1,115,618 research outputs found

    The Relationship between Lower-Body Strength and Power, and Load Carriage Tasks: A Critical Review

    Get PDF
    International Journal of Exercise Science 12(6): 1001-1022, 2019. The purpose of this review was to critically appraise articles that have investigated the association between lower-body strength and power during load carriage in tactical personnel. Literature databases were searched with specific search terms, yielding 921 articles. Additional studies found from article reference lists were also assessed for eligibility. Out of these articles, 16 met the inclusion/exclusion criteria and were critically appraised. Articles were assessed by the Downs and Black evaluation tool with inter-rater agreement determined by Cohen’s kappa and final results graded according to the Kennelly quality grading system. Of the 940 identified articles, 16 studies met the criteria for inclusion in this review. The average score of the eligible articles was 58%, considered to be of fair quality by the Kennelly grading system. The strength and volume of evidence reviewed suggests that: measures of lower-body strength and power can predict load carriage performance and appear to be important physical factors for load carriage ability, and that load carriage tasks negatively impact the performance of leg strength and power. Together these findings suggest that leg strength and power should be important considerations for tactical personnel training and assessment, as well as managing the impact of load carriage on tactical performance

    STS-57 Space Shuttle mission report

    Get PDF
    The STS-57 Space Shuttle Program Mission Report provides a summary of the Payloads, as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the fifty-sixth flight of the Space Shuttle Program and fourth flight of the Orbiter vehicle Endeavour (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET (ET-58); three SSME's which were designated as serial numbers 2019, 2034, and 2017 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-059. The lightweight RSRM's that were installed in each SRB were designated as 360L032A for the left SRB and 360W032B for the right SRB. The STS-57 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement, as documented in NSTS 07700, Volume 8, Appendix E. That document states that each major organizational element supporting the Program will report the results of their hardware evaluation and mission performance plus identify all related in-flight anomalies

    Detailed Monitoring Analysis of two Residential NZEBs with a Ground-Water Heat Pump with Desuperheater

    Get PDF
    Two new, residential, and high performance buildings were constructed according to Passive House standard in Innsbruck, Austria (with cold winters and mild summers). The two multi-family houses consist of 26 apartments - 16 in the north and 10 in the south building. The goal of the project was to achieve net zero energy building (NZEB) standard, which was defined in this project as the annual balance between the electricity consumed for heating and ventilation (excluding household appliances), and the electricity produced by renewable sources. Thus, a heat pump, solar thermal collectors, photovoltaics (PV) and ventilation units were installed. The two stage ground water source heat pump with a power of 58 kW (at W10/W35) includes desuperheater. The available roof space of the north building was covered by a solar thermal system with 74 m2 and PV with 52.5 m2 (8.5 kWp). An additional PV system of 99.8 m2 (16 kWp) was placed in the roof of the south building. The ventilation units were centralized (three in total) including heat recovery. In combination with floor heating and a heat exchanger in each flat for domestic hot water (DHW), a four pipe distribution system was used to minimize the distribution losses; two pipes for the DHW (flow temperature of 52°C) and two pipes for the space heating (with flow temperature of 35°C). Therefore, stratification was obtained in the 6000 liter storage to improve energy performance, since the heat pump can operate at a low sink temperature for supplying space heating. A detailed monitoring system was installed consisting of 58 temperature sensors, 12 humidity sensors, 2 pressure sensors, 37 signals (e.g. controllers, valves, pumps, etc.), 22 heat meters, 7 electricity meters, and 2 volume flow meters. The main focus was the energy performance of the HVAC systems. The thermal comfort of the south building was monitored, too. The operation of a monitoring system has started in November 2015. In this paper, results of monitoring of three heating seasons are highlighted and discussed. The energy performance of the technical system and each subsystem is presented in detail. The performance of the heat pump with respect to the two compressors and the desuperheater is in the focus. Supplementary to the monitoring data, simulations were performed aiming to optimize the system, and support the monitoring results. In addition, the importance of quality assurance control e.g. with monitoring is highlighted. The present study enhances the discussion about evaluation of NZEBs with a monitoring example from central Europe, and contributes to improve the knowledge with respect to the use of desuperheater in a heat pump via a comprehensive analysis

    Noise or music? Investigating the usefulness of normalisation for robust sentiment analysis on social media data

    Get PDF
    In the past decade, sentiment analysis research has thrived, especially on social media. While this data genre is suitable to extract opinions and sentiment, it is known to be noisy. Complex normalisation methods have been developed to transform noisy text into its standard form, but their effect on tasks like sentiment analysis remains underinvestigated. Sentiment analysis approaches mostly include spell checking or rule-based normalisation as preprocess- ing and rarely investigate its impact on the task performance. We present an optimised sentiment classifier and investigate to what extent its performance can be enhanced by integrating SMT-based normalisation as preprocessing. Experiments on a test set comprising a variety of user-generated content genres revealed that normalisation improves sentiment classification performance on tweets and blog posts, showing the model’s ability to generalise to other data genres

    Concept of leak tightness monitoring at underground gas storage

    Get PDF
    The most important part of the operation of each underground gas storage facility is the implementation of a regular monitoring system for leak tightness monitoring. This article deals with the design of a proposal leak tightness monitoring concept in underground gas storage in porous reservoirs (depleted gas/oil reservoirs, aquifer reservoirs). This concept interconnects all commonly used and established leak tightness monitoring methodologies and evaluates them in time with comparison with historical results with reference to possible solutions or implementation of remedial measure

    Reliable fault-tolerant model predictive control of drinking water transport networks

    Get PDF
    This paper proposes a reliable fault-tolerant model predictive control applied to drinking water transport networks. After a fault has occurred, the predictive controller should be redesigned to cope with the fault effect. Before starting to apply the fault-tolerant control strategy, it should be evaluated whether the predictive controller will be able to continue operating after the fault appearance. This is done by means of a structural analysis to determine loss of controllability after the fault complemented with feasibility analysis of the optimization problem related to the predictive controller design, so as to consider the fault effect in actuator constraints. Moreover, by evaluating the admissibility of the different actuator-fault configurations, critical actuators regarding fault tolerance can be identified considering structural, feasibility, performance and reliability analyses. On the other hand, the proposed approach allows a degradation analysis of the system to be performed. As a result of these analyses, the predictive controller design can be modified by adapting constraints such that the best achievable performance with some pre-established level of reliability will be achieved. The proposed approach is tested on the Barcelona drinking water transport network.Postprint (author's final draft

    Multi-objective optimization of a novel reversible High-Temperature Heat Pump-Organic Rankine Cycle (HTHP-ORC) for industrial low-grade waste heat recovery

    Get PDF
    Nowadays, a high amount of industrial thermal energy is still lost due to the lack of competitive solutions for energy revalorization. Facing this challenge, this paper presents a novel technology, based on a reversible High-Temperature Heat Pump (HTHP) and Organic Rankine Cycle (ORC). The proposed system recovers low-grade waste heat to generate electricity or useful heat in accordance with consumer demand. Compressor and expander semi-empirical models have been considered for the reversible system computational simulation, being HFC-245fa the working fluid selected. The built-in volume ratio and Internal Heat Exchanger (IHX) effectiveness have been optimized to reach the maximum energy efficiency in each operating condition. Although HFC-245fa exhibits energy performance attributes, its high Global Warming Potential (GWP) is an issue for climate change mitigation. Hence, multi-objective optimisation of the environmentally friendly working fluids Butane, Pentane, HFO-1336mzz(Z), R-514A, HCFO-1233zd(E) and HCFO-1224yd(Z) has been carried out. The results show that the system proposed, working with HFC-245fa, achieves a Coefficient of Performance (COP) of 2.44 for condensing temperature of 140 °C, operating in HTHP mode, whereas the ORC mode provides a net electrical efficiency of 8.7% at condensing temperature of 40 °C. Besides, HCFO-1233zd(E) and HCFO-1224yd(Z) are both appropriate alternatives for the HFC-245fa replacement. These working fluids provide a COP improvement of 9.7% and 5.8% and electrical net efficiency improvement of 2.1% and 0.8%, respectively, compared to HFC-245fa. This paper provides a reference study for further designs and developments of reversible HTHP-ORC systems used for industrial low-grade waste heat recovery

    NEMA Performance Evaluation of CareMiBrain dedicated brain PET and Comparison with the whole-body and dedicated brain PET systems

    Full text link
    [EN] This article presents system performance studies of the CareMiBrain dedicated brain PET according to NEMA NU 2-2012 (for whole-body PETS) and NU 4-2008 (for preclinical PETs). This scanner is based on monolithic LYSO crystals coupled to silicon photomultipliers. The results obtained for both protocols are compared with current commercial whole body PETs and dedicated brain PETs found in the literature. Spatial resolution, sensitivity, NECR and scatter-fraction are characterized with NEMA standards, as well as an image quality study. A customized image quality phantom is proposed as NEMA phantoms do not fulfil the necessities of dedicated brain PETs. The full-width half maximum of the radial/tangential/ axial spatial resolution of CareMiBrain reconstructed with FBP at 10 and 100 mm from the system center were, respectively, 1.87/1.68/1.39 mm and 1.86/1.91/1.40 mm (NU 2-2012) and 1.58/1.45/1.40 mm and 1.64/1.66/1.44 mm (NU 4-2008). Peak NECR was 49 kcps@287 MBq with a scatter fraction of 48% using NU 2-2012 phantom. The sensitivity was 13.82 cps/kBq at the center of the FOV (NU 2-2012) and 10% (NU 4-2008). Contrast recovery coefficients for customizing image quality phantom were 0.73/0.78/1.14/1.01 for the 4.5/6/9/12 mm diameter rods. The performance characteristics of CareMiBrain are at the top of the current technologies for PET systems. Dedicated brain PET systems significantly improve spatial resolution and sensitivity, but present worse results in count rate measurements and scatter-fraction tests. As for the comparison of preclinical and clinical standards, the results obtained for solid and liquid sources were similar.This study was funded by the Spanish Ministry of Science, Innovation and University under grant RTC-2016-5186-1, a project co-financed by the European Union through the European Regional Development Fund (ERDF). CareMiBrain system was funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 711323. Author Dr. Jose Maria Benlloch owns a small percentage of Oncovision S.A. The other authors declare no potential conflict of interest.Moliner, L.; Rodriguez-Alvarez, MJ.; Catret Mascarell, JV.; González Martínez, AJ.; Ilisie, V.; Benlloch Baviera, JM. (2019). NEMA Performance Evaluation of CareMiBrain dedicated brain PET and Comparison with the whole-body and dedicated brain PET systems. Scientific Reports. 9(15484 (2019)):1-10. https://doi.org/10.1038/s41598-019-51898-zS110915484 (2019)NEMA NU 2-2007. Performance measurements of Positron Emission Tomographs. (Association, National Electrical Manufacturers, 2007).NEMA NU 2-2012. Performance Measurements of Positron Emission Tomographs. (Association, National Electrical Manufacturers, 2012).NEMA NU 4-2008. Performance measurements of Small Animal Positron Emission Tomographs. (Association, National Electrical Manufacturers, 2008).INTERREG IVB SUDOE (SIZING_SUDOE-SOE3/P1/E482). Red transrregional para la transferencia tecnológica y la innovación en el sector de la moda y confección de la región SUDOE a través de la explotación de bases de datos antropométricas 3D de la población (2012).González-Montoro, A. et al. Detector block performance based on a monolithic LYSO crystal using a novel signal multiplexing method. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., https://doi.org/10.1016/j.nima.2017.10.098 (2018).Bailey, D. L., Townsend, D. W., Valk, P. E. & Maisey, M. N. Positron Emission Tomography - Basic Sciences, https://doi.org/10.1002/cncr.22968 (Springer, 2005).Madsen, M. T. Emission Tomography: the Fundamentals of Pet and Spect, https://doi.org/10.1097/00024382-200504000-00016 (Elsevier Academic Press, 2005).Reader, A. J. et al. Accelerated list-mode EM algorithm. IEEE Trans. Nucl. Sci. 49, 42–49 (2002).Grootoonk, S., Spinks, T. J., Sashin, D., Spyrou, N. M. & Jones, T. Correction for scatter in 3D brain PET using a dual energy window method. Phys. Med. Biol. 41, 2757–2774 (1996).Rokkita, O., Casey, M., Wienhard, K. & Pictrzyk, U. Random corrections for positron emission tomography using singles count rates. In IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC) 3, 37–40 (2000).Soriano, A. et al. Attenuation correction without transmission scan for the MAMMI breast PET. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 648, 75–78 (2011).Siddon, R. L. Fast calculation of the exact radiological path for a three dimensional CT array. Med. Phys. 12, 252–255 (1985).Watanabe, M. et al. Performance evaluation of a high-resolution brain PET scanner using four-layer MPPC DOI detectors. Phys. Med. Biol. 62, 7148–7166 (2017).Grogg, K. S. et al. NEMA and clinical evaluation of a novel brain PET-CT scanner. J. Nucl. Med. 57, 646–652 (2016).Kolb, A. et al. Technical performance evaluation of a human brain PET/MRI system. Eur. Radiol. 22, 1776–1788 (2012).Karp, J. S. et al. Performance of a brain PET camera based on anger-logic gadolinium oxyorthosilicate detectors. J. Nucl. Med. 44, 1340–1349 (2003).Jong, H. W. A. M. D. et al. Performance evaluation of the ECAT HRRT: an LSO-LYSO double layer high resolution, high sensitivity scanner. Phys. Med. Biol. 52, 1505–1526 (2007).Yoshida, E. et al. The jPET-D4: Performance evaluation of four-layer DOI-PET scanner using the NEMA NU2-2001 standard. In IEEE Nuclear Science Symposium Conference Record, 2532–2536, https://doi.org/10.1109/NSSMIC.2006.354425 (2006).Jung, J. et al. Performance evaluation of GAPD-based brain PET. In IEEE Nuclear Science Symposium Conference Record, 2–5, https://doi.org/10.1109/NSSMIC.2013.6829113 (2013).Yamamoto, S., Honda, M., Oohashi, T., Shimizu, K. & Senda, M. Development of a brain PET system, PET-Hat: A wearable PET system for brain research. IEEE Trans. Nucl. Sci. 58, 668–673 (2011).Musa, M. S., Ozsahin, D. U. & Ozsahin, I. Simulation and evaluation of a cost-effective high-performance brain PET scanner. J. Biomed. Imaging Bioeng. 1, 53–59 (2017).Benlloch, J. M. et al. The MINDVIEW project: First results. Eur. Psychiatry 50, 21–27 (2018).Chang, C.-M., Lee, B. J., Grant, A. M., Groll, A. N. & Levin, C. S. Performance study of a radio-frequency field-penetrable PET insert for simultaneous PET/MRI. IEEE Trans. Radiat. Plasma Med. Sci. 2, 442–431 (2018).Wang, Z., Yu, W. & Xie, S. A dedicated PET system for human brain and head/neck imaging. In IEEE Nuclear Science Symposium Conference Record, 1–4, https://doi.org/10.1109/NSSMIC.2013.6829112 (2013).Bauer, C. E. et al. Concept of an upright wearable positron emission tomography imager in humans. Brain Behav. 6, 1–10 (2016).Moghaddam, N. M., Karimian, A., Mostajaboddavati, S. M., Vondervoort, E. & Sossi, V. Preliminary design and simulation of a spherical brain PET system (SBPET) with liquid xenon as scintillator. Nukleonika 54, 33–38 (2009).Tashima, H., Ito, H. & Yamaya, T. A proposed helmet-PET with a jaw detector enabling high-sensitivity brain imaging. In IEEE Nuclear Science Symposium Conference Record, 8–10, https://doi.org/10.1109/NSSMIC.2013.6829074 (2013).Ahmed, A. M., Tashima, H., Yoshida, E., Nishikido, F. & Yamaya, T. Simulation study comparing the helmet-chin PET with a cylindrical PET of the same number of detectors. Phys. Med. Biol. 62, 4541–4550 (2017).Jung, J., Choi, Y., Jung, J. H., Kim, S. & Im, K. C. Performance evaluation of neuro-PET using silicon photomultipliers. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 819, 182–187 (2016).Kaneta, T. et al. Initial evaluation of the Celesteion large-bore PET/CT scanner in accordance with the NEMA NU2-2012 standard and the Japanese guideline for oncology FDG PET/CT data acquisition protocol version 2.0. EJNMMI Res. 7, 1–12 (2017).Rausch, I. et al. Performance evaluation of the Biograph mCT Flow PET/CT system according to the NEMA NU2-2012 standard. EJNMMI Phys. 2, 1–17 (2015).Karlberg, A. M., Sæther, O., Eikenes, L. & Goa, P. E. Quantitative comparison of PET performance—siemens biograph mCT and mMR. EJNMMI Phys. 3 (2016).Delso, G. et al. Performance Measurements of the Siemens mMR Integrated Whole-Body PET/MR Scanner. J. Nucl. Med. 52, 1914–1922 (2011).Miller, M. A., Molecular, A. & Physics, I. Philips Vereos White Paper. K. Philips N.V. 16 (2016).Kolthammer, J. A. et al. Performance evaluation of the ingenuity TF PET/CT scanner with a focus on high count-rate conditions. Phys. Med. Biol. 59, 3843–3859 (2015).Zaidi, H. et al. Design and performance evaluation of a whole-body Ingenuity TF PET-MRI system. Phys. Med. Biol. 56, 3091–3106 (2011).Jha, A. K. et al. Acceptance test of GEmini TF 16 PET scanner based on NEMA NU-2 and perfomance characteristics assesment for eighteen months in a high volume department. J. Nucl. Med. Technol. 44, 36–42 (2016).Grant, A. M. et al. NEMA NU 2-2012 performance studies for the SiPM-based ToF-PET component of the GE SIGNA PET/MR system. Med. Phys. 43, 2334–2343 (2016).Hsu, D. F. C. et al. Studies of a Next-Generation Silicon-Photomultiplier–Based Time-of-Flight PET/CT System. J. Nucl. Med. 58, 1511–1518 (2017).Reynés-Llompart, G. et al. Performance Characteristics of the Whole-Body Discovery IQ PET/CT System. J. Nucl. Med. 58, 1155–1161 (2017)
    corecore