environment, a large number of entities (e.g. nodes, resources, learn-

ers) connect and disconnect to it at anytime. Using agents in the RDADeLE ar-

chitecture enriches it to be dynamic so that they control and manage e-learning

entities. These agents can easily connect and disconnect from the RDADeLE

architecture. The novel contribution here is producing a regional distributed

architecture for dynamic e-learning environment that integrates data grid tech-

nology with agent technology.

2. Data grid (data resources) has been divided into many grid segments. These

grid segments, named regional grids, are distributed. The benefit of division

189

8.2 Contributions

is applicable to any dynamic environment. The division in the RDADeLE

architecture is not for division itself, but to minimise problems of the whole

project (data grid as distributed) by determining and solving problems with

each part or segment. Besides that, division is provided to build autonomous

regional grids, especially in dynamic environments such as e-learning environ-

ments. The division has been adopted in RDADeLE in order to build a system

of systems. Eventually, RDADeLE will combine these regional grids to build

the whole system. The novel contribution here is dividing the whole data grid

into regional grids to compose system of systems environment.

3. Management of data resources is the first requirement in the RDADeLE ar-

chitecture. Management of data resources in the RDADeLE architecture is

performed using data grid middleware which guarantees sharing data resources

among users. Part of the management is monitoring the RDADeLE compo-

nents which performed using administrative agent. The administrative agent

is the first type of agents in the RDADeLE architecture. The administra-

tive agent, along with AMS and DF, work as an information service for the

RDADeLE system. The administrative agent controls other agents and mon-

itors the RDADeLE system. Moreover, the administrative agent assists the

whole RDADeLE system to accomplish its activities by controlling and man-

aging regional agents. The activities of the administrative agent include, for

example, creating regional agents (regional grids), authenticating regional grids

that connect to the RDADeLE system, registering and/or deregistering regional

grids upon request from the regional agent, and listing all registered regional

grids upon request from learners. The novel contribution here is to control and

manage components of the RDADeLE architecture using developed adminis-

trative, regional and node agents.

190

8.2 Contributions

4. Extensibility of data resources in the RDADeLE architecture is the second re-

quirement in the RDADeLE architecture. Extensibility refers to scalability of

the RDADeLE architecture. On one hand, using grid middleware enriches the

RDADeLE architecture to facilitate large-scale data-intensive computing and

to provide for collaboration in a wide variety of disciplines. Regional agent and

node agent (the second and the third types of agent), besides their functions in

controlling regional grids and nodes respectively, cooperate with administrative

agent to work intelligently in controlling and monitoring scalable and dynamic

e-learning environments. The RDADeLE architecture adapts itself according

to the environment scalability to become expandable. Thus the RDADeLE

architecture reorganises itself to be able to control and monitor scalable and

dynamic environments which are systems of systems. The novel contribution

here is to provide the extensibility to the RDADeLE architecture using devel-

oped administrative agent.

5. Flexibility: Service agents (the fourth type of agent in the RDADeLE archi-

tecture) with other types of agent enrich the architecture with flexibility in

composing and searching for LOs’ information and services. The result of using

agents is producing two techniques in the RDADeLE architecture which have

been implemented. The prototype of the RDADeLE architecture simulates two

techniques of composing and searching for LOs’ information and grid services.

The first technique is the XML-based Registries Technique (XRT). Learning

objects’ information in this technique is built using XML meta-data registries.

The second technique is the Registered-based Services Technique (RST). Grid

services in this technique, which may have learning objects’ information, are

built using agents that are registered in order to be discovered and accessed.

The novel contribution here is to provide the flexibility to the RDADeLE ar-

191

8.3 Future Work

chitecture using developed agents.

6. Fault tolerance: The RDADeLE architecture, as an e-learning system, needs

to bind all administrative regions of the Kingdom of Saudi Arabia with each

other and with their components in order to maintain reliability to become

more robust and reliable. Choosing an appropriate agent platform to assist the

architecture to become more reliable and robust is strongly recommended. Us-

ing the JADE agent platform to generate the required agents in the RDADeLE

architecture is recommended in order to monitor the environment agents and

then help the RDADeLE architecture to become more flexible and reliable.

The novel contribution here is to provide the fault tolerance to the RDADeLE

architecture using the JADE agent platform.

8.3 Future Work

There are many ways to build on the work presented in this thesis. The most obvious

are as follows:

• Generalising the RDADeLE system and extending it to include many different

distributed, large-scale, open, heterogeneous and dynamic applications. These

applications include e-banking, e-commerce, and e-health. Such applications

have to deal with a large number of members which requires the application

to be distributed, large-scale, heterogeneous, and dynamic. Agent technology

plays a major role in these kinds of applications. Agents could provide a signif-

icant enhancement to these applications to make them more reliable, dynamic,

and scalable.

• Improve the flexibility in the RDADeLE architecture by merging both tech-

niques, XRT and RST, in the prototype and transform some registries into

192

8.3 Future Work

registered services. The transformation reduces the number of registries, which

take less time in searching for grid services.

• Extend the RDADeLE system to use mobile agents in its activities. Mobility

and LEAP is useful when using small devices (e.g. Personal Digital Assistant

(PDA) and mobile phones) to connect to the RDADeLE system. Small devices

can use a browser to access the RDADeLE system to participate as one of the

system entities.

• Extend and improve the regional grid policy in the RDADeLE system. Many

policy applications could be applied such as are data flow policy, security policy

and rule-based policy which could be adopted to control the RDADeLE system.

• Extend and improve the search method for LOs’ information and grid services.

The search method can adopt an optimal search algorithm in order to improve

search time for both LOs’ information and grid services.

193

Bibliography

[1] Ministry of Foreign Affairs, Saudi Arabia, 2009. http://www.mofa.gov.sa/.

[2] Sharing Infrastructure and Resources in Europe (Sirene), Accessed January
2010. http://www.eugrid.eu/home.

[3] David Abramson, Rajkumar Buyya, and Jonathan Giddy. A computational
economy for grid computing and its implementation in the nimrod-G resource
broker. Future Generation Comp. Syst, 18(8):1061–1074, 2002.

[4] Ali M. Al-Asmari. The Use Of The Internet Among EFL Teachers At The
Colleges Of Technology In Saudi Arabia. PhD thesis, The Ohio State University,
2005.

[5] Ahmed Al-Nazer and Tarek Helmy. A web searching guide: Internet search
engines & autonomous interface agents collaboration. In Web Intelligence/IAT
Workshops, pages 424–428. IEEE, 2007.

[6] H. Al-Sakran. An agent-based architecture for developing e-learning system.
Information Technology Journal, 5(1):121–127, 2006.

[7] Omar Subhi Aldabbas. A Framework for Mobility and Temporal Dimensions
of Grid Systems. PhD thesis, De Montfort University, 2009.

[8] E. AlHashel, B.M. Balachandran, and D. Sharma. Extending prometheus with
agent cooperation. In Computational Intelligence for Modelling Control & Au-
tomation, 2008 International Conference on, pages 912–918, Dec. 2008.

[9] W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, L. Liming, and S. Tuecke.
Gridftp: Protocol extensions to ftp for the grid. February 27 2001.

[10] S. AlZahrani, A. Ayesh, and H. Zedan. Multi-agent Based Dynamic e-Learning
Environment. International Journal of Information Technology and Web En-
gineering (IJITWE), 4(2), June 2008.

[11] S. AlZahrani, A. Ayesh, and H. Zedan. Multi-agent System Based Regional
Data Grid. In Computer Engineering & Systems, 2008. ICCES 2008. Interna-
tional Conference on, pages 337–342, Nov. 2008.

[12] S. AlZahrani, A. Ayesh, and H. Zedan. Regionally Distributed Architecture
for Dynamic e-Learning Environment (RDADeLE). In Human System Inter-
actions, 2008 Conference on, pages 579–584, May 2008.

[13] Rachid Anane, Kuo-Ming Chao, and Yinsheng Li. Hybrid composition of web
services and grid services. In EEE, pages 426–431. IEEE Computer Society,
2005.

194

BIBLIOGRAPHY

[14] John Langshaw Austin. How to Do Things with Words. Harvard University
Press, 1962.

[15] Kentaro Fukui Bart Jacob, Michael Brown and Nihar Trivedi. Introduction
to grid computing. Technical Report 1, IBM International Technical Support
Organisation, 2005.

[16] Norbert Bieberstein Candice Gilzean Jean-Yves Girard Roman Strachowski
Bart Jacob, Luis Ferreira and Seong (Steve) Yu. Enabling applications for grid
computing with globus. Technical report, IBM International Technical Support
Organisation, 2003.

[17] Sujoy Basu, Sujata Banerjee, Puneet Sharma, and Sung-Ju Lee. Nodewiz:
peer-to-peer resource discovery for grids. In CCGRID, pages 213–220. IEEE
Computer Society, 2005.

[18] Bernhard Bauer, Jörg P. Müller, and James Odell. Agent UML: A formalism
for specifying multiagent software systems. International Journal of Software
Engineering and Knowledge Engineering, 11(3):91–104, 2001.

[19] Fabio Luigi Bellifemine, Giovanni Caire, and Dominic Greenwood. Developing
Multi-Agent Systems with JADE. John Wiley & Sons, NJ, April 2007.

[20] Federico Bergenti and Agostino Poggi. Supporting agent-oriented modelling
with UML. International Journal of Software Engineering and Knowledge En-
gineering, 12(6):605–618, 2002.

[21] Carole Bernon, Marie-Pierre Gleizes, Gauthier Picard, and Pierre Glize.
The ADELFE methodology for an intranet system design. In P Giorgini,
Y Lespérance, G Wagner, and E Yu, editors, International Bi-Conferenystems
(AOIS-2002) at CAice Workshop on Agent-Oriented Information SSE’02
(AOIS - SSE), Toronto, Ontario, Canada, 27/05/02-28/05/02, page (on line),
http://ceur-ws.org, mai 2002. CEUR Workshop Proceedings.

[22] Joseph P. BIGUS and Jennifer BIGUS. Constructing intelligent agents using
java. Wiley, 2001. second edition.

[23] Jeffrey M. Bradshaw. An introduction to software agents. In Jeffrey M. Brad-
shaw, editor, Software Agents, chapter 1, pages 3–46. AAAI Press / The MIT
Press, 1997.

[24] Frances M. T. Brazier, Catholijn M. Jonker, and Jan Treur. Principles of
component-based design of intelligent agents. Data and Knowledge Engineering,
41(1):1–27, 2002.

195

BIBLIOGRAPHY

[25] Sabin-Corneliu Buraga. Developing agent-oriented e-learning systems. In in
Proceedings of The 14th International Conference on Control Systems And
Computer Science vol. II, I. Dumitrache and C. Buiu, Eds, Politehnica. Po-
litehnica Press, Bucharest, June 16 2003.

[26] P Busetta, R Rönnquist, A Hodgson, and A Lucas. JACK intelligent agents
- components for intelligent agents in java. Technical report, European Co-
ordination Action for Agent Based Computing(AgentLink), January 1999.

[27] Rajkumar Buyya and M. Manzur Murshed. Gridsim: A toolkit for the modeling
and simulation of Distributed Resource Management and Scheduling for Grid
Computing. CoRR, cs.DC/0203019, 2002. informal publication.

[28] Higher Education Statistics Center. Statistical report 2009. Statistical, Min-
istry of Higher Education, Saudi Arabia, 2009. http://statistics.mohe.gov.sa/.

[29] Luca Cernuzzi, Massimo Cossentino, and Franco Zambonelli. Process models
for agent-based development. Journal of Engineering Applications of Artificial
Intelligence, 18(2):205–222, 2005.

[30] Soumyakanti Chakraborty, Anup K. Sen, and Amitava Bagchi. Designing proxy
bidders for online combinatorial auctions. In HICSS, pages 1–10. IEEE Com-
puter Society, 2009.

[31] Mohan Baruwal Chhetri, Rosanne Price, Shonali Krishnaswamy, and Seng Wai
Loke. Ontology-based agent mobility modelling. In HICSS. IEEE Computer
Society, January 2006.

[32] Krzysztof Chmiel, Maciej Gawinecki, Pawel Kaczmarek, Michal Szymczak, and
Marcin Paprzycki. Efficiency of JADE agent platform. Scientific Programming,
13(2):159–172, 2005.

[33] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web services
description language (WSDL) 1.1. http://www.w3.org/TR/wsdl, 2001.

[34] Li Chunlin and Li Layuan. Agent framework to support the computational
grid. The Journal of Systems and Software, 70(1–2):177–187, February 2004.

[35] Andrea Clematis, Paola Forcheri, and Alfonso Quarati. Interacting with learn-
ing objects in a distributed environment. In PDP, pages 322–329. IEEE Com-
puter Society, 2006.

[36] Luc Clement, Andrew Hately, Claus von Riegen, and Tony Rogers. UDDI
version 3.0.2. Technical report, Organization for the Advancement of Structured
Information Standards, UDDI Spec Technical Committee Draft, October 2004.

196

BIBLIOGRAPHY

[37] The IEEE Learning Technology Standards Committee. The learning object
metadata standard. Technical report, The IEEE, 2007.

[38] World Wide Web Consortium. Web services architecture, 2004.
http://www.w3.org/TR/ws-arch/.

[39] Marco Cremonini, Andrea Omicini, and Franco Zambonelli. Building mobile
agent applications in hiMAT. In PDSE, pages 174–181, 1999.

[40] Scott A. DeLoach, Mark F. Wood, and Clint H. Sparkman. Multiagent systems
engineering. International Journal of Software Engineering and Knowledge En-
gineering, 11(3):231–258, 2001.

[41] Gizella Dewath. A study of the current state of e-learning in the united king-
dom. Technical report, The International Dunhuang Project The British Li-
brary, May 2004.

[42] Kevin R. Dixon, Theodore Q. Pham, and Pradeep K. Khosla. Port-based
adaptable agent architecture. Lecture Notes in Computer Science, 1936:181,
2001.

[43] Dirk Düllmann, Wolfgang Hoschek, Francisco Javier Jaén-Mart́ınez, Ben Se-
gal, Heinz Stockinger, Kurt Stockinger, and Asad Samar. Models for replica
synchronisation and consistency in a data grid. In HPDC, pages 67–75. IEEE
Computer Society, 2001.

[44] Agostino Poggi Fabio Bellifemine, Giovanni Caire and Giovanni Rimassa. Jade:
A white paper. EXP in search of innovation, September 2003.

[45] Tiziana Trucco Giovanni Rimassa Roland Mungenast Fabio Bellifemine, Gio-
vanni Caire. Jade administrators guide. Technical report, Telecom Italia, Fer-
bruary 2006.

[46] M. Fasli. Agent Technology for E-commerce. Wiley & Sons, 2007.

[47] J. Ferber. Multi-agent Systems: Introduction to Distributed Artificial Intelli-
gence. Addison Wesley, 1999.

[48] Roy T. Fielding, Jim Gettys, Jeff Mogul, Henrik Frystyk Nielsen, Larry Mas-
inter, Paul J. Leach, and Tim Berners-Lee. Hypertext Transfer Protocol —
HTTP/1.1. Internet Request for Comment RFC 2616, Internet Engineering
Task Force, June 1999.

[49] Tim Finin, Yannis Labrou, and James Mayfield. KQML as an agent communi-
cation language. In Jeffrey M. Bradshaw, editor, Software Agents, chapter 14,
pages 291–316. AAAI Press / The MIT Press, 1997.

197

BIBLIOGRAPHY

[50] Marco Fioretti. The OASIS standard for office documents. Linux Journal,
2004(119):4–4, March 2004.

[51] M. Fisher. A survey of Concurrent MetateM — the language and its ap-
plications. In D. M. Gabbay and H. J. Ohlbach, editors, Temporal Logic —
Proceedings of the First International Conference (LNAI Volume 827), pages
480–505. Springer-Verlag: Heidelberg, Germany, July 1994.

[52] The Foundation for Intelligent Physical Agents (FIPA). Fipa acl
message structure specification. Technical Report SC00061G, The
Foundation for Intelligent Physical Agents (FIPA), December 2002.
http://www.fipa.org/specs/fipa00061/SC00061G.html.

[53] The Foundation for Intelligent Physical Agents (FIPA). Major implemen-
tations of agent platforms which conform to the fipa specifications. Tech-
nical report, The Foundation for Intelligent Physical Agents (FIPA), 2003.
http://www.fipa.org/resources/livesystems.html.

[54] A. Savva D. Berry A. Djaoui A. Grimshaw B. Horn F. Maciel F. Siebenlist R.
Subramaniam J. Treadwell J. Von Reich Foster, H. Kishimoto. The open grid
services architecture. Technical Report 1, Global Grid Forum (GGF), January
2005.

[55] I. Foster and C. Kesselman, editors. The Grid2: Blueprint for a New Computing
Infrastructure. Morgan-Kaufmann, 2004.

[56] Ian Foster, Carl Kesselman, Jeffrey M. Nick, and Steven Tuecke. The phys-
iology of the grid: An open grid services architecture for distributed systems
integration. Technical report, Open Grid Service Infrastructure WG, Global
Grid Forum, June 28 2002.

[57] Ian T. Foster, Nicholas R. Jennings, and Carl Kesselman. Brain meets brawn:
Why grid and agents need each other. In AAMAS, pages 8–15. IEEE Computer
Society, 2004.

[58] Ian T. Foster, Carl Kesselman, and Steven Tuecke. The anatomy of the grid:
Enabling scalable virtual organizations. IJHPCA, 15(3):200–222, 2001.

[59] Angelo Gaeta, Pierluigi Ritrovato, Francesco Orciuoli, and Matteo Gaeta. En-
abling technologies for future learning scenarios: the semantic grid for human
learning. In CCGRID, pages 3–10. IEEE Computer Society, 2005.

[60] Youssef Gamha, Nacéra Bennacer, Guy Vidal-Naquet, Béchir el Ayeb, and
Lotfi Ben Romdhane. A framework for the semantic composition of web services
handling user constraints. In ICWS, pages 228–237. IEEE Computer Society,
2008.

198

BIBLIOGRAPHY

[61] Alfredo Garro, Luigi Palopoli, and Francesco Ricca. Exploiting agents in e-
learning and skills management context. AI Commun, 19(2):137–154, 2006.

[62] José Manuel Gascueña and Antonio Fernández-Caballero. Prometheus and
INGENIAS agent methodologies: A complementary approach. In Michael Luck
and Jorge J. Gómez-Sanz, editors, AOSE, volume 5386 of Lecture Notes in
Computer Science, pages 131–144. Springer, 2008.

[63] M. R. Genesreth, R. E. Fikes, et al. Knowledge interchange format, version 3.0
reference manual. Technical Report Logic-92-1, Computer Science Department,
Stanford University, 1992.

[64] Paolo Giorgini, John Mylopoulos, and Roberto Sebastiani. Goal-oriented re-
quirements analysis and reasoning in the tropos methodology. Engineering
Applications of Artificial Intelligence, 18(2):159–171, 2005.

[65] Andrew S. Grimshaw, Marty A. Humphrey, and Anand Natrajan. A philosoph-
ical and technical comparison of legion and globus. IBM Journal of Research
and Development, 48(2):233–254, 2004.

[66] Martin Gudgin, Marc Hadley, and Tony Rogers. Web services
addressing 1.0 - core. W3C recommendation, W3C, May 2006.
http://www.w3.org/TR/2006/REC-ws-addr-core-20060509.

[67] Kasper Hallenborg, Ask Just Jensen, and Yves Demazeau. Reactive agent
mechanisms for manufacturing process control. In Web Intelligence/IAT Work-
shops, pages 399–403. IEEE, 2007.

[68] A Hamdan. Women and education in saudi arabia: Challenges and achieve-
ments. International Education Journal, 6(1):42–64, 2005.

[69] S. Hammami, H. Mathkour, and E.A. Al-Mosallam. A multi-agent architec-
ture for adaptive e-learning systems using a blackboard agent. In Computer
Science and Information Technology, 2009. ICCSIT 2009. 2nd IEEE Interna-
tional Conference on, pages 184–188, Aug. 2009.

[70] Khadidja Harbouche and Mahieddine Djoudi. Agent-based design for elearning
environment. Journal of Computer Science, 3(6):383–389, 2007.

[71] S. Hasegawa and K. Ochimizu. A learning management system based on the life
cycle management model of e-learning courseware. In Advanced Learning Tech-
nologies, 2005. ICALT 2005. Fifth IEEE International Conference on, pages
35–37, July 2005.

[72] Fu-Shiung Hsieh. Holarchy formation and optimization in holonic manufactur-
ing systems with contract net. Automatica, 44(4):959–970, 2008.

199

BIBLIOGRAPHY

[73] Fu-Min Huang and Ming Chao. An architecture of virtual environment for
E-learning (AVEE). In ICALT, pages 148–149. IEEE Computer Society, 2005.

[74] Wei Huang, Elia El-Darzi, and Li Jin. Extending the gaia methodology for the
design and development of agent-based software systems. In COMPSAC, pages
159–168. IEEE Computer Society, 2007.

[75] Summer Scott Huyette. Political adaptation in Saudi Arabia a study of the
Council of Ministers. PhD thesis, Columbia University, 1984.

[76] Francisco Curbera Ibm, Hitesh Dholakia, Yaron Goland Bea, Johannes Klein
Microsoft, Frank Leymann Ibm, Kevin Liu Sap, Dieter Roller Ibm, Doug Smith,
Siebel Systems, Satish Thatte, Ivana Trickovic Sap, and Sanjiva Weerawarana
Ibm. Business process execution language for web services, May 13 2003.

[77] C. A. Iglesias, M. Garijo, J. C. Gonzalez, and J. R. Velasco. Analysis and design
of multiagent systems using MAS-CommonKADS. Lecture Notes in Computer
Science, 1365:313, 1998.

[78] N. R. Jennings and M. Wooldridge. Applying agent technology. Applied Arti-
ficial Intelligence, 9(6):357–370, 1995.

[79] Hai Jin and Li Qi. Agents in chinagrid support platform. In Cluster Comput-
ing and the Grid Workshops CCGRID, Sixth IEEE International Symposium,
volume 2, pages 1–4. IEEE Computer Society, May 2006.

[80] L.F. Johnson. Elusive vision: Challenges impeding the learning object economy.
White paper, Macromedia, 2003.

[81] Thomas Juan, Adrian R. Pearce, and Leon Sterling. ROADMAP: extending
the gaia methodology for complex open systems. In AAMAS, pages 3–10. ACM,
2002.

[82] L. P. Kaelbling. A situated automata approach to the design of embedded
agents. SIGART Bulletin, 2(4):85–88, 1991.

[83] Do-Hyeon Kim and Kyung-Woo Kang. Design and implementation of inte-
grated information system for monitoring resources in grid computing. In
CSCWD, pages 1–6. IEEE, 2006.

[84] Weining Kong, Junzhou Luo, and Tiantian Zhang. A workflow based E-learning
architecture in service environment. In CIT, pages 1026–1032. IEEE Computer
Society, 2005.

[85] Klaus Krauter, Rajkumar Buyya, and Muthucumaru Maheswaran. A taxonomy
and survey of grid resource management systems for distributed computing.
Softw, Pract. Exper, 32(2):135–164, 2002.

200

BIBLIOGRAPHY

[86] Profactor & Telecom Italia Lab. Analysis and benchmark of scalability and
performance of jades. Technical report, Telecom Italia, November 2004.

[87] John Laird and Michael Van Lent. Human-level AI’s killer application: Inter-
active computer games. The AI Magazine, 22(2):15–25, 2000.

[88] Danny B. Lange and Daniel T. Chang. Programming mobile agents in java –
A white paper. Technical report, IBM Corp, 1996.

[89] Lorenzo Lazzari, Marco Mari, and Agostino Poggi. Cafe - collaborative agents
for filtering e-mails. In WETICE ’05: Proceedings of the 14th IEEE Interna-
tional Workshops on Enabling Technologies: Infrastructure for Collaborative
Enterprise, pages 356–361, Washington, DC, USA, 2005. IEEE Computer So-
ciety.

[90] Jaewook Lee. Design Collaboration as a Framework for Building Intelligent
Environments. PhD thesis, University of Illinois, 2006.

[91] Arnaud Legrand, Loris Marchal, and Henri Casanova. Scheduling distributed
applications: the simgrid simulation framework. In CCGRID, pages 138–145.
IEEE Computer Society, 2003.

[92] I. Legrand, H. Newman, R. Voicu, C. Cirstoiu, C. Grigoras, C. Dobre, A. Mu-
raru, A. Costan, M. Dediu, and C. Stratan. Monalisa: An agent based, dynamic
service system to monitor, control and optimize distributed systems. Computer
Physics Communications, 180(12):2472 – 2498, 2009.

[93] Frank Leymann. Web services flow language (WSFL 1.0). Technical report,
IBM, May 2001.

[94] Bingchen Li, Wei Li, and Zhiwei Xu. Implementation issues of a grid ser-
vice markup language. In Parallel and Distributed Computing, Applications
and Technologies, 2003. PDCAT’2003. Proceedings of the Fourth International
Conference on, pages 620–624, Aug. 2003.

[95] Wang Li, Wang Cong, Long Hao, and Di Rui-Hua. An Adaptive MAS-based
Data Acquisition Model in ESESGrid. In ChinaGrid Annual Conference, 2008.
ChinaGrid ’08. The Third, pages 218–222, Aug. 2008.

[96] Shu-Sheng Liaw. Investigating students’ perceived satisfaction, behavioral in-
tention, and effectiveness of e-learning: A case study of the blackboard system.
Computers & Education, 51(2):864–873, 2008.

[97] Michael Luck, Peter McBurney, and Chris Preist. Agent Technology: Enabling
next generation computing: a roadmap for agent based computing. Agentlink,
2003.

201

BIBLIOGRAPHY

[98] P. Maes. The agent network architecture (ANA). SIGART Bulletin, 2(4):115–
120, 1991.

[99] Muthucumaru Maheswaran and Klaus Krauter. A parameter-based approach
to resource discovery in grid computing system. In Rajkumar Buyya and Mark
Baker, editors, GRID, volume 1971 of Lecture Notes in Computer Science,
pages 181–190. Springer, 2000.

[100] C. E. Martin, K. S. Barber, and K. S. Barber. Agent autonomy: Specification,
measurement, and dynamic adjustment. In In Proceedings of the Autonomy
Control Software Workshop, Agents '99, pages 8–15, 1999.

[101] Marilyn McClelland. Metadata standards for educational resources. IEEE
Computer, 36(11):107–109, 2003.

[102] Nilo Mitra and Yves Lafon. SOAP version 1.2 part 0: Primer (second edition).
World Wide Web Consortium, Recommendation REC-soap12-part0-20070427,
April 2007.

[103] Mitsubishi Electric Information Technology Center America. Con-
cordia, mobile agent computing. A White Paper, January 1998.
http://www.cis.upenn.edu/ bcpierce/courses/629/papers/Concordia-
WhitePaper.html.

[104] Kazuo Miyashita and Gautam Rajesh. Multiagent coordination for controlling
complex and unstable manufacturing processes. Expert Systems with Applica-
tions, 37(3):1836 – 1845, 2010.

[105] Paul Mockapetris. Domain names concepts and facilities. Technical report,
Information Sciences Institute, University of Southern California, November
1987.

[106] L. Monostori, J. Vncza, and S.R.T. Kumara. Agent-based systems for manu-
facturing. CIRP Annals - Manufacturing Technology, 55(2):697 – 720, 2006.

[107] Elena Nardini, Andrea Omicini, and Mirko Viroli. General-purpose coordina-
tion abstractions for managing interaction in MAS. In Web Intelligence/IAT
Workshops, pages 501–506. IEEE, 2009.

[108] United Nations. World population prospects the 2006 revision. Technical re-
port, Division of Economic and Social Affairs, 2006.

[109] Patricia Albanese (Pitkin) Bradley F. Baker David Cohen Lorcan Dempsey
Neil McLean, Heidi Sander et al. Libraries and the enhancement of e-learning.
OCLC E-Learning Task Force, 43017-3395, October 2003.

202

BIBLIOGRAPHY

[110] Z. Németh and V. Sunderam. A formal framework for defining grid systems.
In Proceedings of the Second IEEE/ACM International Symposium on Cluster
Computing and the Grid, CCGRID2002, pages 202–211. IEEE Computer So-
ciety Press, May 2002.

ASMs are used to define a model for grid systems.

[111] Eric Newcomer. Understanding Web Services: XML, WSDL, SOAP, and
UDDI. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2002.

[112] A. Newell. Unified Theories of Cognition. Harvard University Press, Cambridge,
MA, 1990.

[113] Rob Philpott Nick Ragouzis, John Hughes and Eve Maler. Security assertion
markup language (SAML) v2.0. Technical Report 2, OASIS Standard, October
2006.

[114] Hyacinth S. Nwana. Software agents: An overview. Knowledge Engineering
Review, 11(3):1–40, Septemebr 1996.

[115] Object Management Group. Agent technology — green paper. OMG Document
agent/00-09-01, September 2000.

[116] G. O’Hare and N. Jennings. Foundations of Distributed Artificial Intelligence.
Wiley, 1996.

[117] Lin Padgham and Michael Winikoff. Prometheus: A pragmatic methodol-
ogy for engineering intelligent agents. In In Proceedings of the OOPSLA 2002
Workshop on Agent-Oriented Methodologies, pages 97–108, October 01 2002.

[118] Victor Pankratius, Olivier S, and Wolffried Stucky. Retrieving content with
agents in web service e-learning systems. In Symposium on Professional Practice
in AI, IFIP WG12.5 in Proceedings of the First IFIP Conference on Artificial
Intelligence Applications and Innovations (AIAI, pages 91–100, 2004.

[119] E. Pascalau. Smart agent based on rules for web knowledge mining. In Digital
EcoSystems and Technologies Conference, 2007. DEST ’07. Inaugural IEEE-
IES, pages 458–461, Feb. 2007.

[120] Loris Penserini, Anna Perini, Angelo Susi, and John Mylopoulos. High vari-
ability design for software agents: Extending tropos. TAAS, 2(4), 2007.

[121] J. Postel. Transmission control protocol. Technical Report RFC 793, DARPA,
September 1980.

[122] J. Postel. User datagram protocol. Technical Report RFC 768, Information
Sciences Institute, University of Southern California, August 1980.

203

BIBLIOGRAPHY

[123] J. Postel. Internet protocol. Network Information Center RFC 791, pages 1–45,
September 1981.

[124] Jon Postel. Internet control message protocol. RFC 792, ISI, September 1981.

[125] J. S. Rosenschein and G. Zlotkin. Designing conventions for automated negoti-
tion. AI Magazine, pages 29–46, Fall 1994.

[126] A. Roy, J.; Ramanujan. Understanding Web services. IT Professional,
3(6):Pages:69–73, Nov/Dec 2001.

[127] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall, 1995.

[128] I. Foster J. Frey S. Graham C. Kesselman S. Tuecke, K. Czajkowski. Grid
service specification. Technical report, Open Grid Services Infrastructure WG,
Global Grid Forum, July 11 2002. Draft 3.

[129] Andrew P. Sage and Christopher D. Cuppan. On the systems engineering and
management of systems of systems and federations of systems. Inf. Knowl.
Syst. Manag., 2(4):325–345, 2001.

[130] J. R. Searle. Speech Acts: An Essay in the Philosophy of Language. Cambridge
University Press, Cambridge, England, 1969.

[131] Zhidong Shen and Qiang Tong. A security technology for mobile agent system
improved by trusted computing platform. In Hybrid Intelligent Systems, 2009.
HIS ’09. Ninth International Conference on, volume 3, pages 46–50, Aug. 2009.

[132] Hongchi Shi, Spyridon Revithis, and Su-Shing Chen. An agent enabling person-
alized learning in e-learning environments. In AAMAS, pages 847–848. ACM,
2002.

[133] Yoav Shoham. An overview of agent-oriented programming. In Jeffrey M.
Bradshaw, editor, Software Agents, chapter 13, pages 271–290. AAAI Press /
The MIT Press, 1997.

[134] Herbert A. Simon. The New Science of Management Decision. Harper and
Brothers, New York, 1960.

[135] Thomas Skylogiannis, Grigoris Antoniou, Nick Bassiliades, and Guido Gov-
ernatori. DR-NEGOTIATE - A system for automated agent negotiation with
defeasible logic-based strategies. In EEE, pages 44–49. IEEE Computer Society,
2005.

[136] H. J. Song, X. Liu, D. Jakobsen, et al. The MicroGrid: A scientific tool for
modeling Computational Grids. Scientific Programming, 8(3):127–141, 2000.

204

BIBLIOGRAPHY

[137] Ron Sun. Accounting for the computational basis of consciousness: A con-
nectionist approach. Consciousness and Cognition, 8:529–565, September 06
1999.

[138] Ron Sun. Duality of The Mind. Lawrence Erlbaum Associates, Inc., 2002.

[139] Yong Sun and Bo Wu. Agent hybrid architecture and its decision processes. In
Machine Learning and Cybernetics, 2006 International Conference on, pages
641–644, Aug. 2006.

[140] Keith Swenson. Simple workflow access protocol (SWAP). Technical report,
1998. http://www.ics.uci.edu/ietfswap/.

[141] Domenico Talia. The open grid services architecture: Where the grid meets
the web. IEEE Internet Computing, 6(6):67–71, 2002.

[142] Technical and Vocational Training Corporation (TVTC). Annual report 2008.
Annual, Technical and Vocational Training Corporation (TVTC), Saudi Ara-
bia, 2008. http://www.tvtc.gov.sa/Downloads/Reports/annualreport.pdf.

[143] I. Foster J. Frey S. Graham C. Kesselman T. Maguire T. Sand-
holm P. Vanderbilt D. Snelling Tuecke, K. Czajkowski. The
open grid services infrastructure (OGSI) version 1.0, 2003.
http://www.globus.org/alliance/publications/papers/Final OGSI Specification V1.0.pdf.

[144] Steve Tuecke. Grid an option for data management challenges. Computerworld,
2006.

[145] Amund Tveit. A survey of agent-oriented software engineering, July 12 2001.

[146] Giuseppe Vizzari and Francesco Olivieri. Towards hybrid situated agents based
virtual environments. In Web Intelligence/IAT Workshops, pages 587–590.
IEEE, 2009.

[147] Yong Wang, Chunming Hu, and Jinpeng Huai. A new grid workflow description
language. In IEEE SCC, pages 257–260. IEEE Computer Society, 2005.

[148] Gerhard Weiss, editor. Multiagent Systems: A Modern Approach to Distributed
Artificial Intelligence. The MIT Press, Cambridge, MA, USA, 1999.

[149] M. Wooldridge. An Introduction to MultiAgent Systems. Wiley, Chichester,
2002.

[150] M. Wooldridge and N. Jennings. Intelligent agents: Theory and practice.
Knowledge Engineering Review, 10(2):115–152, 1995.

205

BIBLIOGRAPHY

[151] Michael Wooldridge, Nicholas R. Jennings, and David Kinny. A methodology
for agent-oriented analysis and design. In Proceedings of Agents 1999, pages
69–76, 1999.

[152] Michael Wooldridge, Nicholas R. Jennings, and David Kinny. The gaia method-
ology for agent-oriented analysis and design. Autonomous Agents and Multi-
Agent Systems, 3(3):285–312, 2000.

[153] Zheng Xiu-Ying, Chang Gui-Ran, Li Zhen, and Wang Jian. A resource-centric
p2p network model for grid resource discovery. In Computing, Communication,
Control, and Management, 2008. CCCM ’08. ISECS International Colloquium
on, volume 1, pages 210–214, Aug. 2008.

206

Appendix A

Java Code of RDADeLE implementation

The following is the Java source code of the RDADeLE implementation.

207

