27 research outputs found

    Context-based bit plane golomb coder for scalable image coding

    Get PDF
    Master'sMASTER OF ENGINEERIN

    An efficient error resilience scheme based on wyner-ziv coding for region-of-Interest protection of wavelet based video transmission

    Get PDF
    In this paper, we propose a bandwidth efficient error resilience scheme for wavelet based video transmission over wireless channel by introducing an additional Wyner-Ziv (WZ) stream to protect region of interest (ROI) in a frame. In the proposed architecture, the main video stream is compressed by a generic wavelet domain coding structure and passed through the error prone channel without any protection. Meanwhile, the predefined ROI area related wavelet coefficients obtained after an integer wavelet transform will be specially protected by WZ codec in an additional channel during transmission. At the decoder side, the error-prone ROI related wavelet coefficients will be used as side information to help decoding the WZ stream. Different size of WZ bit streams can be applied in order to meet different bandwidth condition and different requirement of end users. The simulation results clearly revealed that the proposed scheme has distinct advantages in saving bandwidth comparing with fully applied FEC algorithm to whole video stream and in the meantime offer the robust transmission over error prone channel for certain video applications

    An efficient error resilience scheme based on Wyner-Ziv coding for region-of-interest protection of wavelet based video transmission

    Get PDF
    In this paper, we propose a bandwidth efficient error resilience scheme for wavelet based video transmission over wireless channel by introducing an additional Wyner-Ziv (WZ) stream to protect region of interest (ROI) in a frame. In the proposed architecture, the main video stream is compressed by a generic wavelet domain coding structure and passed through the error prone channel without any protection. Meanwhile, the predefined ROI area related wavelet coefficients obtained after an integer wavelet transform will be specially protected by WZ codec in an additional channel during transmission. At the decoder side, the error-prone ROI related wavelet coefficients will be used as side information to help decoding the WZ stream. Different size of WZ bit streams can be applied in order to meet different bandwidth condition and different requirement of end users. The simulation results clearly revealed that the proposed scheme has distinct advantages in saving bandwidth comparing with fully applied FEC algorithm to whole video stream and in the meantime offer the robust transmission over error prone channel for certain video applications

    Design techniques for graph-based error-correcting codes and their applications

    Get PDF
    In ShannonÂs seminal paper, ÂA Mathematical Theory of CommunicationÂ, he defined ÂChannel Capacity which predicted the ultimate performance that transmission systems can achieve and suggested that capacity is achievable by error-correcting (channel) coding. The main idea of error-correcting codes is to add redundancy to the information to be transmitted so that the receiver can explore the correlation between transmitted information and redundancy and correct or detect errors caused by channels afterward. The discovery of turbo codes and rediscovery of Low Density Parity Check codes (LDPC) have revived the research in channel coding with novel ideas and techniques on code concatenation, iterative decoding, graph-based construction and design based on density evolution. This dissertation focuses on the design aspect of graph-based channel codes such as LDPC and Irregular Repeat Accumulate (IRA) codes via density evolution, and use the technique (density evolution) to design IRA codes for scalable image/video communication and LDPC codes for distributed source coding, which can be considered as a channel coding problem. The first part of the dissertation includes design and analysis of rate-compatible IRA codes for scalable image transmission systems. This part presents the analysis with density evolution the effect of puncturing applied to IRA codes and the asymptotic analysis of the performance of the systems. In the second part of the dissertation, we consider designing source-optimized IRA codes. The idea is to take advantage of the capability of Unequal Error Protection (UEP) of IRA codes against errors because of their irregularities. In video and image transmission systems, the performance is measured by Peak Signal to Noise Ratio (PSNR). We propose an approach to design IRA codes optimized for such a criterion. In the third part of the dissertation, we investigate Slepian-Wolf coding problem using LDPC codes. The problems to be addressed include coding problem involving multiple sources and non-binary sources, and coding using multi-level codes and nonbinary codes

    Video transmission over wireless networks

    Get PDF
    Compressed video bitstream transmissions over wireless networks are addressed in this work. We first consider error control and power allocation for transmitting wireless video over CDMA networks in conjunction with multiuser detection. We map a layered video bitstream to several CDMA fading channels and inject multiple source/parity layers into each of these channels at the transmitter. We formulate a combined optimization problem and give the optimal joint rate and power allocation for each of linear minimum mean-square error (MMSE) multiuser detector in the uplink and two types of blind linear MMSE detectors, i.e., the direct-matrix-inversion (DMI) blind detector and the subspace blind detector, in the downlink. We then present a multiple-channel video transmission scheme in wireless CDMA networks over multipath fading channels. For a given budget on the available bandwidth and total transmit power, the transmitter determines the optimal power allocations and the optimal transmission rates among multiple CDMA channels, as well as the optimal product channel code rate allocation. We also make use of results on the large-system CDMA performance for various multiuser receivers in multipath fading channels. We employ a fast joint source-channel coding algorithm to obtain the optimal product channel code structure. Finally, we propose an end-to-end architecture for multi-layer progressive video delivery over space-time differentially coded orthogonal frequency division multiplexing (STDC-OFDM) systems. We propose to use progressive joint source-channel coding to generate operational transmission distortion-power-rate (TD-PR) surfaces. By extending the rate-distortion function in source coding to the TD-PR surface in joint source-channel coding, our work can use the ??equal slope?? argument to effectively solve the transmission rate allocation problem as well as the transmission power allocation problem for multi-layer video transmission. It is demonstrated through simulations that as the wireless channel conditions change, these proposed schemes can scale the video streams and transport the scaled video streams to receivers with a smooth change of perceptual quality

    Discrete Wavelet Transforms

    Get PDF
    The discrete wavelet transform (DWT) algorithms have a firm position in processing of signals in several areas of research and industry. As DWT provides both octave-scale frequency and spatial timing of the analyzed signal, it is constantly used to solve and treat more and more advanced problems. The present book: Discrete Wavelet Transforms: Algorithms and Applications reviews the recent progress in discrete wavelet transform algorithms and applications. The book covers a wide range of methods (e.g. lifting, shift invariance, multi-scale analysis) for constructing DWTs. The book chapters are organized into four major parts. Part I describes the progress in hardware implementations of the DWT algorithms. Applications include multitone modulation for ADSL and equalization techniques, a scalable architecture for FPGA-implementation, lifting based algorithm for VLSI implementation, comparison between DWT and FFT based OFDM and modified SPIHT codec. Part II addresses image processing algorithms such as multiresolution approach for edge detection, low bit rate image compression, low complexity implementation of CQF wavelets and compression of multi-component images. Part III focuses watermaking DWT algorithms. Finally, Part IV describes shift invariant DWTs, DC lossless property, DWT based analysis and estimation of colored noise and an application of the wavelet Galerkin method. The chapters of the present book consist of both tutorial and highly advanced material. Therefore, the book is intended to be a reference text for graduate students and researchers to obtain state-of-the-art knowledge on specific applications

    Layered Wyner-Ziv video coding: a new approach to video compression and delivery

    Get PDF
    Following recent theoretical works on successive Wyner-Ziv coding, we propose a practical layered Wyner-Ziv video coder using the DCT, nested scalar quantiza- tion, and irregular LDPC code based Slepian-Wolf coding (or lossless source coding with side information at the decoder). Our main novelty is to use the base layer of a standard scalable video coder (e.g., MPEG-4/H.26L FGS or H.263+) as the decoder side information and perform layered Wyner-Ziv coding for quality enhance- ment. Similar to FGS coding, there is no performance di®erence between layered and monolithic Wyner-Ziv coding when the enhancement bitstream is generated in our proposed coder. Using an H.26L coded version as the base layer, experiments indicate that Wyner-Ziv coding gives slightly worse performance than FGS coding when the channel (for both the base and enhancement layers) is noiseless. However, when the channel is noisy, extensive simulations of video transmission over wireless networks conforming to the CDMA2000 1X standard show that H.26L base layer coding plus Wyner-Ziv enhancement layer coding are more robust against channel errors than H.26L FGS coding. These results demonstrate that layered Wyner-Ziv video coding is a promising new technique for video streaming over wireless networks. For scalable video transmission over the Internet and 3G wireless networks, we propose a system for receiver-driven layered multicast based on layered Wyner-Ziv video coding and digital fountain coding. Digital fountain codes are near-capacity erasure codes that are ideally suited for multicast applications because of their rate- less property. By combining an error-resilient Wyner-Ziv video coder and rateless fountain codes, our system allows reliable multicast of high-quality video to an arbi- trary number of heterogeneous receivers without the requirement of feedback chan- nels. Extending this work on separate source-channel coding, we consider distributed joint source-channel coding by using a single channel code for both video compression (via Slepian-Wolf coding) and packet loss protection. We choose Raptor codes - the best approximation to a digital fountain - and address in detail both encoder and de- coder designs. Simulation results show that, compared to one separate design using Slepian-Wolf compression plus erasure protection and another based on FGS coding plus erasure protection, the proposed joint design provides better video quality at the same number of transmitted packets

    Error Correction and Concealment of Bock Based, Motion-Compensated Temporal Predition, Transform Coded Video

    Get PDF
    Error Correction and Concealment of Block Based, Motion-Compensated Temporal Prediction, Transform Coded Video David L. Robie 133 Pages Directed by Dr. Russell M. Mersereau The use of the Internet and wireless networks to bring multimedia to the consumer continues to expand. The transmission of these products is always subject to corruption due to errors such as bit errors or lost and ill-timed packets; however, in many cases, such as real time video transmission, retransmission request (ARQ) is not practical. Therefore receivers must be capable of recovering from corrupted data. Errors can be mitigated using forward error correction in the encoder or error concealment techniques in the decoder. This thesis investigates the use of forward error correction (FEC) techniques in the encoder and error concealment in the decoder in block-based, motion-compensated, temporal prediction, transform codecs. It will show improvement over standard FEC applications and improvements in error concealment relative to the Motion Picture Experts Group (MPEG) standard. To this end, this dissertation will describe the following contributions and proofs-of-concept in the area of error concealment and correction in block-based video transmission. A temporal error concealment algorithm which uses motion-compensated macroblocks from previous frames. A spatial error concealment algorithm which uses the Hough transform to detect edges in both foreground and background colors and using directional interpolation or directional filtering to provide improved edge reproduction. A codec which uses data hiding to transmit error correction information. An enhanced codec which builds upon the last by improving the performance of the codec in the error-free environment while maintaining excellent error recovery capabilities. A method to allocate Reed-Solomon (R-S) packet-based forward error correction that will decrease distortion (using a PSNR metric) at the receiver compared to standard FEC techniques. Finally, under the constraints of a constant bit rate, the tradeoff between traditional R-S FEC and alternate forward concealment information (FCI) is evaluated. Each of these developments is compared and contrasted to state of the art techniques and are able to show improvements using widely accepted metrics. The dissertation concludes with a discussion of future work.Ph.D.Committee Chair: Mersereau, Russell; Committee Member: Altunbasak, Yucel; Committee Member: Fekri, Faramarz; Committee Member: Lanterman, Aaron; Committee Member: Zhou, Haomi

    Design and evaluation of echocardiograms codification and transmission for Teleradiology systems

    Get PDF
    Las enfermedades cardiovasculares son la mayor causa de muerte en el mundo. Aunque la mayoría de muertes por cardiopatías se puede evitar, si las medidas preventivas no son las adecuadas el paciente puede fallecer. Es por esto, que el seguimiento y diagnóstico de pacientes con cardiopatías es muy importante. Numerosos son las pruebas médicas para el diagnostico y seguimiento de enfermedades cardiovasculares, siendo los ecocardiogramas una de las técnicas más ampliamente utilizada. Un ecocardiograma consiste en la adquisición de imágenes del corazón mediante ultrasonidos. Presenta varias ventajas con respecto otras pruebas de imagen: no es invasiva, no produce radiación ionizante y es barata. Por otra parte, los sistemas de telemedicina han crecido rápidamente ya que ofrecen beneficios de acceso a los servicios médicos, una reducción del coste y una mejora de la calidad de los servicios. La telemedicina proporciona servicios médicos a distancia. Estos servicios son de especial ayuda en casos de emergencia médica y para áreas aisladas donde los hospitales y centros de salud están alejados. Los sistemas de tele-cardiología pueden ser clasificados de acuerdo al tipo de pruebas. En esta Tesis nos hemos centrado en los sistemas de tele-ecocardiografia, ya que los ecocardiogramas son ampliamente usados y presentan el mayor reto al ser la prueba médica con mayor flujo de datos. Los mayores retos en los sistemas de tele-ecocardiografia son la compresión y la transmisión garantizando que el mismo diagnóstico es posible tanto en el ecocardiograma original como en el reproducido tras la compresión y transmisión. Los ecocardiogramas deben ser comprimidos tanto para su almacenamiento como para su transmisión ya que estos presentan un enorme flujo de datos que desbordaría el espacio de almacenamiento y no se podría transmitir eficientemente por las redes actuales. Sin embargo, la compresión produce pérdidas que pueden llevar a un diagnostico erróneo de los ecocardiogramas comprimidos. En el caso de que las pruebas ecocardiograficas quieran ser guardadas, una compresión clínica puede ser aplicada previa al almacenamiento. Esta compresión clínica consiste en guardar las partes del ecocardiograma que son importantes para el diagnóstico, es decir, ciertas imágenes y pequeños vídeos del corazón en movimiento que contienen de 1 a 3 ciclos cardiacos. Esta compresión clínica no puede ser aplicada en el caso de transmisión en tiempo real, ya que es el cardiólogo especialista quien debe realizar la compresión clínica y éste se encuentra en recepción, visualizando el echocardiograma transmitido. En cuanto a la transmisión, las redes sin cables presentan un mayor reto que las redes cableadas. Las redes sin cables tienen un ancho de banda limitado, son propensas a errores y son variantes en tiempo lo que puede resultar problemático cuando el ecocardiograma quiere ser transmitido en tiempo real. Además, las redes sin cables han experimentado un gran desarrollo gracias a que permiten un mejor acceso y movilidad, por lo que pueden ofrecer un mayor servicio que las redes cableadas. Dos tipos de sistemas se pueden distinguir acorde a los retos que presenta cada uno de ellos: los sistemas de almacenamiento y reenvió y los sistemas de tiempo real. Los sistemas de almacenamiento y reenvió consisten en la adquisición, almacenamiento y el posterior envió del ecocardiograma sin requerimientos temporales. Una compresión clínica puede ser llevada a cabo previa al almacenamiento. Además de la compresión clínica, una compresión con pérdidas es recomendada para reducir el espacio de almacenamiento y el tiempo de envío, pero sin perder l ainformación diagnóstica de la prueba. En cuanto a la transmisión, al no haber requerimientos temporales, la transmisión no presenta ninguna dificultad. Cualquier protocolo de transmisión fiable puede ser usado para no perder calidad en la imagen debido a la transmisión. Por lo tanto, para estos sistemas sólo nos hemos centrado en la codificación de los ecocardiogramas. Los sistemas de tiempo real consisten en la transmisión del ecocardiograma al mismo tiempo que éste es adquirido. Dado que el envío de video clínico es una de las aplicaciones con mayor demanda de ancho de banda, la compresión para la transmisión es requerida, pero manteniendo la calidad diagnóstica de la imagen. La transmisión en canales sin cables puede ser afectada por errores que distorsionan la calidad del ecocardiograma reconstruido en recepción. Por lo tanto, métodos de control de errores son requeridos para minimizar los errores de transmisión y el retardo introducido. Sin embargo, aunque el ecocardiograma sea visualizado con errores debido a la transmisión, esto no implica que el diagnóstico no sea posible. Dados los retos previamente descritos, las siguientes soluciones para la evaluación clínica, compresión y transmisión han sido propuestas: - Para garantizar que el ecocardiograma es visualizado sin perder información diagnóstica 2 tests han sido diseñados. El primer test define recomendaciones para la compresión de los ecocardiogramas. Consiste en dos fases para un ahorro en el tiempo de realización, pero sin perder por ello exactitud en el proceso de evaluación. Gracias a este test el ecocardiograma puede ser comprimido al máximo sin perder calidad diagnóstica y utilizando así más eficientemente los recursos. El segundo test define recomendaciones para la visualización del ecocardiograma. Este test define rangos de tiempo en los que el ecocardiograma puede ser visualizado con inferior calidad a la establecida en el primer test. Gracias a este test se puede saber si el ecocardiograma es visualizado sin pérdida de calidad diagnóstica cuando se introducen errores en la visualización, sin la necesidad de realizar una evaluación para cada video transmitido o diferentes condiciones de canal. Además, esta metodología puede ser aplicada para la evaluación de otras técnicas de diagnóstico por imagen. - Para la compresión de ecocardiogramas dos métodos de compresión han sido diseñados, uno para el almacenamiento y otro para la transmisión. Diferentes propuestas son diseñadas, ya que los ecocardiogramas para los dos propósitos tienen características diferentes. Para ambos propósitos un método de compresión en la que las facilidades que incorporan los dispositivos de segmentar la imagen y en la que las características de visualización de los ecocardiogramas han sido tenidas en cuenta ha sido diseñado. Para la compresión del ecocardiograma con el propósito de almacenarlo un formato de almacenamiento fácilmente integrable con DICOM basado en regiones y en el que el tipo de datos y la importancia clínica de cada región es tenido en cuenta ha sido diseñado. DICOM es el formato para el almacenamiento y transmisión de imágenes más ampliamente utilizado actualmente. El formato de compresión propuesto supone un ahorra de hasta el 75 % del espacio de almacenamiento con respecto a la compresión con JPEG 2000, actualmente soportado por DICOM, sin perder calidad diagnostica de la imagen. Los ratios de compresión para el formato propuesto dependen de la distribución de la imagen, pero para una base de datos de 105 ecocardiogramas correspondientes a 4 ecógrafos los ratios obtenidos están comprendidos entre 19 y 41. Para la compresión del ecocardiograma con el propósito de la transmisión en tiempo real un método de compresión basado en regiones en el que el tipo de dato y el modo de visualización han sido tenidos en cuenta se ha diseñado. Dos modos de visualización son distinguidos para la compresión de la región con mayor importancia clínica (ultrasonido), los modos de barrido y los modos 2-D. La evaluación clínica diseñada para las recomendaciones de compresión fue llevada a cabo por 3 cardiologos, 9 ecocardiogramas correspondientes a diferentes pacientes y 3 diferentes ecógrafos. Los ratios de transmisión recomendados fueron de 200 kbps para los modos 2-D y de 40 kbps para los modos de barrido. Si se comparan estos resultados con previas soluciones en la literatura un ahorro mínimo de entre 5 % y el 78 % es obtenido dependiendo del modo. - Para la transmisión en tiempo real de ecocardiogramas un protocolo extremo a extremo basada en el método de compresión por regiones ha sido diseñado. Este protocolo llamado ETP de las siglas en inglés Echocardiogram Transmssion Protocol está diseñado para la compresión y transmisión de las regiones por separado, pudiendo así ofrecer diferentes ratios de compresión y protección de errores para las diferentes regiones de acuerdo a su importancia diagnostica. Por lo tanto, con ETP el ratio de transmisión mínimo recomendado para el método de compresión propuesto puede ser utilizado, usando así eficientemente el ancho de banda y siendo menos sensible a los errores introducidos por la red. ETP puede ser usado en cualquier red, sin embargo, en el caso de que la red introduzca errores se ha diseñado un método de corrección de errores llamado SECM, de las siglas en inglés State Error Control Method. SECM se adapta a las condiciones de canal usando más protección cuando las condiciones empeoran y usando así el ancho de banda eficientemente. Además, la evaluación clínica diseñada para las recomendaciones de visualización ha sido llevada a cabo con la base de datos de la evaluación previa. De esta forma se puede saber si el ecocardiograma es visualizado sin pérdida diagnostica aunque se produzcan errores de transmisión. En esta tesis, por lo tanto, se ha ofrecido una solución para la transmisión en tiempo real y el almacenamiento de ecocardiogramas preservando la información diagnóstica y usando eficientemente los recursos (disco de almacenamiento y ratio de transmisión). Especial soporte se da para la transmisión en redes sin cables, dando soluciones a las limitaciones que estas introducen. Además, las soluciones propuestas han sido probadas y comparadas con otras técnicas con una red de acceso móvil WiMAX, demostrando que el ancho de banda es eficientemente utilizado y que el ecocardiograma es correctamente visualizado de acuerdo con las recomendaciones de visualización dadas por la evaluación clínica
    corecore