
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Theses and Dissertations Graduate Studies

12-2016

Statistical Techniques to Model and Optimize Performance of Statistical Techniques to Model and Optimize Performance of

Scientific, Numerically Intensive Workloads Scientific, Numerically Intensive Workloads

Steena Dominica Steven Monteiro
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Steven Monteiro, Steena Dominica, "Statistical Techniques to Model and Optimize Performance of
Scientific, Numerically Intensive Workloads" (2016). All Graduate Theses and Dissertations. 5228.
https://digitalcommons.usu.edu/etd/5228

This Dissertation is brought to you for free and open
access by the Graduate Studies at
DigitalCommons@USU. It has been accepted for
inclusion in All Graduate Theses and Dissertations by an
authorized administrator of DigitalCommons@USU. For
more information, please contact
digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F5228&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.usu.edu%2Fetd%2F5228&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/5228?utm_source=digitalcommons.usu.edu%2Fetd%2F5228&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

STATISTICAL TECHNIQUES TO MODEL AND OPTIMIZE PERFORMANCE OF

SCIENTIFIC, NUMERICALLY INTENSIVE WORKLOADS

by

Steena Dominica Steven Monteiro

A dissertation submitted in partial fulfillment
of the requirements for the degree

of

DOCTOR OF PHILOSOPHY

in

Computer Science

Approved:

Amanda Lee Hughes, Ph.D. Chad Mano, Ph.D.
Major Professor Committee Member

Dan Watson, Ph.D. Nicholas Dickenson, Ph.D.
Committee Member Committee Member

Breanne Litts, Ph.D. Ilya Sharapov, Ph.D.
Committee Member Committee Member

Daniel Wong, Ph.D. Mark R. McLellan, Ph.D.
Committee Member Vice President for Research and

Dean of the School of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2016

ii

Copyright c� Steena Dominica Steven Monteiro 2016

All Rights Reserved

iii

ABSTRACT

Statistical Techniques to Model and Optimize Performance of Scientific, Numerically

Intensive Workloads

by

Steena Dominica Steven Monteiro, Doctor of Philosophy

Utah State University, 2016

Major Professor: Amanda Lee Hughes, Ph.D.
Department: Computer Science

The ability to estimate how well a computer will perform when executing large scien-

tific computations (or workloads) is important for hardware designers, software developers,

supercomputing centers, and end users. However, accurately projecting computer perfor-

mance is di�cult due to di↵erences in computer system specifications, workload execution,

and the type of datasets. Using statistical learning techniques, this dissertation models, op-

timizes, and projects computer performance by evaluating workloads from di↵erent domains

on di↵erent processors. The key contribution of this work is the design and evaluation of

two statistical performance modeling techniques.

The first technique, Statistical Techniques for Optimizing and Modeling Performance of

blocked sparse matrix vector multiplication (STOMP), builds statistical models to predict

and optimize blocked sparse matrix vector multiplication across di↵erent sparse matrices

prior to their execution. Predictions from STOMP achieve 93.62% accuracy on diverse

sparse matrices. STOMP’s block-size selection technique produces a performance improve-

ment of up to 75% on di↵erent matrices.

The second technique, Statistical Techniques for Analyzing Metrics and Predicting

Performance of workloads (STAMPP) analyzes hardware metric space and predicts speedup

iv

in performance on a set of workloads across generations of processors. STOMP eliminates

redundancy in performance monitoring by using statistical techniques to identify important

hardware metrics and relevant workloads that underline performance trends. With its suite

of statistical models, STAMPP predicts performance speedup of new workloads prior to

their execution on a new processor with high accuracy.

(111 pages)

v

PUBLIC ABSTRACT

Statistical Techniques to Model and Optimize Performance of Scientific, Numerically

Intensive Workloads

Steena Dominica Steven Monteiro

Projecting performance of applications and hardware is important to several market

segments—hardware designers, software developers, supercomputing centers, and end users.

Hardware designers estimate performance of current applications on future systems when

designing new hardware. Software developers make performance estimates to evaluate per-

formance of their code on di↵erent architectures and input datasets. Supercomputing cen-

ters try to optimize the process of matching computing resources to computing needs. End

users requesting time on supercomputers must provide estimates of their application’s run

time, and incorrect estimates can lead to wasted supercomputing resources and time. How-

ever, application performance is challenging to predict because it is a↵ected by several

factors in application code, specifications of system hardware, choice of compilers, compiler

flags, and libraries.

This dissertation uses statistical techniques to model and optimize performance of

scientific applications across di↵erent computer processors. The first study in this research

o↵ers statistical models that predict performance of an application across di↵erent input

datasets prior to application execution. These models guide end users to select parameters

that produce optimal application performance during execution. The second study o↵ers a

suite of statistical models that predict performance of a new application on a new processor.

Both studies present statistical techniques that can be generalized to analyze, optimize, and

predict performance of diverse computation- and data-intensive applications on di↵erent

hardware.

vi

For my husband, Forrest Iandola.

vii

ACKNOWLEDGMENTS

Thank you to my adviser, Amanda Lee Hughes, for her support in helping me reach

the finish line. Thank you to my supervisory committee for their feedback. Thank you to

Daniel Wong for advice on publishing a chapter from this dissertation.

Thank you to Lawrence Livermore National Laboratory for support through the Lawrence

Graduate Scholar Program (2011–2015).

It would not have been possible to complete this dissertation without support from

Intel. I would like to thank Ilya Sharapov for his mentorship. Thank you to my manager,

John Kreatsoulas, for his constant encouragement.

I thank my husband, Forrest Iandola, for his optimism and humor through the Ph.D.

process. He is my best friend and it is only right that I dedicate this dissertation to him.

Steena Monteiro

viii

CONTENTS

Page

ABSTRACT . iii

PUBLIC ABSTRACT . v

ACKNOWLEDGMENTS . vii

LIST OF TABLES . x

LIST OF FIGURES . xii

CHAPTER

1 INTRODUCTION . 1
Importance of Performance Modeling and Performance Projections 1
Two Statistical Techniques for Predicting Workload Performance 2
Dissertation Overview . 4

2 STOMP: STATISTICAL TECHNIQUES FOR OPTIMIZING AND MODELING
PERFORMANCE OF BLOCKED SPARSE MATRIX VECTOR
MULTIPLICATION . 6
Abstract . 6
Introduction . 7
Related Work . 8
Understanding Blocked SpMV Performance . 11
Experimental Environment . 13
Predicting SpMV Performance . 14
SpMV Performance Prediction Results . 20
Guiding Optimal Block Size Selection . 27
Evaluating STOMP on Knight’s Landing . 31
STOMP’s Performance Prediction on Knight’s Landing 33
Conclusion . 41

3 STAMPP: STATISTICAL TECHNIQUES FOR ANALYZING METRICS
AND PREDICTING PERFORMANCE OF WORKLOADS 43
Abstract . 43
Introduction . 43
Related Work . 47
Experiment Environment . 51
Metric Analysis using Statistical Techniques . 54
Workload Characterization . 60
STAMPP Prediction Models . 63
Statistical Performance Prediction Model Suite 64

ix

STAMPP Performance Predictions . 69
Summarizing STAMPP’s Prediction Results . 71
Conclusion . 72

4 CONCLUSION . 75
Performance Modeling: Performance Prediction and Performance Optimization . 75
Future Work . 79

REFERENCES . 81

APPENDICES . 90
Appendix A Permission-to-use Letter . 91

CURRICULUM VITAE . 93

x

LIST OF TABLES

Table Page

2.1 SpMV arithmetic intensity for di↵erent block sizes 13

2.2 Bai matrix group . 14

2.3 Mixed matrix group . 15

2.4 Boeing-Chen-FIDAP matrix group . 15

2.5 SPARSITY’s matrix set . 16

2.6 STOMP SpMV performance prediction errors across di↵erent block sizes . . 26

2.7 Distribution of STOMP SpMV performance prediction errors on Sandy Bridge 27

2.8 STOMP SpMV speedup on Boeing-Chen-FIDAP matrices 30

2.9 STOMP SpMV speedup on Bai group of matrices 30

2.10 STOMP SpMV speedup on mixed group of matrices 31

2.11 STOMP SpMV speedup evaluation on SPARSITY’s matrices 32

2.12 STOMP versus SPARSITY . 32

2.13 Evaluating STOMP’s block size predictions on all matrix groups 33

2.14 STOMP SpMV performance prediction errors on Knight’s Landing 35

2.15 Distribution of STOMP SpMV performance prediction errors on Knight’s
Landing . 36

2.16 STOMP SpMV speedup on Boeing-Chen-FIDAP on Knight’s Landing. . . . 41

2.17 STOMP SpMV speedup on Bai matrices on Knight’s Landing 41

2.18 STOMP SpMV speedup on mixed group of matrices on Knight’s Landing . 42

2.19 Evaluating STOMP’s block size predictions on Knight’s Landing 42

3.1 SPEC CPU 2006 benchmarks . 46

xi

3.2 SPEC OMP 2012 benchmarks . 47

3.3 SPEC MPI 2007 benchmarks . 48

3.4 Machine specifications . 51

3.5 Hardware Metrics Collected on Sandy Bridge, Haswell, and Broadwell . . . 53

3.6 Important metrics from VIF . 60

3.7 Important metrics from VIF further reduced by MIC 61

3.8 STAMPP performance model suite . 64

3.9 Prediction errors from performance projections 69

xii

LIST OF FIGURES

Figure Page

1.1 Dissertation problem and solution space. 5

2.1 Blocking a sparse matrix. 12

2.2 Roofline model of serial blocked SpMV on Sandy Bridge. 12

2.3 SpMV performance model training. 17

2.4 Predicting SpMV performance of a new matrix. 17

2.5 NNZE vs. time for in-2004. 18

2.6 NNZB vs. time for in-2004. 18

2.7 Comparing prediction errors from NNZE and NNZB models for Boeing-
Chen-FIDAP group of matrices. 21

2.8 NNZB model prediction error distribution with respect to matrix specifica-
tions for Boeing-Chen-FIDAP group. 22

2.9 Comparing prediction errors from NNZE and NNZB models for Bai group
of matrices. 23

2.10 NNZB model prediction error distribution with respect to matrix specifica-
tions for Bai group. 24

2.11 Comparing prediction errors from NNZE and NNZB models for mixed group
of matrices. (Miscellaneous group with greatest diversity.) 25

2.12 NNZB model prediction error distribution with respect to matrix specifica-
tions for mixed group of matrices. 26

2.13 Performance prediction errors from inter-matrix group cross-validation (block
size 2). 27

2.14 Comparing predictions from NNZE and NNZB models for Boeing-Chen-
FIDAP matrices on Knight’s Landing. 34

2.15 NNZB model prediction error distribution with respect to matrix specifica-
tions for Boeing-Chen-FIDAP on Knight’s Landing. 35

xiii

2.16 Comparing predictions from NNZE and NNZB models for Bai matrices on
Knight’s Landing. 36

2.17 NNZB model prediction error distribution with respect to matrix specifica-
tions for Bai matrices on Knight’s Landing. 37

2.18 Comparing predictions from NNZE and NNZB models fo matrices from
mixed group on Knight’s Landing. 38

2.19 NNZB model prediction error distribution with respect to matrix specifica-
tions for mixed matrix group on Knight’s Landing. 39

2.20 Comparing predictions from NNZE and NNZB models across ten trials on
KNL. 40

3.1 Distribution of serial SPEC CPU metrics on Sandy Bridge. 55

3.2 Maximal information coe�cients for SPEC CPU on Sandy Bridge. 58

3.3 Variable inflation factor for SPEC CPU on Sandy Bridge. 59

3.4 Hierarchical clustering of serial SPEC CPU on Sandy Bridge. 59

3.5 Workload characterization. 62

3.6 SPEC CPU siblings for serial SPEC OMP on Haswell. 65

3.7 SPEC CPU siblings for parallel SPEC OMP on Haswell. 66

3.8 SPEC CPU siblings for serial SPEC MPI on Sandy Bridge. 67

3.9 SPEC CPU siblings for parallel SPEC MPI on Sandy Bridge. 68

3.10 Serial SPEC CPU speedup from Sandy Bridge to Haswell. 68

3.11 Serial SPEC OMP prediction errors from baseline and STAMPP on Broadwell. 71

3.12 Parallel SPEC OMP prediction errors from baseline and STAMPP on Broad-
well. 72

3.13 Serial SPEC MPI prediction errors from baseline and STAMPP on Haswell. 73

3.14 Parallel SPEC MPI prediction errors from baseline and STAMPP on Haswell. 74

xiv

ACRONYMS

BDW Broadwell. This is the codename for CPU microarchitecture developed by Intel in
2014. Broadwell is the tock of Haswell in Intel’s Tick-Tock process and has a 14 nm
process.

CPU Central processing unit. This is commonly called a processor and contains computing
elements and cache hierarchy.

DRAM Dynamic Random Access Memory. This piece of memory stores data that a
processor will require for program executions.

ELLPACK This is a high-level package that solves elliptic boundary problems. ELLPACK
is implemented as a Fortran preprocessor.

FLOPs Floating Point Operations. This is used to measure peak compute capability of a
processor.

GPU Graphics processing unit. This processor accelerates display of images and processing
of image data.

GNU GNU is not Unix. This project comprises free software such as operating system
and compiler tools. The operating system is like Unix, but di↵ers in that it is free
and does not contain Unix code.

Hit This occurs when data requested by the processor is found in a particular level of cache
or memory.

HPC High Performance Computing

HSW Haswell. This is the codename for CPU microarchitecture developed by Intel in
2013. Haswell has a 22 nm process.

KNL Knight’s Landing. Co-processor developed by Intel in the Xeon Phi line and released
in 2016.

L1 Level one cache. It is the primary cache built onto the processor chip and is private to
each core. It is the smallest and fastest cache in the memory hierarchy.

L2 Level two cache. Unlike the L1 cache, the L2 cache is located outside of CPU cores.
L2 cache provides data to the L1 cache. L2 caches are larger and slower than the L1
cache.

L3 Level three cache. L3 caches feed L2 caches. They are larger and slower than L1 or L2
caches.

Miss This occurs when data requested by the processor is not found in a particular level
of cache or memory.

xv

MPI Message Passing Interface. This is a library that is used to facilitate and opti-
mize inter-processor communication and communication patterns between parallel
processes.

OpenMP Open Multi-Processing. This is a library that is used for shared memory pro-
gramming.

PETSc Parallel Extensible Toolkit for Scientific Computing. This is a library that pro-
vides a multitude of scalable routines for mathematical operations used in scientific
applications.

SNB Sandy Bridge. This is Intel’s codename for their 32-nm process microarchitecture
launched in 2005.

SpMV Sparse matrix vector multiplication. Mathematical operation consisting of multi-
plication of a sparse matrix with a dense vector to produce a dense vector.

TLB Translation Lookaside Bu↵er. This stores recent address translations from virtual
memory to physical memory.

UMA Uniform Memory Access. This represents a shared memory architecture.

CHAPTER 1

INTRODUCTION

1.1 Importance of Performance Modeling and Performance Projections

The ability to e�ciently estimate computer performance when executing large scien-

tific computations (or workloads) is important for hardware designers, software developers,

supercomputing centers, and end users. Hardware designers need to project and compare

application performance across existing and proposed designs so they can make decisions

about future processor specifications. Software developers need to estimate computer per-

formance so they can optimize software code for di↵erent architectures and datasets. High

performance supercomputing centers harness the power of thousands of processors to run

numerically intensive algorithms. To e�ciently schedule these processors, supercomputing

centers need accurate estimates of computing performance. Finally, end users must estimate

job run times before requesting time on a supercomputer; an incorrect estimation will lead

to ine�cient mapping between available resources and scheduled computation.

However, accurately predicting computer performance on scientific workloads is chal-

lenging for several reasons. First, the system specification of a computer a↵ects its per-

formance. For example, di↵erent memory configurations on have di↵erent e↵ects on the

run time of a workload. Benign features, such as hardware and software prefetching [1]

or hyperthreading [2], designed to help performance can also cause decreases in perfor-

mance [1] [3]. Second, the execution of a workload can vary greatly. Most workloads

exhibit di↵erent phases during their execution [4]. Scientific workloads typically exhibit

the following di↵erent phases during their runtimes: variable state during data loading and

initializing, intermittent steady state during computation, and a result collation and write

back stage. Thus, workload performance di↵ers depending on particular workload state.

2

Third, performance of data-intense applications can vary based on the amount of data they

have to compute, the data‘s layout in memory, and data access patterns. These reasons

make accurate prediction of computer performance a challenging problem.

In this dissertation, we use statistical learning techniques to address this problem and

improve performance modeling and prediction of di↵erent applications. Statistical learning

techniques have shown promise in several fields in their ability to process and provide

insight into large amounts of empirical data in fields such as financial forecasting [5], [6],

and [7], climate change research [8], cancer research e↵orts [9], and electrical profiling

[10]. The strength of statistical algorithms lies in their ability to detect important data

patterns and reuse past data for making predictions. By using statistical learning processes

for performance projections and optimizations, applications and hardware are made less

opaque to end users. This work uses statistical techniques and prediction models to provide

insight into workload behavior on di↵erent CPU architectures by examining trends across

di↵erent hardware metrics and application input data. Our statistical models leverage

performance data from prior workload executions to model workload behavior and make

performance predictions.

1.2 Two Statistical Techniques for Predicting Workload Performance

This dissertation presents two studies that use statistical analyses to model perfor-

mance. The first study—Statistical Techniques for Optimizing and Modeling Performance

on blocked sparse matrix vector multiplication (STOMP)—predicts performance of a work-

load and optimizes its performance across di↵erent input data sets by guiding optimal

parameter selection. Sparse matrix vector multiplication (SpMV) is a mathematical kernel

that forms the core of several code bases such as Internet search engines, recommendation

systems, and linear solvers. Because of the inherent sparse structure of the matrix, SpMV

exhibits irregular memory accesses, which in turn degrades performance. In addition, SpMV

is rarely performed just once in an application, thus becoming the primary bottleneck in

the parent algorithm. STOMP addresses this common bottleneck with performance models

3

that incorporate matrix sparsity patterns to predict the optimal parameters for a new, un-

seen sparse matrix. During the inference phase, STOMP's performance prediction models

produced a high average accuracy (93.62%) across three groups of matrices on the Sandy

Bridge architecture. We evaluated STOMP's parameter selection in terms of the speedup it

produces over an exhaustive search algorithm and found that STOMP produces speedup of

up to 75%. STOMP also produces an speedup of at least 49% over default SpMV parameter

options.

We also compared performance benefits produced from STOMP's parameter selec-

tion algorithm to that produced from SPARSITY [11], a well-known SpMV framework.

SPARSITY produced an average speedup of 31.65% while STOMP produced an average

speedup of 50.96% on the same set of sparse matrices. The research questions that this

study addresses are:

• Given diversity of sparse matrices, is it possible to accurately predict performance of

a new sparse matrix prior to SpMV operation?

• Is there a way to characterize sparse matrices during an SpMV operation, such that

this characterization remains valid across sparse matrices with diverse and unpre-

dictable nonzero patterns?

• Can we reuse performance information from previous workload executions to tune a

new workload prior to its execution?

• Can statistical prediction techniques be ported across di↵erent processor architec-

tures?

Although STOMP is evaluated on SpMV, it shows applicability across di↵erent data-

driven workloads where performance is significantly influenced by input data. Chapter 2

discusses STOMP in detail and elaborates on its contributions.

The second study—Statistical Techniques for Analyzing Metrics and Predicting Perfor-

mance of workloads (STAMPP)—predicts performance of diverse workloads across di↵erent

4

CPU architectures. This study o↵ers techniques to analyze hardware metric space, identify

sibling workloads, and formulate a suite of performance models to predict performance of

new workloads on a target system. By analyzing metric space and eliminating redundant

metrics, we found that we could trim hardware metric space by up to 53%. We then iden-

tified sets of benchmarks (sibling workloads) that could serve as performance proxies for

a test workload. Findings show that the suite of performance models we built on these

reduced metrics sets and benchmarks produced high prediction accuracy across di↵erent

sets of Intel CPU architectures. The research questions this study addresses are:

• Are performance prediction models portable across di↵erent architectures?

• Is there a benefit to monitoring hardware components (cache and memory) multiple

times?

• Can certain sets of workloads be used as performance proxies for a di↵erent workload?

Although STAMPP is evaluated on CPU processors, its general methodology is appli-

cable across di↵erent processor architectures with relevant performance data. Chapter 3

contains the details of this study.

1.3 Dissertation Overview

Fig. 1.1 shows the problem space that this dissertation explores and the solutions that

it contributes. Following this introductory chapter, the dissertation is divided into three

additional chapters. Chapter 2 describes the development, deployment, and evaluation of

STOMP. Chapter 3 describes metric analysis, sibling benchmark identification, and perfor-

mance prediction techniques and evaluation in STAMPP. Chapter 4, the concluding chapter,

examines the contributions of this dissertation to performance modeling and optimization

and presents directions for future work.

5

Problem Workload Processor Solution

Performance
Projection and
Optimization

SpMV in
PETSc

Sandy
Bridge
and

Knight’s
Landing

STOMP

Performance
Projection,
hardware

metric analysis,
workload
analysis

SPEC CPU,
SPEC OMP,
SPEC MPI

Sandy
Bridge,

Haswell, and
Broadwell

STAMPP

Fig. 1.1. Dissertation problem and solution space.

6

CHAPTER 2

STOMP: STATISTICAL TECHNIQUES FOR OPTIMIZING AND MODELING

PERFORMANCE OF BLOCKED SPARSE MATRIX VECTOR MULTIPLICATION

2.1 Abstract

Sparse matrix vector multiplication (SpMV) is the core compute routine for several

scientific and commercial codebases. Because of its extremely irregular memory accesses

(low temporal locality), indirect memory referencing (low spatial locality), low arithmetic

intensity, and the nonzero pattern and nonzero density of the matrix, SpMV achieves a

mere 10% of peak system performance. Because sparse matrices have extremely varied

nonzero patterns and densities, performance of SpMV is hard to predict. Blocking sparse

matrices increases arithmetic intensity and spatial locality during SpMV operations, thereby

improving SpMV performance. However, selection of an incorrect block size can produce

performance degradation as high as 70%. In this study, we describe the STOMP 1 approach

of using statistical techniques to predict run time of SpMV in PETSc for new matrices with

mean accuracy of 93.52% on Sandy Bridge and 91.92% on Knight’s Landing. We use these

statistical prediction models to guide block size selection to achieve up to 100% of optimal

performance, comparable to that attained through exhaustive block size search. Our block

size selection results produce an average of 55.56% speedup over default SpMV options.

On the same set of matrices used in the SPARSITY SpMV framework, STOMP yields a

50.96% speedup while SPARSITY yields a 31.62% speedup over the same default.

1Monteiro, S., Iandola, F., Wong, D., STOMP: Statistical Techniques for Optimizing and Modeling
Performance of blocked sparse matrix vector multiplication, in Proceedings of 28th International Sympo-
sium of Computer Architecture and High Performance Computing, Los Angeles, California, October 2016.
Following chapter content was not included in the publication: roofline model, evaluation of STOMP on
KNL, additional error statistics on Sandy Bridge and Knight’s Landing, and plots showing error distribution
according to matrix specifications.

7

2.2 Introduction

Sparse matrix vector multiplication (SpMV) is a key computational block that under-

pins calculations across domains such as linear algebra solvers, Internet search engines, and

recommendation systems. SpMV is represented as:

y = A⇥ x (2.1)

Where A is a sparse matrix, and x and y are dense vectors.

SpMV is a memory-bound kernel on several architectures since its meager computa-

tional intensity is dominated by memory accesses. SpMV is known to operate at several

orders of magnitude lower than the peak floating-point capability of a system. Because of

its irregular memory access, techniques typically used to hide memory latency from users

do not succeed for SpMV. For instance, hardware prefetchers that hide latency by bring-

ing in streams of data from memory to cache are ine↵ective when dealing with irregular

memory accesses. SpMV performance is further influenced by the sparsity and the nonzero

pattern of the matrix on which it operates. To exacerbate the problem, SpMV is rarely

executed just once within an algorithm, causing an underperforming SpMV code to become

a performance bottleneck in large code bases. Iterative solvers such as BiCGSTAB [12] and

GMRES [13] and algorithms such as PageRank’s power method execute SpMV multiple

times until they achieve convergence. Data mining algorithms such as linear regression and

PageRank [14] work on extremely large matrix datasets to classify, predict, or rank data

points. Section 2.3 examines di↵erent SpMV optimization techniques in detail.

Performance degradation in SpMV can be attributed to certain primary e↵ects [15],

[16]. These e↵ects explain why common optimization strategies are ine↵ective for SpMV.

1. Irregular memory access of dense vector x : In dense matrix vector multiplications,

all elements of vector x are used by each element across a row of the matrix. In

SpMV, few elements of the vector are accessed irregularly thwarting any possibility

of substantial reuse of elements in vector x.

8

2. High memory intensity : SpMV is a memory bound code because of its high number

of memory accesses in comparison to its arithmetic operations. Low floating point

operations (FLOPs) guarantee that SpMV will never quite achieve peak compute

performance.

3. Indirect memory references for matrix A: Because of the sparse distribution of ele-

ments in A, sparse matrix data structures only store pointers to nonzero elements

by using pointer arrays. This many-layered indirect memory access eliminates any

performance benefit that could be derived from hardware prefetchers.

4. Loop overheads: Most SpMV algorithms operate row-wise on a matrix. The unequal

distribution of nonzeros in the matrix makes each row a di↵erent size. Compiler e↵orts

to unroll loop iterations will not work because iteration count di↵ers across rows and

is also not provided at compile time. Additional loop instruction overhead further

degrades SpMV performance.

In this work, we explore blocked SpMV performance in PETSc [17], [18] on a variety

of sparse matrices from the University of Florida sparse matrix collection [19] with focus on

matrices derived from the Boeing [20], Chen [21], FIDAP [22], Law [23], Bai [24] groups

in addition to a set of matrices derived from very specific domains such as Amazon’s book

similarity network, a financial portfolio, web crawlers, etc.

2.3 Related Work

2.3.1 SpMV data layouts and algorithms

Researchers have developed several sparse storage formats to facilitate e�cient memory

access and smaller storage requirements during SpMV operations. These formats include

coordinate format (COO) [25], compressed sparse format (CSR) [26], compressed sparse

column format (CSC) [27], diagonal format (DIAG), ELLPACK (ELL) [28], Blocked ELL-

PACK (BELL) [29], jagged diagonal (JDS) [30], skyline (SKY) [31], blocked row column

(BRC) [32], and blocked compressed sparse row (BCSR). In their work [33], Byun et al.,

9

describe the specifics of each of these structures. COO stores both the row and column

index value for each nonzero element. CSR is partial to row order and therefore does not

explicitly store row indices like COO. ELL and BELL are suited for matrices that have

the same number of nonzero elements in every row. BRC is designed especially for high

e�ciency on GPUs. Because a sparse matrix is abstracted as a series of blocks, BCSR re-

quires less storage for row pointers and column indices than CSR. However, explicit padding

of zeroes in each block adds to the number of FLOPs and amount of storage, leading to

non-essential computations and storage.

In addition to new data layouts, a number of other algorithmic optimizations for SpMV

have been proposed. When optimizing SpMV algorithms, a worthwhile goal is to minimize

cache misses and to use the memory hierarchy more e↵ectively. Toward this goal, a num-

ber of approaches for reordering matrix rows or columns have been proposed, including:

Approximate Minimum degree algorithm [34], Reverse Cuthill-McKee (RCM) [35], and the

Traveling Salesman Problem (TSP) [36]. One challenge is that these reordering techniques

are often more computationally intensive than the SpMV operation, so these techniques are

primarily useful in cases where the reordering time can be amortized by multiplying the

matrix by many di↵erent vectors.

2.3.2 SpMV implementations

A number of highly e�cient sparse linear algebra libraries have been developed, includ-

ing pOSKI [33], SPARSITY [11], and PETSc [17] [18]. PETSc has been widely adopted,

with over 2000 citations and a number of headline use-cases in computational fluid dy-

namics, biology, and other scientific applications. In this work, we conduct experiments

on a modified version of the PETSc library. Many of the aforementioned PETSc-based

applications stand to benefit from our work.

2.3.3 Importance of block size selection

The University of Florida sparse matrix collection [19] provides thousands of di↵erent

sparse matrices taken from di↵erent applications. This matrix collection also provides a

10

visualization of the sparsity pattern in each matrix. From these visualizations, it is easy

to see that a general-purpose SpMV implementation will face an enormous range of matrix

sizes and sparsity patterns. Vuduc [37], Karakasis et al. [38], and others have shown that the

optimal settings of parameters such as block size vary depending on the matrix. Vuduc [37]

reports that BCSR with optimal block sizes yields a speedup of up to 4x over CSR across

diverse matrices and architectures. However, Vuduc also finds that the “wrong” block size

can lead to slowdowns compared to CSR. While our focus is on the popular BCSR data

layout, the block size selection is a recurring problem across a number of sparse formats

such as BELL and blocked row column (BRC). In summary, selecting the appropriate block

size is a prerequisite to achieving maximum e�ciency on blocked SpMV calculations.

2.3.4 Predicting and modeling SpMV execution time

In our view, the most sensible way to select the right block size for a new matrix is

to accurately predict the execution time for each block size, and then simply select the

block size that we predict will execute most quickly. Thus, the crux of this problem is

automatically predicting SpMV execution time. A number of heuristics and strategies have

been proposed to predict the execution time of sparse matrix computations.

Load balancing is a common problem in parallel SpMV, where it is important to assign

roughly the same amount of work (in terms of execution time) to each thread, processor, or

server. Of course, to do this it is necessary to estimate the execution time of a matrix or sub-

matrix. As part of distributed SpMV load-balancing logic, Liu and Vinter [39], Grigori and

Li [40], and pOSKI [33] all use the following heuristic for predicting SpMV execution time.

The heuristic is: counting the number of nonzero elements (NNZE) per row, and dividing

NNZE evenly across parallel work units. Thus, it seems that the “conventional wisdom”

is that the NNZE in a matrix (or a group of rows within a matrix) is a good indicator

considering how much time will be required to execute SpMV on a particular matrix. With

this in mind, we will use NNZE as a starting point in our experiments throughout this

paper, and we will also propose an alternative metric that we find leads to higher accuracy

in predicting the SpMV execution time on a given matrix.

11

2.3.5 Complementary approaches

While we focus on block size, Sedaghati et al. [41] use machine learning techniques

to select the best matrix storage structure (e.g. CSR, ELL, etc.) for a sparse matrix

after training and testing on several models. Guo et al. [42] analyze and predict SpMV

performance on GPUs for CSR, ELL, COO, and HYB SpMV kernels. The method uses

several GPU architecture features, possibly limiting its applicability on CPU architectures.

Our work uses statistical models trained on SpMV performance data from PETSc over a

set of matrices. We use these models to predict SpMV performance of a new, unseen matrix

before it is executed. We use these trained statistical models to predict optimal block size for

a new sparse matrix, prior to its SpMV execution. Long term, we see potential for unifying

our prediction and selection techniques for block size with these approaches to optimally

configure linear algebra libraries without requiring a massive brute-force grid search over

all possible configurations for each new matrix.

2.4 Understanding Blocked SpMV Performance

Blocking sparse matrices upgrades SpMV performance through improved spatial local-

ity. PETSc provides tuned blocked SpMV routines for block sizes of 2⇥ 2 to 7⇥ 7. Blocks

are always square. Fig. 2.1 is an example of blocking a sparse matrix with 8 rows and 8

columns using block size 2 (2 ⇥ 2 square blocks). As seen in Fig. 2.1, a blocked matrix

is characterized by the number of blocked rows it contains (here, 4). Blocked rows in turn

can be characterized by the number of nonzero blocks that they contain. A nonzero block

is one that contains at least one original nonzero entry from the sparse matrix.

By re-arranging the matrix into blocks, sequences of bytes are brought into cache from

memory making memory accesses more e�cient. After blocking the matrix, each square

block is padded with zeroes in places where the sparse matrix has no entries. Because of

this nonzero padding, the upper bound on the number of FLOPs per block is 2 ⇥ b size

2

This is derived by examining the number of arithmetic operations needed while multiplying

one block of a matrix with a dense vector. For b size rows of a block, there are b size

multiplications, (b size-1) additions (from adding results of matrix vector multiplication),

and b size additions (from adding results to vector y).

12

Fig. 2.1. Blocking a sparse matrix.

The upper bound on the number of bytes needed for each block is (b size

2+2⇥b size)⇥8

Where, b size

2 is the total number of operands in a block and 2⇥ b size are operands from

b size sections of vectors x and y. The flop-to-byte ratio, a measure of bandwidth and

compute utilization, is higher for larger block sizes in SpMV. A higher ratio indicates a

compute bound kernel while a lower value indicates a memory bound kernel. For block

size = 1 (no blocking), blocked SpMV is more memory bound with a very poor arithmetic

intensity. The roofline model [43] calculated on Sandy Bridge in Fig. 2.2 shows arithmetic

intensity of serial blocked SpMV across di↵erent block sizes. Table 2.1 details arithmetic

intensity of blocked SpMV.

Fig. 2.2. Roofline model of serial blocked SpMV on Sandy Bridge.

13

Table 2.1. SpMV arithmetic intensity for di↵erent block sizes

Block size Flop count Bytes Arithmetic intensity

1 2 24 0.09
2 8 64 0.12
3 18 120 0.15
4 32 192 0.16
5 50 280 0.17
6 72 384 0.18
7 98 504 0.19

However, increasing block size does not guarantee a significant increase in compute

intensity. Even for purely theoretical block sizes of 1 to 2 million (for arithmetic intensity

greater than 0.19), SpMV still remains memory bound. With an increase in block size,

overheads from transferring large blocks from memory to caches also increase. This overhead

propagates and manifests in a higher SpMV run time. Large block sizes have a large number

of wasted computations due to additional FLOPs from zero padding. A low number of

essential FLOPs per block ensure that SpMV does not reach the peak FLOP capability of

a machine.

2.5 Experimental Environment

We investigate SpMV performance in PETSc (version 3.5.3) [18]. We compiled PETSc

with GNU compilers, and we executed our experiments on an Intel Xeon E5-2670 multicore

CPU. This CPU has 16 cores and an L1 cache size of 32K, L2 size of 64K, and an L3 size of

20480K. PETSc provides tuned SpMV kernel code for block sizes 2 through 7. We instru-

ment each tuned MatMultSeqBAIJ [44] routine inside PETSc source code to collect timing

information for SpMV operations on each row of the matrix that it operates on. Our dataset

comprises sparse matrices from the University of Florida sparse matrix collection [19]. Our

dataset contains a range of matrices with nonzero patterns and dimensions representative

of scientific and commercial applications (Amazon, DBLP, financial portfolios, etc.). Tables

2.2, 2.3, and 2.4 describe our dataset of matrices in detail.

14

2.6 Predicting SpMV Performance

2.6.1 Algorithms for predicting performance

As introduced earlier in the paper, an important question is, “before performing SpMV

with a given sparse matrix, can we estimate how long the SpMV takes to execute?” Our

approach is to apply a straightforward statistical learning technique—linear regression—to

make this prediction given a number of other matrices to be analyzed o✏ine.

We execute SpMV on our dataset of matrices listed in Tables 2.2, 2.3, and 2.4. Each

matrix is multiplied once with a dense vector that is randomly populated at run time. For

each matrix execution, we collect timing information for each blocked row as the SpMV

code works its way through all the blocked rows.

Our statistical model is a linear regression model that uses matrix structure charac-

teristics to predict matrix run time. Conventional wisdom suggests using the number of

nonzero elements (NNZE) to quantify SpMV work. NNZE is the metric used by others

such as [40] and [33] for estimating computational cost during SpMV operations (e.g. for

dividing matrices over multiple servers/threads). The following works appear to believe

that “number of nonzero elements” is the key metric to consider when partitioning sparse

matrices across multiple processors for blocked SpMV and related algorithms:

Table 2.2. Bai matrix group

Matrix Order Nonzeros Density% Application

Af23560 23560 460598 0.08 Airfoil

Cdde1 961 4681 0.5 Di↵erential equation

Ck656 656 3884 0.9 Eigen values

Cryg10000 10000 49699 0.05 Crystal growth

Cryg2500 2500 12349 0.19 Crystal growth

Mhd3200a 4800 102252 0.44 Multiple Eigen values

Olm5000 5000 19996 0.08 Olmstead flow model

Rdb5000 5000 29600 0.12 Brusselator model

Tols340 340 340 1.89 Tolosa

Tub100 100 396 3.96 Tubular reactor model

15

Table 2.3. Mixed matrix group

Matrix Order Nonzeros Density% Application

Pwtk 217918 11524432 0.02 Tunnel sim.

Linverse 11999 53998 0.03 Inverse

Finan512 74752 596992 0.01 Financial

Conf5-49152 49152 1916928 0.08 QCD

Conf5-3072 3072 119808 1.26 QCD

Cantilever 62451 4007383 0.10 FEM

G3circuit 1585498 7660826 0.0003 Circuit sim.

Amazon-2008 735323 5158388 0.0009 Book network

Dblp-2010 326186 1615400 0.001 Bibliography

In-2004 1382908 16917053 0.0008 Webcrawl .in

Indo-china-2004 7414866 194109311 0.0003 Webcrawl .in .cn

Table 2.4. Boeing-Chen-FIDAP matrix group

Matrix Order Nonzeros Density% Application

Bcsstk36 23052 143140 0.21 Shock absorber

Bcsstk37 25503 1140977 0.17 Track ball

Bcsstk38 8032 355460 0.55 Airplane component

Crystk03 24696 1751178 0.28 FEM crystal

Ex13 2568 75628 1.15 Axisymmetric flow

Ex35 19716 227872 0.05 2D turbulent flow

Ex40 7740 456188 0.76 3D die swell

Ex8 3096 90841 0.94 Developing flow

Pkustk01 22044 979380 0.20 Civil engineering

Pkustk02 10800 810000 0.69 Civil engineering

Pkustk03 63336 3130416 0.07 Civil engineering

Pkustk04 55590 4218660 0.14 Civil engineering

Pkustk05 37164 2205144 0.16 Civil engineering

Pkustk06 43164 2571768 0.14 Civil engineering

Pkustk07 16860 2418804 0.85 Civil engineering

Pkustk09 33960 1583640 0.14 Civil engineering

Pkustk10 80676 4308984 0.07 Civil engineering

Pkustk11 87804 5217912 0.07 Civil engineering

Pkustk12 94653 7512317 0.08 Civil engineering

Pkustk13 94893 6616827 0.07 Machine element

• When performing blocked SpMV on multiple processors, Liu et al. partition the

matrix into groups of rows with approximately equal numbers of nonzeros [45]. In

the same vein, Liu and Vinter use the number of nonzeros per row to partition rows

across OpenCL work items for blocked SpMV [39].

16

Table 2.5. SPARSITY’s matrix set

Matrix Order Nonzeros Density% Application

dense 1000 10000 1000000 100 Dense matrix

lhr10 10672 232633 0.20 Light hydrocarbon

raefsky3 21200 1488768 0.33 Fluid/structure

goodwin 7320 324784 0.61 Fluid mechanics

bcsstk35 30237 1450163 0.39 Automobile frame

bayer02 13935 63679 0.03 Chemical process

venkat01 62424 1717792 0.04 Flow simulation

bayer10 13436 94926 0.05 Chemical process

crystk02 13965 968583 0.50 FEM Crystal

coater2 9540 207308 0.23 Coating flows

crystk03 24696 1751178 0.29 FEM Crystal

finan512 74752 596992 0.01 Financial modeling

nasarb 54870 2698463 0.09 Shuttle booster

onetone2 36057 227628 0.02 Harmonic balance

3dtube 45330 3213332 0.16 3D pressure tube

pwtk 36519 326107 0.02 Structural engineering

ct20stif 52329 2698463 0.10 CT20 Engine block

vibrobox 12328 342828 0.23 Vibroacoustics

bai 23560 484256 0.09 Airfoil eigenvalue

wang4 26068 177196 0.03 Semiconductor devices

raefksy4 19779 1328611 0.34 Buckling problem

lnsp3937 3937 25407 0.16 Fluid flow

ex11 16614 1096948 0.40 3D steady flow

sherman5 3312 20793 0.19 Oil reservoir

rdist1 4134 94408 0.55 Chemical processes

osreg1 2205 14133 0.29 Oil reservoir

vavasis3 41092 1683902 0.10 2D PDE problem

saylr4 3564 22316 0.18 Airfoil

rim 22560 1014951 0.20 FEM fluid mechanics

shyy161 76480 329762 0.01 Viscous flow

memplus 17758 126150 0.04 Circuit simulation

wang3 26064 177168 0.03 Semiconductor devices

gemat11 4929 33185 0.14 Power flow

mcfe 765 24382 4.17 Astrophysics

• In blocked sparse LU factorization, Grigori and Li use the number of nonzeros as the

sole metric for estimating matrix density [40].

• clSpMv framework uses the number of nonzeros as a criterion for automatically se-

lecting between BCSR and COO storage formats [46].

• The pOSKI parallel sparse linear algebra framework performs autotuning on several

17

Fig. 2.3. SpMV performance model training.

Fig. 2.4. Predicting SpMV performance of a new matrix.

aspects of computation (e.g. choice of blocked sparse storage format and choice of

computational kernels), yet it only has one approach to matrix partitioning: dividing

up matrices based on the number of nonzeros per row [33].

However, we think that NNZE may not be an ideal feature for predicting the computa-

tional cost of blocked CSR SpMV. Our intuition is that SpMV is typically memory bound,

so much of the cost lies in data movement. The same overhead is paid to load a 2⇥ 2 block

regardless of whether it has one nonzero or four nonzeros. Therefore, we propose charac-

terizing a matrix in terms of its number of nonzero blocks (NNZB). Additionally, examining

blocked SpMV time per blocked row of a matrix shows that a matrix characterized with

NNZE has a noisier relationship with execution time than with NNZB. Noisy non-linear

relationships digress from linear prediction models and require expensive statistical models

to predict run time. For each blocked row in matrix in-2004, Fig. 2.5 and Fig. 2.6 show

relationships between NNZE counts and NNZB counts, and SpMV time. The large diver-

gence of data points from the linear fit line in the NNZE plot, compared to the smaller

divergence in the NNZB plot, hints that NNZE might not be the best feature for predicting

SpMV run time.

18

Fig. 2.5. NNZE vs. time for in-2004. Fig. 2.6. NNZB vs. time for in-2004.

We conducted a Pearson correlation analysis to examine interactions between NNZE

and NNZB across the three matrix groups across the range of block sizes. The overall

trend is that the correlation strength decreases as the block size increases. There are some

matrices where this decrease is not monotonic. Very sparse matrices, such as amazon-2008

and G3-circuit, have correlations as low as 0.26 between their NNZE and NNZB values.

2.6.2 Training SpMV performance prediction models

We train our performance prediction models on a set of matrices that have previously

been used for an SpMV operation. Fig. 2.3 diagrammatically represents this training

process. Because of widely di↵erent run times from di↵erent block sizes, each model is

trained to predict run times corresponding to one block size. The linear regression models

are of the following form

8
>>>>>><

>>>>>>:

Y

ib=2 = �x

ib=2 + ✏

ib=2

Y

ib=3 = �x

ib=3 + ✏

ib=3

+
...

Y

ib=7 = �x

ib=7 + ✏

ib=7

where the Y

i

are vectors of run times for di↵erent matrices i and the x

i

are NNZB

19

counts per blocked row of a matrix for NNZB performance models. x

i

are NNZE counts

per blocked row of a matrix for NNZE performance models. During model training and

construction, the model uses NNZE (or NNZB) and time data from N-1 matrices to predict

run time of the Nth matrix. Each block-size specific SpMV gets its own trained model.

2.6.3 Predicting SpMV performance of a matrix

To predict the run time of SpMV on a new matrix prior to its execution, the models

require a vector containing the number of NNZE (or NNZB) counts within the matrix. The

list of NNZE (or NNZB) per blocked row is obtained by parsing the matrix structure via a

script. Predictions, i.e. run time Ŷ

b=i

, for each block size are obtained using block-specific

regression models.2 For instance, performance prediction for matrix with a block size 2 can

be represented as

Ŷ

b=2 = �x

test matrix b=2 + ✏

b=2

where x
test matrix b=2 is the vector of nonzero block counts derived from the test matrix

structure. � and ✏ are coe�cients derived from the model training process.

Prediction accuracy of a matrix’s total run time is measured using the relative percent-

age error metric.

Relative percentage error = |
P

Yb=i�
P

Ŷb=i|P
Yb=i

⇥ 100

Is NNZB a more useful feature than NNZE for estimating the SpMV computation time

for a new sparse matrix? We now present a series of experiments to evaluate this question.

For each of these groups of matrices, we train and test our models using an N-1 cross

validation process. We train on N-1 matrices from our dataset, and use the resulting model

to predict run time of the Nth matrix. Fig. 2.4 shows this prediction process. The next

three subsections examine prediction accuracy from the NNZE model and the NNZB model

2To be clear, Ŷ is the predicted runtime, and Y is the actual (measured) runtime.

20

for groups of matrices listed in Tables 2.2, 2.3, and 2.4. We examine prediction results from

block size 6 for the three groups of matrices.

2.7 SpMV Performance Prediction Results

2.7.1 Prediction results for Boeing, Chen, and FIDAP group

Fig. 2.7 compares prediction errors for the NNZB and NNZE models on block size 6.

The majority of the matrices in this group have better predictions from using the NNZB

model. The prediction errors from the NNZB model average 8.12% compared to 43.16%

for the NNZE model. Matrices from civil engineering applications (pkustk*) matrices have

high prediction accuracy from the NNZB model. Some matrices with smaller dimensions

and higher density of nonzeros su↵er from higher prediction errors—bcsstk38 (8032 rows)

and ex40 (3096 rows). Table 2.7 lists additional statistics that provide insight into the

distribution of prediction errors across the matrix group for block size 6. The predictions

from the NNZE model comes close to the NNZB model for matrices with smaller dimensions

such as ex40 (7740 rows). Unlike the NNZE model, the NNZB model’s prediction accuracy

does not deteriorate when faced with matrices with larger dimensions—pkustk11 (87804

rows), pkustk10 (80676 rows), pkustk13 (94893 rows). Fig. 2.8 visualizes distribution of

errors based on matrix size and nonzero density percentage for block size 6. Table 2.6

summarizes prediction errors for di↵erent block sizes for NNZE and NNZB. The NNZB

model produces the highest accuracy across all block sizes.

2.7.2 Prediction results from Bai group

Prediction errors from using the NNZE and NNZB models are shown in Fig. 2.9.

The NNZB model yields an average error of 4.17% across all matrices in this group, while

the NNZE model averages 20.96%. Tub100, the matrix with the highest nonzero density

(3.95%) in the group, has a high error for both the NNZE and the NNZB models.

Table 2.7 lists additional statistics that provide insight into the distribution of predic-

tion errors across the matrix group for block size 6. Fig. 2.10 visualizes distribution of

21

NNZB
NNZE

Re
lat

ive
 pe

rce
nta

ge
 er

ro
r (

%
)

0

20

40

60

80

100

bc
ss

tk3
6

bc
ss

tk3
7

bc
ss

tk3
8

cr
ys

tk0
3

ex
8

ex
13

ex
35

ex
40

pk
us

tk0
1

pk
us

tk0
2

pk
us

tk0
3

pk
us

tk0
4

pk
us

tk0
5

pk
us

tk0
6

pk
us

tk0
7

pk
us

tk0
9

pk
us

tk1
0

pk
us

tk1
1

pk
us

tk1
2

pk
us

tk1
3

Fig. 2.7. Comparing prediction errors from NNZE and NNZB models for Boeing-Chen-
FIDAP group of matrices.

errors based on matrix size and nonzero density percentage. A majority of the matrices

have errors less than 5%. Table 2.6 lists the average prediction errors across all matrices

in the Bai group and compares errors from the NNZE and the NNZB models. The NNZE

model always performs poorly and its error increases quickly with block size.

2.7.3 Prediction results from the miscellaneous group of matrices

The miscellaneous group contains the most diverse set of matrices (Table 2.3) from

key applications and domains that either use or produce sparse matrices as part of their

computations. Amazon-2008, in-2004, indochina-2004, and dblp are very sparse graphs

derived from crawling domains and websites. The key characteristics of these matrices are

their unpredictable nonzero patterns and extremely low nonzero densities (0.0008% in-2004,

0.0003% Indochina-2004). Fig. 2.11 shows performance prediction results for this group

from using the NNZE and the NNZB models. Overall, the NNZB model outperforms the

22

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0
20

00
0

40
00

0
60

00
0

80
00

0

Non zero density%

M
at

rix
 o

rd
er

bcsstk36
bcsstk37

bcsstk38

crystk03

ex8 ex13

ex35

ex40

pkustk01

pkustk02

pkustk03

pkustk04

pkustk05

pkustk06

pkustk07

pkustk09

pkustk10

pkustk11

pkustk12pkustk13
●

●

●

●

●

●

●

<=1%
1%−5%
5%−10%
10%−15%

15%−20%
20%−25%
>25%

Fig. 2.8. NNZB model prediction error distribution with respect to matrix specifications
for Boeing-Chen-FIDAP group.

NNZE model across a majority of the matrices. Dblp and cantilever show preference for

the NNZE model for block size 6. However, errors from both NNZE and NNZB for these

matrices lie below 10%. The average error for the NNZE model is 33.78% while the error

from the NNZB model averages 11.11%. Table 2.6 shows average prediction errors from

the NNZE and NNZB models over all matrices for di↵erent block sizes. An interesting

observation is the 10% increase in errors for the NNZE model with the increase in block

size. The error for the NNZB model stays constant at 11% across the three block sizes.

23

NNZB
NNZE

Re
la

tiv
e

pe
rc

en
ta

ge
 e

rro
r (

%
)

0

20

40

60

80

100

Af
23

56
0

Cd
de

1
Ck

65
6

Cr
yg

10
00

0
Cr

yg
25

00
M

hd
32

00
a

O
lm

50
00

Rd
b5

00
0

To
ls3

40
Tu

b1
00

Fig. 2.9. Comparing prediction errors from NNZE and NNZB models for Bai group of
matrices.

Table 2.7 lists additional statistics that provide insight into the distribution of prediction

errors across the matrix group for block size 6. Fig. 2.12 visualizes distribution of errors

based on matrix size and nonzero density percentage.

2.7.4 Cross-validation-based performance prediction across all matrix groups

To investigate performance accuracy over more diverse matrix sets, we conduct a

stricter training and testing process using all matrices from all three groups. We sample

without replacement two-thirds of the matrices from each group. This forms the random-

ized training set with representation from each matrix group to account for diverse nonzero

patterns and densities. The test set comprises the remaining one-third of matrices from each

matrix group. We repeat this process for ten trials. We train NNZB and NNZE models and

make predictions on the test set for each trial. The results for each test matrix are averaged

24

●

● ●

●

●

●●●

● ●

0 1 2 3 4 5

0
50

00
10

00
0

15
00

0
20

00
0

Non zero density%

M
at

rix
 o

rd
er

Af23560

Cdde1Ck656

Cryg10000

Cryg2500

Mhd3200aOlm5000Rdb5000

Tols340 Tub100

●

●

●

●

●

●

●

<=1%
1%−5%
5%−10%
10%−15%

15%−20%
20%−25%
>25%

Fig. 2.10. NNZB model prediction error distribution with respect to matrix specifications
for Bai group.

across the ten trials. Fig. 2.13 shows errors averaged across the ten trials for the NNZE

and NNZB model for all matrices for block size 2. Because of the significant di↵erence in

errors between the two models, errors from the NNZE model are represented on a second

Y-axis in Fig. 2.13.

A large number of denser matrices from our dataset show NNZB errors greater than

10%. Most matrices lying in the higher end of the nonzero density have NNZB errors

greater than 10%; in particular, cdde1 (density=0.5%), ck656 (density=0.9%), conf5-

25

NNZB
NNZE

R
el

at
ive

 p
er

ce
nt

ag
e

er
ro

r (
%

)

0

20

40

60

80

100

Pw
tk

Li
nv

er
se

Fi
na

n5
12

C
on

f5
−4

91
52

C
on

f5
−3

07
2

C
an

til
ev

er
G

3c
irc

ui
t

Am
az

on
−2

00
8

D
bl

p−
20

10
In
−2

00
4

In
do
−c

hi
na
−2

00
4

Fig. 2.11. Comparing prediction errors from NNZE and NNZB models for mixed group of
matrices. (Miscellaneous group with greatest diversity.)

3072 (density=1.26%), ex40 (density=0.76%), mhd3200a (density=0.44%), pkustk02 (den-

sity=0.69%), and tols340 (density=1.89%).

Since we randomly sample the matrix dataset, which is dominated by sparser matrices,

the NNZB model at each trial does not contain su�cient training data to predict for denser

matrices. Amazon-2008 and linverse have high prediction errors similar to their prediction

errors from models trained only on the mixed matrix group.

As shown in Fig. 2.13, our NNZB model outperforms the NNZE model for all matrices.

The disadvantage of using NNZE to predict run time becomes clearer when using a diverse

set of matrices with di↵erent nonzero patterns. The NNZE model averages a prediction

error of 229.08% while the NNZB model averages 10.16%.

Table 2.6 lists prediction errors for additional block sizes. For block size 2, Table 2.7

shows additional statistics on prediction errors.

26

●
●●● ●●

●

●

●

●

●

0.0 0.5 1.0 1.5 2.0

0e
+0

0
2e

+0
6

4e
+0

6
6e

+0
6

Non zero density%

M
at

rix
 o

rd
er

Pwtk
LinverseFinan512Conf5−49152 Conf5−3072Cantilever

G3circuit

Amazon−2008
Dblp−2010

In−2004

Indo−china−2004
●

●

●

●

●

●

●

<=1%
1%−5%
5%−10%
10%−15%

15%−20%
20%−25%
>25%

Fig. 2.12. NNZB model prediction error distribution with respect to matrix specifications
for mixed group of matrices.

Table 2.6. STOMP SpMV performance prediction errors across di↵erent block sizes

BOEING-CHEN-FIDAP BAI MIXED TEN TRIALS

Block size NNZE
(%)

NNZB
(%)

NNZE
(%)

NNZB
(%)

NNZE
(%)

NNZB
(%)

NNZE
(%)

NNZB
(%)

2 13.13 2.37 3.20 2.22 9.23 11.08 229.08 10.16

4 18.31 5.71 8.93 2.55 22.19 11.03 181.84 11.78

6 43.16 8.12 20.95 4.17 33.78 11.11 187.79 14.35

27

Fig. 2.13. Performance prediction errors from inter-matrix group cross-validation (block
size 2).

Table 2.7. Distribution of STOMP SpMV performance prediction errors on Sandy Bridge

BOEING-CHEN-FIDAP BAI MIXED TEN TRIALS

Statistic NNZE
(%)

NNZB
(%)

NNZE
(%)

NNZB
(%)

NNZE
(%)

NNZB
(%)

NNZE
(%)

NNZB
(%)

Minimum 2.84 0.47 2.12 0.23 0.95 2.06 176.84 0.48

Average 43.16 8.12 20.96 4.17 33.79 11.11 229.09 10.16

Maximum 128.82 24.98 50.44 19.53 167.90 24.79 280.06 19.33

Standard deviation 33.29 5.92 14.67 5.41 44.58 7.15 29.22 4.89

2.8 Guiding Optimal Block Size Selection

While working with sparse matrices, it is di�cult to know what block size would deliver

optimal performance. End users typically guess and use small, even-sized blocks. Another

option is to conduct an exhaustive search, which is slow and wastes computational time,

particularly if there are many matrices.

We use block-specific prediction models described in previous sections to guide block

size selection of a matrix.

1. We extract the number of nonzero blocks for a new, test matrix for a range of block

sizes.

2. These vectors of nonzero block counts are input to block-size specific performance

28

models described in Section 2.6 to obtain SpMV run times for the matrix for a par-

ticular block size. During the prediction process, each model (corresponding to one

block size) produces a vector of run times.

3. Block size of the model that yields the minimum run time is selected as the optimum

block size.

2.8.1 Evaluating model-guided block size on SpMV performance

To examine the optimality of predicted block size, we execute SpMV using predicted

block size to determine performance gain over other block size choices. In this section, we

present block prediction results from all matrices from all groups. We use two metrics to

evaluate the quality of our predicted block selections—speedup left on the table and speedup

over default.

Speedup left on the table: This is the relative percentage di↵erence between the best

SpMV performance obtained through exhaustive search over our block size range and that

obtained from using block size predicted by STOMP. A lower number, close to zero, shows

that there is no wasted performance optimization opportunity.

Speedup over default : As discussed earlier, PETSc leaves block size selection to the

end user. PETSc defaults to using block size 1 in the event that the user does not specify

a block size. Block size 1 is non-blocked SpMV. Speedup over default is the relative per-

centage di↵erence between SpMV performance from using block size 1 (unblocked SpMV)

and the performance obtained from using block size from our model. Tables 2.8, 2.9, and

2.10 examine speedup derived from using our performance models across the three matrix

datasets. Table 2.13 shows average speedup results from all matrix groups used in our study.

In the Boeing-Chen-FIDAP group, speedup over default produced by STOMP lies be-

tween a minimum of 13.46% (pkustk13) and a maximum of 72.24% (pkustk09). Average

29

speedup over default in this group is 53.35%. While all matrices in this group achieve op-

timal SpMV performance from STOMP’s block size selection, three matrices leave a small

percentage of speedup on the table—bcsstk36 (1.81%), bcsstk37 (0.03%), and ex8 (2.12%).

Average speedup left on the table is 0.20%. Table 2.8 lists speedup details on all matrices

in this group.

In the Bai group, speedup over default produced by STOMP lies between a minimum

of 56.40% (cdde1) and a maximum of 73.39% (olm5000). Average speedup over default in

this group is 64.03%. Two leave a small percentage of speedup on the table—mhd3200a

(0.89%), and tub100 (13.7%). Average speedup left on the table is 1.46%. Table 2.9 lists

speedup details on all matrices in this group.

In the diverse group of mixed matrices, speedup over default produced by STOMP

lies between a minimum of 22.37% (amazon-2008) and a maximum of 75.53% (linverse).

All matrices in this group achieve 100% of their optimal SpMV performance, leaving no

speedup on the table. Table 2.10 lists speedup details on all matrices in this group.

2.8.2 Comparing STOMP to SPARSITY

The SPARSITY framework [11] attempts to select optimal block size by analyzing

sparse matrix structure and machine profile in detail. The framework requires machine

profiling to find optimal block sizes for a set of matrices. SPARSITY then uses a sim-

ple heuristic to find the best block size for a matrix. The heuristic selects a block with

dimensions r ⇥ c for a matrix B that maximizes

Performance of dense matrix in r ⇥ c sparse blocked format

Estimated fill overhead for r ⇥ c blocking of B

This static heuristic selects a block size that minimizes the number of non-essential

floating point operations (FLOPs) that arise from excessive nonzero padding.

To compare with SPARSITY, we evaluate STOMP’s block-size selection on the set of

matrices used in the SPARSITY study. This matrix set is listed in Table 2.5. Table 2.12

compares speedup obtained from STOMP and SPARSITY over the same set of matrices.

30

Table 2.8. STOMP SpMV speedup on Boeing-Chen-FIDAP matrices

Matrices Speedup left on the table(%) Speedup over default(%)

bcsstk36 1.81 54.75

bcsstk37 0.03 54.56

bcsstk38 0 52.01

crystk03 0 52.44

ex8 2.12 54.87

ex13 0 54.01

ex35 0 51.50

ex40 0 40.04

pkustk01 0 55.93

pkustk02 0 71.23

pkustk03 0 69.97

pkustk04 0 39.83

pkustk05 0 70.04

pkustk06 0 69.24

pkustk07 0 22.63

pkustk09 0 72.24

pkustk10 0 69.58

pkustk11 0 68.32

pkustk12 0 30.29

pkustk13 0 13.46

Table 2.9. STOMP SpMV speedup on Bai group of matrices

Matrices Speedup left on the table(%) Speedup over default(%)

af23560 0 62.12
cdde1 0 56.40
ck656 0 63.43

cryg10000 0 64.20
cryg2500 0 64.79
mhd3200a 0.89 60.84
olm5000 0 73.39
rdb5000 0 64.96
tols340 0 68.67
tub100 13.7 61.47

Table 2.12 compares performance benefits from SPARSITY and STOMP. Though

coarse, this summation of results shows that statistical modeling provides several bene-

fits over using rough, static heuristics:

1. On the set of matrices used in the SPARSITY study (listed in Table 2.5), STOMP pro-

duces an average speedup of 50.96% over default, unblocked SpMV while SPARSITY

produces a speedup of 31.62%

31

Table 2.10. STOMP SpMV speedup on mixed group of matrices

Matrices Speedup
left on the
table(%)

Speedup over
default(%)

pwtk 0 54.28

linverse 0 75.53

finan512 0 33.44

conf5-49152 0 52.78

conf5-3072 0 57.17

cantilever 0 46.87

G3 circuit 0 52.68

amazon-2008 0 22.37

dblp 0 47.02

indochina-2004 0 47.01

in-2004 0 53.07

2. On matrices in Table 2.5 when compared to exhaustive search, STOMP leaves as little

as 0.31% performance on the table. On the other hand, SPARSITY leaves behind

2.99%. Table 2.11 lists speedup from STOMP over each matrix used in SPARSITY.

3. To predict appropriate block dimensions of a matrix, SPARSITY requires execution

of a dense matrix in 144 blocked configurations over 12 choices of row and column

block dimensions. STOMP yields optimum performance using an extremely small set

of matrices—a minimum of 11 (Bai group) and a maximum of 33 (SPARSITY’s set

of matrices). Statistical prediction models learn and adapt using information from

smaller datasets leading to better predictions than those obtained from simple and

static heuristics.

2.9 Evaluating STOMP on Knight’s Landing

Knight’s Landing (KNL) [47] is a recently released (July 2016) co-processor in Intel’s

Xeon Phi line. While KNL has a completely di↵erent architecture from processors in Intel’s

Xeon line, a stark di↵erence is KNL’s lower clock rate and higher number of cores. We used

a self-bootable Intel R Xeon PhiTM Processor 7210 node for our experiments. This KNL

node has an L1 cache of 32K and an L2 cache of 1024K.

32

Table 2.11. STOMP SpMV speedup evaluation on SPARSITY’s matrices

Matrices Speedup left on the table(%) Speedup over default(%)

dense 1000 3.05 66.14

raefksy3 0 65.78

bcsstk35 0 68.84

venkat01 0 70.19

crystk02 0 57.58

crystk03 0 56.69

nasarb 0 67.42

3dtube 0 53.80

ct20stif 0 44.88

bai 0 61.76

raefsky4 0 42.88

ex11 0 42.72

rdist1 2.09 57.26

vavasis3 0 31.69

rim 0 22.65

memplus 0 56.18

gemat11 0 46.10

lhr10 0 50.84

goodwin 0 31.57

bayer02 0 53.03

bayer10 0 54.72

coater2 4.09 30.75

finan512 0 35.97

onetone2 0 42.17

pwtk 0 54.09

vibrobox 0 5.42

wang4 0 58.24

lnsp3937 0 54.70

sherman5 0 69.85

osreg1 0 58.15

saylr4 0 52.75

shyy161 0 63.10

wang3 0 58.48

mcfe 2.05 16.37

Table 2.12. STOMP versus SPARSITY

Criteria Matrices STOMP SPARSITY

Average speedup left on the table SPARSITY matrices 0.31% 2.99%

Average Speedup over default SpMV SPARSITY matrices 50.96% 31.62%

33

Table 2.13. Evaluating STOMP’s block size predictions on all matrix groups

Matrix group Speedup left on the table(%) Speedup over default(%)

Bai 1.46 64.03

Boeing-Chen-FIDAP 0.20 53.35

Mixed set 0 49.29

SPARSITY’s matrix set 0.31 50.96

Average across all groups 0.49 54.46

We executed SpMV in serial on the Boeing-Chen-FIDAP, Bai, and mixed matrix

groups. Our experiment setup remains the same as in the Sandy Bridge study presented

earlier. The following sections (i) evaluate STOMP’s SpMV prediction accuracy on three

matrix groups and (ii) evaluate the quality of STOMP’s block size selection heuristic.

Similar to the study on Sandy Bridge, we evaluate STOMP’s prediction accuracy for

block size 6 in detail.

2.10 STOMP’s Performance Prediction on Knight’s Landing

2.10.1 Prediction results from the Boeing-Chen-FIDAP group of matrices

Fig. 2.14 shows prediction errors for the NNZB and the NNZE models for block size

6. A majority of matrices in this group benefit from using the NNZB model. The NNZB

and NNZE models appear to compete in matrix pkustk09. Prediction errors for this group

average 12.83% for the NNZB model and 45.68% for the NNZE model. Table 2.15 lists

additional statistics that provide insight into the distribution of errors across the matrix

group for block size 6. Fig. 2.15 visualizes distribution of errors based on matrix size and

nonzero density percentage. Table 2.14 shows errors across additional block sizes. The

NNZB model performs consistently better than the NNZE model across all block sizes.

2.10.2 Prediction results from the Bai group of matrices

Fig. 2.16 shows prediction errors for the NNZB and the NNZE models on block 6

for the Bai group. A majority of matrices in this group benefit from using the NNZB

34

NNZB
NNZE

R
el

at
ive

 p
er

ce
nt

ag
e

er
ro

r (
%

)

0

20

40

60

80

100

bc
ss

tk
36

bc
ss

tk
37

bc
ss

tk
38

cr
ys

tk
03 ex
8

ex
13

ex
35

ex
40

pk
us

tk
01

pk
us

tk
02

pk
us

tk
03

pk
us

tk
04

pk
us

tk
05

pk
us

tk
06

pk
us

tk
07

pk
us

tk
09

pk
us

tk
10

pk
us

tk
11

pk
us

tk
12

pk
us

tk
13

Fig. 2.14. Comparing predictions from NNZE and NNZB models for Boeing-Chen-FIDAP
matrices on Knight’s Landing.

model. The NNZE model beats the NNZB model for tub100. Tub100 is the densest matrix

(3.95%) in our entire collection that comprises matrices with nonzero densities of less than

0.1%. Since our prediction models are trained on very sparse matrices, predictions for

denser matrices are not as accurate. Prediction errors for this group average 3.62% for the

NNZB model and 19.65% for the NNZE model. Table 2.15 lists additional statistics that

provide insight into the distribution of errors across the matrix group for block size 6. Fig.

2.17 visualizes distribution of errors based on matrix size and nonzero density percentage.

While all errors lie under 10 %, tub100 with its high nonzero density has the highest error

at 19.41%. Similar to the study on Sandy Bridge, the NNZB model beats the NNZE model

across all block sizes in this group, as shown in Table 2.14

35

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0
20

00
0

40
00

0
60

00
0

80
00

0

Non zero density%

M
at

rix
 o

rd
er

bcsstk36
bcsstk37

bcsstk38

crystk03

ex8 ex13

ex35

ex40

pkustk01

pkustk02

pkustk03

pkustk04

pkustk05

pkustk06

pkustk07

pkustk09

pkustk10

pkustk11

pkustk12pkustk13
●

●

●

●

●

●

●

<=1%
1%−5%
5%−10%
10%−15%

15%−20%
20%−25%
>25%

Fig. 2.15. NNZB model prediction error distribution with respect to matrix specifications
for Boeing-Chen-FIDAP on Knight’s Landing.

Table 2.14. STOMP SpMV performance prediction errors on Knight’s Landing

BOEING-CHEN-FIDAP BAI MIXED TEN TRIALS

Block size NNZE
(%)

NNZB
(%)

NNZE
(%)

NNZB
(%)

NNZE
(%)

NNZB
(%)

NNZE
(%)

NNZB
(%)

2 7.87 2.93 4.36 2.04 19.39 15.78 1461.1 17.10

4 16.48 5.36 9.70 5.94 15.85 10.54 1352.2 9.76

6 45.68 12.83 19.65 3.62 26.35 13.64 1195.7 15.03

36

NNZB
NNZE

Re
la

tiv
e

pe
rc

en
ta

ge
 e

rro
r (

%
)

0

20

40

60

80

100

Af
23

56
0

Cd
de

1
Ck

65
6

Cr
yg

10
00

0
Cr

yg
25

00
M

hd
32

00
a

O
lm

50
00

Rd
b5

00
0

To
ls3

40
Tu

b1
00

Fig. 2.16. Comparing predictions from NNZE and NNZB models for Bai matrices on
Knight’s Landing.

Table 2.15. Distribution of STOMP SpMV performance prediction errors on Knight’s Land-
ing

BOEING-CHEN-FIDAP BAI MIXED TEN TRIALS

Statistic NNZE
(%)

NNZB
(%)

NNZE
(%)

NNZB
(%)

NNZE
(%)

NNZB
(%)

NNZE
(%)

NNZB
(%)

Minimum 5.62 1.93 6.21 0.0015 1.45 0.54 1082.2 0.02

Average 45.68 12.83 19.65 3.62 26.35 13.64 1195.7 15.03

Maximum 148.09 27.41 53.52 19.41 89.28 50.65 1287.3 62.65

Standard deviation 31.75 8.30 14.47 5.53 23.13 12.96 39.55 13.95

2.10.3 Prediction results from the miscellaneous group of matrices

Fig. 2.18 shows prediction errors for the NNZB and the NNZE models for block size

6 for the extremely sparse matrix group listed in Table 2.3. The key characteristic of this

matrix group is the extreme sparseness and larger orders of its matrices. As summarized

in Table 2.14 and visualized in Fig. 2.18, this group benefits from using the NNZB model.

37

●

● ●

●

●

●●●

● ●

0 1 2 3 4 5

0
50

00
10

00
0

15
00

0
20

00
0

Non zero density%

M
at

rix
 o

rd
er

Af23560

Cdde1Ck656

Cryg10000

Cryg2500

Mhd3200aOlm5000Rdb5000

Tols340 Tub100

●

●

●

●

●

●

●

<=1%
1%−5%
5%−10%
10%−15%

15%−20%
20%−25%
>25%

Fig. 2.17. NNZB model prediction error distribution with respect to matrix specifications
for Bai matrices on Knight’s Landing.

Similar to the study on Sandy Bridge, dblp and cantilever show preference for the NNZE

model. Both the NNZB and the NNZE model have a hard time predicting inverse with

prediction errors of 50.65% and 89.27%, respectively. Across all matrices, the NNZB model

averages 13.64% and the NNZE model averages 26.35%. Table 2.15 lists additional statistics

that provide insight into the distribution of prediction errors across the matrix group for

block size 6. Fig. 2.19 visualizes distribution of errors based on matrix size and nonzero

density percentage.

38

NNZB
NNZE

R
el

at
ive

 p
er

ce
nt

ag
e

er
ro

r (
%

)

0

20

40

60

80

100

Pw
tk

Li
nv

er
se

Fi
na

n5
12

C
on

f5
−4

91
52

C
on

f5
−3

07
2

C
an

til
ev

er
G

3c
irc

ui
t

Am
az

on
−2

00
8

D
bl

p−
20

10
In
−2

00
4

In
do
−c

hi
na
−2

00
4

Fig. 2.18. Comparing predictions from NNZE and NNZB models fo matrices from mixed
group on Knight’s Landing.

2.10.4 Cross-validation-based performance prediction on KNL across all matrix groups

Similar to the study on Sandy Bridge, we investigate the accuracy of both the NNZE

and NNZB models using a more rigorous testing and training process. Instead of building

and testing prediction models for each matrix group, we pool matrices from the three matrix

groups into a single group. Over ten trials, we sample two-thirds of the matrices to serve as

the training set, and remaining one-third as the test set. This process is described in detail

in Section 2.7.4.

Fig. 2.20 shows errors from the NNZE and NNZB models averaged across the ten

training-testing trials for block size 2. Because errors from the NNZE model are orders of

magnitude larger than those from NNZB, we use two di↵erent Y-axes that span di↵erent

ranges. The general trend is that the NNZE model fails drastically when faced with diverse

training data from di↵erent matrix groups.

39

●
●●● ●●

●

●

●

●

●

0.0 0.5 1.0 1.5 2.0

0e
+0

0
2e

+0
6

4e
+0

6
6e

+0
6

Non zero density%

M
at

rix
 o

rd
er

Pwtk
LinverseFinan512Conf5−49152 Conf5−3072Cantilever

G3circuit

Amazon−2008
Dblp−2010

In−2004

Indo−china−2004
●

●

●

●

●

●

●

<=1%
1%−5%
5%−10%
10%−15%

15%−20%
20%−25%
>25%

Fig. 2.19. NNZB model prediction error distribution with respect to matrix specifications
for mixed matrix group on Knight’s Landing.

2.10.5 STOMP’s block size selection on KNL

In this section, we evaluate the quality of STOMP’s block size selection algorithm on

SpMV operations on KNL. Similar to the study on SNB, we use speedup over default and

speedup left on the table as metrics for evaluating SpMV speedup from using STOMP’s block

selection process. Tables 2.16, 2.17, and 2.18 show speedup evaluations using these metrics

for matrix groups Boeing-Chen-FIDAP, Bai, and the mixed group of matrices, respectively.

40

Fig. 2.20. Comparing predictions from NNZE and NNZB models across ten trials on KNL.

In the Boeing-Chen-FIDAP group (Table 2.16), speedup over default produced by

STOMP lies between a minimum of 43.40% (ex40) and a maximum of 76.71% (pkustk03).

Average speedup over default in this group is 64.64%. While a majority of the matrices in

this group achieve optimal SpMV performance from STOMP’s block size selection, there

are a few matrices that leave a small percentage of speedup on the table—bcsstk36 (4.18%),

bcsstk37 (2.10%), crystk03 (0.08%), ex8 (2.78%), ex13 (4.83%), ex40 (5.92%), and pkustk01

(5.66%). Average speedup left on the table is 1.28%.

In the Bai group (Table 2.17), speedup over default produced by STOMP lies between

a minimum of 54.76% (cdde1) and a maximum of 73.34% (olm5000). Average speedup over

default in this group is 65.82%. With the exception of cdde1 and mhd3200a, all matrices

achieve optimal performance using STOMP’s block size selection. Average speedup left on

the table is 0.56%.

In the mixed matrix group (Table 2.18), speedup over default produced by STOMP,

lies between a minimum of 41.84% (amazon-2008) and a maximum of 75.02% (linverse).

Average speedup over default in this group is 57.53%. With the exception of dblp and

in-2004, all matrices achieve optimal performance using STOMP’s block size selection.

Average speedup left on the table is 0.32%. Table 2.18 lists speedup details on all matrices

in this group. Table 2.19 summarizes average speedup across all matrix groups on KNL.

41

Table 2.16. STOMP SpMV speedup on Boeing-Chen-FIDAP on Knight’s Landing.

Matrices Speedup left on the table(%) Speedup over default(%)

bcsstk36 4.18 61.83

bcsstk37 2.10 61.98

bcsstk38 0 56.84

crystk03 0.08 63.82

ex8 2.78 57.93

ex13 4.83 56.41

ex35 0 55.36

ex40 5.92 43.40

pkustk01 5.66 62.52

pkustk02 0 74.98

pkustk03 0 76.71

pkustk04 0 64.08

pkustk05 0 75.56

pkustk06 0 75.48

pkustk07 0 65.60

pkustk09 0 76.19

pkustk10 0 75.38

pkustk11 0 75.42

pkustk12 0 56.56

pkustk13 0 56.69

Table 2.17. STOMP SpMV speedup on Bai matrices on Knight’s Landing

Matrices Speedup left on the table(%) Speedup over default

af23560 0 64.13
cdde1 5.58 54.76
ck656 0 64.84

cryg10000 0 64.43
cryg2500 0 64.84
mhd3200a 0.89 65.07
olm5000 0 73.34
rdb5000 0 65.51
tols340 0 71.88
tub100 0 69.43

2.11 Conclusion

We presented the STOMP statistical approach for optimizing and modeling perfor-

mance of blocked SpMV for a set of diverse sparse matrices from several di↵erent scientific

and commercial domains. Using statistical models trained on data from matrices previously

used in SpMV operations, we predicted run time of a new matrix with mean accuracy of

93.52% across matrices on Sandy Bridge and 91.91% on Knight’s Landing. STOMP’s block

42

Table 2.18. STOMP SpMV speedup on mixed group of matrices on Knight’s Landing

Matrices Speedup
left on the
table(%)

Speedup over
default(%)

pwtk 0 64.74

linverse 0 75.02

finan512 0 39.71

conf5-49152 0 62.96

conf5-3072 0 61.94

cantilever 0 57.03

G3 circuit 0 58.21

amazon-2008 0 41.84

dblp 1.50 54.09

indochina-2004 0 56.87

in-2004 1.98 60.39

Table 2.19. Evaluating STOMP’s block size predictions on Knight’s Landing

Matrix group Speedup left on the table(%) Speedup over default(%)

Bai 0.56 65.82

Boeing-Chen-FIDAP 1.28 64.64

Mixed set 0.32 57.53

Average across all groups 0.72 62.66

selection technique produced a performance benefit of as high as 75% on Sandy Bridge and

76% on Knight’s Landing. Our techniques produce an average performance improvement of

55.56% over default unblocked SpMV performance across all our matrices on Sandy Bridge

and 62.66% on Knight’s Landing. We compared the quality of STOMP’s block selection

process on Sandy Bridge with SPARSITY, a framework that defines heuristics for block-size

selection. On the same set of matrices, STOMP yields a 50.96% speedup while SPARSITY

yields a 31.62% speedup over the same default.

43

CHAPTER 3

STAMPP: STATISTICAL TECHNIQUES FOR ANALYZING METRICS AND

PREDICTING PERFORMANCE OF WORKLOADS

3.1 Abstract

The ability to estimate application performance on new infrastructures is important

for several hardware and software e↵orts in the HPC community. Estimating performance

benefits through intensive hardware monitoring is expensive and often times infeasible.

Hardware monitoring costs increase as measurement dimensions grow to include diverse

hardware, performance counters, and workloads. STAMPP presents a set of high-level

techniques to automate analysis of hardware metrics and workload space, and to predict

performance of applications before they are executed on a target system. Using a suite

of performance models that abstract performance trends, STAMPP achieves high perfor-

mance prediction accuracy on individual benchmarks for performance projections across

generations of recent Intel CPUs.

3.2 Introduction

Projecting performance of today’s applications on future systems is a common goal in

the hardware and software community. Hardware designers rely on performance projections

to make design decisions for future hardware by analyzing performance profiles of current

applications. Application developers leverage performance projections to understand ap-

plication performance on a new system, evaluate performance bottlenecks, and determine

opportunities to tune code. Performance projections can help supercomputing centers to

accurately map computational needs of applications to available resources. Projecting per-

formance of a set of applications on a new system prototype is a typical evaluation performed

during design and delivery of new systems. At these early stages, access to the new target

44

system is limited to simulations or to a small set of prototype nodes. Thus, it becomes

important to make accurate performance projections using techniques that use the limited

available data obtained from the target system. Limited access to the target system makes

it important to be judicious while designing performance monitoring experiments.

Designing experiment space to predict application performance is challenging due to

the following reasons:

1. Impact of workload input data: Performance of data-driven applications varies de-

pending on the size and type of input data. Input data influences both memory

access patterns across the memory hierarchy as well as layout of the data in the

memory. Performance worsens and varies with increased irregularity of memory ac-

cess and reduced data reuse. A jarring example of this e↵ect is the stark di↵erence

in performance expectation of matrix multiplication on dense matrices versus sparse

matrices.

2. E↵ects of system configurations: Benign features such as hyperthreading and hard-

ware prefetching, devised to improve system utilization, can either improve or degrade

actual application performance depending on individual code structure of the applica-

tion and its memory use. For instance, Lee et al. [1] show that hardware prefetching

does not induce uniform performance benefits in all applications. A study by Zhao et

al. [3] that analyzes the e↵ects of hyperthreading on a set of workloads shows that

hyperthreading does not always guarantee a performance benefit.

3. Phases in workload execution: Applications seldom exhibit a steady state of system

resource utilization during their lifetimes. Depending on whether an application is in

a data setup phase (low CPU utilization, high cache activity) or an intense compute

phase (high CPU utilization), performance can vary. Sherwood et al. [4] examine

and show di↵erent phases that exist during workload execution.

4. Monitoring hardware is expensive: While it is important to understand hardware be-

havior across the platform—core, socket, cache, memory—it is important to bear in

45

mind cost of monitoring multiple metrics and the overhead involved. Excessive bench-

marking and metric collection are expensive processes that require long simulations

or infeasible amounts of time on a prototype system. More importantly, depending on

the processor, only certain sets of compatible performance counters can be monitored

simultaneously. This limitation further increases hardware monitoring time.

STAMPP presents a general methodology to analyze hardware metrics and workloads to

project performance across di↵erent CPU architectures. STAMPP uses hardware responses

collected on a system during workload execution while staying agnostic to the workload’s

instruction mix. By using quantitative statistical analyses, STAMPP reduces metric space

by identifying important metrics and eliminating redundant ones. STAMPP analyzes and

characterizes workloads across three benchmark suites. Performance models in STAMPP

leverage hardware metric data on an older base system to make projections of a new, unseen

workload on a new target system.

In demonstrating this performance modeling methodology, STAMPP uses data from

the SPEC CPU 2006 [48], SPEC OMP 2012 [49], and SPEC MPI 2007 [50] benchmark

suites across three generations of Intel CPUs—Sandy Bridge (SNB), Haswell (HSW), and

Broadwell (BDW) in serial and parallel configurations. Table 3.1 describes the SPEC CPU

2006 dataset [51]. Table 3.2 describes the SPEC OMP 2012 dataset [52]. Table 3.3

describes the SPEC MPI 2007 dataset [53]. STAMPP makes the following contributions:

1. Predicts performance (speedup) of a new workload on a target system with high

accuracy using a novel suite of performance models.

2. Demonstrates the use of statistical techniques to automatically identify important

hardware metrics and reduce metric space by up to 53% to make successful perfor-

mance projections.

3. Presents a heuristic to identify workloads that elicit similar hardware response on

a system. Similar workloads are used as proxies of the test workload to predict

performance.

46

Table 3.1. SPEC CPU 2006 benchmarks

Benchmark Language Application

perlbench C Perl Programming language

bzip2 C Compression

gcc C C Compiler

mcf C Combinatorial optimization

gobmk C Artificial intelligence for Go

hmmer C Search gene sequence

sjeng C Chess

libquantum C Quantum computing

h264ref C Video compression

omnetapp C++ Discrete event simulation

astar C++ Path-finding algorithm

xalancbmk C++ XML processing

bwaves Fortran Fluid dynamics

cactusADM C/Fortran Physics \General relativity

calculix CFortran Structural mechanics

dealII C++ Finite element analysis

gamess C/Fortran Quantum chemistry

GemsFDTD C/Fortran Computational electromagnetics

gromacs C/Fortran Biochemistry \molecular dynamics

lbm C Fluid Dynamics

leslie3d Fortran Fluid Dynamics

milc C Physics/Quantum Chromodynamics

namd C++ Biology Molecular Dynamics

povray C++ Image ray tracing

soplex C++ Linear Programming, Optimization

sphinx3 C Speech recognition

tonto Fortran Quantum Chemistry

zeusmp Fortran Computational Fluid Dynamics

47

Table 3.2. SPEC OMP 2012 benchmarks

Benchmark Language Application

md Fortran Molecular Dynamics

bwaves Fortran Computational fluid dynamics

nab C Molecular modeling

Bt331 Fortran Computational fluid dynamics

botsalign C Protein alignment

botsspar C Sparse LU

ilbdc Fortran Lattice Boltzmann

Fma3d Fortran Mechanical response simulation

swim Fortran Weather prediction

imagick C Image processing

Mgrid331 Fortran Computational fluid dynamics

Applu331 Fortran Computational fluid dynamics

smithwa C Optimal pattern matching

kdtree C++ Sorting and searching

3.3 Related Work

Several techniques have been used to investigate performance projection in di↵erent

ways over the years: using data from simulator runs, leveraging collections of benchmarks

to approximate performance of a new application, and replicating application hot-spots

through smaller proxy apps.

3.3.1 Performance projections through simulations

Simulations can be used to analyze and predict performance on a target system. Specific

frameworks such as BigSim [54] leverage properties from the Charm++ runtime and require

dedicated executions of a target application through a tiered simulation framework. The

use of the framework is fitted to applications written in Charm++. It is unclear if this

method works across di↵erent programming languages. Zheng et al. [55] use their BigSim

simulation framework to predict performance of Charm++ applications. Among many

48

Table 3.3. SPEC MPI 2007 benchmarks

Benchmark Language Application

milc C Quantum chromodynamics

leslie3d Fortran Computational fluid dynamics

gemsFDTD Fortran Electromagnetics

Fds4 C\Fortran Computational fluid dynamics

Pop2 C\Fortran Ocean modeling

tachyon C Graphics: parallel ray tracing

lammps C++ Molecular dynamics

Wrf2 C\Fortran Weather prediction

Tera tf Fortran 3D Eulerian hydrodynamics

socorro C\Fortran Molecular dynamics

Zeusmp2 C\Fortran Computational fluid dynamics

zeusmp Fortran Computational fluid dynamics

lu Fortran Computational fluid dynamics

dmilc C Quantum chromodynamics

dleslie Fortran Computational fluid dynamics

lGemsFDTD Fortran Electromagnetics

L2wrf2 C\Fortran Weather prediction

inputs, this framework requires the end user to provide speedup estimates. This diminishes

the value of a performance prediction framework.

MPI-Sim [56] is a library designed to emulate task and data parallel programs. The

simulation specifically focuses on parallel programs and uses communication patterns to an-

alyze performance of the NASA Advanced Supercomputing (NAS) benchmark suite. Riesen

[57] presents a hybrid MPI simulator that simulates MPI calls within an application. A

network simulator logs MPI message events from the executing application, which is used

to project application performance on a new network.

These simulation techniques do not predict performance of an application before its

execution. By using SPEC CPU as the set of representative data on the target machine,

STAMPP starts out with accurate real-world knowledge of performance on the target ma-

49

chine. Our approach does not require any executions of the test workload on the target

machine. More importantly, our techniques are not tied to a particular runtime framework

or library and show general applicability across processor architectures.

3.3.2 Performance estimations through benchmark suites

Performance of a new workload can be abstracted using information from previously

executed workloads. Similarly, compatible sets of workloads can serve as performance prox-

ies for each other. Work by Phansalkar et al. [58] uses clustering analysis to find subsets of

benchmarks from the SPEC CPU 2006 benchmark suite. Their goal is to evaluate bench-

mark redundancy in the SPEC CPU suite using fine grain routine profiling inside each

benchmark to extract details from the instruction mix. Breslow et al. [59] show bene-

fits of interleaving and co-locating pairs of jobs (HPC applications and benchmarks) on a

shared set of nodes. The study uses simple heuristics to find pairs of workloads that can

be ideally co-located. Pairs of workloads are examined exhaustively to determine if they

are symbiotic pairs (performance of neither workload deteriorates), minor interference pairs

(performance deteriorates by less than 5%), or non-symbiotic pairs (performance deterio-

rates by more than 5%). Although this work comprises finding sets of compatible workloads,

the techniques do not use statistical analysis to trim their large dataset or predict perfor-

mance or speedup. Hoste et al. [60] use a mixture of SPEC CPU benchmarks to predict

performance of an application. The approach uses a series of normalization and genetic

algorithms to match micro-architecture characteristics from an application of interest to

CPU SPEC benchmarks across multiple architectures. The work uses multiple correlation

analyses and a genetic algorithm to find proxies within the suite. The work does not use

hardware metrics that are independent of instruction mix and does not include workloads

other than the SPEC CPU benchmark suite. Sharkawi et al. [61] show e↵ectiveness of

using surrogate benchmarks from the SPEC CPU suite to project performance of HPC ap-

plications across architectures. Surrogate benchmarks are those that have lowest weighted

error between their metrics and those of the HPC application on a machine. This work

does not use statistical analysis, regression, or clustering to identify similar workloads and

50

prune metric space. Jaleel [62] presents extensive characterizations of SPEC CPU 2000

and SPEC CPU 2006 benchmarks using instrumentation-driven simulations. The work in-

vestigates the suites memory access patterns and usage. The study shows the amount of

overhead involved during detailed performance monitoring.

An important step while selecting sets of benchmarks to model a new workload, is

assessing compatibility between the benchmark set and the test workload. It is also impor-

tant to find a su�cient number of compatible benchmarks to model performance of a new

workload, such the set abstracts critical performance traits of the test workload. STAMPP,

through its workload characterization heuristic, finds sets of similar workloads that best

describe performance of a new workload on a base system using statistical techniques.

3.3.3 Performance projections through application skeletons

Another popular approach for predicting performance is the use of skeleton codes to

simulate application performance. Skeletons are simplified versions of an application that

are either handwritten or synthetically produced to replicate performance characteristics

of the original application. Skeleton codes, also called proxy applications or proxy apps

for short, have received attention in recent years via the CORAL [63] and APEX [64]

projects. Notable proxy apps such as MMCK and XSBench [65] are designed to simulate

performance of important kernels within the OpenMC [66] code. Although proxy apps

provide simpler implementations of core sections of a large application, they do not always

capture all interactions between real code and hardware that occur during the execution of

the application. Because they are simplified representations, they also do not always ade-

quately capture data flow patterns within the original application. Crafting proxy apps can

be tedious and challenging when the application, and corresponding libraries and compilers,

evolve. A few approaches have investigated generating application skeletons automatically

by extracting MPI communication patterns in [67] and [68].

An important problem in performance projection studies is how to predict performance

of a new workload on a new target system prior to execution with minimum hardware mon-

itoring overhead. STAMPP predicts performance of a new workload on a target machine

51

using statistical prediction models. These models are trained on performance data from

SPEC CPU benchmark executions on the base and target machine. STAMPP does not

require the test workload to be executed on the target machine. STAMPP’s performance

prediction models operate on sibling benchmarks and a reduced set of hardware metrics.

3.4 Experiment Environment

3.4.1 Machine configurations

Our experiments are based on hardware metrics collected on recent generations of Intel

systems: Sandy Bridge (SNB), Haswell (HSW), and Broadwell (BDW). All machines are

two-CPU platforms varying in the number of cores per CPU and in the sizes of their last

level cache (L3). Our SNB, IVB, HSW, and BDW systems comprise respectively 8, 14, and

22 cores and 20, 35, and 55 megabytes of unified L3 cache per processor. All systems had

cores with separate 32KB L1I and L1D caches and a unified 256KB L2 cache. Table 3.4

summarizes the specifications of the systems that we used to run benchmarks and collect

hardware metrics. The systems had 128 GB of memory but all the benchmarks used much

lower capacity requirements.

3.4.2 Hardware metrics

To characterize workload behavior in this study, we track several cache statistics: miss

Table 3.4. Machine specifications

Sandy Bridge Haswell Broadwell

Sockets 2 2 2

Cores 8 14 22

Total cores 24 28 44

L1 (I and D) 32KB 32KB 32KB

L2 256KB 256KB 256KB

L3 20MB 35MB 55MB

52

rate per instruction and per request for all three levels of cache as well as the bandwidth as-

sociated with data transfer between cache levels. For the L3 cache we additionally monitor

hardware prefetch activity and average latency of the misses. We also track D-TLB misses,

fraction of the cycles when cores are stalled, and a few parameters that characterize DRAM

activity: transaction count, utilization, total aggregate bandwidth, burst bandwidth (av-

erage of top 95% samples), and the percentage of transactions that cross UMA domains.

Table 3.5 lists the metrics we use and explains their meaning.

Monitoring cache and DRAM statistics have proven e↵ective in utilizing hardware

response to optimize codes across CPUs and general-purpose computing on graphics pro-

cessing units (GPGPUs). For instance, Kim et al. in [69] use hardware counter data to

construct models to optimize the fast multipole method on a GPU. Work in [70] classifies

cache misses in workloads to construct cache data profile paths through workloads. By

measuring cache usage and identifying cache misses, their work eliminates bottlenecks and

provides a 18%-57% improvement in throughput. Dimitrov et al. [71] monitor and evaluate

cache and DRAM activity across Hadoop workloads for di↵erent fundamental functions such

as join, union, and sort operations to gauge benefit of prefetching and caching. Diamond et

al. [72] use cache and DRAM statistics to identify multicore performance bottlenecks and

optimize the high order method modeling environment (HOMME) [73] benchmark. Our

measurements include a variety of micro-architectural measurements in the form of DRAM

and cache metrics listed in Table 3.5.

A simple way to get preliminary insight into distributions of metric values is to create

a boxplot, which is a concise visual representation of the spread of the data. Fig. 3.1 shows

a boxplot chart for average values of metrics listed in Table 3.5 collected for SPEC CPU

Speed runs on a Sandy Bridge system. Each hardware metric x is scaled as follows:

(x�mean(x))
standarddeviation(x)

This scaling allows metrics with di↵erent magnitudes of values to be compared on the

same plot. The boxplot indicates the median of the dataset, the minimum and maximum

values (whiskers), percentage of values that form the top 25% (upper quartile) and the

53

Table 3.5. Hardware Metrics Collected on Sandy Bridge, Haswell, and Broadwell

Metric Interpretation

StallCycPct Mean percentage of all core cycles stalled

L1MissInst Mean number of L1 D-cache demand load misses per 100
retired instructions

L1MissRqst Mean percentage of all demand load requests to L1 D-cache
that missed

L2toL1BW Mean bandwidth for each HW thread from its L2 cache into
its L1 D-cache

L2MissInst Mean L2 demand load misses per 100 retired instructions.
Does not include misses due to HW prefetches

L2MissRqst Mean percentage of all demand data load requests to L2
cache that missed

L3toL2BW Mean aggregate bandwidth from L3 to L2

L3MissInst Mean L3 data demand load misses per 100 retired instruc-
tions

L3MissRqst Mean percentage of all demand data load requests to L3 that
missed

L3MissPFPct Mean percentage of all L3 load misses that were due to HW
prefetch

L3MissLat Mean latency (ns) of load requests that missed L3

TLBMissInst Total DTLB misses per 100 retired instructions

DRAMTrInst Mean number of DRAM transactions (reads + writes) per
100 retired instructions

DRAMTrCyc Mean number of DRAM transactions (reads + writes) per
100 core cycles.

DRAMUtil Mean percentage of total available DRAM cycles that were
used to move blocks into or out of DRAM

DRAMBW Mean aggregate bandwidth of all DRAM transactions.

DRAMBrBW Burst aggregate bandwidth of all DRAM transaction

UMAPct Mean percentage of all Home Agent read transactions in-
volving blocks in the same UMA domain as the requesting
HW thread

Figure of merit Application-specific unit of performance. Examples include,
run time, bandwidth

FOMSpeedup Ratio of figures of merit (FOM) between two machines

54

bottom 25% (lower quartile). Values that are lesser or greater than 3/2 times the lower or

upper quartile are designated as low and high outliers.

There are a few consistent outliers in di↵erent metric classes. Common outliers include:

mcf, leslie3d, bwaves, milc, libquantum, and gromacs. With the exception of mcf, the outlier

benchmarks are fluid dynamics or molecular dynamic codes with very intensive memory

accesses. The resulting high memory tra�c from these applications is manifested in high

DRAM metric values in the boxplot. Mcf is a scheduling code that requires at least 1700MB

of memory, which is greater than SNBs cache sizes. This high memory requirement could

account for the very high number of cache misses.

Ideally we would like to collect as much metric data as possible during an application’s

run time. However, metric collection does not come without its own overhead. This is

discussed in detail in the proceeding section.

3.5 Metric Analysis using Statistical Techniques

Evaluating metric space is a pre-cursor to e↵orts that leverage cues from hardware

to understand workload performance trends. While collecting all possible hardware met-

rics to get a 360-degree view into performance trends seems promising, there are several

disadvantages to overmeasuring hardware space:

1. Hardware monitoring is not free: Metric collection is not achieved without a heavy

price. Most CPU architectures do not support collection of more than a few events si-

multaneously. For instance, Sandy Bridge has only three fixed and four programmable

registers on each of its hardware threads. Most metrics are derived from more than

two events (such as misses per N instructions per N cycles), which depending on event

compatibility, cannot be measured together. Co-processors from the Xeon Phi line,

namely, Knight’s Corner and Knight’s Landing, have fewer programmable counters

(two each) than their Xeon counterparts, making event collection even more expen-

sive. The combination of incompatible events and few counters increase the number

of workload executions required for metric collection.

55

Fig. 3.1. Distribution of serial SPEC CPU metrics on Sandy Bridge.

2. Metrics can be derived from others: The same phenomenon can be measured multiple

times at di↵erent levels of granularity at di↵erent stages of the pipeline. For instance,

information on memory requests—frequency, number of cache misses across the cache

hierarchy—can be gathered at di↵erent points of the platform, namely, cache, CHAs

(cache homing agents), sockets, and the memory controller. However, measuring

latency at only a single CHA and cache misses at only one cache level, will give an

indication of miss rate or miss penalty across the cache hierarchy.

3. Putting all your metrics in the proverbial one basket : To keep pace with micro-

architectural changes across processor generations, events and the corresponding hard-

ware metrics have to evolve. An example being the evolution of events to count FLOPs

and related metrics over multiple generations of Intel Xeon processors. In other situa-

tions, key hardware events might not even exist on a particular platform or might not

provide desired information required to formulate a given metric. For instance, the

Intel Xeon Phi coprocessor does not have appropriate events to calculate L2 hit rate.

As a result, “estimated L2 latency impact” metric is used as a proxy for measuring

L2 hit rate. Analyzing correlations between metrics allows performance analysis and

projection frameworks to be flexible so that when a given metric is unavailable on a

platform, the framework can replace the missing metric with a relevant metric.

56

4. Cost of oversampling : While not only time intensive, excessive monitoring at fine

granularity produces large quantities of data that do not provide immediate insight

into hardware behavior. This problem is exacerbated in data centers. To address this

problem, metric analysis can be used to identify correlations and filter metrics that do

not bring additional insight. Metric analysis can determine spaces of hardware that

are oversampled and those that need additional monitoring.

The next subsections describe statistical techniques used in STAMPP to scan metric

space to identify pertinent metrics.

3.5.1 Maximal information coe�cient

In a large data set with several potentially correlated variables, one of the first steps

of data exploration is to look for relationships between di↵erent pairs of variables. Rela-

tionships can be defined as simply as a correlation coe�cient or a little more complex to

take the form of functional relations (periodic, sinusoidal, polynomial, etc.). The disad-

vantage of using traditional correlation coe�cients is that they are biased towards linear

relationships between data points. This means that in a dataset, a stronger polynomial re-

lationship between data points will be scored as having a lower correlation coe�cient than

a noisier linear relationship [74]. To address this problem, Reshef et al. [74] introduced the

Maximal Information Coe�cient (MIC) to measure the strength of a relationship between

two variables in a way that is both general and equitable. Unlike the traditional Spearman

[75] or Pearson correlation coe�cients [76], MIC stays unbiased towards the type of the

relationship and is equitable in scoring similarly noisy patterns regardless of relationship

type.

We considered 17 metrics collected for the SPEC CPU benchmarks on a Sandy Bridge

system in our MIC calculations. While all the metrics individually capture a unique re-

sponse of the machine during benchmark execution, not all of them are equally important

and unique. In fact, many of the metrics capture the same phenomenon and introduce re-

dundancy. We show MIC values between pairs of metrics for serial SPEC CPU in Fig. 3.2.

57

Values closer to one indicate a stronger relationship between the metrics. The large dark

square on the upper right of the figure shows a strong relationship between all the DRAM

metrics in our set. Other significant relationships include the following pairs of metrics—

(StallCycPct, L3MissInst), (StallCycPct, DRAMRdTrInst), (StallCycPct, DRAMTrInst),

and (L3toL2BW, L2MissInst).

3.5.2 Variable inflation factor

Multicollinearity exists when pairs or sets of predictor variables or features are highly

correlated and can be expressed as a linear combination of each other. Ignoring multi-

collinearity can produce a model that overfits to the training data and will have limited

predictive ability for new test data. In smaller dimensional data, multicollinearity can be

detected visually by observing plots of variables plotted against each other. However, with

a large number of variables this approach has limitations. Fig. 3.3 shows variable inflation

factor (VIF) values for SNB hardware metrics derived from executing serial SPEC CPU.

Using VIF, we successively picked the metric with the highest VIF value, then removed it

and applied the VIF computation to the remaining set. Metrics that lie below 5, a threshold

commonly used by the community, are considered as su�ciently unique and non-redundant.

The VIF computation automates detecting multicollinearity. VIF is explained in detail in

[77] and [78]. We can see that the set of metrics reduced using this method has only

one DRAM-related metric indicating that the other DRAM metrics do not carry su�cient

additional information. By using VIF we detect multicollinearity across sets of metrics as

opposed to only pair-wise assessments in other correlation techniques.

3.5.3 Hierarchical clustering for metrics

Hierarchical clustering [79] algorithms use a tree structure, called a dendrogram, to

illustrate sets of di↵erent clusters in the data set. The root node of a tree represents a

single cluster containing all elements of the dataset. The leaf nodes are individual elements.

Intermediate internal cluster nodes indicate clusters formed by merging leaf nodes bottom-

up. Each horizontal level in the cluster tree is associated with a particular distance measure

58

L3
M
is
sP
FP

ct

L1
M
is
sR
qs
t

L1
M
is
sI
ns
t

L2
M
is
sR
qs
t

L2
to
L1
BW

L2
M
is
sI
ns
t

L3
to
L2
BW

St
al
lC
yc
Pc
t

L3
M
is
sR
qs
t

L3
M
is
sL
at

L3
M
is
sI
ns
t

D
R
AM

R
dT
rIn
st

D
R
AM

Tr
In
st

D
R
AM

Br
BW

D
R
AM

U
til

D
R
AM

Tr
C
yc

D
R
AM

BW

L3MissPFPct
L1MissRqst
L1MissInst
L2MissRqst
L2toL1BW
L2MissInst
L3toL2BW
StallCycPct
L3MissRqst
L3MissLat
L3MissInst
DRAMRdTrInst
DRAMTrInst
DRAMBrBW
DRAMUtil
DRAMTrCyc
DRAMBW

1 0.48 0.36 0.32 0.25 0.21 0.28 0.28 0.34 0.4 0.34 0.31 0.38 0.31 0.31 0.31 0.31
0.48 1 0.78 0.19 0.36 0.41 0.29 0.35 0.19 0.18 0.29 0.28 0.28 0.32 0.23 0.32 0.32
0.36 0.78 1 0.23 0.36 0.59 0.33 0.38 0.21 0.22 0.29 0.32 0.32 0.34 0.23 0.24 0.24
0.32 0.19 0.23 1 0.2 0.57 0.45 0.2 0.25 0.29 0.32 0.32 0.32 0.35 0.29 0.36 0.36
0.25 0.36 0.36 0.2 1 0.45 0.51 0.45 0.28 0.3 0.34 0.48 0.48 0.48 0.49 0.51 0.51
0.21 0.41 0.59 0.57 0.45 1 0.78 0.38 0.28 0.28 0.52 0.45 0.45 0.45 0.45 0.45 0.45
0.28 0.29 0.33 0.45 0.51 0.78 1 0.44 0.29 0.32 0.55 0.61 0.61 0.6 0.59 0.59 0.59
0.28 0.35 0.38 0.2 0.45 0.38 0.44 1 0.38 0.36 0.75 0.73 0.73 0.54 0.56 0.55 0.55
0.34 0.19 0.21 0.25 0.28 0.28 0.29 0.38 1 0.52 0.6 0.6 0.6 0.45 0.51 0.6 0.6
0.4 0.18 0.22 0.29 0.3 0.28 0.32 0.36 0.52 1 0.7 0.53 0.53 0.53 0.53 0.53 0.53
0.34 0.29 0.29 0.32 0.34 0.52 0.55 0.75 0.6 0.7 1 0.91 0.91 0.91 0.9 0.91 0.91
0.31 0.28 0.32 0.32 0.48 0.45 0.61 0.73 0.6 0.53 0.91 1 1 1 1 1 1
0.38 0.28 0.32 0.32 0.48 0.45 0.61 0.73 0.6 0.53 0.91 1 1 1 1 1 1
0.31 0.32 0.34 0.35 0.48 0.45 0.6 0.54 0.45 0.53 0.91 1 1 1 1 1 1
0.31 0.23 0.23 0.29 0.49 0.45 0.59 0.56 0.51 0.53 0.9 1 1 1 1 1 1
0.31 0.32 0.24 0.36 0.51 0.45 0.59 0.55 0.6 0.53 0.91 1 1 1 1 1 1
0.31 0.32 0.24 0.36 0.51 0.45 0.59 0.55 0.6 0.53 0.91 1 1 1 1 1 1

0.2 0.4 0.6 0.8 1
Value

Color Key

Fig. 3.2. Maximal information coe�cients for SPEC CPU on Sandy Bridge.

that is used to merge the clusters. Fig. 3.4 shows a dendrogram from hierarchical clustering

on metrics from serial execution of SPEC CPU on SNB. From bottom-up, the tree groups

all DRAM metrics into a large cluster. Similarly, L3, L1, and L2 metrics are clustered

together. Independent metrics such as L3MissLat and L3MissPFPct form singleton clusters,

indicating their uniqueness. We use hierarchical clustering only as a means to visualize the

metric space and to validate metrics filtered by VIF and MIC.

3.5.4 Summarizing metric analysis: principal and redundant hardware metrics

MIC, VIF, and hierarchical clustering are used to group metrics and filter redundant

hardware metrics. MIC groups all DRAM metrics together with a high mutual MIC value

59

●

●

●

●

●
●

● ●

●
● ●

●
●

● ● ● ●1e+00

1e+02

1e+04

1e+06

1e+08

Va
ria

nc
e

In
fla

tio
n

Fa
ct

or
s

(V
IF

)

D
R

AM
BW

D
R

AM
U

til

D
R

AM
Tr

In
st

L1
M

is
sI

ns
t

D
R

AM
Tr

C
yc

L2
M

is
sI

ns
t

L3
to

L2
BW

D
R

AM
R

dT
rIn

st

L3
M

is
sI

ns
t

D
R

AM
Br

BW

St
al

lC
yc

Pc
t

L2
to

L1
BW

L3
M

is
sL

at

L1
M

is
sR

qs
t

L2
M

is
sR

qs
t

L3
M

is
sR

qs
t

L3
M

is
sP

FP
ct

Remove

Keep
VIF=5

Fig. 3.3. Variable inflation factor for SPEC CPU on Sandy Bridge.

L3
M
iss
La
t

L2
M
iss
Rq

st

L3
M
iss
Rq

st

L3
M
iss
In
st

L2
M
iss
In
st

L1
M
iss
In
st

L1
M
iss
Rq

st

L3
M
iss
PF

Pc
t

DR
AM

Br
BW

DR
AM

Ut
il

DR
AM

Tr
Cy
c

DR
AM

BW

DR
AM

Rd
Tr
In
st

DR
AM

Tr
In
st

St
all
Cy
cP
ct

L2
to
L1
BW

L3
to
L2
BW

Fig. 3.4. Hierarchical clustering of serial SPEC CPU on Sandy Bridge.

60

(see Fig. 3.2). VIF also eliminates all DRAM metrics, save one, to produce a reduced set of

non-collinear metrics shown in Fig. 3.3. Hierarchical clustering groups all DRAM metrics

together to indicate that DRAM activity is clearly represented with just one DRAM metric.

Since VIF and MIC give quantitative measures of redundancy in the metric space, we use

these techniques to select non-redundant subsets of metrics. We validate the e�cacy of

these filtered metrics derived from using VIF and MIC through our performance prediction

experiments in Section 3.7.

Tables 3.6 and 3.7 show non-redundant metrics derived from using VIF and VIF and

combined with MIC from SPEC CPU executions on SNB and HSW in serial and parallel.

3.6 Workload Characterization

Executing sets of relevant proxy apps and benchmarks on a system to monitor hard-

ware is a common process in most performance analysis e↵orts. However, it is possible

that di↵erent workloads might elicit similar hardware response from the system. Although

di↵erent workloads have distinct operations, they might share code patterns such as calls to

the same library functions, the same nested loop patterns, etc. While analyzing benchmark

space, we seek to identify workloads that invoke similar responses from cache and DRAM

and can therefore serve as proxies for each other.

Table 3.6. Important metrics from VIF

m
ac
h
in
e

co
re
s

S
ta
ll
C
yc
P
ct

L
1M

is
sI
n
st

L
1M

is
sR

qs
t

L
2M

is
sR

qs
t

L
2t
oL

1B
W

L
2M

is
sI
n
st

L
3M

is
sR

qs
t

L
3t
oL

2B
W

L
3M

is
sP

F
P
ct

L
3M

is
sL

at

L
3M

is
sI
n
st

D
R
A
M
R
d
T
rI
n
st

D
R
A
M
T
rI
n
st

D
R
A
M
T
rC

yc

D
R
A
M
U
ti
l

D
R
A
M
B
W

D
R
A
M
B
rB

W

D
T
L
B
M
is
sI
n
st

U
M
A
p
ct

SNB 1 -
SNB 8 -
HSW 1
HSW 28

61

Table 3.7. Important metrics from VIF further reduced by MIC

m
ac
h
in
e

co
re
s

S
ta
ll
C
yc
P
ct

L
1M

is
sI
n
st

L
1M

is
sR

qs
t

L
2M

is
sR

qs
t

L
2t
oL

1B
W

L
2M

is
sI
n
st

L
3M

is
sR

qs
t

L
3t
oL

2B
W

L
3M

is
sP

F
P
ct

L
3M

is
sL

at

L
3M

is
sI
n
st

D
R
A
M
R
d
T
rI
n
st

D
R
A
M
T
rI
n
st

D
R
A
M
T
rC

yc

D
R
A
M
U
ti
l

D
R
A
M
B
W

D
R
A
M
B
rB

W

D
T
L
B
M
is
sI
n
st

U
M
A
p
ct

SNB 1 -

SNB 16 -

HSW 1
HSW 28

3.6.1 Identifying sibling workloads

We examine similarity between workloads by calculating Euclidean distance between

each test workload (SPEC MPI or SPEC OMP) and workloads from the SPEC CPU suite.

We use principal metrics identified using VIF and MIC to calculate the Euclidean distance

matrix between test workload sets. A lower Euclidean distance indicates greater similarity

between two workloads. The Euclidean distance calculation for a workload produces a vector

of values that shows magnitude of similarity with the SPEC CPU suite. We step through

this Euclidean distance vector in increments of one (2, 3, ..., max(distance)). All SPEC

CPU workloads that fall within a step range are considered siblings of the test workload.

We build linear regression models using SPEC CPU benchmarks collected at each Euclidean

distance range. The number of siblings identified at each Euclidean distance step influences

the quality and strength of the linear regression performance prediction models built at that

distance. To mitigate the e↵ects from overfitting and underfitting of SPEC CPU training

data to the model, we use the Akaike Information Criteria (AIC) [80] to evaluate the

quality of each trained linear regression model at each Euclidean distance. The Euclidean

distance range corresponding to the linear regression model with the highest AIC value is

the distance at which the search for sibling SPEC CPU workloads ends. This ideal distance

is called the AIC distance. Fig. 3.5 visualizes this process. The SPEC CPU workloads that

lie within this distance are termed as sibling benchmarks of the test workload.

62

Fig. 3.5. Workload characterization.

3.6.2 Workload similarity between SPEC CPU and SPEC OMP and SPEC MPI

Fig. 3.6 and Fig. 3.7 show heatmaps of Eucilidean distances between SPEC OMP

workloads on Haswell in serial and parallel, respectively. Fig. 3.8 and Fig. 3.9 show

heatmaps of Eucilidean distances between SPEC MPI workloads on Sandy Bridge in serial

and parallel, respectively. Darker cells indicate dissimilarity, while lighter colored ones

indicate increased similarity between workloads. In all the heatmaps, SPEC MPI and

SPEC OMP workloads are represented along the X axes while SPEC CPU workloads are

along the Y axes.

Siblings for serial SPEC OMP

Fig. 3.6 quantifies similarity distances between SPEC CPU and SPEC OMP on Haswell

in serial. With the exception of Swim, mgrid331, botsspar, and applu331 in the SPEC OMP

suite, most benchmarks show significant similarity with most SPEC CPU workloads.

Siblings for parallel SPEC OMP

Fig. 3.7 shows similarity distribution between SPEC CPU and SPEC OMP in parallel

on Haswell. Unlike the rest of the SPEC OMP suite, swim, mgrid331, botsspar, and ilbdc

stand out as being quite dissimilar from the set of SPEC CPU benchmarks. In the SPEC

CPU set, mcf, povray, and omnetpp from SPEC CPU suite are dissimilar to most SPEC

OMP workloads.

63

Siblings for serial SPEC MPI

Fig. 3.8 shows that most SPEC MPI benchmarks—socorro, lesie3d, gemsFDTD,

zeusmp, pop2, fds4, lu, and wrf2—are uniformly dissimilar to the same set of SPEC CPU

workloads—hmmer, sjeng, lbm, bzip2, tonto, astar, h264ref.

Siblings for parallel SPEC MPI

As shown in Fig. 3.9, there are varying degrees of similarity between the SPEC MPI

and SPEC CPU components. In the SPEC CPU suite, povray, sjeng, mcf are mostly

dissimilar to gap, lu, socorro, FDTD, wrf2, leslie3d, and fds4.

3.7 STAMPP Prediction Models

Performance prediction is the crux of performance analysis e↵orts. Prior to system

deployment, performance projection is used at di↵erent stages to provide performance es-

timates at system delivery milestones. Building on our metric analysis and workload char-

acterization work, we build a suite of performance models that utilize di↵erent amounts of

data. We show that pruning metric space and benchmark space produce better performance

predictions.

For performance analysis we treat one platform as a base system, which is typically a

previous generation system, and the other as a target, which is a newer platform. Rather

than attempting to predict absolute performance we will focus on predicting the speedup,

or improvement in figure of merit (FOM) that a workload experiences when it is migrated

from the base to the target system. Fig. 3.10 shows speedup of SPEC CPU benchmarks

when migrated from SNB to HSW.

We collect SPEC CPU metric values on both base and target system, as well as the

speedup values for each benchmark component, and use both the metrics and speedups as

training data for the model. For the benchmarks in our test set we collect metric data only on

the base machine and then project the speedup to estimate the test workloads’ performance

on the target system. We will use SPEC MPI and SPEC OMP sets in our analysis both

64

in serial and parallel modes with the parallel mode using all cores on the system (with

hyperthreading disabled). Table 3.8 briefly introduces our performance prediction models.

3.8 Statistical Performance Prediction Model Suite

The dataset for training our performance models comprises two dimensions—hardware

metrics and SPEC CPU benchmarks. All our performance models are multiple linear re-

gressions that use varying amounts of training data across metrics and benchmarks. Our

models take the following form:

Y = ↵

i=1Xi=1 + �X

i=2 + ...+ ⇣X

i=n

+ ✏

where, Y is the FOM speedup between the base and target machines; X
i

are hardware

metrics from SPEC CPU executions on the base machine; and ↵, �, and ⇣ are regression co-

e�cients for each hardware metric. The next subsections describe STAMPP’s performance

models in detail.

3.8.1 CM-CB: Complete Metric and Complete Benchmark Model

This model is trained on all hardware metrics obtained from executing SPEC CPU

benchmarks on the base machine.

Table 3.8. STAMPP performance model suite

Models Metrics (M) Benchmarks (B) Heuristic for dimension reduction

CM-CB Complete Complete –

RM-CB-VIF Reduced Complete VIF

RM-CB-VIF-MIC Romplete Complete VIF and MIC

Mean baseline NA Complete –

EU-VIF Reduced Reduced VIF and Euclidean distance

EU-VIF-MIC Reduced Reduced VIF and MIC, and Euclidean distance

65

O
M
P1
2_
sw
im

O
M
P1
2_
bo
ts
sp
ar

O
M
P1
2_
ap
pl
u3
31

O
M
P1
2_
m
gr
id
33
1

O
M
P1
2_
na
b

O
M
P1
2_
kd
tre
e

O
M
P1
2_
bo
ts
al
gn

O
M
P1
2_
sm

ith
wa

O
M
P1
2_
m
d

O
M
P1
2_
bw
av
es

O
M
P1
2_
im
ag
ick

O
M
P1
2_
bt
33
1

O
M
P1
2_
fm
a3
d

O
M
P1
2_
ilb
dc

CPU06_omnetpp
CPU06_leslie3d
CPU06_mcf
CPU06_milc
CPU06_bwaves
CPU06_GemsFDTD
CPU06_soplex
CPU06_wrf
CPU06_lbm
CPU06_zeusmp
CPU06_gcc
CPU06_cactusADM
CPU06_sphinx3
CPU06_calculix
CPU06_dealII
CPU06_gamess
CPU06_povray
CPU06_libquantum
CPU06_namd
CPU06_astar
CPU06_bzip2
CPU06_hmmer
CPU06_tonto
CPU06_gromacs
CPU06_xalancbmk
CPU06_h264ref
CPU06_gobmk
CPU06_perlbench
CPU06_sjeng

9.49 7.65 3.44 7.81 6.59 7 7.34 7.62 7.46 6.44 6.02 4.2 6.99 5.87
6.07 6.81 5.02 3.36 6.48 6.58 6.8 6.39 6.64 3.24 4.8 4.72 5.53 5.74
6.79 4.95 5.62 3.3 6.42 7.05 7.28 6.79 7.32 3.75 5.92 4.86 5.1 6.61
7.75 6.87 4.97 5.91 4.65 4.18 4.44 3.75 4.5 2 2.18 3.17 3.7 4.34
7.65 7.43 5.26 5.76 5.67 5.15 5.31 4.27 5.28 2.32 3.22 3.72 4.44 5.62
7.03 6.62 4.66 4.96 5.19 5.71 6.07 5.91 6.01 2.86 3 3.46 4.25 3.51
7.22 5.55 4.45 4.53 4.79 4.74 5.13 4.75 5.32 2.07 3.19 3.06 4.35 4.65
6.85 5.81 4.38 4.09 5.04 4.99 5.2 4.72 5.09 1.8 3.48 3.44 4.3 4.8
8.47 6.26 5.36 6.62 3.14 4.56 4.83 4.83 4.69 3.48 2.11 3.29 3.07 2.12
7.52 5.42 4.47 4.88 4.05 4.83 5 4.69 4.83 1.96 3.39 2.96 2.68 3.85
8.26 5.91 3.86 5.92 4.15 4.49 4.84 4.52 5.09 2.79 3.31 1.64 3.5 4.34
8.31 5.84 5.31 6.25 2.79 3.07 3.26 3.14 3.12 2.83 2.14 3.6 3.5 3.25
8.37 5.31 5.53 6.08 3.52 3.68 4.18 4.21 4.49 3.43 2.62 3.82 4.72 3.95
8.3 5.02 5.32 5.74 3.04 3.13 3.4 3.09 3.59 2.53 3.06 3.62 3.61 4.25
8.81 5.1 5.72 6.26 3.23 3.53 3.79 3.32 4.12 3.09 3.77 3.8 3.44 4.85
9.93 6.38 7.16 7.94 3.62 1.83 1.15 1.48 1.65 4.93 5.19 5.95 5.12 5.86
9.56 5.16 6.71 7.13 2.96 2.96 2.62 2.65 2.47 4.5 5.14 5.49 4.41 5.49
9.68 5.99 6.61 7.52 2.66 2.63 2.37 1.58 2.44 4.17 4.4 4.91 3.84 5.3
9.81 5.44 6.7 7.5 1.97 2.74 2.46 2.42 2.34 4.49 4.67 5.13 3.91 5.01
8.87 5.69 5.64 6.79 3.14 1.71 2.18 2.67 2.85 3.65 3.42 4.22 4.51 4.27
8.64 5.98 5.75 6.63 3.63 1.89 2.47 2.71 3.3 3.19 3.21 4.22 4.22 4.3
9.01 6.39 6.31 7.21 3.56 1.68 1.38 2.01 1.43 4.08 3.98 5.2 4.74 4.66
8.79 5.73 6.04 6.63 3.28 1.95 1.94 2.02 2.08 3.58 3.74 4.8 4.57 4.73
9.02 5.21 6.24 6.63 3.2 2.26 2.19 2.39 2.44 3.85 4.46 5.05 4.49 5.09
9.5 5.34 5.91 7.16 1.99 3.46 3.61 3.33 3.7 4.09 3.67 3.84 3.8 4.48
9.96 5.57 6.83 7.85 1.51 2.79 2.97 3.29 3.3 4.76 4.04 4.91 4.19 4.36
10.03 5.82 6.98 7.97 2.56 2.54 2.95 3.34 3.71 4.86 4.22 5.1 4.61 4.77
9.71 5.73 6.49 7.57 2.56 2.76 3.15 3.25 3.81 4.31 3.88 4.48 4.04 4.58
9.86 6.05 6.75 7.87 2.92 3.17 3.65 3.87 4.4 4.63 3.91 4.64 4.23 4.49

Fig. 3.6. SPEC CPU siblings for serial SPEC OMP on Haswell.

3.8.2 RM-CB-VIF: Reduced Metric and Complete Benchmark Model

This model uses principal metrics identified by VIF (Section 3.5.2) across the complete

set of SPEC CPU benchmarks.

3.8.3 RM-CB-VIF-MIC: Reduced Metric and Complete Benchmark Model

This model uses both VIF and MIC to eliminate hardware metrics that are related

both linearly and non-linearly across all the SPEC CPU benchmarks.

66

O
M
P1
2_
bo
ts
sp
ar

O
M
P1
2_
ilb
dc

O
M
P1
2_
m
gr
id
33
1

O
M
P1
2_
sw
im

O
M
P1
2_
ap
pl
u3
31

O
M
P1
2_
bt
33
1

O
M
P1
2_
bw
av
es

O
M
P1
2_
im
ag
ick

O
M
P1
2_
m
d

O
M
P1
2_
na
b

O
M
P1
2_
sm

ith
wa

O
M
P1
2_
fm
a3
d

O
M
P1
2_
bo
ts
al
gn

O
M
P1
2_
kd
tre
e

CPU06_omnetpp
CPU06_povray
CPU06_mcf
CPU06_gromacs
CPU06_libquantum
CPU06_gcc
CPU06_soplex
CPU06_sphinx3
CPU06_GemsFDTD
CPU06_milc
CPU06_bwaves
CPU06_calculix
CPU06_zeusmp
CPU06_wrf
CPU06_leslie3d
CPU06_cactusADM
CPU06_sjeng
CPU06_lbm
CPU06_dealII
CPU06_tonto
CPU06_xalancbmk
CPU06_bzip2
CPU06_astar
CPU06_perlbench
CPU06_gobmk
CPU06_h264ref
CPU06_hmmer
CPU06_namd
CPU06_gamess

9.29 5.41 6.7 7.36 3.61 4.42 6.08 6.09 7.01 6.11 6.19 5.73 5.72 5.98
6.22 7.03 4.25 6.54 5.23 3.73 4.09 4.25 4.5 4.63 4.32 5.01 5.61 5.32
5.37 6.33 2.96 5.32 5.32 4.28 5.18 5.46 6.64 5.67 5.41 5.4 5.98 5.92
6.3 5.55 4.27 6.19 4.44 2.47 3.64 3.49 4.03 2.78 2.64 3.81 3.95 3.59
7.45 5.73 4.8 6.73 4.71 3.55 3.49 3.74 3.27 3.67 3.09 3.5 4.14 3.96
7.47 4.1 4.07 5.42 2.11 2.06 3.5 3.9 4.71 3.76 3.84 3.28 3.63 3.82
7.38 3.78 2.98 4.4 2 2.18 1.85 2.78 3.88 3.56 3.75 2.76 3.42 3.75
7.31 3.38 3.51 5.14 2.45 1.81 2.3 2.69 3.82 3.03 2.98 2.25 2.83 3.11
7.75 2.53 4.1 5.33 2.67 2.36 2.66 2.53 4.32 3.37 3.38 2.61 2.85 3.34
8.37 4.13 4.23 4.93 2.57 3.15 1.14 2.23 2.92 3.72 4.09 3.14 3.57 3.99
8.32 4.71 4.11 4.81 2.66 3.2 1.02 2.02 3.18 4.13 4.52 3.83 4.24 4.59
6.63 5.1 3.31 5.23 3.29 1.83 2.24 2.24 3.71 3.35 3.38 3.67 4.08 4.06
6.8 4.52 2.64 4.9 3.19 2.44 2.5 3.26 4.1 3.73 3.54 2.95 3.83 3.94
7.34 4.72 2.5 4.21 2.42 2.6 1.42 2.83 3.72 4.07 4.22 3.36 4.18 4.42
7.32 5.08 2.47 4.24 2.87 2.98 1.85 2.88 4.28 4.68 4.77 4.05 4.83 5.07
7.9 3.26 4.59 6.23 3.76 3.11 3.31 3.43 4.13 3.51 3.01 2.19 2.86 3.19
8.38 2.57 5.81 6.83 4.47 3.98 4.31 4.49 4.29 2.77 2.63 1.67 1.21 1.76
8.49 1.6 5.61 6.68 4.2 3.83 4.34 4.19 5.08 3.68 3.42 2.51 2.39 2.98
6.98 4.4 3.43 5.28 3.35 2.37 2.37 3.26 3.01 2.38 2.33 1.94 2.74 2.66
6.95 4.74 3.83 5.47 3.3 1.81 2.08 2.26 2.8 2.2 2.38 2.86 3.13 3.02
7.34 4.04 4.55 6.12 3.13 1.83 3.11 3.27 3.31 2 1.78 2.08 2.27 2.16
7.35 3.88 4.51 5.57 3.16 1.97 2.57 2.24 3.35 1.87 2.48 2.88 2.55 2.61
7.36 3.93 4.77 6.01 2.83 1.28 3.16 2.76 3.77 2.14 2.37 2.96 2.64 2.64
7.62 3.63 4.92 6.13 3.64 2.65 3.07 3.29 2.86 1.08 1.35 1.47 1.13 1.07
7.72 3.97 5.35 6.31 4 3 3.32 3.37 2.83 0.64 1.6 2.19 1.4 1.2
7.57 4.54 5.33 6.41 4.15 2.92 3.28 3.25 2.53 0.45 1.45 2.57 2.03 1.64
7.43 4.45 4.67 5.87 3.48 2.18 2.37 2.18 2.4 1.5 2 2.71 2.54 2.45
7.23 5.18 4.58 6.21 4.21 2.93 2.99 3.52 2.19 1.75 1.62 2.42 2.83 2.39
7.44 5.25 5.03 6.35 4.28 3 3.04 3.29 1.91 1.37 1.72 2.8 2.8 2.36

Fig. 3.7. SPEC CPU siblings for parallel SPEC OMP on Haswell.

3.8.4 Mean Baseline Model

This is a simple average of speedup across all benchmarks in the SPEC CPU benchmark.

Without introducing modeling techniques, the simplest way to get an estimate of speedup is

to average speedup of benchmarks previously executed on the base and target machine. Fig.

3.10 shows the speedup plot of SPEC CPU between SNB and HSW. The baseline model

would provide a decent prediction estimate only if the speedup of the new benchmark lies

within a reasonable range of the mean speedup value.

67

SM
PI
07
_t
er
a_
tf

SM
PI
07
_t
ac
hy
on

SM
PI
07
_s
oc
or
ro

SM
PI
07
_l
es
lie
3d

SM
PI
07
_G

em
sF
D
TD

SM
PI
07
_z
eu
sm

p2

SM
PI
07
_p
op
2

SM
PI
07
_f
ds
4

SM
PI
07
_l
u

SM
PI
07
_w

rf2

CPU06_hmmer
CPU06_sjeng
CPU06_lbm
CPU06_bzip2
CPU06_tonto
CPU06_astar
CPU06_h264ref
CPU06_namd
CPU06_povray
CPU06_gamess
CPU06_gobmk
CPU06_perlbench
CPU06_soplex
CPU06_milc
CPU06_bwaves
CPU06_zeusmp
CPU06_gcc
CPU06_dealII
CPU06_GemsFDTD
CPU06_leslie3d
CPU06_mcf
CPU06_sphinx3
CPU06_omnetpp
CPU06_cactusADM
CPU06_calculix
CPU06_libquantum
CPU06_gromacs
CPU06_xalancbmk

3.96 1.95 5.58 6.04 6.71 5.71 4.87 4.57 4.94 5.27
4.26 3.59 6.18 6.61 6.46 5.06 5.16 5.35 5.24 5.66
3.97 3.9 5.02 5 4.72 3.76 4.44 4.18 3.5 4.14
3.72 3.23 4.17 5.46 5.39 4.55 3.22 3.84 4.02 4.16
3.73 2.93 4.72 5.43 5.56 4.22 3.52 4.23 4.35 4.39
3.97 2.72 4.56 5.62 5.46 4.37 3.73 4.26 4.27 4.36
2.64 3.31 5.23 5.31 6 4.49 3.27 3.91 4.47 4.64
2.77 2.68 5.29 5.11 6.31 4.87 3.76 3.93 4.57 4.82
3.72 3.56 5.41 5.24 5.88 3.93 3.96 4.72 4.86 4.94
3.51 2.83 5.86 5.94 6.41 4.74 4.26 4.76 5.15 5.19
3.63 3.29 5.4 5.96 6.11 4.87 3.98 4.46 4.8 4.93
3.65 3.12 5.47 5.99 6.2 4.95 4.06 4.49 4.87 4.98
4.6 5.23 1.94 3.41 2.67 3 2.25 3.08 2.36 2.56
4.45 5.52 2.77 3.64 3.43 4.5 2.72 2.11 2.34 2.25
4.99 6.23 3.16 3.04 3.36 4.62 3.22 2.43 2.68 2.33
2.76 4.12 3.19 2.74 3.21 1.89 2.15 2.38 1.29 2.48
3.01 3.29 2.95 3.83 3.73 3.05 2 2.4 2.15 2.62
3.55 4.29 3.64 3.09 3.65 3.54 2.45 2.15 2.65 2.52
3.73 4.16 3.98 3.56 3.44 2.65 3.31 3.14 2.47 2.82
4.87 6.31 3.98 2.13 4.08 3.64 3.59 3.62 3.43 3.58
5.57 6.72 3.85 3.97 4.03 3.12 3.89 4.97 4.13 4.69
3.66 3.56 3.58 4.78 4.84 3.82 2.66 3.55 3.56 3.7
4.1 4.6 3.37 5.03 3.92 3.16 3.16 4.04 2.99 3.73
2.16 3.39 4.06 3.54 4.52 2.86 2.86 2.85 2.53 3.41
2.1 3.61 4.02 4.06 4.94 3.49 1.98 2.78 3.21 3.6
1.72 3.5 4.87 4.34 5.68 4.19 2.9 3.06 3.8 4.2
2.28 2.33 4.65 4.65 5.44 3.68 3.06 3.59 3.78 4.17
2.64 2.37 4.48 4.74 5.38 4.03 2.93 3.33 3.78 3.94

Fig. 3.8. SPEC CPU siblings for serial SPEC MPI on Sandy Bridge.

3.8.5 EU-VIF Model

This model is trained on sibling benchmarks identified through the Euclidean distance

calculation. The model uses reduced metrics identified by using VIF.

3.8.6 EU-VIF-MIC Model

Similar to EU-VIF, this model is trained on sibling benchmarks in the SPEC CPU suite

as identified during the workload characterization phase. Metrics used in the EU-VIF-MIC

model are filtered first by using VIF, and then MIC.

68

SM
PI
07
_t
ac
hy
on

SM
PI
07
_t
er
a_
tf

SM
PI
07
_p
op
2

SM
PI
07
_m

ilc

SM
PI
07
_z
eu
sm

p2

SM
PI
07
_l
es
lie
3d

SM
PI
07
_f
ds
4

SM
PI
07
_G

AP
ge
of
em

SM
PI
07
_l
u

SM
PI
07
_s
oc
or
ro

SM
PI
07
_G

em
sF
D
TD

SM
PI
07
_w

rf2

CPU06_calculix
CPU06_libquantum
CPU06_hmmer
CPU06_tonto
CPU06_leslie3d
CPU06_cactusADM
CPU06_GemsFDTD
CPU06_soplex
CPU06_bwaves
CPU06_milc
CPU06_sphinx3
CPU06_dealII
CPU06_zeusmp
CPU06_xalancbmk
CPU06_gcc
CPU06_astar
CPU06_povray
CPU06_mcf
CPU06_sjeng
CPU06_omnetpp
CPU06_lbm
CPU06_gobmk
CPU06_perlbench
CPU06_bzip2
CPU06_gromacs
CPU06_h264ref
CPU06_namd
CPU06_gamess

4.27 2.19 0.89 4.33 3.27 2.75 2.47 2.9 3.39 2.91 2.89 2.78
4.26 2.51 3.03 4.32 3.13 2.63 3.1 2.4 3.31 3.55 3.44 3.31
3.97 1.59 2.86 4.11 3.94 3.07 3.53 2.29 3.4 3.75 3.62 3.5
4.75 3.76 2.58 4.81 4.24 2.61 1.97 3.2 2.65 3.36 2.36 2.29
5.71 5.13 3.96 4.97 3 2.03 2.87 3.93 2.52 3.33 2.34 3.1
4.08 3.97 3.9 3.83 2.64 2.89 3.78 3.4 2.93 3.42 2.78 3.39
4.11 4.32 4.06 3.63 3.17 2.99 3.87 3.56 2.61 3.36 2.33 3.16
5.69 4.39 3.06 3.26 3.42 2.5 3.35 3.21 2.73 2.02 1.75 2.25
5.32 3.66 3.21 2.46 3.94 2.53 3.16 1.38 1.34 1.9 1.99 1.62
5.51 4.17 3.74 2.9 4.74 2.99 3.45 2.06 1.27 2.6 2.18 1.89
4.79 3.05 2.37 2.61 2.87 1.87 2.6 1.4 1.85 1.45 1.54 1.31
4.59 2.93 2.05 3.43 2.41 1.75 2.39 2.16 2.71 2.09 1.93 1.87
4.63 3.38 2.56 3.37 1.57 1.7 2.7 2.53 2.5 2.01 1.85 2.25
3.87 2.28 2.36 3.45 2.77 2.09 2.55 1.72 2.68 2.67 2.35 2.15
4.67 3.06 2.61 2.7 2.69 2.58 3.43 2.44 3.03 2.14 2.31 2.44
3.55 2.68 2.5 3.22 3.01 2.91 3.19 2.67 3.05 2.75 2.37 2.48
4.1 4.34 3.47 6.48 3.63 4.18 3.86 5.52 5.21 5.07 4.41 4.92
7.29 6.37 4.47 6.57 3.15 4.36 4.81 6.27 5.86 4.61 4.63 5.28
2.73 3.17 4.98 4.08 4.91 5.34 6.16 4.62 5.23 5.37 5.07 5.49
4.44 3.55 3.76 2.25 4.09 4.27 5.11 3.75 3.98 3.35 3.45 3.91
4.06 4.58 5.02 3.35 4.32 4.12 5.07 3.89 3.27 4.21 3.41 4.05
2.64 1.35 3.25 3.89 4.38 4.25 4.61 3.43 4.37 4.34 4.06 4.16
2.38 1.39 3.5 4.15 4.38 4.4 4.84 3.71 4.62 4.63 4.32 4.5
3.81 2.11 2.34 3.81 4.1 4.06 4.13 3.53 4.25 3.61 3.65 3.66
3.57 1.71 2.4 5.21 3.78 3.48 3.51 3.7 4.48 4.38 4.07 4.13
2.93 1.33 2.83 4.85 4.52 3.87 3.81 3.42 4.29 4.54 4.07 4.01
3.36 1.91 2.92 5.4 4.21 3.49 3.54 3.65 4.34 4.69 4.18 4.23
2.9 1.86 2.89 5.35 4.39 3.81 3.67 3.82 4.43 4.75 4.18 4.22

Fig. 3.9. SPEC CPU siblings for parallel SPEC MPI on Sandy Bridge.

Fig. 3.10. Serial SPEC CPU speedup from Sandy Bridge to Haswell.

69

We evaluate the prediction quality of these models on two pairs of Intel CPU generations—

Haswell and Broadwell, and Sandy Bridge and Haswell. Prediction errors are relative per-

centage errors calculated as

(RealSpeedup�PredictedSpeedup)
RealSpeedup

⇥ 100

3.9 STAMPP Performance Predictions

We evaluate the quality of our prediction models, filtered primary hardware metrics,

and sibling workloads across di↵erent CPU architectures.

3.9.1 Predicting serial SPEC OMP performance on Broadwell

We trained our models on serial SPEC CPU hardware data on Haswell, our base ma-

chine. Our target machine is Broadwell and we predict speedup of serial SPEC OMP from

Haswell to Broadwell. The reduced metric models use principal metrics identified by using

VIF and MIC and are listed in Tables 3.6 and 3.7. Fig. 3.11 shows prediction accuracy from

the baseline model and from the model that best predicts each SPEC OMP benchmark.

Overall, our suite of performance models yield better predictions than the standard base-

line. Swim and applu331 show significantly higher errors than the baseline model. Based on

Table 3.9. Prediction errors from performance projections

Haswell to Broadwell (SPEC OMP) Sandy Bridge to Haswell (SPEC MPI)

Model Serial (%) Parallel (%) Serial (%) Parallel (%)

Baseline 11 14 12 16

CM-CB 14 11 36 255

RM-CB-VIF 11 10 19 14

RM-CB-VIF-MIC 11 11 17 14

EU-VIF 11 11 15 16

EU-VIF-MIC 10 11 12 14

70

our workload analysis, we see that these benchmarks are dissimilar to all the SPEC CPU

benchmarks, and could lack representation in the training set. Table 3.9 shows average

errors for each benchmark suite across our model suite. The CM-CB model has the highest

error (14%) indicating that using all hardware metrics for performance prediction is not

beneficial. In this prediction setup, the EU-VIF-MIC model provides the best accuracy at

10% compared to 11% accuracy from the baseline model.

3.9.2 Predicting parallel SPEC OMP performance on Broadwell

In this setting, we train our models on hardware metrics collected from executing SPEC

CPU benchmarks on 28 Haswell cores. Table 3.9 shows that all STAMPP’s models have

lower prediction errors than the baseline model (14%). The RM-CB-VIF model yields the

best accuracy with an average error of 10%, while the rest of the models have prediction

errors of 11% each. Fig. 3.12 shows distribution of prediction errors from the baseline

model and the model from STAMPP’s suite that best predicts SPEC OMP benchmarks.

Overall, prediction models from our suite yield lower prediction errors than the baseline

model on all benchmarks. Bt331 and ilbdc have prediction errors significantly di↵erent

from the baseline model. However, prediction errors from STAMPP’s models for bt331

and ilbdc are lower than 5%. STAMPP’s models and the baseline model have a hard time

predicting performance of botsalgn, fma3d, and applu331 with errors greater than 15%.

3.9.3 Predicting serial SPEC MPI performance on Haswell

To predict performance of serial SPEC MPI on Haswell, we trained our suite of models

on hardware metrics obtained from executing SPEC CPU on SNB and SPEC CPU speedup

from SNB to HSW. Fig. 3.13 shows distribution of prediction errors from the baseline model

and the STAMPP prediction model that best predicts performance of SPEC MPI. Tera tf,

wrf2, pop2, and tachyon have higher prediction errors. From our workload analysis, we find

that socorro and lu are very di↵erent from the SPEC CPU set. The misprediction of these

outlier benchmarks contributes to the high average prediction error. In Table 3.9, both the

baseline model and the EU-VIF-MIC model have prediction errors of 12%.

71

Best Prediction Model
Baseline

Re
la

tiv
e

pe
rc

en
ta

ge
 e

rro
r (

%
)

0

10

20

30

40

50

O
M

P1
2_

bo
ts

al
gn

O
M

P1
2_

kd
tre

e
O

M
P1

2_
m

d
O

M
P1

2_
bo

ts
sp

ar
O

M
P1

2_
sm

ith
wa

O
M

P1
2_

im
ag

ick
O

M
P1

2_
na

b
O

M
P1

2_
bt

33
1

O
M

P1
2_

fm
a3

d
O

M
P1

2_
ilb

dc
O

M
P1

2_
bw

av
es

O
M

P1
2_

ap
pl

u3
31

O
M

P1
2_

m
gr

id
33

1
O

M
P1

2_
sw

im

Fig. 3.11. Serial SPEC OMP prediction errors from baseline and STAMPP on Broadwell.

3.9.4 Predicting parallel SPEC MPI performance on Haswell

To predict parallel SPEC MPI performance on Haswell, we train our prediction models

on hardware metrics obtained from parallel SPEC CPU execution on Sandy Bridge. Fig.

3.14 shows distribution of prediction errors from the baseline model and STAMPP. Similar to

predictions on serial SPEC MPI, both the baseline and STAMPP have di�culty predicting

tera tf, pop2, and socorro. Because of these outliers, the average prediction error across the

SPEC MPI suite is 14% while the baseline model averages a prediction error of 16%.

3.10 Summarizing STAMPP’s Prediction Results

With the exception of a few outliers, our suite of performance models yield a higher

prediction accuracy than the baseline model across both machine pairs. SPEC MPI outliers

such as socorro, pop2, and tera tf are characterized by heavy MPI tra�c. Our metric col-

lection focuses on recording responses from cache and DRAM and is agnostic to instruction

72

Best Prediction Model
Baseline

Re
la

tiv
e

pe
rc

en
ta

ge
 e

rro
r (

%
)

0

10

20

30

40

50

O
M

P1
2_

bo
ts

al
gn

O
M

P1
2_

m
d

O
M

P1
2_

bo
ts

sp
ar

O
M

P1
2_

im
ag

ick
O

M
P1

2_
kd

tre
e

O
M

P1
2_

sm
ith

wa
O

M
P1

2_
na

b
O

M
P1

2_
fm

a3
d

O
M

P1
2_

ap
pl

u3
31

O
M

P1
2_

bt
33

1
O

M
P1

2_
ilb

dc
O

M
P1

2_
bw

av
es

O
M

P1
2_

m
gr

id
33

1
O

M
P1

2_
sw

im

Fig. 3.12. Parallel SPEC OMP prediction errors from baseline and STAMPP on Broadwell.

or code flow. Parallel SPEC CPU executions are embarrassingly parallel and do not use

either data or task decomposition. Because of this, models trained on parallel executions

of SPEC CPU fail to predict certain SPEC MPI workloads. Speedup due to factors such

as improved compilers and libraries on a new system is di�cult to represent currently in

STAMPP.

3.11 Conclusion

The ability to estimate performance of applications on new infrastructures is important

for several hardware and software e↵orts in the HPC community. Measuring performance

benefits through intensive hardware monitoring is expensive and often times unfeasible.

Hardware monitoring costs increase as it extends to include diverse hardware, performance

counters, and workloads. STAMPP presents a set of techniques to automate the analysis of

hardware metrics and workload space, and the prediction performance of applications before

73

Best Prediction Model
Baseline

R
el

at
ive

 p
er

ce
nt

ag
e

er
ro

r (
%

)

0

10

20

30

40

50

SM
PI

07
_t

ac
hy

on

SM
PI

07
_t

er
a_

tf

SM
PI

07
_s

oc
or

ro

SM
PI

07
_p

op
2

SM
PI

07
_z

eu
sm

p2

SM
PI

07
_f

ds
4

SM
PI

07
_l

u

SM
PI

07
_w

rf2

SM
PI

07
_l

es
lie

3d

SM
PI

07
_G

em
sF

D
TD

Fig. 3.13. Serial SPEC MPI prediction errors from baseline and STAMPP on Haswell.

they are executed on a target system. Using a suite of performance models, predictions

from STAMPP achieve high performance prediction accuracy on individual benchmarks for

performance projections across Haswell and Broadwell processors.

Acknowledgment

The author would like to thank Hugh Ca↵ey for collecting hardware metrics for bench-

marks used in this work.

74

Best Prediction Model
Baseline

R
el

at
ive

 p
er

ce
nt

ag
e

er
ro

r (
%

)

0

10

20

30

40

50

SM
PI

07
_t

ac
hy

on

SM
PI

07
_t

er
a_

tf

SM
PI

07
_p

op
2

SM
PI

07
_s

oc
or

ro

SM
PI

07
_f

ds
4

SM
PI

07
_G

AP
ge

of
em

SM
PI

07
_z

eu
sm

p2

SM
PI

07
_m

ilc

SM
PI

07
_G

em
sF

D
TD

SM
PI

07
_l

u

SM
PI

07
_w

rf2

SM
PI

07
_l

es
lie

3d

Fig. 3.14. Parallel SPEC MPI prediction errors from baseline and STAMPP on Haswell.

75

CHAPTER 4

CONCLUSION

4.1 Performance Modeling: Performance Prediction and Performance Optimization

Performance modeling, performance optimization, and performance projections are im-

portant e↵orts in the high performance computing (HPC) hardware and software commu-

nity. However, optimizing performance is often challenging because workload performance

is influenced by several factors such as compiler flags, memory settings, and the data used

by the workload, to name a few. This dissertation demonstrates the e↵ectiveness of us-

ing statistical data analysis techniques to model, optimize, and predict performance in

both software (workload) and hardware problem spaces. The two studies presented in this

dissertation demonstrate how statistical analyses and modeling can improve performance

predictions in two situations: (1) predicting and optimizing workload performance across

di↵erent input data sets by guiding optimal parameter selection and (2) predicting perfor-

mance of diverse workloads across di↵erent CPU architectures. The contributions of each

of these studies are described below.

4.1.1 Contributions to performance prediction and performance optimization for workloads

Performance of a workload can vary based on values of key parameters that influence

performance. Sparse matrix vector multiplication (SpMV) is a performance bottleneck in

several codes such as Internet search engine algorithms, data mining algorithms, and that

use SpMV multiple times. Blocking a sparse matrix to improve memory locality during

an SpMV operation is one of the easiest ways to optimize SpMV performance. However,

selecting an incompatible and wrong block size can cause performance degradation. To

predict the right block size for a new, unseen sparse matrix prior to SpMV, it is essential

to predict accurate run time of the matrix prior to its SpMV operation. In our study—

76

Statistical Techniques for Optimizing and Modeling Performance of blocked sparse matrix

vector multiplication (STOMP)—we developed statistical performance models to predict

performance of a new matrix and guide block size selection. Using statistical models trained

on data from matrices previously used in SpMV operations, we predicted run time of a

new matrix with mean accuracy of 93.52% across matrices on the Sandy Bridge processor.

STOMP’s block selection technique produced a performance benefit of as high as 75% on

the Sandy Bridge processor. Our techniques produced an average performance improvement

of 50.32% over default unblocked SpMV performance across all our matrices. We compared

the quality of STOMP’s block selection process with SPARSITY, a framework that defines

static heuristics for block-size selection. On the same set of matrices, STOMP yielded a

50.96% speedup while SPARSITY yielded a 31.62% speedup over the same default. We

also evaluated STOMP’s performance prediction capabilities on the new Knight’s Landing

co-processor. STOMP produced an average performance prediction accuracy of 91.92% on

Knight’s Landing across the same matrices used in the study on the Sandy Bridge processor.

By re-using SpMV data from previously executed matrices, STOMP demonstrated success

in making a-priori decisions to improve performance of a workload before its execution.

We now show how this work answers the research questions posed in Chapter 1:

1. Given the diversity of sparse matrices, is it possible to accurately predict performance

of a new sparse matrix prior to SpMV operation? – Yes. By building statistical

prediction models on SpMV data from a diverse set of sparse matrices, STOMP

predicted SpMV performance with an average accuracy of 93.52% on the Sandy Bridge

processor and 91.92% on the Knights Landing co-processor.

2. Is there a way to characterize sparse matrices during an SpMV operation, such that

this characterization remains valid across sparse matrices with diverse and unpre-

dictable nonzero patterns? – Much past work has used the number of nonzero ele-

ments (NNZE) in a sparse matrix to quantify work for di↵erent sparse operations.

However, we have shown that the number of nonzero blocks (NNZB) is more useful

in characterizing a matrix and abstracting SpMV performance. Prediction accuracy

77

from models using NNZBs is several orders of magnitude higher than that of NNZE

models.

3. Can we reuse performance information from previous workload executions to tune

a new workload prior to its execution? – Indeed, by utilizing SpMV performance

information from di↵erent sparse matrices, we built performance models to predict

performance of a new matrix prior to its SpMV execution. We then used these models

to guide block size selection for the matrix. STOMP’s block size selection speeds

up performance of default SpMV by an average of 54.46%. STOMP’s performance

improvements are comparable to an expensive, exhaustive search over a range of block

sizes. STOMP enables optimal SpMV performance through its block size selection

process.

4. Can statistical prediction techniques be ported across di↵erent processor architectures?

– Yes. By utilizing performance information from the processor of choice, STOMP

can be used to predict SpMV performance on di↵erent processors. We have evaluated

STOMP on two kinds of processors with promising results—Sandy Bridge (Intel Xeon

line) and Knights Landing (Intel Xeon Phi line).

4.1.2 Contributions to performance prediction across Intel CPUs

When making performance predictions of workloads on a new processor, hardware ar-

chitects are faced with large dimensional data resulting from monitoring di↵erent hardware

across large sets of workloads. Large amounts of performance data seldom provide instanta-

neous insight into performance trends. Excessive performance monitoring is expensive and

requires multiple executions of the workload on a processor. The number of workload execu-

tions increases as performance monitoring experiments include diverse workloads. Excessive

hardware sampling leads to capturing the same phenomena in multiple ways and introduces

redundancy. To remedy this, we used statistical techniques to reduce the amount of time

dedicated to performance monitoring experiments before performance projection. We re-

duced the time dedicated to hardware monitoring by identifying important, non-redundant

78

hardware metrics that provide insight into performance trends. In addition, we reduced the

number of workloads used in performance monitoring experiments by identifying “sibling

workloads” that can serve as proxies for other workloads. We then built a suite of statistical

prediction models to predict performance of a new, unseen workload on a new machine prior

to its execution.

Our study—Statistical Techniques for Analyzing Metrics and Predicting Performance

of workloads (STAMPP)—demonstrates e↵ectiveness of using statistical techniques and

statistical models to analyze metric space and workloads, and to predict performance of a

new workload on a new processor. STAMPP explores hardware metric space and predicts

performance of the SPEC OMP and SPEC MPI suites of benchmarks across recent gener-

ations of Intel CPUs—Broadwell, Haswell, and Sandy Bridge in serial and parallel modes.

STAMPP yielded high accuracy for predicting performance of individual benchmarks on

these CPUs.

Although STAMPP is evaluated on Intel CPU generations, STAMPP’s methodology

is generalized and processor independent, and can be harnessed to predict di↵erent perfor-

mance measures, such as power, across di↵erent kinds of processors using relevant hardware

metrics.

This STAMPP work has answered the following research questions pertaining to inter-

architecture performance predictions:

1. Are performance prediction models portable across di↵erent architectures? – Predict-

ing performance across di↵erent processors is challenging. STAMPP addresses this

by training prediction models on performance information from both a newer and an

older processor, but uses information from only the older processor to predict perfor-

mance. By including performance metrics from the newer processor, albeit in short

supply, STAMPP’s performance prediction models have real information (as opposed

to synthetic or simulated) about hardware from the new processor.

2. Is there a benefit to monitoring all hardware components (cache and memory) multiple

times? – No. Measuring all possible hardware components introduces redundancy

79

and significantly increases the cost of performance monitoring. Redundant hardware

metric information also makes predicting performance more challenging. STAMPP

demonstrates that performance prediction accuracy increases after pruning hardware

metric data to eliminate non-essential performance information.

3. Can certain sets of workloads be used as performance proxies for a di↵erent work-

load? – Indeed, by examining hardware responses from a set of workloads, STAMPP’s

heuristic finds sets of workloads that can act as proxies for a new, test workload.

4.2 Future Work

With the increase in computational capabilities and the innovation of scalable comput-

ing infrastructure in recent years, statistical learning is continuing to span several market

segments. This makes a very promising case for statistical learning in HPC; whether by

using the power of HPC resources to speed up statistical algorithms or by using statistical

algorithms to design, explore, and exploit performance potential of HPC resources. In ad-

dition to performance prediction, this dissertation envisions the use of statistical techniques

to aid performance analysis in our work (STOMP and STAMPP) and other directions.

4.2.1 Extensions to STOMP

STOMP’s block-selection technique shows promise for correcting load imbalance in

parallel SpMV when executed on multiple processors. STOMP can be used to tune addi-

tional matrix data structures that rely on block size to attain optimal performance, such as

blocked ELLPACK (BELL). In addition to SpMV, STOMP can be generalized to optimize

additional linear algebra routines such as linear solvers, matrix transpose, convolutions, and

mathematical routines involving combinations of multiple matrix-vector multiplications.

4.2.2 Extensions to STAMPP

A natural extension to STAMPP would be to replicate it using hardware metrics col-

lected during the entire run time of a workload. Summary metrics collected at the end of

80

execution do not provide detailed insight into variations of performance. Increasing diversity

of workloads in the experiments will provide better representation for workloads dominated

by certain features: MPI tra�c, increased working set size, irregular memory accesses, etc.

Analyzing an application’s instruction mix together with hardware metrics could help with

fine grain performance predictions across di↵erent phases of an application’s run time.

4.2.3 Additional uses cases that could benefit from statistical analysis

• Optimization opportunities in speeding up algorithms: Statistical techniques can iden-

tify additional optimization opportunities in algorithms with diverse computational

patterns.

• Improving HPC toolsets: By training statistical models on previously executed datasets,

tools such as compilers and libraries can determine better optimization strategies for

codes with specific computational patterns.

• Resource allocation in supercomputing centers : By using statistical techniques to an-

alyze application executions on di↵erent datasets, schedulers in charge of resource

allocation can override incorrect allocation estimates provided by end users.

81

REFERENCES

[1] J. Lee, H. Kim, and R. Vuduc, “When prefetching works, when it doesn’t, and why,”

ACM Transactions on Architecture and Code Optimization, 2012.

[2] “Intel hyperthreading,” http://www.intel.com/content/www/us/en/

architecture-and-technology/hyperthreading/hyper-threading-technology.html, 2016,

[Online; accessed September 26, 2016].

[3] Z. Zhao and K. Antypas, “E↵ects of hyper-threading on the NERSC workload on

Edison,” Cray User Group 2013 (CUG2013), 2013.

[4] T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and B. Calder, “Discovering and

exploiting program phases,” IEEE Micro, 2003.

[5] D. Grech and Z. Mazur, “Can one make any crash prediction in finance using the local

hurst exponent idea?” Physica A: Statistical Mechanics and its Applications, vol. 336,

no. 1, pp. 133–145, 2004.

[6] G. Zhang, M. Y. Hu, E. B. Patuwo, and D. C. Indro, “Artificial neural networks in

bankruptcy prediction: General framework and cross-validation analysis,” European

journal of operational research, vol. 116, no. 1, pp. 16–32, 1999.

[7] E. Scalas, R. Gorenflo, F. Mainardi et al., “Fractional calculus and continuous-time

finance,” EconWPA, Tech. Rep., 2004.

[8] J. Murphy, “Predictions of climate change over europe using statistical and dynamical

downscaling techniques,” International Journal of Climatology, vol. 20, no. 5, pp. 489–

501, 2000.

82

[9] A. Dupuy and R. M. Simon, “Critical review of published microarray studies for cancer

outcome and guidelines on statistical analysis and reporting,” Journal of the National

Cancer Institute, vol. 99, no. 2, pp. 147–157, 2007.

[10] A. Ihbal, H. S. Rajamani, R. A. Abd-Alhameed, and M. Jalboub, “Statistical pre-

dictions of electric load profiles in the uk domestic buildings,” in 1st International

Conference on Energy, Power and Control (EPC-IQ), 2010, 2010, pp. 345–350.

[11] E.-J. Im, K. Yelick, and R. Vuduc, “Sparsity: Optimization framework for sparse

matrix kernels,” International Journal of High Performance Computing Applications,

vol. 18, no. 1, pp. 135–158, 2004.

[12] H. A. V. der Vorst, “Bi-CGSTAB: A fast and smoothly converging variant of BiCG

for the solution of nonsymmetric linear systems,” SIAM Journal on scientific and

Statistical Computing, pp. 631–644, 1992.

[13] Y. Saad and M. H. Schultz, “GMRES: A generalized minimal residual algorithm for

solving nonsymmetric linear systems,” SIAM Journal on scientific and statistical com-

puting, 1986.

[14] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank citation ranking:

bringing order to the web,” Stanford tech report, 1999.

[15] A. Buttari, V. Eijkhout, J. Langou, and S. Filippone, “Performance optimization and

modeling of blocked sparse kernels,” International Journal of High Performance Com-

puting Applications, vol. 21, no. 4, pp. 467–484, Nov. 2007.

[16] G. Goumas, K. Kourtis, N. Anastopoulos, V. Karakasis, and N. Koziris, “Understand-

ing the performance of sparse matrix-vector multiplication,” in 16th Euromicro Confer-

ence on Parallel, Distributed and Network-Based Processing (PDP), 2008, pp. 283–292.

[17] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, “E�cient management of

parallelism in object-oriented numerical software libraries,” in Modern software tools

for scientific computing, 1997, pp. 163–202.

83

[18] S. Balay, S. Abhyankar, M. Adams, J. Brown, P. Brune, K. Buschelman, and V. Ei-

jkhout, “PETSc users manual revision 3.5,” Technical report, Argonne National Labo-

ratory (ANL), 2014.

[19] T. A. Davis and Y. Hu, “The University of Florida sparse matrix collection,” ACM

Transactions on Mathematical Software (TOMS), 2011.

[20] “Boeing matrix group,” http://www.cise.ufl.edu/research/sparse/matrices/Boeing/

index.html, 2015, [Online; accessed August 12, 2016].

[21] “Chen matrix group,” http://www.cise.ufl.edu/research/sparse/matrices/Chen/index.

html, 2015, [Online; accessed August 12, 2016].

[22] “FIDAP matrix group,” http://www.cise.ufl.edu/research/sparse/matrices/FIDAP/

index.html, 2015, [Online; accessed August 12, 2016].

[23] “LAW matrix group,” http://www.cise.ufl.edu/research/sparse/matrices/LAW/index.

html, 2015, [Online; accessed August 12, 2016].

[24] “Bai matrix group,” http://www.cise.ufl.edu/research/sparse/matrices/Bai/index.

html, 2015, [Online; accessed August 12, 2016].

[25] “COO,” https://software.intel.com/en-us/node/599837, 2016, [Online; accessed April

17, 2016].

[26] “CSR,” http://netlib.org/linalg/html\ templates/node91.html, 2016, [Online; ac-

cessed April 17, 2016].

[27] “CSC,” http://netlib.org/linalg/html\ templates/node92.html, 2016, [Online; ac-

cessed April 17, 2016].

[28] “ELL,” https://www.lanl.gov/Caesar/node223.html, 2016, [Online; accessed April 17,

2016].

84

[29] J. W. Choi, A. Singh, and R. W. Vuduc, “Model-driven autotuning of sparse matrix-

vector multiply on GPUs,” in Proceedings of the 15th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, 2010, pp. 115–126.

[30] “JDS,” http://netlib.org/linalg/html\ templates/node95.html, 2016, [Online; accessed

April 17, 2016].

[31] “SKY,” http://www.netlib.org/utk/people/JackDongarra/etemplates/node378.html,

2016, [Online; accessed April 17, 2016].

[32] A. Ashari, N. Sedaghati, J. Eisenlohr, and P. Sadayappan, “An e�cient two-

dimensional blocking strategy for sparse matrix-vector multiplication on GPUs,” in

Proceedings of the 28th ACM International Conference on Supercomputing, 2014, pp.

273–282.

[33] J. Byun, R. Lin, J. W. Demmel, and K. A. Yelick, “pOSKI: Parallel optimized sparse

kernel interface library,” Technical report, University of California, Berkeley, 2012.

[34] T. A. Davis, J. R. Gilbert, S. I. Larimore, and E. G. Ng, “A column approximate

minimum degree ordering algorithm,” ACM Transactions on Mathematical Software

(TOMS), vol. 30, no. 3, pp. 353–376, Sep. 2004.

[35] W.-H. Liu and A. H. Sherman, “Comparative analysis of the Cuthill-McKee and the

reverse Cuthill-McKee ordering algorithms for sparse matrices,” SIAM Journal on

Numerical Analysis, vol. 13, no. 2, pp. 198–213, 1976.

[36] A. Pinar and M. T. Heath, “Improving performance of sparse matrix-vector multipli-

cation,” in Proceedings of the 1999 ACM/IEEE Conference on Supercomputing, 1999.

[37] R. W. Vuduc, “Automatic performance tuning of sparse matrix kernels,” Ph.D. disser-

tation, University of California, Berkeley, 2003.

[38] V. Karakasis, G. Goumas, and N. Koziris, “A comparative study of blocking stor-

age methods for sparse matrices on multicore architectures,” in IEEE International

Conference on Computational Science and Engineering (CSE), 2009, pp. 247–256.

85

[39] W. Liu and B. Vinter, “CSR5: An e�cient storage format for cross-platform sparse

matrix-vector multiplication,” in Proceedings of the 29th ACM on International Con-

ference on Supercomputing, 2015.

[40] L. Grigori and X. S. Li, “A new scheduling algorithm for parallel sparse LU factor-

ization with static pivoting,” in Proceedings of the 2002 ACM/IEEE Conference on

Supercomputing, 2002, pp. 1–18.

[41] N. Sedaghati, T. Mu, L.-N. Pouchet, S. Parthasarathy, and P. Sadayappan, “Automatic

selection of sparse matrix representation on GPUs,” in Proceedings of the 29th ACM

on International Conference on Supercomputing, 2015, pp. 99–108.

[42] P. Guo, L. Wang, and P. Chen, “A performance modeling and optimization analysis

tool for sparse matrix-vector multiplication on GPUs,” IEEE Transactions on Parallel

and Distributed Systems, vol. 25, pp. 1112–1123, 2014.

[43] S. Williams, A. Waterman, and D. Patterson, “Roofline: an insightful visual perfor-

mance model for multicore architectures,” Communications of the ACM, vol. 52, no. 4,

pp. 65–76, 2009.

[44] “Blocked SpMV code in PETSc,” http://www.mcs.anl.gov/petsc/petsc-current/src/

mat/impls/baij/seq/baij2.c.html, 2016, [Online; accessed April 17, 2016].

[45] X. Liu, M. Smelyanskiy, E. Chow, and P. Dubey, “E�cient sparse matrix-vector multi-

plication on x86-based many-core processors,” in Proceedings of the 27th International

ACM Conference on International Conference on Supercomputing, 2013, pp. 273–282.

[46] B.-Y. Su and K. Keutzer, “clSpMV: A cross-platform OpenCL SpMV framework on

GPUs,” in Proceedings of the 26th ACM International Conference on Supercomputing,

2012, pp. 353–364.

[47] “Knight’s Landing,” http://www.intel.com/content/www/us/en/processors/xeon/

xeon-phi-detail.html, 2016, [Online; accessed September 17, 2016].

86

[48] J. L. Henning, “Performance counters and development of SPEC CPU2006,”

SIGARCH Comput. Archit. News, vol. 35, no. 1, pp. 118–121, Mar. 2007.

[49] M. S. Müller, J. Baron, W. C. Brantley, H. Feng, D. Hackenberg, R. Henschel, G. Jost,

D. Molka, C. Parrott, J. Robichaux, P. Shelepugin, M. van Waveren, B. Whitney, and

K. Kumaran, “SPEC OMP2012 – an application benchmark suite for parallel systems

using OpenMP,” in International Conference on OpenMP in a Heterogeneous World,

2012.

[50] M. S. Müller, M. van Waveren, R. Lieberman, B. Whitney, H. Saito, K. Kumaran,

J. Baron, W. C. Brantley, C. Parrott, T. Elken, H. Feng, and C. Ponder, “SPEC MPI

2007—an application benchmark suite for parallel systems using MPI,” Concurrency

and Computation: Practice and Experience, vol. 22, pp. 191–205, 2010.

[51] “SPEC CPU 2006 description,” https://www.spec.org/cpu2006/Docs/, 2006, [Online;

accessed August 12, 2016].

[52] “SPEC MPI 2007 description,” https://www.spec.org/omp2012/Docs/, 2012, [Online;

accessed August 12, 2016].

[53] “SPEC MPI 2007 description,” https://www.spec.org/mpi2007/Docs/, 2007, [Online;

accessed August 12, 2016].

[54] G. Zheng, G. Kakulapati, and L. Kale, “BigSim: a parallel simulator for performance

prediction of extremely large parallel machines,” in Parallel and Distributed Processing

Symposium, 2004.

[55] G. Zheng, T. Wilmarth, P. Jagadishprasad, and L. Kale, “Simulation-based perfor-

mance prediction for large parallel machines,” International Journal of Parallel Pro-

gramming, vol. 33, pp. 183–207, 2005.

[56] S. Prakash and R. L. Bagrodia, “MPI-SIM: Using parallel simulation to evaluate mpi

programs,” in Proceedings of the 30th Conference on Winter Simulation. IEEE Com-

puter Society Press, 1998.

87

[57] R. Riesen, “A hybrid mpi simulator,” IEEE International Conference on Cluster Com-

puting (CLUSTER), 2006.

[58] A. Phansalkar, A. Joshi, and L. K. John, “Analysis of redundancy and application

balance in the SPEC CPU2006 benchmark suite,” in Proceedings of the 34th Annual

International Symposium on Computer Architecture (ISCA), 2007, pp. 412–423.

[59] A. D. Breslow, L. Porter, A. Tiwari, M. Laurenzano, L. Carrington, D. M. Tullsen,

and A. E. S. , “The case for colocation of high performance computing workloads,”

Concurr. Comput. : Pract. Exper., 2016.

[60] K. Hoste, A. Phansalkar, L. Eeckhout, A. Georges, L. K. John, and K. D. Bosschere,

“Performance prediction based on inherent program similarity,” in International Con-

ference on Parallel Architectures and Compilation Techniques, 2006, pp. 114–122.

[61] S. Sharkawi, D. DeSota, R. Panda, R. Indukuru, S. Stevens, V. Taylor, and X. Wu,

“Performance projection of hpc applications using SPEC CPU 2006 benchmarks,” in

IEEE International Symposium on Parallel and Distributed Processing, 2009, pp. 1–12.

[62] A. Jaleel, “Memory characterization of workloads using instrumentation-driven simu-

lation,” http://www.glue.umd.edu/ajaleel/workload, 2010, [Online; accessed April 17,

2016].

[63] “CORAL: Collaboration Oak Ridge, Argonne, Livermore,” https://asc.llnl.gov/

CORAL/, 2016, [Online; accessed September 26, 2016].

[64] “APEX: Alliance for Application Performance at Extreme Scale,” http://www.lanl.

gov/projects/apex/, 2016, [Online; accessed September 26, 2016].

[65] J. Tramm, Siegel, A. R., T. Islam, and M. Schulz, “The development and verification

of a performance abstraction for Monte Carlo reactor analysis,” in PHYSOR 2014 -

The Role of Reactor Physics toward a Sustainable Future, 2014.

88

[66] P. Romano, B. R. Herman, N. Horelik, A. Nelson, B. Forget, and K. Smith, “OpenMC:

A state-of-the-art Monte Carlo code for research and development,” in Joint Interna-

tional Conference on Supercomputing in Nuclear Applications and Monte Carlo, 2013.

[67] R. Preissl, T. Köckerbauer, M. Schulz, D. Kranzlmüller, B. R. d. Supinski, and D. J.

Quinlan, “Detecting patterns in MPI communication traces,” in International Confer-

ence on Parallel Processing, 2008, pp. 230–237.

[68] S. Sodhi and J. Subhlok, “Skeleton based performance prediction on shared networks,”

in Cluster Computing and the Grid, 2004. CCGrid 2004. IEEE International Sympo-

sium on, April 2004, pp. 723–730.

[69] H. Kim, R. Vuduc, S. Baghsorkhi, J. Choi, and W.-m. Hwu, “Performance analysis and

tuning for general purpose graphics processing units (GPGPU),” Synthesis Lectures on

Computer Architecture, vol. 7, no. 2, pp. 1–96, 2012.

[70] A. Pesterev, N. Zeldovich, and R. T. Morris, “Locating cache performance bottlenecks

using data profiling,” in European conference on Computer systems, 2010, pp. 335–348.

[71] M. Dimitrov, K. Kumar, P. Lu, V. Viswanathan, and T. Willhalm, “Memory system

characterization of big data workloads,” in IEEE International Conference on Big

Data, 2013, pp. 15–22.

[72] J. Diamond, M. Burtscher, J. D. McCalpin, B.-D. Kim, S. W. Keckler, and J. C.

Browne, “Evaluation and optimization of multicore performance bottlenecks in super-

computing applications,” in Performance Analysis of Systems and Software (ISPASS),

2011, pp. 32–43.

[73] “Higher order method modeling environment HOMME benchmark,” https://wiki.ucar.

edu/display/tddbenchmark/HOMME, 2011, [Online; accessed November 22, 2016].

[74] D. A. Reshef, Y. A. Reshef, H. K. Finucane, S. R. Grossman, G. Mcvean, P. J. Turn-

baugh, S. L. Eric, M. Mitzenmacher, and P. C. Sabeti, “Detecting novel associations

in large data sets,” Science, pp. 1518–1524, 2011.

89

[75] M. H. Kutner, Applied linear statistical models, Berlin, Heidelberg, 1996.

[76] J. Levin, “Elementary statistics in social research,” in Pearson Education India, 2006.

[77] E. R. Mansfield and B. P. Helms, “Detecting multicollinearity,” The American Statis-

tician, 1982.

[78] “VIF stepwise variable selection,” https://beckmw.wordpress.com/2013/02/

05/collinearity-and-stepwise-vif-selection/, 2016, [Online; accessed August 12,

2016].

[79] M. H. Dunham, “Introductory and advanced topics.” in Pearson Education India, 2006.

[80] H. Akaike, Akaike’s Information Criterion. Berlin, Heidelberg: Springer Berlin Hei-

delberg, 2011, pp. 25–25.

90

APPENDICES

91

Appendix A

Permission-to-use Letter

92

To whom it may concern:

I, Forrest Iandola, am a co-author of the paper “STOMP: Statistical Techniques for Optimizing and
Modeling Performance of blocked sparse matrix vector multiplication,” published in proceedings of the
28th International Symposium of Computer Architecture and High Performance Computing, Los Angeles,

California, October 2016. I give my permission to Steena Monteiro to use this work in her dissertation.

Forrest Iandola, CEO DeepScale.

DocuSign Envelope ID: 94FAC93A-9F2A-469C-91D4-C3E8389BEA84

����������

93

CURRICULUM VITAE

Steena Monteiro

Education

Ph.D., Computer Science. Utah State University, Logan, Utah. 2016.

M.S., Computer Science. Utah State University, Logan, Utah. 2008.

B.E., Information Technology. University of Mumbai, Mumbai, India. 2005.

Research Interests

performance analysis, high performance computing, performance modeling, performance

tuning, statistical analysis, machine learning algorithms, parallel file systems

Research and Industry Experience

• High performance computing graduate intern, Intel Corporation, Santa Clara, CA,

July 2015–present

• Lawrence graduate scholar, Lawrence Livermore National Laboratory, Livermore, CA,

June 2011–June 2015

• High performance computing graduate intern, Intel Corporation, Dupont, WA, June

2014–October 2014

• Computation intern, Lawrence Livermore National Laboratory, Livermore, CA, May

2010–August 2010

• Ph.D. cybersecurity intern, Pacific Northwest National Laboratory, Richland, WA,

May 2009–August 2009

94

Awards

• Lawrence Livermore National Laboratory’s Lawrence Livermore Graduate Scholar

Program scholarship (2011–2015)

• XSEDE/PRACE/RIKEN sponsored scholarship to attend the International Summer

School on HPC Challenges in Computational Sciences, New York City, New York,

2013

• Broader Engagement travel award to attend Supercomputing, New Orleans, LA, 2014

• Broader Engagement travel award to attend Supercomputing, Salt Lake City, UT,

2012

• Computing Research Association-W sponsored grant for the Grad Cohort, Boston,

MA, 2011

• Computer Science Department Outstanding Graduate Teaching Assistant Award 2010

• Broader Engagement travel award to attend Supercomputing, New Orleans, LA, 2010

• Microsoft’s Golden Ticket Program at Redmond, WA, 2010

• Computing Research Association-W sponsored grant to attend the Grad Cohort, Seat-

tle, WA, 2010

• Utah State University Graduate Student Senate Travel Award, Keystone, Colorado,

2008

• Microsoft-sponsored travel grant for ACM SRC, Keystone, CO, 2008

• IBM-sponsored Scholarship Grace Hopper conference, Keystone, CO, 2008

• NSF and ARO sponsored travel grant to attend SADFE, Oakland, CA, 2008

• First Google Workshop for Women Engineers, San Jose, CA, 2008

• Utah State University instate tuition award, 2007

95

• NSF-sponsored full travel scholarship to attend Grace Hopper Conference, Orlando,

FL, 2007

Conference Publications

• Monteiro, S., Sharapov, I., and Naik, S., STAMPP: Statistical Techniques for Analyz-

ing Metrics and Predicting Performance of workloads, International Symposium on

Performance Analysis of Systems and Software 2017. (under review)

• Monteiro, S., Iandola, F., and Wong, D., STOMP: Statistical Techniques for Opti-

mizing and Modeling Performance of blocked sparse matrix vector multiplication, in

proceedings of the 28th International Symposium of Computer Architecture and High

Performance Computing, Los Angeles, California, 2016.

• Monteiro, S. and Erbacher, R.F., Exemplifying Attack Identification and Analysis

in a Novel Forensically Viable Syslog Model, 3rd IEEE International Workshop on

Systematic Approaches to Digital Forensic Engineering, Oakland, CA, May 2008, pp.

57-68.

Posters

• Monteiro, S., Bronevetsky, G., and Casas-Guix, M. Modeling Data-driven Application

Behavior, Research Poster, Supercomputing ’12, Salt Lake City, Utah, November 12-

November 18, 2012

• Monteiro, S., Bronevetsky, G., and Casas-Guix, M. Modeling and Predicting Com-

putational Behavior of Large-scale Data-driven Applications, ACM Student Research

Competition, Grace Hopper Conference, Portland, Oregon, November 9-November

12, 2011

• Monteiro, S., Bronevetsky, G., and Casas-Guix, M., Modeling the Behavior of the

Ceph Parallel File System for Classifying and Detecting Performance Faults, Lawrence

Livermore Summer Scholar Poster Symposium, August 12, 2010

96

• Monteiro, S. and Erbacher, R.F., A Novel Authentication and Validation Mechanism

for Attack Detection and Trackback in Syslogs for Forensic Analysis, ACM Student

Research Competition, Grace Hopper Conference, Keystone, Colorado, 2008.

• Monteiro, S. and Erbacher, R.F., Authenticating and Validating Logs for Forensic

Analysis,” Grace Hopper Conference, Orlando, Florida, October 17-20, 2007.

Talks

• Modeling and Predicting Performance of MPIBLAST across Multiple Genome Se-

quences and Databases, International Summer School on HPC Challenges in Compu-

tational Sciences, New York City, NY, June 23–June 28, 2013.

• Modeling Data-driven Application Behavior, Early Doctoral Research Showcase, Su-

percomputing ’12, Salt Lake City, UT, November 2012.

• Modeling and Predicting Computational Behavior of Large-scale Data-driven Appli-

cations at the NNSA/ASC Technical Program, Supercomputing ’11, Seattle, WA,

November 2011.

• Modeling the Behavior of the Ceph Parallel File System for Detecting and Classifying

Performance Faults at the NNSA/ASC Technical Program, Supercomputing ’10, New

Orleans, LA, November 2010.

Journal Publications

• Monteiro, S. and Bryce, R. Code Inspections: A Web Crawler Exercise for Students,

ACM Journal of Computing Sciences in Colleges (JCSC), December 2011, pp: 67-77.

• Monteiro, S. and Erbacher, R.F. An Authentication and Validation Mechanism for

Analyzing Syslogs Forensically,” ACM SIGOPS Operating Systems Review, Vol. 42,

No. 3 , 2008, pp. 41-50.

	Statistical Techniques to Model and Optimize Performance of Scientific, Numerically Intensive Workloads
	Recommended Citation

	tmp.1482179917.pdf.4XdCf

