103 research outputs found

    Characterization of Parallel Application Runtime Sensitivity on Multi-core High Performance Computing Systems

    Get PDF
    A commonly seen behavior of parallel applications is that their runtime is influenced by network communication load. The way a parallel application is run in a network and the presence of other applications and processes in the network can contribute to a wide range of variations in the runtime. Therefore, in order to achieve consistent and optimal runtimes, it is important to understand and characterize the runtime sensitivity of parallel applications with respect to execution under the presence of network communication load. In this research, runtime sensitivities for various parallel applications were studied by applying additional network communication load. In particular, the focus was on the runtime sensitivity of parallel applications on a multi-core multi-processor (MCMP) system where less network switching and routing are involved compared to single-core single-processor machines. The objective of this work was to determine if a previously developed sensitivity model for single-core single-processor machines still holds good for multi-core machines. For this purpose, previously developed tools (PACE and PARSE) were used to perturb the communication sub-system while executing several parallel application benchmarks such as the NAS benchmarks and PSTSWM. Runtime variations of these parallel applications were studied, under a specific network communication load, for different test cases by changing computing core allocation. A 10-node 80-core cluster was used as the test bed for this research purpose. Several test cases were explored using a variety of core allocations (process locations) for the application under test (AUT) to simulate job scheduler fragmentation. To ensure statistical significance, several iterations (trial runs) were executed in each test case. Results indicate that the idea of application sensitivity to communication sub-system performance degradation holds for MCMP architectures

    Why High-Performance Modelling and Simulation for Big Data Applications Matters

    Get PDF
    Modelling and Simulation (M&S) offer adequate abstractions to manage the complexity of analysing big data in scientific and engineering domains. Unfortunately, big data problems are often not easily amenable to efficient and effective use of High Performance Computing (HPC) facilities and technologies. Furthermore, M&S communities typically lack the detailed expertise required to exploit the full potential of HPC solutions while HPC specialists may not be fully aware of specific modelling and simulation requirements and applications. The COST Action IC1406 High-Performance Modelling and Simulation for Big Data Applications has created a strategic framework to foster interaction between M&S experts from various application domains on the one hand and HPC experts on the other hand to develop effective solutions for big data applications. One of the tangible outcomes of the COST Action is a collection of case studies from various computing domains. Each case study brought together both HPC and M&S experts, giving witness of the effective cross-pollination facilitated by the COST Action. In this introductory article we argue why joining forces between M&S and HPC communities is both timely in the big data era and crucial for success in many application domains. Moreover, we provide an overview on the state of the art in the various research areas concerned

    Statistical Techniques to Model and Optimize Performance of Scientific, Numerically Intensive Workloads

    Get PDF
    Projecting performance of applications and hardware is important to several market segments—hardware designers, software developers, supercomputing centers, and end users. Hardware designers estimate performance of current applications on future systems when designing new hardware. Software developers make performance estimates to evaluate performance of their code on different architectures and input datasets. Supercomputing centers try to optimize the process of matching computing resources to computing needs. End users requesting time on supercomputers must provide estimates of their application’s run time, and incorrect estimates can lead to wasted supercomputing resources and time. However, application performance is challenging to predict because it is affected by several factors in application code, specifications of system hardware, choice of compilers, compiler flags, and libraries. This dissertation uses statistical techniques to model and optimize performance of scientific applications across different computer processors. The first study in this research offers statistical models that predict performance of an application across different input datasets prior to application execution. These models guide end users to select parameters that produce optimal application performance during execution. The second study offers a suite of statistical models that predict performance of a new application on a new processor. Both studies present statistical techniques that can be generalized to analyze, optimize, and predict performance of diverse computation- and data-intensive applications on different hardware

    Fast, Accurate Processor Evaluation Through Heterogeneous, Sample-Based Benchmarking

    Get PDF
    Performance evaluation is a key task in computing and communication systems. Benchmarking is one of the most common techniques for evaluation purposes, where the performance of a set of representative applications is used to infer system responsiveness in a general usage scenario. Unfortunately, most benchmarking suites are limited to a reduced number of applications, and in some cases, rigid execution configurations. This makes it hard to extrapolate performance metrics for a general-purpose architecture, supposed to have a multi-year lifecycle, running dissimilar applications concurrently. The main culprit of this situation is that current benchmark-derived metrics lack generality, statistical soundness and fail to represent general-purpose environments. Previous attempts to overcome these limitations through random app mixes significantly increase computational cost (workload population shoots up), making the evaluation process barely affordable. To circumvent this problem, in this article we present a more elaborate performance evaluation methodology named BenchCast. Our proposal provides more representative performance metrics, but with a drastic reduction of computational cost, limiting app execution to a small and representative fraction marked through code annotation. Thanks to this labeling and making use of synchronization techniques, we generate heterogeneous workloads where every app runs simultaneously inside its Region Of Interest, making a few execution seconds highly representative of full application execution

    Proactive Adaptation in Self-Organizing Task-based Runtime Systems for Different Computing Classes

    Get PDF
    Moderne Computersysteme bieten Anwendern und Anwendungsentwicklern ein hohes Maß an ParallelitĂ€t und HeterogenitĂ€t. Die effiziente Nutzung dieser Systeme erfordert jedoch tiefgreifende Kenntnisse, z.B. der darunterliegenden Hardware-Plattform und den notwendigen Programmiermodellen, und umfangreiche Arbeit des Entwicklers. In dieser Thesis bezieht sich die effiziente Nutzung auf die GesamtausfĂŒhrungszeit der Anwendungen, den Energieverbrauch des Systems, die maximale Temperatur der Verarbeitungseinheiten und die ZuverlĂ€ssigkeit des Systems. Neben den verschiedenen Optimierungszielen muss ein Anwendungsentwickler auch die spezifischen EinschrĂ€nkungen und Randbedingungen des Systems berĂŒcksichtigen, wie z. B. Deadlines oder Sicherheitsgarantien, die mit bestimmten Anwendungsbereichen einhergehen. Diese KomplexitĂ€t heterogener Systeme macht es unmöglich, alle potenziellen SystemzustĂ€nde und UmwelteinflĂŒsse, die zur Laufzeit auftreten können, vorherzusagen. Die System- und Anwendungsentwickler sind somit nicht in der Lage, zur Entwurfszeit festzulegen, wie das System und die Anwendungen in allen möglichen Situationen reagieren sollen. Daher ist es notwendig, die Systeme zur Laufzeit der aktuellen Situation anzupassen, um ihr Verhalten entsprechend zu optimieren. In eingebetteten Systemen mit begrenzten KĂŒhlkapazitĂ€ten muss z.B. bei Erreichen einer bestimmten Temperaturschwelle eine Lastverteilung vorgenommen, die Frequenz verringert oder Verarbeitungseinheiten abgeschaltet werden, um die WĂ€rmeentwicklung zu reduzieren. Normalerweise reicht es aber nicht aus, einfach nur auf einen ungĂŒnstigen Systemzustand zu reagieren. Das Ziel sollte darin bestehen, ungĂŒnstige oder fehlerhafte SystemzustĂ€nde vor dem Auftreten zu vermeiden, um die Notwendigkeit des Aufrufs von Notfallfunktionen zu verringern und die Benutzerfreundlichkeit zu verbessern. Anstatt beispielsweise die WĂ€rmeentwicklung durch eine Neuverteilung der Anwendungen zu reduzieren, könnten proaktive Mechanismen kritische Temperaturen bereits im Vorfeld vermeiden, indem sie bestimmte unkritische Aufgaben verzögern oder deren Genauigkeit oder QoS verringern. Auf diese Weise wird die Systemlast reduziert, bevor ein kritischer Punkt erreicht wird. Lösungen des aktuellen Stands der Technik wie einheitliche Programmiersprachen oder Laufzeitsysteme adressieren einige der oben genannten Herausforderungen, jedoch existiert kein Ansatz, der in der Lage ist, eine Optimierung mehrerer sich widersprechender Zielfunktionen dynamisch und vor allem proaktiv durchzufĂŒhren. Ein Konzept, das diese komplexe Aufgabe fĂŒr den Entwickler ĂŒbernimmt und eine Möglichkeit zur dynamischen und proaktiven Anpassung an VerĂ€nderungen bietet, ist die Selbstorganisation. Selbstorganisation ist jedoch definiert als ein Prozess ohne externe Kontrolle oder Steuerung. Im Kontext der Systemoptimierung kann dies leicht zu unerwĂŒnschten Ergebnissen fĂŒhren. Ein Ansatz, der Selbstorganisation mit einem Kontrollmechanismus kombiniert, welcher auf Robustheit und WiderstandsfĂ€higkeit gegenĂŒber Ă€ußeren Störungen abzielt, ist Organic Computing. Das bestimmende Merkmal von Organic Computing ist eine Observer/Controller-Architektur. Das Konzept dieser Architektur besteht darin, den aktuellen Zustand des Systems und der Umgebung zu ĂŒberwachen, diese Daten zu analysieren und auf der Grundlage dieser Analyse Entscheidungen ĂŒber das zukĂŒnftige Systemverhalten zu treffen. Organic Computing ermöglicht es also auf der Grundlage der vergangenen und des aktuellen Zustands proaktiv Mechanismen auszuwĂ€hlen und auszulösen, die das System optimieren und unerwĂŒnschte ZustĂ€nde vermeiden. Um die Vorteile des Organic Computings auf moderne heterogene Systeme zu ĂŒbertragen, kombiniere ich den Organic Computing-Ansatz mit einem Laufzeitsystem. Laufzeitsysteme sind ein vielversprechender Kandidat fĂŒr die Umsetzung des Organic Computing-Ansatzes, da sie bereits die AusfĂŒhrung von Anwendungen ĂŒberwachen und steuern. Insbesondere betrachte und bearbeite ich in dieser Dissertation die folgenden Forschungsthemen, indem ich die Konzepte des Organic Computings und der Laufzeitsysteme kombiniere: ‱ Erfassen des aktuellen Systemzustands durch Überwachung von Sensoren und Performance Countern ‱ Vorhersage zukĂŒnftiger SystemzustĂ€nde durch Analyse des vergangenen Verhaltens ‱ Nutzung von Zustandsinformationen zur proaktiven Anpassung des Systems Ich erweitere das Thema der Erfassung von SystemzustĂ€nden auf zwei Arten. ZunĂ€chst fĂŒhre ich eine neuartige heuristische Metrik zur Berechnung der ZuverlĂ€ssigkeit einer Verarbeitungseinheit ein, die auf symptombasierter Fehlererkennung basiert. Symptombasierte Fehlererkennung ist eine leichtgewichtige Methode zur dynamischen Erkennung von soften Hardware-Fehlern durch Überwachung des AusfĂŒhrungsverhaltens mit Performance Countern. Die dynamische Erkennung von Fehlern ermöglicht dann die Berechnung einer heuristischen Fehlerrate einer Verarbeitungseinheit in einem bestimmten Zeitfenster. Die Fehlerrate wird verwendet, um die Anzahl der erforderlichen AusfĂŒhrungen einer Anwendung zu berechnen, um eine bestimmte ErgebniszuverlĂ€ssigkeit, also eine Mindestwahrscheinlichkeit fĂŒr ein korrektes Ergebnis, zu gewĂ€hrleisten. Ein wichtiger Aspekt der Zustandserfassung ist die Minimierung des entstehenden Overheads. Ich verringere die Anzahl der fĂŒr OpenMP-Tasks notwendigen Profiling-DurchlĂ€ufe durch Thread-Interpolation und ÜberprĂŒfungen des Skalierungsverhaltens. ZusĂ€tzlich untersuche ich die Vorhersage von OpenCL Task-AusfĂŒhrungszeiten. Die PrĂ€diktoren der AusfĂŒhrungszeiten werden mit verschiedenen maschinellen Lernalgorithmen trainiert. Als Input werden Profile der Kernel verwendet, die durch statische Codeanalyse erstellt wurden. Um in dieser Dissertation zukĂŒnftige SystemzustĂ€nde vorherzusagen, sollen Anwendungen vorausgesagt werden, die in naher Zukunft im System vorkommen werden. In Kombination mit der AusfĂŒhrungsdatenbank ermöglicht dies die SchĂ€tzung der anstehenden Kosten, die das System zu bewĂ€ltigen hat. In dieser Arbeit werden zwei Mechanismen zur Vorhersage von Anwendungen/Tasks entwickelt. Der erste PrĂ€diktor zielt darauf ab, neue Instanzen unabhĂ€ngiger Tasks vorherzusagen. Der zweite Mechanismus betrachtet AusfĂŒhrungsmuster abhĂ€ngiger Anwendungen und sagt auf dieser Grundlage zukĂŒnftig auftretende Anwendungen vorher. Beide Mechanismen verwenden eine Vorhersagetabelle, die auf Markov-PrĂ€diktoren und dem Abgleich von Mustern basiert. In dieser Arbeit wird das Wissen, das durch die SystemĂŒberwachung und die Vorhersage zukĂŒnftiger Anwendungen gewonnen wird, verwendet, um die Optimierungsziele des Systems proaktiv in Einklang zu bringen und zu gewichten. Dies geschieht durch eine Reihe von Regeln, die eine Systemzustandsbeschreibung, bestehend aus dem aktuellen Zustand, Vorhersagen und Randbedingungen bzw. BeschrĂ€nkungen, auf einen Vektor aus Gewichten abbilden. Zum Erlernen der Regelmenge wird ein Extended Classifer System (XCS) eingesetzt. Das XCS ist in eine hierarchische Architektur eingebettet, die nach den Prinzipien des Organic Computing entworfen wurde. Eine wichtige Designentscheidung ist dabei die Auslagerung der Erstellung neuer Regeln an einen Offline-Algorithmus, der einen Simulator nutzt und parallel zum normalen Systemablauf ausgefĂŒhrt wird. Dadurch wird sichergestellt, dass keine ungetesteten Regeln, deren Auswirkungen noch nicht bekannt sind, dem laufenden System hinzugefĂŒgt werden. Die sich daraus ergebenden Gewichte werden schließlich verwendet, um eine Bewertungsfunktion fĂŒr List Scheduling-Algorithmen zu erstellen. Diese Dissertation erweitert das Forschungsgebiet der Scheduling-Algorithmen durch zwei Mechanismen fĂŒr dynamisches Scheduling. Die erste Erweiterung konzentriert sich auf nicht sicherheitskritische Systeme, die PrioritĂ€ten verwenden, um die unterschiedliche Wichtigkeit von Tasks auszudrĂŒcken. Da statische PrioritĂ€ten in stark ausgelasteten Systemen zu Starvation fĂŒhren können, habe ich einen dynamischen Ageing-Mechanismus entwickelt, der dazu in der Lage ist, die PrioritĂ€ten der Tasks entsprechend der aktuellen Auslastung und ihrer Wartezeiten anzupassen. Dadurch reduziert der Mechanismus die Gesamtlaufzeit ĂŒber alle Tasks und die Wartezeit fĂŒr Tasks mit niedrigerer PrioritĂ€t. Noch ist eine große Anzahl von Anwendungen nicht dazu bereit, den hohen Grad an ParallelitĂ€t zu nutzen, den moderne Computersysteme bieten. Ein Konzept, das versucht dieses Problem zu lösen, indem es mehrere verschiedene Prozesse auf demselben Rechenknoten zur AusfĂŒhrung bringt, ist das Co-Scheduling. In dieser Dissertation stelle ich einen neuartigen Co-Scheduling-Mechanismus vor, welcher die Task-Schedules mehrerer Laufzeitsysteminstanzen optimiert, die auf demselben Rechenknoten ausgefĂŒhrt werden. Um die notwendigen Informationen zwischen den Laufzeitsysteminstanzen zu teilen, speichert der Mechanismus die Daten in Shared Memory. Sobald ein Laufzeitsystem neue Tasks in das System einfĂŒgt, prĂŒft der Mechanismus, ob die Berechnung eines neuen Schedules sinnvoll ist. Wird die Entscheidung getroffen, einen neuen Schedule zu berechnen, setzt der Mechanismus Simulated Annealing ein, um alle Tasks, die bisher noch nicht mit ihrer AusfĂŒhrung begonnen haben, neu auf AusfĂŒhrungseinheiten abzubilden. Zusammenfassend lĂ€sst sich sagen, dass diese Arbeit neuartige Mechanismen und Algorithmen sowie Erweiterungen zu verschiedenen Forschungsgebieten anbietet, um ein proaktives selbst-organisierendes System zu implementieren, das sich an neue und unbekannte Situationen anpassen kann. Dabei wird die KomplexitĂ€t fĂŒr Benutzer und Anwendungsentwickler reduziert, indem die Entscheidungsfindung in das System selbst ausgelagert wird. Gleichzeitig sorgt dieser Ansatz fĂŒr eine effiziente Nutzung der Ressourcen des Systems. Insgesamt leistet diese Arbeit die folgenden BeitrĂ€ge zur Erweiterung des Stands der Forschung: ‱ EinfĂŒhrung einer neuartigen heuristischen Metrik zur Messung der ZuverlĂ€ssigkeit von Verarbeitungseinheiten. Die Metrik basiert auf einer leichtgewichtigen Methode zur Fehlererkennung, genannt symptombasierte Fehlererkennung. Mit der symptombasierten Fehlererkennung ist es möglich, mehrere injizierte Fehlerklassen und Interferenzen, die Soft-Hardware-Fehler simulieren, sowohl auf einer CPU als auch auf einer GPU zuverlĂ€ssig zu erkennen. DarĂŒber hinaus werden diese Ergebnisse durch Welch\u27s t-Test statistisch bestĂ€tigt. ‱ Vorschlag eines Vorhersagemodells fĂŒr die AusfĂŒhrungszeit von OpenCL Kerneln, das auf statischer Code-Analyse basiert. Das Modell ist in der Lage, die schnellste Verarbeitungseinheit aus einer Menge von Verarbeitungseinheiten mit einer Genauigkeit von im schlechtesten Fall 69 %69\,\% auszuwĂ€hlen. Zum Vergleich: eine Referenzvariante, welche immer den Prozessor vorhersagt, der die meisten Kernel am schnellsten ausfĂŒhrt, erzielt eine Genauigkeit von 25 %25\,\%. Im besten Fall erreicht das Modell eine Genauigkeit von bis zu 83 %83\,\%. ‱ Bereitstellung von zwei PrĂ€diktoren fĂŒr kommende Tasks/Anwendungen. Der erste Mechanismus betrachtet unabhĂ€ngige Tasks, die stĂ€ndig neue Task-Instanzen erstellen, der zweite abhĂ€ngige Anwendungen, die AusfĂŒhrungsmuster bilden. Dabei erzielt der erste Mechanismus bei der Vorhersage der Zeitspanne zwischen zwei aufeinanderfolgenden Task-Instanzen einen maximalen\\ sMAPEsMAPE-Wert von 4,33 %4,33\,\% fĂŒr sporadische und 0,002 %0,002 \,\% fĂŒr periodische Tasks. DarĂŒber hinaus werden Tasks mit einem aperiodischen AusfĂŒhrungsschema zuverlĂ€ssig erkannt. Der zweite Mechanismus erreicht eine Genauigkeit von 77,6 %77,6 \,\% fĂŒr die Vorhersage der nĂ€chsten anstehenden Anwendung und deren Startzeit. ‱ EinfĂŒhrung einer Umsetzung eines hierarchischen Organic Computing Frameworks mit dem Anwendungsgebiet Task-Scheduling. Dieses Framework enthĂ€lt u.a. ein modifiziertes XCS, fĂŒr dessen Design und Implementierung ein neuartiger Reward-Mechanismus entwickelt wird. Der Mechanismus bedient sich dabei eines speziell fĂŒr diesen Zweck entwickelten Simulators zur Berechnung von Task-AusfĂŒhrungskosten. Das XCS bildet Beschreibungen des Systemzustands auf Gewichte zur Balancierung der Optimierungsziele des Systems ab. Diese Gewichte werden in einer Bewertungsfunktion fĂŒr List Scheduling-Algorithmen verwendet. Damit wird in einem Evaluationsszenario, welches aus einem fĂŒnfmal wiederholten Muster aus Anwendungen besteht, eine Reduzierung der Gesamtlaufzeit um 10,4 %10,4\,\% bzw. 26,7 s26,7\,s, des Energieverbrauchs um 4,7 %4,7\,\% bzw. 2061,1 J2061,1\,J und der maximalen Temperatur der GPU um 3,6 %3,6\,\% bzw. 2,7K2,7 K erzielt. Lediglich die maximale Temperatur ĂŒber alle CPU-Kerne erhöht sich um 6 %6\,\% bzw. 2,3 K2,3\,K. ‱ Entwicklung von zwei Erweiterungen zur Verbesserung des dynamischen Task-Schedulings fĂŒr einzelne und mehrere Prozesse, z.B. mehrere Laufzeitsysteminstanzen. Der erste Mechanismus, ein Ageing-Algorithmus, betrachtet nicht sicherheitskritische Systeme, welche Task-PrioritĂ€ten verwenden, um die unterschiedliche Bedeutung von Anwendungen darzustellen. Da es in solchen Anwendungsszenarien in Kombination mit hoher Systemauslastung zu Starvation kommen kann, passt der Mechanismus die Task-PrioritĂ€ten dynamisch an die aktuelle Auslastung und die Task-Wartezeiten an. Insgesamt erreicht dieser Mechanismus in zwei Bewertungsszenarien eine durchschnittliche Laufzeitverbesserung von 3,75 %3,75\,\% und 3,16 %3,16\,\% bei gleichzeitiger Reduzierung der Durchlaufzeit von Tasks mit niedrigerer PrioritĂ€t um bis zu 25,67 %25,67\,\%. Der zweite Mechanismus ermöglicht die Optimierung von Schedules mehrerer Laufzeitsysteminstanzen, die parallel auf demselben Rechenknoten ausgefĂŒhrt werden. Dieser Co-Scheduling-Ansatz verwendet Shared Memory zum Austausch von Informationen zwischen den Prozessen und Simulated Annealing zur Berechnung neuer Task-Schedules. In zwei Evaluierungsszenarien erzielt der Mechanismus durchschnittliche Laufzeitverbesserungen von 19,74 %19,74\,\% und 20,91 %20,91\,\% bzw. etwa 2,7 s2,7\,s und 3 s3\,s

    Coordinated power management in heterogeneous processors

    Get PDF
    Coordinated Power Management in Heterogeneous Processors Indrani Paul 164 pages Directed by Dr. Sudhakar Yalamanchili With the end of Dennard scaling, the scaling of device feature size by itself no longer guarantees sustaining the performance improvement predicted by Moore’s Law. As industry moves to increasingly small feature sizes, performance scaling will become dominated by the physics of the computing environment and in particular by the transient behavior of interactions between power delivery, power management and thermal fields. Consequently, performance scaling must be improved by managing interactions between physical properties, which we refer to as processor physics, and system level performance metrics, thereby improving the overall efficiency of the system. The industry shift towards heterogeneous computing is in large part motivated by energy efficiency. While such tightly coupled systems benefit from reduced latency and improved performance, they also give rise to new management challenges due to phenomena such as physical asymmetry in thermal and power signatures between the diverse elements and functional asymmetry in performance. Power-performance tradeoffs in heterogeneous processors are determined by coupled behaviors between major components due to the i) on-die integration, ii) programming model and the iii) processor physics. Towards this end, this thesis demonstrates the needs for coordinated management of functional and physical resources of a heterogeneous system across all major compute and memory elements. It shows that the interactions among performance, power delivery and different types of coupling phenomena are not an artifact of an architecture instance, but is fundamental to the operation of many core and heterogeneous architectures. Managing such coupling effects is a central focus of this dissertation. This awareness has the potential to exert significant influence over the design of future power and performance management algorithms. The high-level contributions of this thesis are i) in-depth examination of characteristics and performance demands of emerging applications using hardware measurements and analysis from state-of-the-art heterogeneous processors and high-performance GPUs, ii) analysis of the effects of processor physics such as power and thermals on system level performance, iii) identification of a key set of run-time metrics that can be used to manage these effects, and iv) development and detailed evaluation of online coordinated power management techniques to optimize system level global metrics in heterogeneous CPU-GPU-memory processors.Ph.D

    A Survey of Phase Classification Techniques for Characterizing Variable Application Behavior

    Full text link
    Adaptable computing is an increasingly important paradigm that specializes system resources to variable application requirements, environmental conditions, or user requirements. Adapting computing resources to variable application requirements (or application phases) is otherwise known as phase-based optimization. Phase-based optimization takes advantage of application phases, or execution intervals of an application, that behave similarly, to enable effective and beneficial adaptability. In order for phase-based optimization to be effective, the phases must first be classified to determine when application phases begin and end, and ensure that system resources are accurately specialized. In this paper, we present a survey of phase classification techniques that have been proposed to exploit the advantages of adaptable computing through phase-based optimization. We focus on recent techniques and classify these techniques with respect to several factors in order to highlight their similarities and differences. We divide the techniques by their major defining characteristics---online/offline and serial/parallel. In addition, we discuss other characteristics such as prediction and detection techniques, the characteristics used for prediction, interval type, etc. We also identify gaps in the state-of-the-art and discuss future research directions to enable and fully exploit the benefits of adaptable computing.Comment: To appear in IEEE Transactions on Parallel and Distributed Systems (TPDS

    Sampled simulation of task-based programs

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksSampled simulation is a mature technique for reducing simulation time of single-threaded programs. Nevertheless, current sampling techniques do not take advantage of other execution models, like task-based execution, to provide both more accurate and faster simulation. Recent multi-threaded sampling techniques assume that the workload assigned to each thread does not change across multiple executions of a program. This assumption does not hold for dynamically scheduled task-based programming models. Task-based programming models allow the programmer to specify program segments as tasks which are instantiated many times and scheduled dynamically to available threads. Due to variation in scheduling decisions, two consecutive executions on the same machine typically result in different instruction streams processed by each thread. In this paper, we propose TaskPoint, a sampled simulation technique for dynamically scheduled task-based programs. We leverage task instances as sampling units and simulate only a fraction of all task instances in detail. Between detailed simulation intervals, we employ a novel fast-forwarding mechanism for dynamically scheduled programs. We evaluate different automatic techniques for clustering task instances and show that DBSCAN clustering combined with analytical performance modeling provides the best trade-off of simulation speed and accuracy. TaskPoint is the first technique combining sampled simulation and analytical modeling and provides a new way to trade off simulation speed and accuracy. Compared to detailed simulation, TaskPoint accelerates architectural simulation with 8 simulated threads by an average factor of 220x at an average error of 0.5 percent and a maximum error of 7.9 percent.Peer ReviewedPostprint (author's final draft
    • 

    corecore