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ABSTRACT 

Veeraraghavan, Padma Priya. M.S., Purdue University, August 2011. Characterization of 
Parallel Application Runtime Sensitivity on Multi-core High Performance Computing 
Systems. Major Professor:  Jeffrey J Evans. 

 
A commonly seen behavior of parallel applications is that their runtime is influenced by 

network communication load. The way a parallel application is run in a network and the 

presence of other applications and processes in the network can contribute to a wide 

range of variations in the runtime. Therefore, in order to achieve consistent and optimal 

runtimes, it is important to understand and characterize the runtime sensitivity of parallel 

applications with respect to execution under the presence of network communication 

load. 

 

In this research, runtime sensitivities for various parallel applications were studied 

by applying additional network communication load. In particular, the focus was on the 

runtime sensitivity of parallel applications on a multi-core multi-processor (MCMP) 

system where less network switching and routing are involved compared to single-core 

single-processor machines.  

 

The objective of this work was to determine if a previously developed sensitivity 

model for single-core single-processor machines still holds good for multi-core machines. 

For this purpose, previously developed tools (PACE and PARSE) were used to perturb 

the communication sub-system while executing several parallel application benchmarks 

such as the NAS benchmarks and PSTSWM. Runtime variations of these parallel 

applications were studied, under a specific network communication load, for different test 

cases by changing computing core allocation.  A 10-node 80-core cluster was used as the 

test bed for this research purpose.  



 

 

xi 

Several test cases were explored using a variety of core allocations (process 

locations) for the application under test (AUT) to simulate job scheduler fragmentation. 

To ensure statistical significance, several iterations (trial runs) were executed in each test 

case. Results indicate that the idea of application sensitivity to communication sub-

system performance degradation holds for MCMP architectures. 
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CHAPTER 1. INTRODUCTION 

1.1. Parallel Computing: An overview 

In the past couple of decades or so, there has been an increased interest in running 

applications using parallel computers. Considering the benefits offered by parallel 

computing, and the growth of hardware capability to support parallel computing, this 

trend is not surprising. In fact, the highest speeds of advanced supercomputers are 

growing at a rate that is exceeding Moore’s Law, which predicts that processor 

performance doubles roughly every 18-24 months (Feng, 2005) (Figure 1.1).  

 

Figure 1.1 Computing power growth per Moore’s law 
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The hardware growth to support parallel computing has been substantial in recent 

years. Newer systems comprise of many compute nodes, where each node contains more 

than 1 processor and each processor contains more than 1 processing “core”. These are 

called multi-core multi-processor (MCMP) systems. The constructional difference 

between a single and a multi-core CPU chip is illustrated in Figure 1.2.  

 

 

 

 

 

 

 

 

 

                                             

                         

 

 

 

 

 

 

 

 

Figure 1.2  Single core chip vs. multi-core chip 

 

Basically, multi-core architectures consist of several processing units in one chip. 

Due to this, they are more cost-effective.  In contrast, single core architectures have 

physical constraints, in addition to rapidly growing power consumption. Further, they are 

more expensive compared to their multi-core counterparts. Considerable amount of 
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research is being done to assess the performance effect of these multi-core machines, 

especially on scientific applications (J. Carter et al., 2007). 

 

Nowadays, scientific and engineering applications using numerical techniques 

make use of parallel computing more and more. Usage of parallel computers also requires 

development of parallel algorithms, programming models, and systems.  

 

Parallel computers, in general, offer good deal of computational power; however 

on the downside they pose increased difficulty in programming. In contrast to the growth 

of computer peak speed, the scaling of application performance, unfortunately, has not 

followed suit. In general, applications do not automatically scale along with the increase 

in the number of processors. This puts heavy burden on programming to be used for 

parallel computing for the applications to run in the most efficient way. However, a well-

written parallel program alone will not guarantee the expected scale-up of application 

runtime performance.  

 

Apart from the programming requirements, one of the important issues that plays 

a key role in determining the difference between the expected and actual performance is 

the “communication overhead” of parallel applications. Hardware architectural attributes 

such as CPU speed, the number of processors, network parameters (network speed), type 

of the architecture used (shared or distributed memory), and system and cache memory 

can influence the application behavior. It is, therefore, highly imperative to understand 

the communication requirements of the application, to achieve the desired performance in 

a parallel architecture.  

1.2. Statement of the Problem 

Network communication plays a key role in determining the performance of a 

parallel application. Without properly understanding or characterizing this role, parallel 

applications would suffer from inconsistent runtime behavior and therefore, their 

performance may become unpredictable. One way to better understand the run time 
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performance of a parallel application under normal system operation is to evaluate its 

sensitivity to network communication load. This becomes even more crucial for 

repeatedly run applications on a given system. Many times, the focus is more on 

expanding the current network, adding more resources or computing power. Recently, the 

trend has been to adopt an MCMP system as a quick solution thereby reducing network 

switching and routing. However, in MCMP systems, the network communication 

becomes more complex because in addition to the communication that takes place 

between nodes via switches and routers (network resources), inter-process 

communication should also be considered. The inter-process communication is 

comprised of inter-core (within a processor) and inter-processor communication within 

the same node.  

 

Therefore, it is fair to say that characterization of parallel application runtime 

sensitivity has not been thoroughly understood and quantified in MCMP systems. An 

empirical estimation is required for this purpose rather than theoretical predictions due to 

the fact that it is difficult, if not impossible, to model the spatial, temporal, and intensity 

effects of the communication sub-system during the concurrent execution of multiple 

parallel applications. 

1.3. Significance of the Problem 

Depending on the network communication load and processor allocation strategy, 

a poorly characterized parallel application would result in inconsistent runtimes. Again, 

depending on the problem size, this inconsistency could become very significant. For 

example, for a network loaded at 90%, the mean runtime of MG32 from Evans & C. S. 

Hood, (2005) was about 4.5 times the baseline (with no additional network loading) and 

the run time variability of nearly six times. This variation could result in unpredictable 

production time leading to loss of revenue, overbilling, overuse of resources, etc. Further, 

this could lead to increased use of energy to power and cool High Performance 

Computing (HPC) systems. For example, at Lawrence Livermore National Laboratory, 

for every Watt (W) of power consumed by an HPC system, 0.7 W is used for cooling 
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alone. The annual cost to power and cool the HPC system amounts to a total of $14.6 

million per year (Feng, 2005). Multiplying this amount by the runtime variability could 

result in significant additional cost in terms of energy and money. 

 

Therefore, understanding and characterizing the application sensitivity to existing 

network conditions, including inter-core and inter-processor communications, could 

become critical for businesses to minimize uncertainty related to application runtimes and 

hence save unnecessary operational costs. 

1.4. Purpose of the Study 

Characterization of parallel application sensitivity is essential to maximize its 

performance in existing network and to obtain a more consistent runtime behavior. In a 

parallel computing environment, network communication can adversely affect overall 

performance in many cases.  

 

In this study, runtime sensitivities of parallel applications were characterized 

based on process allocation under an existing network communication load in an MCMP 

system by using network load emulation and evaluation tools (PACE and PARSE). 

Several parallel applications such as the NAS benchmarks and PSTSWM were tested and 

classified based on their runtime sensitivity factors. For each application, several 

iterations (trial runs) were run for different test cases (core allocations) and the resulting 

runtime variations were plotted and evaluated for sensitivity. The runtime sensitivity 

information thus obtained can be an useful input for schedulers for proper job allocation 

in order to achieve a more consistent runtime behavior. 

1.5. Assumptions 

The following are the assumptions of this study: 

1. To be statistically significant, each application was run several times (at 

least 30 trial runs) to characterize the runtime sensitivity. 
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2. The tools used in the study such as PACE and PARSE are, in general, 

applicable to both single and multi-core systems. 

3. PACE assumes that the environment is a Linux cluster. 

4. The results obtained in this study to most parts can be generalized to 

MCMP systems of similar architecture. 

1.6. Limitations 

The following are the limitations of this study: 

1. While the network is loaded, PACE does not communicate at all time, so 

there would be an influence from temporal component. 

2. One limitation of loading with PACE is that, with increasing scaling, there 

is a natural reduction in systemic loading since contribution from PACE 

gets reduced. 
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CHAPTER 2. LITERATURE REVIEW 

Parallel computers have gained considerable popularity in the recent years since 

they offer better performance and capability to handle large scale problems. In the 80’s 

the distinction between supercomputers (multi-processor machines), workstations and 

PCs was widely known based on their performance. From the mid 90’s, the gap between 

supercomputers and PCs (or workstations) has been widening. As pointed out by W. 

Feng (2005), with the advent of clustering, the goal of HPC manufacturers and adopters 

has been to narrow down this gap.  

 

 

Figure 2.1  Widening gap between supercomputers and PCs 
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Today’s super computers are essentially massively parallel processors (MPPs) – 

computers built using workstation-type nodes interconnected by a low latency and 

dedicated network. Anderson et al. (1995) observed that one of the key weaknesses of 

MPPs is that they lag behind 1 to 2 years in comparison to workstations that are built 

using equivalent parts. Assuming 50% performance improvements per year, this would 

lead to more than a factor of two in the bottom-line computational performance. In fact, 

clustered Networks of Workstations (NOWs) have become the most rapidly growing 

sector of supercomputing (“TOP500 Supercomputing Sites” ) and there has been a 

growing interest in clustered NOWs comprising of commodity based machines (T. E. 

Anderson et al., 1995).  

 

The recent trend in the HPC world has been to move from clustering single-

processor machines to multi-core multi-processor machines (MCMP systems). Kaiser et 

al. (2009) predict that the future high end systems will integrate thousands of ‘nodes’, 

each comprising many hundreds of cores by means of system area networks. Chip 

manufacturing giant, Intel, had announced to produce and release to the market an 80 

core processor chip by 2011 (“Intel shows off 80-core processor - CNET News,” 2007). 

In general, multi-core architectures prove to be a cost-effective way, since they offer 

more computational power through parallel processing. They also utilize less power and 

occupy less board space. Chai et al. (2007) observed that the scalability of multi-core 

cluster is more promising as compared to single-core cluster. 

 

With the trend moving towards multi-core machines, how valid is the Amdahl’s 

law and its assumptions? Amdahl’s law or argument says that the speed up of a code or 

program in a parallel computing environment, using multiple processors, is restricted by 

the time taken to run the sequential portion or fraction of the code or program. This 

becomes debatable with respect to scalability of parallel processing, more so with multi-

core architectures. Sun and Chen (2009) assert that “the fixed-size assumption of 

Amdahl’s law is unrealistic and results in pessimistic predictions; this does nothing to 

encourage healthy growth in the scale of multicore architectures” (Sun & Chen, 2009, p. 

188). 



 

 

9 

Performance improvement of parallel applications running on multi-core 

architectures can be a complicated job since it is affected by a large number of variables 

or parameters. The performance of parallel computing essentially consists of two levels: 

algorithm related and network related. Since the scalability is not automatic, parallel 

programming can become cumbersome from algorithmic standpoint to arrive at desired 

performance. There are several tools developed by researchers to address this. Ni and Tai 

(1990) have nicely summarized the available tools. 

 

What exactly performance of a parallel computing or application mean? There 

can be potentially several definitions for this. Nevertheless, one of the desired attributes 

is to expect “systemic performance consistency”. Evans (2005) defines systemic 

performance consistency, from the parallel application standpoint, as the one that implies 

minimal or at least reasonable variation in runtime when operating conditions are similar 

(e.g., problem size, input data, network resources etc.). 

 

Degraded systemic performance consistency means inconsistent runtime behavior 

of applications. This can lead to loss of time, money, overuse of resources, overbilling, 

etc.  

 

Based on algorithm, process scheduling, and network parameters, there are 

several ways to improve the systemic performance consistency of a parallel application. 

Understanding the influence of different parameters on parallel application performance 

is often referred to as “characterization of parallel application”.  

 

“Determining the number of processors to be allocated per job that gives rise to 

good system performance is important for the global scheduler employed by the 

operating system for parallel environments” (Majumdar & Yiu Ming Leung, 1994, 

p.304). Does one need to consider the importance of I/O behavior while scheduling 

processes? Yes. Majumdar and Leung (1994) emphasize the importance of I/O 

characteristics of a parallel application on process scheduling.  
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Several scheduling methods for improving parallel application performance have 

been proposed by researchers. A few of interesting approaches are worth mentioning 

here, Sinen et al. (2006) proposed a method for optimized scheduling based on 

computation to communication ratio (CCR) of an application while Berman and Wolski 

(1996) introduced an “application-centric” scheduling method in which everything about 

the system is evaluated in terms of its impact on the application.  

 

An interesting way of combining the Maui Scheduler, as a plug-in, to the portable 

batch scheduler (PBS) package was proposed by Bode et al. (2000). This method was 

tested on many clusters of varying size, performance, and network communication 

patterns, focusing on maximization of resource utilization as well as the execution of 

large parallel applications. Dinda (2002) discusses about the interface and the approach to 

implement a real-time job scheduling advisor (RTSA). RTSA is mainly based on 

appropriately predicting the host load. Based on Dinda’s results, this prediction-based 

strategy seems to be highly effective to improve the performance of a parallel application. 

Calzarossa et al. (2004) proposed a methodological approach to analyze parallel 

applications performance in an automated fashion essentially based on key performance 

metrics, load imbalance and dissimilar processor behavior. The aim of this method is to 

identify and address local inefficiencies. The effects of running large multiple 

applications and core-level interactions on MCMP systems, however, were not studied in 

these scheduler researches.  

 

Another important and interesting way to study the performance of a parallel 

application is from the network standpoint. How sensitive is the application with respect 

to network parameters such as network speed, switching, routing, existence of other 

applications (network communication load)? 

 

Understanding and quantifying the “communication overhead” is paramount for 

such a study. Singh et al. (1994) discuss the three main attributes used extensively in 

capturing the communication overhead in a parallel architecture, “namely temporal, 

spatial, and volume components. Temporal behavior is captured by the message 
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generation rate, spatial behavior is expressed in terms of the message distribution or 

traffic pattern, and the volume of communication is specified by the number of messages 

and the message length distribution” (Sivasubramaniam, 1997, p. 1027). All the three 

attributes mentioned above are widely used in performance analyses of interconnection 

networks. Carter et al. (2007) did a systematic study on the effects within node by using 

applications run at low concurrencies and node-interconnect interactions on multi-core 

machines. 

 

Running parallel applications on multi-core architectures often result in resource 

contention. Jin et al. (2009) did a differential performance analysis to quantify this 

contention effect for various benchmark applications and developed a method to isolate 

contention for shared resources in multi-core systems. The multi-core architecture itself 

can be an important point of consideration. Datta et al. (2008) provided several key 

insights into the architectural trade-offs of emerging multi-core designs. 

 

In multi-core multi-processor systems, communication occurs between nodes 

(inter-node) and also between cores (intra-node). Chai et al. (2007) in their study 

observed that, in a multi-core cluster, optimization of intra-node communication is 

equally important as optimization of inter-node communication. 

 

The primary focus of this research work was on the characterization of runtime 

sensitivity of parallel applications based on different core allocation strategies under a 

given network communication load, specifically on multi-core multi-processor machines. 

A range of methodologies are available to conduct a characterization study and they can 

be broadly classified under four categories: analytical modeling, direct measurement (or 

actual execution), simulation, and emulation. 

 

The analytical modeling method typically involves a set of characteristic 

equations that relates various parameters and metrics. In contrast to the other methods, 

applications are not ‘run’ per se. Hennessy and Patterson (1996) discuss in detail of 

approaching this in a quantitative sense. Jain (1991) also discusses how the analytical 
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methods are used to enhance systems performance for different applications. However, 

analytical methods suffer from two main weaknesses: limited accuracy and inability to 

model system related feedback in real systems.  

 

While the analytical methods are considered less realistic, the most realistic of the 

methods is the direct measurement or actual execution method. Many times this method 

is used judge different network systems, for example, Hall et al. (1997) did a comparative 

study of NFS (Network File System) performance over different network systems such as 

Autonet, Ethernet, and FDDI (Fiber Distributed Data Interface). For given network 

conditions, direct measurement methods offer excellent accuracy, however, their 

potential weakness is that it may not be possible to configure the network system 

“properly” to extrapolate to other similar systems.  

 

Simulation methods offer the most flexibility and are very popular because of this 

reason. Simulators are close approximations to real systems. While the simulation 

methods offer flexibility and powerfulness to test any network system, they often lack 

fidelity and scalability. Many times extensive validation of simulators needs to be 

performed as well. Woo et al. (1995) used SPLASH-2 simulators for characterization and 

studied the effects of scaling. 

 

In emulation methods, typically a portion of the network is loaded or emulated 

while a parallel application being run in the same network in real time. Compared to 

simulation, emulation methods are not that flexible since full-blown control of the 

network cannot be achieved due to the real time run of the parallel application. However, 

emulation methods are scalable to a larger extent compared to simulation. Understanding 

or observing real time runs of applications can be challenging since real time 

measurements are needed. Fortunately, emulation methods can gain from real time 

measurement studies such as the one from Anderson et al. (1997).  

 

Evans and Hood (2005) developed a methodology and framework for studying 

the impacts of network and communication performance on parallel application runtime. 
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They developed the Parallel Application Communication Emulator (PACE) framework 

which essentially executes one or several “emulated parallel applications” (EAs). In this 

framework, EAs are defined and executed by a combination of runtime setup parameters 

and the calculation of compute/communication cycles based on measured communication 

performance. Communication cost parameters are determined by the tool through linear 

interpolation. Based on the values, an overall runtime can be predicted for each EA. The 

difference between the predicted and actual runtime is an indication of the network 

performance variability. 

 

Evans and Hood (2006) further extended the PACE framework by adding a 

Parallel Application Runtime Sensitivity Evaluation (PARSE) program.  Further, “a 

necessary condition for using PACE to evaluate a parallel application under test (AUT) is 

to force concurrent execution while PACE emulates one or more parallel applications. 

PACE then can be viewed as a communication network ‘disrupter’, providing a 

controlled and repeatable quantity and temporal dispersion of network traffic, directly 

competing for network resources with the AUT” (Evans & C. S. Hood, 2006, p. 3). What 

PARSE does is that it redistributes the nodes allocated by job scheduler to execute both 

PACE and AUT simultaneously, at the same time, it ensures that the AUT execution 

begins only after PACE computes the related communication cost parameters. 

 

Evans and Hood (2011), in their work, used two 48-node cluster segments, each 

node consisting of single-processor. They evaluated NAS parallel benchmarks and 

PSTSWM using the PACE and PARSE framework. They also defined run time 

sensitivity metrics such as coefficient of mean (COM) and coefficient of variance (COV) 

to quantify the sensitivity of each parallel application to network performance. 

 

While the previous works cited here provides significant insights on 

understanding and characterizing parallel application runtime sensitivity, their focus was 

on network level (inter-node) communication. In this study, Evans and Hood’s method 

was implemented on MCMP systems to characterize parallel application runtime 

sensitivity to core allocation under a given network communication load.  
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As a prelude to this, a preliminary study was conducted to assess the runtime 

sensitivity of various NAS benchmarks (Veeraraghavan & Evans, 2010). In this, PARSE, 

PACE, and the sensitivity metric were used to better understand their utility on MCMP 

systems. The network load was kept constant at 95% using PACE and the process (core) 

allocation was changed. This preliminary runtime evaluation of NAS benchmarks 

suggested that as the core allocation “distance” increased, the runtime of the applications 

also increased (in some cases, there was  up to a threefold increase). For some 

applications, such as MG, the variability also increased significantly. This warranted 

further detailed study (the current work) on the parallel application runtime sensitivity 

due to core allocation on a loaded network.
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CHAPTER 3. METHODOLOGY 

3.1. Introduction 

A key benefit of using parallel processing is that it reduces the overall 

computational time required and in addition, it also allows for larger problems to be 

solved. This is especially true in the case of long running scientific and engineering 

programming codes. Both in academia and industry, there have been several research 

initiatives to develop algorithms to reduce computational time. On the other hand, one of 

the challenges faced while running parallel applications is their runtime variability. It is 

important that the system (a set of application codes, compute and I/O nodes, schedulers, 

resource managers, and the interconnection network) operate with systemic performance 

consistency. Systemic performance consistency is defined as a minimal or at least a 

reasonable variation in runtime when operating conditions such as, problem size, input 

data, compute and network resources etc., are similar over time. The growth in HPC 

tends toward solving larger problems using huge amount of data. In this situation, the 

runtime variability or systemic performance inconsistency is not desirable. 

 

Understanding the influence of different parameters on parallel application 

performance is often referred to as “characterization of parallel application”. A range of 

methodologies are available to conduct such a study using analytical modeling, direct 

measurement (or actual execution), simulation, or emulation. 

 

Evans (2005) in his doctoral thesis had developed tools such as PACE and 

PARSE and studied parallel application runtime sensitivity on clusters consisting of 

single-processor machines. As a complement, the primary focus of this research work 

was to characterize parallel application runtime sensitivity to core allocation under a 

given network communication load on a cluster made of multi-core multi-processor 
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machines using PACE and PARSE and compare the results to those of single-processor 

machines as applicable. 

3.2. Tools used 

3.2.1. PACE 

In order to study the run time performance anomalies, a framework called PACE 

(Parallel Application Communication Emulator), that emulates one or more parallel 

applications, was developed by Evans (2005). PACE monitors itself, producing data that 

reflects the error between its prediction of an emulated application (EA) run time and the 

actual run time. 

 

The time that an individual processor (p) takes to execute its portion of the 

parallel program can be given as, 
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                       Where, P – Processors working on a problem  

    Tcomp – Computation time 

    Tcomm – Communication time    

 

The communication cost in parallel program is given by, 

 

             T��� = 	α + β�     (Eq.3.3)	

                         Where, α - Startup time 

β - Transfer time of a unit of data 

               n - Number of units transferred   
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Combining the above two equations yield, 
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The PACE framework is designed to load a cluster network using EAs in a 

prescribed manner. As mentioned earlier, one or more EAs within the PACE framework 

is created and ran. Each EA emulates running a parallel application. As in any parallel 

application, the scheduler allocates certain number of nodes for a fixed time for PACE. 

For each EA, a subset of the PACE nodes is allocated. Then, each EA runs its own 

computation and communicates via the interconnection network of the cluster. A typical 

PACE run consists of two “phases”. The first phase determines the communication cost 

Tcomm and predicts the overall run time of each EA. The second phase is an emulated 

application run consisting of a number of compute/communicate cycles that are either 

specified or calculated according to user input. Each cycle is composed of a computation 

and communication component. PACE executes its performance measurement by 

executing many communication exchanges and timing them using hardware timers. 

 

Each process within an EA determines communication cost β using linear 

interpolation, 

                    β = 	
��
 
��!
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     (Eq.3.5) 

 

          Where, t1 - Time to run all the communication exchanges on the large message size   

                       ts - Time for the small message size 

                       m - Number of messages 

                       nl and ns - Lengths in bytes for large and small messages   respectively  

Values of the startup cost α are calculated for each message size and is given by, 

 

α� =	
#�
�
− 	β ∗ n�   (Eq.3.6) 

α� =	
#!
�
− 	β ∗ n�               (Eq.3.7) 
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These values should always be equivalent. Each process determines their own α 

and β values independently. They are then gathered from the processes, and after 

computing an average, gets redistributed to the processes prior to the start of the run. The 

PACE benchmark, for all participating processes, calculates a single average value. Each 

PACE EA process uses the same communication performance metric as the basis for 

calculating their compute component time. 

 

T���� =	
'()  ∗
��

*
−	T����   (Eq.3.8) 

  

        Where, Tcomp - Calculated compute time 

                    Tcomm - Calculated communication time based on timing measurements α + β 

                    L - Percent communication load 

 

The PACE software is written in ‘C’ language and uses MPI for message passing. 

PACE is built using the GNU gcc compiler. The PACE system consists of several 

functional modules such as, input parameter processing, run-time configuration, 

communicators (EAs) and communication patterns, emulated computation, 

communication cost measurement, and data collection and logging.  

 

Before PACE executes an EA, it performs a communication cost measurement 

using the communication type and pattern to be executed by EA. Then, using the 

communication cost measurement, communication and compute times, PACE calculates 

the per cycle time. Overall, EA runtime is then determined using the combination of user 

input and measured communication cost. 

 

With MCMP systems, PACE is used in the context of cores (instead of 

nodes/processors) and the cluster intercommunication comprise of, in addition to inter-

node communication, inter-core and inter-processor communication through the network. 

In this case, PACE is not just acting as a network load ‘disrupter’ but also acts as a 

communication sub-system load. 
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3.2.2. PARSE 

To evaluate a parallel AUT using PACE, it is necessary to run them concurrently 

while PACE emulates one or more EAs. Here, “PACE can be viewed as a 

communication network ‘disrupter’, providing a controlled and repeatable quantity and 

temporal dispersion of network traffic, directly competing for network resources” (Evans 

& C. S. Hood, 2006, p. 3). In order to achieve this, an interface to the PACE framework 

was developed (Evans & C. S. Hood, 2006) called Parallel Application Runtime 

Sensitivity Evaluation (PARSE). PARSE is designed to address the two runtime aspects. 

They are:  

1. To accommodate and run PACE and AUT by distributing the nodes allocated by 

the scheduler. 

2. To guarantee that the AUT runs concurrently with PACE EAs and to ensure that 

AUT is not executed during the time when PACE is computing communication 

cost parameters. 

  

Initial version of PARSE was written as a perl script that parses the machine file 

created by scheduler and creates two new machine files namely, pace.mach for running 

PACE and aut.mach for running AUT.  PARSE can be run using a PBS script. There are 

several command line arguments such as  

–m for the machine file 

–N for the total number of nodes 

–P for the PACE nodes 

–a for the AUT nodes 

–A for the AUT executable 

–p to specify alternate mpi path (optional) 

–S for the “stride” factor  

–i for number of iterations or trial runs 

–d for delay in seconds 

–I for specifying input file for PACE. 
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An updated version of PARSE (python script) now takes advantage of the Hydra 

process manager (discussed in section 3.2.4) used in MPICH2 (discussed in section 

3.2.5), which supports strict process binding. The following additional options are 

available in the updated version of PARSE. 

-W argument is used to specify AUT path 

-H argument is used to invoke Hydra 

-B argument is used to run a baseline test 

-S argument is used to run a sensitivity test 

 

In addition, with the modified version the user creates the machinefile and 

specifies using the –m argument on the command line for baseline tests. While running 

sensitivity tests, machinefiles- autsens.mach and pacesens.mach should be provided by 

the user. 

 

In order to ensure concurrent execution of PACE and AUT, “PARSE script uses 

system calls embedded in parent and child branches of a fork() system call. Essentially 

each branch performs its own mpirun. The parent process executes PACE while the child 

process runs the AUT ” (Evans & C. S. Hood, 2006, p. 4). Before running the EAs, 

PACE performs its communication cost benchmark.  

3.2.3. PBS Resource Manager and Maui Scheduler 

The cluster used in this study employs OpenPBS as the resource manager. 

OpenPBS is an open source version of Portable Batch System (or simply PBS). Open 

PBS is a NASA’s Ames research center developed, POSIX compliant batch software. It 

was developed originally for large parallel computers (Symmetric multiprocessing (SMP) 

system). The primary function of PBS is to allocate and manage resources for 

computational tasks along with effective job scheduling.  

 

An effective scheduler is responsible for: 
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1. Managing traffic by properly allocating resources to a job and by avoiding 

the other jobs from using the same resources. 

2. Maintaining site mission goals by providing a suite of policies that can be 

mapped into scheduling behavior. 

3. Implementing intelligent scheduling decisions to maximize cluster 

performance. 

 

There are several built-in schedulers available within PBS and they can be 

customized depending on individual site requirements. The FIFO scheduler is the default 

PBS scheduler, which enforces maximum CPU utilization. It searches through the queue 

and starts jobs based on available resources. This can be a limitation for large jobs since 

the resources could not be met by certain nodes even though they become available. In 

situations like this, other schedulers can be used depending on cluster and problem size. 

To achieve this, PBS supports interfacing with other meta schedulers (or plug-in 

schedulers) like Maui scheduler. 

 

Maui scheduler is an open-source job scheduler and it can be readily used for 

clusters and supercomputer systems. It can accommodate a large array of policies for job 

scheduling since it is optimized and highly configurable.  It also incorporates features 

such as dynamic priorities, fair share, and extensive reservations. “The Maui Scheduler 

can be thought of as a policy engine which allows sites control over when, where, and 

how resources such as processors, memory, and disk are allocated to jobs. In addition to 

this control, it also provides mechanisms which help to intelligently optimize the use of 

these resources, monitor system performance, help diagnose problems, and generally 

manage the system” (“Maui Scheduler - Administrator’s Guide,” p. 1). 

 

The combination of PBS and Maui scheduler is highly successful in scheduling 

parallel applications, and in general, improves the manageability and efficiency of cluster 

computing in many cases as with the cluster system used in this study. 
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3.2.4. Hydra Process Manager 

In order to ensure core binding in MCMP systems, it is necessary to use a tool 

that can be invoked via PARSE. Hydra process manager developed by Argonne National 

Laboratory was used in this study for this purpose.  

 

                                  

Figure 3.1  Hydra Process Management Framework 

 

Figure 3.1 shows the schematic of the Hydra process management framework which 

consists of the following basic components: 

1. User Interface 

2. Resource Management Kernel 

3. Process manager  

4. Bootstrap server 

5. Process Binding 

6. Communication Sub-system 

7. Process Management proxy  

8. I/O demux engine  
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The process binding component essentially extracts the system architecture 

information (such as the number of processors, cores etc.) and binds processes to 

different cores in a portable manner.  

3.2.5. MPICH2 

MPICH2 is the Message Passing Interface (MPI) used by the programs in this 

study. MPICH2 is a portable MPI implementation. As per Argonne National Laboratory, 

“the goals of MPICH2 are: (1) to provide an MPI implementation that efficiently 

supports different computation and communication platforms including commodity 

clusters (desktop systems, shared-memory systems, multicore architectures), high-speed 

networks (10 Gigabit Ethernet, InfiniBand, Myrinet, Quadrics) and proprietary high-end 

computing systems (Blue Gene, Cray, SiCortex) and (2) to enable cutting-edge research 

in MPI through an easy-to-extend modular framework for other derived 

implementations” (“MPICH2 : about MPICH2” ). 

3.3. Benchmarks used in the study (AUT) 

3.3.1. NAS Parallel Benchmark 

The Numerical Aerodynamic Simulation (NAS) Program is based of NASA 

Ames Research Center. The program objective is to advance computational 

aerodynamics to new levels. To help “measure the performance of highly parallel 

computers and to compare their performance with that of conventional supercomputers, 

NAS developed the NAS Parallel Benchmarks (NPB 1.0) in 1991. These benchmarks, 

which are derived from computational fluid dynamics codes” (D. Bailey, Harris, Saphir, 

Van Der Wijngaart, A. Woo, & Yarrow, 1995, p.3), consist of two main parts: a total of 

five “parallel kernel” benchmarks and a total of three “simulated application” 

benchmarks. Each of the five kernels benchmark denote a particular numerical simulation 

or computation. The CFD applications (numerical simulations) are a “representative of 
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the types of data movement and computation required in state-of-the-art CFD application 

codes” (Saini & D. H. Bailey, 1996).  

 

For years, the high performance computer systems have grown significantly in 

size and capabilities. Total numbers of processors have gone up, computer clock speed 

and memory limits have increased, and network bandwidths have increased. Therefore, 

the needs for more challenging benchmark sizes to rate the performance of the parallel 

machines have grown. For this reason, the NAS benchmarks come in different problem 

sizes given as “class”.  The NAS Parallel Benchmarks consist of 6 different problem 

sizes, they are, Class “S”, “A”, “B”, “C”, “D”, and “W”. The class “A” benchmarks can 

be run on a medium powered workstation, class “B” on high-end computers or smaller 

parallel systems, and class “C” on high-end parallel systems. In order to study the 

runtime variations with network communication load, classes “A”, “B”, and “C” are 

selected and their problem sizes are shown in Table 3.1 (D. Bailey, Harris, Saphir, Van 

Der Wijngaart, A. Woo, & Yarrow, 1995b).   

Table 3.1 Parallel Benchmark Problem Sizes 

Benchmark Abbreviation Class A Class B Class C 

Embarrassingly 

Parallel 
EP 228 230 232 

MultiGrid MG 2563 2563 5123 

LU solver LU 643 1023 1623 

 

Two kernel benchmark and one simulated application benchmark (Saini & D. H. 

Bailey, 1996) are used for this study. They are: 

• The first kernel benchmark is the “Embarrassingly Parallel problem. In this 

benchmark, two-dimensional statistics are accumulated from a large number of 

Gaussian pseudorandom numbers, which are generated according to a particular 

scheme that is well-suited for parallel computation. This problem is typical of 

many Monte Carlo applications” (Saini & D. H. Bailey, 1996) 
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• Simplified MultiGrid (MG) problem is the second of the kernel benchmarks that 

solves three-dimensional Poisson PDE. MG can be considered as a good test for 

both, short distance and long distance communication that is highly structured. 

Even though Class A and Class B problems have the same size, Class B uses 

more iterations for inner loop calculations than Class A.  

• The third benchmark, which is a simulated application benchmark, is the Lower-

Upper diagonal (LU) benchmark. Basically, “it does not perform a LU 

factorization but instead employs a symmetric successive over-relaxation (SSOR) 

numerical scheme to solve a regular-sparse, block 5x5 lower and upper triangular 

system. This problem represents the computations associated with a newer class 

of implicit CFD algorithms, typified at NASA Ames by the code INS3D-LU” 

(Saini & D. H. Bailey, 1996) 

3.3.2. PSTSWM Benchmark 

“The Parallel Spectral Transform Shallow Water Model (PSTSWM) is a message-

passing application and parallel algorithm testbed that solves the nonlinear shallow water 

equations on a rotating sphere using the spectral transform method. It is a parallel 

implementation of STSWM, developed by J. J. Hack and R. Jacob at the National Center 

for Atmospheric Research (NCAR) and used to generate reference solutions for the 

shallow water test cases” (Smith, Vetter, & Xuejun Liang, 2005, p. 3). Within PSTSWM, 

there are several multiple parallel algorithms which can be chosen during run-time. 

Parameters such as the number of processors, problem size, and decomposition (data) can 

also be specified.  

 

As per the user guide, “PSTSWM is written in Fortran 77 with VMS extensions 

and a small number of C preprocessor directives. Message passing is implemented using 

MPI, MPI/SHMEM, PICL, PVM, and/or native message passing libraries, with the 

choice being made at compile time. Additionally, all message passing is encapsulated in 

three high level routines for broadcast, global minimum and global maximum, and in two 
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classes of low level routines representing variants and/or stages of the swap operation and 

the send/receive operation” (Worley & Toonen, 1995). 

 

The recent version of PSTSM v6.9 was used in this research work. PSTSWM is, 

in general, provides large problem size and communication intensive allowing it to be a 

good testing algorithm for HPC systems. 

3.4. HPC cluster at ACSL 

The Adaptive Computing Systems Lab (ACSL) consists of two cluster systems, 

the Chiba City cluster and HP cluster. Chiba cluster consists of several 16 node cluster 

segments plus login and administrative machines. Each node is a dual-processor Pentium 

III with a 9GB of hard drive space and a RAM of 512MB. A fast Ethernet (100Mbps) 

connects all the nodes. The HP cluster consists of 10 nodes and an administrative 

machine. It is a HP Proliant DL185G5 and DL165G5p machines. Each node has 2 quad 

core AMD Opteron processors with 16GB of RAM and a 500GB SATA HD and the 

nodes are interconnected with two Gigabit Ethernet network ports.    

 

In this research, the parallel application runtime sensitivity to network 

communication load for the MCMP systems was studied. For this purpose, the HP cluster 

of ACSL was used (Figure 3.2). Open PBS (Torque) is used as the resource manager and 

Maui scheduler is used for job scheduling for ACSL cluster. 

 

The operating system used by the ACSL cluster is RedHat Linux version 5.5. The 

MPI is through MPICH2 version 1.3.2. For studying NAS benchmarks, gcc compiler 

version 4.4.0 is used and for PSTSWM, pgi compiler version 9.0-3 is used. 
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Figure 3.2  HP cluster of ACSL 

3.5. Experimental Matrix 

AUT’s sensitivity to network communication load by varying core allocation in a 

MCMP machine was studied in this project. For this purpose, a series of test cases were 

conducted under two scenarios. In the first scenario, baseline tests for each benchmark 

were conducted by varying the number of cores from 2 to 32 in powers of two. Each 

benchmark was run 30 to 100 times to ensure the results were statistically significant 

enough to capture the runtime and variability. 

 

In the second scenario, sensitivity tests were conducted by running each 

benchmark (AUT) concurrently with PACE using PARSE. PACE was used as a 

communication “disruptor” against AUT. The entire HP cluster of ACSL (a total of 10 

nodes) was used. Each node has 2 quad-core processors (Figure 3.3), which comprises of 

a total of 80 cores. 
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Figure 3.3  Layout of a HP cluster node with 2 processors of quad-core each 

 

For sensitivity testing, PACE was run on cores that were not used by AUT so as 

to load the network at 95% communication load (using 512K messages in a all-to-all 

communication pattern). The different core allocation policies were implemented by 

PARSE. For single-core single-processor machines PARSE uses “stride” factor to allow 

user to specify almost any node distribution for PACE and AUT. However, in multi-core 

multi-processor machines, the “stride” factor, in general, does not ensure core binding as 

per allocation. In our study, it is important to achieve proper core binding in MCMP so 

that core allocation influence of AUT runtime sensitivity can be properly determined. For 

this purpose, PARSE was modified to invoke Hydra process manager for core binding. In 

the related preliminary study (Veeraraghavan & Evans, 2010), core binding was found to 

be not effective since Hydra was not used.  

 

The experimental matrix of AUT and PACE is given in Table 3.2. with stride 

factor and respective core allocation policy for 2 to 32 (in powers of 2) core runs. For 

each set of cores, three test cases TC1, TC2, and TC3 were run for both baseline and 

sensitivity tests. These test cases were designed to allocate jobs across the cores based on 

following core allocation policies: 

1. Run on contiguous cores (TC1) 

2. Run on cores across contiguous nodes (TC2) 

3. Run on cores across nodes based on largest “stride” factor (TC3) 
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 Table 3.2  Experimental Matrix 

# of 

Cores 
Test Case 

Stride 

Factor 

AUT 

Nodes 

AUT 

Cores 

PACE 

Nodes 

PACE 

Cores 

2 

TC1 2 
1 0,2 1 1,3,4,5,6,7 

    2-4 0-7 

TC2 4 
1 0,4 1 1,2,3,5,6,7 

    2-4 0-7 

TC3 79 

1 0 1 1-7 

10 7 2-9 0-7 

    10 0-6 

4 

TC1 1 
1 0-3 1 4-7 

    2-4 0-7 

TC2 8 1-4 0 1-4 1-7 

TC3 26 

1 0 1 1-7 

4 2 2,3,5,6,8,9 0-7 

7 4 4 0-1, 3-7 

10 6 7 0-3,5-7 

    10 0-5,7 

8 

TC1 1 1 0-7 2-10 0-7 

TC2 8 
1-8 0 1-8 1-7 

    9,10 0-7 

TC3 11 

1 0 1 1-7 

2 3 2 0-2,4-7 

3 6 3 0-5,7 

5 1 4,8 0-7 

6 4 5 0,2-7 

7 7 6 0-3,5-7 

9 2 7 0-6 

10 5 9 0-1,3-7 

    10 0-4,6-7 

16 

TC1 1 1,2 0-7 3-10 0-7 

TC2      

TC3 5 

1,6 0,5 1,6 1-4,6,7 

2,7 2,7 2,7 0,1,3-6 

3,8 4 3,8 0-3,5-7 

4,9 1,6 4,9 0,2-7 

5,10 3 5,10 0-2,4-7 

32 

TC1 1 1-4 0-7 5-10 0-7 

TC2      

TC3 2 
1-8 0,2,4,6 1-8 1,3,5,7 

    9,10 0-7 

 

The above test cases were chosen to allow varying “distance” between cores 

starting from the most intuitive (contiguous cores) to the widest “distance”. This will also 

allow for any intermediate cases, to be estimated from these test cases. As shown in 
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Table 3.2, for both baseline and sensitivity testing scenarios, these three different test 

cases (core allocation policies) were evaluated. 

 

As a special case, for 2-core benchmark runs, the following core allocation 

policies were used: 

1. TC1- Allocate the AUT to run within the same processor (core 0 and 2). In the 

case of 2-core runs, TC1 could be allocating to any of the 4 cores since 

architecturally they all are within the same processor and hence can be considered 

contiguous. 

2. TC2- Allocate the AUT to run across processors (core 0 and 4).  

3. TC3- Allocate the AUT to run across different nodes (core 0 and core 79).  

3.6. Sensitivity Factor 

Once the test runs were completed as per the experimental matrix, run time data 

were extracted from the benchmark output files. The collected data was further examined 

for outliers and they were removed using Grubbs method through Minitab. The following 

terms and definitions from Evans (2005) are worthwhile to be included here as the same 

terms and definitions apply to the current study also. 

 

“Coefficient of Mean (COM): The ratio of the average values of multiple 

application executions under a given pair of network load operating conditions” (Evans, 

2005, p. 132) 

+,-./ =
01234	5
01234	6

=	
∑
7894	5
4

4
:

∑
7894	6
4

4
:

    (Eq.3.9) 

Where n is the number of trial runs of the application 

 

“Coefficient of Variation (COV): The ratio of the standard deviation of multiple 

application executions under a given network load operating condition to the mean of 

those executions” (Evans, 2005, p. 133) 
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+,; = <

01234
. 100    (Eq.3.10) 

 

The COM normalizes the runtime scale between applications, while the COV 

normalizes the differences between applications. COV values can also be represented as a 

ratio between two data points (say i and j), in which case it indicates the relative increase 

or decrease. This quantity is termed as ROVji (Ratio of Variations). 

	@,;./ =
ABC5
ABC6
	              (Eq.3.11) 

Both these factors are used to arrive at the sensitivity factor as shown below: 

                                  D./ =	@,;./	+,-./         (Eq.3.12) 

 

Sensitivity factors were calculated using the above method for different core-

allocations, namely, STC1, STC2 and STC3 and averaged to arrive at a single sensitivity 

factor for core-allocation, namely Salloc. Even though there are other possible core 

allocation policies, apart from those tested in this study, an average of STC1, STC2 and STC3 

should give a good estimate of the sensitivity of allocation since it covers a wide range of 

possibilities. The allocation sensitivity factor, Salloc was computed for each parallel 

application by varying the number of cores from 2 to 32 in powers of two. Providing the 

allocation sensitivity factor to schedulers for a particular application can be very useful 

since Salloc covers varying possibilities of core allocations and provides a sense of the 

application behavior as a function of core allocation. Results of the different parallel 

applications and related discussions are presented in Chapter 4. 

3.7. Experiment Execution 

For executing the experimental matrix shown in Table 3.2, the below procedure was 

followed in this study: 

1. Build and compile PACE code 

2. Build and compile NAS benchmarks and PSTSWM benchmark 

3. Using a script file  

a. Request for nodes/cores and wall time 



 

 

32 

b. Load mpich2, gcc compiler (for NAS benchmarks), and pgi compiler (for 

PSTSWM benchmark) 

# Setup and select the run-time environment 

source /opt/admintools/Modules/etc/profile.modules 

module load mpich2-1.3.2/64/nemesis-gcc-4.4.0/4.4.0  

module load mpich2-1.3.2/64/nemesis-pgi-9.0-3/9.0-3  

 

c. Invoke and run PARSE by providing required options and inputs.  

4. PARSE in turn, according to provided options, runs baseline and sensitivity tests 

and collects data. 

5. Post processing of the collected data 

 

An example of invoking PARSE for a 4-core job run is given below: 

Initialization of AUT variables 

AUT="mg" 

CLASS="A" 

AUTPROC="4" 

AUTFILE="mg.A.4" 

AUTPATH="./$CLASS/$AUTPROC" 

PARSE command line for baseline test 

./parse.py -N 4 -P 0 -a 4 -W $AUTPATH -A $AUTFILE -i 100 -d 

1 -m base4.mach -H -B  

While running baseline test, the following base4.mach machinefile is provided to PARSE 

hpn01:1 binding=user:0 

hpn02:1 binding=user:0 

hpn03:1 binding=user:0 

hpn04:1 binding=user:0 

PARSE command line for sensitivity test 

./parse.py -N 32 -P 28 -a 4 -W $AUTPATH -A $AUTFILE -i 100 

-d 1 -I pace_input.sens -H –S 

 

While running sensitivity test, the following machine files and input files are provided to 

PARSE: 
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autsens.mach 

hpn01:1 binding=user:0 

hpn02:1 binding=user:0 

hpn03:1 binding=user:0 

hpn04:1 binding=user:0 

pacesens.mach 

hpn01:7 binding=user:1,2,3,4,5,6,7 

hpn02:7 binding=user:1,2,3,4,5,6,7 

hpn03:7 binding=user:1,2,3,4,5,6,7 

hpn04:7 binding=user:1,2,3,4,5,6,7 

PACE input file:  

pace_input.sens 

BENCHPERPROC:1 

BENCHAVG:1 

PERFONLY:0 

EAS:1 

LOG:1 

INTERCONNECT:1 

COMMLOAD:95 

MESSAGES:1000 

SIZESTART:524288 

SIZEEND:1048576 

SYNCHRONIZE:0 

RUNTIME:600 

PATTERN1:P2P 

TEST1:ALLTOALL 

ALPHA1: 

BETA1:1. 

PATTERN2: 

TEST2: 

ALPHA2: 

BETA2: 

PATTERN3: 

TEST3: 
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ALPHA3: 

BETA3: 

PATTERN4: 

TEST4: 

ALPHA4: 

BETA4: 

FILEPATH:./A/4/ 

PSTSWM input files: 

Algorithm: 

8                / NPLON 

4                / NPLAT 

1                / MESHOPT 

1                / RINGOPT 

1                / FTOPT 

0                / LTOPT 

11               / COMMFFT 

11               / COMMIFT 

20                / COMMFLT 

20                / COMMILT 

0                / BUFSFFT 

0                / BUFSIFT 

0                / BUFSFLT 

0                / BUFSILT 

6                / PROTFFT 

6                / PROTIFT 

6                / PROTFLT 

6                / PROTILT 

0                / SUMOPT 

0                / EXCHSIZE 

Measurment: 

.TRUE.          / TIMING 

.FALSE.          / TRACING 

.FALSE.          / TRACEFILE 

0                / VERBOSE 
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100000           / TRSIZE 

1                / TRSTART 

10000            / TRSTOP 

0                / TL1 

0                / TL2 

0                / TL3 

'timings'        / TOUTPUT 

                 / TMPNAME 

                 / PERMNAME 

1                / INITSTEPS 

Problem: 

'0002'                / CHEXP 

42                    / MM 

42                    / NN 

42                    / KK 

64                    / NLAT 

128                   / NLON 

16                    / NVER 

                      / NGRPHS 

                      / A 

                      / OMEGA  

                      / GRAV  

                      / HDC  

0.0               / ALPHA 

1800.0                / DT 

999.0                 / EGYFRQ 

0.01                  / ERRFRQ 

999.0                 / SPCFRQ 

12000.0               / TAUE 

                      / AFC 

.TRUE.                / SITS 

                  / FORCED 

                      / MOMENT 

2                     / ICOND 
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CHAPTER 4. DATA ANALYSIS AND RESULTS 

4.1. Introduction 

Using the methodology discussed in Chapter 3, the runtime for the baseline tests 

of each parallel application (AUT) with no competing traffic and the runtime for 

sensitivity tests with network load were obtained from application output files. Using 

these baseline and sensitivity runtimes, sensitivity factors were computed. 

 

Each parallel application was run several times (50-100 times for NAS 

benchmarks and 30 times for PSTSWM benchmark) for different core allocation 

strategies (test cases) and number of cores. The runtime data obtained for baseline and 

sensitivity runs were plotted against trials to represent in a graphical format. Visual 

inspection of the plots obtained for several benchmarks show existence (or non-

existence) of patterns amongst various runs. For example, the difference in the means 

between baseline and sensitivity runs denotes the energy consumption difference. 

Similarly, difference in the variations about the means denote the difference in 

predictability.  

 

For each application, sensitivity factors for different test cases (TC1, TC2 and 

TC3) were computed based on the ratio of means (COM) and ratio of variance (ROV) as 

described before. Then an average of the sensitivity factors for different test cases was 

computed to arrive at a single allocation sensitivity factor, Salloc. The applications were 

run on 2 to 32 cores (in powers of 2) and corresponding allocation sensitivity factors 

were computed.
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4.2. Baseline and Sensitivity runtime plots 

Baseline and sensitivity runtime plots were created based on the data collected for 

various benchmarks. All the PSTSWM benchmark plots are discussed in this section. For 

NAS benchmarks, three different classes (Class A, B, and C) were run to assess the 

sensitivities with respect to the problem size. However, the plots shown in this section 

focus on Class C (largest problem size) only. In many cases, Class A and Class B plots 

remained similar to Class C. Existence of any difference with respect to problem size is 

highlighted and discussed accordingly. The rest of the plots obtained from this study for 

Class A and B are attached to Appendix.  

 

EP Benchmark runs: 

 

Figure 4.1  2-core allocations: Baseline and Sensitivity runtimes of EP Class C  

 

From Figure 4.1 above, for 2-core allocations of EP Class C, the baseline 

runtimes of all the three test cases, TC1, TC2 and TC3, were very similar. The sensitivity 
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runtimes were about 5% higher than baseline and also were similar for all the three test 

cases. This shows that the application EP class C 2-core job is equally sensitive with 

respect to different core allocation policies. EP Class A and Class B also showed 

equivalent behavior for 2-core jobs. 

 

Figure 4.2  4-core allocations: Baseline and Sensitivity runtimes of EP Class C  

 

Figure 4.2 above shows the baseline and sensitivity runtimes of 4-core allocations 

done using the three test cases, TC1, TC2 and TC3 for EP Class C problem. The baseline 

runtimes of these tests were very similar. For sensitivity tests, TC2 showed the most 

runtime, about 7% higher than the baseline runtime, while TC1 and TC3 showed about 

3% and 4% higher runtime than their respective baselines. EP Class A and Class B also 

showed equivalent behavior for 4-core jobs under all three test cases. 

 

Figure 4.3 shows the baseline and sensitivity runtimes of EP Class C 8-core runs. 

The baseline runtimes for TC2 and TC3 were similar. However, TC1 baseline was 

slightly lower than TC2 and TC3. 
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Figure 4.3  8-core allocations: Baseline and Sensitivity runtimes of EP Class C  

 

The sensitivity runtime of TC1 remained more or less the same as its baseline 

suggesting insensitivity for this core allocation strategy (contiguous core allocation). This 

is somewhat intuitive and expected behavior since the application was allocated on 

contiguous cores, it had no influence from the network traffic due to PACE running on 

other cores in the cluster.  On the other hand, TC2 and TC3 showed sensitivity due to the 

influence of network communication load. The sensitivity runtime of TC2 (about 6% 

more than its baseline) was slightly higher than TC3 sensitivity runtime (about 5% more 

than its baseline). TC2 also showed higher variation (more fluctuation) in runtime as 

compared to TC3. For Class A and Class B problems, TC2 was about 25% and 9% higher 

than its respective baseline runtimes, while TC3 was about 23% and 5% higher than its 

baseline runtimes. 
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Figure 4.4  16-core allocations: Baseline and Sensitivity runtimes of EP Class C  

 

In the ACSL cluster used in this study, there were only 10 nodes; therefore, 

running on cores across contiguous nodes (TC2) does not apply for 16 and 32 core runs. 

 

Figure 4.4 shows the baseline and sensitivity runtimes for 16-core allocations 

(TC1 and TC3) of EP Class C problem. TC3 baseline runtime was slightly higher than 

TC1. Under network loaded condition, TC1 remained insensitive. Again, this is 

somewhat intuitive as running on contiguous cores was not affected by the load on other 

cores since the network traffic of the AUT never left the nodes.TC3, however, showed 

sensitivity since the allocated cores were widespread. For EP Class C problem size, TC3 

showed about 4% higher runtime than its baseline.  

 

Classes A and B showed equivalent behavior for TC1 (i.e. insensitive). TC3 

showed about 43% and 4% higher runtimes compared to its respective baselines. 
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Figure 4.5  32-core allocations: Baseline and Sensitivity runtimes of EP Class C  

 

Figure 4.5 shows the baseline and sensitivity runtimes for 32-core allocations 

(TC1 and TC3) of EP Class C problem. As seen with 16-core allocation, TC3 baseline 

runtime was slightly higher than TC1. Also, under network loaded condition, TC1 

remained insensitive. TC3, however, showed sensitivity and was about 2% higher 

runtime than its baseline.  

 

Classes A and B showed equivalent behavior for TC1 (i.e. insensitive). TC3 

showed about 42% and 17% higher runtimes compared to its respective baselines. 

 

Summary of EP Benchmark runs:  

Based on the data obtained for EP benchmark runs, the following observations 

were made: 

• In contrast to the general idea of how EP benchmark works, in MCMP system, 

they do not appear to be truly EP since the runtimes at network loaded conditions 
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were not truly insensitive for certain cases (EP 8-core, 16-core and 32-core runs). 

This shows that for these cases when PACE is loading the network, EP could be 

competing with the entire system thereby making it sensitive to network load. 

• For 8-core, 16-core, and 32-core runs, TC1 (contiguous core allocation) remained 

insensitive. This is due to the fact that the cores are all from adjacent cores/nodes 

and are not influenced by network communication load on other cores in the 

system. This not the case with 2-core and 4-core runs, where TC1 showed 

sensitivity, since the other cores in the nodes were loaded with PACE. 

• As the problem size increases, TC2 and TC3 appear to be less sensitive. This is 

evident when looking at the sensitivity runtimes of EP Class A, B, and C 

problems. This behavior is somewhat intuitive, as the cores are apart, 

communication load becomes more dominant with smaller size problems. 

 

A statistical summary of the runtime data collected for EP benchmark runs, both 

for baseline and under network loaded condition (EP/PACE) are shown in Table 4.1. For 

each problem size (Class A, B, and C), mean, standard deviation, and coefficient of 

variation (COV) of the runtime are shown for different core allocations, TC1, TC2 and 

TC3. 

 

Based on the statistical data, sensitivity factors were computed for TC1, TC2 and 

TC3 using the previously described methodology (Chapter 3). An average of these 

quantities was taken to arrive at a single sensitivity factor for core allocation, Salloc. 

Allocation sensitivity factors thus obtained for EP benchmark are shown in Table 4.2. 

 

The allocation sensitivity factors computed for EP shows, in general, an 

increasing trend with scaling. This might sound somewhat counter-intuitive as one would 

expect a natural reduction in systemic loading with scaling since contribution from PACE 

gets reduced. Inspecting further, it is interesting to see how the individual sensitivity 

factors (STC1, STC2 and STC3) contribute to this trend. STC1, for example, shows a 

downward trend and in-line with intuition. However, STC2 and STC3 show an upward trend 

with scaling. Also, when looking at this in a generic sense, one would expect any  
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Table 4.1  Statistical Data of EP Benchmark Runs 

Test Case 

Class A Class B Class C 

xmean 

(sec) 
σ 
(sec) 

COV 
xmean 

(sec) 
σ 
(sec) 

COV 
xmean 

(sec) 
σ 
(sec) 

COV 

EP2                   

Baseline-TC1  15.456 0.046 0.300 61.959 0.180 0.290 247.140 0.797 0.320 

EP/PACE-TC1 16.206 0.062 0.390 64.826 0.279 0.430 259.200 1.130 0.440 

Baseline-TC2 15.542 0.059 0.380 62.117 0.205 0.330 248.180 0.894 0.360 

EP/PACE-TC2  16.196 0.066 0.410 64.756 0.254 0.390 258.920 1.060 0.410 

Baseline-TC3 15.457 0.046 0.290 61.875 0.203 0.330 247.380 0.728 0.290 

EP/PACE-TC3 16.146 0.081 0.500 64.622 0.291 0.450 258.530 1.220 0.470 

EP4                   

Baseline-TC1  7.722 0.026 0.340 30.905 0.086 0.280 123.610 0.367 0.300 

EP/PACE-TC1 7.971 0.031 0.390 31.887 0.131 0.410 127.500 0.495 0.390 

Baseline-TC2 7.752 0.021 0.270 31.014 0.080 0.260 124.080 0.341 0.270 

EP/PACE-TC2  8.318 0.045 0.540 33.332 0.101 0.300 133.200 0.380 0.290 

Baseline-TC3 7.751 0.022 0.280 31.006 0.076 0.250 123.990 0.307 0.250 

EP/PACE-TC3 8.098 0.060 0.740 32.350 0.158 0.490 129.190 0.530 0.410 

EP8                   

Baseline-TC1  3.855 0.010 0.250 15.406 0.041 0.260 61.552 0.150 0.240 

EP/PACE-TC1 3.853 0.011 0.300 15.402 0.038 0.240 61.576 0.159 0.260 

Baseline-TC2 3.887 0.010 0.250 15.549 0.041 0.260 62.160 0.126 0.200 

EP/PACE-TC2  4.885 1.241 25.400 16.953 1.039 6.130 65.691 0.931 1.420 

Baseline-TC3 3.887 0.011 0.270 15.520 0.035 0.220 62.059 0.134 0.220 

EP/PACE-TC3 4.780 1.085 22.690 16.262 0.154 0.950 64.828 0.277 0.430 

EP16                   

Baseline-TC1  1.933 0.007 0.340 7.717 0.020 0.250 30.853 0.079 0.260 

EP/PACE-TC1 1.932 0.007 0.350 7.715 0.019 0.250 30.814 0.062 0.200 

Baseline-TC3 1.952 0.005 0.260 7.798 0.020 0.260 31.223 0.077 0.250 

EP/PACE-TC3  2.784 1.069 38.410 8.467 0.791 9.340 32.754 0.732 2.230 

EP32                   

Baseline-TC1  0.970 0.004 0.380 3.865 0.009 0.240 15.441 0.031 0.200 

EP/PACE-TC1 0.969 0.004 0.450 3.866 0.011 0.270 15.434 0.028 0.180 

Baseline-TC3 0.978 0.004 0.440 3.898 0.006 0.150 15.598 0.024 0.150 

EP/PACE-TC3  1.449 0.581 40.100 4.556 0.974 21.380 16.443 1.037 6.300 
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Table 4.2  EP Benchmark: Sensitivity Factors 

AUT STC1 STC2 STC3 Salloc 

EPA2 1.363 1.124 1.801 1.429 

EPA4 1.184 2.146 2.761 2.030 

EPA8 1.199 127.686 103.341 77.409 

EPA16 1.029 n/a 210.741 105.885 

EPA32 1.184 n/a 135.106 68.145 

          

EPB2 1.551 1.232 1.424 1.403 

EPB4 1.511 1.240 2.045 1.599 

EPB8 0.923 25.706 4.525 10.384 

EPB16 1.000 n/a 39.005 20.002 

EPB32 1.125 n/a 166.603 83.864 

          

EPC2 1.442 1.188 1.694 1.441 

EPC4 1.341 1.153 1.709 1.401 

EPC8 1.084 7.503 2.042 3.543 

EPC16 0.768 n/a 9.357 5.063 

EPC32 0.900 n/a 44.275 22.587 

 

intermediate allocation possibility to behave different from STC1 and hence the allocation 

sensitivity factor is a good measure to capture the overall trend of the allocations. This 

also signifies how the core allocation policies can make a big difference in the way a 

parallel application behaves in an MCMP system. 

 

In the case of EPA16, it appears that the sensitivity factor (STC3) might be 

skewing the Salloc value to a higher number. This might require one to take a deeper look 

into the individual components of STC3 such as COM and ROV. For cases like these, 

some possibilities have been discussed as part of future work in Chapter 5.  

 

MG Benchmark runs: 

Figure 4.6 shows the baseline and sensitivity runtimes of MG Class C 2-core job 

for TC1, TC2 and TC3 allocations. TC1 showed a higher baseline runtime when 

compared to TC2. This is somewhat counter-intuitive since one might think that 

contiguous core allocation strategy (TC1) would have the least baseline runtime. In this 
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case, TC1 baseline runtime was the highest (about 16% higher than TC2), TC2 baseline 

runtime was the lowest, and TC3 baseline runtime was in-between TC1 and TC2. 

 

Figure 4.6  2-core allocations: Baseline and Sensitivity runtimes of MG Class C  

 

Under sensitivity tests, TC1 and TC2 were sensitive to a similar extent when 

compared with their baselines. TC3 runtime was much higher than TC1 and TC2 and 

remained the most sensitive (about 10% higher runtime than its baseline). Class A and 

Class B problem sizes exhibited more or less similar behavior as Class C. 

 

Figure 4.7 shows the baseline and sensitivity runtimes of MG Class C run on 4 

cores using TC1, TC2 and TC3 allocation policies. As observed with the 2 core runs, 

TC1 allocation resulted in a much higher baseline runtime (about 76% more) compared 

to TC2 or TC3 allocations. TC2 and TC3 baseline runtime were about the same, 

indicating that as the scale (number of cores) increases, the TC2 and TC3 allocations 

performed very similar to each other in the absence of additional network communication 

 85

 87.5

 90

 92.5

 95

 97.5

 100

 102.5

 105

 0  10  20  30  40  50  60  70  80  90  100

R
u

n
ti

m
e(

se
cs

)

Trial

PACE / NPB MG-2 Class-C Run-time Performance

Baseline with TC1

MG/PACE with TC1

Baseline with TC2

MG/PACE with TC2

Baseline with TC3

MG/PACE with TC3



 

 

46 

load. Class A and Class B MG 4 core runs also showed that the baseline runtimes of TC2 

and TC3 were very similar. 

 

Figure 4.7  4-core allocations: Baseline and Sensitivity runtimes of MG Class C  

 

For sensitivity tests, TC1 remained almost insensitive whereas TC2 runtime was 

about 30% higher than its baseline and TC3 runtime was about 23% higher than its 

baseline.  

 

For Class A and Class B problems of MG 4-core runs, TC1 remained insensitive 

also. TC2 was 60% (Class A) and 52% (Class B) higher than its respective baselines 

while TC3 was 82% (Class A) and 66% (Class B) higher than its respective baselines. 

This shows that with increasing problem size, the sensitivity of MG 4-core runs showed 

decreasing sensitivity to network communication load for TC2 and TC3 allocations. 
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Figure 4.8  8-core allocations: Baseline and Sensitivity runtimes of MG Class C  

 

MG Class C 8-core job baseline and sensitivity runtimes are shown in Figure 4.8 

above. Again, as observed with the 2 and 4 core runs, TC1 allocation resulted in a much 

higher baseline runtime (about 45% more) compared to TC2 or TC3 allocations. TC2 and 

TC3 baseline runtime remained about the same, indicating that as the scale (number of 

cores) increases, the TC2 and TC3 allocations performed very similar to each other in the 

absence of additional network communication load.  

 

Interestingly, in Class A and Class B MG 8-core runs, TC1 showed no 

appreciable difference in its baseline runtime when compared to TC2 and TC3 (all the 

three test cases showed almost the same runtimes). This shows that MG 8-core TC1 runs 

exhibit some size dependency.  
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For sensitivity tests, Class C MG 8-core TC1 remained almost insensitive while 

TC2 and TC3 were almost equally sensitive (about 60% higher than their baseline 

runtimes).  

 

For Class A and Class B problems of MG 8-core runs, TC1 remained insensitive 

also. TC2 was 220% (Class A) and 190% (Class B) higher than its respective baselines 

while TC3 was 160% (Class A) and 145% (Class B) higher than its respective baselines. 

This shows that with increasing problem size, the sensitivity of MG 8-core runs showed 

decreasing sensitivity to network communication load for TC2 and TC3 allocations. 

 

Figure 4.9  16-core allocations: Baseline and Sensitivity runtimes of MG Class C  

 

Figure 4.9 shows the baseline and sensitivity runtimes for MG Class C problem 

run on 16 cores using TC1 and TC3 core allocation policies. Here TC2 does not apply 

since there were fewer nodes in the cluster (10 nodes) to allocate 16 cores under TC2 

(core allocation on contiguous nodes).  
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The baseline runtime of TC1 was higher (about 26%) than TC3 baseline runtime. 

Class A and B of MG 16-core run showed about 27% (Class A) and 15% (Class B) 

higher TC1 compared to TC3. 

 

For sensitivity tests, TC1 remained insensitive as the traffic never left the nodes of 

the contiguous cores allocated. However, TC3 showed a 62% higher runtime than its 

baseline. TC1 was also insensitive for Class A and Class B problem sizes of MG run on 

16-cores. TC3 was about 400% (Class A) and 237% (Class B) than its respective 

baselines. 

 

Figure 4.10  32-core allocations: Baseline and Sensitivity runtimes of MG Class C  

 

The baseline and sensitivity runtimes of TC1 and TC3 are shown in Figure 4.10 

for MG Class 32-core run. TC1 baseline was much higher than TC3 baseline (about 72% 

higher). Even with MG Class A and Class B problems, run on 32 cores, TC1 baseline 

runtime was higher than TC3 baseline. 
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For sensitivity tests, runtime of TC1 did not change much and remained 

insensitive. TC3, however, was sensitive and its runtime was about 25% higher than its 

baseline. TC1 remained insensitive for MG Class A and B also, indicating that this 

behavior is irrespective of problem size. TC3 was 278% (Class A) and 214% (Class B) 

higher than its respective baselines. 

 

Summary of MG Benchmark runs:  

Based on the data obtained for MG benchmark runs, the following observations 

were made: 

• In contrast to the general intuition that TC1 allocation would yield the best 

(lowest) runtime, the results of MG benchmark runs show that TC1 baseline 

runtime, in fact, was not the lowest. It turned out that TC2 or TC3 yielded much 

lower runtimes than TC1. This gives a unique perspective of how even baseline 

runs (without additional network communication load), in some cases, might be 

different in MCMP systems.  

• For 8-core, 16-core, and 32-core runs, TC1 (contiguous core allocation) remained 

insensitive. This again, (as seen with EP runs) due to the fact that the allocated 

cores are all from adjacent cores/nodes and are not influenced by network 

communication load on other cores in the system. 

• 4-core TC1 runs, even though the other cores in the nodes are loaded with PACE, 

showed insensitivity. In fact, if looked closely at the data, there was some slight 

improvement in runtime (lower than baseline) under loaded condition. This again 

is counter-intuitive and seems to be problem dependent (since EP 4-core run did 

not show this behavior) and needs further investigation in future studies. 

• 2-core TC1 runs, showed sensitivity for network communication load since the 

other cores in the nodes were loaded with PACE. 

 

A statistical summary of the runtime data collected for MG benchmark runs, both 

for baseline and under network loaded condition (MG/PACE) are shown in Table 4.3. 

For each problem size (Class A, B, and C), mean, standard deviation, and coefficient of 
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variation (COV) of the runtime are shown for different core allocations, TC1, TC2 and 

TC3. 

Table 4.3  Statistical Data of MG Benchmark Runs 

Test Case 

Class A Class B Class C 

xmean 

(sec) 
σ  
(sec) 

COV 
xmean 

(sec) 
σ  
(sec) 

COV 
xmean 

(sec) 
σ  
(sec) 

COV 

MG2                   

Baseline-TC1  2.185 0.005 0.240 10.090 0.009 0.090 101.860 0.069 0.070 

MG/PACE-TC1 2.235 0.020 0.890 10.338 0.038 0.370 102.950 0.116 0.110 

Baseline-TC2 1.879 0.003 0.140 8.614 0.006 0.070 85.568 0.067 0.080 

MG/PACE-TC2  1.936 0.021 1.070 8.907 0.037 0.420 87.171 0.153 0.180 

Baseline-TC3 2.068 0.008 0.370 9.529 0.033 0.340 87.622 0.069 0.080 

MG/PACE-TC3 2.645 0.293 11.060 11.724 0.584 4.980 95.932 0.994 1.040 

MG4                   

Baseline-TC1  1.540 0.004 0.230 7.200 0.016 0.220 75.806 0.088 0.120 

MG/PACE-TC1 1.519 0.009 0.570 7.100 0.022 0.300 74.099 0.058 0.080 

Baseline-TC2 1.171 0.008 0.650 5.415 0.017 0.320 43.339 0.134 0.310 

MG/PACE-TC2  1.880 0.297 15.780 8.232 0.439 5.330 56.170 0.630 1.120 

Baseline-TC3 1.192 0.007 0.620 5.514 0.030 0.550 43.517 0.201 0.460 

MG/PACE-TC3 2.159 0.505 23.390 9.128 1.211 13.270 53.403 0.766 1.440 

MG8                   

Baseline-TC1  0.672 0.010 1.420 3.104 0.007 0.210 28.634 0.026 0.090 

MG/PACE-TC1 0.672 0.009 1.300 3.107 0.007 0.230 28.624 0.026 0.090 

Baseline-TC2 0.694 0.005 0.760 3.225 0.010 0.300 19.821 0.040 0.200 

MG/PACE-TC2  2.210 0.712 32.210 8.362 2.304 27.550 32.521 1.124 3.460 

Baseline-TC3 0.690 0.002 0.260 3.205 0.009 0.280 19.718 0.079 0.400 

MG/PACE-TC3 2.018 0.709 35.160 8.127 2.322 28.570 31.660 1.103 3.480 

MG16                   

Baseline-TC1  0.552 0.010 1.890 2.593 0.026 0.990 18.497 0.064 0.350 

MG/PACE-TC1 0.554 0.012 2.170 2.590 0.029 1.120 18.523 0.058 0.310 

Baseline-TC3 0.465 0.075 16.090 2.264 0.229 10.110 14.628 0.602 4.110 

MG/PACE-TC3  2.213 0.729 32.960 7.808 2.095 26.840 24.187 2.169 8.970 

MG32                   

Baseline-TC1  0.750 0.260 34.700 2.710 0.695 25.640 23.511 0.636 2.710 

MG/PACE-TC1 0.759 0.269 35.380 2.735 0.696 25.460 23.435 0.668 2.850 

Baseline-TC3 0.283 0.011 3.800 1.321 0.003 0.210 13.713 0.444 3.230 

MG/PACE-TC3  1.061 0.426 40.170 4.146 1.283 30.940 17.149 1.008 5.880 
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Table 4.4  MG Benchmark: Sensitivity Factors 

AUT STC1 STC2 STC3 Salloc 

MGA2 3.793 7.873 38.234 16.633 

MGA4 2.445 38.961 68.342 36.583 

MGA8 0.915 134.980 395.385 177.093 

MGA16 1.152 n/a 9.746 5.449 

MGA32 1.032 n/a 39.691 20.361 

          

MGB2 4.212 6.204 18.020 9.479 

MGB4 1.345 25.321 39.941 22.202 

MGB8 1.096 238.104 258.775 165.992 

MGB16 1.130 n/a 9.157 5.143 

MGB32 1.002 n/a 462.480 231.741 

          

MGC2 1.588 2.292 14.233 6.038 

MGC4 0.652 4.683 3.842 3.059 

MGC8 1.000 28.385 13.969 14.451 

MGC16 0.887 n/a 3.609 2.248 

MGC32 1.048 n/a 2.277 1.662 

 

Based on the statistical data, sensitivity factors were computed for TC1, TC2 and 

TC3. An average of these quantities was taken to arrive at a single sensitivity factor for 

core allocation, Salloc. Allocation sensitivity factors thus obtained for MG benchmark are 

shown in Table 4.4. 

 

The allocation sensitivity factors computed for MG, in general, show an 

increasing trend with scaling up to 8-cores, then drop for 16-cores and then show an 

increase for 32-cores. With this varying trend, it is not possible to generalize the 

allocation sensitivity factor, Salloc, as the individual sensitivity factors (STC1, STC2 and 

STC3) contribute differently to affect the trend. 

 

LU Benchmark runs: 

Figure 4.11 above shows the baseline and sensitivity runtimes of LU Class C 2-

core run. As seen with MG, the TC1 baseline runtime was not the lowest and remained 

higher (about 17%) than TC2 and TC3 baseline runtimes. In this case, TC2 baseline 

runtime was the lowest and TC3 runtime was slightly higher than TC2. In Class A and 
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Class B problems for 2-core runs, TC1 was 4% (Class A) and 28% (Class B) higher than 

its baseline. 

 

Figure 4.11  2-core allocations: Baseline and Sensitivity runtimes of LU Class C  

 

Under loaded condition, for LU Class C 2-core run (sensitivity test), TC1 runtime 

was slightly higher compared to its baseline. TC2 and TC3 runtimes were about 3% 

higher than their respective baselines. In Class A and Class B problems, for 2-core runs, 

TC1 runtime was 3% higher than its respective baselines. TC2 was 4% (Class A) and 5% 

(Class B) higher than its baseline while TC3 was 10% (Class A) and 8% (Class B) higher 

than its baseline. This shows that with increasing problem size, the sensitivity of LU 2-

core runs, in general, showed decreasing sensitivity to network communication load for 

TC2 and TC3 allocations. 

  

Figure 4.12 above shows the baseline and sensitivity runtimes of LU Class C 4-

core run. TC2 and TC3 baseline runtimes remained the same. Again in this case, TC1 

baseline runtime was not the lowest and remained higher (about 68%) than TC2 and TC3 
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baseline runtimes. In Class A and Class B problems for 4-core runs, TC1 was 7% (Class 

A) and 31% (Class B) higher than its respective baselines. 

 

Figure 4.12  4-core allocations: Baseline and Sensitivity runtimes of LU Class C 

 

Under loaded condition, for LU Class C 4-core run (sensitivity test), TC1 runtime 

was slightly lower compared to its baseline which is somewhat counter-intuitive and the 

reason for this needs further investigation in future studies. TC2 runtime was about 17% 

higher than its baseline and TC3 runtime was about 9% higher than its baseline.  

 

In Class A and Class B problems, for 4-core runs, TC1 runtime was almost 

similar to its respective baselines. TC2 was 36% (Class A) and 20% (Class B) higher than 

its baseline while TC3 was 26% (Class A) and 12% (Class B) higher than its baseline. 

This shows that with increasing problem size, the sensitivity of LU 4-core runs, showed 

decreasing sensitivity to network communication load for TC2 and TC3 allocations. 
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Figure 4.13  8-core allocations: Baseline and Sensitivity runtimes of LU Class C 

 

The baseline and sensitivity runtimes of LU Class C problem run on 8 cores are 

shown in Figure 4.13 above. TC2 and TC3 baseline runtimes remained very similar. As 

seen before, TC1 baseline runtime was not the lowest and remained higher (about 48%) 

than TC2 and TC3 baseline runtimes. However, in Class A and Class B problems TC1 

baseline runtimes were different from this observation. In Class A 8-core runs, TC1 

baseline runtime was about the same as TC2 or TC3. In Class B 8-core runs, TC1 

baseline runtime was lower than TC2 or TC3 baselines. 

 

Under loaded condition, for LU Class C 8-core run (sensitivity test), TC1 runtime 

was similar to its baseline, suggesting that it was insensitive. TC2 runtime was about 14% 

higher than its baseline and TC3 runtime was about 10% higher than its baseline.  

 

In Class A and Class B problems, for 8-core runs, TC1 runtimes were almost 

similar to their respective baselines. TC2 was about 25% (for both Class A and Class B) 

higher than its baseline while TC3 was about 63% (for both Class A and Class B) higher 
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than its baseline. This shows that with increasing problem size, mainly from size B to C, 

the sensitivity of LU 8-core runs, showed decreasing sensitivity to network 

communication load for TC2 and TC3 allocations. 

 

Figure 4.14  16-core allocations: Baseline and Sensitivity runtimes of LU Class C 

 

The baseline and sensitivity runtimes of LU Class C problem run on 16 cores are 

shown in Figure 4.14 above. TC1 baseline runtime was higher (about 6%) than TC3. In 

Class A and Class B problems also TC1 baseline runtimes were slightly higher than TC3.  

 

For sensitivity tests, TC1 of LU Class C 16-core run was similar to its baseline, 

suggesting that it was insensitive. TC3 runtime was about 14% higher than its baseline. In 

Class A and Class B problems, for 16-core runs, TC1 runtimes were similar to their 

respective baselines (i.e. remained insensitive). TC3 was about 162% (Class A) and 43% 

(Class B) higher than its respective baselines. 

 

The baseline and sensitivity runtimes of LU Class C problem run on 32 cores are 

shown in Figure 4.15 above. TC1 baseline runtime was higher (about 21%) than TC3. In 
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Class A problem TC1 baseline runtimes was similar to TC3, while in Class B, TC1 

baseline runtime was about 52% higher than TC3.  

 

Figure 4.15  32-core allocations: Baseline and Sensitivity runtimes of LU Class C 

 

For sensitivity tests, TC1 of LU Class C 32-core run was similar to its baseline, 

suggesting that it was insensitive. TC3 runtime was about 15% higher than its baseline. 

 

In Class A and Class B problems, for 16-core runs, TC1 runtimes were similar to 

their respective baselines (i.e. remained insensitive). TC3 was about 155% (Class A) and 

90% (Class B) higher than its respective baselines. 

 

Summary of LU Benchmark runs:  

Based on the data obtained for LU benchmark runs, the following observations 

were made: 

• Similar to what was seen with MG benchmark, and in contrast to the general 

intuition that TC1 allocation would yield the best (lowest) runtime, the results of 
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LU benchmark runs show that TC1 baseline runtime was not the lowest. It turned 

out that TC2 or TC3 yielded much lower runtimes than TC1.  

• For 8-core, 16-core, and 32-core runs, TC1 (contiguous core allocation) remained 

insensitive (as seen with EP and MG runs). This is due to the fact that the 

allocated cores are all from adjacent cores/nodes and are not influenced by 

network communication load on other cores in the system. 

• 4-core TC1 runs, even though the other cores in the nodes were loaded with 

PACE, showed insensitivity. In fact, for Class C problem, there was some slight 

improvement in runtime (lower than baseline) under loaded condition.  

• 2-core TC1 runs, showed sensitivity for network communication load. This is 

somewhat intuitive since the other cores in the nodes were loaded with PACE. 

 

A statistical summary of the runtime data collected for LU benchmark runs, both 

for baseline and under network loaded condition (LU/PACE) are shown in Table 4.5. For 

each problem size (Class A, B, and C), mean, standard deviation, and coefficient of 

variation (COV) of the runtime are shown for different core allocations, TC1, TC2 and 

TC3. 

 

Based on the statistical data, sensitivity factors were computed for TC1, TC2 and 

TC3. An average of these quantities was taken to arrive at a single sensitivity factor for 

core allocation, Salloc. Allocation sensitivity factors thus obtained for LU benchmark are 

shown in Table 4.6. 

 

The allocation sensitivity factors computed for LU Class A and Class B show an 

increasing trend with scaling. However, Class C shows a mixed trend of decrease and 

increase. Again, the individual sensitivity factors (STC1, STC2 and STC3) contribute 

differently to affect the trend of the allocation sensitivity factor, Salloc. 
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Table 4.5  Statistical Data of LU Benchmark Runs 

Test Case 

Class A Class B Class C 

xmean 

(sec) 
σ 
(sec) 

COV 
xmean 

(sec) 
σ 
(sec) 

COV 
xmean 

(sec) 
σ 
(sec) 

COV 

LU2                   

Baseline-TC1  58.953 0.037 0.060 306.380 1.530 0.500 1423.200 2.290 0.160 

LU/PACE-TC1 60.751 0.099 0.160 315.620 0.918 0.290 1441.100 3.460 0.240 

Baseline-TC2 56.869 0.039 0.070 238.680 0.379 0.160 1213.600 1.680 0.140 

LU/PACE-TC2  58.963 0.097 0.160 250.240 0.587 0.230 1247.700 4.130 0.330 

Baseline-TC3 58.842 0.046 0.080 244.560 0.752 0.310 1219.700 2.000 0.160 

LU/PACE-TC3 64.613 0.548 0.850 263.020 1.100 0.420 1260.500 4.790 0.380 

LU4                   

Baseline-TC1  31.638 0.018 0.060 171.320 0.342 0.200 893.150 1.670 0.190 

LU/PACE-TC1 31.830 0.036 0.110 173.590 0.380 0.220 881.950 1.710 0.190 

Baseline-TC2 29.683 0.047 0.160 130.500 0.074 0.060 531.900 1.640 0.310 

LU/PACE-TC2  40.537 0.713 1.760 156.380 0.668 0.430 622.860 2.040 0.330 

Baseline-TC3 29.421 0.043 0.140 130.060 0.123 0.090 532.630 2.250 0.420 

LU/PACE-TC3 37.002 0.637 1.720 145.710 0.949 0.650 580.480 2.590 0.450 

LU8                   

Baseline-TC1  15.715 0.033 0.210 65.805 0.044 0.070 392.250 1.480 0.380 

LU/PACE-TC1 15.705 0.028 0.180 65.819 0.048 0.070 391.880 1.140 0.290 

Baseline-TC2 15.560 0.059 0.380 67.143 0.078 0.120 265.080 0.597 0.230 

LU/PACE-TC2  25.758 1.279 4.970 85.254 1.237 1.450 301.010 1.340 0.450 

Baseline-TC3 15.222 0.066 0.430 66.104 0.117 0.180 262.620 0.319 0.120 

LU/PACE-TC3 24.755 1.220 4.930 81.877 1.125 1.370 288.810 1.350 0.470 

LU16                   

Baseline-TC1  8.502 0.041 0.480 37.680 0.034 0.090 144.480 0.402 0.280 

LU/PACE-TC1 8.497 0.037 0.440 37.693 0.040 0.110 144.550 0.436 0.300 

Baseline-TC3 8.161 0.031 0.380 35.475 0.082 0.230 136.810 0.101 0.070 

LU/PACE-TC3 21.384 1.635 7.650 50.716 1.196 2.360 155.280 0.865 0.560 

LU32                   

Baseline-TC1  5.872 0.037 0.630 30.956 1.511 4.880 96.170 0.929 0.970 

LU/PACE-TC1 5.863 0.031 0.520 30.636 1.579 5.160 96.054 1.002 1.040 

Baseline-TC3 5.832 0.039 0.670 20.425 0.077 0.380 79.267 0.756 0.950 

LU/PACE-TC3 15.313 2.495 16.290 38.890 1.631 4.190 91.193 1.060 1.160 
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Table 4.6 LU Benchmark: Sensitivity Factors 

AUT STC1 STC2 STC3 Salloc 

LUA2 2.748 2.370 11.667 5.595 

LUA4 1.844 15.022 15.451 10.773 

LUA8 0.857 21.651 18.645 13.718 

LUA16 0.916 n/a 52.748 26.832 

LUA32 0.824 n/a 63.842 32.333 

          

LUB2 0.597 1.507 1.457 1.187 

LUB4 1.115 8.588 8.091 5.931 

LUB8 1.000 15.343 9.427 8.590 

LUB16 1.223 n/a 14.669 7.946 

LUB32 1.046 n/a 20.995 11.020 

          

LUC2 1.519 2.423 2.454 2.132 

LUC4 0.987 1.247 1.168 1.134 

LUC8 0.762 2.222 4.307 2.430 

LUC16 1.072 n/a 9.080 5.076 

LUC32 1.071 n/a 1.405 1.238 

 

PSTSWM Benchmark runs: 

Figure 4.16 shows the baseline and sensitivity runtimes of PSTSWM 2-core job 

for TC1, TC2, and TC3 allocations. TC1 showed a (about 20%) higher baseline runtime 

when compared to TC2 (as seen with MG and LU runs). However, in this case, TC3 

baseline runtime was the highest (about 128% higher than TC2). TC1 was in-between 

TC2 and TC3. 

 

Under sensitivity test, TC1 and TC2 runtimes were slightly higher when 

compared to their baselines, suggesting slight sensitivity. TC3 runtime was about 66% 

higher than its baseline. 

 

Figure 4.17 shows the baseline and sensitivity runtimes of PSTSWM 4-core job 

for TC1, TC2, and TC3 allocations. In this case, TC1 showed the least baseline runtime. 

Both TC2 and TC3 baseline runtimes were similar and about 70% higher than TC1 

baseline. 
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Figure 4.16  2-core allocations: Baseline and Sensitivity runtimes of PSTSWM 

 

Figure 4.17  4-core allocations: Baseline and Sensitivity runtimes of PSTSWM 
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Under sensitivity test, TC1 runtime was similar to its baseline, suggesting 

insensitivity. TC2 runtime was about 75% higher than its baseline while TC3 runtime 

was 98% higher than its baseline. 

 

Figure 4.18  8-core allocations: Baseline and Sensitivity runtimes of PSTSWM 
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Figure 4.19  16-core allocations: Baseline and Sensitivity runtimes of PSTSWM 

 

Figure 4.19 shows the baseline and sensitivity runtimes of PSTSWM 16-core job 

for TC1 and TC3 allocations. TC1 baseline runtime was the lowest and TC3 baseline 

runtime was about 178% higher than TC1. 

 

Under sensitivity test, TC1 runtime was similar to its baseline, suggesting 

insensitivity. TC2 runtime was about 196% higher than its baseline runtime. 

 

Figure 4.20 shows the baseline and sensitivity runtimes of PSTSWM 16-core job 

for TC1 and TC3 allocations. TC1 baseline runtime was the lowest and TC3 baseline 

runtime was about 126% higher than TC1. 

 

Under sensitivity test, TC1 runtime was similar to its baseline, suggesting 

insensitivity. TC2 runtime was about 121% higher than its baseline runtime. 
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Figure 4.20  32-core allocations: Baseline and Sensitivity runtimes of PSTSWM 

 

Summary of PSTSWM Benchmark runs:  
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Table 4.7  Statistical Data of PSTSWM Benchmark Runs 

Test Case 
xmean 

(sec) 
σ (sec) COV 

PSTSWM2       

Baseline-TC1  1303.400 2.420 0.190 

PSTSWM/PACE-TC1 1327.800 3.170 0.240 

Baseline-TC2 1087.500 2.140 0.200 

PSTSWM/PACE-TC2  1122.000 3.310 0.300 

Baseline-TC3 2475.400 2.460 0.100 

PSTSWM/PACE-TC3 4109.200 8.930 0.220 

PSTSWM4       

Baseline-TC1  804.640 0.799 0.100 

PSTSWM/PACE-TC1 782.060 1.530 0.200 

Baseline-TC2 1379.900 1.100 0.080 

PSTSWM/PACE-TC2  2412.900 10.100 0.420 

Baseline-TC3 1390.800 1.990 0.140 

PSTSWM/PACE-TC3 2750.800 9.810 0.360 

PSTSWM8       

Baseline-TC1  349.110 0.564 0.160 

PSTSWM/PACE-TC1  349.340 1.050 0.300 

Baseline-TC2 1084.200 11.300 1.040 

PSTSWM/PACE-TC2  3294.800 19.400 0.590 

Baseline-TC3 1098.000 9.240 0.840 

PSTSWM/PACE-TC3 3282.700 21.100 0.640 

PSTSWM16       

Baseline-TC1  302.600 0.452 0.150 

PSTSWM/PACE-TC1  303.310 1.760 0.580 

Baseline-TC3 843.420 5.600 0.660 

PSTSWM/PACE-TC3  2499.000 17.300 0.690 

PSTSWM32       

Baseline-TC1  293.300 0.465 0.160 

PSTSWM/PACE-TC1  293.050 0.340 0.120 

Baseline-TC3 661.710 6.330 0.960 

PSTSWM/PACE-TC3  1466.700 17.300 1.180 

 

Based on the statistical data, sensitivity factors were computed for TC1, TC2 and 

TC3. An average of these quantities was taken to arrive at a single sensitivity factor for 

core allocation, Salloc. Allocation sensitivity factors thus obtained for PSTSWM 

benchmark are shown in Table 4.8. 
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Table 4.8 PSTSWM Benchmark: Sensitivity Factors 

AUT STC1 STC2 STC3 Salloc 

PSTSWM2 1.287 1.548 3.652 2.162 

PSTSWM4 1.944 9.180 5.086 5.403 

PSTSWM8 1.876 1.724 2.278 1.959 

PSTSWM16 3.876 n/a 3.098 3.487 

PSTSWM32 0.749 n/a 2.724 1.737 

 

The allocation sensitivity factors computed for PSTSWM show an increasing 

trend with scaling up to 4-cores, then drop for 8-cores and then show an increase for 16-

cores, and then drops again for 32-cores. With this varying trend, it is not possible to 

generalize the allocation sensitivity factor, Salloc, as the individual sensitivity factors 

(STC1, STC2 and STC3) contribute differently to affect the trend. 

4.3. Overall Summary 

From the data analysis performed on the runtime data collected for NAS and 

PSTSWM benchmarks, under different test scenarios (core allocations), the overall 

results can be summarized as follows:  

• For EP benchmark, the runtimes at network loaded conditions were not truly 

insensitive for certain cases (EP 8-core, 16-core and 32-core TC2 and TC3 cases). 

This shows that for these cases when PACE is loading the network, EP could be 

competing with the entire system thereby making it sensitive to network 

communication load. 

• For EP, MG, and LU benchmarks, TC1 (contiguous core allocation test case) 

remained insensitive under network loaded conditions for 8-core, 16-core, and 32-

core runs. This is due to the fact that the allocated cores are all from adjacent 

cores/nodes and are not influenced by network communication load on other 

cores in the system. In the case of PSTSWM, TC1 remained insensitive 

irrespective of scaling or number of cores. 

• In contrast to the general intuition that TC1 allocation would yield the best 

(lowest) runtime, the results of MG and LU benchmark runs show that TC1 

baseline runtime, in fact, was not the lowest. It turned out that TC2 or TC3 
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yielded much lower runtimes than TC1. This gives a unique perspective of how 

even baseline runs (without additional network communication load), in some 

cases, might be non-intuitive in MCMP systems. One possibility why TC1 was 

not the lowest could be due to contention of resources (such as a common cache) 

between contiguous cores, which again could be due to the core-level 

architectural differences. The exact reason why TC1 was not the lowest needs 

further investigation and beyond the scope of this study.  

 

Table 4.9 Sensitivity Factors of AUTs grouped under bins 

AUT 
Less 
Sensitive     
(S < 5) 

Moderately 
Sensitive       
(5 ≤ S ≥ 20) 

Highly 
Sensitive   
(S > 20) 

EPA2,4 x     

EPA8,16,32     x 

EPB2,4 x     

EPB8   x   

EPB16,32     x 

EPC2,4,8 x     

EPC16   x   

EPC32     x 

        

MGA2,16   x   

MGA4,8,32     x 

MGB2,16   x   

MGB4,8,32     x 

MGC2,8   x   

MGC4,16,32 x     

        

LUA2,4,8   x   

LUA16,32     x 

LUB2 x     

LUB4,8,16,32   x   

LUC2,4,8,32 x     

LUC16   x   

        

PSTSWM2,,8,16,32 x     

PSTSWM4   x   

 

 



 

 

68 

• Appropriate sensitivity metrics such as coefficients of mean (COM) and ratio of 

variations (ROV) were determined and based on these metrics, sensitivity factors 

were computed for each application under different core allocation test cases 

(TC1, TC2 and TC3). 

• From the results, it can be concluded that the sensitivity model used in single-

processor machines, still holds on multi-core machines, which showed varying 

levels of sensitivity for parallel applications depending on the core allocation. 

• The parallel applications (AUTs) tested in the current study can be grouped based 

on the level of sensitivity (less, moderate or high) as shown in Table 4.9. This 

information can be an important input for schedulers to allocate these applications 

properly in MCMP systems. 

• In general, from single-processor machines results (Evans, 2005), the parallel 

applications can be ranked in the order of least to most sensitive: EP, LU, MG, 

and PSTSWM. In MCMP systems, based on the results of this study, the 

sensitivity is dependent on both the problem type and size. For a given problem 

type, in general, the sensitivity decreases as the problem size increases. 
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CHAPTER 5. CONCLUSION AND FUTURE WORK 

5.1. Conclusion 

The growth of parallel applications has been significant in the recent years and 

poised to grow even more in the coming years. This offers exciting and promising 

innovations both in the software and hardware development. At the same time, the 

growth brings enough challenges for researchers to make sure parallel applications run as 

intended. It is important to understand how these applications perform, with the existing 

network conditions and loads, on parallel computers such as a cluster environment. 

 

In this study, the focus was on parallel application performance on MCMP 

systems. Previously developed sensitivity model for single-processor machines was 

adopted in this research to study parallel applications on a MCMP system. The runtime 

sensitivity of parallel applications such as NAS and PSTSWM benchmarks were studied 

by applying a specific network communication load and by varying the core allocations. 

Three different core allocation policies were employed to capture the runtime variations. 

Each test case (core allocation) was designed based on the “distance” between the 

number cores used for running the applications. Several iterations were run for each test 

case to gather statistically significant runtime data. 

 

Based on the various tests conducted, the following are the findings of this study: 

• Parallel applications showed runtime sensitivity due to network communication 

load on MCMP system. Therefore, the sensitivity model developed for single-core 

single-processor machines still holds for MCMP systems. 

• The results of the sensitivity tests indicate that the parallel applications run on 

MCMP systems exhibit varying sensitivity based on core allocation and problem 

size as discussed in Chapter 4. 
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• It was found that EP benchmark was not behaving as per definition, since in some 

cases; it exhibited sensitivity as discussed in Section 4.2. 

• It was also found that the contiguous core allocation policy (TC1) was not the best 

strategy (to get least runtime) for some applications (For example, MG and LU). 

• A single allocation sensitivity factor was computed for each parallel application 

based on several core allocations for a given number of cores. 

• The sensitivity factors obtained for the parallel applications tested in this study 

were categorized based on their values (less sensitive vs. moderately or highly 

sensitive).  

 

The information obtained from this study can be a useful input for job schedulers 

to properly allocate parallel applications on MCMP systems. In addition, the information 

on runtime sensitivity could provide new insights for parallel application programmers, 

system administrators and hardware architectural designers to optimize application 

runtime under network communication loaded scenarios and achieve the desired scale-up 

with MCMP systems. 

5.2. Future work 

The following topics could be investigated as part of future work to this current 

study: 

• The results of this current study indicate EP benchmark does not truly behave as 

EP since it showed sensitivity to network communication load in some cases 

when the core allocations are set to be wide apart. By employing a few more core 

allocation policies, apart from what was done, and by looking at how EP works at 

the core level (inter-core communication) could provide useful information.  

• In many cases, it was found that the contiguous core allocation strategy (TC1) 

was not the best way to run a baseline, rather, distributing the job on non-

contiguous cores yielded lower runtimes. This could be investigated further to 

understand what causes this behavior. 
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• In some cases, it was found that loaded case of TC1 showed improved 

performance compared to its baseline run. This is an interesting observation and 

more detailed investigation could be conducted to better under this phenomenon. 

• The sensitivity factors computed, in some cases, seem to be slightly skewed 

thereby producing large values. An alternate method, addressing any anomalies 

with the individual statistical components, could be developed. One possible 

method for calculating sensitivity factor that may be used is shown below: 

D./ =	
∣
F1234	5GHI5
F1234	5J	HI5

∣

∣
F1234	6G	HI6
F1234	6J	HI6

∣
	
01234	5
01234	6

   (Eq.5.1) 

From Statistics, KLMNO	 + 	2Q and KLMNO	 − 	2Q represent the upper and lower 

limits respectively covering 95% of the data spread. The ratio of these two 

quantities represents the ratio of the data variation in the context of the value of 

mean. This method, however, needs to be thoroughly tested and confirmed for 

different possible scenarios. 

 

 

 

 

 

 

 

 

 



72 

 

LIST OF REFERENCES 

 



72 

 

LIST OF REFERENCES 

Anderson, J. M., Berc, L. M., Dean, J., Ghemawat, S., Henzinger, M. R., Leung, S. T. A., 
Sites, R. L., et al. (1997). Continuous profiling: where have all the cycles gone? 
ACM SIGOPS Operating Systems Review, 31(5), 1-14. 

 

Anderson, T. E., Culler, D. E., & Patterson, D. (1995). A case for NOW (Networks of 
Workstations). IEEE micro, 15(1), 54–64. 

 

Bailey, D., Harris, T., Saphir, W., Van Der Wijngaart, R., Woo, A., & Yarrow, M. 
(1995a). The NAS parallel benchmarks 2.0. 

 

Bailey, D., Harris, T., Saphir, W., Van Der Wijngaart, R., Woo, A., & Yarrow, M. 
(1995b). The NAS parallel benchmarks 2.0 ( No. Report NAS-95-020). 

 

Berman, F., & Wolski, R. (1996). Scheduling from the perspective of the application. 
Proceedings of the Fifth IEEE Symposium on High Performance Distributed 

Computing HPDC96 (pp. 100–111). 
 

Bode, B., Halstead, D. M., Kendall, R., Lei, Z., & Jackson, D. (2000). The portable batch 
scheduler and the maui scheduler on linux clusters. Proceedings of the 4th Annual 

Linux Showcase and Conference- Volume 4 (pp. 27–27). Atlanta, Georgia: USENIX 
Association. 

 

Calzarossa, M., Massari, L., & Tessera, D. (2004). A methodology towards automatic 
performance analysis of parallel applications. Parallel Computing, 30(2), 211-
223. doi:10.1016/j.parco.2003.08.002 

 

Carter, J., He, Y., Shalf, J., Shan, H., Strohmaier, E., & Wasserman, H. (2007). The 
Performance Effect of Multi-core on Scientific Applications. Lawrence Berkeley 
National Laboratory. LBNL Paper LBNL-62662.  



73 

 

Chai, L., Gao, Q., & Panda, D. K. (2007). Understanding the Impact of Multi-Core 
Architecture in Cluster Computing: A Case Study with Intel Dual-Core System. 
Seventh IEEE International Symposium on Cluster Computing and the Grid 

(CCGrid  ’07) (pp. 471-478). Presented at the Seventh IEEE International 
Symposium on Cluster Computing and the Grid, Rio de Janeiro, Brazil. 
doi:10.1109/CCGRID.2007.119 

 

Datta, K., Murphy, M., Volkov, V., Williams, S., Carter, Jonathan, Oliker, L., Patterson, 
David, et al. (2008). Stencil computation optimization and auto-tuning on state-
of-the-art multicore architectures. 2008 SC - International Conference for High 

Performance Computing, Networking, Storage and Analysis (pp. 1-12). Presented 
at the 2008 SC - International Conference for High Performance Computing, 
Networking, Storage and Analysis, Austin, TX, USA. 
doi:10.1109/SC.2008.5222004 

 

Dinda, P. A. (2002). A prediction-based real-time scheduling advisor. Proceedings 16th 

International Parallel and Distributed Processing Symposium (pp. 10-17). 
Presented at the 16th International Parallel and Distributed Processing 
Symposium. IPDPS 2002, Ft. Lauderdale, FL, USA. 
doi:10.1109/IPDPS.2002.1015480 

 

Evans, J. J. (2005, December). Modeling Parallel Application Sensitivity to Network 

Performance. Doctoral Thesis, Illinois Institute of Technology, Chicago, Illinois. 
 

Evans, J. J., & Hood, C. S. (2011). A Network Performance Sensitivity Metric for 
Parallel Applications. International Journal of High Performance Computing and 

Networking, 7, Number 1, 8-18. 
 

Evans, J. J., & Hood, C. S. (2005). Network performance variability in NOW clusters. 
CCGrid 2005. IEEE International Symposium on Cluster Computing and the 

Grid, 2005. (pp. 1047-1054). Presented at the CCGrid 2005. IEEE International 
Symposium on Cluster Computing and the Grid, 2005., Cardiff, Wales, UK. 
doi:10.1109/CCGRID.2005.1558676 

 

Evans, J. J., & Hood, C. S. (2006). PARSE: A Tool for Parallel Application Run Time 
Sensitivity Evaluation. 12th International Conference on Parallel and Distributed 

Systems - (ICPADS’06) (pp. 475-484). Presented at the 12th International 
Conference on Parallel and Distributed Systems - (ICPADS’06), Minneapolis, 
MN, USA. doi:10.1109/ICPADS.2006.78 

 

Feng, W. (2005). The importance of being low power in highperformance computing. 
Cyberinfrastructure Technology Watch (CTWatch), 3. 

 



74 

 

Hall, J., Sabatino, R., Crosby, S., Leslie, I., & Black, R. (1997). Counting the cycles: a 
comparative study of NFS performance over high speed networks. 22nd Annual 

Conference on Local Computer Networks (LCN’97) (pp. 8-19). Minneapolis, MN, 
USA. 

 

Hennessy, J. L., & Patterson, D. A. (1996). Computer Architecture: A Quantitative 

Approach.  Morgan Kaufmann, 1996. 
 

Intel shows off 80-core processor - CNET News. (2007, February). 
http://news.cnet.com/Intel-shows-off-80-core-processor/. Retrieved May 5, 2010, 
from http://news.cnet.com/Intel-shows-off-80-core-processor/2100-1006_3-
6158181.html 

 

Jain, R. (1991). The Art of Computer Systems Performance Analysis. 1991. John Wiley, 
New York. 

 

Jin, H., Hood, R., Chang, J., Djomehri, J., Jespersen, D., Taylor, K., Biswas, R., et al. 
(2009). Characterizing Application Performance Sensitivity to Resource 

Contention in Multicore Architectures ( No. NAS Technical Report NAS-09-
002). Citeseer. 

 

Kaiser, H., Brodowicz, M., & Sterling, T. (2009). ParalleX An Advanced Parallel 
Execution Model for Scaling-Impaired Applications. 2009 International 

Conference on Parallel Processing Workshops (pp. 394-401). Presented at the 
2009 International Conference on Parallel Processing Workshops (ICPPW), 
Vienna, Austria. doi:10.1109/ICPPW.2009.14 

 

Majumdar, S., & Yiu Ming Leung. (1994). Characterization of applications with I/O for 
processor scheduling in multiprogrammed parallel systems. Proceedings of 1994 

6th IEEE Symposium on Parallel and Distributed Processing (pp. 298-307). 
Presented at the 1994 6th IEEE Symposium on Parallel and Distributed 
Processing, Dallas, TX, USA. doi:10.1109/SPDP.1994.346154 

 

Maui Scheduler - Administrator’s Guide. Retrieved from 
http://www.adaptivecomputing.com/resources/docs/maui/mauiadmin.php 

 

MPICH2 : about MPICH2. Retrieved from 
http://www.mcs.anl.gov/research/projects/mpich2/about/index.php?s=about 

 

Ni, L. M., & Tail, K. C. (1990). Special issue on software tools for parallel programming 
and visualization: Guest editors’ introduction. Journal of Parallel and Distributed 

Computing, 9(2), 101–102. 



75 

 

Saini, S., & Bailey, D. H. (1996). NAS parallel benchmark (version 1.0) results 11-96 ( 
No. Report NAS-96-18). 

 

Singh, J. P., Rothberg, E., & Gupta, A. (1994). Modeling communication in parallel 
algorithms: A fruitful interaction between theory and systems? Proceedings of the 

sixth annual ACM symposium on Parallel algorithms and architectures (pp. 189-
199). New Jersey, United States. 

 

Sinnen, O., Sousa, L. A., & Sandnes, F. E. (2006). Toward a realistic task scheduling 
model. IEEE Transactions on Parallel and Distributed Systems, 17(3), 263-275. 
doi:10.1109/TPDS.2006.40 

 

Sivasubramaniam, A. (1997). Execution-driven simulators for parallel systems design. 
Proceedings of the 29th conference on Winter simulation  - WSC  ’97 (pp. 1021-
1028). Presented at the the 29th conference, Atlanta, Georgia, United States. 
doi:10.1145/268437.268735 

 

Smith, M. C., Vetter, J. S., & Xuejun Liang. (2005). Accelerating Scientific Applications 
with the SRC-6 Reconfigurable Computer: Methodologies and Analysis. 19th 

IEEE International Parallel and Distributed Processing Symposium (p. 157b-
157b). Presented at the 19th IEEE International Parallel and Distributed 
Processing Symposium, Denver, CO, USA. doi:10.1109/IPDPS.2005.75 

 

Sun, X. H., & Chen, Y. (2009). Reevaluating Amdahl’s law in the multicore era. Journal 

of Parallel and Distributed Computing, 70(2), 183-188. 
doi:10.1016/j.jpdc.2009.05.002. 

 

“TOP500 Supercomputing Sites”. http://www.top500.org/. 
 

Veeraraghavan, P. P., & Evans, J. J. (2010). Parallel Application Communication 
Performance on Multi-Core High Performance Computing Systems. IASTED 

International Conference Proceedings. Presented at the Informatics 2010, Marina 
del Rey, USA. doi:10.2316/P.2010.724-059 

 

Woo, S. C., Ohara, M., Torrie, E., Singh, J. P., & Gupta, A. (1995). The SPLASH-2 
programs: Characterization and methodological considerations. Proceedings of 

the 22nd annual international symposium on Computer architecture (pp. 24–36). 
 

Worley, P. H., & Toonen, B. (1995). A users’ guide to PSTSWM ( No. ORNL Technical 
Report ORNL/TM-12779). ORNL Technical Report ORNL/TM-12779. 



76 

 

APPENDIX 

 

 

 

 

 

 

 
 



76 

 

APPENDIX  

BASELINE AND SENSITIVITY RUNTIME PLOTS OF NAS CLASS A AND B  

 

Figure 0.1 Class A EP2 Baseline and Sensitivity runtimes 
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Figure 0.2 Class A EP4 Baseline and Sensitivity runtimes 

 

Figure 0.3 Class A EP8 Baseline and Sensitivity runtimes 
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Figure 0.4 Class A EP16 Baseline and Sensitivity runtimes 

 

Figure 0.5 Class A EP32 Baseline and Sensitivity runtimes 
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Figure 0.6 Class A MG2 Baseline and Sensitivity runtimes 

 

Figure 0.7 Class A MG4 Baseline and Sensitivity runtimes 
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Figure 0.8 Class A MG8 Baseline and Sensitivity runtimes 

 

Figure 0.9 Class A MG16 Baseline and Sensitivity runtimes 
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Figure 0.10 Class A MG32 Baseline and Sensitivity runtimes 

 

Figure 0.11 Class A LU2 Baseline and Sensitivity runtimes 
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Figure 0.12 Class A LU4 Baseline and Sensitivity runtimes 

 

Figure 0.13 Class A LU8 Baseline and Sensitivity runtimes 
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Figure 0.14 Class A LU16 Baseline and Sensitivity runtimes 

 

Figure 0.15 Class A LU32 Baseline and Sensitivity runtimes 
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Figure 0.16 Class B EP2 Baseline and Sensitivity runtimes 

 

Figure 0.17 Class B EP4 Baseline and Sensitivity runtimes 
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Figure 0.18 Class B EP8 Baseline and Sensitivity runtimes 

 

Figure 0.19 Class B EP16 Baseline and Sensitivity runtimes 
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Figure 0.20 Class B EP32 Baseline and Sensitivity runtimes 

 

Figure 0.21 Class B MG2 Baseline and Sensitivity runtimes 
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Figure 0.22 Class B MG4 Baseline and Sensitivity runtimes 

 

Figure 0.23 Class B MG8 Baseline and Sensitivity runtimes 
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Figure 0.24 Class B MG16 Baseline and Sensitivity runtimes 

 

Figure 0.25 Class B MG32 Baseline and Sensitivity runtimes 
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Figure 0.26 Class B LU2 Baseline and Sensitivity runtimes 

 

Figure 0.27 Class B LU4 Baseline and Sensitivity runtimes 
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Figure 0.28 Class B LU8 Baseline and Sensitivity runtimes 

 

Figure 0.29 Class B LU16 Baseline and Sensitivity runtimes 
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Figure 0.30 Class B LU32 Baseline and Sensitivity runtimes 
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