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Abstract 
 

Nowadays, a high amount of industrial thermal energy is still lost due to the lack of competitive 

solutions for energy revalorization. Facing this challenge, this paper presents a novel technology, 

based on a reversible High-Temperature Heat Pump (HTHP) and Organic Rankine Cycle (ORC). 

The proposed system recovers low-grade waste heat to generate electricity or useful heat in 

accordance with consumer demand. Compressor and expander semi-empirical models have been 

considered for the reversible system computational simulation, being HFC-245fa the working 

fluid selected. The built-in volume ratio and Internal Heat Exchanger (IHX) effectiveness have 

been optimized to reach the maximum energy efficiency in each operating condition. Although 

HFC-245fa exhibits energy performance attributes, its high Global Warming Potential (GWP) is 

an issue for climate change mitigation. Hence, multi-objective optimisation of the 

environmentally friendly working fluids Butane, Pentane, HFO-1336mzz(Z), R-514A, HCFO-

1233zd(E) and HCFO-1224yd(Z) has been carried out. The results show that the system proposed, 

working with HFC-245fa, achieves a Coefficient of Performance (COP) of 2.44 for condensing 

temperature of 140 °C, operating in HTHP mode, whereas the ORC mode provides a net electrical 

efficiency of 8.7% at condensing temperature of 40 °C. Besides, HCFO-1233zd(E) and HCFO-

1224yd(Z) are both appropriate alternatives for the HFC-245fa replacement. These working fluids 

provide a COP improvement of 9.7% and 5.8% and electrical net efficiency improvement of 2.1% 

and 0.8%, respectively, compared to HFC-245fa. This paper provides a reference study for further 

designs and developments of reversible HTHP-ORC systems used for industrial low-grade waste 

heat recovery. 
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Nomenclature  

AU heat transfer coefficient (W K-1) 

C coefficient 

COP coefficient of performance (-) 

h specific enthalpy (kJ kg-1) 

m system charge of refrigerant (kg) 

𝑚̇ refrigerant mass flow rate (kg s-1) 

P pressure (MPa) 

𝑄̇ thermal power (kW) 

𝑟𝑣 built-in volume ratio (-) 

T temperature (ºC) 

𝑣 specific volume (m3 kg-1) 

𝑉̇ volumetric flow rate (m3 s-1) 

𝑊̇ electrical power (kW) 

VHC volumetric heating capacity (kJ m-3) 

 

Greek symbols 

 

𝛼 losses coefficient (-) 

ε effectiveness (-) 
𝜂 efficiency (-) 
𝜌 density (kg m-3) 

 

Subscripts 

 

ad adapted  

amb ambient 

c energy consumption  

comp compressor 

em electromechanical 

ex  machine discharge 

exp expander 

in internal 

is isentropic 

loss0 constant losses 

ref refrigerant or working fluid 

reg regenerator  

s installation size 

su machine suction 

vol volumetric 

 

Abbreviations 

 

GWP global warming potential 

HC hydrocarbon  

HCFO hydrochlorofluoroolefins 

HFC hydrofluorocarbon 

HFO hydrofluoroolefin 

HP heat pump 

ORC organic Rankine cycle 

1. Introduction 
 

The Energy Efficiency Directive (EU) 2012/27/EU targeted an energy efficiency increase of 20% 

by 2020 using solutions at all the energy chain stages, from production to final consumption, 

including all energy supplied to industry, transport, households, services and agriculture [1]. The 
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challenging Paris Agreement climate goals [2] produced a revision of the Energy Efficiency 

Directive (EU) 2018/2002 that set an energy efficiency increment of 32.5% by 2030 [3]. 

 

The Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC) 

states that the industrial sector becomes critical for the climate change mitigation since their 

associated greenhouse gasses (GHG) emissions have been doubled between 1970 and 2010 [4]. 

Low-grade waste heat, commonly associated with temperatures below 200 °C [5], represents 

about one-third of the total waste heat potential estimated in EU, approximately 300 TWh/year 

[6].  

 

Regarding energy efficiency measures, industrial waste heat recovery demonstrated higher 

profitability ratios compared to the adoption of renewable energies or the use of technologies for 

energy consumption reduction [7]. Waste heat can be recovered to be used in close industrial 

processes with minor heat requirements. On the other hand, a more versatile solution could use 

the energy available, such as low-temperature power generation or heat pump systems [8]. It has 

been proven that operating costs and equivalent CO2 emissions could be reduced by 26%, where 

18% of this reduction should be overcome by waste heat recovery technologies [9]. 

 

Heat pump and low-temperature power generation systems are technically and economically 

feasible solutions for heat recovery from low-temperature heat sources. Focusing on the power 

generation technologies within the low-temperature range, the Organic Rankine Cycle (ORC) is 

a better alternative than the Kalina cycle, which is more appropriate for waste heat recovery at 

medium temperatures [10]. 

 

While heat pumps can be used to convert waste heat into useful heat, ORC systems can generate 

clean electricity. Nonetheless, these technologies are not widely used enough in the industry due 

to different limitations. The ORC is an emerging opportunity that has been successfully installed 

in industrial applications [11], but heat pump technology requires further development to operate 

at higher temperatures to produce useful industrial heat. Therefore, waste heat recovery in existing 

processes represents a technical challenge because additional aspects influence the usability of 

the available waste heat [12]. The type of process should always be examined to select the 

appropriate method of waste heat recovery for optimising energy efficiency [10]. The selection 

of technology mostly depends on the heat sink temperatures [13] and the needs of the specific 

industrial plant and process [12]. 

 

Xia et al. [14] illustrated that combined comparisons of the optimal scenarios and conditions for 

different waste heat recovery technologies are going to become relevant in the future. Moreover, 

they highlighted the selection and modification of the working fluid pairs through various 

technologies. In the medium-scale petroleum refinery study case, the site energy efficiency 

increased up to 10% when waste heat recovery technologies were combined to exploit all the 

available waste heat. The diversity of heat demands can increase site energy efficiency [9]. 

According to Meyers et al. [15], a higher number of heat pumps operating hours makes it a 

promising solution for low carbon industrial process heat, and despite the relatively higher energy 

efficiency of heat pump technology, it is only profitable above 4000 h per year [16]. However, 

the maximum yearly operation is limited because these systems only can work if the heat sink is 

requiring energy. Besides inappropriate temperature levels, between supply and demand by time, 

location, and quantities can be a discrepancy and diminish the heat pump viability [12]. 

 

A more versatile heat pump system could increase the operating hours. Among different options, 

a reversible system that can operate as a heat pump and organic Rankine cycle can be built sharing 

most of the components. Using a bypass, a 4-way valve, a modified compressor to allow its 

operation as an expander, an additional pump, and a series of 3-way valves, the cycle can be 

reverted [17]. This system has been simulated mainly in buildings with heat storage together in 

combination with or compared to other technologies. In this way, Dumont [17] has concluded 

that this technology is profitable in buildings with significant heat demand. Dumont et al. [18] 
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provide some insights to design an optimum heat pump-ORC system more competitive than a 

heat pump combined with photovoltaic solar panels. 

 

On the other hand, Quoilin et al. [19] present the optimisation of some continuous parameters 

based on favourable performance indicators as well as for practical constraints. Carmo et al. [20] 

assessed four different control strategies to lessen the adverse effects of cycling in the compressor. 

The thermal input requirements highly influence the thermal and electrical demand covered by 

renewable energy, but the control strategies allowed to increase the share of renewable energy 

used. Schimpf et al. [21] studied this reversible system in three different locations activated by 

thermal and ground source energy (evacuated tube and flat plate collectors), and they have proven 

that it is energetically superior compared to a conventional system by the minor additional 

investment required. Staub et al. [22] suggested that a more promising prospect requires the 

optimisation of the isentropic efficiencies of the compressor by the application of this idea in 

larger applications or smaller plant sizes with tailor-made compressor/expander machinery. 

 

As it has been proven, the combination of different waste heat recovery systems in the industry 

can provide economic and energetic benefits; however, the simulation of innovative heat pump-

ORC systems has been limited to small domestic applications, in which it is compared with other 

traditional renewable technologies. However, the integration of these systems into industrial 

processes could be beneficial. A recent interest appeared in the industrial sector referred to heat 

pumps that operate at higher temperatures than those of the residential sector. These systems are 

named as high-temperature heat pumps (HTHPs) due to their capacity to achieve heating 

temperatures between 100 and 160 °C [5]. These compression heat pumps provide high-

temperature and larger-capacity, becoming one of the practical solutions to meet the requirement 

of industrial waste heat recovery [23]. Urbanucci et al. [24] conducted an HTHPs integration in 

trigeneration, showing that this integration provides flexibility to cover variable energy demands 

along with valuable economic and energy performance improvements. According to Xia et al. 

[14], recent studies about heat pumps used for low-grade waste heat recovery are developing 

multiple stages and cascade systems. Moreover, Johnson et al. [25] considered that new working 

fluids are essential in the development of this emerging technology. 

 

On the other hand, advanced architectures in HTHP are required in order to efficiently cover 

larger temperature differences between the heat sink and heat source (temperature lift). Mateu-

Royo et al. [26] proved that with temperature lift above 60 K two stage configuration with IHX 

is the one that results in higher performance. Accordingly, Cao et al. [27] considered different 

two stage configurations than Mateu-Royo et al. [26], and they obtained higher efficiency with 

two stages using flash tank (with or without intercooler) than the single-stage arrangement. 

Finally, Mota-Babiloni et al. and Yang et al. [28,29] obtained positive results with HTHP cascades 

due to the optimisation of the refrigerants for each configuration.  

 

The working fluid used in the HTHP is different from those seen in refrigeration and heat pump 

applications owing to the unusual higher operating temperatures. HFC-245fa becomes the most 

common working fluid used in HTHP and ORC, but its high Global Warming Potential (GWP) 

requires an alternative low-GWP working fluid for sustainable future developments [5]. Natural 

fluids represent a clean option, but they are highly flammable (in the case of hydrocarbons) or 

toxic (ammonia) [30]. Alternative options are recently developed through synthetic working 

fluids as HCFO-1233zd(E), HFO-1336mzz(Z) and HCFO-1224yd(Z), which have been 

thermodynamic performance analysed in HTHPs by Mateu-Royo et al. [31]. A drop-in or retrofit 

substitution of HFC-245fa by one of these alternatives can be reduced by approximately 60% of 

CO2 equivalent emissions. Frate et al. [32] agreed with Mateu-Royo et al. [31] concluding that 

HCFO-1233zd(E) provides a good trade-off between energy performance and volumetric heating 

capacity in comparison with other alternatives. They also concluded that in the final design of the 

HTHP, several factors influence on the optimal selection of the refrigerant such as the number of 

compression stages, operating temperatures, and compressor technology, among others. 
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Zühlsdorf et al. [33] proved that the zeotropic behaviour of refrigerant mixtures could be used to 

improve the energy performance of the HTHP. 

 

HTHPs are still in an earlier stage of development, and the first results using different types of 

prototypes, compressor technologies, working fluids, and configurations are being published. 

Mateu-Royo et al. [34] have developed an HTHP prototype with scroll compressor that provides 

a Coefficient of Performance (COP) of 2.23, working with a heat sink and source temperatures of 

140 and 80 ºC, respectively. Moreover, Bamigbetan et al. [35] present the development of 

hydrocarbon HTHP with internal heat exchanger and receiver to produce useful heat at 115 °C 

using HC-600 as working fluid. The data generated by this prototype was used to calculate the 

economic and environmental benefits in comparison with boilers in industry, recovering waste 

heat between 30 and 60 °C [36]. Chamoun et al. [37] developed an HTHP equipped with a twin-

screw compressor that uses water as a working fluid. Two innovations to highlight were the flash 

tank and a falling film evaporator. Bobelin et al. [38] constructed an HTHP with scroll 

compressors and included a sub-cooler to deliver heat up to 125 °C (the composition of the 

working fluid was not revealed). Finally, Arpagaus et al. [39] developed a prototype using the 

recently developed synthetic fluid HCFO-1233zd(E). Its high critical temperature allows reaching 

heating production temperature above 150 °C. 

 

ORC, as the other operational mode of the proposed reversible system for low-grade industrial 

waste heat recovery, has been more widely investigated than the HTHPs [40]. Similar to HTHPs, 

the ORC system efficiency is mainly dependent on the heat source temperature, thermophysical 

working fluid properties, and turbine efficiency. Mahmoudi et al. [41] highlights the critical state, 

sensible heat and ratio of vaporisation latent heat as the essential refrigerant properties, and 

includes heat source types, operating conditions and temperature levels to the factors that 

influence on the final ORC efficiency for waste heat recovery. About the ORC architecture, 

Braimakis et al. [42] illustrate that ORC recuperative cycles always provide better performance 

that non-recuperative cycle. Analogous to HTHPs, HFC-245fa is the most popular working fluid 

[43], and for small scales systems, volumetric machines were the preferred expansion machines, 

either off-the-shelf, modified compressors or motors because of the lower cost [44]. Then, HCFO-

1233zd(E) is also a promising candidate for ORCs waste heat recovery [45,46]. ORCs stage of 

development is more advanced than HTHPs, and the largest share of publications deals with the 

application of ORC technology [47], making it already a reliable method to efficiently recover 

waste heat. 

 

Based on the above-discussed literature review, it can be seen that the combination of HTHP and 

ORC technologies in a single reversible system is technically viable. Both systems have in 

common most of the cycle components along with the operating temperatures and working fluids. 

Hence, the combination of both waste heat recovery technologies will provide higher economic 

and operating flexibility benefits. Nevertheless, the proposed system has not yet been considered 

for industrial applications, which becomes a significant waste heat recovery source. Thus, in this 

paper, we presented a novel reversible HTHP-ORC system for industrial low-grade waste heat 

recovery. The focus was set on the optimisation analysis and multi-objective low-GWP 

alternative refrigerant selection to provide guidelines for further design improvement and 

sustainable development.  

 

The main contributions of the present work are as follows: 

• A novel reversible HTHP-ORC system was proposed for low-grade industrial waste heat 

recovery using HFC-245fa as working fluid, based on semi-empirical compressor-

expander validated models. 

• A comprehensive energy performance and volumetric machines efficiency evaluation 

was realised along with an optimisation of the system parameters as a built-in volume 

ratio and IHX. 
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• The semi-empirical performance and efficiencies results from the reversible model using 

HFC-245fa were used as a reference to realise an alternative low-GWP refrigerants 

evaluation. 

• A multi-objective evaluation for a proper working fluid selection was applied, 

considering Pentane, Butane, HFO-1336mzz(Z), R-514A, HCFO-1233zd(E) and HCFO-

1224yd(Z) as the alternative low-GWP refrigerants.  

 

To achieve this purpose, the study is structured as follows. Section 2 describes the reversible 

HTHP-ORC system and the model based on semi-empirical compressor and expander validated 

models. This section also describes the alternative low-GWP working fluid modelling process. 

Section 3 introduces the methodology for the built-in volume ration and IHX optimisation 

processes along with the simulation operating conditions. Section 4 presents the results through 

detailed performance analysis of the reversible system proposed the optimised performance 

values and efficiencies. Moreover, this section shows the results of the multi-objective evaluation 

of alternative low-GWP refrigerants. Finally, the last section contains the relevant conclusions. 

The results of this study may provide guidelines for the further design and development of 

reversible HTHP-ORC systems for low-grade waste heat recovery, especially in the industrial 

sector. 

2. System description and modelling 
 

In this section, the reversible HTHP-ORC system and its components are described in detail. 

Moreover, the compressor and expander models are presented and validated. Finally, the 

thermodynamic properties of selected alternative low-GWP working fluids to HFC-245fa are 

discussed along with the assumptions considered. 

 

2.1 Description of the reversible HTHP-ORC system 

 

The HTHP and ORC systems are mainly composed of the same components, as shown in Fig. 1. 

Due to this fact, the development of a single system with the capacity of operating either in HTHP 

or in ORC mode is technically viable, applying some modifications. The development of this 

system that can operate in both modes represents a challenge, going one step forward in the 

development of HTHP and ORC technology. The combinations of both technologies maximise 

the waste heat recovery of the industrial processes and establish the baseline for future analysis 

and developments of this novel system. 

 

In Fig. 1a, the operation of the reversible system in HTHP mode is shown. This mode is based on 

the main components of vapour compression cycles with the particularity of including an Internal 

Heat Exchanger (IHX). The IHX increases the degree of superheating of the refrigerant in the 

compressor suction line along with the sub-cooling before the expansion process. This improves 

the system energy efficiency, varying at the same time the rest of the operating parameters, like 

the heating capacity and discharge temperature, among others [48]. Therefore, an optimisation of 

the IHX is crucial to reach the maximum energy performance without exceeding the boundaries 

of the technical limitations. 

 

On the other hand, the basic vapour compression cycle with IHX could be modified to operate in 

ORC mode and, therefore, allowing a reversible operation in a single system. Fig. 1b shows that 

evaporator and condenser are standard components of both modes without requiring any 

modification. Moreover, the heat exchanger used as IHX in HTHP mode can be used as 

regenerator in ORC mode, resulting as a basic cycle configuration with regeneration in ORC 

mode. Besides, the scroll compressor used in the HTHP mode requires minor modifications, 

switching the refrigerant inlet of this component with an additional valve circuit, to operate as an 

expander in the ORC mode. Finally, the expansion valve is by-passed, and a refrigerant pump is 
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added after the condenser. Through these modifications, this novel system can be operated either 

in HTHP or in ORC mode, by changing the valves position. 

 

  

(a) (b) 

Fig. 1. Schematic diagram of the reversible HTHP-ORC system, operating in: a) HTHP mode 

and b) ORC mode.  

 

T-s diagram of the reversible HTHP-ORC system are shown in Fig. 2, with a common evaporating 

temperature of 90 ºC for both systems and HTHP and ORC condensing temperatures of 140 and 

40 ºC, respectively. This diagram illustrates the differences between HTHP and ORC 

thermodynamic cycles along with a graphical description of the concept ‘reversible’ of the 

proposed system.  

 

 
Fig. 2. T-s diagram of the reversible HTHP-ORC system at evaporating temperature of 90 ºC 

and HTHP and ORC condensing temperatures of 140 and 40 ºC, respectively. 

 

2.2 Compressor-Expander modelling 

 

The reversible system modelling is built from semi-empirical models of scroll compressor and 

expander, due to its high efficiency against other technologies [49,50].  

 

The scroll compressor semi-empirical model proposed by Winandy et al. [51,52] could be 

generalised to scroll compressors using a discharge valve, as Lemort [53] proposed. The 

motivation is to increase the accurate prediction of the electrical consumption along with the 

compressor efficiencies. Hence, the modelling of heat pump systems was improved through the 

modification of compressors that are typically using discharge valves [53]. 
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A schematic representation of the proposed compressor model is shown in Fig. 3a, based on the 

literature reviewed [50,51,53]. In this model, the evolution of the refrigerant is decomposed into 

the following consecutive steps: 

 

• Isobaric supply heating-up (𝑠𝑢 → 𝑠𝑢,1) 

• Adiabatic mixing with internal leakage (𝑠𝑢,1  → 𝑠𝑢,2) 

• Adiabatic and reversible compression to the ‘‘adapted” pressure imposed by the built-

in volume ratio of the machine (𝑠𝑢,2  → 𝑎𝑑) 

• Adiabatic compression at a constant machine volume (𝑎𝑑 → 𝑒𝑥,2) 

• Adiabatic exhaust pressure drop (𝑒𝑥,2  → 𝑒𝑥,1) 

• Isobaric exhaust cooling-down (𝑒𝑥,1  → 𝑒𝑥) 

 

The fictitious dissociation of the heat transfer, supply pressure drop, and internal leakage from 

the actual compression process results in an accurate estimation of the compressor power 

consumption along with the volumetric and isentropic compressor efficiencies. These parameters 

are then essentials in the development of the refrigerant comparison model. The complete 

description of these semi-empirical compressor model, along with the equations used in this paper 

are described by Lemort [53]. 

 

On the other hand, the semi-empirical expander model is adapted from the compressor model 

proposed by Winandy et al. [51] for hermetic scroll compressors. Similarly to the compressor 

model, the schematic of the expander model, Fig. 3b, shows consecutive steps of the refrigerant 

evolution through the expander: 

 

• Adiabatic supply pressure drop (𝑠𝑢 → 𝑠𝑢,1) 

• Isobaric supply cooling-down (𝑠𝑢,1  → 𝑠𝑢,2) 

• Adiabatic and reversible expansion to the ‘‘adapted” pressure imposed by the built-

in volume ratio of the machine (𝑠𝑢,2  → 𝑎𝑑) 

• Adiabatic expansion at a constant machine volume (𝑎𝑑 → 𝑒𝑥,2) 

• Adiabatic mixing between supply and leakage flows (𝑒𝑥,2  → 𝑒𝑥,1) 

• Isobaric exhaust cooling-down or heating-up (𝑒𝑥,1  → 𝑒𝑥) 

 

Similar to the compressor-expander model, the complete description of these semi-empirical 

compressor model along with the equations used in this paper are described by Lemort [50] and 

Lemort et al. [54]. 

 

 

  

(a) (b) 
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Fig. 3. Schematic representation of semi-empirical models: a) Scroll compressor and b) Scroll 

expander.  

 

 

2.3 Reversible HTHP-ORC modelling 

 

A proper selection and implementation of several geometric constraints make possible the 

reversible operation between HTHP and ORC cycles. Compressor and expander are volumetric 

machines that have a fixed geometry. The internal built-in volume ratio (𝑟𝑉) is dependent on the 

final and the initial volume in both compressor and expander components. For a given refrigerant 

at specific conditions, the energy efficiency of the volumetric machine is highly dependent on the 

built-in volume ratio, which is related to the internal pressure ratio. 

 

Nevertheless, if the system pressure ratio is higher or lower than the internal pressure ratio, over- 

and under-compression/expansion appears. Under this condition, the system operation is 

considered to be not adapted to the conditions and, therefore, the compressor power consumption 

is higher, or the expander power generation is lower compared to the optimum values. Hence, a 

proper design of the internal built-in volume ratio will provide significant energy efficiency for 

given operating conditions. 

 

The operating pressure ratio in both modes should be similar in order not to penalise energy 

efficiency. Nevertheless, the optimal built-in volume ratio has different values between 

compressors and expanders to provide the maximum energy efficiency in both situations [55]. 

While an expander operates at its maximum energy efficiency, considering lower built-in volume 

ratio values, a compressor requires higher values of this parameter, as shown in Fig. 4. 

Henceforth, an optimisation of the built-in volume ratio is required in order to provide a trade-off 

value between both modes that maximise the overall energy efficiency. 

 

 
Fig. 4 Over- and under-efficiency at different built-in volume ratio for compressor and 

expander [55].  

 

On the other hand, the internal heat exchanger in HTHP mode or the regenerator in ORC mode is 

based on a common component for both configurations. Therefore, the geometry of this 

component should be the same. While ORC systems present almost no limitations in the 

regenerator effectiveness value, an HTHP system is highly influenced by the IHX effectiveness 

value. Higher values of this parameter increase the compressor discharge temperature, and the 

installation materials along with the lubricant and refrigerant can start to degrade. Due to this fact, 

the reversible model uses an optimisation IHX effectiveness algorithm that calculates its 
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maximum possible value. Then, the regenerator effectiveness is calculated assuming the same 

AU value for both IHX and regenerator through the NTU method [56], Eq. (1). 

 
ln(1 − 𝜀𝐼𝐻𝑋)

𝐶𝑝,𝐻𝑇𝐻𝑃 𝑚̇𝑟𝑒𝑓,𝐻𝑇𝐻𝑃 
=

ln(1 − 𝜀𝑅𝑒𝑔)

𝐶𝑝,𝑂𝑅𝐶  𝑚̇𝑟𝑒𝑓,𝑂𝑅𝐶  
 (1) 

  

 

2.4 Validation of the models 

 

Semi-empirical models of the compressor and expander are developed to obtain several modelling 

coefficients based on experimental data. Nevertheless, the interest of this paper is the estimation 

of the performance parameters based on semi-empirical models modification. Hence, 

implementing the semi-empirical coefficients obtained and validated by Lemort [50] and Lemort 

et al. [54], it is obtained the performance parameters of the compressor and expander. The 

experimental coefficients used in compressor and expander semi-empirical models are presented 

in Table 1. 

 

Table 1. Semi-empirical modelling coefficients for compressor and expander models. 

Semi-empirical modelling coefficients 
Compressor 

[50] 

Expander 

[54] 

Heat transfer coefficient with the ambient (𝐴𝑈𝑎𝑚𝑏) [W K-1] 30 (
𝑚̇𝑟𝑒𝑓

0.091
)

0.8

 6.4 

Supply heat transfer coefficient (𝐴𝑈𝑠𝑢) [W K-1] 20 (
𝑚̇𝑟𝑒𝑓

0.091
)

0.8

 21.2 

Exhaust heat transfer coefficient (𝐴𝑈𝑒𝑥) [W K-1] 3 34.2 

Nominal mass flow rate (𝑚̇𝑟𝑒𝑓,𝑛) [kg s-1] 0.091 0.12 

Leakage area (𝐴𝑙𝑒𝑎𝑘) [mm2] 0.39 4.6 

Supply port cross-sectional area (𝐴𝑠𝑢) [mm2] - 27.43 

Mechanical loss torque (𝑇𝑙𝑜𝑠𝑠) [N m] - 0.47 

Mechanical losses coefficient (𝛼) [-] 0.23 - 

Constant mechanical losses (𝑊̇𝑙𝑜𝑠𝑠,0) [W] 100 - 

 

2.5 Alternative refrigerants modelling 

 

The synthetic refrigerant HFC-245fa was used in the semi-empirical models for the identification 

of the semi-empirical modelling coefficients. Nevertheless, HFC-245fa presents a relatively high 

Global Warming Potential (GWP) value, which can contribute to aggravating the climate change 

issue. Hence, other refrigerants with low-GWP may be alternatives to HFC-245fa in this 

reversible system in order to develop more sustainable technology. The selected low-GWP 

refrigerants and their main properties are presented in Table 2. 

 

Table 2. Comparative refrigerant properties for HTHP/ORC application. HFC: 

Hydrofluorocarbons, HFO: Hydrofluoroolefins, HCFO: Hydrochlorofluoroolefins, HC: 

Hydrocarbons, HFE: Hydrofluorethers. ODP: Ozone Depletion Potential (basis CFC-11=1.0) 

[57], GWP100: Global Warming Potential for 100-year (basis CO2 =1.0) [57], Atmospheric 

lifetime (years) [57], ASHRAE Std. 34 safety class [44].  

 

Fluids 
Tcrit 

(°C) 

Pcrit 

(MPa) 

Normal 

boiling 

point 

Suction 

densitye 

(kg m−3) 

ODP GWP100  

ASHRAE 

Std. 34 

safety class 

[44] 
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(NBP) 

(°C) 

HFC-245fa 153.8 3.65 15.1 40.56 0 858 B1 

HC-600 

(Butane) 
152.0 3.80 

-0.5 
23.15 0 4 A3 

HC-601 

(Pentane) 
196.6 3.37 

36.1 
9.52 0 5 A3 

HFO-

1336mzz(Z)a 
171.4 2.90 33.4 25.78 0 2 A1 

R514Ab 178.0 3.52 29.1 24.39 0 2 B1 

HCFO-

1233zd(E)c 
166.5 3.62 18.3 32.36 0.00034 1 A1 

HCFO-

1224yd(Z)d 
155.5 3.33 14.6 42.09 0.00012 <1 A1 

 
aOpteon™MZ from Chemours [58], bOpteon™XP30 (R-514A) from Chemours [59], 

cSolstice®zd from Honeywell [60], dAMOLEA®1224yd from AGC Chemicals [61], eAt suction 

temperature of 95 ºC. 

 

In order to simulate the reversible system with alternative low-GWP refrigerants, compressor and 

expander efficiencies should be corrected according to the thermodynamic properties of the 

potential candidates. Therefore, isentropic and volumetric efficiencies are adjusted using Eqs. (2) 

and (3), considering that the refrigerant inside the compressor or expander can be considered as 

an ideal gas [34]. 

 

𝜂𝑖𝑠,𝑙𝑜𝑤 𝐺𝑊𝑃 =

[(
𝑃2
𝑃1

)
(

𝛾−1
𝛾

)

]

𝑙𝑜𝑤 𝐺𝑊𝑃

[(
𝑃2
𝑃1

)
(

𝛾−1
𝛾

)

]

𝐻𝐹𝐶−245𝑓𝑎

· 𝜂𝑖𝑠,𝐻𝐹𝐶−245𝑓𝑎 (2) 

 

𝜂𝑣𝑜𝑙,𝑙𝑜𝑤 𝐺𝑊𝑃 = 1 −

[(
𝑃2
𝑃1

)
(

1
𝛾

)

]

𝑙𝑜𝑤 𝐺𝑊𝑃

[(
𝑃2
𝑃1

)
(

1
𝛾

)

]

𝐻𝐹𝐶−245𝑓𝑎

(1 − 𝜂𝑣𝑜𝑙,𝐻𝐹𝐶−245𝑓𝑎) (3) 

 

Then, the corrected efficiencies are implemented in a basic compressor-expander model with the 

same constraints explained in Section 2.2. Moreover, over- and under-expansion/compression 

effects are implemented in the model, Eqs. (4) and (5), as proposed by Peris et al. [55]. These 

equations depend on the built-in volume ratio (𝑟𝑣), which is defined as the geometric volume ratio 

between the ports of the displacement machine. The optimum value of the 𝑟𝑣 parameter is affected 

by several variables, such as the operating conditions or the working fluid used. Therefore, an 

optimization of the built-in volume ratio has been subsequently included in the model to select a 

proper suitable working fluid for both operation modes [55]. 

 

𝜂𝑜𝑣𝑒𝑟−𝑢𝑛𝑑𝑒𝑟,𝑒𝑥𝑝 =
(ℎ𝑠𝑢,2 − ℎ𝑎𝑑) +  

𝑃𝑎𝑑 − 𝑃𝑒𝑥,2

𝜌 𝑣𝑎𝑑

ℎ𝑎𝑑 − ℎ𝑒𝑥,2,𝑖𝑠
 

 

(4) 
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𝜂𝑜𝑣𝑒𝑟−𝑢𝑛𝑑𝑒𝑟,𝑐𝑜𝑚𝑝 =
ℎ𝑎𝑑 − ℎ𝑒𝑥,2,𝑖𝑠

(ℎ𝑎𝑑 − ℎ𝑠𝑢,2) +  
𝑃𝑒𝑥,2 − 𝑃𝑎𝑑

𝜌 𝑣𝑎𝑑

 

 

(5) 

Over-under efficiencies for the compressor and expander are included in the equations to calculate 

the power consumption of the compressor, Eq. (6), and the power generated by the expander, Eq. 

(7). In addition, the electrical consumption of the ORC pump is presented in Eq. (8). 

 

𝑊̇𝑐𝑜𝑚𝑝 =  
𝑚̇𝑟𝑒𝑓,𝐻𝑇𝐻𝑃 (ℎ𝑐𝑜𝑚𝑝,𝑜𝑢𝑡,𝑖𝑠 − ℎ𝑐𝑜𝑚𝑝,𝑖𝑛)

𝜂𝑖𝑠,𝑐𝑜𝑚𝑝 𝜂𝑒𝑚 𝜂𝑜𝑣𝑒𝑟−𝑢𝑛𝑑𝑒𝑟,𝑐𝑜𝑚𝑝 
 

 

(6) 

𝑊̇𝑒𝑥𝑝 =  𝑚̇𝑟𝑒𝑓,𝑂𝑅𝐶  (ℎ𝑒𝑥𝑝,𝑖𝑛 − ℎ𝑒𝑥𝑝,𝑜𝑢𝑡,𝑖𝑠) 𝜂𝑖𝑠,𝑒𝑥𝑝 𝜂𝑒𝑚 𝜂𝑜𝑣𝑒𝑟−𝑢𝑛𝑑𝑒𝑟,𝑒𝑥𝑝  

 
(7) 

𝑊̇𝑝𝑢𝑚𝑝 =  
𝑚̇𝑟𝑒𝑓,𝑂𝑅𝐶  (ℎ𝑝𝑢𝑚𝑝,𝑜𝑢𝑡,𝑖𝑠 − ℎ𝑝𝑢𝑚𝑝,𝑖𝑛)

𝜂𝑖𝑠,𝑝𝑢𝑚𝑝 𝜂𝑒𝑚
 (8) 

 

Finally, the performance of the reversible system can be expressed through two performance 

parameters: the net electrical efficiency of the ORC (𝜂𝑛𝑒𝑡) by Eq. (9), and the coefficient of 

performance (COP) of the HTHP by Eq. (10). This analysis assumes normalized values, in which 

a unit of thermal power input is recovered in both operating modes. 

 

𝜂𝑛𝑒𝑡 =
𝑊̇𝑒𝑥𝑝 − 𝑊̇𝑝𝑢𝑚𝑝

𝑄̇𝑖𝑛

 

 

(9) 

𝐶𝑂𝑃 =
𝑄̇𝑜𝑢𝑡

𝑊̇𝑐𝑜𝑚𝑝

 (10) 

3. Methodology 
 

3.1 System optimization 

 

This section describes the optimization process of the built-in volume ratio along with the IHX-

regenerator. The reversible installation, as a single system, requires sharing the main components 

of the circuit and therefore, the common circuit components should have the same geometry. 

Hence, the optimisation of these components is crucial to provide the highest energy efficiency 

working in both ORC and HTHP modes. 

 

3.1.1 Built-in volume ratio 

 

The optimisation of the built-in volume ratio becomes a challenge because the highest energy 

performance working as compressor or expander demands built-in volume ratio values explained 

in Section 2.3. Hence, a trade-off between both modes is crucial and therefore, optimisation of 

this geometrical parameter becomes necessary. The optimisation process is graphically described 

in Fig. 5. 
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Fig. 5. Built-in volume ratio optimisation process for HTHP-ORC models. 

 

 

The experimental coefficients for each model described in Section 2.4 are implemented as input 

parameters in the optimisation model along with the condensation temperatures of both systems 

and the evaporation temperature, which is related with the industrial waste heat source. These 

models are developed in the software Engineering Equation Solver (EES) [57], which is linked 

to the refrigerant thermophysical properties database REFPROP Version 10.0 [58]. Using the 

Conjugate Directions method implemented in the software EES, the function f, shown in Fig. 5, 

is maximized to find the built-in volume ratio value that provides the highest power production 

in ORC mode and the lowest power consumption in HTHP mode. Finally, the built-in volume 

ratio is optimised for one specific condition and therefore, this process is repeated for each 

simulation condition included in this study. 

 

3.1.2 Internal heat exchanger (IHX) 

 

After optimising the built-in volume ratio, the IHX should be optimised in order to maximise the 

energy efficiency of the whole system. Higher IHX effectiveness increases the degree of sub 

cooling and superheating degree in the system and therefore, the energy efficiency in both systems 

increase. Nevertheless, it also results in higher compressor discharge temperature [31], which 

should be limited due to the installations materials, refrigerants and lubricants thermal limitations. 

Hence, the built-in volume ratio algorithm, described in the previous section, is followed by the 

IHX effectiveness optimisation algorithm, presented in Fig. 6. 
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Fig. 6. Internal Heat Exchanger (IHX) optimisation process for HTHP-ORC models. 

 

The IHX optimisation algorithm receives the optimised results of the built-in volume ratio 

algorithm as input parameters. The compressor discharge temperature is limited to 175 ºC in order 

to ensure the material resistance as well as to prevent the refrigerant and lubricant tested 

degradation [31]. Following the previous optimisation methodology, the Conjugate Directions 

method implemented in EES is used to maximise the COP without exceeding the maximum 

compressor discharge temperature. Finally, the regenerator effectiveness of ORC system is 

calculated using the NTU method with the optimised IHX effectiveness and assuming equal UA 

in the IHX-Reg., for both ORC and HTHP modes. This assumption is reasonable because each 

mode works with the same refrigerant, and the heat exchanger has a single geometry for both 

modes. 

 

Finally, the optimisation process provide the optimum the built-in volume ratio and IHX-Reg 

effectiveness, which provides the maximum performance efficiency with a compromise between 

HTHP and ORC modes. Depending on the application or requirements, both algorithms can be 

adapted to find the optimised parameters that prioritize HTHP or ORC mode. Nevertheless, the 

algorithms in this study are developed to find the equilibrium between both operating modes.  

 

3.2 Simulation of the operating conditions 

 

This section describes the operating conditions proposed for the reversible system modelling. The 

heat absorbed by the evaporator (𝑄̇𝑜), the input parameter of the model, is considered constant for 

all the operating conditions to end with a comparative analysis. Finally, Table 3 presents the 

operating conditions of both cycles. 

 

Table 3. Operating parameters of the reversible system modelling. 

Parameters Numeric values 

Evaporating temperature (ºC) 70-100 

HTHP condensing temperature (ºC) 145 

ORC condensing temperature (ºC) 40 
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Superheat degree (K) 15 

Sub-cooling degree (K) 5 

Electromechanical efficiency (𝜂𝑒𝑚) 0.75 

ORC pump efficiency (𝜂𝑝𝑢𝑚𝑝) 0.9 

4. Results and discussions 
 

4.1 Reversible HTHP-ORC 

 

This section presents the results obtained by the semi-empirical reversible model working with 

HFC-245fa as working fluid. Firstly, the system optimisation results are exposed, comparing the 

maximum efficiency in both modes, which depends on the built-in volume ratio along with the 

maximum point optimised. Then, an analysis of different condensing temperatures in both 

systems with a fixed evaporating temperature is realised in order to provide a complete view of 

the system behaviour. Finally, the energy performance of both modes is presented along with the 

compressor and expander efficiencies. 

 

4.1.1 System optimisation 

 

The optimisation of the built-in volume ratio is crucial in volumetric machines and especially, for 

the reversible system proposed in this paper. Considering that the same component is operating 

as compressor and expander, the same geometry is required for both HTHP and ORC modes. 

Nevertheless, the maximum efficiency points in HTHP and ORC modes are different as the 

evaporating temperature varies. For lower evaporating temperatures, HTHP mode requires higher 

built-in volume ratio than working in ORC mode, as shown in Fig. 7. However, this situation 

changes when the system operates at higher evaporating temperatures. In these conditions, the 

ORC mode requires higher built-in volume ratio values than HTHP mode. Therefore, higher 

evaporating temperatures decrease the built-in volume ratio requirements in HTHP modes, 

whereas this requirement increase working as ORC mode. These built-in volume ratio 

requirements differences in both modes represents a challenge to find the optimum value. Hence, 

using the optimization algorithm presented in Section 3.1.1, the optimum built-in volume ratio 

for the reversible system working in both modes is presented in Fig. 7.  

 

  
(a) (b) 

Fig. 7. Optimised values of built-in volume ratio for reversible system working in: a) HTHP 

mode and b) ORC mode.  

 

In order to provide a complete view of the proper built-in volume ratio, this parameter has been 

optimised for different condensing temperatures in HTHP and ORC modes, fixing the evaporating 

temperature at 85 ºC, as shown in Fig. 8. As the HTHP condensing temperature increases, the 

reversible system requires higher built-in volume ratio in order to provide the maximum energy 
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efficiency. Nevertheless, an ORC condensing temperature increment produces the contrary 

reaction, decreasing the requirements system in built-in volume ratio. Similar to the Fig. 8, there 

is difference about the built-in volume ratio requirements for both modes. Therefore, depending 

on the operating temperatures and the applications, the reversible system will required a specific 

optimisation of this parameter to provide the highest energy performance.  

 

Fig. 8. Optimum built-in volume ratio for different HTHP-ORC condensing temperatures 

with a fixed evaporating temperature of 85 ºC. 

 

4.1.2 Performance evaluation 

 

In Fig. 9, the COP and net efficiency of HTHP and ORC modes are presented, respectively. As 

the evaporating temperature rises, both the energy parameter increases. These are expected results 

because as the evaporating temperature increases, the distance between the heat source and heat 

sink for HTHP is reduced and therefore, the compressor requires lower power consumption, 

providing higher COP. On the contrary, as the evaporating temperature increases, the heat source 

and sink in ORC mode is increasing. Nevertheless, this increase provides an advantage for ORC 

mode because the pressure ratio between the expander inlet and outlet increases and therefore, 

higher power can be generated.  

 

 

 
Fig. 9. COP and net efficiency results of the semi-empirical reversible system modelling. 

 

Finally, semi-empirical modelling provides the compressor-expander isentropic efficiencies. 

These values have notable importance because establishing the baseline for the low-GWP 

alternative refrigerant analysis explained in Section 2.5. Fig. 10 shows the main compressor and 

expander isentropic and volumetric efficiency results at different evaporating temperatures. This 

semi-empirical efficiency results will be corrected for each alternative low-GWP refrigerant in 
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order to estimate the compressor and expander efficiencies and therefore, realise the multi-

objective comparison.  

 

 
Fig. 10. Compressor-expander isentropic and volumetric efficiencies from semi-empirical 

reversible modelling. 

 

4.2 Alternative Low-GWP refrigerants 

 

This section presents the results of the alternative low-GWP refrigerants for HFC-245fa in the 

reversible system proposed. These results are based on the semi-empirical models and the 

corrected efficiencies, depending on the thermophysical properties of each refrigerant. The results 

of this section will illustrate the benefits of different refrigerants from energy and installation size 

points of view. 

 

4.2.1 Corrected isentropic and volumetric efficiencies  

 

Isentropic and volumetric efficiencies are highly related to the thermophysical properties of the 

refrigerant uses in the system. Therefore, the efficiencies estimated with semi-empirical models 

using HFC-245fa as refrigerant can be used as a baseline in order to calculate the alternative low-

GWP refrigerants efficiencies through the Eqs. (3) and (4).   

 

Fig. 11a shows the results of the corrected isentropic efficiencies for compressor and expander. 

On the one hand, HCFOs and Butane present higher compressor isentropic efficiency than HFC-

245fa, while R-514A shows comparable values to the traditional HFC-245fa. On the other hand, 

Pentane and HFO-1336mzz(Z) have considerably lower isentropic compressor values due to their 

different thermophysical properties to HFC-245fa. In contrast, the isentropic efficiencies in the 

expander show completely different behaviour than working as a compressor, as shown in Fig. 

11b. In this case, Pentane and HFO-1336mzz(Z) present the highest isentropic efficiency working 

as expander followed by R-514A. Finally, although HFOs and Butane show the lowest expander 

isentropic efficiencies, their values are still higher than HFC-245fa. 
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(a) (b) 

Fig. 11. Corrected isentropic efficiencies at different evaporating temperatures working as: a) 

Compressor and b) expander. 

 

The volumetric efficiencies of the compressor and expander are presented in Fig. 12. In this case, 

HFO-1336mzz(Z) shows the highest volumetric efficiency working as compressor, followed by 

Pentane and R-514A, as shown in Fig. 12a. While these three refrigerants present higher 

compressor volumetric efficiency than HFC-245fa, the other refrigerants show lower values of 

this parameter, being Butane the refrigerant with the lowest volumetric compressor efficiency. As 

expander, the refrigerants show again a significantly different behaviour, as shown in Fig. 12b. 

In this case, Butane and HCFOs have higher volumetric efficiencies than HFC-245fa, being 

Butane the refrigerant with the highest volumetric efficiency. Nevertheless, HFO-1336mzz(Z), 

R-514A and Pentane have lower expander volumetric efficiencies, showing the HFO the lowest 

value. 

 

  
(a) (b) 

Fig. 12. Corrected volumetric efficiencies at different evaporating temperatures working as: 

a) Compressor and b) expander. 

 

4.2.2 Optimized evaluation 

 

This section presents the results of the optimised built-in volume ratio for the reversible system 

proposed along with the IHX-Reg. effectiveness optimisation. Before the optimisation processes 

mentioned in Section 3.1, the optimised results will illustrate the main difference of each 

refrigerant in the system.  

 

Fig. 13 shows the results of the optimised built-in volume ratio for each refrigerant at different 

evaporating temperatures. As the evaporating temperature increases, the optimum built-in volume 

ratio increases for each refrigerant until an evaporating temperature of 90 ºC, where this parameter 

shows a slight decrement. This behaviour is caused due to the maximum efficiencies trend of both 

HTHP and ORC systems presented in Fig. 7. At the evaporating temperature of 90 ºC, the 

maximum efficiency lines of HTHP and ORC system cross among each other, resulting in the 

optimum built-in volume ratio decrease showed in Fig. 13. 
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HFO-1336mzz(Z) presents the highest optimised built-in volume ratio value, whereas Butane 

shows the lowest value of this parameter. All the refrigerants, apart from HFO-1336mzz(Z) 

present a lower optimum built-in volume ratio for operating in both HTHP and ORC mode. 

Moreover, most of the refrigerants simulate have close values to HFC-245fa, and therefore, the 

reversible systems design for HFC-245fa can operate with other refrigerant with a slight 

difference from built-in volume ratio point of view. 

 

 
Fig. 13. Optimised built-in volume ratio for each alternative low-GWP refrigerant at different 

evaporating temperatures. 
 

Fig. 14 shows the effectiveness of the IHX-Regenerator working as a compressor or expander. 

Both parameters are proportional because is the same heat exchanger for both modes and 

therefore, similar behaviour in both HTHP and ORC mode is expected. As the evaporating 

temperature increases, the IHX-Reg value decreases due to the maximum compressor discharge 

temperature allowed. HFO-1336mzz(Z) and Butane are the refrigerants that can operate with the 

highest IHX effectiveness values without exceeding the maximum compressor discharge 

temperature. Contrary, HCFO-1233zd(E) and R-514A have the lowest values of effectiveness, 

and therefore, the performance improvement caused by the IHX is expected to be lower. 

 

  
(a) (b) 

Fig. 14. Optimised effectiveness at different evaporating temperatures: a) IHX and b) 

Regenerator 

 

4.2.3 Performance comparison 
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This section presents the performance results for the alternative low-GWP refrigerants along with 

the reference fluid HFC-245fa. Moreover, an analysis of the compressor power consumption and 

expander power generation is realised in order to provide a complete view of the reversible 

system. 

 

Working as HTHP, the performance energy efficiency for each refrigerant is estimated with the 

COP, as shown in Fig. 15. While Butane shows lower COP than the traditional working fluid 

HFC-245fa, the other candidates present higher energy performance values. Pentane, HFO-

1336mzz(Z) and R-514A, which is a blend of HFO-1336mzz(Z), have the highest values of COP 

followed by the HCFOs (HCFO-1233zd(E) and HCFO-1224yd(Z)). 

 

 
Fig. 15. COP results for the alternative low-GWP refrigerants and HFC-245fa at different 

evaporating temperatures. 

 

Similar to HTHP mode, the highest net efficiency values working as ORC are shown in Pentane 

and HFO-1336mzz(Z), followed by its blend, R-514A. In this case, HCFOs are close to HFC-

245fa behaviour, and Butane shows slightly higher net efficiency values, as shown in Fig. 16.  

 

 
Fig. 16. Net efficiency results for the alternative low-GWP refrigerants and HFC-245fa at 

different evaporating temperatures. 

 

Finally, the compressor power consumption is compared with the expander power generation in 

order to illustrate the possibility to use the same component working as motor and generator, as 

shown in Fig. 17. At lower evaporating temperatures, the electric motor working as a compressor 
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should have 25 times the capacity of the generator. Nevertheless, this difference is reduced as the 

evaporating temperature increases. At higher evaporating temperatures, the power capacity 

between the motor (compressor) and expander (generator) is reduced, obtaining values between 

5-8 times. Although the power capacity difference is relatively small, all the refrigerants analysed 

will require different power capacities for the electric motor and generator. Hence, a single 

component can be used as a compressor or expander, but electric motor and generator should be 

different. One possible solution is connecting the compressor/expander in a single shaft along 

with an electric motor and generator with different capacities that transmit or receive the power. 

 

 
Fig. 17. Electric power differences between the motor and generator capacities. 

 

 

4.2.4 Multi-objective evaluation 

 

The evaluation between different alternative low-GWP refrigerants requires more than one 

parameter to realise the optimum selection and most cases, different scenarios provide a variety 

of optimal solutions. In vapour compression systems, the proper refrigerant selection depends on 

the application, energy efficiency and the installation size. Nevertheless, for a singular 

application, the refrigerant that provides the highest energy efficiency often requires larger 

installation size and vice versa. Due to this fact, a multi-objective evaluation is proposed in this 

paper, in order to compare the refrigerant behaviour working as HTHP, ORC or as a reversible 

system in different scenarios. Five different scenarios are proposed in this analysis comparing the 

energy efficiency of each refrigerant and the installation size. 

 

In order to realise this multi-objective evaluation, two different coefficients are prosed that will 

weigh the relevance of the energy efficiency and installation size, depending on the scenario. 

Hence, the scenario 1 has the consumption coefficient (𝐶𝑐) in the maximum value whereas the 

installation size coefficient (𝐶𝑆) has the lowest possible value. The consumption and size 

coefficients weight are gradually varying in the different scenarios until scenario 5, which is the 

opposite case of scenario 1. The compressor and ORC pump power consumption corresponds to 

the energy efficiency evaluation and the compressor and expander volumetric flow rate illustrate 

the installation size evaluation. These parameters are presented in the multi-objective analysis as 

the relative difference between the alternative low-GWP refrigerants and HFC-245fa, multiplying 

by consumption coefficient (𝐶𝑐) and installation size coefficient (𝐶𝑆) in each scenario. 

 

Fig. 18 shows the multi-objective evaluation considering that the reversible system will be 

operating only as HTHP or ORC, without being reversible. As HTHP, Pentane, HFO-1336mzz(Z) 
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and R-514A are the potential candidates to HFC-245fa in scenario 1 where the energy efficiency 

has the whole weight, as shown in Fig. 18a. Nevertheless, other refrigerants as Butane and HCFOs 

be positioned as potential candidates as the installation size increase the weight in the evaluation. 

Therefore, Pentane, HFO-1336mzz(Z) and R-514A have lower energy consumption and require 

larger installation size, whereas the other refrigerants have higher power consumption but require 

smaller installation size. Similar to HTHP mode, Pentane, HFO-1336mzz(Z) and R-514A are the 

proper candidates from an energy efficiency point of view (scenario 1), as shown Fig. 18b. 

Nevertheless, Butane becomes a potential candidate taking into account only the installation size 

(scenario 5). Finally, the most equilibrated candidates between the energy performance and the 

installation size are HCFO-1233zd(E) and HCFO-1224yd(Z). 

 

 

  
(a) (b) 

Fig. 18. Multi-objective evaluation of alternative low-GWP refrigerants in different scenarios, 

operating only in: a) HTHP mode and b) ORC mode.  

 

Following the main objective of this paper, Fig. 19 shows the multi-objective optimised 

evaluation of different alternative low-GWP refrigerants to replace HFC-245fa in the proposed 

technology. Similar to the previous comparison, Pentane. HFO-1336mzz(Z) and R-514A are the 

proper candidates from an energy efficiency point of view, whereas Butane, HCFO-1233zd(E) 

and HCFO-1224yd(Z) stand out for their lower installation size requirements. Nevertheless, an 

optimal selection will be a trade-off between energy efficiency and the installation size 

requirements, which corresponds to scenario 3. In this case, HCFO-1233zd(E) and HCFO-

1224yd(Z) are the most appropriate low-GWP alternative to replace HFC-245fa with a significant 

GWP reduction.  
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Fig. 19. Multi-objective evaluation of alternative low-GWP refrigerants in different scenarios, 

operating as a reversible system. 

5. Conclusions 
 

In this paper, we presented a novel reversible HTHP-ORC system for industrial low-grade waste 

heat recovery. The focus was set on the optimisation analysis and multi-objective low-GWP 

alternative refrigerant selection to provide guidelines for further design improvement and 

sustainable development. To this end, a twofold approach was followed: 

 

1. A reversible HTHP-ORC system was modelled, based on compressor and expander semi-

empirical validated models to provide a comprehensive energy performance and 

volumetric machines efficiencies evaluation. Moreover, system parameters as built-in 

volume ratio and IHX were optimised in order to maximise the energy performance 

working in both HTHP-ORC modes. 

 

2. The semi-empirical performance and efficiencies results from the reversible model using 

HFC-245fa were used as a reference to realise an alternative low-GWP refrigerants 

evaluation. Pentane, Butane, HFO-1336mzz(Z), R-514A, HCFO-1233zd(E) and HCFO-

1224yd(Z) were proposed as potential candidates to replace the currently used HFC-

245fa. System optimisation of each alternative working fluid was realised along with a 

multi-objective evaluation for a proper working fluid selection.  

 

The following conclusions can be drawn from the results of this study: 

 

• The novel HTHP-ORC system proposed provides a significant performance 

improvement for low-grade waste heat recovery. At the middle evaporating temperature 

of 85 ºC, a COP of 2.22 is achieved condensing at 140 °C, working as HTHP mode, 

whereas the ORC mode achieves a net electrical efficiency of 7.25% at a condensing 

temperature of 40 °C. The highest performance results are a COP of 2.44 and a net electric 

efficiency of 8.75%, both considering an evaporating temperature of 100 ºC. 

 

• The semi-empirical computational evaluation shows that higher heat source temperatures 

will increase the energy efficiency of the system. About the system architecture, different 

power capacities for the electric motor and generator are required. Therefore, a single 
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component can be used as compressor or expander, but electric motor and generator 

should be different. 

 

• The multi-objective optimised selection for alternative low-GWP refrigerants shows that 

HCFO-1233zd(E) and HCFO-1224yd(Z) were the proper refrigerants to replace HFC-

245fa in the proposed reversible system from energy efficiency and installation size 

points of view. These refrigerants present a COP improvement of 9.7% and 5.8% 

compared to HFC-245fa, respectively, and electrical net efficiency improvement of 2.1% 

and 0.8%, respectively, at an evaporating temperature of 90 °C. These refrigerants 

represent a proper trade-off between the energy performance and installation size 

compared with HFC-245fa. 
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