

CONTEXT-BASED BIT PLANE GOLOMB CODER

FOR SCALABLE IMAGE CODING

ZHANG RONG

(B.E. (Hons.) USTC, PRC)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER

ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

i

2005

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to my supervisors, Prof. Lawrence

Wong and Dr. Qibin Sun, for their constant guidance, encouragement and support

during my graduate studies. Their knowledge, insight and kindness provided me

lots of benefits.

I want to take this opportunity to thank Yu Rongshan for his thoughtful

comments, academic advices and encouragement on my research. I have also

benefited a lot from intersections with He Dajun, Zhou Zhicheng, Zhang Zhishou,

Ye Shuiming, Li Zhi, researchers in the Pervasive Media Lab. Their valuable

suggestions on my research and thesis are highly appreciated. Special thanks to

Tran Quoc Long and Jia Yuting for the valuable discussions and help on both my

courses and research. I also want to thank my officemates Lao Weilun, Wang Yang

and Moritz Häberle for their friendship and support on my studies. In addition, I

would like to thank my friends Zhu Xinglei, Li Rui and Niu Zhengyu for their

friendship and help on my studies and daily life.

I am so grateful to Wei Zhang, my husband, for his love and encouragement

during our years. His broad knowledge on engineering and computer science helps

me a lot in my research, and his love encourages me to pursue my dreams. I also

want to thank my parents for their love and years of nurturing and supporting my

education. Thank Mum for her care, her guidance towards my studies. And thank

Dad for his constant encouragement during my life.

i

LIST OF PUBLICATIONS

1. Rong Zhang, Rongshan Yu, Qibin Sun, Wai-Choong Wong, “A new bit-plane

entropy coder for scalable image coding”, IEEE Int. Conf. Multimedia &

Expo, 2005.

2. Rong Zhang, Qibin Sun, Wai-Choong Wong, “A BPGC-based scalable image

entropy coder resilient to errors”, IEEE Int. Conf. Image Processing, 2005.

3. Rong Zhang, Qibin Sun, Wai-Choong Wong, “An efficient context based

BPGC scalable image coder”, IEEE Trans. on Circuit and Systems II,

(submitted).

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS..i

LIST OF PUBLICATIONS..ii

TABLE OF CONTENTS... iii

SUMMARY ..vi

LIST OF TABLES ... viii

LIST OF FIGURES ..ix

Chapter 1. INTRODUCTION ..1

1.1. Background ..1

1.1.1. A general image compression system..1

1.1.2. Image transmission over noisy channels......................................3

1.2. Motivation and objective..4

1.3. Organization of the thesis...5

Chapter 2. WAVELET-BASED SCALABLE IMAGE CODING........................7

2.1. Scalability...7

2.2. Wavelet transform ..9

2.3. Quantization ...14

2.3.1. Rate distortion theory...14

2.3.2. Scalar quantization...16

2.4. Bit plane coding..18

2.5. Entropy coding ...19

iii

2.5.1. Entropy and compression...20

2.5.2. Arithmetic coding ..21

2.6. Scalable image coding examples..23

2.6.1. EZW...23

2.6.2. SPIHT ..26

2.6.3. EBCOT ..28

2.7. JPEG2000...33

Chapter 3. CONTEXT-BASED BIT PLANE GOLOMB CODING..................36

3.1. Bit Plane Golomb Coding ..36

3.1.1. BPGC Algorithm..37

3.1.2. BPGC used in AAZ..40

3.1.3. Using BPGC in scalable image coding......................................42

3.2. Context modeling ...44

3.2.1. Distance to lazy bit plane...44

3.2.2. Neighborhood significant states...46

3.3. Context-based Bit Plane Golomb Coding ..49

3.4. Experimental results ...54

3.4.1. Lossless coding ..55

3.4.2. Lossy coding ..60

3.4.3. Complexity analysis...64

3.5. Discussion ..66

Chapter 4. ERROR RESILIENCE FOR IMAGE TRANSMISSION................69

iv

4.1. Error resilience overview ...69

4.1.1. Resynchronization..70

4.1.2. Variable length coding algorithms resilient to errors.................72

4.1.3. Error correction..73

4.2. Error resilience of JPEG2000...74

4.3. CB-BPGC error resilience..78

4.3.1. Synchronization ...78

4.3.2. Bit plane partial decoding ..79

4.4. Experimental results ...82

4.5. Discussion ..86

Chapter 5. CONCLUSION...87

BIBLIOGRAPHY..89

v

SUMMARY

With the increasing use of digital images and delivering those images over

networks, scalable image compression becomes a very important technique. It not

only saves storage space and network transmission bandwidth, but also provides

rich functionalities such as resolution scalability, fidelity scalability and

progressive transmission. Wavelet based image coding schemes such as the

state-of-the-art image compression standard JPEG2000 are very attractive for

scalable image coding.

In this thesis, we present the proposed wavelet-based coder, Context-based Bit

Plane Golomb Coding (CB-BPGC) for scalable image coding. The basic idea of

CB-BPGC is to combine Bit Plane Golomb Coding (BPGC), a low complexity

embedded compression strategy for Laplacian distributed sources such as wavelet

coefficients in HL, LH and HH subbands, with image context modeling

techniques. Compared to the standard JPEG2000, CB-BPGC provides better

lossless compression ratio and comparable lossy coding performance by exploring

the characteristics of the wavelet coefficients. Fortunately, compression

performance improvement is achieved together with lower complexity in

CB-BPGC compared to JPEG2000.

 The error resilience performance of CB-BPGC is also evaluated in this thesis.

Compared to JPEG2000, CB-BPGC is more resilient to channel errors when

simulated on the wireless Rayleigh fading channel. Both the Peak Signal-to-Noise

vi

Ratio (PSNR) and the subjective performance of the corrupted images are better

than those of JPEG2000.

vii

LIST OF TABLES

Table 2-1 An example of bit plane coding ..18

Table 2-2 Example: fixed model for alphabet {a, e, o, !}...............................21

Table 3-1 D2L contexts ...45

Table 3-2 D2L context bit plane coding examples..46

Table 3-3 Contexts for the significant coding pass (if a coefficient is significant,
it is given a 1 value for the creation of the context, otherwise a 0 value;
- means do not care)..48

Table 3-4 Contexts for the magnitude refinement pass...................................48

Table 3-5 Comparison of the lossless compression performance for 5 level
wavelet decomposition of the reversible 5/3 LeGall DWT between
JPEG2000 and CB-BPGC (bit per pixel)..57

Table 3-6 Comparison of the lossless compression performance for 5 level
wavelet decomposition of the irreversible 9/7 Daubechies DWT
between JPEG2000 and CB-BPGC (bit per pixel)58

Table 3-7 Image Cafe (512×640) block coding performance, resolution level
0~4, 31 code blocks (5 level wavelet reversible decomposition, block
size 64×64) ..59

Table 3-8 Comparison of lossless coding performance (reversible 5 level
decomposition, block size 64×64) of JPEG2000, JPEG2000 with lazy
coding and CB-BPGC...60

Table 3-9 Average run-time (ms) comparisons for image lena and baboon
(JPEG2000 Java implementation JJ2000 [11] and Java
implementation of CB-BPGC)..64

viii

LIST OF FIGURES

Figure 1-1 Block diagram of image compression system.................................2

Figure 1-2 Image encoding, decoding and transmission over noisy channels..3

Figure 2-1 Comparison of time-frequency analysis of STFT (left) and DWT
(right), each rectangle in the graphics represents a transform
coefficient. ...10

Figure 2-2 Comparison of sine wave (left) and Daubechies_10 wavelet (right)
..10

Figure 2-3 Wavelet decomposition of an N×M image, vertical filtering first and
horizontal filtering second ...12

Figure 2-4 Wavelet decomposition (a) One level; (b) Two levels; (c) Three
levels ..12

Figure 2-5 (a) Image lena (512×512), (b) 3-level wavelet decomposition of
image lena (the wavelet coefficients are shown in gray scale image,
range [-127, 127]) ..13

Figure 2-6 Rate distortion curve ...15

Figure 2-7 (a) A midrise quantizer; (b) A midtread quantizer.........................16

Figure 2-8 Uniform scalar quantization with a 2∆ wide dead-zone17

Figure 2-9 Representation of the arithmetic coding process with interval at each
stage ...22

Figure 2-10 (a) EZW parent-child relationship; (b) SPIHT parent-child
relationship...24

Figure 2-11 Partitioning image lena (256×256) to code blocks (16×16)........29

Figure 2-12 EBCOT Tier 1 and Tier 2 ..30

Figure 2-13 EBCOT bit plane coding and scanning order within a bit plane.30

Figure 2-14 Convex hull formed by the feasible truncation points for block Bi

..32

Figure 2-15 Code block contributions to quality layers (6 blocks and 3 layers)
..33

ix

Figure 2-16 Image encoding, transmission and decoding of JPEG200033

Figure 2-17 JPEG2000 code stream ...34

Figure 3-1 Bit plane approximate probability Qj example39

Figure 3-2 Structure of AAZ encoder ...41

Figure 3-3 Histogram of wavelet coefficients in (a) HL2 subband; (b) LH3
subband ..42

Figure 3-4 Eight neighbors for the current wavelet coefficient46

Figure 3-5 Context based BPGC encoding a code block................................50

Figure 3-6 Example of three types of SIG code blocks with size 64×64 (the first
row, coefficients range [-127, 127], white color represents positive
large magnitude data and black color indicates negative large
magnitude.) and their corresponding subm matrixes (8×8) (the
second row): (a) smooth block, σ = 0.4869; (b) texture-like block, σ
= 1.3330; (c) block with edge, σ = 2.2537.....................................53

Figure 3-7 Example of two types of LOWE code blocks with size 64×64 (the
first row, coefficients range [-63, 63], white color represents positive
large magnitude data and black color indicates negative large
magnitude.) and their corresponding subm matrixes (8×8) (the
second row): (a) smooth block, σ = 0.9063; (b) texture-like block, σ
= 1.7090 ...54

Figure 3-8 Lossy compression performance...62

Figure 3-9 Histogram of coefficients in the LL subband of image lena 512×512
(top) and image peppers 512×512 (down) (Daubechies 9/7 filter, 3
level decomposition)..63

Figure 4-1 Corrupted images by channel BER 3×10-4(left: encoded by DCT
8×8 block; right: Daubechies 9/7 DWT, block size 64×64)...........70

Figure 4-2 JPEG2000 Segment marker for each bit plane77

Figure 4-3 CB-BPGC segment markers for bit planes78

Figure 4-4 CB-BPGC partial decoding for non-lazy bit planes (coding pass 1:
significant propagation coding pass; coding pass 2: magnitude
refinement coding pass; coding pass 3: clear up coding pass. “x”
means error corruption.)...80

x

Figure 4-5 CB-BPGC partial decoding for lazy bit planes (coding pass 1:
significant propagation coding pass; coding pass 2: magnitude
refinement coding pass. “x” means error corruption.)81

Figure 4-6 Comparison of error resilience performance between JPEG2000
(solid lines) and CB-BPGC (dashed lines) at channel BER 10-4, 10-3,
and 6×10-3...82

Figure 4-7 PSNR comparison for channel error free and channel BER at 10
for image lena 512×512 (left) and tools 1280×1024 (right)

-3

..........83

Figure 4-8 Subjective results of image lena (a~c), bike (d~f), peppers (g~i),
actors (j~l), goldhill (m~o) and woman (p~r) at bit rate 1 bpp and
channel BER 10-3 ...85

xi

Chapter 1. INTRODUCTION

With the expanding use of modern multimedia applications, the number of digital

images is growing rapidly. Since the data used to represent images can be very

large, image compression is one of the indispensable techniques to deal with the

expansion of image data. Aiming to represent the images using as few bits as

possible while satisfying certain quality requirement, image compression plays an

important role in saving channel bandwidth in communication and also storage

space for digital image data.

1.1. Background

Image compression has been a popular research topic for many years. The two

fundamental components of image compression are redundancy reduction and

irrelevancy reduction. Redundancy reduction refers to removing the statistical

correlations of the source, by which the original signals can be exactly

reconstructed; irrelevancy reduction aims to omit less important parts of the signal,

by which the reconstructed signal is not exactly the original one but without

bringing visual loss.

1.1.1. A general image compression system

A general image encoding and decoding system is illustrated in Figure 1-1. As

shown in the figure, the encoding part includes three closely connected

1

components, the transform, the quantizer and the encoder while the decoding part

consists of the inverse ones, the decoder, the dequantizer and the inverse

transform.

Figure 1-1 Block diagram of image compression system

Generally, images are never directly raw bits compressed by coding algorithms

and image coding is much more than general purpose compression methods. This

is because in most images, which are always represented by a two-dimensional

array of intensity values, the intensity values of the neighboring pixels are heavily

correlated. The transform in the image compression system is applied to remove

these correlations. It can be Linear Prediction, Discrete Fourier Transform (DFT),

Discrete Cosine Transform (DCT), Discrete Wavelet Transform (DWT) or others,

each with its own advantages and disadvantages. After the transformation, the

transformed data which is more compressible is further quantized into a finite set

of values. Finally, the entropy coder is applied to remove the redundancy of the

quantized data. The decoding part of the image compression system is the inverse

process of the encoding part. It is usually of lower complexity and performs faster

than the encoding part.

According to the reconstructed images, image compression schemes can be

classified into two types, lossless coding and lossy coding. Lossless coding

2

methods encode the images only by redundancy reduction where we can

reconstruct exactly the same images as the original ones, but with a moderate

compression performance. Lossy coding schemes, which use both redundancy and

irrelevancy reduction techniques, achieve much higher compression while

suffering some image quality degradation compared to the original images.

However, if the lossy coding algorithms do not target at very high compression

ratio, reconstructed images with no significantly visible loss can be achieved,

which is also called perceptual lossless coding.

1.1.2. Image transmission over noisy channels

As more and more multimedia sources are distributed over the Internet and

wireless mobile networks, robust transmission of these compressed data has

become an increasingly important requirement since these channels are

error-prone. Figure 1-2 shows the process of image encoding, decoding and

transmission over adverse channels. The challenge of robust transmission is to

protect the compressed data against adverse channel conditions while reducing the

impact on bandwidth efficiency, a process called error resilient techniques.

Figure 1-2 Image encoding, decoding and transmission over noisy channels

The error resilient techniques can be set up at the source coding level, the

3

channel coding level or both. Resynchronizaiton tools, such as segmentation and

packetization of the bitstreams are often used to ensure independent decoding of

the coruppted data and thus prevent error propagation. Self-recovery coding

algorithms can also be included, such as reversible various length codes (RVLC),

with which we can apply backward decoding to continue reconstructing the

images when error is detected in the forward decoding process.

Additionally, channel coding techniques such as forward error correction (FEC)

can be used to detect and further possibly correct errors without requesting

retransimission of the original bitstreams. In some applications, if retransmission

is possible, automatic repeat request (ARQ) protocols can be used to request

retransimission of the lost data.

Except for the above techniques which are responsible for protecting the

bitstream against noise, there are also some other error recovery ways, such as

error concealment based on interpolation or edge filter methods to conceal errors

in the damaged images in a post processing way.

1.2. Motivation and objective

With the ever-growing requirements from various applications, compression ratio

is no longer the only concern in image coding. Some other features such as low

computational complexity, resolution scalability, distortion scalability, region of

interest, random access, and error resilience are also required by some

applications. The international image compression standard JPEG2000, which

4

applies several state-of-the-art techniques, specifies such an attractive image coder

which provides not only superior rate-distortion, subjective image quality but also

rich functionalities.

However, behind the attractive features of JPEG2000 is the increase in

computational complexity. As lower complexity coder is more practical than the

increase in compression ratio for some applications [5], it is desirable to develop

certain new image coders which achieve comparable coding performance as the

current standard and provide rich functionalities but have lower complexity.

Based on an efficient and low complexity coding scheme, Bit Plane Golomb

Coding (BPGC) developed for Laplacian distributed signals which is now

successfully applied in scalable audio coding, we study the feasibility of this

algorithm in scalable image coding. By exploring the distribution characteristics

of the wavelet coefficients in the coding algorithm, we aim to develop a new

image entropy coder which provides comparative coding performance and also

rich features as the standard JPEG2000 but with lower complexity. Additionally,

we also intend to improve the error resilience performance of the new image coder

compared to that of JPEG2000 operating in a wireless Rayleigh fading channel

1.3. Organization of the thesis

This thesis is organized as follows. We briefly review some related techniques in

wavelet based scalable image coding in Chapter 2, such as wavelet transform,

quantization, bit plane coding, entropy coding and some well-known scalable

5

image coding examples.

In Chapter 3, we first review the embedded coding strategy, BPGC and then

introduce the proposed Context-based Bit-Plane Golomb Coding (CB-BPGC) for

scalable image coding. Comparison of both the PSNR and visually subjective

performance between the proposed coder and the standard JPEG2000 are

presented in this chapter. We also include a complexity analysis of CB-BPGC at

the end of this chapter.

A brief review of error resilience techniques is given in Chapter 4, followed by

the error resilience strategies used in CB-BPGC. In this chapter, we also show the

experimental results of the error resilience performance of the two coders.

 Chapter 5 then gives the concluding remarks of this thesis.

6

Chapter 2. WAVELET-BASED SCALABLE IMAGE

CODING

As the requirement of progressive image transmission over the Internet and

mobile networks increases, scalability becomes a more and more important

feature for image compression systems. Wavelet based image coding algorithm

has received lots of attention in image compression because it provides great

potential to support scalability requirements [1][2][3][4][6].

 In this chapter, firstly, we briefly review the general components in the wavelet

based image coding systems, for example, wavelet transform, quantization

techniques and entropy coding algorithms like arithmetic coder. Some successful

scalable image coding examples such as the embedded zerotree wavelet coding

(EZW) [1], the set partitioning in hierarchical trees (SPIHT) [2] and the embedded

block coding with optimal truncation (EBCOT) [6] are introduced. We also briefly

review the state-of-the-art JPEG2000 image coding standard [8].

2.1. Scalability

Scalability is a desirable requirement in multimedia encoding since:

♦ It is difficult for the encoder to encode the multimedia data and then save the

compressed files for every bitrate due to storage and computation time

constraints.

♦ In transmission, different clients may have different bitrate demands or

7

different transmission bandwidths, but the encoder has no idea to which client

this compressed data will be sent and does not know which bitrate should be

used in the encoding process.

♦ Even for a given client, the data transmission rate may be occasionally

changed because of network condition changes such as fluctuations of

channel bandwidth.

So, we need scalable coding to provide a single bitstream which can satisfy

client demands and network condition changes. Bitstreams of various bitrates can

be extracted from that single bitstream while partially discarding some bits to

obtain a coarse but efficient representation or a lower resolution image. Once the

image data is compressed, it can be decompressed in different ways depending on

how much information is extracted from that single bitstream [7].

 Generally, resolution (spatial) scalability and distortion (SNR or fidelity)

scalability are the main scalability features in image compression. Resolution

scalability aims to create bitstreams with distinct subsets of successive resolution

levels. Distortion scalability refers to creating bitstreams with distinct subsets that

successively refine the image quality (reducing the distortion) [7].

Wavelet-based image coding algorithms are very popular in designing scalable

image coding systems because of the attractive feature of the wavelet transform.

Wavelet transform is a tree-structured multi-resolution subband transform, which

not only compacts most of the image energy into only a few low frequency

subbands coefficients to make the data more compressible, but also makes the

8

decoding of resolution scalable bitstreams possible [23]. We briefly review

wavelet transform in the next section.

2.2. Wavelet transform

Similar to transforms such as Fourier Transform, the wavelet transform is a

time-frequency analysis tool which analyzes a signal’s frequency content at a

certain time point. However, wavelet analysis provides an alternative way to the

traditional Fourier analysis for localizing both the time and frequency components

in the time-frequency analysis [21].

Although Fourier transforms are very powerful in some of the signal processing

fields, they also have some limitations. It is well-known that there is a tradeoff

between the control of time and frequency resolution in the time-frequency

analysis process, i.e., the finer the time resolution of the analysis, the more coarse

the frequency resolution of the analysis. As a result, some applications which

emphasize a finer frequency resolution will suffer from poor time localization and

thus fail to isolate transients of the input signals [23].

Wavelet analysis then remedies these drawbacks of Fourier transforms. A

comparison of the time-frequency planes of the Short Time Fourier Transform

(STFT) and the Discrete Wavelet Transform (DWT) is given in Figure 2-1. As

indicated in the figure, STFT has a uniform division of the frequency and time

components throughout the time-frequency plane while DWT divides the

time-frequency plane in a different, non-uniform manner [20].

9

Figure 2-1 Comparison of time-frequency analysis of STFT (left) and DWT (right), each
rectangle in the graphics represents a transform coefficient.

Generally, wavelet analysis provides finer frequency resolution at low

frequencies and finer time resolution at high frequencies. That is often beneficial

because the lower frequency components, which usually carry the main features of

the signal, are distinguished from each other in terms of frequency contents. The

wider temporal window also makes these features more global. For the higher

frequency components, the temporal resolution is higher, from which we can

capture the more detailed changes of the input signals.

In Figure 2-1, each rectangle has a corresponding transform coefficient and is

related to a transform basis function. For the STFT, each basis function (,) ()s t xϕ

is the translation t and/or scaling s of a sinusoid waveform which is non-local and

stretches out to infinity as shown in Figure 2-2 .

 (,)() sin(), () sin()s tx x x sx tϕ ϕ= = − (2.1)

Figure 2-2 Comparison of sine wave (left) and Daubechies_10 wavelet (right)

10

For the DWT, each basis function (,) ()s t xφ is the translation t and/or scaling s

(usually powers of two) of a single shape which is called the mother wavelet.

 2
(,) () 2 (2)

s
s

s t x x tφ φ
− −= − (2.2)

There may be different kinds of shapes for mother wavelets depending on the

specific applications [23]. Figure 2-2 gives an example of the Daubechies_10

mother wavelet of the Daubechies wavelet family which is irregular in shape and

compactly supported compared to the sine wave. It is these irregularities in shape

and compactly supported properties that make wavelets an ideal tool for analyzing

non-stationary signals. The irregular shape lends to analyzing signals with

discontinuities or sharp changes, while the compactly supported nature makes for

temporal localization of signal features [21].

Wavelet transform is now widely used in many applications such as denoising

signals, musical tones analysis, and feature extraction. One of the most popular

applications of wavelet analysis is image compression. The JPEG2000 standard,

which is designed to update and replace the current JPEG standard, uses wavelet

transform instead of Discrete Cosine Transform (DCT), to perform decomposition

of images.

Usually, the two-dimensional decomposition of images is conducted by

one-dimensional filters on the columns first and then on the rows separately [22].

As shown in Figure 2-3, an N×M image is decomposed by two successive steps of

one-dimensional wavelet transform. We filter each column and then downsample

to obtain two N/2×M sub images. We then filter each row and downsample the

11

output to obtain four N/2×M/2 sub images. The “LL” sub image refers to the one

by low-pass filtering both the column and row data; the “HL” one is obtained by

low-pass filtering the column data and high-pass filtering the row data; the one

obtained by high-pass filtering the column data and low-pass filtering the row data

is called “LH” sub image; and the “HH” refers to the one by high-pass filtering

both the column and row data.

Figure 2-3 Wavelet decomposition of an N×M image, vertical filtering first and horizontal

filtering second

By recursively applying the wavelet decomposition as described above to the

LL subband, a tree-structured wavelet transform with different levels of

decomposition is obtained as illustrated in Figure 2-4. This multi-resolution

property is particularly interesting for image compression applications since it

provides for resolution scalability.

(a) (b) (c)

Figure 2-4 Wavelet decomposition (a) One level; (b) Two levels; (c) Three levels

12

(a) (b)
Figure 2-5 (a) Image lena (512×512), (b) 3-level wavelet decomposition of image lena

(the wavelet coefficients are shown in gray scale image, range [-127, 127])

An example of the 3-level wavelet decomposition of the image lena is shown in

Figure 2-5. We can see from Figure 2-5 (b) that the wavelet transform highly

compacts the energy, i.e., most of the wavelet coefficients with large magnitude

localize in the higher level decomposition subbands, for example the LL band.

Actually, the LL band is a low resolution version of the original image, which

contains the general features of the original image. The coefficients in other

subbands carry the more detailed information of the image, such as edge

information. The HL bands also most strongly respond to vertical edges; the LH

bands then contain mostly horizontal edges; and the HH bands correspond

primarily to diagonally oriented details [7].

Unlike the traditional DCT based coders, where each coefficient corresponds to

a fixed size spatial area and fixed frequency bandwidth and thus edge information

disperse onto many non-zero coefficients, in order to achieve lower bitrate some

edge information is lost and thus results in blocky artifacts. The wavelet

multi-resolution representation ensures the major features (the lower frequency

components) and the finer edge information of the original image occur in scales,

13

such that for low bitrate coding, there is no such blocky effect but only kind of

blurring effect occurs, which is because of the discarding of coefficients in the

high frequency subbands that are responsible for the finer detailed edge features.

2.3. Quantization

Generally, N×M images are represented by a two-dimensional integer array X with

pixel elements x[n,m]. However, the transformed coefficients y[n,m] are often no

longer integers and a quantization step should be included before entropy coding.

Quantization is often the only source of distortion in lossy compression that is

responsible for reducing the precision of the signal and thus makes it much more

compressible. While reducing the bits needed to represent the signal, it also brings

loss of information, i.e., distortion. Thus, there is often no quantization process in

lossless data compression.

2.3.1. Rate distortion theory

Rate distortion theory is concerned with the trade-off between rate and distortion

in lossy compression schemes [22]. Rate is the average number of bits used to

represent sample values. There are many approaches to measure the distortion of

the reconstructed image. The most commonly used measurement is the Mean

Square Error (MSE), defined by

1 1

2

0 0

1 ˆ([,] [,])
N M

n m

MSE x n m x n m
N M

− −

= =

= −
× ∑∑ , (2.3)

where x[n,m] is the original pixel and ˆ[,]x n m is the reconstructed pixel. In image

14

compression, for an image sampled to fixed length B bits, the MSE is often

expressed in an equivalent measure, Peak Signal-to-Noise Ratio (PSNR).

2

10
(2 1)10 log

B

PSNR
MSE
−

= (2.4)

Figure 2-6 Rate distortion curve

The rate distortion function R(D), which is a way to represent the trade-off

between rate and distortion, specifies the lowest rate at which the source data can

be encoded while satisfying the distortion less than or equal to a value D. Figure

2-6 gives an example of the rate distortion curve. Generally, the higher the bitrate,

the smaller the distortion. When the distortion D = 0, the image is losslessly

compressed. The Lagrangian cost function L = D+λR can be used to solve the

minimization distortion under certain constrained rate problems.

The rate distortion theory is often used for solving problems of bit allocation in

compression. Depending on the importance of the information it contains, each set

of data is allocated a portion of the total bit budget while keeping the compressed

image within a minimum possible distortion.

15

(a) (b)

Figure 2-7 (a) A midrise quantizer; (b) A midtread quantizer

2.3.2. Scalar quantization

The process of representing a large set of values (possibly infinite) with a much

smaller set while bringing certain fidelity loss is called quantization [22].

According to the ified into scalar

quantization (S input data,

here the quantizer operates on blocks of data and

the output represents a bunch of input samples.

The scalar quantizer is quite simple. Figure 2-7 gives examples of the scalar

midrise quantizer and the midtread quantizer. Both of them are uniform quantizers

where each input sample is represented by the middle value in the interval with a

quantization step size ∆ = 1, but the midtread quantizer has zero as one of its

levels while the midrise one does not have.

It is especially useful for the midtread quantizer in situations where it is

important to represent a zero value, for example, in audio processing zeros are

 sets of quantizer input, it can be class

Q) in which each quantizer output represents a single

and vector quantization (VQ) w

16

needed to represent silent periods. Note that the midtread quantizer has an odd

number of quantization levels while midrise quantizer has an even number. That

means if a fixed length 3-bit code is used, we have eight levels for the midrise

quantizer and seven levels for the midtread one, where one codeword is wasted.

Figure 2-8 Uniform scalar quantization with a 2∆ wide dead-zone

 Usually, for sources with zero mean, a small improvement of the rate-distortion

function R(D) can be obtained by widening the midtread zero value interval,

which is often called the dead-zone. A uniform SQ with a 2∆ wide dead-zone is

illustrated in Figure 2-8 (∆ is the quantization step size). This quantizer can be

implemented as

s probability density

()

0

x
sign x x

otherwise

⎧ ⎢ ⎥
> ∆⎪ ⎢ ⎥

⎪
⎩

And the corresponding dequantizer is defined as

0()ˆ
qsign q q

x
00q q

≠⎧ ∆
= ⎨ . (2.6)

()q Q x= = ∆⎨ ⎣ ⎦ . (2.5)

riptions, please refer to

=⎩

Uniform SQ is one of the simplest quantization schemes. SQ can also be

non-uniform and designed to optimally adapt to the signal’

function (pdf). On the other hand, VQ represents a bunch of input samples by a

codeword but have a much higher computational complexity. We will not discuss

the details of these VQ techniques. For these detailed desc

[22].

17

2.4. Bit plane coding

As mentioned in Section 2.1, a very desirable feature of a compression system is

the ability to successively refine the reconstructed data as the bitstream is decoded,

i.e., the ability of scalability. Embedded coding is the key technique to achieve

distortion scalability. The main advantage of the embedded bitstream lies in its

ssion bitstream which can be dynamically truncated to

fit a certain rate, distortion or complexity constrains without loss of optimality.

Table 2-1 An example of bit plane coding

ability to generate a compre

Sample data range: [-63, 63], the most significant bit plane: m = 5

Bit Planes Bj (j = m,m-1,…,0)
Samples Value

Sign j = 5 j = 4 j = 3 j = 2 j = 1 j = 0
x0 34 + 1 0 0 0 1 0

x2 3 + 0 0 0 0 1 1

x4 -52 - 1 1 0 1 0 0

x1 -6 - 0 0 0 1 1 0

x3 23 + 0 1 0 1 1 1

x5 49 + 1 1 0 0 0 1
x6 -11 1 1 - 0 0 1 0
...

 Bit plane coding (BPC e tu d ac m nt an

embedded coding system. It is included in ost of the em dded age, audio and

video co ng syst [1][3][4][6][16]

simple. The input data are first represented in magnitude and sign parts; the

magnitude part is then binary represente s sh in

range in [-63, 63] has 6 bit planes, from the most significant 5th bit plane to the

least significant 0th bit plane. It is then sequentially coded by bit planes, normally

from the most significant bit plane to the least significant one to successively

) is th n a na ral an simple appro h to i pleme

 m be im

di ems 2][[26]. The general idea of BPC is quite

d a own Table 2-1. A set of data

18

refine the bitstreams.

In some embedded image coding systems, such as Embedded Block Coding

with Optimal Truncation (EBCOT) in [6] and Pixel Classification and Sorting

(PCAS) in [16], a code block is often encoded bit plane by bit plane in a certain

order, e.g. raster order. And in order to obtain fine granular scalability, they

operate on fractional bit planes where the BPC process often includes significant

coding pass and magnitude refinement coding pass. Some other schemes such as

R

2.5. Entropy coding

ore accurate and reliable. They are then followed

by an entropy coding process.

Entropy coding refers to representation of the input data in the most compact

ate-Distortion optimized Embedding (RDE) introduced in [4] encode bits not in

bit plane sequential order but encode several bit planes together according to the

expected R-D slopes. In that method, when not all the bits in the 5th bit plane have

already been encoded, some bits in the 4th bit plane are going to be encoded. We

will further discuss the different bit plane coding techniques used in different

coding examples in Section 2.6.

After the transformed coefficients have been quantized to a finite set of values,

they are often first operated by some source modeling methods. The modeling

methods are responsible for gathering statistics and identifying data contexts

which make the source models m

form. It may be responsible for almost all the compression effort, or it just gives

19

some additional compression as a complement to the previous processing stages.

Entropy in information theory m

2.5.1. Entropy and compression

eans how much randomness is in a signal or

alternatively how much information is carried by the signal [17]. Given the

probability p of a discrete random variable X which has n states, entropy is

formally defined by

2
1

() () log ()
n

i
H x p i p

=

= −∑ .i (2.7)

Entropy can measure information in units of bits. It provides fundamental

bounds on coding performance. Shannon points out in [17] that the entropy rate of

a random process provides a lower bound on the average number of bits which

must be spent in coding and also that this bound may be approached arbitrarily

closely as the complexity of the coding scheme is allowed to grow without bound.

Most of the entropy coding methods fall into two classes:

sc

w

dictionary based

hemes and statistical schemes. Dictionary based compression algorithms

operate by replacing groups of symbols in the input text with fixed length codes,

e.g. the well known Lempel-Zif-Welch (LZW) algorithm [22]. Statistical entropy

coding methods operate by encoding symbols into variable length codes and the

length of the codes varies according to the probability of the symbol. Symbols

ith a lower probability are encoded by more bits, while higher frequency

symbols are encoded by fewer bits.

20

2.5.2. Arithmetic coding

Among all the entropy coding methods, a statistical entropy coding scheme,

arithmetic coding stands out for its elegance, effectiveness, and versatility [24]. It

is widely used in compression algorithms such as JPEG2000 [8], MPEG-4

Scalable Audio Coding standard [26] and video coding standard H.264.

ent and identically distributed (i.i.d.) sources, an

arithmetic coder provides proven optimal compression. For those non i.i.d.

sources, by combining with context modeling techniques it yields near-optimal or

significantly improved compression. In addition, it is especially useful to deal

with sources with small alphabets, such as binary sources, and alphabets with

highly skewed probabilities.

In arithmetic coding, a sequence of symbols is represented by an interval of real

numbers between 0 and 1. The cumulative distribution function (cdf) Fx(i) is used

to map the sequence into intervals. We are going to explain the idea behind

arithmetic coding through an example.

odel for alphabet {a, e, o, !}

Symbols Probability Subintervals

When applied to independ

Table 2-2 Example: fixed m

a 0.2 [0, 0.2)

o 0.4 [0.4, 0.8)
e 0.2 [0.2, 0.4)

! 0.2 [0.8, 1)

Suppose we want to encode the sequence eaoo! with the probability distribution

P(xi) (i=0, 1, 2, 3) listed in Table 2-2. The unit interval [0, 1) is divided to

subintervals [Fx(i-1), Fx(i)) with the symbol xi. As illustrated in Figure 2-9, at the

21

beginning, the interval is [0, 1) and the first symbol, e, fa l of [0.2,

0.4), therefore, after encoding, the lower limits l(1) of the al is 0.2 and

the upper limits) is 0.4. The next ol to be encoded ith a range [0,

0.

lls in the interva

new interv

u(1 symb is a, w

2) in the unit interval. Thus, after encoding the symbol a, the lower and the

upper limits of the current interval are l(2) = 0.2, u(2) = 0.24. The updating of the

interval can be written as follows,

() (1) (1) (1)
1() ()n n n n

X nl l u l F x− − −
−= + − , (2.8)

() (1) (1) (1)() ()n n n nu l u l F x− − −= + − . (2.9)

Applying the updating intervals for the whole sequence, we get the final interval

[0.22752, 0.2288) to represent the sequence. This process is described graphically

in Figure 2-9. The decoding then just mi ics the encoding process to extract the

original bit according to its probab

X n

m

ility and the current interval.

Figure 2-9 Representation of the arithmetic coding process with interval at each stage

Apparently, as the sequence becomes longer, the width of the interval can

become smaller and smaller and sometimes it can be small enough to map

different symbols onto the same interval which probably causes wrongly decoded

symbols. That precision problem prohibited arithmetic coding from practical

22

usage for years and finally was solved in 1970s. Witten, et al [18] gave a detailed

C implementation of the arithmetic coding.

In the encoding process, the probability model can be updated after each

symbol is encoded, which is different from static arithmetic coding for applying a

probability estimation procedure. Adaptive arithmetic coding receives lots of

at .

So

2.6. Scalable image coding examples

In

2.6.1. EZW

The EZW algorithm was first presented in [1] by Shapiro, which became a

tention for its coding effectiveness, however, with a higher complexity [31]

me other variants of the basic arithmetic coding algorithm also exist, such as

the multiplication-free binary coder, Q coder [19] and the MQ coder, the binary

adaptive arithmetic coder which is used in the image coding standards JBIG [9]

and JPEG2000 [8].

 the framework of embedded image coding system, the first stage is transform

and quantization, the second stage is modeling and ordering, and the last stage is

entropy coding and post processing [14]. Previous research works show that

modeling and ordering are very important to design a successful embedded coder.

Most of the wavelet based scalable image coding schemes gain compression

effectiveness by exploring the interscale or intrascale wavelet coefficient

correlations or both. In this section, we review some embedded image coding

schemes.

23

milestone for embedded image coding and produced the state-of-the-art

compression performance at that time. It explores the so-called wavelet

coefficients structure, zerotrees and achieves embedding via binary BPC.

Different from the raster scan of image bit planes or the progressively “zig zag”

scan of the DCT coefficient bit planes, EZW encodes the larger magnitude

coefficients bit planes first, which are supposed to contain the more important

information of the original image, and allocates as few as possible bits to the near

zero values. This is obtained from the structure “zerotrees”, which means given a

threshold T, if the current coefficient (parent) is smaller than T, then all of its

corresponding spatial location coefficients in the higher frequency subbands

 to be smaller than T, and we do not encode the bit planes of all (children) tend

coefficients in this zerotree now because they seem less important compared to the

coefficients greater then T.

Figure 2-10 (a) EZW parent-child relationship; (b) SPIHT parent-child relationship

The parent and child relationship in EZW is illustrated in Figure 2-10 (a). In

general, a coefficient in subband HL

(a) (b)

d, LHd or HHd has 4 children, 16

grandchildren, 64 great-grandchildren, etc. A coefficient in the LLd has 3 children,

24

12 grandchildren, 48 great-grandchildren, etc.

The embedding bitstream is achieved by comparing the wavelet coefficient

magnitudes to a set of octavely decreasing thresholds Tk = T02-k, where T0 is

chosen to satisfy |y|max/2 < T0 < |y|max (|y|max is the maximum magnitude for all

coefficients). At the beginning, each insignificant coefficient, whose bit planes are

not coded yet, is compared to T0 in raster order, first within LLD, then HLD, LHD,

HHD, then HLD-1, and so on. Coding is accomplished via a 4-ary alphabet: POS

(the significant positive coefficient he significant negative coefficient),

ZT are

all

cess goes into the higher frequency

su

), NEG (t

R (the zerotree root, which indicates the current coefficient and its offspring

 less than T0), IZ (the isolated zero, which means the current coefficient is less

than T0 but at least one of its offspring is larger than T0). For those three highest

frequency subband coefficients, which have no children, the ZTR and IZ symbols

are replaced by the single symbol Z. As the pro

bbands, these coefficients which are already in a zerotree are not coded again.

This coding pass is called dominant pass which operates on the insignificant

coefficients.

After that, the threshold is changed to T1 and the encoder goes to the next bit

plane. A subordinate pass is first carried out to encode the refinement bit plane of

the coefficients already significant in the previous bit planes, followed by the

second dominant pass. The processing continues alternating between dominant

and subordinate passes and can stop at any time for certain rate/distortion

constraint.

25

Context based arithmetic coding [18] is then used to losslessly compress the

sequences resulting from the procedure discussed above. The arithmetic coder

encodes the 4-ary symbols in the dominant pass and the refinement symbols in the

subordinate pass directly and uses scaled down probability model adaptation [18].

The EZW technique not only had competitive compression performance

compared to other high complexity compression techniques at that time, but also

w

2.6.2. SPIHT

e features in SPIHT remain the same as with EZW. However,

there are als

child

oot itself need not

be less than the threshold, and type B which is similar to type A but do not include

grandchildren, great-grandchildren, etc.

as fast in execution and produced an embedded bitstream.

The SPIHT algorithm proposed in [2] is an extension and improvement of the

EZW algorithm and has been regarded as a benchmark in embedded image

compression. Som

o several significant differences.

Firstly, the order of the significant and refinement coding passes is reversed.

The parent-child relationship of the coefficients in LL band is changed as shown

in Figure 2-10 (b), where one fourth of the coefficients in the LL band have no

ren while the remaining ones have four children each in the corresponding

subbands. There are also two kinds of zerotrees in SPIHT, type A which consists

of a root with all the offsprings less than the threshold but the r

the children of the root, i.e., only the

Unlike EZW, in SPIHT, there are three ordered lists: LSC, list of significant

26

coefficients containing the coordinates of all the significant coefficients; LIS, list

of insignificant sets of coefficients including the coordinates of the roots of sets

type A and type B; LIC, list of insignificant coefficients containing the coordinates

of

put is “1”,

 the remaining coefficients.

Assume each coefficient is represented by the sign s[i,j] and the magnitude bit

planes qk[i,j]. The SPIHT algorithm is then operated as follows,

(0) Initiation

♦ k = 0, LSC = Φ, LIC = {all coordinates [i, j] of coefficients in LL}, LIS

= {all coordinates [i, j] of coefficients in LL that have children}. Set all

entries of the LIS to type A.

(1) Significant pass

♦ For each [i,j] in LIC: output qk[i,j]. If qk[i,j] =1, output s[i,j] and move

[i,j] to the LSC.

♦ For each [i,j] in LIS:

i. Output “0” if current coefficient is insignificant; otherwise “1”.

ii. If the above out

Type A: changed to Type B and sent to the bottom of the LIS. The

qk[i,j] bits of each child are coded (with any required sign bit). The

ild is sent to the end of LIC or LSC, as appropriate. ch

Type B: deleted from the LIS, and each child is added to the end of

the LIS as set of Type A.

nement pass (2) Refi

27

♦ For each [i,j] in LSC: output qk[i,j] excluding the coefficients added to

(3) Set k step (1).

The t the entropy coder in SPIHT. Unlike in EZW,

here only m its

are uncoded, i.e., SPIHT only codes the symbol “1” and “0” of the significant

passes and eve

The SPIHT

algorithm at a us embedded

image compr

partitioning a in SPIHT, such as the Set Partitioning

Em CK) [12][13] and the Embedded Zero Block Coding

(EZBC

2.6.3. EBCOT

EBCOT, pr

 the intrascale correlation. Each

subband is p

the LSC in the most recent significant pass.

 = k+1 and go to

 ari hmetic coder is used as

 sy bols from the significant passes are coded while the refinement b

n the sign bits are left uncoded.

 algorithm provides better compression performance than the EZW

n even lower level of complexity. Many other famo

ession systems are also motivated by the key principles of set

nd sorting by significance

bedded Block (SPE

) [15].

oposed by Taubman in [6], is an entropy coder which is carried out

after the wavelet transform and quantization processes. Unlike the EZW and

SPIHT algorithms which exploit both the interscale and the intrascale correlations

in forms of zerotrees, EBCOT captures only

artitioned into relatively small code blocks (e.g. 64×64 or 16×16) and

these code blocks are encoded independently as shown in Figure 2-11.

28

Figure 2-11 Partitioning image lena (256×256) to code blocks (16×16)

The disadvantage of independent block coding lies in that it is unable to explore

redundancy between the blocks in the same subband and also the parent-child

relationship in the higher and lower resolution corresponding subbands. However,

because of the independent coding of blocks, EBCOT is able to embed resolution

scalable bitstreams and is capable of random access and better error resilience. It

also reduces the memory consumption in hardware implementations. In addition,

the block coding in EBCOT also facilitates the ordering of the bitstreams by

applying the post compression rate distortion optimization (PCRD) algorithm

which we will discuss later.

The EBCOT algorithm is an independent block coded, context based adaptive

bit plane

2-12.

 coder, which is conceptually divided into two Tiers as shown in Figure

Tier 1 is the embedded block coding responsible for source modeling and

entropy coding; while Tier 2 is the PCRD for ordering code block bitstreams in an

optimal way to minimize the distortion subject to bitrate constraints and thus

generating the output stream in packets.

29

Figure 2-12 EBCOT Tier 1 and Tier 2

More explicitly, in Tier 1, after coefficient subbands are divided into small code

blocks, each code block is bit plane encoded. Each bit plane is scanned stripe by

stripe and each stripe is scanned column by column as graphically shown in

Figure 2-13. The bits in a certain bit plane are then coded by one of the three

coding passes: significant propagation coding pass (SIG), magnitude refinement

coding pass (MAR) and clear up coding pass (CLU).

coefficient is insignificant and has at least one neighbor (each coefficient has eight

neighbors) already significant in the previous bit planes. These bits are the most

likely to become significant and should be encoded earlier than the other bits in

Figure 2-13 EBCOT bit plane coding and scanning order within a bit plane

Given a bit plane, the SIG coding pass encodes the bit whose corresponding

the current bit plane. If the bit is “1”, the sign coding should be followed and this

coefficient is identified as significant in the processes of next bit planes. The

MAR coding pass then refines the bits whose corresponding coefficients are

30

already significant. The remaining bits are then coded during the CLU coding pass.

Obviously, each bit plane has these three coding passes except for the most

significant bit plane which has only the CLU coding pass.

As we can see above, which pass a coefficient bit is coded in depends on the

conditions or states of the corresponding coefficients. The coding passes give a

fine partitioning of bit pl

points in the following PCRD optimization algorithms which will improve the

and the CLU coding pass contains the ZC, SC and also the RLC primitives.

mitive then

includes 3 contexts acco

whether this coefficient has been magnitude refined before; finally, the RLC

2, the PCRD algorithm is applied. We

anes into three sets, providing more valid truncation

embedded performance. In addition, four coding primitives are employed to

obtain a finer source modeling: Zero Coding (ZC), Sign Coding (SC), Magnitude

Refinement (MR) and Run-length Coding (RLC). The ZC and SC primitives are

applied in the SIG coding pass; the MAR coding pass includes the MR primitive;

According to the different significant states of the eight neighbors, the ZC

primitive has 9 contexts; the SC primitive has 5 contexts depending on the sign

states of the horizontal and vertical four neighbors; the MR pri

rding to the significant states of the eight neighbors and

primitive has only 1 context. So, there are in all 18 contexts modeled in EBCOT

for all the three fractional coding passes. Each bit (binary decision) together with

its context is then sent to the arithmetic coder. The arithmetic coder used in

EBCOT is the adaptive binary coder, which is called the MQ coder.

After all the blocks are encoded, in Tier

31

try to optimally select the truncation points, {ni} (with length Li
ni, distortion Di

n for

code block Bi) so as to minimize the overall distortion, D, subject to an overall length

constraint Lmax,

max, ii
nn

i i
D D L L L= ≥ =∑ ∑ . (2.10)

The Lagrangian optimization can be used,

(,) (,)() () ()i in n
i iD L D Lλ λλ λ λ λ+ = +∑ . (2.11)

The PCRD algorithm solves this problem by selecting the feasible truncation

points which satisfy the convex hull property with decreasing D-L slopes which is

shown in Figure 2-14.

Figure 2-14 Convex hull formed by the feasible truncation points for block Bi

These feasible truncation points are candidates for the embedded bitstream

in layer depending on its performance to reduce the

distortion. Sometimes, this contribution is zero, which means there is no bitstream

truncation points. The EBCOT bitstream is finally organized in layers as shown in

Figure 2-15. From the figure, we can see that, each code block has different

contribution to a certa

32

from this block in the current layer.

Figure 2-15 Code block contributions to quality layers (6 blocks and 3 layers)

Th and

SP

The block diagram of the image encoding, transmission and decoding in the image

standard JPEG2000 is shown in Figure 2-16.

e compression performance of EBCOT is better than the previous EZW

IHT algorithms [6]. In addition, EBCOT is a highly scalable compression

algorithm together with attractive features like resolution scalability, SNR

scalability and random access. It is selected to act as the entropy coder for the

state-of-the-art image coding standard JPEG2000 [8].

2.7. JPEG2000

Figure 2-16 Image encoding, transmission and decoding of JPEG2000

In the standard, if the input is a color image, the first step is to apply the color

transform, for example, from the RGB color space to the YCrCb space. Then each

33

color component is regarded as if they were grey scale images. They are then

divided into blocks called tiles, which have disjoint codestream from each other.

The wavelet transform is then applied to the tiles. There are two types of

discrete wavelet transform specified in JPEG2000, one is the reversible 5/3 LeGall

filter and the other one is the irreversible Daubechies 9/7 filter. In lossy

ead-zone scalar quantization as

discussed in Section 2.3.2 and Trellis-coded quantization. The entropy coder used

in JPEG2000 is the EBCOT which is discussed in the last section.

The codestream of JPEG2000 is illustrated in Figure 2-17. Basically, JPEG2000

codestream is organized in packets, which contains a packet header and a packet

body. The header includes some important parameter information and the body is

compression, a quantization step follows the wavelet transform. Two different

quantization procedures are allowed: the d

the coded symbols.

Figure 2-17 JPEG2000 code stream

JPEG2000 brings a new paradigm to the image compression [10]. It provides

both lossy and lossless compression. A JPEG2000 codestream can be

decompressed in many ways to obtain images with different resolutions and

34

fid

 also has the ability of error resilience when it is delivered

over noise transmission channels.

elities. In addition to the resolution scalability and quality scalability, the

JPEG2000 codestream also supports spatial random access. Each region can be

accessed and decoded at a variety of resolutions and qualities. In addition, the

JPEG2000 codestream

35

Chapter 3. CONTEXT-BASED BIT PLANE GOLOMB

CODING

We are going to present the proposed scalable image coder, Context-based Bit

Plane Golomb Coding (CB-BPGC) in this chapter. It is motivated by the BPGC

algorithm, an embedded coding scheme for Laplacian distributed sources which

we assume are representative of wavelet coefficients in the HL, LH, and HH

subbands, and the image context modeling techniques which explore the

correlations between neighboring samples.

We will first discuss the BPGC algorithm and the context modeling techniques,

followed by the detailed structure and implementation of the CB-BPGC coder for

scalable image coding together with the evaluation of its compression

performance compared to the JPEG2000 standard. A complexity analysis of the

CB-BPGC algorithm is also included in this chapter.

3.1. Bit Plane Golomb Coding

The embedded coding strategy BPGC, which provides near optimal coding

performance for sources with Laplacian distribution, was first presented in [25]. It

is now successfully implemented in the latest MPEG-4 Audio Scalable Lossless

Coding (SLS) Standard (also called AAZ coder) [26]. We start this section with a

brief review of the algorithm, followed by a description of using BPGC in the

AAZ audio coding and an analysis of the feasibility to use BPGC in scalable

36

image coding.

3.1.1. BPGC Algorithm

BPGC is one of the bit plane coding strategies which encodes the source symbols

bit plane by bit plane as introduced in Section 2.4. However, BPGC is not a

simple bit plane coder. It simplifies the bit plane coding of an independent and

identically distributed (i.i.d.) Laplacian source by giving a static probability model

for bits in each bit plane. These bits are then easily encoded by a static arithmetic

coder whose input symbols include exactly the bit and the corresponding

probability as discussed in Section 2.5.2.

Consider a Laplacian distributed source X, which has a pdf given by,

22/ 2() / 2x
Xf x e σ σ−= . (3.1)

Each sample xi (i = 1, 2 …N) is binary represented by bit plane symbols bi,j (value

0 or 1) and the sign symbol si,

, 2 , 1,..., 0,...,j
i i i j

j
x s b i N j m= =∑ = (3.2)

1 0
0 0

i
i

i

x
s

x
≥⎧

= ⎨ <⎩
, (3.3)

where m is the most significant bit plane which satisfies:

{ } 12 max 2m
ix m+≤ ≤ . (3.4)

If the source X is i.i.d., the probability distributions of the bit plane symbol bi,j

(value 0 and value 1) in the bit plane Bj can be written as,

2 1
,(1) 1 (1)

j

i j jprob b p θ −= = = − + (3.5)

and ,(0) 1i j jprob b p= = − , (3.6)

37

where
22 /e σθ −= (3.7)

is known as the distribution parameter which can be estimated from the statistical

properties of the sample data, for example, the maximum likelihood (ML)

estimation of θ is given by

/N Aeθ −= , (3.8)

where N is the number of the samples and A is the absolute sum of the samples.

From Equation (3.5), we can derive that the probability pj using the following

updating rule

1 1/(1)j j jp p p p+ += − + 1j+ . (3.9)

We can further simplify the probability of the bit bi,j = 1, i.e. pj in bit plane Bj (j =

0, 1, … m) as follows [25]

()21/ 1 2

1/ 2

j L

L
j

j L
Q

j L

−⎧ + ≥⎪= ⎨
<⎪⎩

 (3.10)

{ }1min | 2LL L Z N′+′= ∈ ≥ A . (3.11)

The approximate probability L
jQ follows the probability updating rule of

Equation (3.9) for bit planes from the most significant bit plane m to the bit plane

L, and after the Lth bit plane, it enters to a so-called lazy mode where the bit

probability is 1/2 for both bit value 1 and 0.

Therefore, the parameter L divides the bit planes into two parts: lazy bit planes

(the (L-1)th bit plane to the 0th bit plane) where bits 0 and 1 are uniformly

distributed; and non-lazy bit planes (the mth bit plane to the Lth bit plane) whose

skew probabilities are specified by the distance from the current bit plane j to the

lazy bit plane L: D2L = j – L in Equation (3.10). Figure 3-1 gives an example of

38

the approximate bit probabilities of the non lazy bit planes (from the 5th bit plane

to the 3rd bit plane) for a Laplacian distributed source θ = e-12 and L = 3 whose pdf

is given in Figure 3-1 (a). In each figure (b)-(d), the sum of the area of the shaded

region represents the probability of bit equals to one in their corresponding bit

plane.

 (a) Laplacian pdf (θ = e-12, L=3) (b) Shaded area: 5 0.0588Q = (5th bp)

 (c) Shaded area: (44 0.2Q = th bp) (d) Shaded area: 3 0.3333Q = (3th bp)

Figure 3-1 Bit plane approximate probability Qj example

The L parameter is also easy and practical to obtain by solving Equation (3.11).

The bits are then input into the arithmetic coder and encoded with their

corresponding approximate probabilities. In addition, only those bits in the non

lazy bit planes are encoded by the static arithmetic coder because those bits in the

39

lazy bit planes have a probability of 1/2, and they can be output directly without

compression.

It is said in [25] that the BPGC actually can give an identical expected length to

that of Golomb code with parameter 2L for non-negative geometrically distributed

integer when the parameter L is greater or equal than 0. But for those very low

entropy content sources which may result in L < 0, it may not perform well. In

addition, by exploiting the statistical properties of the input Laplacian distributed

sources, the BPGC algorithm achieves a rate distortion performance which is

essentially comparable to an optimal non-scalable scalar quantizer.

BPGC also has a complexity level which is suitable for practical

implementation. The calculation of parameter L can be implemented using the C

program described in [5]. The static arithmetic coder is also simple and easy to

implement as discussed in [24][32].

3.1.2. BPGC used in AAZ

Advanced Audio Zip (AAZ), a lossy to lossless scalable audio coding technology,

which is recently been adopted as the reference model for the MPEG-4 Audio

Scalable to Lossless Coding, is presented in [26].

AAZ provides backward compatibility by embedding an MPEG AAC

(Advanced Audio Coding) bitstream, a widely adopted lossy audio coder. It also

provides the functionalities that people previously have to resort to several audio

compression technologies like lossy audio coding, lossless audio coding and

40

scalable audio coding, all in a single framework but without any compromise in

terms of coding efficiency or implementation complexity.

Figure 3-2 Structure of AAZ encoder

The structure of the AAZ encoder is illustrated in Figure 3-2. As indicated in

the figure, AAZ consists of two distinguishable layers, one is the perceptual core

layer, which has an MPEG-4 AAC audio coder to generate the lossy portion of the

embedded bitstream, and the other is the Lossless Enhancement layer (LLE)

where the lossy to lossless bitstream is produced. The BPGC encoder is used here

to operate on the Laplacian distributed residual IntMDCT (reversible integer

MDCT) coefficients which are obtained by an error mapping procedure after the

perceptually encoding of the AAC coder. The bitstream generated by the AAC

coder represents the minimum rate for the final lossy or lossless bitstream while

the BPGC encodes the residual coefficients bit plane by bit plane as described in

last section to generate the embedded enhancement bitstream and these two

bitstreams are finally fed to the bitstream multiplexer to be the final lossy to

lossless bitstream [26].

By implementing the lossy coder AAC and the BPGC algorithm which acts as

an audio embedded bitstream enhancement scheme, AAZ provides fine grain

bitrate scalability without affecting compression performance and also

41

maintaining a reasonable computational complexity.

3.1.3. Using BPGC in scalable image coding

bedded bitstream for i.i.d.

wavelet transformed coefficients in

hi

As discussed before, BPGC is suitable to generate the em

Laplacian distributed sources. The residual IntMDCT coefficients in AAZ have

Laplacian distribution. In addition, because the audio signal is a one-dimensional

signal where the neighborhood coefficients have low correlations, it can be

regarded as near i.i.d. Laplacian distributed.

As reported in many research articles, the

gh frequency bands, i.e., subbands HL, LH and HH tend to follow the Laplacian

distribution [28][29]. The histograms of 3-level decomposition 9/7 Daubechies

wavelet coefficients of image lena in subband HL2 and HH3 are plotted in Figure

3-3. From the figure, we can see that large portion of the wavelet coefficients are

around the value zero, and the number of larger magnitude coefficients is

exponentially decreasing, which are the characteristic of Laplacian distributed

symbols.

(a) (b)

Figure 3-3 Histogram of wavelet coefficients in (a) HL2 subband; (b) LH3 subband

42

Ba

ap

audio coding, the good performance of BPGC is based on the

co

sily combined with context

m

sed on the audio scalable coder AAZ, we investigate the possibility of

plying BPGC to scalable image coding because these signals to be encoded

have something in common, that is, they all tend to follow a Laplacian

distribution.

In scalable

nstraint that the coding source is nearly i.i.d.. However, the BPGC algorithm is

not directly useful for coding wavelet coefficients. The spatial dependencies of

image wavelet coefficients are quite heavy and that is why many image coders

like EZW, SPIHT and EBCOT adopt an adaptive arithmetic coding procedure.

Obviously, the BPGC static probability model whose probability is specified by

only D2L would obviously lose some coding efficiency. Bits in the wavelet

coefficients bit planes are significantly affected by nearby coefficients. For

example, it is more likely for the current bit to be ‘1’ when most bits of the

corresponding neighbor coefficients bit planes are ‘1’.

However, fortunately, the BPGC algorithm can be ea

odeling techniques to explore the spatial correlation of the input signal. In fact,

the extension work on MPEG-4 Audio Scalable Lossless Coding [27] also

includes the idea of combining the context technique with the BPGC algorithm,

which is called the Context-based Bit Plane Arithmetic Code (CB-BPAC) method.

CB-BPAC improves coding efficiency by exploiting the dependencies of the

probability distribution of the bit plane symbols of residual IntMDCT coefficients

to their frequency locations, the significance states of their adjacent spectral

43

samples, and their relationship to the lazy plane parameter L. The reported overall

improvement in lossless audio coding performance is 0.83%.

Thus, if the image context modeling techniques are combined with the BPGC

alg

3.2. Context modeling

As mentioned before, the BPGC algorithm specifies a static probability model for

the source samples better,

sp

3.2.1. Distance to lazy bit plane

 scalable image coder. The

de

orithm, it may bring a scalable image coder with efficient compression and also

low complexity.

the bits in coefficient bit planes, where the bit probability varies according to the

distance of the bit plane to the lazy bit plane (D2L).

In order to make the static probability model fit

atial correlation is explored by considering the coefficient neighborhood

significance contexts. So, firstly, the probabilities of the bits in different bit planes

differ from each other by having different D2L. And secondly, for a given bit

plane, bits probabilities are no longer the same and they are determined by their

neighborhood coefficients’ significance contexts.

There are 7 D2L contexts used in the proposed

tailed descriptions of these contexts are listed in Table 3-1. D2L context 0

represents the lazy bit planes that have the D2L value equal or less than -3, and the

probability assigned for bits belonging to this context is 1/2. Contexts 1 to 6 are

for the non lazy bit planes and these bit planes are assigned with skew bit

44

probabilities. Note that in Table 3-1 we can see that D2L context 6 is for those bit

planes with D2L greater or equal than 3. Those bit planes which have larger D2L

are not assigned new contexts. This is because for a Laplacian distributed source,

most of the mth bit planes (the most significant bit plane) have D2L less than 4.

Additionally, for those bit planes with D2L greater than 3, the bit probability is so

small that if implemented by integer arithmetic coding they can be approximated

as the same integer. Grouping them together can reduce the complexity of the

context code book.

Table 3-1 D2L contexts

Context No. 0 4 5 6 1 2 3

D2L ≤-3 -2 -1 0 1 2 ≥3

Note that th erence from

di

ple of the bit plane coding relating to the D2L concept is given in

ere is a little diff the BPGC static probability model we

scussed before. In the previous discussion, we considered all the bit planes

which have a D2L less than 0 as lazy bit planes. However, it is found in our

experiments that for image wavelet coefficients, the bits in some of the bit planes

which are near the lazy bit plane L but have a lower order do not appear to have a

uniform distribution. In order to model the wavelet coefficients more accurately,

they should be assigned with skew probabilities similar to those bit planes which

are of higher order than the lazy bit plane L, but obviously not as skewed as those

bit planes.

 An exam

Table 3-2.

45

Table 3-2 D2L context bit plane coding examples

Context No. 6 5 4 3 2 1 0
D2L , -4, -5, … 3 2 1 0 -1 -1 -3

m:8 L:6 8 7 6 5 4 3, 2, 1, 0
m:9 L:6 9 8 7 6 5 4 3, 2, , 0 1

7 6 5 4 3 2 1, 0

cally, the m of D

m:7 L:4

Basi ore the number the 2L contexts, the more accurate the

model is. However, larger number of contexts leads to larger probability

codebooks (lists of bit probabilities), and increasing the probability codebooks

will not result in significant improvement in compression performance.

consideration is the significant states

of the neighborhood coefficients. Many image compression systems design

delicate sample neighborhood contexts. Part of the neighborhood contexts defined

in EBCOT [7] is included in the proposed scalable image coder.

3.2.2. Neighborhood significant states

Another context which should be taken into

Figure 3-4 Eight neighbors for the current wavelet coefficient

 The eight adjacent neighbors of the curre

3-4. Two of them are horizontal neighbors h; the two vertical neighbors are v; and

nt coefficient are illustrated in Figure

46

d indicates the four diagonal neighbors.

When encoding, each coefficient has an associated binary state variable named

significance state. Significance state variables are initialized to an insignificant

sta

 have so many context vectors. These are clustered

in

ne

te of 0, and may change to a significant state of 1 during the process of bit

plane coding. The significance state context for a given current coefficient is the

binary vector consisting of the significance states of its eight neighbor coefficients.

Any neighborhood coefficient which lies outside of the independent code block is

considered as insignificant.

In general, the given coefficient may have 28 = 256 possible context vectors.

However, it is not practical to

to a small number of contexts according to the rules specified in Table 3-3 and

Table 3-4. Similar to bit plane coding in EZW, SPIHT and EBCOT algorithm, the

proposed coder includes a significance coding pass and a magnitude refinement

coding pass for a certain bit plane and each of them is specified a list of contexts.

The contexts included in the significant coding pass are listed in Table 3-3. As

shown in the table, there are 9 contexts defined based on how many and which

ighbor coefficients are significant. In addition, the mapping of the neighborhood

significance states to the contexts also depends on which subband these

coefficients are in, i.e., because different subbands have different edge properties.

The HL subband tends to be vertical oriented edge; the edge in the LH subband is

mostly horizontal; and the HH subband consists of diagonal edges.

47

Table 3-3 Contexts for the significant coding pass (if a coefficient is si
given a 1 value for the creation of the context, otherwise a 0 value; - mean

gnificant, it is
s do not care)

LH subband (also used for LL
subband) (vertically high-pass)

HL subband
(horizontally high-pass)

HH subband
(diagonally high-pass)

context ∑h ∑v ∑d context ∑h ∑v ∑d context ∑(h+v) ∑d
8 2 - - 8 - 2 - 8 - ≥3
7 1 ≥1 - 7 ≥1 1 - 7 ≥1 2
6 1 0 ≥1 6 ≥1 6 2 0 1 0
5 1 0 0 5 0 1 0 5 ≥2 1
4 0 2 - 4 2 0 - 4 1 1
3 0 1 - 3 1 0 - 3 0 1
2 0 0 ≥2 2 0 0 ≥2 2 ≥2 0
1 0 0 1 1 0 0 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0

Table 3-4 shows the three contexts used in the m itude finem cod

pa The agnitude refinement ding ss e odes e bi from c fficients

which are already significant in the previous bit planes. The contexts used are

determined by the summation of the significance states of the eight neighbors and

also depend on whether this coefficient is magnitude refined in the previous bit

planes or not. Unlike the contexts used in the significant coding pass which are

differently defined in subbands because of edge orientation, the refinement

contexts are similar among all the subbands and thus are clustered together to only

3 contexts.

xt ∑h + ∑v + ∑d First refinement for this coefficient

agn re ent ing

ss. m co pa nc th ts oe

Table 3-4 Contexts for the magnitude refinement pass

Conte

0 - false
1 ≥1 true
2 0 true

48

In E lgorithm, there are also 5 contexts designed for sign coding, which

is determ d by the significance states and the positive or negative sign symbols

of the four horizontal and vertical neighbors [6][7]. However, in the BPGC model,

sig

ding pass and 3 contexts for the

algorithm to the proposed coder, Context-based BPGC (CB-BPGC). Similar to

oder that is applied after

BCOT a

ine

n bits are simplified as uniformly distributed in order to reduce computational

complexity. No contexts are specified for sign coding, and they are output directly

to the coded bitstream without any compression.

 As described above, we modify the simple BPGC probability model in Section

3.1.1 by combining with the neighborhood contexts. Except for the 7 D2L

contexts, we add 9 contexts for the significant co

magnitude refinement coding pass. Codebooks which contain these probabilities

related to the D2L and neighborhood contexts are trained offline from large sets of

code blocks of natural image wavelet coefficients. They are then pre-saved in both

the encoder and the decoder as the prior knowledge for compression.

3.3. Context-based Bit Plane Golomb Coding

By incorporating the image context modeling techniques, we extend the BPGC

EBCOT, CB-BPGC acts as an embedded image entropy c

the wavelet transform and quantization like in the standard JPEG2000. CB-BPGC

differs from EBCOT mainly in the entropy coding Tier 1 block coding and uses

the same Post Compression Rate Distortion Optimization algorithm (PCRD) as in

EBCOT Tier 2 to organize the bitstream after embedded block coding.

49

Figure 3-5 Context based BPGC encoding a code block

The process of embedded block coding of a code block coefficients is

illustrated in Figure 3-5. As shown in the figure, the first step is to calculate the

lazy bit plane parameter L. After finding L, a procedure of block classification is

ap

finement coding pass (MAR) and then

plied in order to model the individual code blocks in a better way, which we

will discuss later. After classification, CB-BPGC starts bit plane coding from the

most significant bit plane m. The scanning order is the same as described in

EBCOT, stripe by stripe in a raster order.

According to their D2L contexts, for non lazy bit planes whose D2L context

numbers are not 0, CB-BPGC applies the three fractional bit plane coding passes,

significant coding pass (SIG), magnitude re

50

clear up coding pass (CLU), bit plane by bit plane, to get a finer embedded

bitstream. The static binary arithmetic coder then compresses all these bits with

the look-up probabilities from the codebooks.

After encoding all the non lazy bit planes, CB-BPGC simply outputs the raw

bits in the lazy bit planes. In order to guarantee fine grain scalability, the coder

fir

ok-up

pr

nt for code

bl

0, are mainly blocks in the higher frequency and

st outputs those bits with corresponding coefficients which do not become

significant in the previous bit plane (significant coding), and secondly adds the

bits from the coefficients which are already significant (refinement coding).

The decoder then simply mimics the encoding process and decodes the bits in

bit planes according to the compressed bitstream and the corresponding lo

obability. It should be pointed out that in CB-BPGC the encoding process

encodes code blocks with the lazy bit plane parameter L and the block

classification parameter σ. These parameters are not directly accessible to the

decoder. Thus, they have to be transmitted to the decoder as side information. In

our implementation, these parameters are included in the packet header bitstream

when the current code block is included in the bitstream the first time.

We will now start to discuss the block classification process. Observations in

our experiments indicate that bit probability codebook is slightly differe

ocks with different features and to assign different probability codebooks to

those classes is very important.

For example, code blocks with quite small lazy bit plane parameter L,

especially those blocks with L <

51

hi

e

 types in order to model the coefficients better. For the SIG

bl

r a given bit

pl

gher resolution subbands. They often consist of mainly values around zero, but a

few of these coefficients have very large magnitude. These blocks have very low

entropy and are called LOWE blocks. The D2L and neighborhood significance

state contexts related bit probabilities of the LOWE blocks are quite different

compared to those blocks with L ≥ 0, called SIG blocks, which contain many

coefficients with large magnitude and these coefficients have much more

exponential-like distributions. Diff rent codebooks should be applied to these

different block types.

Furthermore, both the SIG and LOWE blocks can be classified into more

specific kinds of block

ocks, three classes appear with slightly different probability codebooks. An

example of these classes is illustrated in the first row of Figure 3-6.

The three 64×64 blocks in the figure have the same most significant bit plane m

= 6 and the same lazy bit plane parameter L = 3, which means that fo

ane they have the same D2L value. But the left block is smooth, and the

coefficients with large magnitude spread over the whole block. The middle one

seems more textural, where the coefficients with large magnitude appear in small

irregular clusters and so do the coefficients with small magnitude. The right block

then contains obvious edges, where edges divide the block into smooth regions

with large magnitude coefficients or small magnitude coefficients. Because of

these distinct local properties, these block coefficients have different

neighborhood significance contexts related bit probabilities, i.e. these three classes

52

should have different codebooks.

(a) (b) (c)

Figure 3-6 Example of three types of SIG code blocks with size 64×64 (the first row,
coefficients range [-127, 1 hite color represents positive large magnitude data and
black color in m matrixes

(8×8) (the second row): (a) σ = 1.3330;

calculate the most signific x,y b-block (x, y indicate the

su

27], w
dicates negative large magnitude.) and their corresponding sub

smooth block, σ = 0.4869; (b) texture-like block,
(c) block with edge, σ = 2.2537.

If each block in Figure 3-6 is divided into smaller 8×8 sub-blocks, and we

ant bit plane subm of each su

b-block horizontal and vertical indices respectively) as shown in the second row

of Figure 3-6, we can see that the smooth block has a smaller σ, the textual block

has a median σ and the edge block has a larger σ, where σ is the standard

deviation of the subm array given by,

()21 subm submσ = −∑ (3.12) ,
,1 x y

x yN −

,
1 n m

x y
x y

subm subm
n m

=
× ∑∑ (3.13)

53

Similarly, LOWE blocks also can be divided into tw

texture-like one) according to different σ values as shown in Figure 3-7.

o classes (smooth one and

 (a) (b))

Figure 3-7 Example of two types of LOWE code blocks with size 64×64 (the first row,
coefficients range [-63, 63], white positive large magnitude data and
black color indicates ing subm matrixes

to classify all the blocks. Blocks with the same class share the same codebook

discussed in the last subsection. We can see that the classification of the blocks

according to the parameter σ is very coarse. Obviously, some misclassification

may happen. However, the classification measurement based on parameter σ is

very simple and is practical to be implemented in the image compression systems.

The proposed coder CB-BPGC is implemented with the well known Java

 color represents
 negative large magnitude.) and their correspond

(8×8) (the second row): (a) smooth block, σ = 0.9063; (b) texture-like block, σ = 1.7090

The thresholds of the parameter σ for both SIG and LOWE blocks are then trained

3.4. Experimental results

54

implementation of the JPEG2000 standard JJ2000 [11], where a different block

coding is used in CB-BPGC compared to JPEG2000. The codebooks are trained

from a large number of natural image wavelet coefficient code blocks with size

64×64. A typical set of grayscale test images of JPEG2000, such as lena, fruits,

cafe, etc, are used to evaluate the coding performance of the CB-BPGC coder

compared to JPEG2000.

pression performance at different code block

6×16 for both the JPEG2000 standard and the proposed

CB-BPGC coder. The images are encoded together with the 5 level wavelet

decomposition of the reversible 5/3 LeGall filter. A similar coding performance

comparison for the images compressed by the irreversible 9/7 Daubechies filter is

illustrated in Table 3-6.

The numbers of bits per pixel for each losslessly compressed image by

JPEG2000 and CB-BPGC are listed in both tables. The positive numbers in the

percentage column indicate the percentage of CB-BPGC better than JPEG2000

and the negative ones are the reverse.

The average compression results show that CB-BPGC is more efficient than

JPEG2000. For the reversible wavelet 5/3 filter, CB-BPGC outperforms

JPEG2000 by 0.75% for code block size 64×64, 1.40% for code block size 32×32

and 2.56% for block size 16×16 on average. For the irreversible wavelet 9/7 filter,

3.4.1. Lossless coding

Table 3-5 shows the lossless com

sizes: 64×64, 32×32 and 1

55

CB-BPGC is better than JPEG2000 by 1.06% for code block size 64×64, 1.69%

for code block size 32×32 and 2.83% for code block size 16×16 on average.

Note from the tables that the compression performance is especially improved

for those images which seem harder to compress, e.g. baboon and cafe. For those

co

% better on average

fo

mplicated texture-like blocks, e.g., the fine hair in baboon and the chaotic

buildings and tables in cafe, the weaker performance of the adaptive coder arises

from its inability to fully exploit context behaviors because of the likelihood of

greater variability between block coefficients. As such, the CB-BPGC, which

simply provides static bit probabilities according to the D2L, the neighbor

significance context and the block type parameters, has an edge over the adaptive

coder as the former is insensitive to such context variations.

In addition, JPEG2000 loses more efficiency in the case of smaller code block

size, e.g. when code block size is 64×64, CB-BPGC is 0.75

r the 5/3 filter but for block size with 16×16, CB-BPGC is 2.56% better. When a

smaller block size is used, the number of the coefficients to be encoded is less.

The adaptive coder has to restart context adaptation procedure for each code block

because of independent block coding; therefore, the number of coefficients in the

smaller code block may not be sufficient for the adaptive coder to adapt to the

block properties well before the end of encoding process.

56

Table 3-5 Comparison of the lossless compression performance for 5 level wavelet decomposition of the reversible 5/3 LeGall
DWT between JPEG2000 and CB-BPGC (bit per pixel)

64×64 32×32 16×16
Images

Resolution

J2K CB-BPGC Percentage J2K CB-BPGC Percentage J2K CB-BPGC Percentage

baboon 500×480 6.166 6.020 2.36% 6.277 6.106 2.72% 6.626 6.412 3.22%

barb 720×576 6.249 6.143 1.69% 6.367 6.231 2.13% 6.728 6.553 2.61%

fruits 640×512 4.149 4.168 -0.46% 4.245 4.229 0.38% 4.538 4.451 1.91%

goldhill 720×576 4.645 4.609 0.78% 4.741 4.674 1.42% 5.058 4.937 2.39%

lena 512×512 4.620 4.568 1.12% 4.714 4.629 1.82% 5.022 4.871 3.01%

monarch 768×512 3.845 3.894 -1.28% 3.944 3.940 0.08% 4.237 4.150 2.04%

woman 512×640 4.238 4.234 0.10% 4.329 4.306 0.54% 4.619 4.532 1.89%

café 1024×1280 5.673 5.570 1.80% 5.791 5.671 2.07% 6.148 5.966 2.95%

tool 1280×1024 4.402 4.414 -0.28% 4.509 4.473 0.79% 4.826 4.708 2.44%

actors 1280×1024 5.408 5.320 1.62% 5.522 5.409 2.05% 5.873 5.690 3.12%

average 4.940 4.894 0.75% 5.044 4.967 1.40% 5.368 5.227 2.56%

57

57

Table 3-6 Comparison of the lossless compression performance for 5 level wavelet decomposition of the irreversible 9/7
Daubechies DWT between JPEG2000 and CB-BPGC (bit per pixel)

64×64 32×32 16×16
Images

Resolution

J2K CB-BPGC Percentage J2K CB-BPGC Percentage J2K CB-BPGC Percentage

baboon 500×480 4.924 4.819 2.13% 5.024 4.895 2.56% 5.342 5.179 3.05%

barb 720×576 4.993 4.893 2.00% 5.098 4.979 2.33% 5.421 5.267 2.84%

fruits 640×512 2.606 2.609 -0.11% 2.676 2.672 0.13% 2.893 2.844 1.70%

goldhill 720×576 3.258 3.242 0.49% 3.345 3.304 1.21% 3.616 3.531 2.37%

lena 512×512 3.171 3.124 1.47% 3.253 3.180 2.24% 3.516 3.395 3.43%

monarch 768×512 2.134 2.145 -0.50% 2.503 2.189 0.85% 2.756 2.356 2.83%

woman 512×640 2.654 2.641 0.48% 2.723 2.692 1.12% 2.943 2.888 1.88%

café 1024×1280 4.313 4.244 1.60% 4.418 4.336 1.87% 4.735 4.605 2.76%

tool 1280×1024 2.829 2.800 1.02% 2.917 2.856 2.11% 3.172 3.052 3.78%

actors 1280×1024 4.071 3.988 2.04% 4.172 4.067 2.53% 4.481 4.316 3.69%

average 3.495 3.451 1.06% 3.613 3.517 1.69% 3.888 3.743 2.83%

58

58

The CB-BPGC coder which uses static coding does not have such problems. In

fact, when the code block is smaller, the CB-BPGC appears to model the

coefficients better. The estimation of the lazy bit plane parameter L will be more

accurate. For example, for blocks with edges in Figure 3-6, if the block size is

specified as 16×16, i.e., there are 8 code blocks in this 64×64 image, some of

these 16×16 blocks will be classified as smooth. These smooth 16×16 blocks with

many larger magnitude coefficients will have larger lazy bit plane parameter L

compared to those with smaller L and also smaller m (the most significant bit

plane parameter). This possibly makes the compression more efficient than that

for block size 64×64.

Table 3-7 Image Cafe (512×640) block coding performance, resolution level 0~4, 31 code
blocks (5 level wavelet reversible decomposition, block size 64×64)

 Numbers of Bit planes Byte saved

All bit planes 230 1655

Non-lazy bit planes 159 1235

Lazy bit planes 71 420

Table 3-7 gives an example for the bit plane compression results of the

coefficients in image cafe levels 0~4 decomposed subbands. For the non-lazy bit

planes, CB-BPGC removes more redundancy by using the proposed model and

therefore saves bytes in compression. The lazy bit planes performance in the table

also shows that it is more efficient to output the raw bits in these bit planes instead

of adaptive coding. This is corroborated by the coding performance comparison of

JPEG2000, JPEG2000 with lazy coding, and CB-BPGC given in Table 3-8.

As shown in Table 3-8, for most of the test images, JPEG2000 performs better

when its lazy coding mode is invoked, and CB-BPGC performs better than the

JPEG2000 with lazy coding. This is because although JPEG2000 has lazy coding

59

mode to directly output these raw bits in the lower order bit planes (fixed 4 bit

planes after the most significant bit plane), it has no systematic way to tell from

which bit plane a lazy coding is more efficient. However, in CB-BPGC, the lazy

bit plane parameter L gives an approximate measurement for that.

Table 3-8 Comparison of lossless coding performance (reversible 5 level decomposition,
block size 64×64) of JPEG2000, JPEG2000 with lazy coding and CB-BPGC

Images Size J2K J2K with lazy
coding CB-BPGC

baboon 500×480 184966 182601 180604
barb 720×576 323931 319238 318441
fruits 640×512 169941 169946 170734

goldhill 720×576 240772 239028 238908
lena 512×512 151389 150561 149689
café 1024×1280 929388 926601 912618

actors 1280×1024 886005 882280 871694

3.4.2. Lossy coding

The lossy compression performances of the test images lena, baboon, and actors

at code block sizes 64×64 and 16×16 are illustrated in Figure 3-8.

They are compressed by the irreversible Daubechies 9/7 filter at 5-level

decomposition. The figure shows that the lossy compression performance of

CB-BPGC is comparable to that of JPEG2000. The PSNR of CB-BPGC is about

0.1dB for bitrate of 1 bpp and about 0.25dB for bitrate 2bpp on average for code

block size 16×16. CB-BPGC outperforms JPEG2000 in terms of PSNR at high bit

rates, but at very low bit rates, JPEG2000 is better.

It is probably because these image wavelet transformed coefficients in the LL

subband are not near Laplacian distributed. Histogram examples of the

coefficients in the LL subband of image lena and peppers are shown in Figure 3-9.

60

(a) baboon (500×480) block size: 64×64

(b) lena (512×512) block size: 64×64

61

(c) baboon (500×480) block size: 16×16

(d) actors (1280×1024) block size: 16×16

Figure 3-8 Lossy compression performance

62

Figure 3-9 Histogram of coefficients in the LL subband of image lena 512×512 (top) and
image peppers 512×512 (down) (Daubechies 9/7 filter, 3 level decomposition)

As can be seen in the figure, the coefficients do not peak around zero value but

spread over a large range. The BPGC model which is suitable for Laplacian

distribution cannot model them well. However, the inefficient coding of the LL

subband coefficients in CB-BPGC significantly affects lossy compression because

the LL subband always holds the most important information and they almost

always have the priority to be included in the embedded bitstream. Those low

bitrate compressed images primarily contains information from the LL subband.

Another possible reason for the modest lossy performance is that the sign bits in

63

CB-BPGC are uncoded. However, there is likelihood of higher redundancy in the

sign bits of the lower frequency subbands, which is left unexploited. Therefore,

this also results in compression inefficiency at lower bit rates.

3.4.3. Complexity analysis

We briefly analyze the complexity issues of the proposed CB-BPGC coder.

Generally speaking, CB-BPGC has a lower complexity than JPEG2000’s entropy

coder EBCOT.

As mentioned in Section 3.3, CB-BPGC and EBCOT utilize a similar process

of entropy coding by separating it into block coding and post-processing bitstream

organization. They differ mainly in the entropy coding Tier 1 block coding part,

which is the most time consuming part in JPEG2000. The runtime percentages of

grey scale image lossless and lossy encoding are reported to be about 71.63% and

52.26% respectively in [30] .

Table 3-9 Average run-time (ms) comparisons for image lena and baboon (JPEG2000
Java implementation JJ2000 [11] and Java implementation of CB-BPGC)

lena (512×512) baboon (500× 480)
 lossless

compression
lossy

at 1bpp
lossless

compression
lossy

at 1bpp

JPEG2000 block coding 537.18 511.03 582.89 559.16

CB-BPGC block coding 452.55 423.36 492.81 460.18

JPEG2000 encoder 752.43 954.33 811.43 1044.87

CB-BPGC encoder 667.25 867.54 723.29 945.95

Runtime pencentage saved
for entire encoding 11.32% 9.09% 10.86% 9.47%

Table 3-9 lists the runtime profiles for grey scale images lena and baboon

encoded by both the proposed CB-BPGC coder and JPEG2000. Both lossless

64

compression and lossy compression at a typical bit rate of 1 bpp are tested. The

two encoders apply 5-level wavelet decomposition at code block size 64×64. They

are both implemented in Java language (JBuilder). The testing platform is the

IBM laptop T42 with 256M RAM 1.6G Hz. Every number in the table is the

average results of 200 runs under the same parameters.

Experimental results show that CB-BPGC consumes about 84.58% of the

runtime of EBCOT Tier 1 block coding for the lossless compression mode and

82.74% for the lossy compression at bitrate of 1 bpp. For the whole encoding

process, about 11.6% of the lossless encoding time and 9.28% of the lossy

encoding time are saved in CB-BPGC for grey scale images lena and baboon.

The possible reasons for the reduced runtime of CB-BPGC are as follows. First,

directly outputting the sign bits and bits in the lazy bit planes reduces some burden

of the context modeling in CB-BPGC. As shown in Table 3-7 cafe example, for

the levels 0-4 code blocks, 30.9% of the bit planes are directly transmitted lazy bit

planes (D2L ≤ 3). The complexity for these bit planes is obviously reduced

relative to adaptive binary arithmetic encoding in JPEG2000. In addition, we can

further reduce the complexity for the lazy bit planes by letting more bit planes be

lazy bit planes, for example, bit planes with D2L ≤ -1, where 57.8% of the bit

planes in the cafe example can be directly output. Experiments also show that the

average lossless coding performance is still better than EBCOT by 0.73% and

2.49% for block sizes of 64×64 and 16×16 respectively. This tells us that by

sacrificing a little coding efficiency, computation complexity could be much

reduced for these bit planes.

Second, the static arithmetic coder is always simpler and of lower computational

complexity than the adaptive arithmetic coders by avoiding the probability

65

adaptive procedure. A recent arithmetic coding complexity scheme [31] shows

that the encoding time of a static arithmetic coder is about 58.6% of the MQ coder.

Since a static arithmetic coder is used in CB-BPGC while EBCOT uses the

adaptive MQ coder, a reduction of computation complexity of CB-PBGC is also

achieved.

Additionally, the inclusion of CB-BPGC’s special processing steps, the

calculation of the lazy bit plane parameter and the code block classification have

negligible influence on complexity increase. The lazy bit plane parameter

calculation only needs the absolute sum of the block coefficients and the number

of the block coefficients. In the process of block classfication, the calculation of

the sub-blocks’ most significant bit plane numbers can be carried out when the

sum A is determined. The classification is then simply by several threshold

comparison.

3.5. Discussion

In this chapter, we present the proposed CB-BPGC coder for scalable image

compression based on the statistical characteristics of the wavelet coefficients. By

combining the embedded bit plane coder BPGC with context modeling techniques,

CB-BPGC outperforms JPEG2000 for the lossless compression, and obtains

comparable lossy compression performance. In addition, computational

complexity of the CB-BPGC is lower than JPEG2000 and the complexity of

CB-BPGC can be further reduced by reducing the number of D2L contexts.

Generally, lossless compression benefits significantly from efficient lazy bit

plane coding. Coefficients from the reversible wavelet filter contains low order bit

planes full of uniformly distributed bit symbols, which contain the detailed

66

information and are reserved in order to guarantee losslessly reconstruction. For

images with complicated textures, these bit planes consume a large portion of the

codestream, where the bit symbols 0 and 1 have probabilities of 1/2 and they are

nearly uncompressible. Compared to the method of adaptive arithmetic coding of

these symbols, which blindly adapts to these equal probable symbols, determining

the bit plane parameter L according to the block statistical property and then

directly transmitting these raw bits in the lazy bit planes will make the encoding

process more simple and efficient.

However, for lossy compression, CB-BPGC only provides modest

improvement compared to JPEG2000. It is well known that higher order block

coefficients bit planes have skew probabilities, i.e. most of the symbols are 0 and

they are much spatially correlated. Hence, bits in those bit planes have lower

entropy and are more compressible. The adaptive coding methods are then

suitable for compressing them. The proposed CB-BPGC probability model for

those bit planes carry out compression from another perspective by assigning

fixed look-up probabilities from the bit plane probability codebooks. However,

because of the inefficient coding of the LL band coefficients, whose codestream

often has the priority to be included in the final embedded bitstream, CB-BPGC

achieves only comparable lossy compression performance.

As the modeling and ordering of the block coefficients is very important in

image compression systems, there are also possible ways to improve compression

of the CB-BPGC algorithm. As discussed in Section 3.4.1, CB-BPGC performs

much better for those code blocks with smaller block sizes where the lazy bit

plane parameter and the assigned bit probabilities more closely match the real

situations. Larger sub-blocks require less side information but the static bit

67

probability model in CB-BPGC may lose some efficiency because of the variation

of the local coefficients distribution properties. On the other hand, smaller

sub-blocks are more accurately modeled by CB-BPGC, but require more side

information to accompany all the smaller sub-blocks. Thus there is a trade-off that

would yield a suitable configuration to achieve the best compression performance.

The neighborhood significant state context modeling can also be changed in

CB-BPGC. The adjacent coefficients context modeling in the current JPEG2000

and CB-BPGC are the most complicated and time-consuming parts of the

encoding process. A novel modeling and ordering of the wavelet coefficients

method is proposed in [16]. The neighbor correlations there are modeled by the

so-called context template which is very simple and reduces lots of computational

complexity. This context modeling technique can be easily implemented in the

CB-BPGC framework.

68

Chapter 4. ERROR RESILIENCE FOR IMAGE

TRANSMISSION

Because of the increasing interest in robust image transmission over channels,

such as wireless networks and the Internet, error resilience in image

communications is becoming more and more important [35]. These unreliable

wire or wireless channels may inject errors into the transmitted bitstream.

However, a loss or damage of packets in the image delivery may lead to

reconstructed images fully or severely damaged. Sometimes even very few errors

can cause unpleasant block or ripple effects on the decoded images as shown in

Figure 4-1.

In this chapter, we first review some of the error resilient techniques designed at

the source coding level, including the error resilience tools used in the standard

JPEG2000. Then we present the error resilient techniques of the proposed coder

CB-BPGC. A comparison of the error resilient performance between the

JPEG2000 and the CB-BPGC is also included in this chapter.

4.1. Error resilience overview

Error resilient techniques have been studied for a long time. Methods such as

Automatic Repeat Request (ARQ) allow requests for retransmission of the lost or

damaged packages if dialogue between the source and the destination is possible.

However, for most real-time applications, such mechanisms often bring

unbearable delay or sometimes the dialogue between them is impractical to be set

up, such as broadcast applications. Other channel coding methods such as forward

69

error correction (FEC) can reduce effects of transmission errors but with an

increasing complexity, bandwidth or reconstruction delay. Therefore, error

resilient techniques at the source coding level are receiving greater attention and

are very helpful in improving robust transmission [34].

Figure 4-1 Corrupted images by channel BER 3×10-4(left: encoded by DCT 8×8 block;
right: Daubechies 9/7 DWT, block size 64×64)

Error resilient techniques used in image transmission at the source coding level

attempt to generate a compressed bitstream which is not vulnerable to channel

errors and have the ability of accurate self-detecting and correcting these errors.

They include techniques of resynchronization, error resilient entropy coding, e.g.

fixed length coding and reversible variable length codes, and some other error

correction techniques.

4.1.1. Resynchronization

The most popular and effective error resilient scheme is resynchronization. Almost

all the image coding systems featured with error resilience use these techniques.

Resynchronization tools attempt to establish the synchronization between the

encoder and the decoder when the compressed bitstream is corrupted by

transmission errors. They localize the error positions and prevent error

propagation. The data between a synchronization point before the error position

and the next synchronization point are discarded [35].

70

One common solution for resynchronization is to insert some unique markers to

the encoded bitstreams as boundaries for different layers, different spatial areas, or

different bit planes. It is widely used in image compression systems, such as

JPEG2000. However, compression is sacrificed a little because these markers used

for resynchronization involve additional redundant information.

There are also some schemes which do not need markers in the compressed

bitstream but organize the bitstream in another way, such as the error resilient

entropy code (EREC) described in [33], which is designed for variable length

coded block coding. The idea of the EREC algorithm is to reorganize a group of

variable length blocks to constant-length slots. The EREC bitstream is composed

of N slots, each of length Si, and the decoder knows the parameters N and Si before

decoding. EREC greatly reduces error propagation in DCT based image coding

because of the use of fixed length slots. For these DCT blocks, the lower

frequency coefficients are included in the beginning part of the slot. It is obvious

that in order to increase the quality of the reconstructed image, it is preferable that

more important information, such as the lower frequency coefficients, can be

recovered as early as possible. As such it is advantageous to place the lower

frequency coefficients at the beginning of the slot so that when errors occur of

latter parts of a slot the crucial information has already been received.

However, the EREC scheme needs a complicated algorithm to reorganize the

bitstream into constant length slots and the organized bitstream cannot satisfy the

scalability requirement, which is not as convenient as schemes that involve the

addition of resynchronization markers.

71

4.1.2. Variable length coding algorithms resilient to errors

Variable length coding algorithms are widely used in image compression systems

because of their efficiency in terms of coding performance compared to fixed

length coding strategies. However, unlike the fixed length entropy coder, which

encodes every symbol with a fixed length code and enables the decoder to self

synchronize when errors occur, the variable length coded bitstream are very

sensitive to channel errors and it is always hard to detect the position of errors if

no channel error detection methods are used. These errors can then propagate into

the following long bitstream sequences and corrupt decoding of the following

symbols. Much effort has therefore been spent on designing variable length

coding algorithms which has the ability to detect errors and obtain self

synchronization.

The reversible variable length coding strategy (RVLC) is one of the approaches.

An example of RVLC used for robust image and video transmission is presented

in [36], where the codec has the characteristic of being decodable in two

directions. The RVLC technique is also included in the MPEG-4 video codec to

encode the DCT coefficients of macroblocks corresponding to texture information

[37]. Whenever an error is detected in the bitstream, the decoder starts to decode

from the end of the bitstream in a reverse direction to continue reconstruction.

Hence, robustness is enhanced in the presence of transmission bit error. In

addition, these RVLC schemes also involve little or no efficiency loss relative to

corresponding non-reversible variable length codes.

There is also a fast synchronization Huffman coding algorithm presented in [38].

The so called suffix-rich Huffman code has a reduced length of error propagation

compared to traditional Huffman code. It is thus better self-synchronized and

72

more resilient to channel errors.

The most popular arithmetic coding algorithm can also be modified with the

ability for error detection. The algorithm in [39] presents an approach to introduce

a forbidden symbol as an extra alphabet in arithmetic coding and assigned the

forbidden symbol with a probability similar to the source alphabets. Apparently,

the forbidden symbol is not encoded as an input symbol in the encoding process

but is very effective in the decoding procedure. If the bitstream is corrupted, the

arithmetic decoding procedure may enter into the interval of the forbidden symbol,

i.e. the current decoded symbol is the forbidden symbol, and then an error is

detected. The practice of including the extra forbidden symbol will add

redundancy to the coding source. But the probability assigned to the forbidden

symbol can be adjusted to balance the error detection performance and the

compression efficiency it affects. This method is also included in the latest

standard JPWL (JPEG2000 for wireless applications) [40] to make the MQ coder

more error resilient.

4.1.3. Error correction

Except for the techniques mentioned above which refer to making the compressed

bitstream more resilient to errors, there are also some other ways to help improve

the quality of the corrupted images, which we call error correction or error

concealment techniques. Error correction works as a post-processing procedure

after the damaged bitstream is decoded into corrupted images or works together

with the decoding procedure when the corrupted images are under reconstruction.

One of the most commonly used methods is the spatial interpolation. In this

technique, the lost or damaged coefficients and blocks are interpolated or

73

predicted from the neighboring correctly decoded symbols [35]. Spatial

interpolation can be carried out both in the pixel domain, which means the

reconstructed images from the corrupted bitstream, and the frequency domain,

which refers to the DCT coefficients or the wavelet subbands coefficients.

However, the interpolation will often result in smooth or blur areas and limit the

reconstruction of the detailed information in the images, such as edges. In addition,

sometimes it will lead to block artifacts, especially for interpolation carried out in

the frequency domain, which greatly reduces the image quality.

In order to recover the image details like edges, there are some error

concealment schemes based on edge directed filters for wavelet based image

compression, such as in [43]. The annoying ripples around the edges in the

corrupted images can be removed by the edge directed filter and it results in more

pleasant subjective quality images.

In addition to techniques which conduct error correction on coefficients by

interpolation or edge filter, schemes based on the prediction of bits in the

coefficient bit planes have also been explored. The method in [41] proposes an

approach to improve the error resilient ability of JPEG2000. It recovers damaged

wavelet coefficient bit plane symbols according to its corresponding cross

subbands undamaged coefficient bit planes.

4.2. Error resilience of JPEG2000

As we introduced in Section 2.7, entropy coding in JPEG2000 is achieved by a

context based adaptive binary arithmetic bit plane coder (the MQ coder). The MQ

coder is a variable length coding method and its encoding process is highly

dependant on the state of the coded symbols. A single bit error in the arithmetic

74

coded bitstream can result in erroneous reconstruction. So, it is very important to

maintain synchronization between the encoder and the decoder. To solve this

problem, several error resilient tools are provided in JPEG2000.

The error resilience tools adopted in JPEG2000 can be mainly classified into

two types, one is error resilient techniques at the packet level and the other is at

the entropy coding level [7][34].

In JPEG2000, wavelet subband coefficients are divided into code blocks with

certain block size and these code blocks are encoded independently. This data

partitioning strategy provides the possibility to prevent propagating errors

encountered in a certain code block bitstream to the process of reconstructing

other code blocks.

The coded block bitstreams are then organized hierarchically in a structure of

packets by subbands, bit planes and blocks according to spatial or quality

scalability constraint. Segments from various blocks are collected together in a

packet to form the packet body part and preceded by a resynchronization packet

header where the header consist of unique markers that never included in the

packet bodies. The use of error resilient packet header markers enables the

decoder to reestablish block synchronization after bit errors.

JPEG2000 also provides a mechanism where the packet headers can be

extracted from every packet and stored in the tile header or the main header,

which contain the most important information, such as code block truncation

points, bit plane coding parameters and so on. These headers can be transmitted

via a more reliable channel in an error free fashion.

The error resilience tools at the entropy coding level of JPEG2000 includes

termination coding for each coding pass, reset of contexts, bypass coding and bit

75

plane coding segment markers at the expense of small losses in compression

efficiency. These mechanisms are enabled by mode variation, RESET, CAUSAL,

RESTART, SEGMARK, ERTERM and BYPASS. Mode variations are controlled

by flags that are included inside headers.

The RESET mode is used to reset the context states, i.e. the probabilities used

in the MQ coder, to their initial values at the end of each coding pass. When the

RESET is switched off, initialization occurs only prior to the first coding pass of

each code block. The reset of the context states may prevent the error propagation

by reducing context dependency between coding passes.

The CAUSAL option is defined to allow parallel processing of coding passes

and makes the coefficient significant states updating within a single stripe. Thus in

this mode, the coefficients within a given stripe are encoded without depending on

the values of future stripes.

The RESTART switch makes the MQ coder terminate at the end of each coding

pass and restart coding at the next coding pass, which means that every coding

pass has separately MQ encoded bitstream segment. The error occurring in the

current bit plane may not affect the next coding pass decoding if this mode is

specified and the length of each segment is included in the headers. When this

mode is switched off, the MQ coder terminates coding only at the end of the

current code block.

76

Figure 4-2 JPEG2000 Segment marker for each bit plane

The goal of the SEGMARK mode is to provide segment separators between bit

planes. A special four symbol code, “1010”, is inserted at the end of each clear up

coding pass to enhance error resilience as illustrated in Figure 4-2. Whenever the

special segment separator is wrongly decoded, it indicates that the current bit

plane is corrupted by errors and should be discarded.

There is also a very important mode called ERTERM. When the ERTERM is

utilized, the encoder adopts a predictable termination policy for each coded

segment. Then, the decoder can detect an error has occurred in the arithmetically

coded bitsteam segment.

The BYPASS mode is to provide reduced complexity at high bitrates by

bypassing coding bits in the significant propagation coding passes and the

magnitude refinement coding passes after the first 10 coding passes, i.e. from the

(m-4)th bit plane to the least significant bit plane. These binary symbols are

outputted in raw bits.

When the decoder detects errors in a certain bit plane of a code block,

JPEG2000 then replaces the current and the following bit planes of the current

code block by zeros to prevent error propagation. Apparently, every error resilient

tool used here makes the bitstream more resilient to errors by inserting additional

information in the bitstream, i.e. at the expense of loss of coding efficiency.

77

4.3. CB-BPGC error resilience

In this section, we are going to discuss the error resilient tools adopted in the

proposed coder CB-BPGC. Most of the tools used here are based on the

JPEG2000 error resilient tools at both the packet level and the entropy coding

level. However, some modifications are made here.

4.3.1. Synchronization

Similar to JPEG2000, CB-BPGC hierarchically organizes the coded bitstreams by

subbands, blocks and bit planes. The same resynchronization markers at the

packet level are set up to prevent error propagation.

Figure 4-3 CB-BPGC segment markers for bit planes

Figure 4-3 illustrates the error resilience strategies used in CB-BPGC entropy

coder for non lazy bit plane coding where three fractional bit plane coding passes

are included. The static arithmetic coder terminates at each fractional bit plane

coding pass to stop error propagation. The independent coding of the fractional bit

planes also enables the so-called bit plane partial decoding which will be

discussed in the next section.

A segment marker “0101” is inserted after each clear up coding pass which is

also the end of the current bit plane. A segment marker “01” is also added when

78

each significant propagation coding pass and magnitude refinement coding pass is

done. Whenever a mistake appears in decoding these markers, an error is detected.

For the lazy bit planes, because the bits in the bit planes are directly output in

two passes, namely, the significant pass and the refinement pass, there is no need

to insert a segment marker for every coding pass. Only a segment marker “01” is

added after each bit plane. Therefore no extra redundancy for resynchronization is

added in CB-BPGC for error resilience.

4.3.2. Bit plane partial decoding

Although the error resilient tools specified in JPEG2000 provide a coded

bitstream resilient to errors, some improvements can be made. The authors in [44]

point out that there are dependencies among the coding passes for a certain code

block, where partial decoding of the corrupted bitstream can be added to improve

the error resilience performance. For example, if an error is detected in the current

magnitude refinement coding pass, instead of setting the current and the remaining

bit planes to zeros we can leave the decoded significant propagation coding pass

bits.

The basic idea of partial decoding is to decode as much as possible of the

corrupted bitstream before discarding them. Because CB-BPGC encoded each

coding pass in an independent way, it can be conveniently carried out with the

idea of partial decoding.

The mechanism used in the CB-BPGC decoder for partial decoding of the bit

planes of the error blocks for non-lazy bit planes is illustrated in Figure 4-4. We

denote in the figure the significant propagation coding pass as coding pass 1; the

magnitude refinement coding pass as coding pass 2; and the clear up coding pass

79

as coding pass 3.

(a) case 1

(b) case 2

(c) case 3

Figure 4-4 CB-BPGC partial decoding for non-lazy bit planes (coding pass 1: significant
propagation coding pass; coding pass 2: magnitude refinement coding pass; coding pass 3:

clear up coding pass. “x” means error corruption.)

 As indicated in the Figure 4-4, there are three cases based on which part of

bitstream is corrupted. The partial decoding of each case is as follows,

(a) Case 1: error detected in coding pass 1, no further coding passes 1 and 3

can be decoded, but coding pass 2 in the current bit plane can proceed.

(b) Case 2: error detected in coding pass 2, no further coding pass 2 can be

decoded, but coding passes 1 and 3 in the current and following bit planes

can proceed.

(c) Case 3: error detected in coding pass 3, no further coding passes 1, 2 and 3

can be decoded.

The partial decoding of lazy bit planes is illustrated in Figure 4-5. We denote

the significant coding pass as coding pass 1 and the refinement coding pass as

80

coding pass 2.

(a) case 1

(b) case 2

Figure 4-5 CB-BPGC partial decoding for lazy bit planes (coding pass 1: significant
propagation coding pass; coding pass 2: magnitude refinement coding pass. “x” means

error corruption.)

 As shown in the figure, there are two cases which are also classified according

to which part of bitstream is attacked.

(a) Case 1: error in coding pass 1, coding pass 2 in the current bit plane can

proceed, but no further coding passes following cannot be decoded.

(b) Case 2: error in coding pass 2, no significant influence on other coding

passes, and the coding pass itself can also be reserved because only the bit

corrupted by error is wrongly decoded.

Note that the error resilient PSNR gain reported in [44] is based on the

assumption that there is an external error detection mechanism to tell the decoder

which byte in a certain fractional bit plane is corrupted by errors, which leads to a

more complicated partial decoding applied on the fractional bit plane level instead

of the bit plane level, i.e. additional information outside of the JPEG2000 decoder

helps to guide the decoder to decode much more corrupted coded bitstream. Our

test results show that by only using the internal error detection method in

CB-BPGC, substantial PSNR improvement can be obtained when the image is

81

transmitted through a Rayleigh channel.

4.4. Experimental results

The proposed error resilience tools used in CB-BPGC which is described above

are evaluated by the set of natural testing images mentioned in Chapter 3. The

performance result is compared to the JPEG2000 standard with the entropy coding

level error resilient mode RESET, CAUSAL, RESTART, ERTERM, SEGMARK

and BYPASS switched on. The compressed image bitsteam transmission is

simulated through a wireless Rayleigh fading channel. The results provided in this

section are obtained from 500 times realizations over the simulated channel with a

given BER for each image in the test set.

Figure 4-6 Comparison of error resilience performance between JPEG2000 (solid lines)
and CB-BPGC (dashed lines) at channel BER 10-4, 10-3, and 6×10-3

Figure 4-6 shows the comparison of average PSNR performance between the

CB-BPGC coder and the standard JPEG2000 at channel BER 10-4, 10-3 and 6×10-3

for different bit rates.

Both the encoders are set with 5-level Daubechies 9/7 wavelet decomposition,

82

bitstream with resolution-layer-component-position progression order

organization, block size: 64×64. For both bitstreams, LL subband layers are

protected from error corruption, where the most important information is located

in the embedded stream and often assumed to be transmitted through a more

reliable channel.

As shown in Figure 4-6, CB-BPGC is more resilient to errors, especially when

the channel error bitrate is higher. The improved PSNRs averaged for all the bit

rates are 0.731dB, 1.514dB and 2.097dB for BER at 10-4, 10-3, and 6×10-3

respectively.

Figure 4-7 PSNR comparison for channel error free and channel BER at 10-3 for image
lena 512×512 (left) and tools 1280×1024 (right)

Figure 4-7 gives a further example of the average PSNR comparison of the

error free and error corrupted decoding at BER of 10-3 for images lena and tools at

several bit rates with code block size 64×64. As shown in the figure, the PSNR

improvement of the CB-BPGC is 1.15 dB for image lena, 2.25 dB for image tools

at bit rate 0.5 bpp and can be as much as 1.70 dB for image lena, 2.79 dB for

image tools at bit rate 3 bpp.

Subjective results of some of the images, like lena, bike, peppers, woman, etc,

83

at BER of 10-3 and 1 bpp are shown in Figure 4-8. Comparing the two

reconstructed images, we can see that CB-BPGC gains not only in better PSNR

performance in dBs, but also a substantial improvement of subjective visual effect.

(a) Error free lena (256×256) (b) JPEG2000 (27.002 dB) (c) CB-BPGC (30.957 dB)

(d) Error free bike (256×256) (e) JPEG2000 (22.172 dB) (f) CB-BPGC (25.901 dB)

(g) Error free peppers (256×256) (h) JPEG2000 (27.251 dB) (i) CB-BPGC (29.254 dB)

84

(j) Error free actors (256×204) (k) JPEG2000 (26.726 dB) (l) CB-BPGC (28.788 dB)

(m) Error free goldhill (256×204) (n) JPEG2000 (27.475 dB) (o) CB-BPGC (30.454 dB)

(p) Error free woman (256×320) (q) JPEG2000 (27.730 dB) (r) CB-BPGC (35.075 dB)

 Figure 4-8 Subjective results of image lena (a~c), bike (d~f), peppers (g~i), actors (j~l),
goldhill (m~o) and woman (p~r) at bit rate 1 bpp and channel BER 10-3

The improvement in error resilience performance of CB-BPGC is not only

gained by adding the partial bit plane decoding which is used to decode the

corrupted codestream as much as possible, but also by more efficient compression.

As the PCRD algorithm organizes the coded bitstream according to the

contribution of reducing distortion, i.e., in a decreasing order, more efficient

compression enables CB-BPGC to consume less bytes to embed the coded

85

bitstream while still providing the equivalent distortion reduction. Hence, when a

transmission error occurs, it corrupts the less important bitstream of CB-BPGC

and the PSNR result is better. Additionally, directly outputting lazy bit planes also

improves error resilience performance. In spite of errors that occur in the lazy bit

plane, we can further decode the remaining coefficients because the errors are

isolated to certain coefficients instead of propagating to the others.

4.5. Discussion

In this chapter, we present error resilient tools used in the proposed coder

CB-BPGC. Compared to the JPEG2000 standard, CB-BPGC is more resilient to

transmission errors when simulated over the wireless Rayleigh fading channel.

The improved average PSNRs at bit rate 1bpp are 0.918dB, 1.674dB and 2.471dB

for channel BER at 10-4, 10-3, and 6×10-3 respectively.

 The improvement of error resilient performance in CB-BPGC is obtained from

efficient scalable coding, bit plane partial decoding and also from direct

transmission of the lazy bit planes. Note that in CB-BPGC each bit in the bit plane

is entropy coded by a look-up probability from the codebook. When the

compressed bitstream is corrupted by the channel errors, the decoder loses

synchronization with the encoder. It is then possible for the decoder to reconstruct

the corrupted symbols by utilizing the bit probabilities look-up from the codebook

to estimate the lost bits. However, the estimation process should be carefully

designed in order to avoid artifacts.

86

Chapter 5. CONCLUSION

Wavelet based image compression schemes are widely used in scalable image

coding, In this thesis, we present the proposed wavelet based scalable image

entropy coder, namely, Context-based Bit Plane Golomb Coding (CB-BPGC). By

utilizing the embedded bit plane coding algorithm, bit plane Golomb coding

(BPGC) together with the image context modeling techniques, CB-BPGC

explores both the global and local statistical characteristics of the wavelet

coefficients blocks

CB-BPGC outperforms JPEG2000 in terms of compression performance.

Experimental results show that the proposed coder CB-BPGC achieves a 0.75%

better lossless performance for 5-level 5/3 wavelet decomposition at block size

64×64 and 2.56% at block size 16×16. A PSNR improvement of lossy

compression performance is also achieved except at very low bit rates.

Besides, because of the partial decoding, the direct transmission of lazy bit

planes and the better compression ratio which may lead to corruptions to the less

important bitstreams, CB-BPGC is more resilient to transmission errors compared

to the JPEG2000 standard. The improved PSNR average performance for all the

bit rates is 0.731dB, 1.514dB and 2.097dB for BER at 10-4, 10-3, and 6×10-3

respectively. The subjective performance of the reconstructed images by

CB-BPGC is also better than those of JPEG2000.

Although the proposed CB-BPGC coder outperforms JPEG2000 on both the

compression ratio and the error resilient performance, there are still several issues

to be explored in the future.

87

First of all, as the distribution of the LL subband code block coefficients is not

near Laplacian, the current CB-BPGC block coding algorithm performs not very

good on those code blocks, thus significantly affecting the lossy compression

performance. Better methods to encode the LL subband coefficients and also the

sign bits should be further explored in order to improve lossy compression

performance.

Second, since complexity in some applications is as important as the

compression performance, it is possible to apply simpler neighborhood context

modeling techniques in CB-BPGC to reduce complexity. The current

neighborhood significant state context modeling process is the most

time-consuming part in CB-BPGC.

Additionally, the error resilient performance in CB-BPGC may also be

improved by including an estimation process which estimates the lost bits from

the probability codebooks when the bitstream is corrupted by channel errors.

88

BIBLIOGRAPHY

[1] J. Shapiro, “Embedded image coding using zerotrees of wavelet coefficients”,

IEEE Trans. Signal Processing, vol. 41, pp. 3445-3462, 1993.

[2] A. Said, W. Pearlman, “A new, fast and efficient image codec based on set

partitioning in hierarchical trees”, IEEE Trans. Circuits Syst. Video Technol.,

vol.6, pp.243-250, 1996.

[3] E. Ordentlich, M. Weinberger, G. Seroussi, “A low-complexity modeling

approach for embedded coding of wavelet coefficients”, Proc. DCC’98,

Snowbird, March 1998.

[4] J. Li and S. Lei, “An embedded still image coder with rate-distortion

optimization”, IEEE Trans. Image Processing, vol. 8, pp. 913-924, July, 1999.

[5] M. J. Weinberger and et at, “The LOCO-1 lossless image compression

algorithm: principles and standardization into JPEG-LS”, IEEE Tran. Image

Processing, vol. 9, pp. 1309-1324, Aug. 2000.

[6] D. Taubman, “High performance scalable image compression with EBCOT”,

IEEE Trans. Image Processing, vol.9, pp.1158-1170, 2000.

[7] D. Taubman, M. W.Marcellin, JPEG2000 Image Compression Fundamentals,

Standard and Practice, Kluwer Academic Publishers, Boston / Dordrecht /

London, 2002.

[8] ISO/IEC 15444-4:2000 Information technology-JPEG2000 image coding

system-Part 1: Core coding system, 2000.

[9] ISO/IEC 14492 and ITU-T Recommendation T. 88. JBIG2 bi-level image

compression standard, 2000.

89

[10] Diego Santa-Cruz, Touradj Ebrahimi, “An analytical study of JPEG2000

functionalities”, IEEE Int. Conf. on Image Processing, vol. 2, pp. 49-52, 2000.

[11] http://jj2000.epfl.ch/

[12] A. Islam, W. A. Pearlman, “Set partitioning sub-block coding (SPECK)”,

ISO/IEC/JTC1/SC29, WG1 N1191, July, 1999.

[13] W. A. Pearlman, et al. “Efficient, low-complexity image coding with a

set-partitioning embedded block coder”, IEEE Tran. on Circuits and Systems

for Video Tech., vol. 14, no.11, Nov. 2004.

[14] S. T, Hsiang, “Highly scalable subband/wavelet image and video coding”,

Ph.D. dissertation, Electrical, Computer and Systems Engineering Dept.,

Rensselaer Polytechnic Inst., NY, 2002.

[15] S. T. Hsiang, J. W. Woods, “Embedded image coding using zeroblocks of

subband/wavelet coefficients and context modeling”, IEEE Int. Conf. Circuits

and Systems (ISCAS), vol.3, pp. 662-665, May, 2000.

[16] K. Peng, J. C. Kieffer, “Embedded image compression based on wavelet

pixel classification and sorting”, IEEE Trans. Image Processing, vol. 13, no. 8,

pp. 1011-1017, Aug. 2004.

[17] C. E. Shannon, “A mathematical theory of communication”, Bell Sys. Tech.

Journal, vol. 27, pp. 379-423 and 623-656, July and October, 1948

[18] I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic coding for data

compression”, Commun. ACM, vol. 30, pp. 520-540, June 1987.

[19] G. G. Langdon, J. Rissanen, “Compression of black-white images with

arithmetic coding”, IEEE Trans. Communications, vol. 29, pp. 858-867, 1981.

[20] A. Graps, “An introduction to wavelets”, IEEE computational science and

engineering, vol. 2, no. 2, Jun. 1995.

90

http://jj2000.epfl.ch/

[21] http://www.wavelet.org/tutorial/

[22] K. Sayood, Introduction to data compression, Morgan Kaufmann Publishers,

San Francisco, CA, 2000.

[23] David F. Walnut, An introduction to wavelet analysis, Birkhauser, Boston,

2002.

[24] I. H. Witten, Radford M. Neal, and J. G. Cleary, “Arithmetic coding for data

compression”, Communication of the ACM, vol. 30, no. 6, pp. 520-540, 1987.

[25] R.Yu, C.C.Ko, S.Rahardja, X.Lin, “Bit-plane Golomb coding for sources

with Laplacian distributions”, IEEE Int. Conf. Accoustics, Speech, and Singal

Processing, 2003.

[26] R.Yu, X.Lin, S.Rahardja, H.Huang, “Technical Description of I2R's Proposal

for MPEG-4 Audio Scalable Lossless Coding (SLS): Advanced Audio Zip

(AAZ)”, ISO/IEC JTC1/SC29/WG11, M10035, Oct. 2003.

[27] R.Yu, X.Lin, S.Rahardja, H.Huang, “Proposed core experiment for

improving coding efficiency in MPEG-4 audio scalable coding”, ISO/IEC

JTC1/SC29/WG11, M10683, Mar. 2004.

[28] J. Li and R. M. Gray, “Context-based multiscale classification of document

images using wavelet coefficient distributions,” IEEE Trans. Image

Processing, vol. 9, pp.1604-1616, Sept. 2000.

[29] M. Vetterli, J. Kovacevic, Wavelets and subband coding, Prentice Hall Inc.,

1995.

[30] C. Lian, K. Chen, H. Chen, L. Chen, “Analysis and architecture design of

block-coding engine for EBCOT in JPEG2000”, IEEE Trans. Circuits Syst.

Video Technol., vol.13, pp.219-230, 2003.

91

http://www.wavelet.org/tutorial/

[31] A.said, “Comparative analysis of arithmetic coding computational

complexity” HP Labs Tech. Reports, HPL-2004-75, 2004.

[32] A.said, “Introduction to arithmetic coding theory and practice”, HP Labs

Tech. Reports, HPL-2004-76, 2004.

[33] David W. Redmill, Nick G. Kingsbury, “The EREC: an error-resilent

techniques for coding variable-length blocks of data”, IEEE Trans. Image

Processing, vol. 5, no. 4, pp. 565-574, Apr. 1996.

[34] I. moccagatta, et al, “Error-resilient coding in JPEG2000 and MPEG-4”,

IEEE Journ. Selected areas in Communications, vol. 18, no, 6, Jun. 2000.

[35] Yao Wang and Qin-Fan Zhu, “Error control and concealment for video

communication: a review”, Proceedings of the IEEE, vol. 86, no. 5, pp.

974-997, May 1998

[36] Jiangtao Wen, John Villasenor, “Reversible Variable Length Codes for

Efficient and Robust Image and Video Coding”, IEEE Proc. Data

Compression Conference, pp. 471-480, Mar. 1998

[37] ISO/IEC JTC1/SC29/WG11/N3908, MPEG-4 video verification model

version 18.0, Jan. 2001.

[38] Te-Chung Yang, et al, “Error resilient image coding using low overhead

entropy coder and subband dependency”, IEEE Int. Sym. Circuits and Systems

(ISCAS), 1999.

[39] JPEG2000 image coding system - Part 11: Wireless JPEG2000 - Committee

Draft, ISO/IEC JTC1/SC29/WG1 N3386, 2004.

[40] C. Boyd, J. Cleary, S. Irvine, I. Rinsma-Melchert, I. Witten, “Integrating

error detection into arithmetic coding”, IEEE Trans. Commun., vol. 45, no. 1,

pp. 1-3, Jan. 1997.

92

[41] Pei-Jun Lee, Liang-Gee Chen, “Bit-plane error recovery via cross subband

for image transmission in JPEG2000”, IEEE Int. Conf. on Multimedia and

Expo, vol.1, pp.149-152, August 2002.

[42] Liu Jieyu, et al, “An efficient error concealment method for JPEG2000

image transmission”, IEEE Int. Conf. Accoustics, Speech, and Singal

Processing, 2004.

[43] Shuiming Ye, Qibin Sun, Ee-Chien Chang, “Edge directed filter based error

concealment for wavelet based image”, IEEE Int. Conf. on Image Processing,

2004.

[44] A. Bilgin, Z. Wu, M.W.Marcellin, “Decompression of corrupt JPEG2000

codestreams”, Proc. Data Compression Conference 2003, pp 123-132.

93

	ACKNOWLEDGEMENTS
	LIST OF PUBLICATIONS
	T
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Background
	A general image compression system
	Image transmission over noisy channels

	Motivation and objective
	Organization of the thesis

	WAVELET-BASED SCALABLE IMAGE CODING
	Scalability
	Wavelet transform
	Quantization
	Rate distortion theory
	Scalar quantization

	Bit plane coding
	Entropy coding
	Entropy and compression
	Arithmetic coding

	Scalable image coding examples
	EZW
	SPIHT
	EBCOT

	JPEG2000

	CONTEXT-BASED BIT PLANE GOLOMB CODING
	Bit Plane Golomb Coding
	BPGC Algorithm
	BPGC used in AAZ
	Using BPGC in scalable image coding

	Context modeling
	Distance to lazy bit plane
	Neighborhood significant states

	Context-based Bit Plane Golomb Coding
	Experimental results
	Lossless coding
	Lossy coding
	Complexity analysis

	Discussion

	ERROR RESILIENCE FOR IMAGE TRANSMISSION
	Error resilience overview
	Resynchronization
	Variable length coding algorithms resilient to errors
	Error correction

	Error resilience of JPEG2000
	CB-BPGC error resilience
	Synchronization
	Bit plane partial decoding

	Experimental results
	Discussion

	CONCLUSION
	BIBLIOGRAPHY

