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ABSTRACT

Design Techniques for Graph-based Error-correcting Codes

and Their Applications. (December 2004)

Ching Fu Lan, B.S., National Central University;

M.S., National Chiao-Tung University Taiwan

Co–Chairs of Advisory Committee: Dr. Krishna R. Narayanan
Dr. Zixiang Xiong

In Shannon’s seminal paper, “A Mathematical Theory of Communication”, he de-

fined ”Channel Capacity” which predicted the ultimate performance that transmis-

sion systems can achieve and suggested that capacity is achievable by error-correcting

(channel) coding. The main idea of error-correcting codes is to add redundancy to the

information to be transmitted so that the receiver can explore the correlation between

transmitted information and redundancy and correct or detect errors caused by chan-

nels afterward. The discovery of turbo codes and rediscovery of Low Density Parity

Check codes (LDPC) have revived the research in channel coding with novel ideas

and techniques on code concatenation, iterative decoding, graph-based construction

and design based on density evolution. This dissertation focuses on the design aspect

of graph-based channel codes such as LDPC and Irregular Repeat Accumulate (IRA)

codes via density evolution, and use the technique (density evolution) to design IRA

codes for scalable image/video communication and LDPC codes for distributed source

coding, which can be considered as a channel coding problem.

The first part of the dissertation includes design and analysis of rate-compatible

IRA codes for scalable image transmission systems. This part presents the analysis

with density evolution the effect of puncturing applied to IRA codes and the asymp-

totic analysis of the performance of the systems.
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In the second part of the dissertation, we consider designing source-optimized

IRA codes. The idea is to take advantage of the capability of Unequal Error Protection

(UEP) of IRA codes against errors because of their irregularities. In video and image

transmission systems, the performance is measured by Peak Signal to Noise Ratio

(PSNR). We propose an approach to design IRA codes optimized for such a criterion.

In the third part of the dissertation, we investigate Slepian-Wolf coding problem

using LDPC codes. The problems to be addressed include coding problem involving

multiple sources and non-binary sources, and coding using multi-level codes and non-

binary codes.
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CHAPTER I

INTRODUCTION

In his seminal paper [1], “A Mathematical Theory of Communication”, Shannon

defined the capacity of a communication channel which predicted the rates at which

transmission systems can transmit and receive information reliably over a noisy chan-

nel. Shannon suggested that the capacity is achievable with good channel codes. A

channel code is good in a sense that the decoders of the code at rate slightly smaller

than the channel capacity is error-free asymptotically. In his proof, Shannon used

random coding to achieve the capacity. However, from an engineering perspective,

random coding is too complex to implement because random codes lack structures.

For fifty years, researchers have been searching for practical capacity-achieving error-

correcting codes. Recently, with a reasonable complexity, LDPC and related codes

have been shown to perform only several tenths of a dB away from the capacity. In

the same paper, Shannon also presented a theorem stating that a source with entropy

H can be reliably transmitted over a channel with capacity C as long as H < C. In

principle this can be achieved by first applying a source code that reduces the rate

of the source down to its entropy and subsequently applying a channel code. In the

receiver, the channel decoder, being unaware of the type of source, outputs the most

probable codeword to source decoder. Finally, the source decoder reconstructs the

source without the knowledge of the channel statistics. The principle, which greatly

simplifies the complexity in communication system design, is known as the separation

principle [2]. However, the separation principle is an asymptotic result. The other

problem with the separation principle is that, one has to tolerate infinite delay and

This dissertation follows the style of IEEE Transactions on Communications.
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complexity. Therefore, in practical multi-media communication systems with delay

and complexity constraints, the joint source-channel coding (JSCC) strategy should

be implemented to provide acceptable performance. In the following two chapters, we

will present design techniques for graph-based error-correcting codes with application

to the JSCC problems.

The other application of error-correcting codes is distributed source coding or

Slepian-Wolf coding. Driven by the severe physical constraints in sensor networks,

there has been great interest in developing distributed signal processing algorithms to

leverage the limited power in sensors to achieve maximal system performances. One

such example is lossless distributed data compression, which was first considered by

Slepian and Wolf [3]. The Slepian-Wolf theorem determines the region of achievable

rates for compressing two correlated and physically separated sources, and recon-

structing two sources jointly at the decoder. In the case of asymmetric coding, one

source can be compressed down to its entropy while the other is encoded at the rate

equal to the conditional entropy. Since two sources are correlated, the former sources

(after decompressed) can be viewed as channel output and the latter source serves as

the side information. Therefore, the Slepian-Wolf coding problem can be considered

as a channel coding problem. Symmetric coding is achievable via time sharing.

The main idea of error-correcting codes is to add redundancy that is correlated

to the information to be transmitted so that the receiver can exploit the correlation

between the information bits and the redundancy bits and then correct or detect

errors caused by channels. There are two major classes of codes, namely, block

codes and convolutional codes. Examples of block codes are Hamming codes, Bose-

Chaudhuri-Hocquenghem (BCH) codes, Reed-Solomon (RS) codes (RS) [4] and newly

rediscovered LDPC codes. Block codes like Hamming, BCH and RS codes codes have

nice mathematical structures. However, there is a limitation when it comes to code
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lengths. A bounded-distance decoding algorithm is usually employed in decoding

block codes and, except LDPC codes, it is generally hard to use soft decision decoding

for block codes.

Convolutional codes are represented with finite state machines, in which going

from a start state to a next state is called a state transition. A sequence of state

transitions is called trellis path and a sequence of allowed state transitions constitutes

a valid trellis path. The decoder can output the most probable valid trellis in the

maximum likelihood (ML) or maximum a posteriori (MAP) sense based on received

signal. The decoding algorithms can be based on hard-decision data or soft-decision

data and produce soft output. Soft-output decoding algorithms are especially useful

in iterative decoding, in which a concatenated coding system is used and the soft

output of the decoder of a component code can be further processed by the decoder

of the other component code without loss of information due to quantization.

Both codes provide good coding gain but there is still a gap from capacity. More

coding gain can be obtained by using code concatenation. Concatenation is a scheme

first introduced by Forney [5] in which two codes, an inner code and an outer code, are

used in a serial cascade fashion. It is possible for this concatenated coding system that

decoders have the probability of error decreasing exponentially while having decoding

complexity increasing only algebraically. Later, concatenation is a key ingredient in

turbo codes which have performance very close to the Shannon limit. First appearing

in a paper by Berrou, Glavieux and Thitimajshima [6], turbo codes can achieve per-

formance very close to the Shannon limit by combining parallel concatenation, proper

choice of component codes and an inter-leaver and an iterative decoding algorithm.

The iterative decoding (processing) techniques also find their applications in a number

of related areas such as multi-user detection, equalization and synchronization [7, 8, 9].

Prompted by their impressively near-capacity performance, serial concatenated con-
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volutional codes (SCCC) [10], hybrid concatenated convolutional codes (HCCC) [11],

and other concatenated schemes are proposed and shown to provide similar coding

gain. This landmark paper has sprung a new exciting research area in coding theory,

which led to the rediscovery of Low Density Parity Check (LDPC) codes. LDPC

codes was discovered by Gallager [12] and later rediscovered by Mackay [13]. LDPC

codes be described using bipartite (Tanner) graphs which contain variable and check

nodes connected by edges. For binary codes, the modulo-2 sum of binary values con-

veyed on the edges connected to a check must equal zero. When all the variable or

check nodes have the same number of edges, the graphs are said to be regular. In

[14, 15, 16, 17], an irregular graph is used to optimized the performance. Richardson

discovered that LDPC codes exhibit a threshold phenomenon and the threshold can

be computed with a numerical technique called density evolution. The graph inter-

pretations lay the foundation for other class of codes like regular/Irregular Repeat

Accumulate (RA/IRA) codes [18, 19] and product accumulate codes [20, 21]. IRA

codes, introduced by Jin, Khandekar and McEliece [19], are another class of codes

that perform competitively with LDPC codes and turbo codes. The message-passing

algorithms, which have polynomial complexity in code length, can be applied to de-

code both LDPC and RA/IRA codes. However, IRA codes have a simpler encoding

algorithm.

Besides the progress in channel coding theory in the recent years, multi-media

transmission over various channels has quickly evolved from novelty to an important

way for information distribution. Compression is a must in image and video trans-

missions. In the past decade, great progresses have also been made in practical source

code designs. Several wavelet-based image/video coding algorithms [22, 23, 24, 25, 26]

have been developed. These algorithms have the distinct feature of being able to gen-

erate scalable (or embedded) bitstreams while offering superb coding performance.
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Moreover, scalable encoding enables progressive transmission, which facilitates de-

signing the JSCC strategy in communication systems.

In this dissertation, we will focus on the design aspect of graph-based channel

codes such as LDPC and Repeat Accumulate codes and their applications to the JSCC

problems and distributed source coding problems using channel codes. Distributed

source coding problems can be interpreted as channel coding problems in which a

good channel corresponds to a good source code. Hence, the primary interest of the

dissertation is the design of graph-based, soft iteratively decodable codes with good

performance and low complexity.

A. Organization of the Dissertation

In this dissertation, the design LDPC or IRA codes for applications such as scalable

multi-media transmission and distributed source coding are considered.

This dissertation is organized as follows.

In Chapter II, some background material is provided.

In Chapter III of the dissertation, we propose rate-compatible IRA codes in JSCC

problems. In a scalable multi-media transmission system, rate-compatible channel

codes are required to provide UEP for bits of different importance. Conventional rate-

compatible channel codes include RCPC and RCPT. In this chapter, we design rate-

compatible IRA codes and, analyze using density evolution the effect of puncturing

applied to IRA codes and the asymptotical performances of the codes applied to

scalable multi-media transmission systems. We test with two scalable image coders

(SPIHT [22] and JPEG-2000 [23]) and two scalable video coders (3-D SPIHT [24]

and H.26L-based PFGS [27]). Simulations show better results with IRA codes than

those reported in [28] with JPEG-2000 and turbo codes. The IRA codes proposed
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here also have lower decoding complexity than the turbo codes used in [28].

In Chapter IV of the dissertation, we consider designing source-optimized IRA

codes. The idea is to take advantage of the capability of unequal error protection

(UEP) of IRA codes against errors because of their irregularities. Most existing UEP

codes only provide different error rates for information bits of different importance

but fail to achieve optimal performance for a criterion other than bit error rate (e.g.

average distortion). In this chapter, we propose an approach to design IRA codes

optimized for such a criterion. We assume a cost function for the error events caused

by the decoders. The cost function is determined by the location of the first error

bit. We incorporate this cost function into channel code design and obtain IRA codes

that are optimized over a new cost function instead of probabilities of error. This

approach is applied to design IRA codes for the transmissions of SPIHT-coded images

over noisy channels. It is shown that for long codes (with one codeword for the whole

512× 512 image), the simulated results of the codes designed with our approach are

only 15% away the theoretical limit compared to 39% reported in [29]. Therefore,

compared with conventional IRA codes, the advantage of source-optimized IRA codes

is not significant, which reconfirms Shannon’s separation principle. For applications

such as the transmission of QCIF images where short IRA codes are required and

Shannon’s separation principle is no longer applicable, source-optimized IRA codes

perform much better.

Chapter V of the dissertation includes the investigation of Slepian-Wolf coding

problem using LDPC codes. The issues to be addressed include coding problems

involving the compression of multiple non-binary sources to their joint entropy and

practical code design. LDPC codes are suitable for such an application because the

correlation model can be used in the LDPC code design. In [30] and [31], with the

exploitation of the correlation between two and three binary sources, it had been
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shown that it is possible to approach the Slepian-Wolf limits with appropriate LDPC

code designs. Using chain rule for the joint entropy, we propose multi-level codes with

LDPC codes as component codes for Slepian-Wolf coding of multiple sources and a

multiple stage decoding algorithm for the codes. This chapter also presents a design

technique, EXIT charts, for non-binary LDPC codes which can be component codes

in a multi-level code for Slepian-Wolf coding of non-binary sources. Examples of code

design for four binary sources and two ternary sources are given with simulations

results that are very close to the theoretical limits.

Finally, Chapter VI summarizes the dissertation and presents concluding re-

marks.

B. Contributions of the Dissertation

This dissertation made the following contributions:

• Rate-compatible IRA Codes: Punctured turbo codes suffer from performance

loss at high rate due to excess puncturing. On the other hand, although LDPC

codes can designed individually with best performances at each rate, it is usually

difficult to obtain high rate LDPC codes with good performances via puncturing

a low rate LDPC code. Regarding the shortcoming of turbo and LDPC codes,

we propose rate-compatible IRA codes which provide good performances for a

range of rates.

• Source-optimized IRA Codes: Conventional approach to the joint source-channel

coding problems is to design channel codes and the UEP schemes separately.

We propose a novel approach which integrates the UEP scheme in channel code

design and provides performance gain over the conventional approaches.
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• Code Design for Slepian-Wolf Coding of Multiple Non-binary Sources: Previous

work regarding this problem only considers two sources. Inspired by the work

of Liveris [30], we propose an approach for Slepian-Wolf coding of multiple

non-binary sources based on the idea of multi-level coding.
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CHAPTER II

BACKGROUND

A. LDPC Codes

An (n, k) binary LDPC code is defined by an (n− k)× n sparse parity check matrix

H in a non-systematic form. Another representation of LDPC codes is using Tanner

graphs. A Tanner graph of an LDPC code, as shown in Fig. 1, is a bipartite graph

using variable nodes and check nodes to represent the columns and rows of the parity

check matrix in which the index of a non-zero entry of the matrix represents the index

of the pair of neighboring variable and check nodes. The most important parameters

that characterize an LDPC code ensemble are a pair of degree profiles, λ(x) and ρ(x).

λ(x) is given as

λ(x) =
∑

i

λix
i−1, (1)

and ρ(x) is defined as

ρ(x) =
∑

j

ρjx
j−1, (2)

where λi and ρi are the fraction of edges coming from check nodes and information

nodes incident to i edges, respectively. An LDPC code ensemble is said to be regular

if λi and ρj are one for some i and j; otherwise it is said to be irregular. For a given

pair of degree profiles, the rate corresponding to LDPC codes is

R = 1−
∑

i ρi/i∑
i λi/i

(3)

For non-binary LDPC codes, the entries in the parity matrix are elements from a

Galois field and their arithmetic operations are defined on the associated field. En-

coding is an issue for LDPC codes. However, through some arrangement on parity
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Fig. 1. Graph representation of LDPC codes.
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check matrices or having the matrices in a certain form, encoding can be done with

near linear or linear complexity with code lengths [32, 33]. Another desirable prop-

erty of channel codes is rate compatibility. Although puncturing and extending are

possible for LDPC codes, change of rate and/or length would usually require a re-

construction of the parity check matrix H and the corresponding generator matrix G

[34]. On the other hand, IRA codes are better in offering such flexibility.

B. IRA Codes

IRA codes are a generalization of RA codes introduced in [18], and as such have

a natural encoding algorithm. The Tanner graphs of IRA codes are shown in Fig.

2. There are two kind of nodes in the graph: variable nodes (circle) and check

nodes (square). There are k variable nodes on the left, called information nodes;

and there are k check nodes and n − k variable nodes on the right, called parity

nodes. The difference between LDPC and IRA codes is that in the Tanner graph of

IRA codes, the information bits {u1....uk} of IRA codes are first repeated irregularly

and the repeated information bits are interleaved. Then groups of interleaved bits

are encoded by single parity checks (SPC) and a rate-1 convolutional encoder with

generator polynomials 1/1 + D to generate parity bits as shown in the figure. Hence,

IRA codes as shown are in a systematic form and have a natural encoding algorithm.

It is also possible to construct nonsystematic IRA codes, in which only the bits

corresponding to parity nodes are transmitted. Due to the applications in this work,

we only consider systematic IRA codes. For IRA codes, we can also define a pair of

degree profiles, λ(x) =
∑

i λix
i−1 and ρ(x) =

∑
j ρjx

j−1, where λis are the fractions

of the edges connected to information nodes to which are exactly i edges connected

and ρj are the fractions of the edges connected to check nodes to which are exactly
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Fig. 2. Graph representation of IRA codes.
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j + 2 edges connected (two edges are connected to parity nodes). The rate of the

nonsystematic IRA code is easily seen to be

R =

∑
i

λi

i∑
j

ρj

j

(4)

and the rate of the systematic IRA code is

R =

∑
i

λi

i∑
i

λi

i
+

∑
j

ρj

j

. (5)

It is shown by Narayananswami [35] that IRA codes can be viewed as a special class

of LDPC codes whose parity check matrices take a particular form as shown in Fig.

3. The decoding algorithms used for LDPC codes can be applied to IRA codes as

well. In addition to having a simple encoding algorithm, it is also simple to have

good higher rate codes by puncturing a lower rate code, which is a useful property

in communication systems with ARQ protocol and scalable multi-media transmission

systems.

C. Decoding of Codes on the Tanner Graphs

The decoding of binary LDPC codes uses iterative an message-passing algorithm,

which is essentially an instance of Pearl’s belief propagation algorithm operating on

the Tanner graph of the codes. The algorithm is used to solve the probabilistic infer-

ence problems in Bayesian networks [36]-[40]. The message-passing algorithm is also

known as the sum-product algorithm [41], in which the messages are passed between

the variable and check nodes. It is shown by Wiberg [41] that if there are no loops in

the graph and the graph is finite, then the sum-product algorithm after finitely many

iteration is equivalent to a MAP decoding algorithm. Although in practice cycles are

unavoidable in an LDPC code, the sum-product algorithm (suboptimal for codes with
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Fig. 3. Parity check matrix of IRA codes.
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cycles) nevertheless performs quite well. For decoding a non-binary LDPC code, the

message-passing algorithm operates in terms of probabilities of the estimated values

of information symbols not log-likelihood ratios. It has been shown that carefully

designed LDPC codes perform just as well as turbo codes but with less decoding

complexity. The message-passing algorithm can be employed to decode LDPC and

IRA codes. For binary codes, at information, parity and variable nodes, the outgoing

messages at the nodes are updated as:

xk =
∑

i6=k

xi. (6)

For an edge connected to a check node, it can be shown that the outgoing messages

on the edge are given by the tanh rule [42]:

tanh
xk

2
=

∏

i6=k

tanh
xi

2
. (7)

where xi’s are the messages conveyed on the edges incident on the nodes.

For non-binary LDPC codes, the entries in the parity matrices are elements

from Galois field and their arithmetic operations are defined on associated field. In

decoding of the non-binary codes, messages passed in the graphs are vectors. Let

N(m) be the set of variable nodes that participate in the check node m and M(n)

be the set of check nodes that depend on the variable node n . Define qa
mn as the

probability that variable node n is a given the information obtained via check other

than m. Define ra
mn as the probability that check m is satisfied if the variable node n

is fixed at a. The update rule of the message at variable nodes is given as

qa
mn = αmnf

a
n

∏

j∈M(n)\m
ra
jn (8)
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and the update rule at check nodes is given as

ra
mn =

∑

X′ :X′
n=a

pr[Zm|X ′
]

∏

j∈N(m)\n
q

x
′
j

mj. (9)

where a is an element in GF(q).

D. Design of Code Ensembles

LDPC and IRA code ensembles are both determined by λi and ρi. Richardson and

Urbanke [14, 15, 16, 17] proposed a numerical technique called Density Evolution to

analyze LDPC code ensembles. The basic idea of density evolution is to keep track of

the evolution of probability density functions, which evolve with each iteration dur-

ing decoding, of message passed in the graph. When there are no loops in the graph,

this numerical procedure can be implemented with the Fast Fourier Transform (FFT)

and a change of measure. For a Gaussian channel, the evolving probability density

function can be described with one parameter by approximating the evolving prob-

ability density functions with Gaussian distributions. Another approach proposed

by ten Brink [43] is based on EXtrinsic Information Transfer (EXIT) charts. EXIT

charts are used to characterize with information rates the input-output properties

of variable and check nodes by treating them as individual information processing

units. One can use the charts to evaluate the performances of LDPC codes. For a

capacity-approaching code, the input-output information rate transfer curves of vari-

able nodes should not intersect with those of check nodes, i.e. fixed-point should be

avoided. With the information rate transfer curves of variable and check nodes of

different degrees, we can find a pair of λi and ρi which maximize 3 and 5 provided

no fixed points. The coding rates corresponding to the resulting λis and ρis are the

upper bound of achievable rates. Note that the bound is exact for erasure channels.
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E. Joint Source-channel Coding

When communication systems operating under a delay-constraint on a time-varying

channel, it is generally no longer optimal to design channel and source coders sepa-

rately. Given a fixed amount of resource for transmission of image or video over a

noisy channel, it is necessary to balance the amount of the parity bits used for the

protection from noise introduced by channel and the amount of the source bits used

for the quality of image or video. The algorithms for optimal allocation of channel

bits and source bits have been a very active research area.

If scalable source coders are used in the systems, we need to take into account the

characteristics of the source bitstream when considering joint source channel coding

problems. Scalability induces a sequential dependency among the compressed multi-

media source bits, calling for unequal error protection (UEP) in the form of more

protection for the beginning part of the bitstream, less for the middle part, yet still

less or even no protection at all for the last part. This is different from conventional

data communications where all bits are equally important and hence equal error

protection (EEP) suffices. UEP can be achieved by using channel codes of different

rates via puncturing a low rate channel code. The requirement for rate-compatibility

requirement restricts the puncturing rule such that all of the code bits of a higher

rate punctured code are used by the lower rate codes. In other words, higher rate

codes are embedded in lower rates codes. Therefore, only one encoder and decoder

are required at the transmitter and the receiver respectively, which reduces hardware

requirements. Traditional rate-compatible coding schemes such as convolutional codes

and turbo codes with practical constraint lengths suffer from performance loss at high

rate due to excess puncturing. The excess puncturing also causes error floors for turbo

codes, which makes the analysis of the effect of puncturing difficult. The Richardson-
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Urbanke-type analysis used for designing LDPC and IRA codes can also be applied

to evaluate the performance of IRA codes after puncturing, in which we can treat

periodical puncturing as erasures. With Richardson-Urbanke-type analysis, we are

able to design good IRA codes as UEP codes used in JSCC.

F. Slepian-Wolf Coding Problem

Consider lossless source coding. It is well-known that the rate to encode a source X1 is

at least H(X1). Suppose that we have to encode two sources (X1, X2) together. A rate

of H(X1, X2) is sufficient. A interesting question arises when these two source must be

separately encoded. It is obvious that a rate not less than H(X1)+H(X2) is sufficient.

However, in a landmark paper by Slepian and Wolf, it is shown that a total rate

H(X1, X2) is sufficient for separate encoding of X1 and X2, provided that the decoding

is performed jointly at the decoder. The proof of achievability is based on random

binning. The idea of binning is best described as follows: Choose a large number index

for each source sequence. If the set of typical source sequences is small, decoders can

recover the source sequence from the index with high probability since different source

sequence corresponds to different index. This above theorem also holds true for n

sources where a total rate of H(X1, X2, ..., Xn) is sufficient for compression of X1, X2,

..., Xn. The asymmetric Slepian-Wolf coding problem for two binary sources , X1 and

X2 (side information), can be treated as the problem of channel coding problem with

side information at the decoder. Wyner [44] suggested modelling correlations with

equivalent channels and applying the syndrome approach to the asymmetric coding

problem. Assuming asymmetric coding, from the chain rule for the joint entropy, Xi

can be encoded with a channel code at rate 1 −H(Xi|X1, X2, ..., Xi−1) and decoded

given X1, X2, ..., Xi−1 for i = 1, 2, ..., n. In consequence, we are able to relate Slepian-



19

Wolf coding problems for n sources to channel coding problems via multi-level coding.
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CHAPTER III

SCALABLE IMAGE AND VIDEO TRANSMISSION USING IRREGULAR

REPEAT ACCUMULATE (IRA) CODES WITH FAST ALGORITHM FOR

OPTIMAL UNEQUAL ERROR PROTECTION1

This chapter considers designing and applying punctured IRA codes [19] for

scalable image and video transmission over binary symmetric channels. IRA codes of

different rates are obtained by puncturing the parity bits of a mother IRA code which

uses a systematic encoder. One of the main ideas presented here is the design of the

mother code such that the entire set of higher rate codes obtained by puncturing

are good. To find the optimal unequal error protection for embedded bit streams,

we employ the fast joint source-channel coding algorithm in [45] to minimize the

expected end-to-end distortion. We test with two scalable image coders (SPIHT [22]

and JPEG-2000 [23]) and two scalable video coders (3-D SPIHT [24] and H.26L-based

PFGS [27]). Simulations show better results with IRA codes than those reported in

[28] with JPEG-2000 and turbo codes. The IRA codes proposed here also have lower

decoding complexity than the turbo codes used in [28].

A. Introduction

In the recent years, multi-media transmission over various channels has quickly evolved

from novelty to an important way for information distribution. Compression is a must

in image and video transmission. In the past decade, standards like JPEG-2000 [23],

MPEG-2/4 [46, 47] and H.26L [48] have been developed for multimedia data compres-

1 c©2004 IEEE. Reprinted with permission, from IEEE Transactions Communications,
vol. 52, pp. 1092 - 1101, July 2004.
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sion. Besides efficient compression, scalability is a desirable property for image and

video coders. A scalable bit stream can be decoded at different rates with commen-

surate reconstruction quality [26]. This means that the source needs to be encoded

only once for different quality requirements. Moreover, scalable encoding enables

progressive transmission and bandwidth adaptation. In image transmission, for ex-

ample, a receiver does not have to wait until all bits are received before decoding

the image, instead it can use additional received bits to improve the quality of the

previous reconstructed image.

In many cases, the channel is noisy and can be modelled as a binary symmetric

channel (BSC). Recently, scalable image and video transmission over both BSC and

packet erasure channels have been considered in [49, 50, 51, 52]. These schemes

generally involve embedded source coding [22, 23, 24], channel coding [53, 54] and

joint source-channel coding (JSCC) [49, 55]. In [29], Sherwood and Zeger showed the

effectiveness of using set partitioning in hierarchical trees (SPIHT) coder [22] and

equal error protection with rate-compatible punctured convolutional (RCPC) codes

[53] for image transmission over the BSC channel. In [28], for the same channel, the

source and channel codes were updated to JPEG-2000 and turbo codes, respectively,

and unequal error protection (UEP) was used to provide more efficient error control.

Along with the advances in source coding there have been exciting new develop-

ments in channel coding – from turbo codes in the mid-1990s to the recent rediscovery

of low-density parity-check (LDPC) codes. In 2000, Jin et al. introduced a class of

codes closely related to LDPC codes called irregular repeat accumulate (IRA) codes

in [19]. Like turbo codes (and unlike LDPC codes), IRA codes can be encoded easily

in linear time. Like LDPC codes (and unlike turbo codes), they are amenable to an

exact Richardson-Urbanke type analysis [14]. IRA codes also perform very close to

the capacity limit on AWGN channels.
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In this chapter, we propose a JSCC technique for scalable image and video trans-

mission over BSC channels whose crossover probability (COP) can change in time.

By using UEP, we find the optimal source-channel coding trade-off to provide error

robustness for transmission of scalable bit streams. A novel algorithm for comput-

ing the required channel coding rate for a given source and COP is proposed. For

the channel coding part, we propose to use IRA codes of different rates obtained by

puncturing the parity bits of a mother IRA code. The novelty is that only the degree

profiles of the mother IRA code are optimized such that the entire range of higher

rate codes obtained by puncturing the mother code is still good. We show that the

proposed JSCC scheme can be analyzed asymptotically (in length) in terms of mean

square error (MSE). Simulation results for JPEG-2000 image transmission show that

our proposed solution is uniformly better than the scheme in [28], with significantly

lower decoding complexity for the channel codes, and significantly lower complexity

for finding the optimal UEP solution. We also apply our framework to transmit 3-D

SPIHT and H.26L-PFGS video over BSC.

The rest of this chapter is organized as follows. Section B overviews scalable

source coding with examples of the different coding algorithms that we use in this

work. Section C presents the design and analysis of the proposed punctured IRA

codes. Section VI explains the JSCC scheme and the fast UEP algorithm. Section D

presents simulation results and Section E summarizes the chapter.

B. Scalable Source Coding

1. Image Coding

The SPIHT algorithm [22], like the EZW coding algorithm [26], is based on the idea

of using multi-pass “zero-tree” coding to transmit the largest wavelet coefficients (in
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magnitude) first. The underlying assumption is that most images can be modelled as

having decaying power spectral densities. That is: if a parent node in the wavelet co-

efficient tree is insignificant, it is very likely that its descendants are also insignificant.

The zero-tree symbol is used very efficiently in this case to signify a spatial subtree of

zeros. When the thresholds are powers of two, SPIHT coding can be thought of as a

bit-plane coding scheme. It encodes one bit-plane at a time, starting from the most

significant bit. With the sign bits and refinement bits (for coefficients that become

significant earlier) being coded on the fly, SPIHT achieves embedded coding in the

wavelet domain. The SPIHT coder performs competitively with most other coders

published in the literature [56], while possessing desirable features such as relatively

low complexity and rate embeddedness.

In response to the rapid progress in wavelet image coding research, the Interna-

tional Standards Organization has adopted the wavelet transform as the workhorse in

the new JPEG-2000 image coding standard. The baseline JPEG-2000 coder employs

the embedded block coding with optimized truncation (EBCOT) [57] algorithm for

bit-plane coding of wavelet coefficients. While the SPIHT algorithm applies arith-

metic coding [58] on the significant bits only, EBCOT additionally uses arithmetic

coding on the sign bits and refinement bits. Furthermore, EBCOT breaks one bit-

plane into three fractional bit-planes and compresses them in decreasing order of

rate-distortion (R-D) importance. Because of this, the complexity of JPEG-2000

coding is higher than that of SPIHT coding. In terms of compression efficiency,

JPEG-2000 performs comparably to SPIHT. The strength of the JPEG-2000 stan-

dard lies in its rich set of features such as lossy and lossless compression, scalability

in rate and image resolution, region of interest (ROI) coding, and error resilience.
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2. Video Coding

The 2-D SPIHT algorithm [22] was extended to 3-D embedded SPIHT video coding in

[24]. Besides motion compensation, the 3-D SPIHT algorithm is in principle the same

as 2-D SPIHT, except that 3-D wavelet coefficients are treated as a collection of 3-D

spatio-temporal orientation trees and that context modelling in arithmetic coding is

more involved. Spatio-temporal orientation trees coupled with powerful SPIHT sort-

ing and refinement turns out to be very efficient. Even without motion compensation,

the 3-D SPIHT coder provides comparable performance to H.263 [59] objectively and

subjectively when operating at bit rates of 30 to 60 Kbps. It outperforms MPEG-2 at

the same bit rate (1.5 to 4 Mbps). In addition to being rate scalable, the 3-D SPIHT

video coder allows multi-resolutional scalability in encoding and decoding in both

time and space. This added functionality along with many desirable features, such as

full embeddedness for progressive transmission, precise rate control for constant bit

rate traffic, and low complexity for possible software only video applications, makes

the video coder an attractive candidate for applications like wireless video.

The H.26L [48] video coding algorithm aims at higher coding efficiency and is de-

veloped by ITU-T as a long-term video coding standard for low bit rate applications.

H.26L-based PFGS [27] coding adds an embedded enhancement layer to the H.26L

bit stream. It compresses a video sequence into two bit streams: one for the low-

quality, non-scalable base layer and another for the scalable enhancement layer. The

base layer bit stream is generated by the classic motion-compensated discrete cosine

transform (DCT) approach. The difference between the original video sequence and

the reconstructed version from the base layer is compressed with bit-plane coding to

form the enhancement layer bit stream. Since bit-plane coding produces an embed-

ded bit stream with fine granularity scalability, the enhancement bit stream can be



25

arbitrarily truncated to fit the available channel bandwidth.

C. IRA Codes as Channel Codes in Joint Source-channel Coding

1. System Model and Background

Irregular Repeat Accumulate (IRA) codes are a class of LDPC codes which can be

easily encoded in systematic form [19]. It was shown by Jin et al that IRA codes can

achieve capacity on the erasure channel and can perform very close to capacity on the

binary input AWGN channel. IRA codes can also be thought of as a generalization

of repeat accumulate (RA) codes proposed in [18]. The IRA code structure can be

best explained in terms of the Tanner graph of the parity check matrix as shown

in Fig 2. In the encoder for an IRA code, the information bits {u1....uk} are first

repeated irregularly and the repeated information bits are interleaved. Then groups

of interleaved bits are encoded by a single parity check (SPC) code as shown in the

figure. The parity bits of the SPC code are encoded using a differential encoder or,

equivalently, a rate-1 convolutional encoder with generator polynomials 1/1 + D, the

output of which is the sequence {p1....pr}. The graph representation of the differential

encoder is shown in Fig 2. Note that in the graph, the check (square) nodes represent

the fact that the modulo-2 sum of the nodes connected to the check is zero.

We only consider IRA codes in their systematic form in this paper. That is, the

codeword corresponding to information bits {u1....uk} is given by {p1....pr, u1....uk}.
In general, the IRA code ensemble is specified by two degree profiles λ(x) =

∑
i λix

i−1

and ρ(x) =
∑

i ρix
i−1, where λi and ρi are the fraction of edges incident on information

nodes and check nodes with degree i, respectively. In this paper, the check degrees

are assumed to be concentrated, i.e., ρ(x) = xa−1 for some integer a. This means that

all single parity check codes used are of rate a/(a + 1). In this case, given λ(x) (or,
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simply λ) and a, the rate of the code is:

R =

∑
i λi/i

1/a +
∑

i λi/i
. (10)

A BSC channel with COP ε is assumed. This received vector r = {r0, r1, . . . , rN−1},
rj ∈ {0, 1} can be decoded with an iterative message-passing algorithm. The messages

passed between nodes are extrinsic log-likelihood ratios (LLR). In order to facilitate

the discussion of the code design, we first establish some notation and briefly describe

the decoding algorithm for the BSC.

• xi→c and xc→i denote the messages passed between check and information nodes

and let Ui→c(x) and Uc→i(x) be their corresponding probability density functions

(pdf)s.

• xp→c and xc→p denote messages passed between check and parity nodes and let

Up→c(x) and Uc→p(x) be their corresponding pdfs.

• xp denotes the LLR provided by the channel on the parity bit and Up(x) its pdf.

• xi denotes the LLR provided by the channel on the information bits and Ui(x)

its pdf.

The LLR for the jth bit in the codeword (information or parity bit) is given by

(1 − 2rj) log 1−ε
ε

, where ε is the COP of the BSC. At an information or parity node,

the outgoing message from the node along the kth edge is given by

xk =
∑

m6=k

xm, (11)

where xm is the incoming messages conveyed on the edges m. At a check node, it can
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be shown that the outgoing message along the kth edge is given by the tanh rule [42]

tanh
xk

2
=

∏

i 6=k

tanh
xm

2
, (12)

where xm’s are incoming messages. We then have the following decoding algorithm:

• Step 1: Initialize xi→c and xp→c with given xi and xp.

• Step 2: Calculate xc→p and xc→i according to (12).

• Step 3: Calculate xp→c and xi→c according to (11).

• Step 4: Repeat Step 2 to Step 3 until the maximum number of iteration is

reached.

2. Density Evolution

The key idea in density evolution is to track the pdf of the messages in every iteration

assuming the codeword length is infinite. When the codeword length N → ∞, the

Tanner graph has no cycles, hence all the messages that are passed in the decoder can

be modelled as independent random variables. In this case, the pdfs of the random

variables and the probability of error can be computed at each iteration as explained

below.

Assume that the all-zero codeword is transmitted and follow the notation de-

scribed in the previous section. For the BSC, the pdfs of the channel outputs Ui(x)

and Up(x) are given by

Ui(x) = Up(x) = Uch(x) = (1− ε)δ(x− t) + εδ(x + t) (13)

where t = log 1−ε
ε

, δ(x) = 1 if x = 0 and δ(x) = 0 if x 6= 0. Note that although

Up(x) and Ui(x) are identical for the BSC when puncturing is not used, we do make

a distinction between Up(x) and Ui(x) since it is required to handle the puncturing
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case.

From (11), we can see that the pdf of the outgoing message at an information

or parity node is simply the convolution of the pdfs of all the incoming messages.

From (12), we can compute the pdf of xk with a change of measure and the Fourier

transform if the pdf fm(x) of each incoming message is known. We use
⊗

to denote

this operation, then the pdf of the outgoing message is given by

fk(x) =
⊗

m6=k

fm(x) (14)

Readers interested in how to compute fk(x) are referred to [15, 42].

The pdfs of the messages passed in the graph at the (n + 1)-th iteration can be

computed from those at the nth iteration according to:

Un+1
c→p(x) =

⊗
aUn

i→c(x)
⊗

Un
p→c(x), (15)

Un+1
c→i (x) =

⊗
a−1Un

i→c(x)
⊗

2Un
p→c(x), (16)

Un+1
i→c (x) =

∑
i

λi ∗i−1 Un+1
c→i (x) ∗ Ui(x), (17)

Un+1
p→c(x) = Un+1

c→p(x) ∗ Up(x), (18)

where ∗i and
⊗i mean applying conventional convolution and the operation defined

in (14) i times, respectively.

The probability of decoding error after the nth iteration is given by

Pn(λ, a, Ui, Up) =

∫ 0

−∞

∑

k

λk{∗kUn
c→i(x)} ∗ Ui(x) dx, (19)

which will be referred to as the probability of error from now on.
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3. IRA Code Design

Note that the probability of error depends on the degree profiles λ(x) and a and on

the channel condition through the initial pdfs Ui(x) and Up(x). The design of good

IRA codes involves the design of λ and a for a fixed rate such that the probability of

error is minimized for given Ui(x) and Up(x). For a given a, it can be formulated as

λopt = arg min
a,λ⊆λ′(R,a)

Pn(λ(x), a, Ui,R(x), Up,R(x)), (20)

where λ′(R, a) is the set of all valid degree profiles that satisfy the rate constraint,

i.e.,

λ′(R, a)
.
=

{
λi

∣∣ ∑
i

λi = 1,

∑
i λi/i

1/a +
∑

i λi/i
= R, λi ≥ 0

}
.

4. Code Design for Punctured IRA Codes

Scalable image and video transmission requires channel codes with good performance

over a range of rates. The optimum solution is to optimize the degree profiles sepa-

rately for each rate; however, this is computationally intensive. Here, we propose to

optimize the degree profile for the mother code such that higher rate codes can be

derived by puncturing. The main point, however, is the design of the degree profile

of the mother code such that the entire set of codes obtained by puncturing performs

well. Hence only one degree profile needs to be designed. In practice, this also makes

the design of the decoder easier since the decoder needs to be designed for only one

degree profile.

We propose to modify the above optimization problem to fit this application. To

analyze the performance of IRA codes after puncturing, we treat punctured bits as

erasures. That is, we assume that the channel as seen by the parity bits is a mixture

of the actual BSC channel and an imaginary erasure channel. To take puncturing into
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account, we define Ui,Ri
(x) and Up,Ri

(x) as the initial pdfs of the LLRs for information

and parity nodes, respectively. These pdfs depend on the COP of the BSC channel

and the channel code rates before and after puncturing, namely R and Ri (more

precisely on the fraction of the bits that are punctured). For the all-zero codeword

being transmitted and a given BER ε, Ui,Ri
(x) denotes the initial pdf of xi and it is

given by

Ui,Ri
(x) = Uch(x) = (1− ε)δ(x− t) + εδ(x + t), (21)

where t =log1−ε
ε

. The pdf of Ui(x) is unaffected due to puncturing. Up,Ri
(x) denotes

the initial pdf corresponding to the parity bits after being punctured to a higher rate

Ri and it is given by

Up,Ri
(x) = (1− γ)Uch(x) + γδ(x), (22)

where γ is the fraction of parity bits being punctured.

The objective is to design an IRA code degree profile [λ(x), a] of rate Rmin and

from this obtain a set of higher rates {Rmin, R2, . . . , Rmax} by puncturing only the

parity bits. For a given set of rates {Rmin, R2, . . . , Rmax}, the optimization cost

function should involve the probability of error for each rate in the set. That is, the

true optimum [λ(x), a], if it exists, should simultaneously minimize the probability of

error for all rates in the set. First of all, it is not clear that such a solution exists.

Secondly, even in the case that the solution exists, the optimization problem can

be quite hard depending on the number of desired rates. In order to simplify this

procedure without much loss in performance, we choose to minimize the maximum

of the error probabilities of the highest and the lowest rates Rmin and Rmax under

the constraint that Rmin=
∑

i λi/i

1/a+
∑

i λi/i
. In other words, we try to design a mother code

that performs well for both the lowest rate (with no puncturing) and highest rate

(with maximum puncturing). With the code being good for the two extremes, we
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expect that it is good for the entire rate range, which will be corroborated through

simulations. The problem can be mathematically stated as:

λ = arg min
a,λ⊆λ′(Rmin,a)

[max(Pn(λ1, ..., λd, Ui,Rmin
, Up,Rmin

), Pn(λ1, ..., λd, Ui,Rmax , Up,Rmax))]

with λ′(R, a) =
{

λi

∣∣ ∑
i λi = 1,

∑
i λi/i

1/a+
∑

i λi/i
= R, λi ≥ 0

}
and n, Ui,R(x), Up,R(x) given

a priori. Note that the value of ε (channel condition) used in determining Ui,Rmin
or

Up,Rmin
and Ui,Rmax or Up,Rmax will be different. For a given value of a, this problem

can be solved using a non-linear optimization routine. The optimization must be

performed for a few values of a and the best one must be selected.

Example 1: Consider the design and construction of punctured IRA codes for

the range of COPs 0.0225 ≤ ε ≤ 0.1715. We picked Rmin = 1/3 and Rmax = 10/12,

since these are fairly close to the BSC capacity limits for ε = 0.1715 and ε = 0.0225,

respectively. Then, the optimization for λ(x) and ρ(x) was performed with n = 15.

A gradient search is used along with several randomly chosen initial profiles in order

to bypass the local minima, and the resulting λ(x) and ρ(x) are

λ(x) = 0.240008x3 + 0.139965x4 + 0.073483x5

+0.025974x6 + 0.134669x23 + 0.385901x24

ρ(x) = x3. (23)

The performance of several punctured codes obtained from a mother code with

this degree profile will be discussed in the following sections.

5. Asymptotic Analysis

In this section, the asymptotic performance of the JSCC scheme based on SPIHT

image coding and IRA channel codes is analyzed as the channel codeword length
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approaches infinity. The same approach can be applied to video transmission as well.

We assume that the transmission of a symbol is completed in one channel use

(on average) at a certain information rate Rε. Then for the JSCC problem with IRA

codes and a given channel BER ε, the achievable bits per symbol can be defined as

Rε = max R′ subject to lim
n→∞

Pn(λ, a, Ui,R′ , Up,R′) → 0. (24)

with Ui,R′ and Up,R′ defined in (21) and (22). To obtain Rε for a given COP ε, we find

the maximum γ (fraction of parity bits being punctured) with a mother code whose

degree profiles are fixed to [λ(x), a]. For IRA codes, a discrete maximization can be

performed fairly easily. That is, starting from γ = 0, we increase γ in small steps

and for each γ, the probability of error can be computed using density evolution as in

(15) to (19). Rε is the largest rate for which (24) is satisfied. Once Rε is determined,

we can define the achievable MSE Dε as follows:

Dε = D(υ, ψ−1(ψ(υ,Rε), Rε)),

where υ is the original source. ψ and ψ−1 are a given source coder and decoder pair.

D is the distortion function that computes the MSE between two images.

For a BSC channel with a given BER ε, the maximum information rate (capacity)

for this channel is given by C = 1+ ε log ε+(1− ε) log (1− ε). Then the MSE lower

bound for this channel is given by

Dmin = D(υ, ψ−1(ψ(υ, C), C)). (25)

Therefore, it is straightforward to obtain the MSE lower bound for BSC channels

with a given encoder/decoder pair and a fixed source.

Fig 4 shows the achievable rates (Rε) as a function of ε for punctured IRA codes

used in this paper along with the BSC channel capacity. It can be seen that the
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achievable rates with the optimized mother code are fairly close to the BSC capacity

limit over a wide range of rates.
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Fig. 4. Achievable rates of IRA codes for BSC channel

Fig 5 depicts the achievable MSE in terms of PSNR using punctured IRA codes

and SPIHT encoded 512×512 image Lena. For comparison, the highest achievable

PSNR (corresponding to MSE of Dmin) with the SPIHT encoder and the same image

1PSNR is defined as PSNR = 10log10(2552/MSE) and measured in decibels (dB).
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is also shown. From the plot, it can be seen that asymptotically, the designed codes

provide near optimal performance.
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Fig. 5. Achievable PSNR using IRA codes and SPIHT for BSC channel

6. Finite Length Code Construction and Inter-leaver Design for IRA Codes

Once a degree profile is obtained for an IRA code, in practice, one has to construct

a particular parity check matrix (or, equivalently the inter-leaver in Fig 2). The

concentration theorem in [15] shows that when the length of the codewords approach
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infinity, almost all codes constructed will have identical properties and, hence, a

randomly chosen code will perform well. However, for finite lengths, one has to pay

careful attention to the construction of the parity check matrix. Specifically, the

inter-leaver in Fig 2 should be designed such that low weight output codewords are

avoided (since the overall code is linear, it is enough to look at the weight of a non-zero

codeword).

For the punctured codes, when the source packet length is fixed for all rates, true

rate compatibility can be achieved. That is, only one graph or inter-leaver of a fixed

length needs to be designed. All the higher rate codes can be obtained by puncturing

the parity bits from this graph. However, in this paper, we fix the codeword length

to be the same for all rates. As a result, for each rate a separate inter-leaver or graph

is designed for each rate; however, the degree profiles are the same as that of the

mother code. Uniform puncturing of the parity bits is assumed for all rates.

Divsalar et al. [60] proposed a constrained random inter-leaver characterized by a

spreading factor s for use with turbo codes. Denote {π(i)} as the interleaved sequence

from the original ordered sequence {i}. For two numbers j and k in the sequence

{i}, the s-random inter-leaver ensures that if |k − j| < s, then |π(k) − π(j)| > s.

S-random inter-leavers can be applied to IRA codes directly and the performance is

fairly good. One way to justify the use of S-random inter-leavers in IRA codes is to

visualize the generation of parity bits {p1, p2, . . . , pr} from the Tanner graph as shown

in Fig 6.

Consider an input sequence U of weight one, that is, only one of the information

nodes is non-zero. Let {c1,c2,c3, ..., cj} be the check nodes (in ascending order)

connected to the non-zero information node. Since the output of the check nodes

are input to an accumulator, the output weight starts to accumulate at time instant

c1 and increases until time instant c2 and, hence, results in an error event of weight
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Fig. 6. Error patterns due to weight-1, weight-2 and weight-3 input information se-

quence
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c2 − c1. Since there are several error events, each with a certain accumulated weight,

the total weight of the codeword is given by
∑

k dk, where dk = c2k − c2k−1.

For all weight-1 input sequences, the S-random inter-leaver ensures that dk > s

as long as s is larger than the maximum left degree. Therefore, it is a good choice.

The S-random inter-leaver does not necessarily maintain high weight for the

parity bits when the input sequence U has a weight of more than one. Consider the

situation when the input weight is two as shown in Fig 6(b). It can be seen that the

S-random inter-leaver cannot guarantee dk > s since two non-zero information nodes

with separation larger than s can be connected to check nodes close to each other.

Hence, for weight-2 and higher weight input sequences, the inter-leaver construction

has to modified to ensure that the sum
∑

k dk is greater than a threshold sth. Clearly,

this is quite complex and we restrict our attention only to weight-2 and 3 input

sequences. The proposed modified inter-leaver design procedure can be summarized

as follows:

At the ith information node,

• Let the degree of the node be j. Assign the first j−1 edges to check nodes such

that the S constraint is satisfied.

• Assign the last edge (jth edge) to a check node such that the S constraint is

satisfied and, in addition, the codeword weight corresponding to input sequences

of weight-2 and 3 with a one in the ith position is greater than a threshold sth.

Referring to Fig 6, the constraint can be expressed as
∑

k dk > sth.

To demonstrate the effectiveness of this construction, in Fig 7, we compare the per-

formance of two IRA codes of rate-5/12 and length 4136 bits obtained by puncturing

the mother code in Example 1. The first code is constructed using an S-random
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inter-leaver with s = 68 and the second code is constructed using the proposed modi-

fied S−random inter-leaver. Observe that the modified S−random inter-leaver helps

reduce the effect of the floor in the packet error rate (PER) and performs as well as

the S−random inter-leaver at higher PERs. Fig 8 shows the packet error rate for
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Fig. 8. Packet error rates of IRA codes (code length = 517 bytes). 80 decoding itera-

tions used for each code.

the mother rate and the higher rate codes obtained by puncturing the parity bits.

For rate 5/12, 6/12, 7/12, 8/12, 9/12 and 10/12 codes, the fractions of parity bits

being punctured are 3/10, 1/2, 18/28, 3/4, 5/6 and 9/10, respectively. Comparing

the performances of the proposed IRA codes with those of the turbo codes used in

[28], we observe that the IRA codes we designed perform better and there are almost
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no error floors for these codes in the tested PER range.

7. Decoding Complexity

A good estimate of the number of additions and lookups required for decoding can be

obtained for both IRA codes and turbo codes. The sum product decoding algorithm

for IRA codes is assumed to be implemented directly in terms of log(tanh(L(x)/2)),

where L(x) are the extrinsic LLRs. At an information node of degree i, we require 2i

adds/subs. At a check node of degree j, we require 2j lookups and (2j−1) add/subs.

At a parity node, we require 2 adds. For a rate-1/3 mother code, there are twice

the number of check nodes and parity nodes as that of information nodes. For an

average information node degree of i and check node degree of j, the total number of

ops (counting adds and lookups as the same) per information bit for rate-1/3 code is

2i + 8j + 2. For the code in Example 1, this is approximately 68 operations. For the

turbo code used in [28], the same complexity can be calculated as in [61] and seen to

be 400 operations/information bit/iteration. Even taking into account the fact that

IRA codes use 80 iterations, whereas only 20 iterations were used with turbo codes

in [28], the decoding complexity is significantly lower for our IRA codes.

D. Simulation Results

In our simulations, scalable bit streams are generated off-line, using SPIHT, JPEG-

2000, 3-D SPIHT and H.26L-based PFGS, respectively. Each source is encoded into

an embedded bit stream only once and the operational R-D data are stored as look-up

tables. The transmission “server” computes using fast algorithms (see VI)the rate

allocation based on the R-D data, the channel condition and the target transmission

rate. Then it generates CRC and IRA codes and packetizes the truncated bit stream
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into equal-length packets. We choose the packet length to be 517 bytes in order to

compare with the results in [28]. The length of source in a 517-byte-long packet for

IRA code rates 4/12, 5/12, 6/12, 7/12, 8/12, 9/12 and 10/12 are 169, 212, 255, 298,

341, 384 and 427 bytes, respectively.

The BSC channel is simulated by randomly flipping the bit stream at the given

bit error rate. The altered bit stream is then delivered to the receiver, where IRA

and source decoding are sequentially performed. We assume that all IRA decoding

errors can be detected by the CRC code and the channel coding rate for each packet

can be correctly decoded. Finally, the reconstruction is compared with the original

source to get the PSNR results. The overall simulation setup is illustrated in Fig. 9.

Fig. 9. Simulation system setup.

Table I presents the average MSE results in PSNR (dB) for three grayscale

512×512 images (Lena, Goldhill and Barbara) and four BERs. Each image is encoded
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using JPEG-2000 in generic scalable mode and each result is averaged over 1,000 runs.

We see that our results are uniformly better than those in [28], with more gains when

the transmission rate is higher than 0.252 bpp. These gains stem from stronger

protection provided by IRA codes over turbo codes. In addition, the availability of

the rate 5/12 IRA code makes the performance improvement for BER=0.08 more

pronounced than that for other BERs.

Table I. Results for JPEG-2000 encoded 512x512 images over four BSCs.

Image
Rate Channel BER
(bpp) 0.1 ([28]) 0.08 ([28]) 0.03 ([28]) 0.01 ([28])

Lena
0.994 36.03(35.85) 36.26(36.15) 38.26(37.74) 38.93(38.78)
0.505 33.13(32.76) 33.37(33.20) 35.48(35.15) 36.18(35.67)
0.252 29.92(29.40) 30.24(29.94) 32.09(31.90) 32.75(32.56)

Goldhill
0.994 32.20(32.10) 32.30(32.24) 34.18(34.05) 35.00(34.81)
0.505 29.99(29.89) 30.12(30.04) 31.65(31.38) 32.10(31.79)
0.252 27.90(27.69) 28.01(27.88) 29.23(29.16) 29.74(29.64)

Barbara
0.994 30.77(30.51) 30.85(30.82) 33.74(33.54) 34.89(34.40)
0.505 27.42(26.99) 27.66(27.54) 29.88(29.41) 30.84(30.35)
0.252 24.73(24.71) 24.89(24.84) 26.37(26.32) 27.00(26.93)

Table II presents the results for SPIHT encoded images. Each result is an average

over 1,000 runs. The results are compared to those in [29] where possible. We see

that our results are uniformly better than those in [29] with a gain of up to 1.9 dB.

Our JSCC scheme can be easily extended to video transmission. Take 3D SPIHT

as an example, the encoder blocks the video sequence into a series of Group of Frames

(GOF) containing 16 frames per GOF. Each GOF is then encoded into an embedded

bit stream. We process each GOF bit stream separately by applying our JSCC

design to generate a fixed number of equal-length packets according to the target

transmission rate. The R-D data of each GOF bit stream can be computed in advance

and fed into the rate allocation algorithm. Or, for simplicity, one can use the average
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Table II. Results for SPIHT encoded 512x512 images over four BSCs.

Image
Rate Channel BER
(bpp) 0.1 ([28]) 0.08 ([28]) 0.03 ([28]) 0.01 ([28])

Lena
0.994 36.10(34.2) 36.39 38.24 39.12(38.0)
0.505 33.21(31.1) 33.61 35.50 36.34(35.2)
0.252 30.21(28.4) 30.70 32.32 33.16(32.0)

Goldhill
0.994 32.07(30.7) 32.35 34.25 35.11(34.0)
0.505 29.92(28.6) 30.22 31.50 32.32(31.2)
0.252 27.92(26.7) 28.30 29.21 29.88(29.0)

Barbara
0.994 30.00 30.26 33.12 34.36
0.505 26.77 27.10 29.30 30.21
0.252 24.25 24.64 25.99 26.70

R-D data for all GOFs. Fig. 10 shows the average PSNR results as a function of the

transmission rate for 3D SPIHT encoded QCIF(176×144) video sequences Akiyo and

Foreman. Each sequence contains 288 frames and the number of GOFs is 18.

In the case of H.26L-based PFGS, we assume that the base layer bit stream is

transmitted losslessly and we only consider the transmission of the enhancement layer

bit stream. We apply our JSCC algorithm to the enhancement layer bit stream of

each frame based on the computation of an average R-D curve of the whole sequence.

The simulation results for QCIF video sequences Foreman and Akiyo are shown in

Fig. 11. The encoding frame rate is 10Hz and the quantization parameter (QP) is

25. The base layer bit rate for the two sequences are 31.95 kbps and 11.37 kbps,

respectively.

E. Summary

We have presented a JSCC system for scalable image and video transmission based

on scalable source coding and rate-compatible IRA code design. The set of IRA

codes obtained by puncturing achieves rate-compatibility while maintaining a high
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Fig. 10. Simulation of 3D SPIHT encoded video transmitted over four BSCs.
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Fig. 11. Simulation results from transmitting the enhancement layer H.26L-PFGS bit

stream of two sequences over four BSC channels. The base layer bit rates are

11.37 kbps for Akiyo and 31.95 kbps for Foreman.
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performance and lower decoding complexity. By concatenating a rate-optimal solution

with a modified local search algorithm (See APPENDIX), our error control scheme

achieves compatible performance to the Viterbi algorithm used in [28], while the

complexity is lower.

We applied this joint design to the transmission of scalable image and video

transmission over BSC channels, using state-of-the-art source coders. Simulations

show uniformly better results over those reported in previous works.
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CHAPTER IV

SOURCE-OPTIMIZED IRREGULAR REPEAT ACCUMULATE CODES WITH

INHERENT UNEQUAL ERROR PROTECTION CAPABILITIES AND THEIR

APPLICATION TO IMAGE TRANSMISSION

In conventional data communication systems, channel codes are usually designed to

minimize the probability of error. In multimedia communication systems, however,

the compressed audio, image or video bitstreams are usually scalable or embedded,

resulting a sequential dependency among the compressed data. This calls for un-

equal error protection (UEP) for improved end-to-end performance in multimedia

communications. However, the common practice in achieving UEP in these systems

is to design rate-compatible punctured channel codes before computing the UEP rate

assignment separately. This paper proposes a new approach to designing powerful Ir-

regular Repeat Accumulate (IRA) codes that are optimized for the multimedia source

and to exploring the inherent irregularity in IRA codes for UEP. Using the end-to-end

distortion due to the first error bit in channel decoding as the cost function, which is

readily given by the operational rate-distortion function of embedded source codes,

we incorporate this cost function into the channel code design process via density

evolution and obtain IRA codes that minimize the average cost function instead of

the usual probability of error. Because the resulting IRA codes have inherent UEP

capabilities due to irregularity, the new IRA code design effectively integrates channel

code optimization and UEP rate assignment, resulting in source-optimized channel

coding or joint source-channel coding.

Using our source-optimized IRA codes for transporting SPIHT-coded images over

the BSC, when the channel code length is long (e.g., with one codeword for the whole

512 × 512 image), we show that 1) the image transmission system can operate at
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only 15% away from the channel capacity, thus achieving the best published results

in terms of average PSNR; 2) the performance gain due to IRA code optimization

for the source is marginal, reconfirming Shannon’s separation principle. When the

channel code length is is relatively short, source-optimized IRA codes perform much

better.

A. Introduction

Shannon’s separation principle [1] states that, asymptotically, source coding and chan-

nel coding can be done separately without performance loss. However, it was shown

by Massey [62] that separation does not necessarily lead to less complex solution or

is always applicable. Indeed, for the separation principle to hold, one has to toler-

ate infinite delay and complexity. Therefore, in practical multimedia communication

systems with delay and complexity constraints, joint source-channel coding (JSCC)

should be employed to provide acceptable performance.

Since the early 1990s, great progresses have been made in practical source code

and channel code designs. On one hand, several wavelet-based image/video coding

algorithms [22, 23, 24, 25, 26] have been developed. These algorithms have the distinct

feature of being able to generate scalable (or embedded) bitstreams while offering

superb coding performance. Scalability induces a sequential dependency among the

compressed multimedia source bits, calling for unequal error protection (UEP) in the

form of more protection for the beginning part of the bitstream, less for the middle

part, yet still less or even no protection at all for the last part. This is different from

conventional data (e.g., satellite) communications where all bits are equally important

and hence equal error protection (EEP) suffices. On the other hand, turbo codes were

invented in 1993 [6] and low-density parity-check (LDPC) codes [12] rediscovered in
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1998 [13]. Representing LDPC codes with bipartite graphs, Richardson and Urbanke

[14] were able to analyze LDPC codes with density evolution. Jin et al. [19] introduced

a class of codes closely related to LDPC codes called Irregular Repeat Accumulate

(IRA) codes in 2000 that combine the advantages of both turbo and LDPC codes.

IRA codes have simple encoding algorithms and are amenable to exact Richardson-

Urbanke analysis.

For JSCC, the SPIHT image coder and Rate-Compatible Punctured Convolution

(RCPC) codes [63] were concatenated in [29] for image transmission over the binary

symmetric channel (BSC). Despite the sequential dependency induced by the scalable

SPIHT bitstream that calls for UEP, EEP was employed in [29]. For example, when

the crossover probability the BSC is p = 0.1, a rate 2/7 RCPC code was chosen.

Note that the channel capacity of the BSC is C(p) = p log2
1
p

+ (1 − p) log2
1

1−p
, and

C(0.1) = 0.469. Using the rate 2/7 RCPC code only reaches 61% of the channel

capacity in this case. Nevertheless, the scheme in [29] gave the best performance at

its time because it took advantage of the high performance of the SPIHT source coder.

The impressive results in [29] inspired many new approaches to JSCC (in the form

of UEP of embedded multimedia bitstreams [64, 65, 66]) for improved performance.

These approaches generally follow one of the two directions: channel-optimized source

coding or source-optimized channel coding.

The aim of channel-optimized source coding is to design robust quantization

schemes against errors introduced by the channel (see [67, 68]). Related works are

channel optimized scalar quantization [69, 70], channel optimized vector quantiza-

tion [71, 72, 73], trellis waveform coding [74], and channel optimized trellis-coded

quantization [75].

Source-optimized channel coding tries to match the amount of introduced redun-

dancy to the significance of the source bits. For scalable multimedia transmission,
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this approach usually involves two steps: rate-compatible channel code design [63]

and UEP optimization algorithms [55]. The former provides different levels of error

protection for source bits of different importance; the latter performs optimal chan-

nel code rate assignment. To enable UEP, rate-compatible channel codes are usually

designed beforehand and the best code rate assignment chosen algorithmically using

dynamic programming [49], Lagrangian-based methods [52], the Viterbi algorithm

[28], or a local search algorithm [45].

Toward UEP code design, the common practice is the use of RCPC. In this

chapter, we propose an approach for the channel coding problems from the perspective

of source coding. The channel coding problems we consider is to design IRA codes

providing the best visual performance while they are used together with scalable

source coders in image transmissions. With the inherent UEP capabilities of IRA

codes, the channel codes are designed to be optimized over a cost function such as the

average distortion, which is derived from the distortion-rate function of the source.

Most source coders are designed with performances as close to the distortion-rate

functions as possible. According to the distortion-rate function, the information bits

causing more distortion need more protection. For example, state-of-the-art image

coders (e.g., SPIHT [22] and JPEG2000 [23]) induces a sequential dependency among

the compressed image bitstream, i.e., the arriving bits are only useful for the image

decoder if previously arrived bits are correctly decoded by channel decoders assuming

a natural order of transmission. Therefore, a single bit error in the previous bitstream

will render the rest of the bitstream useless. In consequence, UEP is called for in the

channel code design for scalable image transmission. Taking advantage of inherent

UEP capabilities of IRA codes, we assign the cost determined by the location of

the first error bit to the corresponding event where the decoder made an error, and

calculate the average cost used as the criterion in the IRA code design. Therefore,
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channel codes designed with this approach are not optimized for the probabilities

of errors but for the average cost function, the average distortion as shown in this

example. By the approach as described above, the optimization of channel codes and

the choice of UEP schemes are embedded in the design process of IRA codes.

The problem of UEP code design was also considered in the literature. Huebner

et al. [76] considered the serial concatenation of an array of repetition codes, an

interleaver and turbo codes. With this scheme, different levels of protection are

achieved by different numbers of repetitions. Caire and Biglieri [77] suggested the use

of turbo codes to achieve UEP by 1) dividing the input to the encoder into different

small blocks, which is designated to contain information of given class of importance.

2) keeping class separation while choosing a interleaver. 3)applying puncturing to

parity bits according to the rate assigned to individual class. Vasic et. al. [78] [79]

proposed a class of LDPC codes based on balanced incomplete block design (BIBD)

and cyclic difference families (CDF), where the BIBD is defined on the union of orbits

of the basic blocks of a CDF. By partitioning the set of the basic blocks into disjoint

subsets, the point-block incidence matrix of the subset is the sub-matrix of the parity

check matrix to match the desired protection level since the bits corresponding the

sub-matrix are checked on a designed number of equations. However, these methods

still need an algorithm to determine the best code rate and classes.

In the examples given in this chapter, long IRA codes are designed for SPIHT-

coded images with cost functions based on the assumption that the events of the

information bits of different positions being flipped are independent, and short IRA

codes are designed for QCIF images with modified cost functions because the assump-

tion does not hold true for short IRA codes. The operational distortion-rate function

of the SPIHT coder is incorporated into density evolution to design IRA codes. The

object of the design is to minimize the average distortion. A scalable image trans-
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mission system is simulated with IRA codes designed with the described approach.

In our simulation, CRC check bits are embedded in the SPIHT-coded bitstream in

order to detect the first error. Our simulation results are uniformly better than those

in the literature [29], [28], [80], [81]. It is shown that for larger codes (with one

codeword for the whole 512× 512 image), the simulated results of the codes designed

with our approach are only 15% away the theoretical limit since larger IRA codes

are capacity-approaching. Therefore, when compared with conventional IRA codes,

the advantage of source-optimized IRA codes is not significant , which reconfirms

Shannon’s separation principle. For applications such as the transmission of QCIF

images where smaller IRA codes are required and Shannon’s separation principle is

no longer applicable, source-optimized IRA codes perform much better.

The rest of the chapter is organized as follows. We first review in section 2 the

encoding and decoding of IRA codes and the details of the density evolution used in

the design of IRA codes. In section 3, we establish a cost model used in IRA code

design. Section 4 presents the numerical results of the proposed method of designing

IRA codes applied to the transmissions of sources with an exponentially decayed

distortion-rate function, SPIHT-coded images and QCIF images.

B. The Theory of UEP Based on Irregularity

The assumption that UEP, in which the bit nodes with more neighboring check nodes

are more protected, provided by IRA codes comes from the irregularity of IRA codes

provides us a mean to design a source-optimized IRA code. Although this phe-

nomenon can be easily observed in density evolution, we will verify the assumption

in this section the assumption in a more theoretical setting.

The idea to verify this assumption is borrowed from [15] in which the idea is
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originally used to prove the probability of errors is non-increasing with iterations. The

same idea can be used to verify the assumption of UEP based on irregularity. Since

IRA codes is a class of LDPC codes, without loss of generality, we treat information

nodes and parity nodes as variable nodes collectively. For completeness, we restate

the theorem and proof [15] in our notation here.

Theorem IV.1. For LDPC codes with given degree profiles, the probability of errors

in density evolution is non-increasing with the number of iterations l.

Proof. Because of the assumption that there are no cycles in the graphs, the estima-

tion of the a particular information bit at the lth iteration is given by an estimator

operating on a set of observations and these observations form a tree of depth l.

Assume the number of iterations is l. For a particular information bit of degree k,

Bk, define Bk as the binary value carried by Bk and ml
c→v as messages passed from

its child (neighboring) nodes. Similarly, taking each one of these child nodes as a

parent node, the message passed from its child nodes is given as ml−1
v→c (excluding

Bk). Repeat the process until reaching leaf nodes. In this way, we construct a tree

of depth l as shown in Fig. 12 and denote it as Tl
Bk

.

Clearly, we have VTl−1
Bk

⊂ VTl
Bk

, where VT is the collection of variable nodes in

T. Denote VT as the observations from channel carried by VT. Thus we have

VTl
Bk

= VTl−1
Bk

⋃
Vl. (26)

where Vl the observations from channel carried by leaf nodes. Under the assumption

of independence, the message passing algorithms at the lth iteration actually perform

maximum a posteriori (MAP) estimation of Bk based on observations at variable
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Fig. 12. Support tree for decoding Bk.
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nodes of Tl
Bk

, i.e.,

B̂l
k = sgn

[
k∑

i=1

ml
c→v + mc

]

= sgn


log


P

(
Bk = 0|vTl

Bk

∈ VTl
Bk

)

P
(
Bk = 1|vTl

Bk

∈ VTl
Bk

)




 . (27)

where Bk is the binary value conveyed by Bk and mc is the message from channel.

According to the MAP rule, VTl
Bk

is partitioned as: V0
Tl

Bk

denoted as the region

of observations in VTl
Bk

such that B̂l
k = 0 and V1

Tl
Bk

denoted as the region of the

observations in VTl
Bk

such that B̂l
k = 1. Hence VTl

Bk

= V0
Tl

Bk

⋃V1
Tl

Bk

. Note that

Pe(vTl
Bk

) for vTl
Bk

∈ V0
Tl

Bk

, the probability of errors for a MAP decoder, is not greater

than 1
2
, since

P (Bk = 0|vTl
Bk

) + P (Bk = 1|vTl
Bk

) = 1

⇒ P (Bk = 1|vTl
Bk

) + P (Bk = 1|vTl
Bk

) ≤ 1

⇒ 2Pe(vTl
Bk

) ≤ 1

⇒ Pe(vTl
Bk

) ≤ 1

2
(28)

and similarly for vTl
Bk

∈ V1
Tl

Bk

. Furthermore, we have

H(Bk|vTl
Bk

) ≤ H(Bk|vTl−1
Bk

) (29)

because VTl
Bk

= VTl−1
Bk

⋃Vl and {vTl−1
Bk

} ⊂ {vTl
Bk

}, which is equivalent to

H(Pe(vTl
Bk

)) ≤ H(Pe(vTl−1
Bk

)). (30)

From (28) and (30), it follows that

Pe(vTl
Bk

) ≤ Pe(vTl−1
Bk

). (31)
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Next, we have

E[Pe(vTl
Bk

)] =

∫

v
Tl

Bk

∈V
Tl

Bk

Pe(vTl
Bk

)f(vTl
Bk

)dvTl
Bk

≤
∫

v
Tl

Bk

∈V
Tl

Bk

Pe(vTl−1
Bk

)f(vTl
Bk

)dvTl
Bk

= E[Pe(vTl−1
Bk

)]. (32)

where f(vTl
Bk

) is the joint probability density function of VTl−1
Bk

and Vl. Based on the

argument above, we conclude that the probability of errors is non-increasing in the

number of iteration l.

Corollary IV.1. For LDPC codes with given degree profiles and the number of itera-

tions l, the probability of error for variable nodes Bk+∆ of degree k +∆ is not greater

than that for variable nodes Bk of degree k.

Proof. Consider the estimation at the lth iteration of Bk and Bk+∆ associated to Bk

and Bk+∆ of degree k and k + ∆, ∆ > 0 respectively. The corresponding support

trees for decoding Bk and Bk+∆ are shown in Fig. 13. Although two trees T̃l
Bk

and

T̂l
Bk+∆

stem from Bk and Bk+∆ respectively, the statistics of the estimation at bit

nodes in Vl
Bk

and Vl
Bk+∆

are the same for given degree profile. Therefore

E[Pe(vT̃l
Bk

)] = E[Pe(vT̂l
Bk+∆

)].

Since VT̂l
Bk+∆

⊂ VTl
Bk+∆

, applying the same argument, we have

E[Pe(vT̂l
Bk+∆

)] ≤ E[Pe(vT̂l
Bk

)],

and

E[Pe(vT̃l
Bk+∆

)] ≤ E[Pe(vT̂l
Bk

)].

We conclude that the variable nodes with more neighboring check nodes have prob-
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abilities of errors not greater than those with less neighboring check nodes.

Fig. 13. Support trees for decoding Bk and Bk+∆.

C. IRA Code Design with Enhanced Unequal Error Protection

The conventional ways of designing graph-based channel code are either to find the

codes with maximum threshold for a given rate or to find the codes with maximum

rate for a given channel both of which are equivalent in a strict sense. With the

traditional approaches, the design problem is formulated as

min
λ⊆λRc

Pn(λ1, ..., λd, a, Ui,Rc(x), Up,Rc(x)) (33)

where λRc

.
=

{
λi

∣∣∑
i λi = 1,

∑
i λi/i

1/a+
∑

i λi/i
= Rc, λi ≥ 0

}
.

In this chapter, we consider designing IRA codes with optimal UEP. Because

of the irregularity, we observe that the information bits connected to more checks
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are more protected than those connected to fewer checks from density evolution and

actual code simulation. We also give a proof in Section B to justify our observation.

Therefore, by using this property of IRA codes and assuming a cost function, we are

able to design a code to minimize the average cost. Before exploring this problem

further, we shall assume that the event that the i-th bit is flipped is independent of

the event that the j-th bit is flipped for i 6= j, which is assumed in the derivation of

density evolution. To formulate the problem, we encode the bitstreams into a single

channel codeword and assume a cost model for the outcomes from the decoder. In this

model, the cost due to decoding errors is determined by the location of the first error

bit assuming a natural order of transmission. With this model and the assumption

of independence, we are able to establish the average cost as

C̄ = C0Pe(1) +
L∑

i=2

Ci−1Pe(i)
i−1∏
j=1

[1− Pe(j)], (34)

where Ci is the cost assigned to the event, in which the first bit error occurs at

position i, and Pe(i) is the error probability of that no errors before i-th bit and L is

the length of the information bits. For the i-th information bit of degree k, the error

probability is given as

Pe(i) =

∫ 0

−∞
{∗kUn

c→i(x)} ∗ Ui(x) dx. (35)

Therefore, the problem of code design can be formulated as :

min
λ⊆λR

C̄(λ1, ..., λd, Ui,Rc(x), Up,Rc(x)). (36)

It is usual in the literature to design the IRA codes with highest threshold when

assuming infinite graphs. However, note that (34) are established upon the assump-

tion of finite L. In this case, we look for codes with highest cost (threshold) under a
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proper constraint on the allowed number of iterations in the density evolution.

The previous formulation of the problem is based on the assumption that the

errors of the decision made by the decoders on the information bits of different po-

sitions occur independently. Although this assumption can be derived directly from

the assumption of independence in density evolution, it is necessary to validate this

assumption since the assumption of infinite graphs is not true in practice. Define Vi

as the binary value carried by the i-th bit after decoding. For a specific error event, Vi

is assigned a value of 1 if the i-th bit is flipped, otherwise Vi is assigned 0. Generally,

to validate the independence between Vi and Vj, we need to verified that

fVi,Vj
(vi, vj) = fVi

(vi)fVj
(vj) (37)

where fVi
(vi), fVj

(vj) and fVi,Vj
(vi, vj) are (joint) probability density functions for

continuous random variables or (joint) probability mass functions for discrete random

variables. Note that (37) is true if and only if

E{V m
i V n

j } = E{V m
i }E{V n

j } (38)

is true for all m and n.

For two binary random variables Vi and Vj, (38) becomes





E{V m
i V n

j } = Pe(i, j),

E{V m
i }E{V n

j } = Pe(i)Pe(j).
(39)

Therefore, the simplest way to test the independence between Vi and Vj is to check if

Pe(i, j) and Pe(i)Pe(j) are equal. Since no analytic approach can prove the assumption

of independence, we can only resort to actually simulating a particular IRA code. The

code we simulate has length of 10000 bits. It is shown in Fig. 14 the plot of Pe(i)Pe(j)

averaged over 10000 error events; and it is shown in Fig. 15 the plot of Pe(i)Pe(j)



59

0 1000 2000 3000 4000 5000 6000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

−4

bit position (from low deg to high deg)

pr
(V

i=
1)

pr
(V

j=
1)

 

Fig. 14. p(Vi = 1)p(Vj = 1), i = 0, j = 1 ∼ 5919.
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averaged over 10000 error events. In these two plots, we see that Pe(i, j) > Pe(i)Pe(j),

which means the probability that the jth bit is flipped is greater than Pe(j) given the

ith bit decoded wrong. Therefore, for the finite-length IRA codes, the assumption is

not true and thus (34) needs to be modified. One way to deal with the dependence

is to compute the average distortion only for the error events where the first error

bits have high degrees and the corresponding distortion can be approximated as C̄ ≈
C0Pe(1) +

∑L
i=2 Ci−1Pe(i)

∏i−1
j=1[1 − Pe(j)]. The reasons for this approximation are

twofold:

First, we want the distortion due to the error events, where first error bits are

those of high degrees, as small as possible if the overall distortion is mostly made up

by the distortion due to these error events. On the other hand, if the distortion due

to this type of errors is not a major contributor to the overall distortion, we also need

the distortion due to this type of errors to be small to avoid hiking up the overall

distortion. The bottom line is the distortion due to this type of error events should

be as small as possible.

Second, intuitively the source-optimized channel codes should be only slightly

worse than the conventional channel codes in terms of error-correcting performances.

Hence, even after taking the dependence into account, Pe(j) that the decision from

decoders on the jth bit is wrong, is still much smaller than 1 given that the jth is

a high degree node and can be approximated as Pc(j)
.
= 1 − Pe(j) given that the

decisions made by the decoder on the kth bit k = 1 ∼ i− 1, k 6= j. Therefore,

Pc(1, 2, . . . , i− 1) ≈ Pc(1)Pc(2) . . . Pc(i− 1)

= (1− Pe(1))(1− Pe(2)) . . . (1− Pe(i− 1)) (40)

In consequence, we can approximate the joint probability with (40) in the calculation
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of the overall distortion.

D. Design Results

1. IRA Codes Design Results

Four IRA codes were designed according to the distortion-rate function of the SPIHT

coder. These codes, designed for binary symmetric channel (BSC) with p = 0.1 and

p = 0.03, have codewords of length 66060 and 132380 bits, respectively. When the

transform coding operated at rate R < 1, by separating the coefficients quantized to

zero from those that are greater than zero, it is shown by Mallat and Falzon [82] that

the distortion-rate function is governed by

D(R) ∼ CR1−2γ (41)

where γ is the negative of the speed of decay of logarithm of sorted coefficients after

transformation, which can be approximated as 1 for most natural images and C

is constant. Therefore, the distortion-rate function for SPIHT coders at R < 1 is

proportional to R−1. Using density evolution and (34) as the criterion instead of the

probability of errors in IRA codes design, we obtain the profiles of IRA codes shown

in Table III for four scenarios.

To validate the effectiveness of our method, another set of codes designed to

minimize the probabilities of errors are introduced for comparison. Code A, which is

designed for p = 0.1 and L = 66060 in table III, and Code B, which is designed to

minimize probabilities of errors with the same p and L, are simulated. The rates of

both codes are 0.46. In order to make a convenient comparison with the experiment

results, Table IV lists the profiles of both codes in terms of node perspective, where

the length of information bits, 30147, is used in calculating the node perspective
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Table III. Profiles of IRA codes of different code length L′s designed for BSC with

crossover probability p’s. Note: λi is the fraction of nodes of degree i.

Code A Code B Code C Code D

p = 0.1 p = 0.03

Rc = 0.46 Rc = 0.4705 Rc = 0.71 Rc = 0.73

L = 66060bits L = 132380bits L = 66060bits L = 132380bits

ρ(x) = x3 ρ(x) = x8

λ(x) =
∑

i λix
i−1 λ(x) =

∑
i λix

i−1

λ2= 0.4373 λ2=0.4501 λ2=0.2689 λ2=0.7530

- λ3=0.0193 λ3=0.7287 -

- - - λ4=0.2469

λ5= 0.2534 - λ5=0.0007 -

- λ7=0.5261 - -

λ9= 0.1951 - - -

- - λ10=0.0005 -

- - λ14=0.0001 -

- - λ15=0.0001 -

- - λ18=0.0002 -

λ20= 0.1141 - λ20=0.0001 -

- - λ22=0.0001 -

- - λ24=0.0005 -
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Table IV. Profiles of Code A (source-optimized)and Code B (conventional) in terms

of node perspective.

λ(x) =
∑

i λix
i−1 λ(x) =

∑
i λix

i−1

Code A Code B

λ2= 20637 λ2=15673

- λ3=5821

- λ4=1834

λ5= 5978 -

- λ6=5794

λ9= 2762 -

- -

- -

- -

- -

λ20= 796 λ20=1025
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profile. The information bits are arranged according to their importance, in a way

that the more important parts of the bitstream are assigned to the information bits

with higher degrees. In constructing both codes, we use S-random inter-leavers with

the same spreading factor s = 205. The block error rate of the Code A is 8.06×10−4.

The block error rate of the Code B ,which is expected lower than that of Code A, is

4.23×10−4. We also recorded the first error bit for Code A and Code B and calculated

the average cost. The cost function is 1/R, where R is the number of the information

bits before the first error bit divided by 262144 (the number of image pixels). After

Mapping the number of information before first error (if any) to the corresponding

bit rate and calculating the cost, we obtain the average cost 8.7322 for Code A and

8.8527 for Code B, respectively. Although Code B has lower probabilities of errors,

the number of correct information bit before the first error bit is lower than that of

code A where errors occur. This effect degrades the overall performance. because

the cost increases dramatically at low R and this part of information needs more

protection.

2. Applications to Scalable Image Transmission Systems

We use these four codes in the simulation of the scalable image transmission system

with the SPIHT coder. The images considered here are Lena, Goldhill and Barbara,

which are 512 × 512 in dimension and 8-bit in resolution. The lengths of the IRA

codes correspond to total bit rates of 0.252 and 0.505. In our simulation, we assign

CRC parity check bits in order to be consistent to that in [28]. Specifically, bitstream

are divided into units and each consists of CRC check bits and information bits in

total 4136 bits. We assume that errors can be detected perfectly and allocated with

the employment of CRC parity check bits. If an error is detected by some CRC

error check bits, the information bits following the check bits are discarded by the
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source decoder. Tables V and VI show simulation results of the proposed schemes

Table V. Average PSNR in dB for 512x512 images over BSC with crossover probability

0.1 and 0.03 and total transmission rate at 0.252 bpp.

Lena Goldhill Barbara

[29] 28.40 26.70 N/A

[28] 29.40 27.69 24.71

p=0.1 [80][81] 30.21 27.92 24.25

New 30.68 28.25 24.49

Limit 31.39 28.65 25.11

[29] N/A N/A N/A

[28] 31.90 29.16 26.32

p=0.03 [80][81] 32.32 29.21 25.99

new 32.74 29.44 26.18

Limit 33.22 29.89 26.71

for these four scenarios. For each image, each result is averaged over 2000 runs and

our IRA code rates are chosen such that at most one decoding error occurs in every

1000 runs. The results from [29],[28], [80] and [81] are also included for comparison.

Note that JPEG2000 used in [28] usually has higher PSNR than SPIHT at the same

rate. Finally, we give the limiting performances which can be computed as (in dB)

10× log10
2552

D(RC)
, where D(.) is the operational distortion-rate function of the SPIHT

coder, R is the total transmission rate and C = 1+ p log2 p+(1− p) log2(1− p) is the

channel capacity of BSC with crossover probability p. It is readily seen from Tables

V and VI that our results are uniformly better than those in [29], [28], [80] and [81]
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and are only 0.40 ∼ 0.73 dB away from the theoretical limits.

Table VI. Average PSNR in dB for 512x512 images over BSC with crossover proba-

bility 0.1 and 0.03 and total transmission rate at 0.505 bpp.

Lena Goldhill Barbara

[29] 31.10 28.60 N/A

[28] 32.76 29.89 26.99

p=0.1 [80][81] 33.21 29.92 26.77

New 33.79 30.31 27.31

Limit 34.43 30.79 27.88

[29] N/A N/A N/A

[28] 35.15 31.38 29.41

p=0.03 [80][81] 35.50 31.50 29.30

new 35.82 31.80 29.68

Limit 36.31 32.24 30.17

For IRA codes with long code length, the performances are very close to the

Shannon limit. A small sacrifice in channel coding rates can boost up the performance

in terms of the probability of errors and will not cause too much decrease in PSNR.

On the other hand, for shorter codes, a small increase in channel coding rate can

enhance the performances in term of PSNR when the source coder is operated at low

bit-rates. Therefore, it is desirable to slightly increase the channel coding rate in some

applications in which the requirements of the probability of errors are not so restricted

or people do not get annoyed to view bad images once a while. Moreover, higher

probability of errors, i.e., more error events, also helps showcase the advantage of our



67

source-optimized IRA code design methodology. Considering this scenario, we design

two IRA codes for SPIHT-coded QCIF (176×144) images with code length 6387 bits

for BSC with crossover probability 0.1. The distortion-rate function is replaced by one

generated by actual encoding and decoding an image mad. The IRA code designed to

minimize the average distortion has the degree profile 0.0952x1 +0.3370x3 +0.5678x6.

The degree profile of the IRA code designed to minimize the probability of errors is

0.0657x1 + 0.0628x2 + 0.1998x3 + 0.2322x4 + 0.4395x6. Here we denote the first code

as Code E and the latter as Code F. Both codes have the same ρ(x) and rate, which

are x3 and 0.46, respectively. When two codes compared in terms of the probabilities

of errors, the block error rates of Code E and Code F are 6.27×10−2 and 3.85×10−2,

respectively. Comparing the quality of the decoded image, we obtain the average

PSNR 30.6920 dB as Code E is used to transmit the SPIHT-coded mad. However,

we can only obtain the average PSNR 29.8161 dB with Code F. If no decoding errors,

the PSNR is 31.4600 dB. Therefore, there is about 0.7680dB degradation in PSNR due

to decoding errors. In the case that errors are detected, the average PSNR’s 25.3760

and 20.3622 dB are obtained with Code E and Code F respectively, i.e., Code E

provides about 5 dB gain when errors are detected. The cumulative distribution

function of the locations of the first error bits for Code E and Code F are shown in

Fig. 16. From these results and the profiles of Code E and Code F, ninety percent

of first error bits are those of degree 2 for Code E. However, only fifty-five percent of

first error bits are those of degree 2 for Code F. Figs 17 and 18 show the frequency

(normalized by the maximum of the frequencies) v.s. bit position (from high to low

degrees) of Code E and Code F. In the figures, it is clear that both codes have uep

capabilities against errors. However, the frequencies above the bit 1000 of Code E is

lower than that of Code F because of the cost function used in the code design. This
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Fig. 16. Cumulative distribution function of the first error bit of Code E (source-op-

timized) and Code F (conventional).
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mized IRA).
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Fig. 18. Normalized frequencies of errors of information bits of Code F (conventional).

justifies the idea to use the average distortion instead of the probability of errors in

the channel code design.

3. Discussion

It is shown by Lastras and Berger [83] that, for an i.i.d source and for squared error

and for two steps of descriptions, the excess source rates (greater than zero) are upper-

bounded by 0.5 bits per sample and the excess source rate for the finer description is

upper-bounded by 1 bit per sample if the excess source rate for the coarser description

is zero, which means that all sources are almost successively refinable. Therefore, we

expect a well-designed scalable source coder will deliver advantageous performance

over a variety of sources against other source coders. However, the corruption in some

part of compressed bitstream could cause serious degradation in the quality of the

delivered content. Therefore, the key of the application of embedded source coding
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in noisy channel environment is the design of the policy by which the redundancies

are assigned the packets. The scheme presented above take the whole image as input,

which is divided into smaller packets, to the encoder of a systematic IRA code. The

packets are given different levels of protection by mapping the bit in the packets to

information bits connected to a designed number of edges in IRA codes.

From the comparison between Code A and Code B, the difference in the source-

optimized and conventional IRA codes is not much because the code length of both

codes is large and hence the performance of the IRA codes optimized for conventional

criterion are capacity-approaching. In this sense, the conventional IRA codes are

source-optimized. The reason is that, for IRA codes with long block lengths, the

advantage of source-optimized IRA codes is less significant since the conventional

IRA codes can be designed very close to the capacity with arbitrarily low error rates

and hence, asymptomatically, the IRA codes optimized with conventional criterion

are the best source-optimized IRA codes as separation theorem suggests. From Table

V and Table VI, with higher total transmission rates, the proposed scheme provides

more gain against the conventional schemes partially due to the interleaving gain. For

smaller IRA codes, as in the case of QCIF images, we see considerable gain over the

conventional IRA codes due to the use of source-optimized IRA codes. The general

rule of thumb is to apply separation principle is when the total transmission rates and

source rates are adequately high. Therefore, this proposed strategy of JSCC works

better when the code lengths are relatively short or where the separation principle is

no longer valid.
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E. Summary

We present a method of designing IRA codes for sources characterized by cost func-

tions. By assuming a cost function and incorporating this cost function into channel

code design, we obtain source-optimized IRA codes. When applied to scalable im-

age transmissions, the procedure to optimize IRA codes automatically decides the

best UEP scheme (degree profiles) when the cost function is distortion-rate function.

We justify this idea by designing IRA codes for SPIHT-coded image sources. Sim-

ulations show that our scheme outperforms conventional approaches and our results

are 0.40 ∼ 0.73 dB away from the theoretical limit. Our design achieves source-

optimized channel coding or true joint source-channel coding. This is different from

usual combined source-channel coding designs.
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CHAPTER V

SLEPIAN-WOLF CODING OF MULTIPLE M -ARY SOURCES USING LDPC

CODES

We consider Slepian-Wolf coding of multiple m-ary sources. We show how Low

Density Parity Check (LDPC) codes can be used for Slepian-Wolf coding of multiple

equiprobable, memoryless and correlated m-ary sources with rates close to the theo-

retical limit. Applying the syndrome concept, we compress multiple correlated m-ary

sources using multilevel codes, which is originally developed in the context of channel

coding problems. With proper chosen rates for compression of each source, decoding

can be achieved using multiple stage decoding. LDPC codes are suitable for such

an application because the correlation model can be used in the LDPC code design.

Therefore, multilevel LDPC codes can be employed in the case of coding multiple m-

ary sources. Examples of code design for four binary sources and two ternary sources

are given with simulations results that are very close to the theoretical limits.

A. Introduction

Driven by the severe physical constraints in sensor networks, there has been great in-

terests in developing distributed signal processing algorithms to leverage the limited

power in sensors to achieve maximal system performances. One of such examples

is lossless distributed data compression, which was considered by Slepian and Wolf

[3]. The Slepian-Wolf theorem determines the region of achievable rates for the com-

pression of two correlated sources X1 and X2 separately as shown in Fig. 19 with

This chapter is joint work with Mr. A. Liveris, who is a fellow graduate student in the De-
partment of Electrical Engineering, Texas A&M University. The author would like to thank
Mr. Liveris for allowing inclusion of his work on correlation models for the completeness of
this chapter.
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arbitrarily small error probabilities if a joint decoder is employed. With X1 available

at the decoder, the achievable rate R2 of lossless compression of X2 (often referred

to as lossless compression with side information) is lower-bounded by the conditional

entropy H(X2|X1), i.e., R2 ≥ H(X2|X1). The achievable rate region is shown in

Fig. 20. This theorem can be extended to the case where multiple sources are in-

volved [2][84]. The achievable rate region for the lossless distributed compression of

n correlated sources Xl’s for l ∈ {1, 2, ..., n} is given by

R(S) > H(X(S)|X(Sc)), (42)

where Rl is compression rate for Xl and, for all S ⊆ {1, 2, ..., n}, R(S) =
∑

l∈S Rl,

X(S) = {Xl : l ∈ S} and Sc = {1, 2, ..., n} \S. The Slepian-Wolf theorem has been

2

Encoder

Encoder

Joint Decoder

X

X

1

2

S 2

S 1

X 1

X

Fig. 19. The Slepian-Wolf problem.

known for a long time, but it was only recently that a practical scheme exploiting the

potential of the Slepian-Wolf theorem was introduced by Pradhan and Ramchandran

[85] based on channel codes like block and convolutional codes. Their setting provides

a framework for asymmetry Slepian-Wolf coding of two i.i.d. correlated sources, i.e.,

the operating points are the corner points on the achievable rate region. In this
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Fig. 20. Achievable rate region for Slepian-Wolf coding of X1 and X2.

regime, better results by using more powerful channel codes such as turbo and LDPC

codes have been reported in [31, 86, 87, 89, 90, 91]. For operating points other than

corner points, practical constructions using LDPC, irregular repeat accumulate (IRA)

and turbo codes have been proposed by Garcia-Frias [86], Schonberg et al. [92, 93]

and Stanković et al. [94]. With puncturing, Garcia-Frias used two turbo codes to

compression two sources, trying to achieve joint entropy. Encoding in his proposed

scheme is the same as the conventional turbo codes. Decoding is done by passing

interleaved version of soft output of one turbo decoder to the other. Since correlation

was not taken into consideration in code design, their results did not approach Slepian-

Wolf bound. The basic idea in [93] and [94] is to partition a parity check matrix, which

can be explained with factor graphs. In the scheme proposed by Schonberg et al., for
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symmetry coding of two sources, the variable nodes of two factor graphs corresponding

to two sub-matrices of the a single parity check matrix are connected with additional

nodes, which model the correlation between two sources. The approach has the

advantage that sources can have any probability distribution. However, it is difficult

to design with density evolution although the code has a simple graph representation.

With the concept of constructing a single code based on independently designed

sub-codes developed by Pradhan and Ramchandran [95], Stanković et al. provided

a solution based on systematic codes such that powerful channel codes like turbo

and IRA codes can be employed to achieve any point on Slepian-Wolf bound. An

extension of the method to Slepian-Wolf coding of multiple sources was also considered

by Stanković et al. and they concluded that a single channel code can be used to

achieve the limit as long as the correlation between the sources satisfy that their

sum is a Bernoulli-p process. They showed LDPC designed with their method can

approach Slepian-Wolf limit. This construction has its own limitation too. First, it

is only shown that the construction achieves the Slepian-Wolf limit for less general

correlation models. Secondly, it assumes the sources are equiprobable. Therefore,

these two reasons limit its applicability. In conclusion, it is difficult to design a limit-

approaching code for symmetric Slepian-Wolf problems for general correlation models

and sources with general probability distributions. In consequence, in this chapter,

we shall focus on asymmetric Slepian-Wolf coding problem using limit-approaching

LDPC codes.

The main novelty in this chapter is the application of LDPC codes to Slepian-Wolf

coding of multiple m-ary sources with performance very close to the theoretical limit.

The advantage of LDPC codes is that they can be designed for different correlation

models between source outputs and the side information. In [31] and [30], with the

exploitation of the correlation between two and three binary sources, it had been
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shown that it is possible to approach the Slepian-Wolf limits with appropriate LDPC

code designs. For Slepian-Wolf coding of three sources, a design rule of rates for

coding each source was proposed in [30]. This rule not only facilitates code design

but also allows multi-stage decoding.

The approach in [30] can be extended to n m-ary sources. In the case of compres-

sion of n binary sources, (H(X1), H(X2|X1),. . .,H(Xn|X1, X2, . . . , Xn−1)) is a corner

point of the region of achievable rates, for which

n∑

l=1

H(Xl|X1, . . . , Xl−1) = H(X1, . . . , Xn) (43)

from the chain rule for the joint entropy. Our work first focuses on four bi-

nary sources (i.e., n = 4 and m = 2) and we design codes with rate R4 close to

H(X4|X1, X2, X3), assuming that there are already codes of rates R1, R2 and R3

available that approach the limits H(X1), H(X2|X1, X2) and H(X4|X1, X2, X3), re-

spectively. This can easily be generalized based on the concept that the code of rate

Rl used for the lth source comes close to the ith term in the summation of the chain

rule, i.e., H(Xl|X1, X2, . . . , Xl−1).

It is also possible to use non-binary LDPC codes as component codes in this

setup. In the case of compression of two ternary sources (i.e., n = 2 and m = 3),

a ternary LDPC code is carefully designed with EXIT-charts method [96] based on

Davey and MacKay’s decoding algorithm [97]. Our designs and simulations show that

LDPC codes are able to approach the corresponding theoretical limit in each of the

two cases.

The rest of the chapter is organized as follows. We first present in Section B a

framework of Slepian-Wolf coding using LDPC codes. Section C presents a general

structure of code for Slepian-Wolf coding of multiple m-ary sources using a multilevel
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code based on LDPC codes. By assuming symmetry in the source correlation, Slepian-

Wolf coding of four sources is shown as an example in Section D with the system

setup, the design of LDPC codes with density evolution and design and simulation

results. Section E presents the system setup with the assumption of symmetry in

the correlation model, design methodology for m-ary LDPC codes and design and

numerical results for two symmetrically correlated ternary sources.

B. Slepian-Wolf Coding Using Wyner’s Scheme Based on LDPC Codes

The asymmetric Slepian-Wolf coding problem for two binary sources , A and B (side

information), can be treated as a channel coding problem with side information at

decoder. Wyner suggested modelling correlations with equivalent channels and ap-

plying the syndrome approach for the asymmetric case. For a linear binary (n, k)

block channel code, there are 2n−k distinct syndromes. Each syndrome corresponds

to a coset leader. Using 2n−k cosets as bins, the encoders transmit the the syndrome,

which is the product of the parity check matrix of the binary code and A. At receiver,

the decoder find the points in the coset which is is closest to the side information in

terms of Hamming distance. The compression ratio is n−k
n

. If the correlation be-

tween two binary sources can be modelled as a binary symmetry channel (BSC) and

the binary (n,k) block channel code is capacity approaching, the compression ratio,

n−k
n

= 1 − k
n
≈ 1 − (1 − H(A|B)) = H(A|B). The above argument suggests LDPC

codes is perfect for Slepian-Wolf coding problem.

LDPC-based Slepian Wolf Coding was first proposed by Liveris et al [31]. In their

scheme, it is straightforward to compute syndrome given the parity check matrices

of LDPC codes. The output syndrome is the modulo-2 sum of the binary values

corresponding to the information nodes connected to the same check node. Upon
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receiving the syndrome, decoders treat the side information as the observations from

channel in message-passing decoding algorithm and the received syndrome are used to

correct the sign when updating the outgoing messages at check nodes. When there are

more than two sources available, it is possible to improve the compression efficiency

to their joint entropy. Liveris et al. [30] consider Slepian-wolf coding of three i.i.d.

correlated sources X1, X2 and X3. Given X1 available at the decoder, from Eq. 42, the

achievable rates R2 and R3 for X2 and X3 have to satisfy the following inequalities:

R2 ≥ H(X2|X1, X3), R3 ≥ H(X3|X1, X2) and R2 + R3 ≥ H(X2, X3|X1). Trying

to minimize the rate R3, i.e. bring it as close as possible to the theoretical limit

H(X3|X1, X2), we get that R2 has to be no less than H(X2|X1). Assuming X1, X2

and X3 are equiprobable and Pr[X2 6= X1|X1] = p and imposing symmetry condition

Pr[X3 = i|X1 = j,X2 = k] =Pr[X3 6= i|X1 6= j, X2 6= k] for all i, j, k ∈ 0, 1 and

Pr[X3 6= X1|X1]=Pr[X3 6= X2|X2] = p, we have lower bound for R2 and R3,

H(X2|X1) = H(p)

= −p log2 p− (1− p) log2(1− p),

(44)

H(X3|X1, X2) = p H

(
1

2

)
+ (1− p) H

(
p/2

1− p

)

= 1 + (1− p) log2(1− p)

−
(

1− 3

2
p

)
log2(2− 3p)− p

2
log2 p. (45)

We have plotted both (44) and (45), i.e. H(X2|X1) and H(X3|X1, X2) respectively,

as a function of p, in Fig. 21.

The general structure of the encoder and joint decoder is shown in Fig. 22, in

which a close-looped decoder is employed with two component decoders C1 and C2.

To avoid the loop in the decoders and simplify the design problem, we can choose
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Fig. 21. Minimum achievable source coding rates H(X2|X1) = H(X3|X1),

H(X3|X1, X2) and H(X4|X1, X2, X3) as functions of p.
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Fig. 22. System for compression of X1, X2,X3.

the rate of C1 to be close to H(X2|X1). Otherwise, C1 and C2 have to be designed

jointly, making the design process more involved. Theoretically, with this choice of

R2 and R3, this approach will not cause any noticeable loss in performance if the

rate of C2 is close to H(X3|X1, X2). The encoding and decoding for compression

and decompression of (X1, X2, X3) is similar to those used in the two source case.

Applying the syndrome concept, the encoders compute the syndromes, S2 and S3, for

X2 and X3 using two LDPC code graphs respectively. The decoding process consists

of two steps: first, X2 is decoded with corresponding decoder using X1 and S2. The

message-passing algorithm can be used in decoding, taking the syndrome S2 into ac-

count. Then the estimated version of X2 together with X1 and S3 are the input to
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the second decoder to estimate X3. This principle can be easily extended to multiple

sources, which is going to be presented in the following section.

C. LDPC Codes for Compression of Multiple Sources

1. Encoding and Decoding

An LDPC code is determined by its graph, which consists of variable (left) and

check (right) nodes [15, 17]. An ensemble of LDPC codes is described by the degree

distribution pair λ = {λ1, λ2, . . .} and ρ = {ρ1, ρ2, . . .} [15, 17]. Assuming X1 is

encoded at rate H(X1) and decoded perfectly with a conventional source code and

serves as side information for the component decoders at higher levels, X2,X3,...,Xn

can be compressed at rates R2,R3,...,Rn lower-bounded by H(X2|X1),H(X3|X1, X2),

...,H(Xn|X1, X2, ..., Xn−1). The general structure of the encoders and joint decoder

is shown in Fig. 23, in which El and Dl are the encoder and its corresponding de-

coder for l ≤ n, and a multistage decoding algorithm is employed with sub-decoders

D1,...,Dn. Starting from the code at stage 2, if properly designed, the decoder can

recover X2 with an arbitrarily small error probability from side information X1 and

syndrome S1 when the source coding rate is H(X2|X1). For the rest stages of de-

coding, the code design problems still fit into the scenario above except that the

sizes of the sets of all possible side information are larger at higher levels. All of the

above argument suggests a code scheme using a multilevel structure and successive

decoding with proper rate allocation. Otherwise, if only partial side information is

available at a component decoder, code design at each level will intervene with one

another, making the design process more involved. Applying the syndrome concept,

the encoders compute the syndromes, S2, S3,...,Sn for X2,X3,...,Xn using n LDPC

code graphs respectively. Encoding with LDPC code graphs in the syndrome setup
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means computing in the corresponding Galois field the summation of the values of

all the variable nodes that are connected to the same check node [31]. The value

after summation at each check node is the corresponding syndrome symbol value.

Note that the component code can be binary or non-binary, which makes coding two

ternary sources a special case.

Encoder

Encoder

Encoder

Encoder

Decoder

Decoder

Decoder

Decoder

Fig. 23. System for compression of X1, X2 ,X3, ..., Xn.

Since the symmetry condition is satisfied in the source correlation, we can opti-

mize the profiles of the LDPC codes using density evolution [15, 17, 16]. What we

need now are the initial pdf’s of the log-likelihood ratios (LLRs) for the left node bits,

which depend on the correlation between the input sources and side information.

Assuming that a Slepian-Wolf limit approaching code including (E1, D1),(E2, D2),
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...., (En, Dn) is used to reach their theoretical limits, we do not expect significant im-

provement by using the true X1, X2, ..., Xl−1 instead of the estimated ones in decoding

of Xi, i = 1...l, typical for symbol error rate less than 10−5, where X1, X2,..., Xl−1 are

grouped as a symbol. However, the error rates are expected to be higher than those

at lower levels due to error propagation in side information, which will be observed

from simulations.

D. Slepian-Wolf Coding of Four Binary Sources

1. System Model

Assume we have three binary sources with equiprobable outputs X1, X2 and X3 with

Pr[Xl 6= Xt|Xt] = p for l 6= t. Imposing the symmetry condition, i.e., Pr[X3 = i|X1 =

j,X2 = k] =Pr[X3 6= i|X1 6= j,X2 6= k] for all i, j, k ∈ {0, 1}, produces

Pr[X1 = X2 = X3|X3] = 1− 3

2
p, (46)

Pr[X1 6= X2 = X3|X3] =
p

2
, (47)

Pr[X2 6= X1 = X3|X3] =
p

2
, (48)

Pr[X1 6= X2 6= X3|X3] =
p

2
, (49)

where Eq. (46)-(49) result from just imposing the symmetry condition on all these

binary conditional probabilities. Having a fourth binary source X4 with equiprobable

output and Pr[X4 6= Xl|Xl] = p, l ∈ 1, 2, 3, we get an extra degree of freedom
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r ∈ [0, p
2
]. The conditional probabilities Pr[X1, X2, X3|X4] in this case are

Pr[X1 = 0 = X2 = X3|X4 = 0] = 1− 2p + r, (50)

Pr[X1 = 0 = X2 6= X3|X4 = 0] =
p

2
− r, (51)

Pr[X1 = 0 = X3 6= X2|X4 = 0] =
p

2
− r, (52)

Pr[X2 = 0 = X3 6= X1|X4 = 0] =
p

2
− r, (53)

Pr[X1 = 1 = X2 = X3|X4 = 0] =
p

2
− r, (54)

Pr[X1 = 1 = X2 6= X3|X4 = 0] = r, (55)

Pr[X1 = 1 = X3 6= X2|X4 = 0] = r, (56)

Pr[X2 = 1 = X3 6= X1|X4 = 0] = r, (57)

and similarly when conditioned on X4 = 1. This correlations between (X1, X2, X3)

and X4 can be modelled as a discrete memoryless channel as shown in Fig. 24.

Another view of this problem is to form four binary sources to 2 4-ary sources, i.e.,

to group (X1, X2) as Y1 and (X3, X4) as Y2. Then the equivalent correlation for two

4-ary sources model is given as:

Pr[Y1 = 00|Y2 = 00] = 1− 3q, (58)

Pr[Y1 = 01|Y2 = 00] = q, (59)

Pr[Y1 = 10|Y2 = 00] = q, (60)

Pr[Y1 = 11|Y2 = 00] = q, (61)

Pr[Y1 = 00|Y2 = 01] = 1/4, (62)

Pr[Y1 = 01|Y2 = 01] = 1/4, (63)

Pr[Y1 = 10|Y2 = 01] = 1/4, (64)

Pr[Y1 = 11|Y2 = 01] = 1/4, (65)
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Fig. 24. A discrete memoryless channel modelling the correlation between X4 and

(X1, X2, X3).
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where q =
p
4

1−p
. Using Multilevel coding, the one with the four binary sources and

the one with the two 4-ary sources, the same Slepian-Wolf coding system can be used

to approach the theoretical limits. The reason is given as follows. In the case of the

two 4-ary sources the theoretical limit for loseless compression of the second sources

Y2 assuming Y1 is available at the decoder, is given by

RY2 ≥ H(Y2|Y1) = H(X3, X4|X1, X2) = H(X3|X1, X2) + H(X4|X1, X2, X3). (66)

Therefore, the multilevel codes designed for coding of four binary sources can be used

for coding two 4-ary sources, in which the sub-codes designed for compression X3 and

X4 given (X1, X2) and (X1, X2, X̂3) as side information can be considered as a joint

code for coding of Y2(X3 and X4) given Y1(X1 and X2). Therefore, we shall focus on

coding of four binary sources in example as follows.

2. Theoretical Limits

In this case of coding four binary sources, a multilevel code of four levels can achieve

the Slepian-Wolf limit where the first level uses a conventional source coder. We

assume that X1 is compressed at rate H(X1) and perfectly recovered at the output

of the corresponding decoder. From Eq. (42), the sources coding rates, R2, R3 and
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R4, for the compression of X2, X3 and X4 have to satisfy the following

R2 ≥ H(X2|X1, X3, X4), (67)

R3 ≥ H(X2|X1, X2, X4), (68)

R4 ≥ H(X4|X1, X2, X3), (69)

R2 + R3 ≥ H(X2, X3|X1, X4), (70)

R2 + R4 ≥ H(X2, X4|X1, X3), (71)

R3 + R4 ≥ H(X3, X4|X1, X2), (72)

R2 + R3 + R4 ≥ H(X2, X3, X4|X1). (73)

Trying to operate at a corner point of the achievable region, where R2+R3+R4 is min-

imized, we set R2, R3 and R4 to be H(X2|X1), H(X3|X1, X2) and H(X4|X1, X2, X3),

respectively. Note that this setup allows us to design component codes independently

and to use a multi-stage decoding algorithm.

Explicitly expressing the theoretical limit in terms of p and r, we get H(X2|X1),

H(X3|X1, X2) as given by Eq. (44) and Eq. (45), and

H(X4|X1, X2, X3) =
3

2
H(1− 2r/p) + (1− 3p

2
)H(

p
2
− r

1− 3p
2

), (74)

where H(p) = −p log2 p − (1 − p) log2(1 − p). Eq. (44) and (45) are the same as in

[30]. We have plotted Eq. (44), Eq. (45) and Eq. (74), i.e., H(X2|X1), H(X3|X1, X2)

and H(X4|X1, X2, X3) respectively, as a function of p and r = p
8
, in Fig. 21. Using

syndromes [85] or equivalently Wyner’s scheme [44, 98], we can translate the minimum

achievable source coding rates into channel coding rates that refer to the channel codes

that are used for source coding with side information at the decoder. These maximum

channel coding rates are shown in Fig. 25.
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Fig. 25. The corresponding maximum channel code rates 1 − H(X2|X1),

1 − H(X3|X1, X2) and 1 − H(X4|X1, X2, X3) as functions of p, when

using syndromes [85] (or Wyner’s scheme [44, 98]).
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3. Binary LDPC Code Design with Density Evolution

Here we explain how to design LDPC codes for Slepian-Wolf coding of four sources.

Taking C4 as an example, from (50)-(57), we can see there are four possible input

LLRs to the decoder, ± log 1−2p+r
p
2
−r

and ± log
p
2
−r

r
, respectively. Therefore, the initial

pdf of LLRs for X4 given X1, X2 and X3 is

fX4(t) =
3p

8
δ(t + log

p
2
− r

r
) +

9p

8
δ(t− log

p
2
− r

r
)

+
3p

8
δ(t + log

1− 2p + r
p
2
− r

) + (1− 15p

8
)δ(t− log

1− 2p + r
p
2
− r

). (75)

With fX4 as the initial pdf in density evolution, the objective is to find the source

code of minimum rate while assuming that the resulting bit error probability Pe is

below 10−6. For a given correlation model, i.e., in our setup for fixed p and r, the

problem can be formulated as

(λ, ρ) = arg min
S

∑
i

ρi

i∑
i

λi

i

, (76)

where S = {(λ, ρ)|Pe(λ, ρ) < 10−6,
∑

i λi = 1,
∑

i ρi = 1, λi ≥ 0, ρi ≥ 0}.

4. Design and Simulation Results

In Fig. 21 we also show the simulation results from [31] and [30], which correspond to

the highest simulated compression at these rates given in the literature for distributed

compression of two and three equiprobable binary sources. The same approach as in

[31] and [30] can be used to design the component codes at all levels to get rates

close to the theoretical limits. Therefore, we focus on showing how this approach

can be extended to get Rl close to H(Xl|X1, X2, ..., Xl−1) and obtain the rate savings

predicted by the theoretical limit of Fig. 21. Take l = 4 as an example. In addition
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to the ideal case, errors in the outputs from lower levels are also taken into account

in simulations.

Consider designing C4. Using the discretized density evolution [17], the resulting

optimized profiles of C4 code for p = 0.3 and r = p
8

are

λ(x) = 0.2979x + 0.1764x2 + 0.1157x3 + 0.0793x4 + 0.0550x5 + 0.0376x6

+ 0.0246x7 + 0.0145x8 + 0.0064x9 + 0.0280x14 + 0.0352x15 + 0.0150x16

+ 0.0153x19 + 0.0131x22 + 0.0189x23 + 0..0296x24 + 0.0093x25 + 0.0116x28

+ 0.0059x30 + 0.0108x35.

ρ(x) = 0.6738x3 + 0.3262x5. (77)

The rate of the ensemble of LDPC codes with this profile is 0.2095, which cor-

responds to a compression rate of 1 − 0.2095 = 0.7905. By Eq. (74) and (45),

H(X4|X1, X2, X3) = 0.8247 and H(X4|X1, X2) = 0.7671 for p = 0.3. Our result is

only 0.0264 bits away from H(X4|X1, X2, X3) and 0.0342 bits below H(X4|X1, X2).

This is shown in the second row of Table VII. In the third row of the table, the

correlation in terms of p is shown for fixed rate R = 0.7905, equal to the code rate

of Eq. (77). So p = 0.2793 results in H(X4|X1, X2) = 0.7905 from Eq. (44) and

p = 0.3168 results in H(X4|X1, X2, X3) = 0.7905 from Eq. (45).

Table VII. Comparison of the LDPC code threshold with the theoretical limit in terms

of both rate and correlation.

H(X4|X1, X2) LDPC (77) H(X4|X1, X2, X3)

p = 0.3 R=0.8247 R=0.7905 R=0.7671

R = 0.7905 p = 0.2793 p = 0.3000 p = 0.3168
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The simulated performance of C3 [30] and this LDPC code with codeword length

5 · 105 has been plotted in Fig. 26. Each simulation point in the figure corresponds

to 30 frame errors after 200 decoding iterations. Convergence of the LDPC code is

achieved for about p = 0.294 for which H(X4|X1, X2) = 0.8167 and H(X4|X1, X2, X3) =

0.7597, i.e., this LDPC code can come about 0.0308 bits away from the theoretical

limit and exceed the three sources theoretical limit by about 0.0262 bits. Considering

the correlation model changes due to errors in side information, the new correlation

model is

Pr[X1 = 0 = X2 = X3|X4 = 0] = (1− 15p

8
)(1− ε1)(1− ε2) +

p

8
ε1ε2 +

3p

8
ε1 +

3p

8
ε1

Pr[X1 = 0 = X2 6= X3|X4 = 0] =
3p

8
(1− ε1)(1− ε2) +

p

8
ε1 + (1− 15p

8
)ε2 +

3p

8
ε1ε2

Pr[X1 = 0 = X3 6= X2|X4 = 0] =
3p

8
(1− ε1)(1− ε2) +

p

8
ε2 + (1− 15p

8
)ε1 +

3p

8
ε1ε2

Pr[X2 = 0 = X3 6= X1|X4 = 0] =
3p

8
(1− ε1)(1− ε2) +

p

8
ε1 +

p

8
ε2 +

3p

8
ε1ε2

Pr[X1 = 1 = X2 = X3|X4 = 0] =
3p

8
(1− ε1)(1− ε2) +

p

8
ε1 +

3p

8
ε2 +

p

8
ε1ε2

Pr[X1 = 1 = X2 6= X3|X4 = 0] =
p

8
(1− ε1)(1− ε2) +

3p

8
ε1 +

3p

8
ε2 +

p

8
ε1ε2

Pr[X1 = 1 = X3 6= X2|X4 = 0] =
p

8
(1− ε1)(1− ε2) +

3p

8
ε1 +

3p

8
ε2 +

p

8
ε1ε2

Pr[X2 = 1 = X3 6= X1|X4 = 0] =
p

8
(1− ε1)(1− ε2) +

3p

8
ε1 +

3p

8
ε2 + (1− 15p

8
)ε1ε2

where r = p
8
, ε1 and ε2 are error rates in side information caused by decoders at

the previous two stages and we assume no errors in X1.

Similar correlation models with errors from decoders at lower levels can be de-

rived easily in the case of three sources. Both the design and the simulation results

are also shown in Fig. 21. In Fig. 26, the simulated performances of LDPC codes

with perfect and imperfect side information are shown with p for three and four

sources. Each simulation point in Fig. 26 corresponds to 30 frame errors after 200
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Fig. 26. Simulation results with perfect and imperfect side information for

the LDPC code (77) as a function of p. The p = 0.268 for

H(X2|X1) = H(X3|X1) = 0.8386, the p = 0.309 for H(X3|X1, X2) = 0.8386

and the LDPC code threshold p = 0.300 are also shown.
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Fig. 27. Simulation with perfect and imperfect side information results for the

LDPC code Eq. (77) as a function of p. The p = 0.2793

for H(X4|X1, X2) = H(X3|X1, X2) = 0.7905, the p = 0.3168 for

H(X3|X1, X2) = 0.7905 and the LDPC code threshold p = 0.300 are also

shown.
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decoding iterations. It is shown in Fig. 27 that the source coding system suffers from

performance loss due to imperfect side information in the case of coding four sources.

E. Coding of Two Ternary Sources

1. System Model

We consider Slepian-Wolf coding of two ternary sources. As the correlation models

in the binary case, symmetry is assumed. Let X1 and X2 denote two ternary sources,

the conditional probability matrix P is given as




1− 2q q q

q 1− 2q q

q q 1− 2q




(78)

where Pi,j = p(X2 = j|X1 = i) for i, j = 1, 2, 3.

2. Ternary LDPC Codes

When the sources are not binary, one can use m-ary LDPC codes as component codes

in a multilevel code and compute the syndrome. An m-ary LDPC code is defined by

its parity matrix whose entries are taken from a finite Galois field, GF(m). As binary

LDPC codes, m-ary LDPC codes can be decoded with message-passing algorithms.

Before the algorithm is given, a few of notations are defined. V (c) denotes the set

of variable nodes that participate in the check node c. Similarly, C(v) denotes the

set of variable nodes that depend on the variable node v. qa
cv denotes the probability

that variable node v is a given the information obtained via check other than c. ra
cv

denotes probability that check c is satisfied if the variable node v is fixed at a. Then

the update rule at variable nodes of the decoding algorithm for m-ary LDPC codes
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[97] is given by

qa
cv = αcvf

a
v

∏

j∈V (C)\v
ra
jv (79)

and the update rule at check nodes is given by

ra
cv =

∑

X′ :X′
v=a

Pr[Zc|X ′
]

∏

j∈C(V )\c
q

x
′
j

cj . (80)

3. Ternary LDPC Code Design with EXIT Charts

The density evolution used to design binary LDPC codes can still be applied to non-

binary cases. However, since the input LLRs are random vectors, designing a m-ary

LDPC code with density evolution is very time-consuming, which simply prohibits

us to do so. A rough estimation of the complexity of density evolution based on a

look-up table [16] gives us an idea how complex the design is. The look-up table,

R(a, b), is for the tanh operation. Given the outgoing message c = R(a, b) and

two incoming messages a and b, the probability mass function pc of c is given by

pc[k] =
∑

(i,j):k∆=R(i∆,j∆) pa[i]pb[j]. Considering the case of ternary codes, a, b and c in

the above expression are random vectors of dimension 3. If a summation over n terms

is required for a pc[k] in the binary case, a summation over n1n2n3 terms is going to

be needed in the ternary case, where ni is the number of terms in summation for the

ith entry of a given vector c. Therefore, another approach based on EXIT charts is

used to design m-ary LDPC codes in this chapter. Exit charts was first proposed by

[96] to analyze the convergent behavior of decoders for turbo codes. The idea is to

track the extrinsic information for each iteration in the decoding process. It turns

out that this technique can be applied to LDPC codes as well. Define PrA(i) as the

input probability of ith symbol at variable nodes and similarly PrE(i) for check nodes.

Let f(IA) and g(IE) be the extrinsic information transfer functions for variable and
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nodes, respectively, where

IE = log2 m +
m−1∑
i=0

PrE(i) log2 PrE(i), (81)

and

IA = log2 m +
m−1∑
i=0

PrA(i) log2 PrA(i). (82)

A property of capacity-approaching codes is that the reliability of extrinsic informa-

tion increases with iterations for their rates smaller than capacity, which implies f(IA)

should be greater than g−1(IE). For an irregular LDPC codes, the transfer functions

of the extrinsic information for variable and check nodes of different degree should

be available before we can proceed to design the degree-profiles. Unfortunately, there

is a lack of explicit expressions for the transfer functions of the extrinsic information

for general channels, except for Gaussian channels. Therefore, we have to resort to

simulation for the channels (correlation models) considered in this chapter. Once the

extrinsic information transfer curves is obtained, we are able to setup an optimization

problem to solve for λi and ρi as follows:

min

∑
i

ρi

i∑
i

λi

i

(83)

subject to
∑

i λifi(IA) ≥ ∑
i ρig

−1
i (IA), 1 ≥ λi ≥ 0 and 1 ≥ ρi ≥ 0. where fi(IA) and

gi(IE) are the extrinsic information transfer functions for variable and check nodes of

degree i and j respectively.

4. Design and Simulation Results

To get fi(IA) and gi(IE), simulations are conducted to collect different points on

the transfer curves while fixing λi or ρi at 1. Curve-fitting tools can be used to
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approximate fi(IA) and gi(IE) with polynomial or exponential curves (to reduced

approximation errors). Then we can evaluate the approximated version of fi(IA) and

gi(IE) at desired values of IA and IE. Therefore, Eq. 83 can be set-up with a set of

sampled linear constraints and solved with standard optimization tools. For coding

two ternary sources, q = 0.1 as assumed in the correlation model, using EXIT charts

the optimized degree profiles are obtained with (83)

λ(x) = 0.2281x1 + 0.1231x2 + 0.1149x3 + 0.1001x5 + 0.0177x6 + 0.4162x23.

ρ(x) = 0..0015x3 + 0.5592x6 + 0.4393x7. (84)

The rate of this codes is 0.3846 and the capacity for the correlation model is

0.4183, which is only 0.0337 bits away from the theoretical limit. The extrinsic

information transfer curves for variable and check nodes of different degrees are shown

in Fig. 28. The extrinsic information transfer curves averaged over λi and ρi are

shown Fig. 29. The simulated performance of the length 5 × 105 ternary code is

4.43×10−4 (symbol error rate) at q = 0.085, for which the capacity is 0.4778. The loss

is about 0.0932 in channel coding rate (or 0.0932 log2 3 = 0.1477 bit in compression

performance). The larger loss in this ternary case agrees with what has been observed

for the AWGN channel, i.e., it is harder to achieve the capacity with non-binary

signaling/coding.

F. Summary

We have shown how LDPC codes can be used for distributed compression of multiple

m-ary correlated sources. Using the equivalent channels, the Slepian-Wolf coding

problems can be treated as channel coding problems. LDPC codes were designed for

such a setup with threshold 0.0264 and 0.0337 bits away from the theoretical limit
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in the case coding of four binary and two ternary sources. Based on the chain rule

for the joint entropy, the same approach can be extended to multiple sources. For

non-binary sources, m-ary LDPC codes can also approach the theoretical limit.
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CHAPTER VI

CONCLUSION

This dissertation is dedicated to the design of a class of graphed-based error-correcting

codes, which can be represented in Tanner graphs and can be decoded using soft

iterative message-passing algorithms, and their applications to scalable image and

video transmission, lossless distributed data compression.

The first part of the dissertation is to design and analysis of rate-compatible

IRA codes for scalable image transmission systems. In a scalable image transmis-

sion system, rate-compatible channel codes are required to provide unequal error

protection for bits of different importance. This part include the analysis with den-

sity evolution the effect of puncturing applied to IRA codes and asymptotic analysis

of the performance of the systems. We have presented a JSCC system for scalable

image and video transmission based on state-of-the-art scalable source coders and

rate-compatible IRA codes. The set of IRA codes obtained by puncturing achieves

rate-compatibility while maintaining a high performance and lower decoding complex-

ity. By concatenating a rate-optimal solution with a modified local search algorithm,

the error control scheme achieves compatible performance to the Viterbi algorithm

used in [28], while the complexity is lower. We have applied this joint design to

the transmission of scalable image and video transmission over BSC channels, using

state-of-the-art source coders. Simulations show uniformly better results over those

reported in previous works.

In the second part of the dissertation, we consider designing source-optimized

IRA codes. The idea is to take advantage of the capability of unequal error protection

(UEP) of IRA codes against errors because of their irregularities. In video and image

transmission systems, the ene-to-end performance is measured by peak signal to noise
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ratio (PSNR). We propose an approach to design IRA codes optimized for such a

criterion. Based on this approach, we have presented a method of designing IRA

codes for sources characterized by cost functions. By assuming a cost function and

independence and incorporating this model into channel code design, we obtain IRA

codes that is designed for certain source which is characterized by cost function.

The procedure to optimize IRA codes automatically decides the best UEP scheme

(degree profiles) when the cost function is distortion-rate function. We justify this

idea by designing IRA codes for SPIHT-coded image sources. Simulations show that

our scheme outperforms conventional UEP scheme and our results are 0.40 ∼ 0.73

dB away from the theoretical limit. Our design achieves source-optimized channel

coding or true joint source-channel coding. This is different from usual combined

source-channel coding designs.

The third part of the dissertation is to investigate the Slepian-Wolf coding prob-

lem using LDPC codes. The problems which have been addressed include coding

problem involving multiple sources and non-binary sources, and coding using multi-

level codes and non-binary codes. We have shown how LDPC codes can be used for

distributed compression of multiple m-ary correlated sources. Using the equivalent

channels, the Slepian-Wolf coding problems can be treated as channel coding prob-

lems. LDPC codes were designed for such a setup with threshold 0.0264 and 0.0337

bits away from the theoretical limit in the case coding of four binary and two ternary

sources. Based on the chain rule for the joint entropy, the same approach can be

extended to multiple sources. For non-binary sources, m-ary LDPC codes can also

approach the theoretical limit.

Through study, the understanding of coding theory and the practice of designing

good codes are achieved by employing and designing codes in real applications. The

approach (density evolution) is found useful in a variety of applications and yields
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fruitful results.
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APPENDIX1

Fast Algorithm for Optimal UEP

Generally speaking, the objective of optimal UEP for multimedia data transmission

is to minimize the average MSE under a transmission rate constraint and known

channel condition. Because of the huge number of all candidate solutions, such an

optimization problem is generally very time-consuming. Exhaustive search is thus

prohibitive and various algorithms have been developed. With fixed source block size

and variable channel codeword length, Chande and Farvardin showed how to solve

this JSCC problem exactly using dynamic programming [49]. It can also be converted

into a Lagrangian minimization problem and solved using an iterative descent algo-

rithm [52]. On the other hand, when the channel codeword length is fixed, a Viterbi

algorithm is used in [28] to find the optimal rate allocation.

These algorithms have proved to be efficient at the price of relatively high com-

plexity. In [45], however, the authors showed that a rate-optimal solution concate-

nated with a fast local search algorithm can be used to achieve near-optimal PSNR

performance, while its time complexity was lower than that of all previously proposed

algorithms. Consequently, we adopt the rate-optimal solution in [49] and combine it

with a modified local search algorithm.

After source and channel coding, each packet has a fixed length of 4136 bits (517

1 c©2004 IEEE. Reprinted with permission, from IEEE Transactions Communications,
vol. 52, pp. 1092 - 1101, July 2004.
2A JSCC solution is called rate-optimal if it maximizes the expected number of cor-
rectly received source bits. Correspondingly, a distortion-optimal solution minimizes
the expected MSE.
3PSNR is defined as PSNR = 10log10(2552/MSE) and measured in decibels (dB).
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bytes), with the ith packet consisting of Ri bit from the source bit stream, 8 bits

for specifying next packet’s channel coding rate and 16 CRC bits for error detection,

and Ci parity bits. So we have Ri + Ci = 4112 for 1 ≤ i ≤ N , with N being the

total number of packets. If the decoder detects an error in any packet, the decoding

process is stopped and the source is reconstructed from the correctly received source

bits. We assume that all errors can be detected.

Borrowing notation from [45], now we have m (in this case m = 7) channel

codes c1, c2, ..., cm which are constructed in the above section. Let R be the set of

corresponding code rates r1 < r2 < ... < rm. For i = 1, 2, ..., m, let p(ri) denote the

probability of a decoding error in a packet protected by code ci, which is given in Fig.

8 as a function of the channel BER. Suppose now that we want to send N packets of

L = 4136 bits with 24 bits overhead in each packet. We have a rate allocation vector

R = (rk1 , rk2 , ..., rkN
), which assigns to each packet i, i = 1, 2, ..., N , a channel code

rate rki
∈ R. The number of source bits in the ith packet is given by v(rki

) = Lrki
−24.

For i = 1, ..., N −1, Pi(R) =
∏i

j=1(1−p(rkj
))p(rki+1

) is the probability that no errors

occur in the first i packets but with an error in the next one, P0(R) = p(rk1) is

the probability of an error in the first packet, and PN(R) =
∏N

j=1(1 − p(rkj
)) is the

probability that all N packets are correctly received. Then the expected distortion is

given by

EN{d}(rk1 , rk2 , ..., rkN
) =

N∑
i=0

Pi(R)di(R), (A-1)

where d0(R) = d0 is the source variance, and for i ≥ 1, di(R) is the reconstruction

distortion using the first i packets.

Direct minimization of the expected distortion given in (A-1) is relatively complex

a problem to solve. Alternatively, according to the analysis in [45], we can first get a

rate-optimal solution as the starting point and then use a local search algorithm to
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find a local minimum of (A-1).

The rate-optimal solution maximizes the expected number of correctly received

source bits

EN{r}(rk1 , rk2 , ..., rkN
) =

N∑
i=0

Pi(R)Vi(R), (A-2)

where V0(R) = 0 and for i ≥ 1, Vi(R) =
∑i

j=1 v(rkj
) with v(rkj

) = Lrkj
− 24 being

the number of source bits in the jth packet, then a rate-optimal solution can be easily

computed in O(N) time [49].

Starting from this rate allocation, the next step is to perform local search to find

the distortion-optimal solution. By modifying the fast local search algorithm in [45],

we search the minimum expected distortion as following.

Modified local search algorithm

1. Set k = 1 and n = 1. Let R = Rc = R0, where R0 is the rate-optimal solution.

2. If n > 3, stop. Otherwise let r be the kth highest rate used by Rc. Find j that

is the index of the first packet of rate r in Rc.

3. If r = r1, stop. Otherwise, let rc ∈ R be the highest rate smaller than r, set the

jth component of Rc to rc.

4. If EN{d}(Rc) < EN{d}(R), set R = Rc and goto step 2.

5. If j = N and rc is the equal to the rate of packet j − 1, set k = k + 1 and

Rc = R; if j = 1 and rc = r1, set k = 1, n = n + 1 and Rc = R; go to step 2.

The resulting vector R contains a distortion-optimal solution. Experiments show

that this local search algorithm achieves comparable performance to the Viterbi al-

gorithm but with much lower complexity.
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