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SUMMARY 

With the increasing use of digital images and delivering those images over 

networks, scalable image compression becomes a very important technique. It not 

only saves storage space and network transmission bandwidth, but also provides 

rich functionalities such as resolution scalability, fidelity scalability and 

progressive transmission. Wavelet based image coding schemes such as the 

state-of-the-art image compression standard JPEG2000 are very attractive for 

scalable image coding. 

In this thesis, we present the proposed wavelet-based coder, Context-based Bit 

Plane Golomb Coding (CB-BPGC) for scalable image coding. The basic idea of 

CB-BPGC is to combine Bit Plane Golomb Coding (BPGC), a low complexity 

embedded compression strategy for Laplacian distributed sources such as wavelet 

coefficients in HL, LH and HH subbands, with image context modeling 

techniques. Compared to the standard JPEG2000, CB-BPGC provides better 

lossless compression ratio and comparable lossy coding performance by exploring 

the characteristics of the wavelet coefficients. Fortunately, compression 

performance improvement is achieved together with lower complexity in 

CB-BPGC compared to JPEG2000. 

  The error resilience performance of CB-BPGC is also evaluated in this thesis. 

Compared to JPEG2000, CB-BPGC is more resilient to channel errors when 

simulated on the wireless Rayleigh fading channel. Both the Peak Signal-to-Noise 
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Ratio (PSNR) and the subjective performance of the corrupted images are better 

than those of JPEG2000. 
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Chapter 1. INTRODUCTION 

With the expanding use of modern multimedia applications, the number of digital 

images is growing rapidly. Since the data used to represent images can be very 

large, image compression is one of the indispensable techniques to deal with the 

expansion of image data. Aiming to represent the images using as few bits as 

possible while satisfying certain quality requirement, image compression plays an 

important role in saving channel bandwidth in communication and also storage 

space for digital image data. 

1.1. Background 

Image compression has been a popular research topic for many years. The two 

fundamental components of image compression are redundancy reduction and 

irrelevancy reduction. Redundancy reduction refers to removing the statistical 

correlations of the source, by which the original signals can be exactly 

reconstructed; irrelevancy reduction aims to omit less important parts of the signal, 

by which the reconstructed signal is not exactly the original one but without 

bringing visual loss. 

1.1.1. A general image compression system 

A general image encoding and decoding system is illustrated in Figure 1-1. As 

shown in the figure, the encoding part includes three closely connected 
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components, the transform, the quantizer and the encoder while the decoding part 

consists of the inverse ones, the decoder, the dequantizer and the inverse 

transform. 

 
Figure 1-1 Block diagram of image compression system 

Generally, images are never directly raw bits compressed by coding algorithms 

and image coding is much more than general purpose compression methods. This 

is because in most images, which are always represented by a two-dimensional 

array of intensity values, the intensity values of the neighboring pixels are heavily 

correlated. The transform in the image compression system is applied to remove 

these correlations. It can be Linear Prediction, Discrete Fourier Transform (DFT), 

Discrete Cosine Transform (DCT), Discrete Wavelet Transform (DWT) or others, 

each with its own advantages and disadvantages. After the transformation, the 

transformed data which is more compressible is further quantized into a finite set 

of values. Finally, the entropy coder is applied to remove the redundancy of the 

quantized data. The decoding part of the image compression system is the inverse 

process of the encoding part. It is usually of lower complexity and performs faster 

than the encoding part. 

According to the reconstructed images, image compression schemes can be 

classified into two types, lossless coding and lossy coding. Lossless coding 
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methods encode the images only by redundancy reduction where we can 

reconstruct exactly the same images as the original ones, but with a moderate 

compression performance. Lossy coding schemes, which use both redundancy and 

irrelevancy reduction techniques, achieve much higher compression while 

suffering some image quality degradation compared to the original images. 

However, if the lossy coding algorithms do not target at very high compression 

ratio, reconstructed images with no significantly visible loss can be achieved, 

which is also called perceptual lossless coding.  

1.1.2. Image transmission over noisy channels 

As more and more multimedia sources are distributed over the Internet and 

wireless mobile networks, robust transmission of these compressed data has 

become an increasingly important requirement since these channels are 

error-prone. Figure 1-2 shows the process of image encoding, decoding and 

transmission over adverse channels. The challenge of robust transmission is to 

protect the compressed data against adverse channel conditions while reducing the 

impact on bandwidth efficiency, a process called error resilient techniques. 

 

Figure 1-2 Image encoding, decoding and transmission over noisy channels 

The error resilient techniques can be set up at the source coding level, the 
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channel coding level or both. Resynchronizaiton tools, such as segmentation and 

packetization of the bitstreams are often used to ensure independent decoding of 

the coruppted data and thus prevent error propagation. Self-recovery coding 

algorithms can also be included, such as reversible various length codes (RVLC), 

with which we can apply backward decoding to continue reconstructing the 

images when error is detected in the forward decoding process.  

Additionally, channel coding techniques such as forward error correction (FEC) 

can be used to detect and further possibly correct errors without requesting 

retransimission of the original bitstreams. In some applications, if retransmission 

is possible, automatic repeat request (ARQ) protocols can be used to request 

retransimission of the lost data.  

Except for the above techniques which are responsible for protecting the 

bitstream against noise, there are also some other error recovery ways, such as 

error concealment based on interpolation or edge filter methods to conceal errors 

in the damaged images in a post processing way. 

1.2. Motivation and objective 

With the ever-growing requirements from various applications, compression ratio 

is no longer the only concern in image coding. Some other features such as low 

computational complexity, resolution scalability, distortion scalability, region of 

interest, random access, and error resilience are also required by some 

applications. The international image compression standard JPEG2000, which 
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applies several state-of-the-art techniques, specifies such an attractive image coder 

which provides not only superior rate-distortion, subjective image quality but also 

rich functionalities. 

However, behind the attractive features of JPEG2000 is the increase in 

computational complexity. As lower complexity coder is more practical than the 

increase in compression ratio for some applications [5], it is desirable to develop 

certain new image coders which achieve comparable coding performance as the 

current standard and provide rich functionalities but have lower complexity. 

Based on an efficient and low complexity coding scheme, Bit Plane Golomb 

Coding (BPGC) developed for Laplacian distributed signals which is now 

successfully applied in scalable audio coding, we study the feasibility of this 

algorithm in scalable image coding. By exploring the distribution characteristics 

of the wavelet coefficients in the coding algorithm, we aim to develop a new 

image entropy coder which provides comparative coding performance and also 

rich features as the standard JPEG2000 but with lower complexity. Additionally, 

we also intend to improve the error resilience performance of the new image coder 

compared to that of JPEG2000 operating in a wireless Rayleigh fading channel 

1.3. Organization of the thesis 

This thesis is organized as follows. We briefly review some related techniques in 

wavelet based scalable image coding in Chapter 2, such as wavelet transform, 

quantization, bit plane coding, entropy coding and some well-known scalable 
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image coding examples.  

In Chapter 3, we first review the embedded coding strategy, BPGC and then 

introduce the proposed Context-based Bit-Plane Golomb Coding (CB-BPGC) for 

scalable image coding. Comparison of both the PSNR and visually subjective 

performance between the proposed coder and the standard JPEG2000 are 

presented in this chapter. We also include a complexity analysis of CB-BPGC at 

the end of this chapter. 

A brief review of error resilience techniques is given in Chapter 4, followed by 

the error resilience strategies used in CB-BPGC. In this chapter, we also show the 

experimental results of the error resilience performance of the two coders. 

  Chapter 5 then gives the concluding remarks of this thesis. 
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Chapter 2. WAVELET-BASED SCALABLE IMAGE 

CODING 

As the requirement of progressive image transmission over the Internet and 

mobile networks increases, scalability becomes a more and more important 

feature for image compression systems. Wavelet based image coding algorithm 

has received lots of attention in image compression because it provides great 

potential to support scalability requirements [1][2][3][4][6]. 

  In this chapter, firstly, we briefly review the general components in the wavelet 

based image coding systems, for example, wavelet transform, quantization 

techniques and entropy coding algorithms like arithmetic coder. Some successful 

scalable image coding examples such as the embedded zerotree wavelet coding 

(EZW) [1], the set partitioning in hierarchical trees (SPIHT) [2] and the embedded 

block coding with optimal truncation (EBCOT) [6] are introduced. We also briefly 

review the state-of-the-art JPEG2000 image coding standard [8]. 

2.1. Scalability 

Scalability is a desirable requirement in multimedia encoding since: 

♦ It is difficult for the encoder to encode the multimedia data and then save the 

compressed files for every bitrate due to storage and computation time 

constraints. 

♦ In transmission, different clients may have different bitrate demands or 
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different transmission bandwidths, but the encoder has no idea to which client 

this compressed data will be sent and does not know which bitrate should be 

used in the encoding process. 

♦ Even for a given client, the data transmission rate may be occasionally 

changed because of network condition changes such as fluctuations of 

channel bandwidth. 

So, we need scalable coding to provide a single bitstream which can satisfy 

client demands and network condition changes. Bitstreams of various bitrates can 

be extracted from that single bitstream while partially discarding some bits to 

obtain a coarse but efficient representation or a lower resolution image. Once the 

image data is compressed, it can be decompressed in different ways depending on 

how much information is extracted from that single bitstream [7]. 

  Generally, resolution (spatial) scalability and distortion (SNR or fidelity) 

scalability are the main scalability features in image compression. Resolution 

scalability aims to create bitstreams with distinct subsets of successive resolution 

levels. Distortion scalability refers to creating bitstreams with distinct subsets that 

successively refine the image quality (reducing the distortion) [7]. 

Wavelet-based image coding algorithms are very popular in designing scalable 

image coding systems because of the attractive feature of the wavelet transform. 

Wavelet transform is a tree-structured multi-resolution subband transform, which 

not only compacts most of the image energy into only a few low frequency 

subbands coefficients to make the data more compressible, but also makes the 
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decoding of resolution scalable bitstreams possible [23]. We briefly review 

wavelet transform in the next section. 

2.2. Wavelet transform 

Similar to transforms such as Fourier Transform, the wavelet transform is a 

time-frequency analysis tool which analyzes a signal’s frequency content at a 

certain time point. However, wavelet analysis provides an alternative way to the 

traditional Fourier analysis for localizing both the time and frequency components 

in the time-frequency analysis [21]. 

Although Fourier transforms are very powerful in some of the signal processing 

fields, they also have some limitations. It is well-known that there is a tradeoff 

between the control of time and frequency resolution in the time-frequency 

analysis process, i.e., the finer the time resolution of the analysis, the more coarse 

the frequency resolution of the analysis. As a result, some applications which 

emphasize a finer frequency resolution will suffer from poor time localization and 

thus fail to isolate transients of the input signals [23]. 

Wavelet analysis then remedies these drawbacks of Fourier transforms. A 

comparison of the time-frequency planes of the Short Time Fourier Transform 

(STFT) and the Discrete Wavelet Transform (DWT) is given in Figure 2-1. As 

indicated in the figure, STFT has a uniform division of the frequency and time 

components throughout the time-frequency plane while DWT divides the 

time-frequency plane in a different, non-uniform manner [20]. 
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Figure 2-1 Comparison of time-frequency analysis of STFT (left) and DWT (right), each 
rectangle in the graphics represents a transform coefficient. 

Generally, wavelet analysis provides finer frequency resolution at low 

frequencies and finer time resolution at high frequencies. That is often beneficial 

because the lower frequency components, which usually carry the main features of 

the signal, are distinguished from each other in terms of frequency contents. The 

wider temporal window also makes these features more global. For the higher 

frequency components, the temporal resolution is higher, from which we can 

capture the more detailed changes of the input signals. 

In Figure 2-1, each rectangle has a corresponding transform coefficient and is 

related to a transform basis function. For the STFT, each basis function ( , ) ( )s t xϕ  

is the translation t and/or scaling s of a sinusoid waveform which is non-local and 

stretches out to infinity as shown in Figure 2-2 .  

 ( , )( ) sin( ), ( ) sin( )s tx x x sx tϕ ϕ= = −  (2.1) 

            

Figure 2-2 Comparison of sine wave (left) and Daubechies_10 wavelet (right) 
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For the DWT, each basis function ( , ) ( )s t xφ  is the translation t and/or scaling s 

(usually powers of two) of a single shape which is called the mother wavelet.  

 2
( , ) ( ) 2 (2 )

s
s

s t x x tφ φ
− −= −  (2.2) 

There may be different kinds of shapes for mother wavelets depending on the 

specific applications [23]. Figure 2-2 gives an example of the Daubechies_10 

mother wavelet of the Daubechies wavelet family which is irregular in shape and 

compactly supported compared to the sine wave. It is these irregularities in shape 

and compactly supported properties that make wavelets an ideal tool for analyzing 

non-stationary signals. The irregular shape lends to analyzing signals with 

discontinuities or sharp changes, while the compactly supported nature makes for 

temporal localization of signal features [21]. 

Wavelet transform is now widely used in many applications such as denoising 

signals, musical tones analysis, and feature extraction. One of the most popular 

applications of wavelet analysis is image compression. The JPEG2000 standard, 

which is designed to update and replace the current JPEG standard, uses wavelet 

transform instead of Discrete Cosine Transform (DCT), to perform decomposition 

of images.  

Usually, the two-dimensional decomposition of images is conducted by 

one-dimensional filters on the columns first and then on the rows separately [22]. 

As shown in Figure 2-3, an N×M image is decomposed by two successive steps of 

one-dimensional wavelet transform. We filter each column and then downsample 

to obtain two N/2×M sub images. We then filter each row and downsample the 
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output to obtain four N/2×M/2 sub images. The “LL” sub image refers to the one 

by low-pass filtering both the column and row data; the “HL” one is obtained by 

low-pass filtering the column data and high-pass filtering the row data; the one 

obtained by high-pass filtering the column data and low-pass filtering the row data 

is called “LH” sub image; and the “HH” refers to the one by high-pass filtering 

both the column and row data. 

 
Figure 2-3 Wavelet decomposition of an N×M image, vertical filtering first and horizontal 

filtering second 

By recursively applying the wavelet decomposition as described above to the 

LL subband, a tree-structured wavelet transform with different levels of 

decomposition is obtained as illustrated in Figure 2-4. This multi-resolution 

property is particularly interesting for image compression applications since it 

provides for resolution scalability. 

 
(a)                      (b)                      (c) 

Figure 2-4 Wavelet decomposition (a) One level; (b) Two levels; (c) Three levels 
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(a)                               (b) 
Figure 2-5 (a) Image lena (512×512), (b) 3-level wavelet decomposition of image lena 

(the wavelet coefficients are shown in gray scale image, range [-127, 127]) 

An example of the 3-level wavelet decomposition of the image lena is shown in 

Figure 2-5. We can see from Figure 2-5 (b) that the wavelet transform highly 

compacts the energy, i.e., most of the wavelet coefficients with large magnitude 

localize in the higher level decomposition subbands, for example the LL band. 

Actually, the LL band is a low resolution version of the original image, which 

contains the general features of the original image. The coefficients in other 

subbands carry the more detailed information of the image, such as edge 

information. The HL bands also most strongly respond to vertical edges; the LH 

bands then contain mostly horizontal edges; and the HH bands correspond 

primarily to diagonally oriented details [7].  

Unlike the traditional DCT based coders, where each coefficient corresponds to 

a fixed size spatial area and fixed frequency bandwidth and thus edge information 

disperse onto many non-zero coefficients, in order to achieve lower bitrate some 

edge information is lost and thus results in blocky artifacts. The wavelet 

multi-resolution representation ensures the major features (the lower frequency 

components) and the finer edge information of the original image occur in scales, 
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such that for low bitrate coding, there is no such blocky effect but only kind of 

blurring effect occurs, which is because of the discarding of coefficients in the 

high frequency subbands that are responsible for the finer detailed edge features. 

2.3. Quantization 

Generally, N×M images are represented by a two-dimensional integer array X with 

pixel elements x[n,m]. However, the transformed coefficients y[n,m] are often no 

longer integers and a quantization step should be included before entropy coding. 

Quantization is often the only source of distortion in lossy compression that is 

responsible for reducing the precision of the signal and thus makes it much more 

compressible. While reducing the bits needed to represent the signal, it also brings 

loss of information, i.e., distortion. Thus, there is often no quantization process in 

lossless data compression. 

2.3.1. Rate distortion theory 

Rate distortion theory is concerned with the trade-off between rate and distortion 

in lossy compression schemes [22]. Rate is the average number of bits used to 

represent sample values. There are many approaches to measure the distortion of 

the reconstructed image. The most commonly used measurement is the Mean 

Square Error (MSE), defined by 

 
1 1

2

0 0

1 ˆ( [ , ] [ , ])
N M

n m

MSE x n m x n m
N M

− −

= =

= −
× ∑∑ ,            (2.3) 

where x[n,m] is the original pixel and ˆ[ , ]x n m  is the reconstructed pixel. In image 
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compression, for an image sampled to fixed length B bits, the MSE is often 

expressed in an equivalent measure, Peak Signal-to-Noise Ratio (PSNR). 

2

10
(2 1)10 log

B

PSNR
MSE
−

=                     (2.4) 

 

Figure 2-6 Rate distortion curve 

The rate distortion function R(D), which is a way to represent the trade-off 

between rate and distortion, specifies the lowest rate at which the source data can 

be encoded while satisfying the distortion less than or equal to a value D. Figure 

2-6 gives an example of the rate distortion curve. Generally, the higher the bitrate, 

the smaller the distortion. When the distortion D = 0, the image is losslessly 

compressed. The Lagrangian cost function L = D+λR can be used to solve the 

minimization distortion under certain constrained rate problems.  

The rate distortion theory is often used for solving problems of bit allocation in 

compression. Depending on the importance of the information it contains, each set 

of data is allocated a portion of the total bit budget while keeping the compressed 

image within a minimum possible distortion. 
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(a)                                 (b) 

Figure 2-7 (a) A midrise quantizer; (b) A midtread quantizer 

2.3.2. Scalar quantization 

The process of representing a large set of values (possibly infinite) with a much 

smaller set while bringing certain fidelity loss is called quantization [22]. 

According to the ified into scalar 

quantization (S  input data, 

here the quantizer operates on blocks of data and 

the output represents a bunch of input samples. 

The scalar quantizer is quite simple. Figure 2-7 gives examples of the scalar 

midrise quantizer and the midtread quantizer. Both of them are uniform quantizers 

where each input sample is represented by the middle value in the interval with a 

quantization step size ∆ = 1, but the midtread quantizer has zero as one of its 

levels while the midrise one does not have.  

It is especially useful for the midtread quantizer in situations where it is 

important to represent a zero value, for example, in audio processing zeros are 

 sets of quantizer input, it can be class

Q) in which each quantizer output represents a single

and vector quantization (VQ) w
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needed to represent silent periods. Note that the midtread quantizer has an odd 

number of quantization levels while midrise quantizer has an even number. That 

means if a fixed length 3-bit code is used, we have eight levels for the midrise 

quantizer and seven levels for the midtread one, where one codeword is wasted. 

 

Figure 2-8 Uniform scalar quantization with a 2∆ wide dead-zone 

  Usually, for sources with zero mean, a small improvement of the rate-distortion 

function R(D) can be obtained by widening the midtread zero value interval, 

which is often called the dead-zone. A uniform SQ with a 2∆ wide dead-zone is 

illustrated in Figure 2-8 (∆ is the quantization step size). This quantizer can be 

implemented as 

s probability density 

( )

0

x
sign x x

otherwise

⎧ ⎢ ⎥
> ∆⎪ ⎢ ⎥

⎪
⎩

And the corresponding dequantizer is defined as 

0( )ˆ
qsign q q

x
00q q

≠⎧ ∆
= ⎨ .                 (2.6) 

( )q Q x= = ∆⎨ ⎣ ⎦ .            (2.5) 

riptions, please refer to 

=⎩

Uniform SQ is one of the simplest quantization schemes. SQ can also be 

non-uniform and designed to optimally adapt to the signal’

function (pdf). On the other hand, VQ represents a bunch of input samples by a 

codeword but have a much higher computational complexity. We will not discuss 

the details of these VQ techniques. For these detailed desc

[22]. 
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2.4. Bit plane coding 

As mentioned in Section 2.1, a very desirable feature of a compression system is 

the ability to successively refine the reconstructed data as the bitstream is decoded, 

i.e., the ability of scalability. Embedded coding is the key technique to achieve 

distortion scalability. The main advantage of the embedded bitstream lies in its 

ssion bitstream which can be dynamically truncated to 

fit a certain rate, distortion or complexity constrains without loss of optimality.  

Table 2-1 An example of bit plane coding 

ability to generate a compre

Sample data range: [-63, 63], the most significant bit plane: m = 5 

Bit Planes Bj (j = m,m-1,…,0) 
Samples Value 

Sign j = 5 j = 4 j = 3 j = 2 j = 1 j = 0 
x0 34 + 1 0 0 0 1 0 

x2 3 + 0 0 0 0 1 1 

x4 -52 - 1 1 0 1 0 0 

x1 -6 - 0 0 0 1 1 0 

x3 23 + 0 1 0 1 1 1 

x5 49 + 1 1 0 0 0 1 
x6 -11 1 1 - 0 0 1 0 
... ... ... ... ... ... ... ... ... 

  Bit plane coding (BPC e tu d ac m nt an 

embedded coding system. It is included in ost of the em dded age, audio and 

video co ng syst  [1][ 3][4][6][16]

simple. The input data are first represented in magnitude and sign parts; the 

magnitude part is then binary represente s sh  in 

range in [-63, 63] has 6 bit planes, from the most significant 5th bit plane to the 

least significant 0th bit plane. It is then sequentially coded by bit planes, normally 

from the most significant bit plane to the least significant one to successively 

) is th n a na ral an simple appro h to i pleme

 m be  im

di ems 2][ [26]. The general idea of BPC is quite 

d a own Table 2-1. A set of data 
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refine the bitstreams. 

In some embedded image coding systems, such as Embedded Block Coding 

with Optimal Truncation (EBCOT) in [6] and Pixel Classification and Sorting 

(PCAS) in [16], a code block is often encoded bit plane by bit plane in a certain 

order, e.g. raster order. And in order to obtain fine granular scalability, they 

operate on fractional bit planes where the BPC process often includes significant 

coding pass and magnitude refinement coding pass. Some other schemes such as 

R

2.5. Entropy coding 

ore accurate and reliable. They are then followed 

by an entropy coding process.  

Entropy coding refers to representation of the input data in the most compact 

ate-Distortion optimized Embedding (RDE) introduced in [4] encode bits not in 

bit plane sequential order but encode several bit planes together according to the 

expected R-D slopes. In that method, when not all the bits in the 5th bit plane have 

already been encoded, some bits in the 4th bit plane are going to be encoded. We 

will further discuss the different bit plane coding techniques used in different 

coding examples in Section 2.6. 

After the transformed coefficients have been quantized to a finite set of values, 

they are often first operated by some source modeling methods. The modeling 

methods are responsible for gathering statistics and identifying data contexts 

which make the source models m

form. It may be responsible for almost all the compression effort, or it just gives 
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some additional compression as a complement to the previous processing stages.  

Entropy in information theory m

2.5.1. Entropy and compression 

eans how much randomness is in a signal or 

alternatively how much information is carried by the signal [17]. Given the 

probability p of a discrete random variable X which has n states, entropy is 

formally defined by 

2
1

( ) ( ) log ( )
n

i
H x p i p

=

= −∑ .i                   (2.7) 

Entropy can measure information in units of bits. It provides fundamental 

bounds on coding performance. Shannon points out in [17] that the entropy rate of 

a random process provides a lower bound on the average number of bits which 

must be spent in coding and also that this bound may be approached arbitrarily 

closely as the complexity of the coding scheme is allowed to grow without bound. 

Most of the entropy coding methods fall into two classes: 

sc

w

dictionary based 

hemes and statistical schemes. Dictionary based compression algorithms 

operate by replacing groups of symbols in the input text with fixed length codes, 

e.g. the well known Lempel-Zif-Welch (LZW) algorithm [22]. Statistical entropy 

coding methods operate by encoding symbols into variable length codes and the 

length of the codes varies according to the probability of the symbol. Symbols 

ith a lower probability are encoded by more bits, while higher frequency 

symbols are encoded by fewer bits. 
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2.5.2. Arithmetic coding 

Among all the entropy coding methods, a statistical entropy coding scheme, 

arithmetic coding stands out for its elegance, effectiveness, and versatility [24]. It 

is widely used in compression algorithms such as JPEG2000 [8], MPEG-4 

Scalable Audio Coding standard [26] and video coding standard H.264. 

ent and identically distributed (i.i.d.) sources, an 

arithmetic coder provides proven optimal compression. For those non i.i.d. 

sources, by combining with context modeling techniques it yields near-optimal or 

significantly improved compression. In addition, it is especially useful to deal 

with sources with small alphabets, such as binary sources, and alphabets with 

highly skewed probabilities.  

In arithmetic coding, a sequence of symbols is represented by an interval of real 

numbers between 0 and 1. The cumulative distribution function (cdf) Fx(i) is used 

to map the sequence into intervals. We are going to explain the idea behind 

arithmetic coding through an example.  

odel for alphabet {a, e, o, !} 

Symbols Probability Subintervals 

When applied to independ

Table 2-2 Example: fixed m

a 0.2 [0, 0.2) 

o 0.4 [0.4, 0.8) 
e 0.2 [0.2, 0.4) 

! 0.2 [0.8, 1) 

Suppose we want to encode the sequence eaoo! with the probability distribution 

P(xi) (i=0, 1, 2, 3) listed in Table 2-2. The unit interval [0, 1) is divided to 

subintervals [Fx(i-1), Fx(i)) with the symbol xi. As illustrated in Figure 2-9, at the 
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beginning, the interval is [0, 1) and the first symbol, e, fa l of [0.2, 

0.4), therefore, after encoding, the lower limits l(1) of the al is 0.2 and 

the upper limits ) is 0.4. The next ol to be encoded ith a range [0, 

0.

lls in the interva

new interv

u(1 symb  is a, w

2) in the unit interval. Thus, after encoding the symbol a, the lower and the 

upper limits of the current interval are l(2) = 0.2, u(2) = 0.24. The updating of the 

interval can be written as follows,

( ) ( 1) ( 1) ( 1)
1( ) ( )n n n n

X nl l u l F x− − −
−= + − ,                (2.8) 

( ) ( 1) ( 1) ( 1)( ) ( )n n n nu l u l F x− − −= + − .                 (2.9) 

Applying the updating intervals for the whole sequence, we get the final interval 

[0.22752, 0.2288) to represent the sequence. This process is described graphically 

in Figure 2-9. The decoding then just mi ics the encoding process to extract the 

original bit according to its probab

X n

m

ility and the current interval. 

 

Figure 2-9 Representation of the arithmetic coding process with interval at each stage 

Apparently, as the sequence becomes longer, the width of the interval can 

become smaller and smaller and sometimes it can be small enough to map 

different symbols onto the same interval which probably causes wrongly decoded 

symbols. That precision problem prohibited arithmetic coding from practical 
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usage for years and finally was solved in 1970s. Witten, et al [18] gave a detailed 

C implementation of the arithmetic coding. 

In the encoding process, the probability model can be updated after each 

symbol is encoded, which is different from static arithmetic coding for applying a 

probability estimation procedure. Adaptive arithmetic coding receives lots of 

at . 

So

2.6. Scalable image coding examples 

In

2.6.1. EZW 

The EZW algorithm was first presented in [1] by Shapiro, which became a 

tention for its coding effectiveness, however, with a higher complexity [31]

me other variants of the basic arithmetic coding algorithm also exist, such as 

the multiplication-free binary coder, Q coder [19] and the MQ coder, the binary 

adaptive arithmetic coder which is used in the image coding standards JBIG [9] 

and JPEG2000 [8]. 

 the framework of embedded image coding system, the first stage is transform 

and quantization, the second stage is modeling and ordering, and the last stage is 

entropy coding and post processing [14]. Previous research works show that 

modeling and ordering are very important to design a successful embedded coder. 

Most of the wavelet based scalable image coding schemes gain compression 

effectiveness by exploring the interscale or intrascale wavelet coefficient 

correlations or both. In this section, we review some embedded image coding 

schemes. 
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milestone for embedded image coding and produced the state-of-the-art 

compression performance at that time. It explores the so-called wavelet 

coefficients structure, zerotrees and achieves embedding via binary BPC. 

Different from the raster scan of image bit planes or the progressively “zig zag” 

scan of the DCT coefficient bit planes, EZW encodes the larger magnitude 

coefficients bit planes first, which are supposed to contain the more important 

information of the original image, and allocates as few as possible bits to the near 

zero values. This is obtained from the structure “zerotrees”, which means given a 

threshold T, if the current coefficient (parent) is smaller than T, then all of its 

corresponding spatial location coefficients in the higher frequency subbands 

 to be smaller than T, and we do not encode the bit planes of all (children) tend

coefficients in this zerotree now because they seem less important compared to the 

coefficients greater then T.  

          

Figure 2-10 (a) EZW parent-child relationship; (b) SPIHT parent-child relationship 

The parent and child relationship in EZW is illustrated in Figure 2-10 (a). In 

general, a coefficient in subband HL

(a)                              (b) 

d, LHd or HHd has 4 children, 16 

grandchildren, 64 great-grandchildren, etc. A coefficient in the LLd has 3 children, 
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12 grandchildren, 48 great-grandchildren, etc. 

The embedding bitstream is achieved by comparing the wavelet coefficient 

magnitudes to a set of octavely decreasing thresholds Tk = T02-k, where T0 is 

chosen to satisfy |y|max/2 < T0 < |y|max (|y|max is the maximum magnitude for all 

coefficients). At the beginning, each insignificant coefficient, whose bit planes are 

not coded yet, is compared to T0 in raster order, first within LLD, then HLD, LHD, 

HHD, then HLD-1, and so on. Coding is accomplished via a 4-ary alphabet: POS 

(the significant positive coefficient he significant negative coefficient), 

ZT are 

all

cess goes into the higher frequency 

su

), NEG (t

R (the zerotree root, which indicates the current coefficient and its offspring 

 less than T0), IZ (the isolated zero, which means the current coefficient is less 

than T0 but at least one of its offspring is larger than T0). For those three highest 

frequency subband coefficients, which have no children, the ZTR and IZ symbols 

are replaced by the single symbol Z. As the pro

bbands, these coefficients which are already in a zerotree are not coded again. 

This coding pass is called dominant pass which operates on the insignificant 

coefficients.  

After that, the threshold is changed to T1 and the encoder goes to the next bit 

plane. A subordinate pass is first carried out to encode the refinement bit plane of 

the coefficients already significant in the previous bit planes, followed by the 

second dominant pass. The processing continues alternating between dominant 

and subordinate passes and can stop at any time for certain rate/distortion 

constraint. 
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Context based arithmetic coding [18] is then used to losslessly compress the 

sequences resulting from the procedure discussed above. The arithmetic coder 

encodes the 4-ary symbols in the dominant pass and the refinement symbols in the 

subordinate pass directly and uses scaled down probability model adaptation [18]. 

The EZW technique not only had competitive compression performance 

compared to other high complexity compression techniques at that time, but also 

w

2.6.2. SPIHT 

e features in SPIHT remain the same as with EZW. However, 

there are als

 

child

oot itself need not 

be less than the threshold, and type B which is similar to type A but do not include 

grandchildren, great-grandchildren, etc. 

as fast in execution and produced an embedded bitstream. 

The SPIHT algorithm proposed in [2] is an extension and improvement of the 

EZW algorithm and has been regarded as a benchmark in embedded image 

compression. Som

o several significant differences. 

Firstly, the order of the significant and refinement coding passes is reversed. 

The parent-child relationship of the coefficients in LL band is changed as shown 

in Figure 2-10 (b), where one fourth of the coefficients in the LL band have no

ren while the remaining ones have four children each in the corresponding 

subbands. There are also two kinds of zerotrees in SPIHT, type A which consists 

of a root with all the offsprings less than the threshold but the r

the children of the root, i.e., only the 

Unlike EZW, in SPIHT, there are three ordered lists: LSC, list of significant 
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coefficients containing the coordinates of all the significant coefficients; LIS, list 

of insignificant sets of coefficients including the coordinates of the roots of sets 

type A and type B; LIC, list of insignificant coefficients containing the coordinates 

of

put is “1”, 

 the remaining coefficients. 

Assume each coefficient is represented by the sign s[i,j] and the magnitude bit 

planes qk[i,j]. The SPIHT algorithm is then operated as follows, 

(0) Initiation 

♦ k = 0, LSC = Φ, LIC = {all coordinates [i, j] of coefficients in LL}, LIS 

= {all coordinates [i, j] of coefficients in LL that have children}. Set all 

entries of the LIS to type A. 

(1) Significant pass 

♦ For each [i,j] in LIC: output qk[i,j]. If qk[i,j] =1, output s[i,j] and move 

[i,j] to the LSC. 

♦ For each [i,j] in LIS:  

i. Output “0” if current coefficient is insignificant; otherwise “1”. 

ii. If the above out

Type A: changed to Type B and sent to the bottom of the LIS. The 

qk[i,j] bits of each child are coded (with any required sign bit). The 

ild is sent to the end of LIC or LSC, as appropriate. ch

Type B: deleted from the LIS, and each child is added to the end of 

the LIS as set of Type A. 

nement pass (2) Refi
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♦ For each [i,j] in LSC: output qk[i,j] excluding the coefficients added to 

(3) Set k  step (1).  

The t  the entropy coder in SPIHT. Unlike in EZW, 

here only m its 

are uncoded, i.e., SPIHT only codes the symbol “1” and “0” of the significant 

passes and eve

The SPIHT

algorithm at a us embedded 

image compr

partitioning a  in SPIHT, such as the Set Partitioning 

Em CK) [12][13] and the Embedded Zero Block Coding 

(EZBC

2.6.3. EBCOT 

EBCOT, pr

 the intrascale correlation. Each 

subband is p

the LSC in the most recent significant pass. 

 = k+1 and go to

 ari hmetic coder is used as

 sy bols from the significant passes are coded while the refinement b

n the sign bits are left uncoded. 

 algorithm provides better compression performance than the EZW 

n even lower level of complexity. Many other famo

ession systems are also motivated by the key principles of set 

nd sorting by significance

bedded Block (SPE

) [15]. 

oposed by Taubman in [6], is an entropy coder which is carried out 

after the wavelet transform and quantization processes. Unlike the EZW and 

SPIHT algorithms which exploit both the interscale and the intrascale correlations 

in forms of zerotrees, EBCOT captures only

artitioned into relatively small code blocks (e.g. 64×64 or 16×16) and 

these code blocks are encoded independently as shown in Figure 2-11.  
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Figure 2-11 Partitioning image lena (256×256) to code blocks (16×16) 

The disadvantage of independent block coding lies in that it is unable to explore 

redundancy between the blocks in the same subband and also the parent-child 

relationship in the higher and lower resolution corresponding subbands. However, 

because of the independent coding of blocks, EBCOT is able to embed resolution 

scalable bitstreams and is capable of random access and better error resilience. It 

also reduces the memory consumption in hardware implementations. In addition, 

the block coding in EBCOT also facilitates the ordering of the bitstreams by 

applying the post compression rate distortion optimization (PCRD) algorithm 

which we will discuss later. 

The EBCOT algorithm is an independent block coded, context based adaptive 

bit plane

2-12. 

 coder, which is conceptually divided into two Tiers as shown in Figure 

Tier 1 is the embedded block coding responsible for source modeling and 

entropy coding; while Tier 2 is the PCRD for ordering code block bitstreams in an 

optimal way to minimize the distortion subject to bitrate constraints and thus 

generating the output stream in packets. 
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Figure 2-12 EBCOT Tier 1 and Tier 2 

More explicitly, in Tier 1, after coefficient subbands are divided into small code 

blocks, each code block is bit plane encoded. Each bit plane is scanned stripe by 

stripe and each stripe is scanned column by column as graphically shown in 

Figure 2-13. The bits in a certain bit plane are then coded by one of the three 

coding passes: significant propagation coding pass (SIG), magnitude refinement 

coding pass (MAR) and clear up coding pass (CLU). 

 

coefficient is insignificant and has at least one neighbor (each coefficient has eight 

neighbors) already significant in the previous bit planes. These bits are the most 

likely to become significant and should be encoded earlier than the other bits in

Figure 2-13 EBCOT bit plane coding and scanning order within a bit plane 

Given a bit plane, the SIG coding pass encodes the bit whose corresponding 

 

the current bit plane. If the bit is “1”, the sign coding should be followed and this 

coefficient is identified as significant in the processes of next bit planes. The 

MAR coding pass then refines the bits whose corresponding coefficients are 
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already significant. The remaining bits are then coded during the CLU coding pass. 

Obviously, each bit plane has these three coding passes except for the most 

significant bit plane which has only the CLU coding pass. 

As we can see above, which pass a coefficient bit is coded in depends on the 

conditions or states of the corresponding coefficients. The coding passes give a 

fine partitioning of bit pl

points in the following PCRD optimization algorithms which will improve the 

and the CLU coding pass contains the ZC, SC and also the RLC primitives. 

mitive then 

includes 3 contexts acco

whether this coefficient has been magnitude refined before; finally, the RLC 

2, the PCRD algorithm is applied. We 

anes into three sets, providing more valid truncation 

embedded performance. In addition, four coding primitives are employed to 

obtain a finer source modeling: Zero Coding (ZC), Sign Coding (SC), Magnitude 

Refinement (MR) and Run-length Coding (RLC). The ZC and SC primitives are 

applied in the SIG coding pass; the MAR coding pass includes the MR primitive; 

According to the different significant states of the eight neighbors, the ZC 

primitive has 9 contexts; the SC primitive has 5 contexts depending on the sign 

states of the horizontal and vertical four neighbors; the MR pri

rding to the significant states of the eight neighbors and 

primitive has only 1 context. So, there are in all 18 contexts modeled in EBCOT 

for all the three fractional coding passes. Each bit (binary decision) together with 

its context is then sent to the arithmetic coder. The arithmetic coder used in 

EBCOT is the adaptive binary coder, which is called the MQ coder. 

After all the blocks are encoded, in Tier 
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try to optimally select the truncation points, {ni} (with length Li
ni, distortion Di

n for 

code block Bi) so as to minimize the overall distortion, D, subject to an overall length 

constraint Lmax, 

max, ii
nn

i i
D D L L L= ≥ =∑ ∑ .               (2.10) 

The Lagrangian optimization can be used, 

( , ) ( , )( ) ( ) ( )i in n
i iD L D Lλ λλ λ λ λ+ = +∑ .             (2.11) 

The PCRD algorithm solves this problem by selecting the feasible truncation 

points which satisfy the convex hull property with decreasing D-L slopes which is 

shown in Figure 2-14.  

 

Figure 2-14 Convex hull formed by the feasible truncation points for block Bi

These feasible truncation points are candidates for the embedded bitstream 

in layer depending on its performance to reduce the 

distortion. Sometimes, this contribution is zero, which means there is no bitstream 

truncation points. The EBCOT bitstream is finally organized in layers as shown in 

Figure 2-15. From the figure, we can see that, each code block has different 

contribution to a certa
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from this block in the current layer. 

 
Figure 2-15 Code block contributions to quality layers (6 blocks and 3 layers) 

Th  and 

SP

The block diagram of the image encoding, transmission and decoding in the image 

standard JPEG2000 is shown in Figure 2-16.  

e compression performance of EBCOT is better than the previous EZW

IHT algorithms [6]. In addition, EBCOT is a highly scalable compression 

algorithm together with attractive features like resolution scalability, SNR 

scalability and random access. It is selected to act as the entropy coder for the 

state-of-the-art image coding standard JPEG2000 [8]. 

2.7. JPEG2000 

 

Figure 2-16 Image encoding, transmission and decoding of JPEG2000 

In the standard, if the input is a color image, the first step is to apply the color 

transform, for example, from the RGB color space to the YCrCb space. Then each 
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color component is regarded as if they were grey scale images. They are then 

divided into blocks called tiles, which have disjoint codestream from each other. 

The wavelet transform is then applied to the tiles. There are two types of 

discrete wavelet transform specified in JPEG2000, one is the reversible 5/3 LeGall 

filter and the other one is the irreversible Daubechies 9/7 filter. In lossy 

ead-zone scalar quantization as 

discussed in Section 2.3.2 and Trellis-coded quantization. The entropy coder used 

in JPEG2000 is the EBCOT which is discussed in the last section. 

The codestream of JPEG2000 is illustrated in Figure 2-17. Basically, JPEG2000 

codestream is organized in packets, which contains a packet header and a packet 

body. The header includes some important parameter information and the body is 

compression, a quantization step follows the wavelet transform. Two different 

quantization procedures are allowed: the d

the coded symbols.  

 

Figure 2-17 JPEG2000 code stream 

JPEG2000 brings a new paradigm to the image compression [10]. It provides 

both lossy and lossless compression. A JPEG2000 codestream can be 

decompressed in many ways to obtain images with different resolutions and 
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fid

 also has the ability of error resilience when it is delivered 

over noise transmission channels. 

elities. In addition to the resolution scalability and quality scalability, the 

JPEG2000 codestream also supports spatial random access. Each region can be 

accessed and decoded at a variety of resolutions and qualities. In addition, the 

JPEG2000 codestream
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Chapter 3. CONTEXT-BASED BIT PLANE GOLOMB 

CODING 

We are going to present the proposed scalable image coder, Context-based Bit 

Plane Golomb Coding (CB-BPGC) in this chapter. It is motivated by the BPGC 

algorithm, an embedded coding scheme for Laplacian distributed sources which 

we assume are representative of wavelet coefficients in the HL, LH, and HH 

subbands, and the image context modeling techniques which explore the 

correlations between neighboring samples.  

We will first discuss the BPGC algorithm and the context modeling techniques, 

followed by the detailed structure and implementation of the CB-BPGC coder for 

scalable image coding together with the evaluation of its compression 

performance compared to the JPEG2000 standard. A complexity analysis of the 

CB-BPGC algorithm is also included in this chapter. 

3.1. Bit Plane Golomb Coding 

The embedded coding strategy BPGC, which provides near optimal coding 

performance for sources with Laplacian distribution, was first presented in [25]. It 

is now successfully implemented in the latest MPEG-4 Audio Scalable Lossless 

Coding (SLS) Standard (also called AAZ coder) [26]. We start this section with a 

brief review of the algorithm, followed by a description of using BPGC in the 

AAZ audio coding and an analysis of the feasibility to use BPGC in scalable 
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image coding. 

3.1.1. BPGC Algorithm 

BPGC is one of the bit plane coding strategies which encodes the source symbols 

bit plane by bit plane as introduced in Section 2.4. However, BPGC is not a 

simple bit plane coder. It simplifies the bit plane coding of an independent and 

identically distributed (i.i.d.) Laplacian source by giving a static probability model 

for bits in each bit plane. These bits are then easily encoded by a static arithmetic 

coder whose input symbols include exactly the bit and the corresponding 

probability as discussed in Section 2.5.2. 

Consider a Laplacian distributed source X, which has a pdf given by, 

22/ 2( ) / 2x
Xf x e σ σ−= .                   (3.1) 

Each sample xi (i = 1, 2 …N) is binary represented by bit plane symbols bi,j (value 

0 or 1) and the sign symbol si, 

, 2 , 1,..., 0,...,j
i i i j

j
x s b i N j m= =∑ =         (3.2) 

1 0
0 0

i
i

i

x
s

x
≥⎧

= ⎨ <⎩
,                      (3.3) 

where m is the most significant bit plane which satisfies: 

{ } 12 max 2m
ix m+≤ ≤ .                     (3.4) 

If the source X is i.i.d., the probability distributions of the bit plane symbol bi,j 

(value 0 and value 1) in the bit plane Bj can be written as, 

2 1
,( 1) 1 (1 )

j

i j jprob b p θ −= = = − +              (3.5) 

and                    ,( 0) 1i j jprob b p= = − ,                  (3.6) 
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where                       
22 /e σθ −=                          (3.7) 

is known as the distribution parameter which can be estimated from the statistical 

properties of the sample data, for example, the maximum likelihood (ML) 

estimation of θ is given by 

/N Aeθ −= ,                          (3.8) 

where N is the number of the samples and A is the absolute sum of the samples. 

From Equation (3.5), we can derive that the probability pj using the following 

updating rule 

1 1/( 1 )j j jp p p p+ += − + 1j+ .               (3.9) 

We can further simplify the probability of the bit bi,j = 1, i.e. pj in bit plane Bj (j = 

0, 1, … m) as follows [25] 

( )21/ 1 2

1/ 2

j L

L
j

j L
Q

j L

−⎧ + ≥⎪= ⎨
<⎪⎩

                 (3.10) 

{ }1min | 2LL L Z N′+′= ∈ ≥ A .                 (3.11) 

The approximate probability L
jQ  follows the probability updating rule of 

Equation (3.9) for bit planes from the most significant bit plane m to the bit plane 

L, and after the Lth bit plane, it enters to a so-called lazy mode where the bit 

probability is 1/2 for both bit value 1 and 0. 

Therefore, the parameter L divides the bit planes into two parts: lazy bit planes 

(the (L-1)th bit plane to the 0th bit plane) where bits 0 and 1 are uniformly 

distributed; and non-lazy bit planes (the mth bit plane to the Lth bit plane) whose 

skew probabilities are specified by the distance from the current bit plane j to the 

lazy bit plane L: D2L = j – L in Equation (3.10). Figure 3-1 gives an example of 
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the approximate bit probabilities of the non lazy bit planes (from the 5th bit plane 

to the 3rd bit plane) for a Laplacian distributed source θ = e-12 and L = 3 whose pdf 

is given in Figure 3-1 (a). In each figure (b)-(d), the sum of the area of the shaded 

region represents the probability of bit equals to one in their corresponding bit 

plane. 

      

   (a) Laplacian pdf (θ = e-12, L=3)         (b) Shaded area: 5 0.0588Q =  (5th bp) 

      

  (c) Shaded area:  (44 0.2Q = th bp)        (d) Shaded area: 3 0.3333Q =  (3th bp) 

Figure 3-1 Bit plane approximate probability Qj example 

The L parameter is also easy and practical to obtain by solving Equation (3.11). 

The bits are then input into the arithmetic coder and encoded with their 

corresponding approximate probabilities. In addition, only those bits in the non 

lazy bit planes are encoded by the static arithmetic coder because those bits in the 
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lazy bit planes have a probability of 1/2, and they can be output directly without 

compression. 

It is said in [25] that the BPGC actually can give an identical expected length to 

that of Golomb code with parameter 2L for non-negative geometrically distributed 

integer when the parameter L is greater or equal than 0. But for those very low 

entropy content sources which may result in L < 0, it may not perform well. In 

addition, by exploiting the statistical properties of the input Laplacian distributed 

sources, the BPGC algorithm achieves a rate distortion performance which is 

essentially comparable to an optimal non-scalable scalar quantizer.  

BPGC also has a complexity level which is suitable for practical 

implementation. The calculation of parameter L can be implemented using the C 

program described in [5]. The static arithmetic coder is also simple and easy to 

implement as discussed in [24][32]. 

3.1.2. BPGC used in AAZ 

Advanced Audio Zip (AAZ), a lossy to lossless scalable audio coding technology, 

which is recently been adopted as the reference model for the MPEG-4 Audio 

Scalable to Lossless Coding, is presented in [26].  

AAZ provides backward compatibility by embedding an MPEG AAC 

(Advanced Audio Coding) bitstream, a widely adopted lossy audio coder. It also 

provides the functionalities that people previously have to resort to several audio 

compression technologies like lossy audio coding, lossless audio coding and 

40 



scalable audio coding, all in a single framework but without any compromise in 

terms of coding efficiency or implementation complexity.  

 

Figure 3-2 Structure of AAZ encoder 

The structure of the AAZ encoder is illustrated in Figure 3-2. As indicated in 

the figure, AAZ consists of two distinguishable layers, one is the perceptual core 

layer, which has an MPEG-4 AAC audio coder to generate the lossy portion of the 

embedded bitstream, and the other is the Lossless Enhancement layer (LLE) 

where the lossy to lossless bitstream is produced. The BPGC encoder is used here 

to operate on the Laplacian distributed residual IntMDCT (reversible integer 

MDCT) coefficients which are obtained by an error mapping procedure after the 

perceptually encoding of the AAC coder. The bitstream generated by the AAC 

coder represents the minimum rate for the final lossy or lossless bitstream while 

the BPGC encodes the residual coefficients bit plane by bit plane as described in 

last section to generate the embedded enhancement bitstream and these two 

bitstreams are finally fed to the bitstream multiplexer to be the final lossy to 

lossless bitstream [26]. 

By implementing the lossy coder AAC and the BPGC algorithm which acts as 

an audio embedded bitstream enhancement scheme, AAZ provides fine grain 

bitrate scalability without affecting compression performance and also 
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maintaining a reasonable computational complexity.  

3.1.3. Using BPGC in scalable image coding 

bedded bitstream for i.i.d. 

wavelet transformed coefficients in 

hi

As discussed before, BPGC is suitable to generate the em

Laplacian distributed sources. The residual IntMDCT coefficients in AAZ have 

Laplacian distribution. In addition, because the audio signal is a one-dimensional 

signal where the neighborhood coefficients have low correlations, it can be 

regarded as near i.i.d. Laplacian distributed.  

As reported in many research articles, the 

gh frequency bands, i.e., subbands HL, LH and HH tend to follow the Laplacian 

distribution [28][29]. The histograms of 3-level decomposition 9/7 Daubechies 

wavelet coefficients of image lena in subband HL2 and HH3 are plotted in Figure 

3-3. From the figure, we can see that large portion of the wavelet coefficients are 

around the value zero, and the number of larger magnitude coefficients is 

exponentially decreasing, which are the characteristic of Laplacian distributed 

symbols.  

 
(a)                                     (b) 

Figure 3-3 Histogram of wavelet coefficients in (a) HL2 subband; (b) LH3 subband 
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Ba  

ap

audio coding, the good performance of BPGC is based on the 

co

sily combined with context 

m

sed on the audio scalable coder AAZ, we investigate the possibility of

plying BPGC to scalable image coding because these signals to be encoded 

have something in common, that is, they all tend to follow a Laplacian 

distribution.  

In scalable 

nstraint that the coding source is nearly i.i.d.. However, the BPGC algorithm is 

not directly useful for coding wavelet coefficients. The spatial dependencies of 

image wavelet coefficients are quite heavy and that is why many image coders 

like EZW, SPIHT and EBCOT adopt an adaptive arithmetic coding procedure. 

Obviously, the BPGC static probability model whose probability is specified by 

only D2L would obviously lose some coding efficiency. Bits in the wavelet 

coefficients bit planes are significantly affected by nearby coefficients. For 

example, it is more likely for the current bit to be ‘1’ when most bits of the 

corresponding neighbor coefficients bit planes are ‘1’. 

However, fortunately, the BPGC algorithm can be ea

odeling techniques to explore the spatial correlation of the input signal. In fact, 

the extension work on MPEG-4 Audio Scalable Lossless Coding [27] also 

includes the idea of combining the context technique with the BPGC algorithm, 

which is called the Context-based Bit Plane Arithmetic Code (CB-BPAC) method. 

CB-BPAC improves coding efficiency by exploiting the dependencies of the 

probability distribution of the bit plane symbols of residual IntMDCT coefficients 

to their frequency locations, the significance states of their adjacent spectral 
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samples, and their relationship to the lazy plane parameter L. The reported overall 

improvement in lossless audio coding performance is 0.83%. 

Thus, if the image context modeling techniques are combined with the BPGC 

alg

3.2. Context modeling 

As mentioned before, the BPGC algorithm specifies a static probability model for 

the source samples better, 

sp

3.2.1. Distance to lazy bit plane 

 scalable image coder. The 

de

orithm, it may bring a scalable image coder with efficient compression and also 

low complexity.  

the bits in coefficient bit planes, where the bit probability varies according to the 

distance of the bit plane to the lazy bit plane (D2L).  

In order to make the static probability model fit 

atial correlation is explored by considering the coefficient neighborhood 

significance contexts. So, firstly, the probabilities of the bits in different bit planes 

differ from each other by having different D2L. And secondly, for a given bit 

plane, bits probabilities are no longer the same and they are determined by their 

neighborhood coefficients’ significance contexts. 

There are 7 D2L contexts used in the proposed

tailed descriptions of these contexts are listed in Table 3-1. D2L context 0 

represents the lazy bit planes that have the D2L value equal or less than -3, and the 

probability assigned for bits belonging to this context is 1/2. Contexts 1 to 6 are 

for the non lazy bit planes and these bit planes are assigned with skew bit 
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probabilities. Note that in Table 3-1 we can see that D2L context 6 is for those bit 

planes with D2L greater or equal than 3. Those bit planes which have larger D2L 

are not assigned new contexts. This is because for a Laplacian distributed source, 

most of the mth bit planes (the most significant bit plane) have D2L less than 4. 

Additionally, for those bit planes with D2L greater than 3, the bit probability is so 

small that if implemented by integer arithmetic coding they can be approximated 

as the same integer. Grouping them together can reduce the complexity of the 

context code book. 

Table 3-1 D2L contexts 

Context No. 0 4 5 6 1 2 3 

D2L ≤-3 -2 -1 0 1 2 ≥3 

Note that th erence from

di

ple of the bit plane coding relating to the D2L concept is given in 

ere is a little diff  the BPGC static probability model we 

scussed before. In the previous discussion, we considered all the bit planes 

which have a D2L less than 0 as lazy bit planes. However, it is found in our 

experiments that for image wavelet coefficients, the bits in some of the bit planes 

which are near the lazy bit plane L but have a lower order do not appear to have a 

uniform distribution. In order to model the wavelet coefficients more accurately, 

they should be assigned with skew probabilities similar to those bit planes which 

are of higher order than the lazy bit plane L, but obviously not as skewed as those 

bit planes. 

  An exam

Table 3-2.  
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Table 3-2 D2L context bit plane coding examples 

Context No. 6 5 4 3 2 1 0 
D2L , -4, -5, … 3 2 1 0 -1 -1 -3

m:8  L:6  8 7 6 5 4 3, 2, 1, 0 
m:9  L:6 9 8 7 6 5 4 3, 2, , 0 1

7 6 5 4 3 2 1, 0 

cally, the m  of  D

m:7  L:4 

Basi ore the number  the 2L contexts, the more accurate the 

model is. However, larger number of contexts leads to larger probability 

codebooks (lists of bit probabilities), and increasing the probability codebooks 

will not result in significant improvement in compression performance. 

consideration is the significant states 

of the neighborhood coefficients. Many image compression systems design 

delicate sample neighborhood contexts. Part of the neighborhood contexts defined 

in EBCOT [7] is included in the proposed scalable image coder. 

3.2.2. Neighborhood significant states 

Another context which should be taken into 

 

Figure 3-4 Eight neighbors for the current wavelet coefficient 

  The eight adjacent neighbors of the curre

3-4. Two of them are horizontal neighbors h; the two vertical neighbors are v; and 

nt coefficient are illustrated in Figure 
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d indicates the four diagonal neighbors. 

When encoding, each coefficient has an associated binary state variable named 

significance state. Significance state variables are initialized to an insignificant 

sta

 have so many context vectors. These are clustered 

in

 

ne

te of 0, and may change to a significant state of 1 during the process of bit 

plane coding. The significance state context for a given current coefficient is the 

binary vector consisting of the significance states of its eight neighbor coefficients. 

Any neighborhood coefficient which lies outside of the independent code block is 

considered as insignificant.  

In general, the given coefficient may have 28 = 256 possible context vectors. 

However, it is not practical to

to a small number of contexts according to the rules specified in Table 3-3 and 

Table 3-4. Similar to bit plane coding in EZW, SPIHT and EBCOT algorithm, the 

proposed coder includes a significance coding pass and a magnitude refinement 

coding pass for a certain bit plane and each of them is specified a list of contexts. 

The contexts included in the significant coding pass are listed in Table 3-3. As 

shown in the table, there are 9 contexts defined based on how many and which

ighbor coefficients are significant. In addition, the mapping of the neighborhood 

significance states to the contexts also depends on which subband these 

coefficients are in, i.e., because different subbands have different edge properties. 

The HL subband tends to be vertical oriented edge; the edge in the LH subband is 

mostly horizontal; and the HH subband consists of diagonal edges.  
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Table 3-3 Contexts for the significant coding pass (if a coefficient is si
given a 1 value for the creation of the context, otherwise a 0 value; - mean

gnificant, it is 
s do not care) 

LH subband (also used for LL 
subband) (vertically high-pass) 

HL subband 
(horizontally high-pass) 

HH subband 
(diagonally high-pass) 

context ∑h ∑v ∑d context ∑h ∑v ∑d context ∑(h+v) ∑d 
8 2 - - 8 - 2 - 8 - ≥3 
7 1 ≥1 - 7 ≥1 1 - 7 ≥1 2 
6 1 0 ≥1 6 ≥1 6 2 0 1 0 
5 1 0 0 5 0 1 0 5 ≥2 1 
4 0 2 - 4 2 0 - 4 1 1 
3 0 1 - 3 1 0 - 3 0 1 
2 0 0 ≥2 2 0 0 ≥2 2 ≥2 0 
1 0 0 1 1 0 0 1 1 1 0 
0 0 0 0 0 0 0 0 0 0 0 

Table 3-4 shows the three contexts used in the m itude finem cod  

pa  The agnitude refinement ding ss e odes e bi from c fficients 

which are already significant in the previous bit planes. The contexts used are 

determined by the summation of the significance states of the eight neighbors and 

also depend on whether this coefficient is magnitude refined in the previous bit 

planes or not. Unlike the contexts used in the significant coding pass which are 

differently defined in subbands because of edge orientation, the refinement 

contexts are similar among all the subbands and thus are clustered together to only 

3 contexts. 

xt ∑h + ∑v + ∑d First refinement for this coefficient 

agn  re ent ing

ss.  m co pa nc  th ts oe

Table 3-4 Contexts for the magnitude refinement pass 

Conte

0 - false 
1 ≥1 true 
2 0 true 
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In E lgorithm, there are also 5 contexts designed for sign coding, which 

is determ d by the significance states and the positive or negative sign symbols 

of the four horizontal and vertical neighbors [6][7]. However, in the BPGC model, 

sig

ding pass and 3 contexts for the 

algorithm to the proposed coder, Context-based BPGC (CB-BPGC). Similar to 

oder that is applied after 

BCOT a

ine

n bits are simplified as uniformly distributed in order to reduce computational 

complexity. No contexts are specified for sign coding, and they are output directly 

to the coded bitstream without any compression. 

  As described above, we modify the simple BPGC probability model in Section 

3.1.1 by combining with the neighborhood contexts. Except for the 7 D2L 

contexts, we add 9 contexts for the significant co

magnitude refinement coding pass. Codebooks which contain these probabilities 

related to the D2L and neighborhood contexts are trained offline from large sets of 

code blocks of natural image wavelet coefficients. They are then pre-saved in both 

the encoder and the decoder as the prior knowledge for compression. 

3.3. Context-based Bit Plane Golomb Coding 

By incorporating the image context modeling techniques, we extend the BPGC 

EBCOT, CB-BPGC acts as an embedded image entropy c

the wavelet transform and quantization like in the standard JPEG2000. CB-BPGC  

differs from EBCOT mainly in the entropy coding Tier 1 block coding and uses 

the same Post Compression Rate Distortion Optimization algorithm (PCRD) as in 

EBCOT Tier 2 to organize the bitstream after embedded block coding. 
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Figure 3-5 Context based BPGC encoding a code block 

The process of embedded block coding of a code block coefficients is 

illustrated in Figure 3-5. As shown in the figure, the first step is to calculate the 

lazy bit plane parameter L. After finding L, a procedure of block classification is 

ap

finement coding pass (MAR) and then 

plied in order to model the individual code blocks in a better way, which we 

will discuss later. After classification, CB-BPGC starts bit plane coding from the 

most significant bit plane m. The scanning order is the same as described in 

EBCOT, stripe by stripe in a raster order.  

According to their D2L contexts, for non lazy bit planes whose D2L context 

numbers are not 0, CB-BPGC applies the three fractional bit plane coding passes, 

significant coding pass (SIG), magnitude re
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clear up coding pass (CLU), bit plane by bit plane, to get a finer embedded 

bitstream. The static binary arithmetic coder then compresses all these bits with 

the look-up probabilities from the codebooks.  

After encoding all the non lazy bit planes, CB-BPGC simply outputs the raw 

bits in the lazy bit planes. In order to guarantee fine grain scalability, the coder 

fir

ok-up 

pr

nt for code 

bl

0, are mainly blocks in the higher frequency and 

st outputs those bits with corresponding coefficients which do not become 

significant in the previous bit plane (significant coding), and secondly adds the 

bits from the coefficients which are already significant (refinement coding). 

The decoder then simply mimics the encoding process and decodes the bits in 

bit planes according to the compressed bitstream and the corresponding lo

obability. It should be pointed out that in CB-BPGC the encoding process 

encodes code blocks with the lazy bit plane parameter L and the block 

classification parameter σ. These parameters are not directly accessible to the 

decoder. Thus, they have to be transmitted to the decoder as side information. In 

our implementation, these parameters are included in the packet header bitstream 

when the current code block is included in the bitstream the first time. 

We will now start to discuss the block classification process. Observations in 

our experiments indicate that bit probability codebook is slightly differe

ocks with different features and to assign different probability codebooks to 

those classes is very important.  

For example, code blocks with quite small lazy bit plane parameter L, 

especially those blocks with L < 
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hi

e

 types in order to model the coefficients better. For the SIG 

bl

r a given bit 

pl

gher resolution subbands. They often consist of mainly values around zero, but a 

few of these coefficients have very large magnitude. These blocks have very low 

entropy and are called LOWE blocks. The D2L and neighborhood significance 

state contexts related bit probabilities of the LOWE blocks are quite different 

compared to those blocks with L ≥ 0, called SIG blocks, which contain many 

coefficients with large magnitude and these coefficients have much more 

exponential-like distributions. Diff rent codebooks should be applied to these 

different block types. 

Furthermore, both the SIG and LOWE blocks can be classified into more 

specific kinds of block

ocks, three classes appear with slightly different probability codebooks. An 

example of these classes is illustrated in the first row of Figure 3-6.  

The three 64×64 blocks in the figure have the same most significant bit plane m 

= 6 and the same lazy bit plane parameter L = 3, which means that fo

ane they have the same D2L value. But the left block is smooth, and the 

coefficients with large magnitude spread over the whole block. The middle one 

seems more textural, where the coefficients with large magnitude appear in small 

irregular clusters and so do the coefficients with small magnitude. The right block 

then contains obvious edges, where edges divide the block into smooth regions 

with large magnitude coefficients or small magnitude coefficients. Because of 

these distinct local properties, these block coefficients have different 

neighborhood significance contexts related bit probabilities, i.e. these three classes 
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should have different codebooks. 

           
  

          
(a)                   (b)                  (c) 

Figure 3-6 Example of three types of SIG code blocks with size 64×64 (the first row, 
coefficients range [-127, 1 hite color represents positive large magnitude data and 
black color in m matrixes 

(8×8) (the second row): (a) σ = 1.3330; 

 

calculate the most signific x,y b-block (x, y indicate the 

su

27], w
dicates negative large magnitude.) and their corresponding sub

smooth block, σ = 0.4869; (b) texture-like block, 
(c) block with edge, σ = 2.2537. 

If each block in Figure 3-6 is divided into smaller 8×8 sub-blocks, and we

ant bit plane subm  of each su

b-block horizontal and vertical indices respectively) as shown in the second row 

of Figure 3-6, we can see that the smooth block has a smaller σ, the textual block 

has a median σ and the edge block has a larger σ, where σ is the standard 

deviation of the subm array given by,  

( )21 subm submσ = −∑                 (3.12) ,
,1 x y

x yN −

,
1 n m

x y
x y

subm subm
n m

=
× ∑∑                  (3.13) 
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Similarly, LOWE blocks also can be divided into tw

texture-like one) according to different σ values as shown in Figure 3-7. 

o classes (smooth one and 

               
  

              
 (a)                            (b)) 

Figure 3-7 Example of two types of LOWE code blocks with size 64×64 (the first row, 
coefficients range [-63, 63], white positive large magnitude data and 
black color indicates ing subm matrixes 

to classify all the blocks. Blocks with the same class share the same codebook 

discussed in the last subsection. We can see that the classification of the blocks 

according to the parameter σ is very coarse. Obviously, some misclassification 

may happen. However, the classification measurement based on parameter σ is 

very simple and is practical to be implemented in the image compression systems. 

The proposed coder CB-BPGC is implemented with the well known Java 

 color represents 
 negative large magnitude.) and their correspond

(8×8) (the second row): (a) smooth block, σ = 0.9063; (b) texture-like block, σ = 1.7090 

The thresholds of the parameter σ for both SIG and LOWE blocks are then trained 

3.4. Experimental results 
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implementation of the JPEG2000 standard JJ2000 [11], where a different block 

coding is used in CB-BPGC compared to JPEG2000. The codebooks are trained 

from a large number of natural image wavelet coefficient code blocks with size 

64×64. A typical set of grayscale test images of JPEG2000, such as lena, fruits, 

cafe, etc, are used to evaluate the coding performance of the CB-BPGC coder 

compared to JPEG2000. 

pression performance at different code block 

6×16 for both the JPEG2000 standard and the proposed 

CB-BPGC coder. The images are encoded together with the 5 level wavelet 

decomposition of the reversible 5/3 LeGall filter. A similar coding performance 

comparison for the images compressed by the irreversible 9/7 Daubechies filter is 

illustrated in Table 3-6.  

The numbers of bits per pixel for each losslessly compressed image by 

JPEG2000 and CB-BPGC are listed in both tables. The positive numbers in the 

percentage column indicate the percentage of CB-BPGC better than JPEG2000 

and the negative ones are the reverse.  

The average compression results show that CB-BPGC is more efficient than 

JPEG2000. For the reversible wavelet 5/3 filter, CB-BPGC outperforms 

JPEG2000 by 0.75% for code block size 64×64, 1.40% for code block size 32×32 

and 2.56% for block size 16×16 on average. For the irreversible wavelet 9/7 filter, 

3.4.1. Lossless coding 

Table 3-5 shows the lossless com

sizes: 64×64, 32×32 and 1
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CB-BPGC is better than JPEG2000 by 1.06% for code block size 64×64, 1.69% 

for code block size 32×32 and 2.83% for code block size 16×16 on average. 

Note from the tables that the compression performance is especially improved 

for those images which seem harder to compress, e.g. baboon and cafe. For those 

co

% better on average 

fo

mplicated texture-like blocks, e.g., the fine hair in baboon and the chaotic 

buildings and tables in cafe, the weaker performance of the adaptive coder arises 

from its inability to fully exploit context behaviors because of the likelihood of 

greater variability between block coefficients. As such, the CB-BPGC, which 

simply provides static bit probabilities according to the D2L, the neighbor 

significance context and the block type parameters, has an edge over the adaptive 

coder as the former is insensitive to such context variations. 

In addition, JPEG2000 loses more efficiency in the case of smaller code block 

size, e.g. when code block size is 64×64, CB-BPGC is 0.75

r the 5/3 filter but for block size with 16×16, CB-BPGC is 2.56% better. When a 

smaller block size is used, the number of the coefficients to be encoded is less. 

The adaptive coder has to restart context adaptation procedure for each code block 

because of independent block coding; therefore, the number of coefficients in the 

smaller code block may not be sufficient for the adaptive coder to adapt to the 

block properties well before the end of encoding process.  
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Table 3-5 Comparison of the lossless compression performance for 5 level wavelet decomposition of the reversible 5/3 LeGall 
DWT between JPEG2000 and CB-BPGC (bit per pixel) 

64×64  32×32 16×16 
Images  

    
Resolution

J2K CB-BPGC Percentage J2K CB-BPGC Percentage J2K CB-BPGC Percentage

baboon 500×480 6.166 6.020      2.36% 6.277 6.106 2.72% 6.626 6.412 3.22%

barb 720×576 6.249 6.143      1.69% 6.367 6.231 2.13% 6.728 6.553 2.61%

fruits 640×512 4.149 4.168      -0.46% 4.245 4.229 0.38% 4.538 4.451 1.91%

goldhill 720×576 4.645 4.609      0.78% 4.741 4.674 1.42% 5.058 4.937 2.39%

lena 512×512 4.620 4.568      1.12% 4.714 4.629 1.82% 5.022 4.871 3.01%

monarch 768×512 3.845 3.894      -1.28% 3.944 3.940 0.08% 4.237 4.150 2.04%

woman 512×640 4.238 4.234      0.10% 4.329 4.306 0.54% 4.619 4.532 1.89%

café 1024×1280 5.673 5.570      1.80% 5.791 5.671 2.07% 6.148 5.966 2.95%

tool 1280×1024 4.402 4.414      -0.28% 4.509 4.473 0.79% 4.826 4.708 2.44%

actors 1280×1024 5.408 5.320      1.62% 5.522 5.409 2.05% 5.873 5.690 3.12%

average        4.940 4.894 0.75% 5.044 4.967 1.40% 5.368 5.227 2.56%

57 
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Table 3-6 Comparison of the lossless compression performance for 5 level wavelet decomposition of the irreversible 9/7 
Daubechies DWT between JPEG2000 and CB-BPGC (bit per pixel) 

64×64  32×32 16×16 
Images  

    
Resolution

J2K CB-BPGC Percentage J2K CB-BPGC Percentage J2K CB-BPGC Percentage

baboon 500×480 4.924 4.819      2.13% 5.024 4.895 2.56% 5.342 5.179 3.05%

barb 720×576 4.993 4.893      2.00% 5.098 4.979 2.33% 5.421 5.267 2.84%

fruits 640×512 2.606 2.609      -0.11% 2.676 2.672 0.13% 2.893 2.844 1.70%

goldhill 720×576 3.258 3.242      0.49% 3.345 3.304 1.21% 3.616 3.531 2.37%

lena 512×512 3.171 3.124      1.47% 3.253 3.180 2.24% 3.516 3.395 3.43%

monarch 768×512 2.134 2.145      -0.50% 2.503 2.189 0.85% 2.756 2.356 2.83%

woman 512×640 2.654 2.641      0.48% 2.723 2.692 1.12% 2.943 2.888 1.88%

café 1024×1280 4.313 4.244      1.60% 4.418 4.336 1.87% 4.735 4.605 2.76%

tool 1280×1024 2.829 2.800      1.02% 2.917 2.856 2.11% 3.172 3.052 3.78%

actors 1280×1024 4.071 3.988      2.04% 4.172 4.067 2.53% 4.481 4.316 3.69%

average        3.495 3.451 1.06% 3.613 3.517 1.69% 3.888 3.743 2.83%
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The CB-BPGC coder which uses static coding does not have such problems. In 

fact, when the code block is smaller, the CB-BPGC appears to model the 

coefficients better. The estimation of the lazy bit plane parameter L will be more 

accurate. For example, for blocks with edges in Figure 3-6, if the block size is 

specified as 16×16, i.e., there are 8 code blocks in this 64×64 image, some of 

these 16×16 blocks will be classified as smooth. These smooth 16×16 blocks with 

many larger magnitude coefficients will have larger lazy bit plane parameter L 

compared to those with smaller L and also smaller m (the most significant bit 

plane parameter). This possibly makes the compression more efficient than that 

for block size 64×64. 

Table 3-7 Image Cafe (512×640) block coding performance, resolution level 0~4, 31 code 
blocks (5 level wavelet reversible decomposition, block size 64×64) 

 Numbers of Bit planes Byte saved 

All bit planes 230 1655 

Non-lazy bit planes 159 1235 

Lazy bit planes 71 420 

Table 3-7 gives an example for the bit plane compression results of the 

coefficients in image cafe levels 0~4 decomposed subbands. For the non-lazy bit 

planes, CB-BPGC removes more redundancy by using the proposed model and 

therefore saves bytes in compression. The lazy bit planes performance in the table 

also shows that it is more efficient to output the raw bits in these bit planes instead 

of adaptive coding. This is corroborated by the coding performance comparison of 

JPEG2000, JPEG2000 with lazy coding, and CB-BPGC given in Table 3-8. 

As shown in Table 3-8, for most of the test images, JPEG2000 performs better 

when its lazy coding mode is invoked, and CB-BPGC performs better than the 

JPEG2000 with lazy coding. This is because although JPEG2000 has lazy coding 
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mode to directly output these raw bits in the lower order bit planes (fixed 4 bit 

planes after the most significant bit plane), it has no systematic way to tell from 

which bit plane a lazy coding is more efficient. However, in CB-BPGC, the lazy 

bit plane parameter L gives an approximate measurement for that. 

Table 3-8 Comparison of lossless coding performance (reversible 5 level decomposition, 
block size 64×64) of JPEG2000, JPEG2000 with lazy coding and CB-BPGC 

Images Size J2K J2K with lazy 
coding CB-BPGC 

baboon 500×480 184966 182601 180604 
barb 720×576 323931 319238 318441 
fruits 640×512 169941 169946 170734 

goldhill 720×576 240772 239028 238908 
lena 512×512 151389 150561 149689 
café 1024×1280 929388 926601 912618 

actors 1280×1024 886005 882280 871694 
 

3.4.2. Lossy coding 

The lossy compression performances of the test images lena, baboon, and actors 

at code block sizes 64×64 and 16×16 are illustrated in Figure 3-8.  

They are compressed by the irreversible Daubechies 9/7 filter at 5-level 

decomposition. The figure shows that the lossy compression performance of 

CB-BPGC is comparable to that of JPEG2000. The PSNR of CB-BPGC is about 

0.1dB for bitrate of 1 bpp and about 0.25dB for bitrate 2bpp on average for code 

block size 16×16. CB-BPGC outperforms JPEG2000 in terms of PSNR at high bit 

rates, but at very low bit rates, JPEG2000 is better.  

It is probably because these image wavelet transformed coefficients in the LL 

subband are not near Laplacian distributed. Histogram examples of the 

coefficients in the LL subband of image lena and peppers are shown in Figure 3-9. 
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(a) baboon (500×480) block size: 64×64 

 

(b) lena (512×512) block size: 64×64 
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(c) baboon (500×480) block size: 16×16 

 

(d) actors (1280×1024) block size: 16×16 

Figure 3-8 Lossy compression performance 
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Figure 3-9 Histogram of coefficients in the LL subband of image lena 512×512 (top) and 
image peppers 512×512 (down) (Daubechies 9/7 filter, 3 level decomposition) 

As can be seen in the figure, the coefficients do not peak around zero value but 

spread over a large range. The BPGC model which is suitable for Laplacian 

distribution cannot model them well. However, the inefficient coding of the LL 

subband coefficients in CB-BPGC significantly affects lossy compression because 

the LL subband always holds the most important information and they almost 

always have the priority to be included in the embedded bitstream. Those low 

bitrate compressed images primarily contains information from the LL subband. 

Another possible reason for the modest lossy performance is that the sign bits in 
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CB-BPGC are uncoded. However, there is likelihood of higher redundancy in the 

sign bits of the lower frequency subbands, which is left unexploited. Therefore, 

this also results in compression inefficiency at lower bit rates. 

3.4.3. Complexity analysis 

We briefly analyze the complexity issues of the proposed CB-BPGC coder. 

Generally speaking, CB-BPGC has a lower complexity than JPEG2000’s entropy 

coder EBCOT.  

As mentioned in Section 3.3, CB-BPGC and EBCOT utilize a similar process 

of entropy coding by separating it into block coding and post-processing bitstream 

organization. They differ mainly in the entropy coding Tier 1 block coding part, 

which is the most time consuming part in JPEG2000. The runtime percentages of 

grey scale image lossless and lossy encoding are reported to be about 71.63% and 

52.26% respectively in [30] . 

Table 3-9 Average run-time (ms) comparisons for image lena and baboon (JPEG2000 
Java implementation JJ2000 [11] and Java implementation of CB-BPGC) 

lena (512×512) baboon (500× 480) 
 lossless  

compression
lossy 

at 1bpp 
lossless  

compression 
lossy 

at 1bpp 

JPEG2000 block coding 537.18 511.03 582.89 559.16 

CB-BPGC block coding 452.55 423.36 492.81 460.18 

JPEG2000 encoder 752.43 954.33 811.43 1044.87 

CB-BPGC encoder 667.25 867.54 723.29 945.95 

Runtime pencentage saved 
for entire encoding 11.32% 9.09% 10.86% 9.47% 

 

Table 3-9 lists the runtime profiles for grey scale images lena and baboon 

encoded by both the proposed CB-BPGC coder and JPEG2000. Both lossless 

64 



compression and lossy compression at a typical bit rate of 1 bpp are tested. The 

two encoders apply 5-level wavelet decomposition at code block size 64×64. They 

are both implemented in Java language (JBuilder). The testing platform is the 

IBM laptop T42 with 256M RAM 1.6G Hz. Every number in the table is the 

average results of 200 runs under the same parameters. 

Experimental results show that CB-BPGC consumes about 84.58% of the 

runtime of EBCOT Tier 1 block coding for the lossless compression mode and 

82.74% for the lossy compression at bitrate of 1 bpp. For the whole encoding 

process, about 11.6% of the lossless encoding time and 9.28% of the lossy 

encoding time are saved in CB-BPGC for grey scale images lena and baboon. 

The possible reasons for the reduced runtime of CB-BPGC are as follows. First, 

directly outputting the sign bits and bits in the lazy bit planes reduces some burden 

of the context modeling in CB-BPGC. As shown in Table 3-7 cafe example, for 

the levels 0-4 code blocks, 30.9% of the bit planes are directly transmitted lazy bit 

planes (D2L ≤ 3). The complexity for these bit planes is obviously reduced 

relative to adaptive binary arithmetic encoding in JPEG2000. In addition, we can 

further reduce the complexity for the lazy bit planes by letting more bit planes be 

lazy bit planes, for example, bit planes with D2L ≤ -1, where 57.8% of the bit 

planes in the cafe example can be directly output. Experiments also show that the 

average lossless coding performance is still better than EBCOT by 0.73% and 

2.49% for block sizes of 64×64 and 16×16 respectively. This tells us that by 

sacrificing a little coding efficiency, computation complexity could be much 

reduced for these bit planes.  

Second, the static arithmetic coder is always simpler and of lower computational 

complexity than the adaptive arithmetic coders by avoiding the probability 
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adaptive procedure. A recent arithmetic coding complexity scheme [31] shows 

that the encoding time of a static arithmetic coder is about 58.6% of the MQ coder. 

Since a static arithmetic coder is used in CB-BPGC while EBCOT uses the 

adaptive MQ coder, a reduction of computation complexity of CB-PBGC is also 

achieved. 

Additionally, the inclusion of CB-BPGC’s special processing steps, the 

calculation of the lazy bit plane parameter and the code block classification have 

negligible influence on complexity increase. The lazy bit plane parameter 

calculation only needs the absolute sum of the block coefficients and the number 

of the block coefficients. In the process of block classfication, the calculation of 

the sub-blocks’ most significant bit plane numbers can be carried out when the 

sum A is determined. The classification is then simply by several threshold 

comparison. 

3.5. Discussion 

In this chapter, we present the proposed CB-BPGC coder for scalable image 

compression based on the statistical characteristics of the wavelet coefficients. By 

combining the embedded bit plane coder BPGC with context modeling techniques, 

CB-BPGC outperforms JPEG2000 for the lossless compression, and obtains 

comparable lossy compression performance. In addition, computational 

complexity of the CB-BPGC is lower than JPEG2000 and the complexity of 

CB-BPGC can be further reduced by reducing the number of D2L contexts. 

Generally, lossless compression benefits significantly from efficient lazy bit 

plane coding. Coefficients from the reversible wavelet filter contains low order bit 

planes full of uniformly distributed bit symbols, which contain the detailed 
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information and are reserved in order to guarantee losslessly reconstruction. For 

images with complicated textures, these bit planes consume a large portion of the 

codestream, where the bit symbols 0 and 1 have probabilities of 1/2 and they are 

nearly uncompressible. Compared to the method of adaptive arithmetic coding of 

these symbols, which blindly adapts to these equal probable symbols, determining 

the bit plane parameter L according to the block statistical property and then 

directly transmitting these raw bits in the lazy bit planes will make the encoding 

process more simple and efficient. 

However, for lossy compression, CB-BPGC only provides modest 

improvement compared to JPEG2000. It is well known that higher order block 

coefficients bit planes have skew probabilities, i.e. most of the symbols are 0 and 

they are much spatially correlated. Hence, bits in those bit planes have lower 

entropy and are more compressible. The adaptive coding methods are then 

suitable for compressing them. The proposed CB-BPGC probability model for 

those bit planes carry out compression from another perspective by assigning 

fixed look-up probabilities from the bit plane probability codebooks. However, 

because of the inefficient coding of the LL band coefficients, whose codestream 

often has the priority to be included in the final embedded bitstream, CB-BPGC 

achieves only comparable lossy compression performance. 

As the modeling and ordering of the block coefficients is very important in 

image compression systems, there are also possible ways to improve compression 

of the CB-BPGC algorithm. As discussed in Section 3.4.1, CB-BPGC performs 

much better for those code blocks with smaller block sizes where the lazy bit 

plane parameter and the assigned bit probabilities more closely match the real 

situations. Larger sub-blocks require less side information but the static bit 
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probability model in CB-BPGC may lose some efficiency because of the variation 

of the local coefficients distribution properties. On the other hand, smaller 

sub-blocks are more accurately modeled by CB-BPGC, but require more side 

information to accompany all the smaller sub-blocks. Thus there is a trade-off that 

would yield a suitable configuration to achieve the best compression performance. 

The neighborhood significant state context modeling can also be changed in 

CB-BPGC. The adjacent coefficients context modeling in the current JPEG2000 

and CB-BPGC are the most complicated and time-consuming parts of the 

encoding process. A novel modeling and ordering of the wavelet coefficients 

method is proposed in [16]. The neighbor correlations there are modeled by the 

so-called context template which is very simple and reduces lots of computational 

complexity. This context modeling technique can be easily implemented in the 

CB-BPGC framework.
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Chapter 4. ERROR RESILIENCE FOR IMAGE 

TRANSMISSION 

Because of the increasing interest in robust image transmission over channels, 

such as wireless networks and the Internet, error resilience in image 

communications is becoming more and more important [35]. These unreliable 

wire or wireless channels may inject errors into the transmitted bitstream. 

However, a loss or damage of packets in the image delivery may lead to 

reconstructed images fully or severely damaged. Sometimes even very few errors 

can cause unpleasant block or ripple effects on the decoded images as shown in 

Figure 4-1.  

In this chapter, we first review some of the error resilient techniques designed at 

the source coding level, including the error resilience tools used in the standard 

JPEG2000. Then we present the error resilient techniques of the proposed coder 

CB-BPGC. A comparison of the error resilient performance between the 

JPEG2000 and the CB-BPGC is also included in this chapter. 

4.1. Error resilience overview 

Error resilient techniques have been studied for a long time. Methods such as 

Automatic Repeat Request (ARQ) allow requests for retransmission of the lost or 

damaged packages if dialogue between the source and the destination is possible. 

However, for most real-time applications, such mechanisms often bring 

unbearable delay or sometimes the dialogue between them is impractical to be set 

up, such as broadcast applications. Other channel coding methods such as forward 
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error correction (FEC) can reduce effects of transmission errors but with an 

increasing complexity, bandwidth or reconstruction delay. Therefore, error 

resilient techniques at the source coding level are receiving greater attention and 

are very helpful in improving robust transmission [34]. 

               

Figure 4-1 Corrupted images by channel BER 3×10-4(left: encoded by DCT 8×8 block; 
right: Daubechies 9/7 DWT, block size 64×64) 

Error resilient techniques used in image transmission at the source coding level 

attempt to generate a compressed bitstream which is not vulnerable to channel 

errors and have the ability of accurate self-detecting and correcting these errors. 

They include techniques of resynchronization, error resilient entropy coding, e.g. 

fixed length coding and reversible variable length codes, and some other error 

correction techniques. 

4.1.1. Resynchronization 

The most popular and effective error resilient scheme is resynchronization. Almost 

all the image coding systems featured with error resilience use these techniques. 

Resynchronization tools attempt to establish the synchronization between the 

encoder and the decoder when the compressed bitstream is corrupted by 

transmission errors. They localize the error positions and prevent error 

propagation. The data between a synchronization point before the error position 

and the next synchronization point are discarded [35].  
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One common solution for resynchronization is to insert some unique markers to 

the encoded bitstreams as boundaries for different layers, different spatial areas, or 

different bit planes. It is widely used in image compression systems, such as 

JPEG2000. However, compression is sacrificed a little because these markers used 

for resynchronization involve additional redundant information. 

There are also some schemes which do not need markers in the compressed 

bitstream but organize the bitstream in another way, such as the error resilient 

entropy code (EREC) described in [33], which is designed for variable length 

coded block coding. The idea of the EREC algorithm is to reorganize a group of 

variable length blocks to constant-length slots. The EREC bitstream is composed 

of N slots, each of length Si, and the decoder knows the parameters N and Si before 

decoding. EREC greatly reduces error propagation in DCT based image coding 

because of the use of fixed length slots. For these DCT blocks, the lower 

frequency coefficients are included in the beginning part of the slot. It is obvious 

that in order to increase the quality of the reconstructed image, it is preferable that 

more important information, such as the lower frequency coefficients, can be 

recovered as early as possible. As such it is advantageous to place the lower 

frequency coefficients at the beginning of the slot so that when errors occur of 

latter parts of a slot the crucial information has already been received. 

However, the EREC scheme needs a complicated algorithm to reorganize the 

bitstream into constant length slots and the organized bitstream cannot satisfy the 

scalability requirement, which is not as convenient as schemes that involve the 

addition of resynchronization markers. 
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4.1.2. Variable length coding algorithms resilient to errors 

Variable length coding algorithms are widely used in image compression systems 

because of their efficiency in terms of coding performance compared to fixed 

length coding strategies. However, unlike the fixed length entropy coder, which 

encodes every symbol with a fixed length code and enables the decoder to self 

synchronize when errors occur, the variable length coded bitstream are very 

sensitive to channel errors and it is always hard to detect the position of errors if 

no channel error detection methods are used. These errors can then propagate into 

the following long bitstream sequences and corrupt decoding of the following 

symbols. Much effort has therefore been spent on designing variable length 

coding algorithms which has the ability to detect errors and obtain self 

synchronization.  

The reversible variable length coding strategy (RVLC) is one of the approaches. 

An example of RVLC used for robust image and video transmission is presented 

in [36], where the codec has the characteristic of being decodable in two 

directions. The RVLC technique is also included in the MPEG-4 video codec to 

encode the DCT coefficients of macroblocks corresponding to texture information 

[37]. Whenever an error is detected in the bitstream, the decoder starts to decode 

from the end of the bitstream in a reverse direction to continue reconstruction. 

Hence, robustness is enhanced in the presence of transmission bit error. In 

addition, these RVLC schemes also involve little or no efficiency loss relative to 

corresponding non-reversible variable length codes. 

There is also a fast synchronization Huffman coding algorithm presented in [38]. 

The so called suffix-rich Huffman code has a reduced length of error propagation 

compared to traditional Huffman code. It is thus better self-synchronized and 
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more resilient to channel errors. 

The most popular arithmetic coding algorithm can also be modified with the 

ability for error detection. The algorithm in [39] presents an approach to introduce 

a forbidden symbol as an extra alphabet in arithmetic coding and assigned the 

forbidden symbol with a probability similar to the source alphabets. Apparently, 

the forbidden symbol is not encoded as an input symbol in the encoding process 

but is very effective in the decoding procedure. If the bitstream is corrupted, the 

arithmetic decoding procedure may enter into the interval of the forbidden symbol, 

i.e. the current decoded symbol is the forbidden symbol, and then an error is 

detected. The practice of including the extra forbidden symbol will add 

redundancy to the coding source. But the probability assigned to the forbidden 

symbol can be adjusted to balance the error detection performance and the 

compression efficiency it affects. This method is also included in the latest 

standard JPWL (JPEG2000 for wireless applications) [40] to make the MQ coder 

more error resilient. 

4.1.3. Error correction 

Except for the techniques mentioned above which refer to making the compressed 

bitstream more resilient to errors, there are also some other ways to help improve 

the quality of the corrupted images, which we call error correction or error 

concealment techniques. Error correction works as a post-processing procedure 

after the damaged bitstream is decoded into corrupted images or works together 

with the decoding procedure when the corrupted images are under reconstruction. 

One of the most commonly used methods is the spatial interpolation. In this 

technique, the lost or damaged coefficients and blocks are interpolated or 
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predicted from the neighboring correctly decoded symbols [35]. Spatial 

interpolation can be carried out both in the pixel domain, which means the 

reconstructed images from the corrupted bitstream, and the frequency domain, 

which refers to the DCT coefficients or the wavelet subbands coefficients. 

However, the interpolation will often result in smooth or blur areas and limit the 

reconstruction of the detailed information in the images, such as edges. In addition, 

sometimes it will lead to block artifacts, especially for interpolation carried out in 

the frequency domain, which greatly reduces the image quality. 

In order to recover the image details like edges, there are some error 

concealment schemes based on edge directed filters for wavelet based image 

compression, such as in [43]. The annoying ripples around the edges in the 

corrupted images can be removed by the edge directed filter and it results in more 

pleasant subjective quality images.  

In addition to techniques which conduct error correction on coefficients by 

interpolation or edge filter, schemes based on the prediction of bits in the 

coefficient bit planes have also been explored. The method in [41] proposes an 

approach to improve the error resilient ability of JPEG2000. It recovers damaged 

wavelet coefficient bit plane symbols according to its corresponding cross 

subbands undamaged coefficient bit planes. 

4.2. Error resilience of JPEG2000 

As we introduced in Section 2.7, entropy coding in JPEG2000 is achieved by a 

context based adaptive binary arithmetic bit plane coder (the MQ coder). The MQ 

coder is a variable length coding method and its encoding process is highly 

dependant on the state of the coded symbols. A single bit error in the arithmetic 
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coded bitstream can result in erroneous reconstruction. So, it is very important to 

maintain synchronization between the encoder and the decoder. To solve this 

problem, several error resilient tools are provided in JPEG2000.  

The error resilience tools adopted in JPEG2000 can be mainly classified into 

two types, one is error resilient techniques at the packet level and the other is at 

the entropy coding level [7][34]. 

In JPEG2000, wavelet subband coefficients are divided into code blocks with 

certain block size and these code blocks are encoded independently. This data 

partitioning strategy provides the possibility to prevent propagating errors 

encountered in a certain code block bitstream to the process of reconstructing 

other code blocks. 

The coded block bitstreams are then organized hierarchically in a structure of 

packets by subbands, bit planes and blocks according to spatial or quality 

scalability constraint. Segments from various blocks are collected together in a 

packet to form the packet body part and preceded by a resynchronization packet 

header where the header consist of unique markers that never included in the 

packet bodies. The use of error resilient packet header markers enables the 

decoder to reestablish block synchronization after bit errors. 

JPEG2000 also provides a mechanism where the packet headers can be 

extracted from every packet and stored in the tile header or the main header, 

which contain the most important information, such as code block truncation 

points, bit plane coding parameters and so on. These headers can be transmitted 

via a more reliable channel in an error free fashion. 

The error resilience tools at the entropy coding level of JPEG2000 includes 

termination coding for each coding pass, reset of contexts, bypass coding and bit 
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plane coding segment markers at the expense of small losses in compression 

efficiency. These mechanisms are enabled by mode variation, RESET, CAUSAL, 

RESTART, SEGMARK, ERTERM and BYPASS. Mode variations are controlled 

by flags that are included inside headers. 

The RESET mode is used to reset the context states, i.e. the probabilities used 

in the MQ coder, to their initial values at the end of each coding pass. When the 

RESET is switched off, initialization occurs only prior to the first coding pass of 

each code block. The reset of the context states may prevent the error propagation 

by reducing context dependency between coding passes. 

The CAUSAL option is defined to allow parallel processing of coding passes 

and makes the coefficient significant states updating within a single stripe. Thus in 

this mode, the coefficients within a given stripe are encoded without depending on 

the values of future stripes. 

The RESTART switch makes the MQ coder terminate at the end of each coding 

pass and restart coding at the next coding pass, which means that every coding 

pass has separately MQ encoded bitstream segment. The error occurring in the 

current bit plane may not affect the next coding pass decoding if this mode is 

specified and the length of each segment is included in the headers. When this 

mode is switched off, the MQ coder terminates coding only at the end of the 

current code block. 
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Figure 4-2 JPEG2000 Segment marker for each bit plane 

The goal of the SEGMARK mode is to provide segment separators between bit 

planes. A special four symbol code, “1010”, is inserted at the end of each clear up 

coding pass to enhance error resilience as illustrated in Figure 4-2. Whenever the 

special segment separator is wrongly decoded, it indicates that the current bit 

plane is corrupted by errors and should be discarded. 

There is also a very important mode called ERTERM. When the ERTERM is 

utilized, the encoder adopts a predictable termination policy for each coded 

segment. Then, the decoder can detect an error has occurred in the arithmetically 

coded bitsteam segment. 

The BYPASS mode is to provide reduced complexity at high bitrates by 

bypassing coding bits in the significant propagation coding passes and the 

magnitude refinement coding passes after the first 10 coding passes, i.e. from the 

(m-4)th bit plane to the least significant bit plane. These binary symbols are 

outputted in raw bits. 

When the decoder detects errors in a certain bit plane of a code block, 

JPEG2000 then replaces the current and the following bit planes of the current 

code block by zeros to prevent error propagation. Apparently, every error resilient 

tool used here makes the bitstream more resilient to errors by inserting additional 

information in the bitstream, i.e. at the expense of loss of coding efficiency. 
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4.3. CB-BPGC error resilience 

In this section, we are going to discuss the error resilient tools adopted in the 

proposed coder CB-BPGC. Most of the tools used here are based on the 

JPEG2000 error resilient tools at both the packet level and the entropy coding 

level. However, some modifications are made here. 

4.3.1. Synchronization 

Similar to JPEG2000, CB-BPGC hierarchically organizes the coded bitstreams by 

subbands, blocks and bit planes. The same resynchronization markers at the 

packet level are set up to prevent error propagation.  

 

Figure 4-3 CB-BPGC segment markers for bit planes 

Figure 4-3 illustrates the error resilience strategies used in CB-BPGC entropy 

coder for non lazy bit plane coding where three fractional bit plane coding passes 

are included. The static arithmetic coder terminates at each fractional bit plane 

coding pass to stop error propagation. The independent coding of the fractional bit 

planes also enables the so-called bit plane partial decoding which will be 

discussed in the next section. 

A segment marker “0101” is inserted after each clear up coding pass which is 

also the end of the current bit plane.  A segment marker “01” is also added when 
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each significant propagation coding pass and magnitude refinement coding pass is 

done. Whenever a mistake appears in decoding these markers, an error is detected. 

For the lazy bit planes, because the bits in the bit planes are directly output in 

two passes, namely, the significant pass and the refinement pass, there is no need 

to insert a segment marker for every coding pass. Only a segment marker “01” is 

added after each bit plane. Therefore no extra redundancy for resynchronization is 

added in CB-BPGC for error resilience. 

4.3.2. Bit plane partial decoding 

Although the error resilient tools specified in JPEG2000 provide a coded 

bitstream resilient to errors, some improvements can be made. The authors in [44] 

point out that there are dependencies among the coding passes for a certain code 

block, where partial decoding of the corrupted bitstream can be added to improve 

the error resilience performance. For example, if an error is detected in the current 

magnitude refinement coding pass, instead of setting the current and the remaining 

bit planes to zeros we can leave the decoded significant propagation coding pass 

bits. 

The basic idea of partial decoding is to decode as much as possible of the 

corrupted bitstream before discarding them. Because CB-BPGC encoded each 

coding pass in an independent way, it can be conveniently carried out with the 

idea of partial decoding. 

The mechanism used in the CB-BPGC decoder for partial decoding of the bit 

planes of the error blocks for non-lazy bit planes is illustrated in Figure 4-4. We 

denote in the figure the significant propagation coding pass as coding pass 1; the 

magnitude refinement coding pass as coding pass 2; and the clear up coding pass 
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as coding pass 3. 

 

(a) case 1 

 

(b) case 2 

 

(c) case 3 

Figure 4-4 CB-BPGC partial decoding for non-lazy bit planes (coding pass 1: significant 
propagation coding pass; coding pass 2: magnitude refinement coding pass; coding pass 3: 

clear up coding pass. “x” means error corruption.) 

  As indicated in the Figure 4-4, there are three cases based on which part of 

bitstream is corrupted. The partial decoding of each case is as follows, 

(a) Case 1:  error detected in coding pass 1, no further coding passes 1 and 3 

can be decoded, but coding pass 2 in the current bit plane can proceed. 

(b) Case 2:  error detected in coding pass 2, no further coding pass 2 can be 

decoded, but coding passes 1 and 3 in the current and following bit planes 

can proceed. 

(c) Case 3:  error detected in coding pass 3, no further coding passes 1, 2 and 3 

can be decoded. 

The partial decoding of lazy bit planes is illustrated in Figure 4-5. We denote 

the significant coding pass as coding pass 1 and the refinement coding pass as 
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coding pass 2. 

 

(a) case 1 

 

(b) case 2 

Figure 4-5 CB-BPGC partial decoding for lazy bit planes (coding pass 1: significant 
propagation coding pass; coding pass 2: magnitude refinement coding pass. “x” means 

error corruption.) 

  As shown in the figure, there are two cases which are also classified according 

to which part of bitstream is attacked. 

(a)  Case 1:  error in coding pass 1, coding pass 2 in the current bit plane can 

proceed, but no further coding passes following cannot be decoded. 

(b)  Case 2:  error in coding pass 2, no significant influence on other coding 

passes, and the coding pass itself can also be reserved because only the bit 

corrupted by error is wrongly decoded. 

Note that the error resilient PSNR gain reported in [44] is based on the 

assumption that there is an external error detection mechanism to tell the decoder 

which byte in a certain fractional bit plane is corrupted by errors, which leads to a 

more complicated partial decoding applied on the fractional bit plane level instead 

of the bit plane level, i.e. additional information outside of the JPEG2000 decoder 

helps to guide the decoder to decode much more corrupted coded bitstream. Our 

test results show that by only using the internal error detection method in 

CB-BPGC, substantial PSNR improvement can be obtained when the image is 
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transmitted through a Rayleigh channel. 

4.4. Experimental results 

The proposed error resilience tools used in CB-BPGC which is described above 

are evaluated by the set of natural testing images mentioned in Chapter 3. The 

performance result is compared to the JPEG2000 standard with the entropy coding 

level error resilient mode RESET, CAUSAL, RESTART, ERTERM, SEGMARK 

and BYPASS switched on. The compressed image bitsteam transmission is 

simulated through a wireless Rayleigh fading channel. The results provided in this 

section are obtained from 500 times realizations over the simulated channel with a 

given BER for each image in the test set. 

 

Figure 4-6 Comparison of error resilience performance between JPEG2000 (solid lines) 
and CB-BPGC (dashed lines) at channel BER 10-4, 10-3, and 6×10-3

Figure 4-6 shows the comparison of average PSNR performance between the 

CB-BPGC coder and the standard JPEG2000 at channel BER 10-4, 10-3 and 6×10-3 

for different bit rates.  

Both the encoders are set with 5-level Daubechies 9/7 wavelet decomposition, 
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bitstream with resolution-layer-component-position progression order 

organization, block size: 64×64. For both bitstreams, LL subband layers are 

protected from error corruption, where the most important information is located 

in the embedded stream and often assumed to be transmitted through a more 

reliable channel.  

As shown in Figure 4-6, CB-BPGC is more resilient to errors, especially when 

the channel error bitrate is higher. The improved PSNRs averaged for all the bit 

rates are 0.731dB, 1.514dB and 2.097dB for BER at 10-4, 10-3, and 6×10-3 

respectively.  

 

Figure 4-7 PSNR comparison for channel error free and channel BER at 10-3 for image 
lena 512×512 (left) and tools 1280×1024 (right) 

Figure 4-7 gives a further example of the average PSNR comparison of the 

error free and error corrupted decoding at BER of 10-3 for images lena and tools at 

several bit rates with code block size 64×64. As shown in the figure, the PSNR 

improvement of the CB-BPGC is 1.15 dB for image lena, 2.25 dB for image tools 

at bit rate 0.5 bpp and can be as much as 1.70 dB for image lena, 2.79 dB for 

image tools at bit rate 3 bpp. 

Subjective results of some of the images, like lena, bike, peppers, woman, etc, 
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at BER of 10-3 and 1 bpp are shown in Figure 4-8. Comparing the two 

reconstructed images, we can see that CB-BPGC gains not only in better PSNR 

performance in dBs, but also a substantial improvement of subjective visual effect. 

     

(a) Error free lena (256×256)  (b) JPEG2000 (27.002 dB)  (c) CB-BPGC (30.957 dB) 
 

     

(d) Error free bike (256×256)  (e) JPEG2000 (22.172 dB)  (f) CB-BPGC (25.901 dB) 
 

     

(g) Error free peppers (256×256)  (h) JPEG2000 (27.251 dB) (i) CB-BPGC (29.254 dB) 
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(j) Error free actors (256×204) (k) JPEG2000 (26.726 dB)   (l) CB-BPGC (28.788 dB) 

     

(m) Error free goldhill (256×204) (n) JPEG2000 (27.475 dB) (o) CB-BPGC (30.454 dB) 

     

(p) Error free woman (256×320) (q) JPEG2000 (27.730 dB)  (r) CB-BPGC (35.075 dB) 

 Figure 4-8 Subjective results of image lena (a~c), bike (d~f), peppers (g~i), actors (j~l), 
goldhill (m~o) and woman (p~r) at bit rate 1 bpp and channel BER 10-3

The improvement in error resilience performance of CB-BPGC is not only 

gained by adding the partial bit plane decoding which is used to decode the 

corrupted codestream as much as possible, but also by more efficient compression. 

As the PCRD algorithm organizes the coded bitstream according to the 

contribution of reducing distortion, i.e., in a decreasing order, more efficient 

compression enables CB-BPGC to consume less bytes to embed the coded 
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bitstream while still providing the equivalent distortion reduction. Hence, when a 

transmission error occurs, it corrupts the less important bitstream of CB-BPGC 

and the PSNR result is better. Additionally, directly outputting lazy bit planes also 

improves error resilience performance. In spite of errors that occur in the lazy bit 

plane, we can further decode the remaining coefficients because the errors are 

isolated to certain coefficients instead of propagating to the others.  

4.5. Discussion 

In this chapter, we present error resilient tools used in the proposed coder 

CB-BPGC. Compared to the JPEG2000 standard, CB-BPGC is more resilient to 

transmission errors when simulated over the wireless Rayleigh fading channel. 

The improved average PSNRs at bit rate 1bpp are 0.918dB, 1.674dB and 2.471dB 

for channel BER at 10-4, 10-3, and 6×10-3 respectively. 

  The improvement of error resilient performance in CB-BPGC is obtained from 

efficient scalable coding, bit plane partial decoding and also from direct 

transmission of the lazy bit planes. Note that in CB-BPGC each bit in the bit plane 

is entropy coded by a look-up probability from the codebook. When the 

compressed bitstream is corrupted by the channel errors, the decoder loses 

synchronization with the encoder. It is then possible for the decoder to reconstruct 

the corrupted symbols by utilizing the bit probabilities look-up from the codebook 

to estimate the lost bits. However, the estimation process should be carefully 

designed in order to avoid artifacts. 
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Chapter 5. CONCLUSION 

Wavelet based image compression schemes are widely used in scalable image 

coding, In this thesis, we present the proposed wavelet based scalable image 

entropy coder, namely, Context-based Bit Plane Golomb Coding (CB-BPGC). By 

utilizing the embedded bit plane coding algorithm, bit plane Golomb coding 

(BPGC) together with the image context modeling techniques, CB-BPGC 

explores both the global and local statistical characteristics of the wavelet 

coefficients blocks 

CB-BPGC outperforms JPEG2000 in terms of compression performance. 

Experimental results show that the proposed coder CB-BPGC achieves a 0.75% 

better lossless performance for 5-level 5/3 wavelet decomposition at block size 

64×64 and 2.56% at block size 16×16. A PSNR improvement of lossy 

compression performance is also achieved except at very low bit rates.  

Besides, because of the partial decoding, the direct transmission of lazy bit 

planes and the better compression ratio which may lead to corruptions to the less 

important bitstreams, CB-BPGC is more resilient to transmission errors compared 

to the JPEG2000 standard. The improved PSNR average performance for all the 

bit rates is 0.731dB, 1.514dB and 2.097dB for BER at 10-4, 10-3, and 6×10-3 

respectively. The subjective performance of the reconstructed images by 

CB-BPGC is also better than those of JPEG2000. 

Although the proposed CB-BPGC coder outperforms JPEG2000 on both the 

compression ratio and the error resilient performance, there are still several issues 

to be explored in the future.  
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First of all, as the distribution of the LL subband code block coefficients is not 

near Laplacian, the current CB-BPGC block coding algorithm performs not very 

good on those code blocks, thus significantly affecting the lossy compression 

performance. Better methods to encode the LL subband coefficients and also the 

sign bits should be further explored in order to improve lossy compression 

performance. 

Second, since complexity in some applications is as important as the 

compression performance, it is possible to apply simpler neighborhood context 

modeling techniques in CB-BPGC to reduce complexity. The current 

neighborhood significant state context modeling process is the most 

time-consuming part in CB-BPGC. 

Additionally, the error resilient performance in CB-BPGC may also be 

improved by including an estimation process which estimates the lost bits from 

the probability codebooks when the bitstream is corrupted by channel errors. 
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