
Purdue University
Purdue e-Pubs

College of Technology Masters Theses College of Technology Theses and Projects

7-27-2011

Characterization of Parallel Application Runtime
Sensitivity on Multi-core High Performance
Computing Systems
Padma Priya Veeraraghavan
Purdue University, pveerara@purdue.edu

Follow this and additional works at: http://docs.lib.purdue.edu/techmasters
Part of the Computational Engineering Commons, and the Other Electrical and Computer

Engineering Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Veeraraghavan, Padma Priya, "Characterization of Parallel Application Runtime Sensitivity on Multi-core High Performance
Computing Systems" (2011). College of Technology Masters Theses. Paper 49.
http://docs.lib.purdue.edu/techmasters/49

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4954382?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Ftechmasters%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/techmasters?utm_source=docs.lib.purdue.edu%2Ftechmasters%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/techetds?utm_source=docs.lib.purdue.edu%2Ftechmasters%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/techmasters?utm_source=docs.lib.purdue.edu%2Ftechmasters%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/311?utm_source=docs.lib.purdue.edu%2Ftechmasters%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/278?utm_source=docs.lib.purdue.edu%2Ftechmasters%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/278?utm_source=docs.lib.purdue.edu%2Ftechmasters%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages

� � � � � � � � � � 	

 � �
 � �
 � � �� � � � � � � � � � � � � �
� � � � ! " # $ % ! � & ' ! � (! ! � $! � $ �) * � $ % ! (! � " + , % $, (% $ *- '. + ! � ! / $ *0 " % ! � $ * $ 1 % $ $ " &2 (, , % " 3 $ * 4 ' ! � $ & � + (/ $ 5 (6 � + � + 1 # " 6 6 � ! ! $ $ 78 	 � � �
� " ! � $ 4 $! " & 6 ' 9 + " : / $ * 1 $ (+ * (; + * $ % ! " " * 4 ' ! � $! ; * $ + ! � + ! � $ < = > = ? @ A B C D E = F @ G E H ? D IJ K L H @ G F B E M G > A N ? G O = @ P Q @ ? I R ? E = S A B K K N T K @ O U V W X ! � � ! � $ �) * � $ % ! (! � " + (* � $ % $! " ! � $, % " 3 � � " + " &Y ; % * ; $ Z + � 3 $ % � ! ' [\ Y " / � # ' " + 2 + ! $ 1 % � ! ' � +] $ $ (% # � ^ (+ * ! � $; $ " & # " , ' % � 1 � ! $ * 6 (! $ % � (/ _` , , % " 3 $ * 4 ' a (b " % Y % " & $ " % c d 7 ee e` , , % " 3 $ * 4 ' 7 f � � �
 g � 	 � � � � � � � � � h �
 i � � � � � � �

j k l m k j n o p k q r r n k n k s t k u k vw t k n k x y r n o z k y o { v { | j k n k } } r } ~ � � } o x k y o { v � � v y o m r � r v � o y o u o y p { v � � } y o � x { n r � o s t j r n | { n m k v x rw { m � � y o v s � p � y r m � � k � y r n { | � x o r v x r� r | | n r p � � u k v �� k n � � k x � � { v� t { m k � � k x � r n
� r | | n r p � � u k v �� k m r � � � { t } r n � � � � � � � � � �

� � � � � � � � � � 	

 � �
 �
 � �� � � � � � � � � � � � �
� � � � � � � � � ! � ! " # � ! ! � $ � % � � � & '(� $ � �) � * $ � � � � + , - - . / 0 - 1 2 3 / 4 2 / /5 6 � $ � � � 7 � % � � & � � 8 $ � 8 % $ % � � � & � � � � ! � � ! � ! 9 5 % : � � ; ! � $: �) � � 8 $ � : � ! � � & ! � � < = > ? = @ A B C D @ > E C F GH I @ J = F C D @ K @ L M > N B ? = L O M P Q R S S T U � 8 � � V ; � $ W 9 X Y Y X 9 < M Z C J G M B [B F @ \ > C F G C B] @ E @ N > J ^ P _(` $ � � $ 9 5 6 � $ � � � 7 � % � � � ! a � $ b � ! � $ � � � � 8 � % * � % $ � ! V % &) % � � V % � � $ � % � ! % 8 8 � % $ � & * � & � � !� � ! � ! ") � ! ! � $ � % � � � & % : � ; � � & 8 $ � 8 � $ � 7 c ` � � �) % &) % � � $ � ; ` � �) d5 6 � $ � � � 7 � % � % � � 6 � 8 7 $ � * � �) V % � � $ � % � � & 6 � $ 8 � $ % � �) � & � � � � ! � � ! � ! ") � ! ! � $ � % � � � & � ! � & 6 � V 8 � � % & 6 � a � � � �e & � � �) U � % � � ! f 6 � 8 7 $ � * � � % a % &) � % � 5 % : � $ � 6 � � : �) a $ � � � � & 8 � $ V � ! ! � � & � $ � V � � 6 � 8 7 $ � * � � a & � $! � � $V 7 ` ! � � � � � � $ a � $ b 9 a � 6 � ! ; � 7 � &) � � ! 6 � 8 � � � � � � % a d 5 % * $ � � � � � &) � V & � � 7 % &) ! % : � % $ V � � ! !g ` $) ` � e & � : � $! � � 7 � $ � V % & 7 % &) % � � 6 � % � V ! � % � V % 7 ; � % ! ! � $ � �) � $ � % � V % 7 % $ � ! � � $ � V % & 7 6 � 8 7 $ � * �: � � � % � � � & dh hi j k l m n o p q r n q l o s k t l q m u j n v w x q l o k o q m nh hy � � � �

 z � 	 � � � { � { � � � �

| }
 � � � � � � � 	 � � ~ � � � � � � � ~ � � � � � � � � � � ~
 � � � � � � � ~ � � � � � � � � � 	 � � � � �
 � � � � � � 	 � � � � � � 	 �
 �

� �� �

� � � � � � � � � � � � � � � � � � � � � �¡ ¢ £ ¤ ¤ £ ¤ ¡ ¥ ¥

i

 CHARACTERIZATION OF PARALLEL APPLICATION RUNTIME SENSITIVITY
ON MULTI-CORE HIGH PERFORMANCE COMPUTING SYSTEMS

A Thesis

Submitted to the Faculty

of

Purdue University

by

Padma Priya Veeraraghavan

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science

August 2011

Purdue University

West Lafayette, Indiana

 ii

ACKNOWLEDGEMENTS

At the outset, I would like to wholeheartedly thank my advisor Dr. Jeffrey Evans

for providing me an opportunity to work in his research group. He has taught me to how

not to just look at the obvious things but also thoroughly observe, understand, and

analyze the research problem in hand. I would also like to thank him for allowing me to

work and finish the final part of my thesis remotely, as I had to relocate because of family

situation. Without his understanding and support my research would not have been a

reality.

I would like to thank my committee members, Dr. Thomas Hacker and Dr. Mark

Jackson for their time and support for my research work. I also deeply appreciate their

feedback on my thesis. I also want to thank all the professors and teachers who taught me

and helped me to be where I am now.

My special thanks to my beloved husband for his encouragement and support

during this journey and I want to say many thanks to my dad and mom for their love and

affection. Also, I would like to thank my brothers, nieces, nephews, and all my in-laws

for their moral support.

 iii

TABLE OF CONTENTS

 Page

LIST OF TABLES .. v

LIST OF FIGURES ... vi

LIST of ABBREVIATIONS.. ix

ABSTRACT .. x

CHAPTER 1. INTRODUCTION ... 1

1.1. Parallel Computing: An overview .. 1

1.2. Statement of the Problem ... 3

1.3. Significance of the Problem ... 4

1.4. Purpose of the Study ... 5

1.5. Assumptions ... 5

1.6. Limitations .. 6

CHAPTER 2. LITERATURE REVIEW .. 7

CHAPTER 3. METHODOLOGY .. 15

3.1. Introduction .. 15

3.2. Tools used ... 16

3.2.1. PACE .. 16

3.2.2. PARSE ... 19

3.2.3. PBS Resource Manager and Maui Scheduler .. 20

3.2.4. Hydra Process Manager ... 22

3.2.5. MPICH2 ... 23

3.3. Benchmarks used in the study (AUT) .. 23

iv

 Page

3.3.1. NAS Parallel Benchmark ... 23

3.3.2. PSTSWM Benchmark .. 25

3.4. HPC cluster at ACSL .. 26

3.5. Experimental Matrix ... 27

3.6. Sensitivity Factor .. 30

3.7. Experiment Execution .. 31

CHAPTER 4. DATA ANALYSIS AND RESULTS ... 36

4.1. Introduction .. 36

F4.2. Baseline and Sensitivity runtime plots ... 37

4.3. Overall Summary .. 66

CHAPTER 5. CONCLUSION AND FUTURE WORK .. 69

5.1. Conclusion .. 69

5.2. Future work .. 70

LIST OF REFERENCES .. 72

APPENDIX ... 76

v

LIST OF TABLES

Table Page

Table 3.1 Parallel Benchmark Problem Sizes ... 24

Table 3.2 Experimental Matrix .. 29

Table 4.1 Statistical Data of EP Benchmark Runs .. 43

Table 4.2 EP Benchmark: Sensitivity Factors ... 44

Table 4.3 Statistical Data of MG Benchmark Runs ... 51

Table 4.4 MG Benchmark: Sensitivity Factors .. 52

Table 4.5 Statistical Data of LU Benchmark Runs .. 59

Table 4.6 LU Benchmark: Sensitivity Factors .. 60

Table 4.7 Statistical Data of PSTSWM Benchmark Runs ... 65

Table 4.8 PSTSWM Benchmark: Sensitivity Factors... 65

Table 4.9 Sensitivity Factors of AUTs grouped under bins .. 67

 vi

LIST OF FIGURES

Figure Page

Figure 1.1 Computing power growth per Moore’s law .. 1

Figure 1.2 Single core chip vs. multi-core chip ... 2

Figure 2.1 Widening gap between supercomputers and PCs ... 7

Figure 3.1 Hydra Process Management Framework.. 22

Figure 3.2 HP cluster of ACSL .. 27

Figure 3.3 Layout of a HP cluster node with 2 processors of quad-core each 28

Figure 4.1 2-core allocations: Baseline and Sensitivity runtimes of EP Class C 37

Figure 4.2 4-core allocations: Baseline and Sensitivity runtimes of EP Class C 38

Figure 4.3 8-core allocations: Baseline and Sensitivity runtimes of EP Class C 39

Figure 4.4 16-core allocations: Baseline and Sensitivity runtimes of EP Class C 40

Figure 4.5 32-core allocations: Baseline and Sensitivity runtimes of EP Class C 41

Figure 4.6 2-core allocations: Baseline and Sensitivity runtimes of MG Class C 45

Figure 4.7 4-core allocations: Baseline and Sensitivity runtimes of MG Class C 46

Figure 4.8 8-core allocations: Baseline and Sensitivity runtimes of MG Class C 47

Figure 4.9 16-core allocations: Baseline and Sensitivity runtimes of MG Class C 48

Figure 4.10 32-core allocations: Baseline and Sensitivity runtimes of MG Class C 49

Figure 4.11 2-core allocations: Baseline and Sensitivity runtimes of LU Class C 53

Figure 4.12 4-core allocations: Baseline and Sensitivity runtimes of LU Class C 54

Figure 4.13 8-core allocations: Baseline and Sensitivity runtimes of LU Class C 55

Figure 4.14 16-core allocations: Baseline and Sensitivity runtimes of LU Class C 56

Figure 4.15 32-core allocations: Baseline and Sensitivity runtimes of LU Class C 57

 vii

Figure Page

Figure 4.16 2-core allocations: Baseline and Sensitivity runtimes of PSTSWM 61

Figure 4.17 4-core allocations: Baseline and Sensitivity runtimes of PSTSWM 61

Figure 4.18 8-core allocations: Baseline and Sensitivity runtimes of PSTSWM 62

Figure 4.19 16-core allocations: Baseline and Sensitivity runtimes of PSTSWM 63

Figure 4.20 32-core allocations: Baseline and Sensitivity runtimes of PSTSWM 64

Appendix Figure

Figure A.1 Class A EP2 Baseline and Sensitivity runtimes ... 76

Figure A.2 Class A EP4 Baseline and Sensitivity runtimes ... 77

Figure A.3 Class A EP8 Baseline and Sensitivity runtimes ... 77

Figure A.4 Class A EP16 Baseline and Sensitivity runtimes ... 78

Figure A.5 Class A EP32 Baseline and Sensitivity runtimes ... 78

Figure A.6 Class A MG2 Baseline and Sensitivity runtimes.. 79

Figure A.7 Class A MG4 Baseline and Sensitivity runtimes.. 79

Figure A.8 Class A MG8 Baseline and Sensitivity runtimes.. 80

Figure A.9 Class A MG16 Baseline and Sensitivity runtimes.. 80

Figure A.10 Class A MG32 Baseline and Sensitivity runtimes.. 81

Figure A.11 Class A LU2 Baseline and Sensitivity runtimes ... 81

Figure A.12 Class A LU4 Baseline and Sensitivity runtimes ... 82

Figure A.13 Class A LU8 Baseline and Sensitivity runtimes ... 82

Figure A.14 Class A LU16 Baseline and Sensitivity runtimes ... 83

Figure A.15 Class A LU32 Baseline and Sensitivity runtimes ... 83

Figure A.16 Class B EP2 Baseline and Sensitivity runtimes.. 84

Figure A.17 Class B EP4 Baseline and Sensitivity runtimes.. 84

Figure A.18 Class B EP8 Baseline and Sensitivity runtimes.. 85

Figure A.19 Class B EP16 Baseline and Sensitivity runtimes.. 85

 viii

Appendix Figure Page

Figure A.20 Class B EP32 Baseline and Sensitivity runtimes.. 86

Figure A.21 Class B MG2 Baseline and Sensitivity runtimes .. 86

Figure A.22 Class B MG4 Baseline and Sensitivity runtimes .. 87

Figure A.23 Class B MG8 Baseline and Sensitivity runtimes .. 87

Figure A.24 Class B MG16 Baseline and Sensitivity runtimes .. 88

Figure A.25 Class B MG32 Baseline and Sensitivity runtimes .. 88

Figure A.26 Class B LU2 Baseline and Sensitivity runtimes ... 89

Figure A.27 Class B LU4 Baseline and Sensitivity runtimes ... 89

Figure A.28 Class B LU8 Baseline and Sensitivity runtimes ... 90

Figure A.29 Class B LU16 Baseline and Sensitivity runtimes ... 90

Figure A.30 Class B LU32 Baseline and Sensitivity runtimes ... 91

 ix

LIST OF ABBREVIATIONS

MPI Message Passing Interface

HPC High Performance Computing

ACSL Adaptive Computing Systems Laboratory

PACE Parallel Application Communication Emulation

PARSE Parallel Application Runtime Sensitivity Evaluation

AUT Application Under Test

EA Emulated Application

NAS Numerical Aerodynamic Simulation

NPB NAS Parallel Benchmark

EP Embarrassingly Parallel

MG Multi-Grid

LU Lower-Upper symmetric Gauss-Seidel

PSTSWM Parallel Spectral Transform Shallow Water Model

NOW Network of Workstations

MCMP Multi-core Multi-processor

x

ABSTRACT

Veeraraghavan, Padma Priya. M.S., Purdue University, August 2011. Characterization of
Parallel Application Runtime Sensitivity on Multi-core High Performance Computing
Systems. Major Professor: Jeffrey J Evans.

A commonly seen behavior of parallel applications is that their runtime is influenced by

network communication load. The way a parallel application is run in a network and the

presence of other applications and processes in the network can contribute to a wide

range of variations in the runtime. Therefore, in order to achieve consistent and optimal

runtimes, it is important to understand and characterize the runtime sensitivity of parallel

applications with respect to execution under the presence of network communication

load.

In this research, runtime sensitivities for various parallel applications were studied

by applying additional network communication load. In particular, the focus was on the

runtime sensitivity of parallel applications on a multi-core multi-processor (MCMP)

system where less network switching and routing are involved compared to single-core

single-processor machines.

The objective of this work was to determine if a previously developed sensitivity

model for single-core single-processor machines still holds good for multi-core machines.

For this purpose, previously developed tools (PACE and PARSE) were used to perturb

the communication sub-system while executing several parallel application benchmarks

such as the NAS benchmarks and PSTSWM. Runtime variations of these parallel

applications were studied, under a specific network communication load, for different test

cases by changing computing core allocation. A 10-node 80-core cluster was used as the

test bed for this research purpose.

xi

Several test cases were explored using a variety of core allocations (process

locations) for the application under test (AUT) to simulate job scheduler fragmentation.

To ensure statistical significance, several iterations (trial runs) were executed in each test

case. Results indicate that the idea of application sensitivity to communication sub-

system performance degradation holds for MCMP architectures.

1

CHAPTER 1. INTRODUCTION

1.1. Parallel Computing: An overview

In the past couple of decades or so, there has been an increased interest in running

applications using parallel computers. Considering the benefits offered by parallel

computing, and the growth of hardware capability to support parallel computing, this

trend is not surprising. In fact, the highest speeds of advanced supercomputers are

growing at a rate that is exceeding Moore’s Law, which predicts that processor

performance doubles roughly every 18-24 months (Feng, 2005) (Figure 1.1).

Figure 1.1 Computing power growth per Moore’s law

2

The hardware growth to support parallel computing has been substantial in recent

years. Newer systems comprise of many compute nodes, where each node contains more

than 1 processor and each processor contains more than 1 processing “core”. These are

called multi-core multi-processor (MCMP) systems. The constructional difference

between a single and a multi-core CPU chip is illustrated in Figure 1.2.

Figure 1.2 Single core chip vs. multi-core chip

Basically, multi-core architectures consist of several processing units in one chip.

Due to this, they are more cost-effective. In contrast, single core architectures have

physical constraints, in addition to rapidly growing power consumption. Further, they are

more expensive compared to their multi-core counterparts. Considerable amount of

Processor

Multi-core Chip

System Bus

System Memory

CPU

L1 Cache

Core 0

L2 Cache

CPU

L1 Cache

Core 1

L2 Cache

CPU

L1 Cache

Core 3

L2 Cache

CPU

L1 Cache

Core 2

L2 Cache

L3 Cache

CPU

L1 Cache

System Bus

Processor

Single-core Chip

L2 Cache

System Memory

3

research is being done to assess the performance effect of these multi-core machines,

especially on scientific applications (J. Carter et al., 2007).

Nowadays, scientific and engineering applications using numerical techniques

make use of parallel computing more and more. Usage of parallel computers also requires

development of parallel algorithms, programming models, and systems.

Parallel computers, in general, offer good deal of computational power; however

on the downside they pose increased difficulty in programming. In contrast to the growth

of computer peak speed, the scaling of application performance, unfortunately, has not

followed suit. In general, applications do not automatically scale along with the increase

in the number of processors. This puts heavy burden on programming to be used for

parallel computing for the applications to run in the most efficient way. However, a well-

written parallel program alone will not guarantee the expected scale-up of application

runtime performance.

Apart from the programming requirements, one of the important issues that plays

a key role in determining the difference between the expected and actual performance is

the “communication overhead” of parallel applications. Hardware architectural attributes

such as CPU speed, the number of processors, network parameters (network speed), type

of the architecture used (shared or distributed memory), and system and cache memory

can influence the application behavior. It is, therefore, highly imperative to understand

the communication requirements of the application, to achieve the desired performance in

a parallel architecture.

1.2. Statement of the Problem

Network communication plays a key role in determining the performance of a

parallel application. Without properly understanding or characterizing this role, parallel

applications would suffer from inconsistent runtime behavior and therefore, their

performance may become unpredictable. One way to better understand the run time

4

performance of a parallel application under normal system operation is to evaluate its

sensitivity to network communication load. This becomes even more crucial for

repeatedly run applications on a given system. Many times, the focus is more on

expanding the current network, adding more resources or computing power. Recently, the

trend has been to adopt an MCMP system as a quick solution thereby reducing network

switching and routing. However, in MCMP systems, the network communication

becomes more complex because in addition to the communication that takes place

between nodes via switches and routers (network resources), inter-process

communication should also be considered. The inter-process communication is

comprised of inter-core (within a processor) and inter-processor communication within

the same node.

Therefore, it is fair to say that characterization of parallel application runtime

sensitivity has not been thoroughly understood and quantified in MCMP systems. An

empirical estimation is required for this purpose rather than theoretical predictions due to

the fact that it is difficult, if not impossible, to model the spatial, temporal, and intensity

effects of the communication sub-system during the concurrent execution of multiple

parallel applications.

1.3. Significance of the Problem

Depending on the network communication load and processor allocation strategy,

a poorly characterized parallel application would result in inconsistent runtimes. Again,

depending on the problem size, this inconsistency could become very significant. For

example, for a network loaded at 90%, the mean runtime of MG32 from Evans & C. S.

Hood, (2005) was about 4.5 times the baseline (with no additional network loading) and

the run time variability of nearly six times. This variation could result in unpredictable

production time leading to loss of revenue, overbilling, overuse of resources, etc. Further,

this could lead to increased use of energy to power and cool High Performance

Computing (HPC) systems. For example, at Lawrence Livermore National Laboratory,

for every Watt (W) of power consumed by an HPC system, 0.7 W is used for cooling

5

alone. The annual cost to power and cool the HPC system amounts to a total of $14.6

million per year (Feng, 2005). Multiplying this amount by the runtime variability could

result in significant additional cost in terms of energy and money.

Therefore, understanding and characterizing the application sensitivity to existing

network conditions, including inter-core and inter-processor communications, could

become critical for businesses to minimize uncertainty related to application runtimes and

hence save unnecessary operational costs.

1.4. Purpose of the Study

Characterization of parallel application sensitivity is essential to maximize its

performance in existing network and to obtain a more consistent runtime behavior. In a

parallel computing environment, network communication can adversely affect overall

performance in many cases.

In this study, runtime sensitivities of parallel applications were characterized

based on process allocation under an existing network communication load in an MCMP

system by using network load emulation and evaluation tools (PACE and PARSE).

Several parallel applications such as the NAS benchmarks and PSTSWM were tested and

classified based on their runtime sensitivity factors. For each application, several

iterations (trial runs) were run for different test cases (core allocations) and the resulting

runtime variations were plotted and evaluated for sensitivity. The runtime sensitivity

information thus obtained can be an useful input for schedulers for proper job allocation

in order to achieve a more consistent runtime behavior.

1.5. Assumptions

The following are the assumptions of this study:

1. To be statistically significant, each application was run several times (at

least 30 trial runs) to characterize the runtime sensitivity.

6

2. The tools used in the study such as PACE and PARSE are, in general,

applicable to both single and multi-core systems.

3. PACE assumes that the environment is a Linux cluster.

4. The results obtained in this study to most parts can be generalized to

MCMP systems of similar architecture.

1.6. Limitations

The following are the limitations of this study:

1. While the network is loaded, PACE does not communicate at all time, so

there would be an influence from temporal component.

2. One limitation of loading with PACE is that, with increasing scaling, there

is a natural reduction in systemic loading since contribution from PACE

gets reduced.

7

CHAPTER 2. LITERATURE REVIEW

Parallel computers have gained considerable popularity in the recent years since

they offer better performance and capability to handle large scale problems. In the 80’s

the distinction between supercomputers (multi-processor machines), workstations and

PCs was widely known based on their performance. From the mid 90’s, the gap between

supercomputers and PCs (or workstations) has been widening. As pointed out by W.

Feng (2005), with the advent of clustering, the goal of HPC manufacturers and adopters

has been to narrow down this gap.

Figure 2.1 Widening gap between supercomputers and PCs

8

Today’s super computers are essentially massively parallel processors (MPPs) –

computers built using workstation-type nodes interconnected by a low latency and

dedicated network. Anderson et al. (1995) observed that one of the key weaknesses of

MPPs is that they lag behind 1 to 2 years in comparison to workstations that are built

using equivalent parts. Assuming 50% performance improvements per year, this would

lead to more than a factor of two in the bottom-line computational performance. In fact,

clustered Networks of Workstations (NOWs) have become the most rapidly growing

sector of supercomputing (“TOP500 Supercomputing Sites”) and there has been a

growing interest in clustered NOWs comprising of commodity based machines (T. E.

Anderson et al., 1995).

The recent trend in the HPC world has been to move from clustering single-

processor machines to multi-core multi-processor machines (MCMP systems). Kaiser et

al. (2009) predict that the future high end systems will integrate thousands of ‘nodes’,

each comprising many hundreds of cores by means of system area networks. Chip

manufacturing giant, Intel, had announced to produce and release to the market an 80

core processor chip by 2011 (“Intel shows off 80-core processor - CNET News,” 2007).

In general, multi-core architectures prove to be a cost-effective way, since they offer

more computational power through parallel processing. They also utilize less power and

occupy less board space. Chai et al. (2007) observed that the scalability of multi-core

cluster is more promising as compared to single-core cluster.

With the trend moving towards multi-core machines, how valid is the Amdahl’s

law and its assumptions? Amdahl’s law or argument says that the speed up of a code or

program in a parallel computing environment, using multiple processors, is restricted by

the time taken to run the sequential portion or fraction of the code or program. This

becomes debatable with respect to scalability of parallel processing, more so with multi-

core architectures. Sun and Chen (2009) assert that “the fixed-size assumption of

Amdahl’s law is unrealistic and results in pessimistic predictions; this does nothing to

encourage healthy growth in the scale of multicore architectures” (Sun & Chen, 2009, p.

188).

9

Performance improvement of parallel applications running on multi-core

architectures can be a complicated job since it is affected by a large number of variables

or parameters. The performance of parallel computing essentially consists of two levels:

algorithm related and network related. Since the scalability is not automatic, parallel

programming can become cumbersome from algorithmic standpoint to arrive at desired

performance. There are several tools developed by researchers to address this. Ni and Tai

(1990) have nicely summarized the available tools.

What exactly performance of a parallel computing or application mean? There

can be potentially several definitions for this. Nevertheless, one of the desired attributes

is to expect “systemic performance consistency”. Evans (2005) defines systemic

performance consistency, from the parallel application standpoint, as the one that implies

minimal or at least reasonable variation in runtime when operating conditions are similar

(e.g., problem size, input data, network resources etc.).

Degraded systemic performance consistency means inconsistent runtime behavior

of applications. This can lead to loss of time, money, overuse of resources, overbilling,

etc.

Based on algorithm, process scheduling, and network parameters, there are

several ways to improve the systemic performance consistency of a parallel application.

Understanding the influence of different parameters on parallel application performance

is often referred to as “characterization of parallel application”.

“Determining the number of processors to be allocated per job that gives rise to

good system performance is important for the global scheduler employed by the

operating system for parallel environments” (Majumdar & Yiu Ming Leung, 1994,

p.304). Does one need to consider the importance of I/O behavior while scheduling

processes? Yes. Majumdar and Leung (1994) emphasize the importance of I/O

characteristics of a parallel application on process scheduling.

10

Several scheduling methods for improving parallel application performance have

been proposed by researchers. A few of interesting approaches are worth mentioning

here, Sinen et al. (2006) proposed a method for optimized scheduling based on

computation to communication ratio (CCR) of an application while Berman and Wolski

(1996) introduced an “application-centric” scheduling method in which everything about

the system is evaluated in terms of its impact on the application.

An interesting way of combining the Maui Scheduler, as a plug-in, to the portable

batch scheduler (PBS) package was proposed by Bode et al. (2000). This method was

tested on many clusters of varying size, performance, and network communication

patterns, focusing on maximization of resource utilization as well as the execution of

large parallel applications. Dinda (2002) discusses about the interface and the approach to

implement a real-time job scheduling advisor (RTSA). RTSA is mainly based on

appropriately predicting the host load. Based on Dinda’s results, this prediction-based

strategy seems to be highly effective to improve the performance of a parallel application.

Calzarossa et al. (2004) proposed a methodological approach to analyze parallel

applications performance in an automated fashion essentially based on key performance

metrics, load imbalance and dissimilar processor behavior. The aim of this method is to

identify and address local inefficiencies. The effects of running large multiple

applications and core-level interactions on MCMP systems, however, were not studied in

these scheduler researches.

Another important and interesting way to study the performance of a parallel

application is from the network standpoint. How sensitive is the application with respect

to network parameters such as network speed, switching, routing, existence of other

applications (network communication load)?

Understanding and quantifying the “communication overhead” is paramount for

such a study. Singh et al. (1994) discuss the three main attributes used extensively in

capturing the communication overhead in a parallel architecture, “namely temporal,

spatial, and volume components. Temporal behavior is captured by the message

11

generation rate, spatial behavior is expressed in terms of the message distribution or

traffic pattern, and the volume of communication is specified by the number of messages

and the message length distribution” (Sivasubramaniam, 1997, p. 1027). All the three

attributes mentioned above are widely used in performance analyses of interconnection

networks. Carter et al. (2007) did a systematic study on the effects within node by using

applications run at low concurrencies and node-interconnect interactions on multi-core

machines.

Running parallel applications on multi-core architectures often result in resource

contention. Jin et al. (2009) did a differential performance analysis to quantify this

contention effect for various benchmark applications and developed a method to isolate

contention for shared resources in multi-core systems. The multi-core architecture itself

can be an important point of consideration. Datta et al. (2008) provided several key

insights into the architectural trade-offs of emerging multi-core designs.

In multi-core multi-processor systems, communication occurs between nodes

(inter-node) and also between cores (intra-node). Chai et al. (2007) in their study

observed that, in a multi-core cluster, optimization of intra-node communication is

equally important as optimization of inter-node communication.

The primary focus of this research work was on the characterization of runtime

sensitivity of parallel applications based on different core allocation strategies under a

given network communication load, specifically on multi-core multi-processor machines.

A range of methodologies are available to conduct a characterization study and they can

be broadly classified under four categories: analytical modeling, direct measurement (or

actual execution), simulation, and emulation.

The analytical modeling method typically involves a set of characteristic

equations that relates various parameters and metrics. In contrast to the other methods,

applications are not ‘run’ per se. Hennessy and Patterson (1996) discuss in detail of

approaching this in a quantitative sense. Jain (1991) also discusses how the analytical

12

methods are used to enhance systems performance for different applications. However,

analytical methods suffer from two main weaknesses: limited accuracy and inability to

model system related feedback in real systems.

While the analytical methods are considered less realistic, the most realistic of the

methods is the direct measurement or actual execution method. Many times this method

is used judge different network systems, for example, Hall et al. (1997) did a comparative

study of NFS (Network File System) performance over different network systems such as

Autonet, Ethernet, and FDDI (Fiber Distributed Data Interface). For given network

conditions, direct measurement methods offer excellent accuracy, however, their

potential weakness is that it may not be possible to configure the network system

“properly” to extrapolate to other similar systems.

Simulation methods offer the most flexibility and are very popular because of this

reason. Simulators are close approximations to real systems. While the simulation

methods offer flexibility and powerfulness to test any network system, they often lack

fidelity and scalability. Many times extensive validation of simulators needs to be

performed as well. Woo et al. (1995) used SPLASH-2 simulators for characterization and

studied the effects of scaling.

In emulation methods, typically a portion of the network is loaded or emulated

while a parallel application being run in the same network in real time. Compared to

simulation, emulation methods are not that flexible since full-blown control of the

network cannot be achieved due to the real time run of the parallel application. However,

emulation methods are scalable to a larger extent compared to simulation. Understanding

or observing real time runs of applications can be challenging since real time

measurements are needed. Fortunately, emulation methods can gain from real time

measurement studies such as the one from Anderson et al. (1997).

Evans and Hood (2005) developed a methodology and framework for studying

the impacts of network and communication performance on parallel application runtime.

13

They developed the Parallel Application Communication Emulator (PACE) framework

which essentially executes one or several “emulated parallel applications” (EAs). In this

framework, EAs are defined and executed by a combination of runtime setup parameters

and the calculation of compute/communication cycles based on measured communication

performance. Communication cost parameters are determined by the tool through linear

interpolation. Based on the values, an overall runtime can be predicted for each EA. The

difference between the predicted and actual runtime is an indication of the network

performance variability.

Evans and Hood (2006) further extended the PACE framework by adding a

Parallel Application Runtime Sensitivity Evaluation (PARSE) program. Further, “a

necessary condition for using PACE to evaluate a parallel application under test (AUT) is

to force concurrent execution while PACE emulates one or more parallel applications.

PACE then can be viewed as a communication network ‘disrupter’, providing a

controlled and repeatable quantity and temporal dispersion of network traffic, directly

competing for network resources with the AUT” (Evans & C. S. Hood, 2006, p. 3). What

PARSE does is that it redistributes the nodes allocated by job scheduler to execute both

PACE and AUT simultaneously, at the same time, it ensures that the AUT execution

begins only after PACE computes the related communication cost parameters.

Evans and Hood (2011), in their work, used two 48-node cluster segments, each

node consisting of single-processor. They evaluated NAS parallel benchmarks and

PSTSWM using the PACE and PARSE framework. They also defined run time

sensitivity metrics such as coefficient of mean (COM) and coefficient of variance (COV)

to quantify the sensitivity of each parallel application to network performance.

While the previous works cited here provides significant insights on

understanding and characterizing parallel application runtime sensitivity, their focus was

on network level (inter-node) communication. In this study, Evans and Hood’s method

was implemented on MCMP systems to characterize parallel application runtime

sensitivity to core allocation under a given network communication load.

14

As a prelude to this, a preliminary study was conducted to assess the runtime

sensitivity of various NAS benchmarks (Veeraraghavan & Evans, 2010). In this, PARSE,

PACE, and the sensitivity metric were used to better understand their utility on MCMP

systems. The network load was kept constant at 95% using PACE and the process (core)

allocation was changed. This preliminary runtime evaluation of NAS benchmarks

suggested that as the core allocation “distance” increased, the runtime of the applications

also increased (in some cases, there was up to a threefold increase). For some

applications, such as MG, the variability also increased significantly. This warranted

further detailed study (the current work) on the parallel application runtime sensitivity

due to core allocation on a loaded network.

15

CHAPTER 3. METHODOLOGY

3.1. Introduction

A key benefit of using parallel processing is that it reduces the overall

computational time required and in addition, it also allows for larger problems to be

solved. This is especially true in the case of long running scientific and engineering

programming codes. Both in academia and industry, there have been several research

initiatives to develop algorithms to reduce computational time. On the other hand, one of

the challenges faced while running parallel applications is their runtime variability. It is

important that the system (a set of application codes, compute and I/O nodes, schedulers,

resource managers, and the interconnection network) operate with systemic performance

consistency. Systemic performance consistency is defined as a minimal or at least a

reasonable variation in runtime when operating conditions such as, problem size, input

data, compute and network resources etc., are similar over time. The growth in HPC

tends toward solving larger problems using huge amount of data. In this situation, the

runtime variability or systemic performance inconsistency is not desirable.

Understanding the influence of different parameters on parallel application

performance is often referred to as “characterization of parallel application”. A range of

methodologies are available to conduct such a study using analytical modeling, direct

measurement (or actual execution), simulation, or emulation.

Evans (2005) in his doctoral thesis had developed tools such as PACE and

PARSE and studied parallel application runtime sensitivity on clusters consisting of

single-processor machines. As a complement, the primary focus of this research work

was to characterize parallel application runtime sensitivity to core allocation under a

given network communication load on a cluster made of multi-core multi-processor

16

machines using PACE and PARSE and compare the results to those of single-processor

machines as applicable.

3.2. Tools used

3.2.1. PACE

In order to study the run time performance anomalies, a framework called PACE

(Parallel Application Communication Emulator), that emulates one or more parallel

applications, was developed by Evans (2005). PACE monitors itself, producing data that

reflects the error between its prediction of an emulated application (EA) run time and the

actual run time.

The time that an individual processor (p) takes to execute its portion of the

parallel program can be given as,

 T� =	T����
� +	T����

� +	T	
��
�

 (Eq.3.1)

 T = 	

�
	�T���� +	T���� +	T	
��� (Eq.3.2)

 =	

�
	�∑ T����

���

��� 	+ 	∑ T����

���

��� + ∑ T	
��

���

��� 	�

 Where, P – Processors working on a problem

 Tcomp – Computation time

 Tcomm – Communication time

The communication cost in parallel program is given by,

 T��� = 	α + β� (Eq.3.3)	

 Where, α - Startup time

β - Transfer time of a unit of data

 n - Number of units transferred

17

Combining the above two equations yield,

T���� =	∑ ∑ (T���
�
��

��

���)�

� =	∑ ∑ (α + 	β��
��

��

���)�

�	 (Eq.3.4)

The PACE framework is designed to load a cluster network using EAs in a

prescribed manner. As mentioned earlier, one or more EAs within the PACE framework

is created and ran. Each EA emulates running a parallel application. As in any parallel

application, the scheduler allocates certain number of nodes for a fixed time for PACE.

For each EA, a subset of the PACE nodes is allocated. Then, each EA runs its own

computation and communicates via the interconnection network of the cluster. A typical

PACE run consists of two “phases”. The first phase determines the communication cost

Tcomm and predicts the overall run time of each EA. The second phase is an emulated

application run consisting of a number of compute/communicate cycles that are either

specified or calculated according to user input. Each cycle is composed of a computation

and communication component. PACE executes its performance measurement by

executing many communication exchanges and timing them using hardware timers.

Each process within an EA determines communication cost β using linear

interpolation,

 β = 	
��

��!

"��	"!
 (Eq.3.5)

 Where, t1 - Time to run all the communication exchanges on the large message size

 ts - Time for the small message size

 m - Number of messages

 nl and ns - Lengths in bytes for large and small messages respectively

Values of the startup cost α are calculated for each message size and is given by,

α� =	
#�
�
− 	β ∗ n� (Eq.3.6)

α� =	
#!
�
− 	β ∗ n� (Eq.3.7)

18

These values should always be equivalent. Each process determines their own α

and β values independently. They are then gathered from the processes, and after

computing an average, gets redistributed to the processes prior to the start of the run. The

PACE benchmark, for all participating processes, calculates a single average value. Each

PACE EA process uses the same communication performance metric as the basis for

calculating their compute component time.

T���� =	
'() ∗
��

*
−	T���� (Eq.3.8)

 Where, Tcomp - Calculated compute time

 Tcomm - Calculated communication time based on timing measurements α + β

 L - Percent communication load

The PACE software is written in ‘C’ language and uses MPI for message passing.

PACE is built using the GNU gcc compiler. The PACE system consists of several

functional modules such as, input parameter processing, run-time configuration,

communicators (EAs) and communication patterns, emulated computation,

communication cost measurement, and data collection and logging.

Before PACE executes an EA, it performs a communication cost measurement

using the communication type and pattern to be executed by EA. Then, using the

communication cost measurement, communication and compute times, PACE calculates

the per cycle time. Overall, EA runtime is then determined using the combination of user

input and measured communication cost.

With MCMP systems, PACE is used in the context of cores (instead of

nodes/processors) and the cluster intercommunication comprise of, in addition to inter-

node communication, inter-core and inter-processor communication through the network.

In this case, PACE is not just acting as a network load ‘disrupter’ but also acts as a

communication sub-system load.

19

3.2.2. PARSE

To evaluate a parallel AUT using PACE, it is necessary to run them concurrently

while PACE emulates one or more EAs. Here, “PACE can be viewed as a

communication network ‘disrupter’, providing a controlled and repeatable quantity and

temporal dispersion of network traffic, directly competing for network resources” (Evans

& C. S. Hood, 2006, p. 3). In order to achieve this, an interface to the PACE framework

was developed (Evans & C. S. Hood, 2006) called Parallel Application Runtime

Sensitivity Evaluation (PARSE). PARSE is designed to address the two runtime aspects.

They are:

1. To accommodate and run PACE and AUT by distributing the nodes allocated by

the scheduler.

2. To guarantee that the AUT runs concurrently with PACE EAs and to ensure that

AUT is not executed during the time when PACE is computing communication

cost parameters.

Initial version of PARSE was written as a perl script that parses the machine file

created by scheduler and creates two new machine files namely, pace.mach for running

PACE and aut.mach for running AUT. PARSE can be run using a PBS script. There are

several command line arguments such as

–m for the machine file

–N for the total number of nodes

–P for the PACE nodes

–a for the AUT nodes

–A for the AUT executable

–p to specify alternate mpi path (optional)

–S for the “stride” factor

–i for number of iterations or trial runs

–d for delay in seconds

–I for specifying input file for PACE.

20

An updated version of PARSE (python script) now takes advantage of the Hydra

process manager (discussed in section 3.2.4) used in MPICH2 (discussed in section

3.2.5), which supports strict process binding. The following additional options are

available in the updated version of PARSE.

-W argument is used to specify AUT path

-H argument is used to invoke Hydra

-B argument is used to run a baseline test

-S argument is used to run a sensitivity test

In addition, with the modified version the user creates the machinefile and

specifies using the –m argument on the command line for baseline tests. While running

sensitivity tests, machinefiles- autsens.mach and pacesens.mach should be provided by

the user.

In order to ensure concurrent execution of PACE and AUT, “PARSE script uses

system calls embedded in parent and child branches of a fork() system call. Essentially

each branch performs its own mpirun. The parent process executes PACE while the child

process runs the AUT ” (Evans & C. S. Hood, 2006, p. 4). Before running the EAs,

PACE performs its communication cost benchmark.

3.2.3. PBS Resource Manager and Maui Scheduler

The cluster used in this study employs OpenPBS as the resource manager.

OpenPBS is an open source version of Portable Batch System (or simply PBS). Open

PBS is a NASA’s Ames research center developed, POSIX compliant batch software. It

was developed originally for large parallel computers (Symmetric multiprocessing (SMP)

system). The primary function of PBS is to allocate and manage resources for

computational tasks along with effective job scheduling.

An effective scheduler is responsible for:

21

1. Managing traffic by properly allocating resources to a job and by avoiding

the other jobs from using the same resources.

2. Maintaining site mission goals by providing a suite of policies that can be

mapped into scheduling behavior.

3. Implementing intelligent scheduling decisions to maximize cluster

performance.

There are several built-in schedulers available within PBS and they can be

customized depending on individual site requirements. The FIFO scheduler is the default

PBS scheduler, which enforces maximum CPU utilization. It searches through the queue

and starts jobs based on available resources. This can be a limitation for large jobs since

the resources could not be met by certain nodes even though they become available. In

situations like this, other schedulers can be used depending on cluster and problem size.

To achieve this, PBS supports interfacing with other meta schedulers (or plug-in

schedulers) like Maui scheduler.

Maui scheduler is an open-source job scheduler and it can be readily used for

clusters and supercomputer systems. It can accommodate a large array of policies for job

scheduling since it is optimized and highly configurable. It also incorporates features

such as dynamic priorities, fair share, and extensive reservations. “The Maui Scheduler

can be thought of as a policy engine which allows sites control over when, where, and

how resources such as processors, memory, and disk are allocated to jobs. In addition to

this control, it also provides mechanisms which help to intelligently optimize the use of

these resources, monitor system performance, help diagnose problems, and generally

manage the system” (“Maui Scheduler - Administrator’s Guide,” p. 1).

The combination of PBS and Maui scheduler is highly successful in scheduling

parallel applications, and in general, improves the manageability and efficiency of cluster

computing in many cases as with the cluster system used in this study.

22

3.2.4. Hydra Process Manager

In order to ensure core binding in MCMP systems, it is necessary to use a tool

that can be invoked via PARSE. Hydra process manager developed by Argonne National

Laboratory was used in this study for this purpose.

Figure 3.1 Hydra Process Management Framework

Figure 3.1 shows the schematic of the Hydra process management framework which

consists of the following basic components:

1. User Interface

2. Resource Management Kernel

3. Process manager

4. Bootstrap server

5. Process Binding

6. Communication Sub-system

7. Process Management proxy

8. I/O demux engine

23

The process binding component essentially extracts the system architecture

information (such as the number of processors, cores etc.) and binds processes to

different cores in a portable manner.

3.2.5. MPICH2

MPICH2 is the Message Passing Interface (MPI) used by the programs in this

study. MPICH2 is a portable MPI implementation. As per Argonne National Laboratory,

“the goals of MPICH2 are: (1) to provide an MPI implementation that efficiently

supports different computation and communication platforms including commodity

clusters (desktop systems, shared-memory systems, multicore architectures), high-speed

networks (10 Gigabit Ethernet, InfiniBand, Myrinet, Quadrics) and proprietary high-end

computing systems (Blue Gene, Cray, SiCortex) and (2) to enable cutting-edge research

in MPI through an easy-to-extend modular framework for other derived

implementations” (“MPICH2 : about MPICH2”).

3.3. Benchmarks used in the study (AUT)

3.3.1. NAS Parallel Benchmark

The Numerical Aerodynamic Simulation (NAS) Program is based of NASA

Ames Research Center. The program objective is to advance computational

aerodynamics to new levels. To help “measure the performance of highly parallel

computers and to compare their performance with that of conventional supercomputers,

NAS developed the NAS Parallel Benchmarks (NPB 1.0) in 1991. These benchmarks,

which are derived from computational fluid dynamics codes” (D. Bailey, Harris, Saphir,

Van Der Wijngaart, A. Woo, & Yarrow, 1995, p.3), consist of two main parts: a total of

five “parallel kernel” benchmarks and a total of three “simulated application”

benchmarks. Each of the five kernels benchmark denote a particular numerical simulation

or computation. The CFD applications (numerical simulations) are a “representative of

24

the types of data movement and computation required in state-of-the-art CFD application

codes” (Saini & D. H. Bailey, 1996).

For years, the high performance computer systems have grown significantly in

size and capabilities. Total numbers of processors have gone up, computer clock speed

and memory limits have increased, and network bandwidths have increased. Therefore,

the needs for more challenging benchmark sizes to rate the performance of the parallel

machines have grown. For this reason, the NAS benchmarks come in different problem

sizes given as “class”. The NAS Parallel Benchmarks consist of 6 different problem

sizes, they are, Class “S”, “A”, “B”, “C”, “D”, and “W”. The class “A” benchmarks can

be run on a medium powered workstation, class “B” on high-end computers or smaller

parallel systems, and class “C” on high-end parallel systems. In order to study the

runtime variations with network communication load, classes “A”, “B”, and “C” are

selected and their problem sizes are shown in Table 3.1 (D. Bailey, Harris, Saphir, Van

Der Wijngaart, A. Woo, & Yarrow, 1995b).

Table 3.1 Parallel Benchmark Problem Sizes

Benchmark Abbreviation Class A Class B Class C

Embarrassingly

Parallel
EP 228 230 232

MultiGrid MG 2563 2563 5123

LU solver LU 643 1023 1623

Two kernel benchmark and one simulated application benchmark (Saini & D. H.

Bailey, 1996) are used for this study. They are:

• The first kernel benchmark is the “Embarrassingly Parallel problem. In this

benchmark, two-dimensional statistics are accumulated from a large number of

Gaussian pseudorandom numbers, which are generated according to a particular

scheme that is well-suited for parallel computation. This problem is typical of

many Monte Carlo applications” (Saini & D. H. Bailey, 1996)

25

• Simplified MultiGrid (MG) problem is the second of the kernel benchmarks that

solves three-dimensional Poisson PDE. MG can be considered as a good test for

both, short distance and long distance communication that is highly structured.

Even though Class A and Class B problems have the same size, Class B uses

more iterations for inner loop calculations than Class A.

• The third benchmark, which is a simulated application benchmark, is the Lower-

Upper diagonal (LU) benchmark. Basically, “it does not perform a LU

factorization but instead employs a symmetric successive over-relaxation (SSOR)

numerical scheme to solve a regular-sparse, block 5x5 lower and upper triangular

system. This problem represents the computations associated with a newer class

of implicit CFD algorithms, typified at NASA Ames by the code INS3D-LU”

(Saini & D. H. Bailey, 1996)

3.3.2. PSTSWM Benchmark

“The Parallel Spectral Transform Shallow Water Model (PSTSWM) is a message-

passing application and parallel algorithm testbed that solves the nonlinear shallow water

equations on a rotating sphere using the spectral transform method. It is a parallel

implementation of STSWM, developed by J. J. Hack and R. Jacob at the National Center

for Atmospheric Research (NCAR) and used to generate reference solutions for the

shallow water test cases” (Smith, Vetter, & Xuejun Liang, 2005, p. 3). Within PSTSWM,

there are several multiple parallel algorithms which can be chosen during run-time.

Parameters such as the number of processors, problem size, and decomposition (data) can

also be specified.

As per the user guide, “PSTSWM is written in Fortran 77 with VMS extensions

and a small number of C preprocessor directives. Message passing is implemented using

MPI, MPI/SHMEM, PICL, PVM, and/or native message passing libraries, with the

choice being made at compile time. Additionally, all message passing is encapsulated in

three high level routines for broadcast, global minimum and global maximum, and in two

26

classes of low level routines representing variants and/or stages of the swap operation and

the send/receive operation” (Worley & Toonen, 1995).

The recent version of PSTSM v6.9 was used in this research work. PSTSWM is,

in general, provides large problem size and communication intensive allowing it to be a

good testing algorithm for HPC systems.

3.4. HPC cluster at ACSL

The Adaptive Computing Systems Lab (ACSL) consists of two cluster systems,

the Chiba City cluster and HP cluster. Chiba cluster consists of several 16 node cluster

segments plus login and administrative machines. Each node is a dual-processor Pentium

III with a 9GB of hard drive space and a RAM of 512MB. A fast Ethernet (100Mbps)

connects all the nodes. The HP cluster consists of 10 nodes and an administrative

machine. It is a HP Proliant DL185G5 and DL165G5p machines. Each node has 2 quad

core AMD Opteron processors with 16GB of RAM and a 500GB SATA HD and the

nodes are interconnected with two Gigabit Ethernet network ports.

In this research, the parallel application runtime sensitivity to network

communication load for the MCMP systems was studied. For this purpose, the HP cluster

of ACSL was used (Figure 3.2). Open PBS (Torque) is used as the resource manager and

Maui scheduler is used for job scheduling for ACSL cluster.

The operating system used by the ACSL cluster is RedHat Linux version 5.5. The

MPI is through MPICH2 version 1.3.2. For studying NAS benchmarks, gcc compiler

version 4.4.0 is used and for PSTSWM, pgi compiler version 9.0-3 is used.

27

Figure 3.2 HP cluster of ACSL

3.5. Experimental Matrix

AUT’s sensitivity to network communication load by varying core allocation in a

MCMP machine was studied in this project. For this purpose, a series of test cases were

conducted under two scenarios. In the first scenario, baseline tests for each benchmark

were conducted by varying the number of cores from 2 to 32 in powers of two. Each

benchmark was run 30 to 100 times to ensure the results were statistically significant

enough to capture the runtime and variability.

In the second scenario, sensitivity tests were conducted by running each

benchmark (AUT) concurrently with PACE using PARSE. PACE was used as a

communication “disruptor” against AUT. The entire HP cluster of ACSL (a total of 10

nodes) was used. Each node has 2 quad-core processors (Figure 3.3), which comprises of

a total of 80 cores.

28

Figure 3.3 Layout of a HP cluster node with 2 processors of quad-core each

For sensitivity testing, PACE was run on cores that were not used by AUT so as

to load the network at 95% communication load (using 512K messages in a all-to-all

communication pattern). The different core allocation policies were implemented by

PARSE. For single-core single-processor machines PARSE uses “stride” factor to allow

user to specify almost any node distribution for PACE and AUT. However, in multi-core

multi-processor machines, the “stride” factor, in general, does not ensure core binding as

per allocation. In our study, it is important to achieve proper core binding in MCMP so

that core allocation influence of AUT runtime sensitivity can be properly determined. For

this purpose, PARSE was modified to invoke Hydra process manager for core binding. In

the related preliminary study (Veeraraghavan & Evans, 2010), core binding was found to

be not effective since Hydra was not used.

The experimental matrix of AUT and PACE is given in Table 3.2. with stride

factor and respective core allocation policy for 2 to 32 (in powers of 2) core runs. For

each set of cores, three test cases TC1, TC2, and TC3 were run for both baseline and

sensitivity tests. These test cases were designed to allocate jobs across the cores based on

following core allocation policies:

1. Run on contiguous cores (TC1)

2. Run on cores across contiguous nodes (TC2)

3. Run on cores across nodes based on largest “stride” factor (TC3)

29

 Table 3.2 Experimental Matrix

of

Cores
Test Case

Stride

Factor

AUT

Nodes

AUT

Cores

PACE

Nodes

PACE

Cores

2

TC1 2
1 0,2 1 1,3,4,5,6,7

 2-4 0-7

TC2 4
1 0,4 1 1,2,3,5,6,7

 2-4 0-7

TC3 79

1 0 1 1-7

10 7 2-9 0-7

 10 0-6

4

TC1 1
1 0-3 1 4-7

 2-4 0-7

TC2 8 1-4 0 1-4 1-7

TC3 26

1 0 1 1-7

4 2 2,3,5,6,8,9 0-7

7 4 4 0-1, 3-7

10 6 7 0-3,5-7

 10 0-5,7

8

TC1 1 1 0-7 2-10 0-7

TC2 8
1-8 0 1-8 1-7

 9,10 0-7

TC3 11

1 0 1 1-7

2 3 2 0-2,4-7

3 6 3 0-5,7

5 1 4,8 0-7

6 4 5 0,2-7

7 7 6 0-3,5-7

9 2 7 0-6

10 5 9 0-1,3-7

 10 0-4,6-7

16

TC1 1 1,2 0-7 3-10 0-7

TC2

TC3 5

1,6 0,5 1,6 1-4,6,7

2,7 2,7 2,7 0,1,3-6

3,8 4 3,8 0-3,5-7

4,9 1,6 4,9 0,2-7

5,10 3 5,10 0-2,4-7

32

TC1 1 1-4 0-7 5-10 0-7

TC2

TC3 2
1-8 0,2,4,6 1-8 1,3,5,7

 9,10 0-7

The above test cases were chosen to allow varying “distance” between cores

starting from the most intuitive (contiguous cores) to the widest “distance”. This will also

allow for any intermediate cases, to be estimated from these test cases. As shown in

30

Table 3.2, for both baseline and sensitivity testing scenarios, these three different test

cases (core allocation policies) were evaluated.

As a special case, for 2-core benchmark runs, the following core allocation

policies were used:

1. TC1- Allocate the AUT to run within the same processor (core 0 and 2). In the

case of 2-core runs, TC1 could be allocating to any of the 4 cores since

architecturally they all are within the same processor and hence can be considered

contiguous.

2. TC2- Allocate the AUT to run across processors (core 0 and 4).

3. TC3- Allocate the AUT to run across different nodes (core 0 and core 79).

3.6. Sensitivity Factor

Once the test runs were completed as per the experimental matrix, run time data

were extracted from the benchmark output files. The collected data was further examined

for outliers and they were removed using Grubbs method through Minitab. The following

terms and definitions from Evans (2005) are worthwhile to be included here as the same

terms and definitions apply to the current study also.

“Coefficient of Mean (COM): The ratio of the average values of multiple

application executions under a given pair of network load operating conditions” (Evans,

2005, p. 132)

+,-./ =
01234	5
01234	6

=	
∑
7894	5
4

4
:

∑
7894	6
4

4
:

 (Eq.3.9)

Where n is the number of trial runs of the application

“Coefficient of Variation (COV): The ratio of the standard deviation of multiple

application executions under a given network load operating condition to the mean of

those executions” (Evans, 2005, p. 133)

31

+,; = <

01234
. 100 (Eq.3.10)

The COM normalizes the runtime scale between applications, while the COV

normalizes the differences between applications. COV values can also be represented as a

ratio between two data points (say i and j), in which case it indicates the relative increase

or decrease. This quantity is termed as ROVji (Ratio of Variations).

	@,;./ =
ABC5
ABC6
	 (Eq.3.11)

Both these factors are used to arrive at the sensitivity factor as shown below:

 D./ =	@,;./	+,-./ (Eq.3.12)

Sensitivity factors were calculated using the above method for different core-

allocations, namely, STC1, STC2 and STC3 and averaged to arrive at a single sensitivity

factor for core-allocation, namely Salloc. Even though there are other possible core

allocation policies, apart from those tested in this study, an average of STC1, STC2 and STC3

should give a good estimate of the sensitivity of allocation since it covers a wide range of

possibilities. The allocation sensitivity factor, Salloc was computed for each parallel

application by varying the number of cores from 2 to 32 in powers of two. Providing the

allocation sensitivity factor to schedulers for a particular application can be very useful

since Salloc covers varying possibilities of core allocations and provides a sense of the

application behavior as a function of core allocation. Results of the different parallel

applications and related discussions are presented in Chapter 4.

3.7. Experiment Execution

For executing the experimental matrix shown in Table 3.2, the below procedure was

followed in this study:

1. Build and compile PACE code

2. Build and compile NAS benchmarks and PSTSWM benchmark

3. Using a script file

a. Request for nodes/cores and wall time

32

b. Load mpich2, gcc compiler (for NAS benchmarks), and pgi compiler (for

PSTSWM benchmark)

Setup and select the run-time environment

source /opt/admintools/Modules/etc/profile.modules

module load mpich2-1.3.2/64/nemesis-gcc-4.4.0/4.4.0

module load mpich2-1.3.2/64/nemesis-pgi-9.0-3/9.0-3

c. Invoke and run PARSE by providing required options and inputs.

4. PARSE in turn, according to provided options, runs baseline and sensitivity tests

and collects data.

5. Post processing of the collected data

An example of invoking PARSE for a 4-core job run is given below:

Initialization of AUT variables

AUT="mg"

CLASS="A"

AUTPROC="4"

AUTFILE="mg.A.4"

AUTPATH="./$CLASS/$AUTPROC"

PARSE command line for baseline test

./parse.py -N 4 -P 0 -a 4 -W $AUTPATH -A $AUTFILE -i 100 -d

1 -m base4.mach -H -B

While running baseline test, the following base4.mach machinefile is provided to PARSE

hpn01:1 binding=user:0

hpn02:1 binding=user:0

hpn03:1 binding=user:0

hpn04:1 binding=user:0

PARSE command line for sensitivity test

./parse.py -N 32 -P 28 -a 4 -W $AUTPATH -A $AUTFILE -i 100

-d 1 -I pace_input.sens -H –S

While running sensitivity test, the following machine files and input files are provided to

PARSE:

33

autsens.mach

hpn01:1 binding=user:0

hpn02:1 binding=user:0

hpn03:1 binding=user:0

hpn04:1 binding=user:0

pacesens.mach

hpn01:7 binding=user:1,2,3,4,5,6,7

hpn02:7 binding=user:1,2,3,4,5,6,7

hpn03:7 binding=user:1,2,3,4,5,6,7

hpn04:7 binding=user:1,2,3,4,5,6,7

PACE input file:

pace_input.sens

BENCHPERPROC:1

BENCHAVG:1

PERFONLY:0

EAS:1

LOG:1

INTERCONNECT:1

COMMLOAD:95

MESSAGES:1000

SIZESTART:524288

SIZEEND:1048576

SYNCHRONIZE:0

RUNTIME:600

PATTERN1:P2P

TEST1:ALLTOALL

ALPHA1:

BETA1:1.

PATTERN2:

TEST2:

ALPHA2:

BETA2:

PATTERN3:

TEST3:

34

ALPHA3:

BETA3:

PATTERN4:

TEST4:

ALPHA4:

BETA4:

FILEPATH:./A/4/

PSTSWM input files:

Algorithm:

8 / NPLON

4 / NPLAT

1 / MESHOPT

1 / RINGOPT

1 / FTOPT

0 / LTOPT

11 / COMMFFT

11 / COMMIFT

20 / COMMFLT

20 / COMMILT

0 / BUFSFFT

0 / BUFSIFT

0 / BUFSFLT

0 / BUFSILT

6 / PROTFFT

6 / PROTIFT

6 / PROTFLT

6 / PROTILT

0 / SUMOPT

0 / EXCHSIZE

Measurment:

.TRUE. / TIMING

.FALSE. / TRACING

.FALSE. / TRACEFILE

0 / VERBOSE

35

100000 / TRSIZE

1 / TRSTART

10000 / TRSTOP

0 / TL1

0 / TL2

0 / TL3

'timings' / TOUTPUT

 / TMPNAME

 / PERMNAME

1 / INITSTEPS

Problem:

'0002' / CHEXP

42 / MM

42 / NN

42 / KK

64 / NLAT

128 / NLON

16 / NVER

 / NGRPHS

 / A

 / OMEGA

 / GRAV

 / HDC

0.0 / ALPHA

1800.0 / DT

999.0 / EGYFRQ

0.01 / ERRFRQ

999.0 / SPCFRQ

12000.0 / TAUE

 / AFC

.TRUE. / SITS

 / FORCED

 / MOMENT

2 / ICOND

36

CHAPTER 4. DATA ANALYSIS AND RESULTS

4.1. Introduction

Using the methodology discussed in Chapter 3, the runtime for the baseline tests

of each parallel application (AUT) with no competing traffic and the runtime for

sensitivity tests with network load were obtained from application output files. Using

these baseline and sensitivity runtimes, sensitivity factors were computed.

Each parallel application was run several times (50-100 times for NAS

benchmarks and 30 times for PSTSWM benchmark) for different core allocation

strategies (test cases) and number of cores. The runtime data obtained for baseline and

sensitivity runs were plotted against trials to represent in a graphical format. Visual

inspection of the plots obtained for several benchmarks show existence (or non-

existence) of patterns amongst various runs. For example, the difference in the means

between baseline and sensitivity runs denotes the energy consumption difference.

Similarly, difference in the variations about the means denote the difference in

predictability.

For each application, sensitivity factors for different test cases (TC1, TC2 and

TC3) were computed based on the ratio of means (COM) and ratio of variance (ROV) as

described before. Then an average of the sensitivity factors for different test cases was

computed to arrive at a single allocation sensitivity factor, Salloc. The applications were

run on 2 to 32 cores (in powers of 2) and corresponding allocation sensitivity factors

were computed.

37

4.2. Baseline and Sensitivity runtime plots

Baseline and sensitivity runtime plots were created based on the data collected for

various benchmarks. All the PSTSWM benchmark plots are discussed in this section. For

NAS benchmarks, three different classes (Class A, B, and C) were run to assess the

sensitivities with respect to the problem size. However, the plots shown in this section

focus on Class C (largest problem size) only. In many cases, Class A and Class B plots

remained similar to Class C. Existence of any difference with respect to problem size is

highlighted and discussed accordingly. The rest of the plots obtained from this study for

Class A and B are attached to Appendix.

EP Benchmark runs:

Figure 4.1 2-core allocations: Baseline and Sensitivity runtimes of EP Class C

From Figure 4.1 above, for 2-core allocations of EP Class C, the baseline

runtimes of all the three test cases, TC1, TC2 and TC3, were very similar. The sensitivity

 245

 247.5

 250

 252.5

 255

 257.5

 260

 262.5

 265

 267.5

 270

 0 10 20 30 40 50 60 70 80 90 100

R
u

n
ti
m

e(
se

cs
)

Trial

PACE / NPB EP-2 Class-C Run-time Performance

Baseline with TC1

EP/PACE with TC1

Baseline with TC2

EP/PACE with TC2

Baseline with TC3

EP/PACE with TC3

38

runtimes were about 5% higher than baseline and also were similar for all the three test

cases. This shows that the application EP class C 2-core job is equally sensitive with

respect to different core allocation policies. EP Class A and Class B also showed

equivalent behavior for 2-core jobs.

Figure 4.2 4-core allocations: Baseline and Sensitivity runtimes of EP Class C

Figure 4.2 above shows the baseline and sensitivity runtimes of 4-core allocations

done using the three test cases, TC1, TC2 and TC3 for EP Class C problem. The baseline

runtimes of these tests were very similar. For sensitivity tests, TC2 showed the most

runtime, about 7% higher than the baseline runtime, while TC1 and TC3 showed about

3% and 4% higher runtime than their respective baselines. EP Class A and Class B also

showed equivalent behavior for 4-core jobs under all three test cases.

Figure 4.3 shows the baseline and sensitivity runtimes of EP Class C 8-core runs.

The baseline runtimes for TC2 and TC3 were similar. However, TC1 baseline was

slightly lower than TC2 and TC3.

 122

 124

 126

 128

 130

 132

 134

 136

 138

 140

 0 10 20 30 40 50 60 70 80 90 100

R
u

n
ti

m
e(

se
cs

)

Trial

PACE / NPB EP-4 Class-C Run-time Performance

Baseline with TC1

EP/PACE with TC1

Baseline with TC2

EP/PACE with TC2

Baseline with TC3

EP/PACE with TC3

39

Figure 4.3 8-core allocations: Baseline and Sensitivity runtimes of EP Class C

The sensitivity runtime of TC1 remained more or less the same as its baseline

suggesting insensitivity for this core allocation strategy (contiguous core allocation). This

is somewhat intuitive and expected behavior since the application was allocated on

contiguous cores, it had no influence from the network traffic due to PACE running on

other cores in the cluster. On the other hand, TC2 and TC3 showed sensitivity due to the

influence of network communication load. The sensitivity runtime of TC2 (about 6%

more than its baseline) was slightly higher than TC3 sensitivity runtime (about 5% more

than its baseline). TC2 also showed higher variation (more fluctuation) in runtime as

compared to TC3. For Class A and Class B problems, TC2 was about 25% and 9% higher

than its respective baseline runtimes, while TC3 was about 23% and 5% higher than its

baseline runtimes.

 61

 62

 63

 64

 65

 66

 67

 68

 69

 70

 0 10 20 30 40 50 60 70 80 90 100

R
u

n
ti

m
e(

se
cs

)

Trial

PACE / NPB EP-8 Class-C Run-time Performance

Baseline with TC1

EP/PACE with TC1

Baseline with TC2

EP/PACE with TC2

Baseline with TC3

EP/PACE with TC3

40

Figure 4.4 16-core allocations: Baseline and Sensitivity runtimes of EP Class C

In the ACSL cluster used in this study, there were only 10 nodes; therefore,

running on cores across contiguous nodes (TC2) does not apply for 16 and 32 core runs.

Figure 4.4 shows the baseline and sensitivity runtimes for 16-core allocations

(TC1 and TC3) of EP Class C problem. TC3 baseline runtime was slightly higher than

TC1. Under network loaded condition, TC1 remained insensitive. Again, this is

somewhat intuitive as running on contiguous cores was not affected by the load on other

cores since the network traffic of the AUT never left the nodes.TC3, however, showed

sensitivity since the allocated cores were widespread. For EP Class C problem size, TC3

showed about 4% higher runtime than its baseline.

Classes A and B showed equivalent behavior for TC1 (i.e. insensitive). TC3

showed about 43% and 4% higher runtimes compared to its respective baselines.

 30

 31

 32

 33

 34

 35

 36

 37

 0 10 20 30 40 50 60 70 80 90 100

R
u
n

ti
m

e(
se

cs
)

Trial

PACE / NPB EP-16 Class-C Run-time Performance

Baseline with TC1

EP/PACE with TC1

Baseline with TC3

EP/PACE with TC3

41

Figure 4.5 32-core allocations: Baseline and Sensitivity runtimes of EP Class C

Figure 4.5 shows the baseline and sensitivity runtimes for 32-core allocations

(TC1 and TC3) of EP Class C problem. As seen with 16-core allocation, TC3 baseline

runtime was slightly higher than TC1. Also, under network loaded condition, TC1

remained insensitive. TC3, however, showed sensitivity and was about 2% higher

runtime than its baseline.

Classes A and B showed equivalent behavior for TC1 (i.e. insensitive). TC3

showed about 42% and 17% higher runtimes compared to its respective baselines.

Summary of EP Benchmark runs:

Based on the data obtained for EP benchmark runs, the following observations

were made:

• In contrast to the general idea of how EP benchmark works, in MCMP system,

they do not appear to be truly EP since the runtimes at network loaded conditions

 15

 15.5

 16

 16.5

 17

 17.5

 18

 18.5

 19

 19.5

 20

 0 10 20 30 40 50 60 70 80 90 100

R
u
n

ti
m

e(
se

cs
)

Trial

PACE / NPB EP-32 Class-C Run-time Performance

Baseline with TC1

EP/PACE with TC1

Baseline with TC3

EP/PACE with TC3

42

were not truly insensitive for certain cases (EP 8-core, 16-core and 32-core runs).

This shows that for these cases when PACE is loading the network, EP could be

competing with the entire system thereby making it sensitive to network load.

• For 8-core, 16-core, and 32-core runs, TC1 (contiguous core allocation) remained

insensitive. This is due to the fact that the cores are all from adjacent cores/nodes

and are not influenced by network communication load on other cores in the

system. This not the case with 2-core and 4-core runs, where TC1 showed

sensitivity, since the other cores in the nodes were loaded with PACE.

• As the problem size increases, TC2 and TC3 appear to be less sensitive. This is

evident when looking at the sensitivity runtimes of EP Class A, B, and C

problems. This behavior is somewhat intuitive, as the cores are apart,

communication load becomes more dominant with smaller size problems.

A statistical summary of the runtime data collected for EP benchmark runs, both

for baseline and under network loaded condition (EP/PACE) are shown in Table 4.1. For

each problem size (Class A, B, and C), mean, standard deviation, and coefficient of

variation (COV) of the runtime are shown for different core allocations, TC1, TC2 and

TC3.

Based on the statistical data, sensitivity factors were computed for TC1, TC2 and

TC3 using the previously described methodology (Chapter 3). An average of these

quantities was taken to arrive at a single sensitivity factor for core allocation, Salloc.

Allocation sensitivity factors thus obtained for EP benchmark are shown in Table 4.2.

The allocation sensitivity factors computed for EP shows, in general, an

increasing trend with scaling. This might sound somewhat counter-intuitive as one would

expect a natural reduction in systemic loading with scaling since contribution from PACE

gets reduced. Inspecting further, it is interesting to see how the individual sensitivity

factors (STC1, STC2 and STC3) contribute to this trend. STC1, for example, shows a

downward trend and in-line with intuition. However, STC2 and STC3 show an upward trend

with scaling. Also, when looking at this in a generic sense, one would expect any

43

Table 4.1 Statistical Data of EP Benchmark Runs

Test Case

Class A Class B Class C

xmean

(sec)
σ
(sec)

COV
xmean

(sec)
σ
(sec)

COV
xmean

(sec)
σ
(sec)

COV

EP2

Baseline-TC1 15.456 0.046 0.300 61.959 0.180 0.290 247.140 0.797 0.320

EP/PACE-TC1 16.206 0.062 0.390 64.826 0.279 0.430 259.200 1.130 0.440

Baseline-TC2 15.542 0.059 0.380 62.117 0.205 0.330 248.180 0.894 0.360

EP/PACE-TC2 16.196 0.066 0.410 64.756 0.254 0.390 258.920 1.060 0.410

Baseline-TC3 15.457 0.046 0.290 61.875 0.203 0.330 247.380 0.728 0.290

EP/PACE-TC3 16.146 0.081 0.500 64.622 0.291 0.450 258.530 1.220 0.470

EP4

Baseline-TC1 7.722 0.026 0.340 30.905 0.086 0.280 123.610 0.367 0.300

EP/PACE-TC1 7.971 0.031 0.390 31.887 0.131 0.410 127.500 0.495 0.390

Baseline-TC2 7.752 0.021 0.270 31.014 0.080 0.260 124.080 0.341 0.270

EP/PACE-TC2 8.318 0.045 0.540 33.332 0.101 0.300 133.200 0.380 0.290

Baseline-TC3 7.751 0.022 0.280 31.006 0.076 0.250 123.990 0.307 0.250

EP/PACE-TC3 8.098 0.060 0.740 32.350 0.158 0.490 129.190 0.530 0.410

EP8

Baseline-TC1 3.855 0.010 0.250 15.406 0.041 0.260 61.552 0.150 0.240

EP/PACE-TC1 3.853 0.011 0.300 15.402 0.038 0.240 61.576 0.159 0.260

Baseline-TC2 3.887 0.010 0.250 15.549 0.041 0.260 62.160 0.126 0.200

EP/PACE-TC2 4.885 1.241 25.400 16.953 1.039 6.130 65.691 0.931 1.420

Baseline-TC3 3.887 0.011 0.270 15.520 0.035 0.220 62.059 0.134 0.220

EP/PACE-TC3 4.780 1.085 22.690 16.262 0.154 0.950 64.828 0.277 0.430

EP16

Baseline-TC1 1.933 0.007 0.340 7.717 0.020 0.250 30.853 0.079 0.260

EP/PACE-TC1 1.932 0.007 0.350 7.715 0.019 0.250 30.814 0.062 0.200

Baseline-TC3 1.952 0.005 0.260 7.798 0.020 0.260 31.223 0.077 0.250

EP/PACE-TC3 2.784 1.069 38.410 8.467 0.791 9.340 32.754 0.732 2.230

EP32

Baseline-TC1 0.970 0.004 0.380 3.865 0.009 0.240 15.441 0.031 0.200

EP/PACE-TC1 0.969 0.004 0.450 3.866 0.011 0.270 15.434 0.028 0.180

Baseline-TC3 0.978 0.004 0.440 3.898 0.006 0.150 15.598 0.024 0.150

EP/PACE-TC3 1.449 0.581 40.100 4.556 0.974 21.380 16.443 1.037 6.300

44

Table 4.2 EP Benchmark: Sensitivity Factors

AUT STC1 STC2 STC3 Salloc

EPA2 1.363 1.124 1.801 1.429

EPA4 1.184 2.146 2.761 2.030

EPA8 1.199 127.686 103.341 77.409

EPA16 1.029 n/a 210.741 105.885

EPA32 1.184 n/a 135.106 68.145

EPB2 1.551 1.232 1.424 1.403

EPB4 1.511 1.240 2.045 1.599

EPB8 0.923 25.706 4.525 10.384

EPB16 1.000 n/a 39.005 20.002

EPB32 1.125 n/a 166.603 83.864

EPC2 1.442 1.188 1.694 1.441

EPC4 1.341 1.153 1.709 1.401

EPC8 1.084 7.503 2.042 3.543

EPC16 0.768 n/a 9.357 5.063

EPC32 0.900 n/a 44.275 22.587

intermediate allocation possibility to behave different from STC1 and hence the allocation

sensitivity factor is a good measure to capture the overall trend of the allocations. This

also signifies how the core allocation policies can make a big difference in the way a

parallel application behaves in an MCMP system.

In the case of EPA16, it appears that the sensitivity factor (STC3) might be

skewing the Salloc value to a higher number. This might require one to take a deeper look

into the individual components of STC3 such as COM and ROV. For cases like these,

some possibilities have been discussed as part of future work in Chapter 5.

MG Benchmark runs:

Figure 4.6 shows the baseline and sensitivity runtimes of MG Class C 2-core job

for TC1, TC2 and TC3 allocations. TC1 showed a higher baseline runtime when

compared to TC2. This is somewhat counter-intuitive since one might think that

contiguous core allocation strategy (TC1) would have the least baseline runtime. In this

45

case, TC1 baseline runtime was the highest (about 16% higher than TC2), TC2 baseline

runtime was the lowest, and TC3 baseline runtime was in-between TC1 and TC2.

Figure 4.6 2-core allocations: Baseline and Sensitivity runtimes of MG Class C

Under sensitivity tests, TC1 and TC2 were sensitive to a similar extent when

compared with their baselines. TC3 runtime was much higher than TC1 and TC2 and

remained the most sensitive (about 10% higher runtime than its baseline). Class A and

Class B problem sizes exhibited more or less similar behavior as Class C.

Figure 4.7 shows the baseline and sensitivity runtimes of MG Class C run on 4

cores using TC1, TC2 and TC3 allocation policies. As observed with the 2 core runs,

TC1 allocation resulted in a much higher baseline runtime (about 76% more) compared

to TC2 or TC3 allocations. TC2 and TC3 baseline runtime were about the same,

indicating that as the scale (number of cores) increases, the TC2 and TC3 allocations

performed very similar to each other in the absence of additional network communication

 85

 87.5

 90

 92.5

 95

 97.5

 100

 102.5

 105

 0 10 20 30 40 50 60 70 80 90 100

R
u

n
ti

m
e(

se
cs

)

Trial

PACE / NPB MG-2 Class-C Run-time Performance

Baseline with TC1

MG/PACE with TC1

Baseline with TC2

MG/PACE with TC2

Baseline with TC3

MG/PACE with TC3

46

load. Class A and Class B MG 4 core runs also showed that the baseline runtimes of TC2

and TC3 were very similar.

Figure 4.7 4-core allocations: Baseline and Sensitivity runtimes of MG Class C

For sensitivity tests, TC1 remained almost insensitive whereas TC2 runtime was

about 30% higher than its baseline and TC3 runtime was about 23% higher than its

baseline.

For Class A and Class B problems of MG 4-core runs, TC1 remained insensitive

also. TC2 was 60% (Class A) and 52% (Class B) higher than its respective baselines

while TC3 was 82% (Class A) and 66% (Class B) higher than its respective baselines.

This shows that with increasing problem size, the sensitivity of MG 4-core runs showed

decreasing sensitivity to network communication load for TC2 and TC3 allocations.

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 0 10 20 30 40 50 60 70 80 90 100

R
u

n
ti

m
e(

se
cs

)

Trial

PACE / NPB MG-4 Class-C Run-time Performance

Baseline with TC1

MG/PACE with TC1

Baseline with TC2

MG/PACE with TC2

Baseline with TC3

MG/PACE with TC3

47

Figure 4.8 8-core allocations: Baseline and Sensitivity runtimes of MG Class C

MG Class C 8-core job baseline and sensitivity runtimes are shown in Figure 4.8

above. Again, as observed with the 2 and 4 core runs, TC1 allocation resulted in a much

higher baseline runtime (about 45% more) compared to TC2 or TC3 allocations. TC2 and

TC3 baseline runtime remained about the same, indicating that as the scale (number of

cores) increases, the TC2 and TC3 allocations performed very similar to each other in the

absence of additional network communication load.

Interestingly, in Class A and Class B MG 8-core runs, TC1 showed no

appreciable difference in its baseline runtime when compared to TC2 and TC3 (all the

three test cases showed almost the same runtimes). This shows that MG 8-core TC1 runs

exhibit some size dependency.

 17.5

 20

 22.5

 25

 27.5

 30

 32.5

 35

 37.5

 40

 42.5

 0 10 20 30 40 50 60 70 80 90 100

R
u

n
ti

m
e(

se
cs

)

Trial

PACE / NPB MG-8 Class-C Run-time Performance

Baseline with TC1

MG/PACE with TC1

Baseline with TC2

MG/PACE with TC2

Baseline with TC3

MG/PACE with TC3

48

For sensitivity tests, Class C MG 8-core TC1 remained almost insensitive while

TC2 and TC3 were almost equally sensitive (about 60% higher than their baseline

runtimes).

For Class A and Class B problems of MG 8-core runs, TC1 remained insensitive

also. TC2 was 220% (Class A) and 190% (Class B) higher than its respective baselines

while TC3 was 160% (Class A) and 145% (Class B) higher than its respective baselines.

This shows that with increasing problem size, the sensitivity of MG 8-core runs showed

decreasing sensitivity to network communication load for TC2 and TC3 allocations.

Figure 4.9 16-core allocations: Baseline and Sensitivity runtimes of MG Class C

Figure 4.9 shows the baseline and sensitivity runtimes for MG Class C problem

run on 16 cores using TC1 and TC3 core allocation policies. Here TC2 does not apply

since there were fewer nodes in the cluster (10 nodes) to allocate 16 cores under TC2

(core allocation on contiguous nodes).

 12

 14

 16

 18

 20

 22

 24

 26

 28

 30

 32

 0 10 20 30 40 50 60 70 80 90 100

R
u

n
ti
m

e(
se

cs
)

Trial

PACE / NPB MG-16 Class-C Run-time Performance

Baseline with TC1

MG/PACE with TC1

Baseline with TC3

MG/PACE with TC3

49

The baseline runtime of TC1 was higher (about 26%) than TC3 baseline runtime.

Class A and B of MG 16-core run showed about 27% (Class A) and 15% (Class B)

higher TC1 compared to TC3.

For sensitivity tests, TC1 remained insensitive as the traffic never left the nodes of

the contiguous cores allocated. However, TC3 showed a 62% higher runtime than its

baseline. TC1 was also insensitive for Class A and Class B problem sizes of MG run on

16-cores. TC3 was about 400% (Class A) and 237% (Class B) than its respective

baselines.

Figure 4.10 32-core allocations: Baseline and Sensitivity runtimes of MG Class C

The baseline and sensitivity runtimes of TC1 and TC3 are shown in Figure 4.10

for MG Class 32-core run. TC1 baseline was much higher than TC3 baseline (about 72%

higher). Even with MG Class A and Class B problems, run on 32 cores, TC1 baseline

runtime was higher than TC3 baseline.

 12

 14

 16

 18

 20

 22

 24

 26

 28

 0 10 20 30 40 50 60 70 80 90 100

R
u

n
ti
m

e(
se

cs
)

Trial

PACE / NPB MG-32 Class-C Run-time Performance

Baseline with TC1

MG/PACE with TC1

Baseline with TC3

MG/PACE with TC3

50

For sensitivity tests, runtime of TC1 did not change much and remained

insensitive. TC3, however, was sensitive and its runtime was about 25% higher than its

baseline. TC1 remained insensitive for MG Class A and B also, indicating that this

behavior is irrespective of problem size. TC3 was 278% (Class A) and 214% (Class B)

higher than its respective baselines.

Summary of MG Benchmark runs:

Based on the data obtained for MG benchmark runs, the following observations

were made:

• In contrast to the general intuition that TC1 allocation would yield the best

(lowest) runtime, the results of MG benchmark runs show that TC1 baseline

runtime, in fact, was not the lowest. It turned out that TC2 or TC3 yielded much

lower runtimes than TC1. This gives a unique perspective of how even baseline

runs (without additional network communication load), in some cases, might be

different in MCMP systems.

• For 8-core, 16-core, and 32-core runs, TC1 (contiguous core allocation) remained

insensitive. This again, (as seen with EP runs) due to the fact that the allocated

cores are all from adjacent cores/nodes and are not influenced by network

communication load on other cores in the system.

• 4-core TC1 runs, even though the other cores in the nodes are loaded with PACE,

showed insensitivity. In fact, if looked closely at the data, there was some slight

improvement in runtime (lower than baseline) under loaded condition. This again

is counter-intuitive and seems to be problem dependent (since EP 4-core run did

not show this behavior) and needs further investigation in future studies.

• 2-core TC1 runs, showed sensitivity for network communication load since the

other cores in the nodes were loaded with PACE.

A statistical summary of the runtime data collected for MG benchmark runs, both

for baseline and under network loaded condition (MG/PACE) are shown in Table 4.3.

For each problem size (Class A, B, and C), mean, standard deviation, and coefficient of

51

variation (COV) of the runtime are shown for different core allocations, TC1, TC2 and

TC3.

Table 4.3 Statistical Data of MG Benchmark Runs

Test Case

Class A Class B Class C

xmean

(sec)
σ
(sec)

COV
xmean

(sec)
σ
(sec)

COV
xmean

(sec)
σ
(sec)

COV

MG2

Baseline-TC1 2.185 0.005 0.240 10.090 0.009 0.090 101.860 0.069 0.070

MG/PACE-TC1 2.235 0.020 0.890 10.338 0.038 0.370 102.950 0.116 0.110

Baseline-TC2 1.879 0.003 0.140 8.614 0.006 0.070 85.568 0.067 0.080

MG/PACE-TC2 1.936 0.021 1.070 8.907 0.037 0.420 87.171 0.153 0.180

Baseline-TC3 2.068 0.008 0.370 9.529 0.033 0.340 87.622 0.069 0.080

MG/PACE-TC3 2.645 0.293 11.060 11.724 0.584 4.980 95.932 0.994 1.040

MG4

Baseline-TC1 1.540 0.004 0.230 7.200 0.016 0.220 75.806 0.088 0.120

MG/PACE-TC1 1.519 0.009 0.570 7.100 0.022 0.300 74.099 0.058 0.080

Baseline-TC2 1.171 0.008 0.650 5.415 0.017 0.320 43.339 0.134 0.310

MG/PACE-TC2 1.880 0.297 15.780 8.232 0.439 5.330 56.170 0.630 1.120

Baseline-TC3 1.192 0.007 0.620 5.514 0.030 0.550 43.517 0.201 0.460

MG/PACE-TC3 2.159 0.505 23.390 9.128 1.211 13.270 53.403 0.766 1.440

MG8

Baseline-TC1 0.672 0.010 1.420 3.104 0.007 0.210 28.634 0.026 0.090

MG/PACE-TC1 0.672 0.009 1.300 3.107 0.007 0.230 28.624 0.026 0.090

Baseline-TC2 0.694 0.005 0.760 3.225 0.010 0.300 19.821 0.040 0.200

MG/PACE-TC2 2.210 0.712 32.210 8.362 2.304 27.550 32.521 1.124 3.460

Baseline-TC3 0.690 0.002 0.260 3.205 0.009 0.280 19.718 0.079 0.400

MG/PACE-TC3 2.018 0.709 35.160 8.127 2.322 28.570 31.660 1.103 3.480

MG16

Baseline-TC1 0.552 0.010 1.890 2.593 0.026 0.990 18.497 0.064 0.350

MG/PACE-TC1 0.554 0.012 2.170 2.590 0.029 1.120 18.523 0.058 0.310

Baseline-TC3 0.465 0.075 16.090 2.264 0.229 10.110 14.628 0.602 4.110

MG/PACE-TC3 2.213 0.729 32.960 7.808 2.095 26.840 24.187 2.169 8.970

MG32

Baseline-TC1 0.750 0.260 34.700 2.710 0.695 25.640 23.511 0.636 2.710

MG/PACE-TC1 0.759 0.269 35.380 2.735 0.696 25.460 23.435 0.668 2.850

Baseline-TC3 0.283 0.011 3.800 1.321 0.003 0.210 13.713 0.444 3.230

MG/PACE-TC3 1.061 0.426 40.170 4.146 1.283 30.940 17.149 1.008 5.880

52

Table 4.4 MG Benchmark: Sensitivity Factors

AUT STC1 STC2 STC3 Salloc

MGA2 3.793 7.873 38.234 16.633

MGA4 2.445 38.961 68.342 36.583

MGA8 0.915 134.980 395.385 177.093

MGA16 1.152 n/a 9.746 5.449

MGA32 1.032 n/a 39.691 20.361

MGB2 4.212 6.204 18.020 9.479

MGB4 1.345 25.321 39.941 22.202

MGB8 1.096 238.104 258.775 165.992

MGB16 1.130 n/a 9.157 5.143

MGB32 1.002 n/a 462.480 231.741

MGC2 1.588 2.292 14.233 6.038

MGC4 0.652 4.683 3.842 3.059

MGC8 1.000 28.385 13.969 14.451

MGC16 0.887 n/a 3.609 2.248

MGC32 1.048 n/a 2.277 1.662

Based on the statistical data, sensitivity factors were computed for TC1, TC2 and

TC3. An average of these quantities was taken to arrive at a single sensitivity factor for

core allocation, Salloc. Allocation sensitivity factors thus obtained for MG benchmark are

shown in Table 4.4.

The allocation sensitivity factors computed for MG, in general, show an

increasing trend with scaling up to 8-cores, then drop for 16-cores and then show an

increase for 32-cores. With this varying trend, it is not possible to generalize the

allocation sensitivity factor, Salloc, as the individual sensitivity factors (STC1, STC2 and

STC3) contribute differently to affect the trend.

LU Benchmark runs:

Figure 4.11 above shows the baseline and sensitivity runtimes of LU Class C 2-

core run. As seen with MG, the TC1 baseline runtime was not the lowest and remained

higher (about 17%) than TC2 and TC3 baseline runtimes. In this case, TC2 baseline

runtime was the lowest and TC3 runtime was slightly higher than TC2. In Class A and

53

Class B problems for 2-core runs, TC1 was 4% (Class A) and 28% (Class B) higher than

its baseline.

Figure 4.11 2-core allocations: Baseline and Sensitivity runtimes of LU Class C

Under loaded condition, for LU Class C 2-core run (sensitivity test), TC1 runtime

was slightly higher compared to its baseline. TC2 and TC3 runtimes were about 3%

higher than their respective baselines. In Class A and Class B problems, for 2-core runs,

TC1 runtime was 3% higher than its respective baselines. TC2 was 4% (Class A) and 5%

(Class B) higher than its baseline while TC3 was 10% (Class A) and 8% (Class B) higher

than its baseline. This shows that with increasing problem size, the sensitivity of LU 2-

core runs, in general, showed decreasing sensitivity to network communication load for

TC2 and TC3 allocations.

Figure 4.12 above shows the baseline and sensitivity runtimes of LU Class C 4-

core run. TC2 and TC3 baseline runtimes remained the same. Again in this case, TC1

baseline runtime was not the lowest and remained higher (about 68%) than TC2 and TC3

 1200

 1250

 1300

 1350

 1400

 1450

 1500

 0 5 10 15 20 25 30 35 40 45 50

R
u

n
ti

m
e(

se
cs

)

Trial

PACE / NPB LU-2 Class-C Run-time Performance

Baseline with TC1

LU/PACE with TC1

Baseline with TC2

LU/PACE with TC2

Baseline with TC3

LU/PACE with TC3

54

baseline runtimes. In Class A and Class B problems for 4-core runs, TC1 was 7% (Class

A) and 31% (Class B) higher than its respective baselines.

Figure 4.12 4-core allocations: Baseline and Sensitivity runtimes of LU Class C

Under loaded condition, for LU Class C 4-core run (sensitivity test), TC1 runtime

was slightly lower compared to its baseline which is somewhat counter-intuitive and the

reason for this needs further investigation in future studies. TC2 runtime was about 17%

higher than its baseline and TC3 runtime was about 9% higher than its baseline.

In Class A and Class B problems, for 4-core runs, TC1 runtime was almost

similar to its respective baselines. TC2 was 36% (Class A) and 20% (Class B) higher than

its baseline while TC3 was 26% (Class A) and 12% (Class B) higher than its baseline.

This shows that with increasing problem size, the sensitivity of LU 4-core runs, showed

decreasing sensitivity to network communication load for TC2 and TC3 allocations.

 500

 550

 600

 650

 700

 750

 800

 850

 900

 0 5 10 15 20 25 30 35 40 45 50

R
u

n
ti

m
e(

se
cs

)

Trial

PACE / NPB LU-4 Class-C Run-time Performance

Baseline with TC1

LU/PACE with TC1

Baseline with TC2

LU/PACE with TC2

Baseline with TC3

LU/PACE with TC3

55

Figure 4.13 8-core allocations: Baseline and Sensitivity runtimes of LU Class C

The baseline and sensitivity runtimes of LU Class C problem run on 8 cores are

shown in Figure 4.13 above. TC2 and TC3 baseline runtimes remained very similar. As

seen before, TC1 baseline runtime was not the lowest and remained higher (about 48%)

than TC2 and TC3 baseline runtimes. However, in Class A and Class B problems TC1

baseline runtimes were different from this observation. In Class A 8-core runs, TC1

baseline runtime was about the same as TC2 or TC3. In Class B 8-core runs, TC1

baseline runtime was lower than TC2 or TC3 baselines.

Under loaded condition, for LU Class C 8-core run (sensitivity test), TC1 runtime

was similar to its baseline, suggesting that it was insensitive. TC2 runtime was about 14%

higher than its baseline and TC3 runtime was about 10% higher than its baseline.

In Class A and Class B problems, for 8-core runs, TC1 runtimes were almost

similar to their respective baselines. TC2 was about 25% (for both Class A and Class B)

higher than its baseline while TC3 was about 63% (for both Class A and Class B) higher

 260

 270

 280

 290

 300

 310

 320

 330

 340

 350

 360

 370

 380

 390

 400

 410

 0 5 10 15 20 25 30 35 40 45 50

R
u

n
ti

m
e(

se
cs

)

Trial

PACE / NPB LU-8 Class-C Run-time Performance

Baseline with TC1

LU/PACE with TC1

Baseline with TC2

LU/PACE with TC2

Baseline with TC3

LU/PACE with TC3

56

than its baseline. This shows that with increasing problem size, mainly from size B to C,

the sensitivity of LU 8-core runs, showed decreasing sensitivity to network

communication load for TC2 and TC3 allocations.

Figure 4.14 16-core allocations: Baseline and Sensitivity runtimes of LU Class C

The baseline and sensitivity runtimes of LU Class C problem run on 16 cores are

shown in Figure 4.14 above. TC1 baseline runtime was higher (about 6%) than TC3. In

Class A and Class B problems also TC1 baseline runtimes were slightly higher than TC3.

For sensitivity tests, TC1 of LU Class C 16-core run was similar to its baseline,

suggesting that it was insensitive. TC3 runtime was about 14% higher than its baseline. In

Class A and Class B problems, for 16-core runs, TC1 runtimes were similar to their

respective baselines (i.e. remained insensitive). TC3 was about 162% (Class A) and 43%

(Class B) higher than its respective baselines.

The baseline and sensitivity runtimes of LU Class C problem run on 32 cores are

shown in Figure 4.15 above. TC1 baseline runtime was higher (about 21%) than TC3. In

 136

 138

 140

 142

 144

 146

 148

 150

 152

 154

 156

 158

 160

 162

 0 5 10 15 20 25 30 35 40 45 50

R
u

n
ti
m

e(
se

cs
)

Trial

PACE / NPB LU-16 Class-C Run-time Performance

Baseline with TC1

LU/PACE with TC1

Baseline with TC3

LU/PACE with TC3

57

Class A problem TC1 baseline runtimes was similar to TC3, while in Class B, TC1

baseline runtime was about 52% higher than TC3.

Figure 4.15 32-core allocations: Baseline and Sensitivity runtimes of LU Class C

For sensitivity tests, TC1 of LU Class C 32-core run was similar to its baseline,

suggesting that it was insensitive. TC3 runtime was about 15% higher than its baseline.

In Class A and Class B problems, for 16-core runs, TC1 runtimes were similar to

their respective baselines (i.e. remained insensitive). TC3 was about 155% (Class A) and

90% (Class B) higher than its respective baselines.

Summary of LU Benchmark runs:

Based on the data obtained for LU benchmark runs, the following observations

were made:

• Similar to what was seen with MG benchmark, and in contrast to the general

intuition that TC1 allocation would yield the best (lowest) runtime, the results of

 78

 80

 82

 84

 86

 88

 90

 92

 94

 96

 98

 100

 102

 104

 0 5 10 15 20 25 30 35 40 45 50

R
u

n
ti
m

e(
se

cs
)

Trial

PACE / NPB LU-32 Class-C Run-time Performance

Baseline with TC1

LU/PACE with TC1

Baseline with TC3

LU/PACE with TC3

58

LU benchmark runs show that TC1 baseline runtime was not the lowest. It turned

out that TC2 or TC3 yielded much lower runtimes than TC1.

• For 8-core, 16-core, and 32-core runs, TC1 (contiguous core allocation) remained

insensitive (as seen with EP and MG runs). This is due to the fact that the

allocated cores are all from adjacent cores/nodes and are not influenced by

network communication load on other cores in the system.

• 4-core TC1 runs, even though the other cores in the nodes were loaded with

PACE, showed insensitivity. In fact, for Class C problem, there was some slight

improvement in runtime (lower than baseline) under loaded condition.

• 2-core TC1 runs, showed sensitivity for network communication load. This is

somewhat intuitive since the other cores in the nodes were loaded with PACE.

A statistical summary of the runtime data collected for LU benchmark runs, both

for baseline and under network loaded condition (LU/PACE) are shown in Table 4.5. For

each problem size (Class A, B, and C), mean, standard deviation, and coefficient of

variation (COV) of the runtime are shown for different core allocations, TC1, TC2 and

TC3.

Based on the statistical data, sensitivity factors were computed for TC1, TC2 and

TC3. An average of these quantities was taken to arrive at a single sensitivity factor for

core allocation, Salloc. Allocation sensitivity factors thus obtained for LU benchmark are

shown in Table 4.6.

The allocation sensitivity factors computed for LU Class A and Class B show an

increasing trend with scaling. However, Class C shows a mixed trend of decrease and

increase. Again, the individual sensitivity factors (STC1, STC2 and STC3) contribute

differently to affect the trend of the allocation sensitivity factor, Salloc.

59

Table 4.5 Statistical Data of LU Benchmark Runs

Test Case

Class A Class B Class C

xmean

(sec)
σ
(sec)

COV
xmean

(sec)
σ
(sec)

COV
xmean

(sec)
σ
(sec)

COV

LU2

Baseline-TC1 58.953 0.037 0.060 306.380 1.530 0.500 1423.200 2.290 0.160

LU/PACE-TC1 60.751 0.099 0.160 315.620 0.918 0.290 1441.100 3.460 0.240

Baseline-TC2 56.869 0.039 0.070 238.680 0.379 0.160 1213.600 1.680 0.140

LU/PACE-TC2 58.963 0.097 0.160 250.240 0.587 0.230 1247.700 4.130 0.330

Baseline-TC3 58.842 0.046 0.080 244.560 0.752 0.310 1219.700 2.000 0.160

LU/PACE-TC3 64.613 0.548 0.850 263.020 1.100 0.420 1260.500 4.790 0.380

LU4

Baseline-TC1 31.638 0.018 0.060 171.320 0.342 0.200 893.150 1.670 0.190

LU/PACE-TC1 31.830 0.036 0.110 173.590 0.380 0.220 881.950 1.710 0.190

Baseline-TC2 29.683 0.047 0.160 130.500 0.074 0.060 531.900 1.640 0.310

LU/PACE-TC2 40.537 0.713 1.760 156.380 0.668 0.430 622.860 2.040 0.330

Baseline-TC3 29.421 0.043 0.140 130.060 0.123 0.090 532.630 2.250 0.420

LU/PACE-TC3 37.002 0.637 1.720 145.710 0.949 0.650 580.480 2.590 0.450

LU8

Baseline-TC1 15.715 0.033 0.210 65.805 0.044 0.070 392.250 1.480 0.380

LU/PACE-TC1 15.705 0.028 0.180 65.819 0.048 0.070 391.880 1.140 0.290

Baseline-TC2 15.560 0.059 0.380 67.143 0.078 0.120 265.080 0.597 0.230

LU/PACE-TC2 25.758 1.279 4.970 85.254 1.237 1.450 301.010 1.340 0.450

Baseline-TC3 15.222 0.066 0.430 66.104 0.117 0.180 262.620 0.319 0.120

LU/PACE-TC3 24.755 1.220 4.930 81.877 1.125 1.370 288.810 1.350 0.470

LU16

Baseline-TC1 8.502 0.041 0.480 37.680 0.034 0.090 144.480 0.402 0.280

LU/PACE-TC1 8.497 0.037 0.440 37.693 0.040 0.110 144.550 0.436 0.300

Baseline-TC3 8.161 0.031 0.380 35.475 0.082 0.230 136.810 0.101 0.070

LU/PACE-TC3 21.384 1.635 7.650 50.716 1.196 2.360 155.280 0.865 0.560

LU32

Baseline-TC1 5.872 0.037 0.630 30.956 1.511 4.880 96.170 0.929 0.970

LU/PACE-TC1 5.863 0.031 0.520 30.636 1.579 5.160 96.054 1.002 1.040

Baseline-TC3 5.832 0.039 0.670 20.425 0.077 0.380 79.267 0.756 0.950

LU/PACE-TC3 15.313 2.495 16.290 38.890 1.631 4.190 91.193 1.060 1.160

60

Table 4.6 LU Benchmark: Sensitivity Factors

AUT STC1 STC2 STC3 Salloc

LUA2 2.748 2.370 11.667 5.595

LUA4 1.844 15.022 15.451 10.773

LUA8 0.857 21.651 18.645 13.718

LUA16 0.916 n/a 52.748 26.832

LUA32 0.824 n/a 63.842 32.333

LUB2 0.597 1.507 1.457 1.187

LUB4 1.115 8.588 8.091 5.931

LUB8 1.000 15.343 9.427 8.590

LUB16 1.223 n/a 14.669 7.946

LUB32 1.046 n/a 20.995 11.020

LUC2 1.519 2.423 2.454 2.132

LUC4 0.987 1.247 1.168 1.134

LUC8 0.762 2.222 4.307 2.430

LUC16 1.072 n/a 9.080 5.076

LUC32 1.071 n/a 1.405 1.238

PSTSWM Benchmark runs:

Figure 4.16 shows the baseline and sensitivity runtimes of PSTSWM 2-core job

for TC1, TC2, and TC3 allocations. TC1 showed a (about 20%) higher baseline runtime

when compared to TC2 (as seen with MG and LU runs). However, in this case, TC3

baseline runtime was the highest (about 128% higher than TC2). TC1 was in-between

TC2 and TC3.

Under sensitivity test, TC1 and TC2 runtimes were slightly higher when

compared to their baselines, suggesting slight sensitivity. TC3 runtime was about 66%

higher than its baseline.

Figure 4.17 shows the baseline and sensitivity runtimes of PSTSWM 4-core job

for TC1, TC2, and TC3 allocations. In this case, TC1 showed the least baseline runtime.

Both TC2 and TC3 baseline runtimes were similar and about 70% higher than TC1

baseline.

61

Figure 4.16 2-core allocations: Baseline and Sensitivity runtimes of PSTSWM

Figure 4.17 4-core allocations: Baseline and Sensitivity runtimes of PSTSWM

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 5 10 15 20 25 30

R
u

n
ti

m
e(

se
cs

)

Trial

PACE / PSTSWM 2-core Run-time Performance

Baseline with TC1

PSTSWM/PACE with TC1

Baseline with TC2

PSTSWM/PACE with TC2

Baseline with TC3

PSTSWM/PACE with TC3

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 0 5 10 15 20 25 30

R
u

n
ti

m
e(

se
cs

)

Trial

PACE / PSTSWM 4-core Run-time Performance

Baseline with TC1

PSTSWM/PACE with TC1

Baseline with TC2

PSTSWM/PACE with TC2

Baseline with TC3

PSTSWM/PACE with TC3

62

Under sensitivity test, TC1 runtime was similar to its baseline, suggesting

insensitivity. TC2 runtime was about 75% higher than its baseline while TC3 runtime

was 98% higher than its baseline.

Figure 4.18 8-core allocations: Baseline and Sensitivity runtimes of PSTSWM

Figure 4.18 shows the baseline and sensitivity runtimes of PSTSWM 8-core job

for TC1, TC2, and TC3 allocations. Similar to the 4-core run, in this case also the

baseline runtime of TC1 was the lowest and baseline runtimes of both TC2 and TC3

baseline were similar and about 210% higher than TC1 baseline.

Under sensitivity test, TC1 runtime was similar to its baseline, suggesting

insensitivity. Both TC2 and TC3 runtimes were about 200% higher than their similar

baseline runtime

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 5 10 15 20 25 30

R
u
n
ti
m

e(
se

cs
)

Trial

PACE / PSTSWM 8-core Run-time Performance

Baseline with TC1

PSTSWM/PACE with TC1

Baseline with TC2

PSTSWM/PACE with TC2

Baseline with TC3

PSTSWM/PACE with TC3

63

Figure 4.19 16-core allocations: Baseline and Sensitivity runtimes of PSTSWM

Figure 4.19 shows the baseline and sensitivity runtimes of PSTSWM 16-core job

for TC1 and TC3 allocations. TC1 baseline runtime was the lowest and TC3 baseline

runtime was about 178% higher than TC1.

Under sensitivity test, TC1 runtime was similar to its baseline, suggesting

insensitivity. TC2 runtime was about 196% higher than its baseline runtime.

Figure 4.20 shows the baseline and sensitivity runtimes of PSTSWM 16-core job

for TC1 and TC3 allocations. TC1 baseline runtime was the lowest and TC3 baseline

runtime was about 126% higher than TC1.

Under sensitivity test, TC1 runtime was similar to its baseline, suggesting

insensitivity. TC2 runtime was about 121% higher than its baseline runtime.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5 10 15 20 25 30

R
u
n
ti
m

e(
se

cs
)

Trial

PACE / PSTSWM 16-core Run-time Performance

Baseline with TC1

PSTSWM/PACE with TC1

Baseline with TC3

PSTSWM/PACE with TC3

64

Figure 4.20 32-core allocations: Baseline and Sensitivity runtimes of PSTSWM

Summary of PSTSWM Benchmark runs:

Based on the data obtained for PSTSWM benchmark runs, the following

observations were made:

• Unlike what was observed with MG and LU benchmarks, TC1 (contiguous core

allocation) yield the best (lowest) runtime for PSTSWM benchmark runs (except

for 2-core runs).

• In all the cases TC3 baseline runtime was the highest and remained similar to TC2

(except for the 2-core run, where TC3 was not similar to TC2).

• For 2-core run of PSTSWM, TC1 baseline was higher than TC2, which showed

the lowest baseline runtime. TC3 showed the highest baseline runtime.

• Under network loaded condition, TC1 remained insensitive for all the PSTSWM

cases irrespective of scaling or number of cores. TC2 and TC3 were sensitive for

all cases.

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 5 10 15 20 25 30

R
u

n
ti

m
e(

se
cs

)

Trial

PACE / PSTSWM 32-core Run-time Performance

Baseline with TC1

PSTSWM/PACE with TC1

Baseline with TC3

PSTSWM/PACE with TC3

65

Table 4.7 Statistical Data of PSTSWM Benchmark Runs

Test Case
xmean

(sec)
σ (sec) COV

PSTSWM2

Baseline-TC1 1303.400 2.420 0.190

PSTSWM/PACE-TC1 1327.800 3.170 0.240

Baseline-TC2 1087.500 2.140 0.200

PSTSWM/PACE-TC2 1122.000 3.310 0.300

Baseline-TC3 2475.400 2.460 0.100

PSTSWM/PACE-TC3 4109.200 8.930 0.220

PSTSWM4

Baseline-TC1 804.640 0.799 0.100

PSTSWM/PACE-TC1 782.060 1.530 0.200

Baseline-TC2 1379.900 1.100 0.080

PSTSWM/PACE-TC2 2412.900 10.100 0.420

Baseline-TC3 1390.800 1.990 0.140

PSTSWM/PACE-TC3 2750.800 9.810 0.360

PSTSWM8

Baseline-TC1 349.110 0.564 0.160

PSTSWM/PACE-TC1 349.340 1.050 0.300

Baseline-TC2 1084.200 11.300 1.040

PSTSWM/PACE-TC2 3294.800 19.400 0.590

Baseline-TC3 1098.000 9.240 0.840

PSTSWM/PACE-TC3 3282.700 21.100 0.640

PSTSWM16

Baseline-TC1 302.600 0.452 0.150

PSTSWM/PACE-TC1 303.310 1.760 0.580

Baseline-TC3 843.420 5.600 0.660

PSTSWM/PACE-TC3 2499.000 17.300 0.690

PSTSWM32

Baseline-TC1 293.300 0.465 0.160

PSTSWM/PACE-TC1 293.050 0.340 0.120

Baseline-TC3 661.710 6.330 0.960

PSTSWM/PACE-TC3 1466.700 17.300 1.180

Based on the statistical data, sensitivity factors were computed for TC1, TC2 and

TC3. An average of these quantities was taken to arrive at a single sensitivity factor for

core allocation, Salloc. Allocation sensitivity factors thus obtained for PSTSWM

benchmark are shown in Table 4.8.

66

Table 4.8 PSTSWM Benchmark: Sensitivity Factors

AUT STC1 STC2 STC3 Salloc

PSTSWM2 1.287 1.548 3.652 2.162

PSTSWM4 1.944 9.180 5.086 5.403

PSTSWM8 1.876 1.724 2.278 1.959

PSTSWM16 3.876 n/a 3.098 3.487

PSTSWM32 0.749 n/a 2.724 1.737

The allocation sensitivity factors computed for PSTSWM show an increasing

trend with scaling up to 4-cores, then drop for 8-cores and then show an increase for 16-

cores, and then drops again for 32-cores. With this varying trend, it is not possible to

generalize the allocation sensitivity factor, Salloc, as the individual sensitivity factors

(STC1, STC2 and STC3) contribute differently to affect the trend.

4.3. Overall Summary

From the data analysis performed on the runtime data collected for NAS and

PSTSWM benchmarks, under different test scenarios (core allocations), the overall

results can be summarized as follows:

• For EP benchmark, the runtimes at network loaded conditions were not truly

insensitive for certain cases (EP 8-core, 16-core and 32-core TC2 and TC3 cases).

This shows that for these cases when PACE is loading the network, EP could be

competing with the entire system thereby making it sensitive to network

communication load.

• For EP, MG, and LU benchmarks, TC1 (contiguous core allocation test case)

remained insensitive under network loaded conditions for 8-core, 16-core, and 32-

core runs. This is due to the fact that the allocated cores are all from adjacent

cores/nodes and are not influenced by network communication load on other

cores in the system. In the case of PSTSWM, TC1 remained insensitive

irrespective of scaling or number of cores.

• In contrast to the general intuition that TC1 allocation would yield the best

(lowest) runtime, the results of MG and LU benchmark runs show that TC1

baseline runtime, in fact, was not the lowest. It turned out that TC2 or TC3

67

yielded much lower runtimes than TC1. This gives a unique perspective of how

even baseline runs (without additional network communication load), in some

cases, might be non-intuitive in MCMP systems. One possibility why TC1 was

not the lowest could be due to contention of resources (such as a common cache)

between contiguous cores, which again could be due to the core-level

architectural differences. The exact reason why TC1 was not the lowest needs

further investigation and beyond the scope of this study.

Table 4.9 Sensitivity Factors of AUTs grouped under bins

AUT
Less
Sensitive
(S < 5)

Moderately
Sensitive
(5 ≤ S ≥ 20)

Highly
Sensitive
(S > 20)

EPA2,4 x

EPA8,16,32 x

EPB2,4 x

EPB8 x

EPB16,32 x

EPC2,4,8 x

EPC16 x

EPC32 x

MGA2,16 x

MGA4,8,32 x

MGB2,16 x

MGB4,8,32 x

MGC2,8 x

MGC4,16,32 x

LUA2,4,8 x

LUA16,32 x

LUB2 x

LUB4,8,16,32 x

LUC2,4,8,32 x

LUC16 x

PSTSWM2,,8,16,32 x

PSTSWM4 x

68

• Appropriate sensitivity metrics such as coefficients of mean (COM) and ratio of

variations (ROV) were determined and based on these metrics, sensitivity factors

were computed for each application under different core allocation test cases

(TC1, TC2 and TC3).

• From the results, it can be concluded that the sensitivity model used in single-

processor machines, still holds on multi-core machines, which showed varying

levels of sensitivity for parallel applications depending on the core allocation.

• The parallel applications (AUTs) tested in the current study can be grouped based

on the level of sensitivity (less, moderate or high) as shown in Table 4.9. This

information can be an important input for schedulers to allocate these applications

properly in MCMP systems.

• In general, from single-processor machines results (Evans, 2005), the parallel

applications can be ranked in the order of least to most sensitive: EP, LU, MG,

and PSTSWM. In MCMP systems, based on the results of this study, the

sensitivity is dependent on both the problem type and size. For a given problem

type, in general, the sensitivity decreases as the problem size increases.

69

CHAPTER 5. CONCLUSION AND FUTURE WORK

5.1. Conclusion

The growth of parallel applications has been significant in the recent years and

poised to grow even more in the coming years. This offers exciting and promising

innovations both in the software and hardware development. At the same time, the

growth brings enough challenges for researchers to make sure parallel applications run as

intended. It is important to understand how these applications perform, with the existing

network conditions and loads, on parallel computers such as a cluster environment.

In this study, the focus was on parallel application performance on MCMP

systems. Previously developed sensitivity model for single-processor machines was

adopted in this research to study parallel applications on a MCMP system. The runtime

sensitivity of parallel applications such as NAS and PSTSWM benchmarks were studied

by applying a specific network communication load and by varying the core allocations.

Three different core allocation policies were employed to capture the runtime variations.

Each test case (core allocation) was designed based on the “distance” between the

number cores used for running the applications. Several iterations were run for each test

case to gather statistically significant runtime data.

Based on the various tests conducted, the following are the findings of this study:

• Parallel applications showed runtime sensitivity due to network communication

load on MCMP system. Therefore, the sensitivity model developed for single-core

single-processor machines still holds for MCMP systems.

• The results of the sensitivity tests indicate that the parallel applications run on

MCMP systems exhibit varying sensitivity based on core allocation and problem

size as discussed in Chapter 4.

70

• It was found that EP benchmark was not behaving as per definition, since in some

cases; it exhibited sensitivity as discussed in Section 4.2.

• It was also found that the contiguous core allocation policy (TC1) was not the best

strategy (to get least runtime) for some applications (For example, MG and LU).

• A single allocation sensitivity factor was computed for each parallel application

based on several core allocations for a given number of cores.

• The sensitivity factors obtained for the parallel applications tested in this study

were categorized based on their values (less sensitive vs. moderately or highly

sensitive).

The information obtained from this study can be a useful input for job schedulers

to properly allocate parallel applications on MCMP systems. In addition, the information

on runtime sensitivity could provide new insights for parallel application programmers,

system administrators and hardware architectural designers to optimize application

runtime under network communication loaded scenarios and achieve the desired scale-up

with MCMP systems.

5.2. Future work

The following topics could be investigated as part of future work to this current

study:

• The results of this current study indicate EP benchmark does not truly behave as

EP since it showed sensitivity to network communication load in some cases

when the core allocations are set to be wide apart. By employing a few more core

allocation policies, apart from what was done, and by looking at how EP works at

the core level (inter-core communication) could provide useful information.

• In many cases, it was found that the contiguous core allocation strategy (TC1)

was not the best way to run a baseline, rather, distributing the job on non-

contiguous cores yielded lower runtimes. This could be investigated further to

understand what causes this behavior.

71

• In some cases, it was found that loaded case of TC1 showed improved

performance compared to its baseline run. This is an interesting observation and

more detailed investigation could be conducted to better under this phenomenon.

• The sensitivity factors computed, in some cases, seem to be slightly skewed

thereby producing large values. An alternate method, addressing any anomalies

with the individual statistical components, could be developed. One possible

method for calculating sensitivity factor that may be used is shown below:

D./ =	
∣
F1234	5GHI5
F1234	5J	HI5

∣

∣
F1234	6G	HI6
F1234	6J	HI6

∣
	
01234	5
01234	6

 (Eq.5.1)

From Statistics, KLMNO	 + 	2Q and KLMNO	 − 	2Q represent the upper and lower

limits respectively covering 95% of the data spread. The ratio of these two

quantities represents the ratio of the data variation in the context of the value of

mean. This method, however, needs to be thoroughly tested and confirmed for

different possible scenarios.

72

LIST OF REFERENCES

72

LIST OF REFERENCES

Anderson, J. M., Berc, L. M., Dean, J., Ghemawat, S., Henzinger, M. R., Leung, S. T. A.,
Sites, R. L., et al. (1997). Continuous profiling: where have all the cycles gone?
ACM SIGOPS Operating Systems Review, 31(5), 1-14.

Anderson, T. E., Culler, D. E., & Patterson, D. (1995). A case for NOW (Networks of
Workstations). IEEE micro, 15(1), 54–64.

Bailey, D., Harris, T., Saphir, W., Van Der Wijngaart, R., Woo, A., & Yarrow, M.
(1995a). The NAS parallel benchmarks 2.0.

Bailey, D., Harris, T., Saphir, W., Van Der Wijngaart, R., Woo, A., & Yarrow, M.
(1995b). The NAS parallel benchmarks 2.0 (No. Report NAS-95-020).

Berman, F., & Wolski, R. (1996). Scheduling from the perspective of the application.
Proceedings of the Fifth IEEE Symposium on High Performance Distributed

Computing HPDC96 (pp. 100–111).

Bode, B., Halstead, D. M., Kendall, R., Lei, Z., & Jackson, D. (2000). The portable batch
scheduler and the maui scheduler on linux clusters. Proceedings of the 4th Annual

Linux Showcase and Conference- Volume 4 (pp. 27–27). Atlanta, Georgia: USENIX
Association.

Calzarossa, M., Massari, L., & Tessera, D. (2004). A methodology towards automatic
performance analysis of parallel applications. Parallel Computing, 30(2), 211-
223. doi:10.1016/j.parco.2003.08.002

Carter, J., He, Y., Shalf, J., Shan, H., Strohmaier, E., & Wasserman, H. (2007). The
Performance Effect of Multi-core on Scientific Applications. Lawrence Berkeley
National Laboratory. LBNL Paper LBNL-62662.

73

Chai, L., Gao, Q., & Panda, D. K. (2007). Understanding the Impact of Multi-Core
Architecture in Cluster Computing: A Case Study with Intel Dual-Core System.
Seventh IEEE International Symposium on Cluster Computing and the Grid

(CCGrid ’07) (pp. 471-478). Presented at the Seventh IEEE International
Symposium on Cluster Computing and the Grid, Rio de Janeiro, Brazil.
doi:10.1109/CCGRID.2007.119

Datta, K., Murphy, M., Volkov, V., Williams, S., Carter, Jonathan, Oliker, L., Patterson,
David, et al. (2008). Stencil computation optimization and auto-tuning on state-
of-the-art multicore architectures. 2008 SC - International Conference for High

Performance Computing, Networking, Storage and Analysis (pp. 1-12). Presented
at the 2008 SC - International Conference for High Performance Computing,
Networking, Storage and Analysis, Austin, TX, USA.
doi:10.1109/SC.2008.5222004

Dinda, P. A. (2002). A prediction-based real-time scheduling advisor. Proceedings 16th

International Parallel and Distributed Processing Symposium (pp. 10-17).
Presented at the 16th International Parallel and Distributed Processing
Symposium. IPDPS 2002, Ft. Lauderdale, FL, USA.
doi:10.1109/IPDPS.2002.1015480

Evans, J. J. (2005, December). Modeling Parallel Application Sensitivity to Network

Performance. Doctoral Thesis, Illinois Institute of Technology, Chicago, Illinois.

Evans, J. J., & Hood, C. S. (2011). A Network Performance Sensitivity Metric for
Parallel Applications. International Journal of High Performance Computing and

Networking, 7, Number 1, 8-18.

Evans, J. J., & Hood, C. S. (2005). Network performance variability in NOW clusters.
CCGrid 2005. IEEE International Symposium on Cluster Computing and the

Grid, 2005. (pp. 1047-1054). Presented at the CCGrid 2005. IEEE International
Symposium on Cluster Computing and the Grid, 2005., Cardiff, Wales, UK.
doi:10.1109/CCGRID.2005.1558676

Evans, J. J., & Hood, C. S. (2006). PARSE: A Tool for Parallel Application Run Time
Sensitivity Evaluation. 12th International Conference on Parallel and Distributed

Systems - (ICPADS’06) (pp. 475-484). Presented at the 12th International
Conference on Parallel and Distributed Systems - (ICPADS’06), Minneapolis,
MN, USA. doi:10.1109/ICPADS.2006.78

Feng, W. (2005). The importance of being low power in highperformance computing.
Cyberinfrastructure Technology Watch (CTWatch), 3.

74

Hall, J., Sabatino, R., Crosby, S., Leslie, I., & Black, R. (1997). Counting the cycles: a
comparative study of NFS performance over high speed networks. 22nd Annual

Conference on Local Computer Networks (LCN’97) (pp. 8-19). Minneapolis, MN,
USA.

Hennessy, J. L., & Patterson, D. A. (1996). Computer Architecture: A Quantitative

Approach. Morgan Kaufmann, 1996.

Intel shows off 80-core processor - CNET News. (2007, February).
http://news.cnet.com/Intel-shows-off-80-core-processor/. Retrieved May 5, 2010,
from http://news.cnet.com/Intel-shows-off-80-core-processor/2100-1006_3-
6158181.html

Jain, R. (1991). The Art of Computer Systems Performance Analysis. 1991. John Wiley,
New York.

Jin, H., Hood, R., Chang, J., Djomehri, J., Jespersen, D., Taylor, K., Biswas, R., et al.
(2009). Characterizing Application Performance Sensitivity to Resource

Contention in Multicore Architectures (No. NAS Technical Report NAS-09-
002). Citeseer.

Kaiser, H., Brodowicz, M., & Sterling, T. (2009). ParalleX An Advanced Parallel
Execution Model for Scaling-Impaired Applications. 2009 International

Conference on Parallel Processing Workshops (pp. 394-401). Presented at the
2009 International Conference on Parallel Processing Workshops (ICPPW),
Vienna, Austria. doi:10.1109/ICPPW.2009.14

Majumdar, S., & Yiu Ming Leung. (1994). Characterization of applications with I/O for
processor scheduling in multiprogrammed parallel systems. Proceedings of 1994

6th IEEE Symposium on Parallel and Distributed Processing (pp. 298-307).
Presented at the 1994 6th IEEE Symposium on Parallel and Distributed
Processing, Dallas, TX, USA. doi:10.1109/SPDP.1994.346154

Maui Scheduler - Administrator’s Guide. Retrieved from
http://www.adaptivecomputing.com/resources/docs/maui/mauiadmin.php

MPICH2 : about MPICH2. Retrieved from
http://www.mcs.anl.gov/research/projects/mpich2/about/index.php?s=about

Ni, L. M., & Tail, K. C. (1990). Special issue on software tools for parallel programming
and visualization: Guest editors’ introduction. Journal of Parallel and Distributed

Computing, 9(2), 101–102.

75

Saini, S., & Bailey, D. H. (1996). NAS parallel benchmark (version 1.0) results 11-96 (
No. Report NAS-96-18).

Singh, J. P., Rothberg, E., & Gupta, A. (1994). Modeling communication in parallel
algorithms: A fruitful interaction between theory and systems? Proceedings of the

sixth annual ACM symposium on Parallel algorithms and architectures (pp. 189-
199). New Jersey, United States.

Sinnen, O., Sousa, L. A., & Sandnes, F. E. (2006). Toward a realistic task scheduling
model. IEEE Transactions on Parallel and Distributed Systems, 17(3), 263-275.
doi:10.1109/TPDS.2006.40

Sivasubramaniam, A. (1997). Execution-driven simulators for parallel systems design.
Proceedings of the 29th conference on Winter simulation - WSC ’97 (pp. 1021-
1028). Presented at the the 29th conference, Atlanta, Georgia, United States.
doi:10.1145/268437.268735

Smith, M. C., Vetter, J. S., & Xuejun Liang. (2005). Accelerating Scientific Applications
with the SRC-6 Reconfigurable Computer: Methodologies and Analysis. 19th

IEEE International Parallel and Distributed Processing Symposium (p. 157b-
157b). Presented at the 19th IEEE International Parallel and Distributed
Processing Symposium, Denver, CO, USA. doi:10.1109/IPDPS.2005.75

Sun, X. H., & Chen, Y. (2009). Reevaluating Amdahl’s law in the multicore era. Journal

of Parallel and Distributed Computing, 70(2), 183-188.
doi:10.1016/j.jpdc.2009.05.002.

“TOP500 Supercomputing Sites”. http://www.top500.org/.

Veeraraghavan, P. P., & Evans, J. J. (2010). Parallel Application Communication
Performance on Multi-Core High Performance Computing Systems. IASTED

International Conference Proceedings. Presented at the Informatics 2010, Marina
del Rey, USA. doi:10.2316/P.2010.724-059

Woo, S. C., Ohara, M., Torrie, E., Singh, J. P., & Gupta, A. (1995). The SPLASH-2
programs: Characterization and methodological considerations. Proceedings of

the 22nd annual international symposium on Computer architecture (pp. 24–36).

Worley, P. H., & Toonen, B. (1995). A users’ guide to PSTSWM (No. ORNL Technical
Report ORNL/TM-12779). ORNL Technical Report ORNL/TM-12779.

76

APPENDIX

76

APPENDIX

BASELINE AND SENSITIVITY RUNTIME PLOTS OF NAS CLASS A AND B

Figure 0.1 Class A EP2 Baseline and Sensitivity runtimes

 15.2

 15.4

 15.6

 15.8

 16

 16.2

 16.4

 16.6

 16.8

 17

 0 10 20 30 40 50 60 70 80 90 100

R
u
n

ti
m

e(
se

c)

Trial

PACE / NPB EP-2 Class-A Run-time Performance

Baseline with TC1

EP/PACE with TC1

Baseline with TC2

EP/PACE with TC2

Baseline with TC3

EP/PACE with TC3

77

Figure 0.2 Class A EP4 Baseline and Sensitivity runtimes

Figure 0.3 Class A EP8 Baseline and Sensitivity runtimes

 7.6

 7.8

 8

 8.2

 8.4

 8.6

 8.8

 0 10 20 30 40 50 60 70 80 90 100

R
u
n

ti
m

e(
se

c)

Trial

PACE / NPB EP-4 Class-A Run-time Performance

Baseline with TC1

EP/PACE with TC1

Baseline with TC2

EP/PACE with TC2

Baseline with TC3

EP/PACE with TC3

 3

 4

 5

 6

 7

 8

 9

 0 10 20 30 40 50 60 70 80 90 100

R
u
n

ti
m

e(
se

c)

Trial

PACE / NPB EP-8 Class-A Run-time Performance

Baseline with TC1

EP/PACE with TC1

Baseline with TC2

EP/PACE with TC2

Baseline with TC3

EP/PACE with TC3

78

Figure 0.4 Class A EP16 Baseline and Sensitivity runtimes

Figure 0.5 Class A EP32 Baseline and Sensitivity runtimes

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0 10 20 30 40 50 60 70 80 90 100

R
u
n

ti
m

e(
se

c)

Trial

PACE / NPB EP-16 Class-A Run-time Performance

Baseline with TC1

EP/PACE with TC1

Baseline with TC3

EP/PACE with TC3

 0.5

 1

 1.5

 2

 2.5

 3

 0 10 20 30 40 50 60 70 80 90 100

R
u
n

ti
m

e(
se

c)

Trial

PACE / NPB EP-32 Class-A Run-time Performance

Baseline with TC1

EP/PACE with TC1

Baseline with TC3

EP/PACE with TC3

79

Figure 0.6 Class A MG2 Baseline and Sensitivity runtimes

Figure 0.7 Class A MG4 Baseline and Sensitivity runtimes

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 0 10 20 30 40 50 60 70 80 90 100

R
u
n

ti
m

e(
se

c)

Trial

PACE / NPB MG-2 Class-A Run-time Performance

Baseline with TC1

MG/PACE with TC1

Baseline with TC2

MG/PACE with TC2

Baseline with TC3

MG/PACE with TC3

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 10 20 30 40 50 60 70 80 90 100

R
u
n

ti
m

e(
se

c)

Trial

PACE / NPB MG-4 Class-A Run-time Performance

Baseline with TC1

MG/PACE with TC1

Baseline with TC2

MG/PACE with TC2

Baseline with TC3

MG/PACE with TC3

80

Figure 0.8 Class A MG8 Baseline and Sensitivity runtimes

Figure 0.9 Class A MG16 Baseline and Sensitivity runtimes

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 10 20 30 40 50 60 70 80 90 100

R
u
n

ti
m

e(
se

c)

Trial

PACE / NPB MG-8 Class-A Run-time Performance

Baseline with TC1

MG/PACE with TC1

Baseline with TC2

MG/PACE with TC2

Baseline with TC3

MG/PACE with TC3

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 10 20 30 40 50 60 70 80 90 100

R
u
n

ti
m

e(
se

c)

Trial

PACE / NPB MG-16 Class-A Run-time Performance

Baseline with TC1

MG/PACE with TC1

Baseline with TC3

MG/PACE with TC3

81

Figure 0.10 Class A MG32 Baseline and Sensitivity runtimes

Figure 0.11 Class A LU2 Baseline and Sensitivity runtimes

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60 70 80 90 100

R
u
n

ti
m

e(
se

c)

Trial

PACE / NPB MG-32 Class-A Run-time Performance

Baseline with TC1

MG/PACE with TC1

Baseline with TC3

MG/PACE with TC3

 56

 58

 60

 62

 64

 66

 68

 70

 0 10 20 30 40 50 60 70 80 90 100

R
u
n

ti
m

e(
se

c)

Trial

PACE / NPB LU-2 Class-A Run-time Performance

Baseline with TC1

LU/PACE with TC1

Baseline with TC2

LU/PACE with TC2

Baseline with TC3

LU/PACE with TC3

82

Figure 0.12 Class A LU4 Baseline and Sensitivity runtimes

Figure 0.13 Class A LU8 Baseline and Sensitivity runtimes

 28

 30

 32

 34

 36

 38

 40

 42

 44

 46

 48

 0 10 20 30 40 50 60 70 80 90 100

R
u
n

ti
m

e(
se

c)

Trial

PACE / NPB LU-4 Class-A Run-time Performance

Baseline with TC1

LU/PACE with TC1

Baseline with TC2

LU/PACE with TC2

Baseline with TC3

LU/PACE with TC3

 14

 16

 18

 20

 22

 24

 26

 28

 30

 32

 34

 0 10 20 30 40 50 60 70 80 90 100

R
u
n

ti
m

e(
se

c)

Trial

PACE / NPB LU-8 Class-A Run-time Performance

Baseline with TC1

LU/PACE with TC1

Baseline with TC2

LU/PACE with TC2

Baseline with TC3

LU/PACE with TC3

83

Figure 0.14 Class A LU16 Baseline and Sensitivity runtimes

Figure 0.15 Class A LU32 Baseline and Sensitivity runtimes

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60 70 80 90 100

R
u
n

ti
m

e(
se

c)

Trial

PACE / NPB LU-16 Class-A Run-time Performance

Baseline with TC1

LU/PACE with TC1

Baseline with TC3

LU/PACE with TC3

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 10 20 30 40 50 60 70 80 90 100

R
u
n

ti
m

e(
se

c)

Trial

PACE / NPB LU-32 Class-A Run-time Performance

Baseline with TC1

LU/PACE with TC1

Baseline with TC3

LU/PACE with TC3

84

Figure 0.16 Class B EP2 Baseline and Sensitivity runtimes

Figure 0.17 Class B EP4 Baseline and Sensitivity runtimes

 61

 62

 63

 64

 65

 66

 67

 0 10 20 30 40 50 60 70 80 90 100

R
u

n
ti
m

e(
se

cs
)

Trial

PACE / NPB EP-2 Class-B Run-time Performance

Baseline with TC1

EP/PACE with TC1

Baseline with TC2

EP/PACE with TC2

Baseline with TC3

EP/PACE with TC3

 30.5

 31

 31.5

 32

 32.5

 33

 33.5

 34

 34.5

 35

 0 10 20 30 40 50 60 70 80 90 100

R
u

n
ti
m

e(
se

cs
)

Trial

PACE / NPB EP-4 Class-B Run-time Performance

Baseline with TC1

EP/PACE with TC1

Baseline with TC2

EP/PACE with TC2

Baseline with TC3

EP/PACE with TC3

85

Figure 0.18 Class B EP8 Baseline and Sensitivity runtimes

Figure 0.19 Class B EP16 Baseline and Sensitivity runtimes

 15

 16

 17

 18

 19

 20

 21

 0 10 20 30 40 50 60 70 80 90 100

R
u

n
ti
m

e(
se

cs
)

Trial

PACE / NPB EP-8 Class-B Run-time Performance

Baseline with TC1

EP/PACE with TC1

Baseline with TC2

EP/PACE with TC2

Baseline with TC3

EP/PACE with TC3

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

 0 10 20 30 40 50 60 70 80 90 100

R
u

n
ti
m

e(
se

cs
)

Trial

PACE / NPB EP-16 Class-B Run-time Performance

Baseline with TC1

EP/PACE with TC1

Baseline with TC3

EP/PACE with TC3

86

Figure 0.20 Class B EP32 Baseline and Sensitivity runtimes

Figure 0.21 Class B MG2 Baseline and Sensitivity runtimes

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 0 10 20 30 40 50 60 70 80 90 100

R
u

n
ti
m

e(
se

cs
)

Trial

PACE / NPB EP-32 Class-B Run-time Performance

Baseline with TC1

EP/PACE with TC1

Baseline with TC3

EP/PACE with TC3

 8

 9

 10

 11

 12

 13

 14

 0 10 20 30 40 50 60 70 80 90 100

R
u

n
ti
m

e(
se

cs
)

Trial

PACE / NPB MG-2 Class-B Run-time Performance

Baseline with TC1

MG/PACE with TC1

Baseline with TC2

MG/PACE with TC2

Baseline with TC3

MG/PACE with TC3

87

Figure 0.22 Class B MG4 Baseline and Sensitivity runtimes

Figure 0.23 Class B MG8 Baseline and Sensitivity runtimes

 5

 6

 7

 8

 9

 10

 11

 12

 13

 0 10 20 30 40 50 60 70 80 90 100

R
u

n
ti
m

e(
se

cs
)

Trial

PACE / NPB MG-4 Class-B Run-time Performance

Baseline with TC1

MG/PACE with TC1

Baseline with TC2

MG/PACE with TC2

Baseline with TC3

MG/PACE with TC3

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50 60 70 80 90 100

R
u

n
ti
m

e(
se

cs
)

Trial

PACE / NPB MG-8 Class-B Run-time Performance

Baseline with TC1

MG/PACE with TC1

Baseline with TC2

MG/PACE with TC2

Baseline with TC3

MG/PACE with TC3

88

Figure 0.24 Class B MG16 Baseline and Sensitivity runtimes

Figure 0.25 Class B MG32 Baseline and Sensitivity runtimes

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50 60 70 80 90 100

R
u

n
ti
m

e(
se

cs
)

Trial

PACE / NPB MG-16 Class-B Run-time Performance

Baseline with TC1

MG/PACE with TC1

Baseline with TC3

MG/PACE with TC3

 1

 2

 3

 4

 5

 6

 7

 0 10 20 30 40 50 60 70 80 90 100

R
u

n
ti
m

e(
se

cs
)

Trial

PACE / NPB MG-32 Class-B Run-time Performance

Baseline with TC1

MG/PACE with TC1

Baseline with TC3

MG/PACE with TC3

89

Figure 0.26 Class B LU2 Baseline and Sensitivity runtimes

Figure 0.27 Class B LU4 Baseline and Sensitivity runtimes

 220

 240

 260

 280

 300

 320

 340

 360

 0 5 10 15 20 25 30 35 40 45 50

R
u

n
ti
m

e(
se

cs
)

Trial

PACE / NPB LU-2 Class-B Run-time Performance

Baseline with TC1

LU/PACE with TC1

Baseline with TC2

LU/PACE with TC2

Baseline with TC3

LU/PACE with TC3

 120

 130

 140

 150

 160

 170

 180

 0 5 10 15 20 25 30 35 40 45 50

R
u

n
ti
m

e(
se

cs
)

Trial

PACE / NPB LU-4 Class-B Run-time Performance

Baseline with TC1

LU/PACE with TC1

Baseline with TC2

LU/PACE with TC2

Baseline with TC3

LU/PACE with TC3

90

Figure 0.28 Class B LU8 Baseline and Sensitivity runtimes

Figure 0.29 Class B LU16 Baseline and Sensitivity runtimes

 65

 70

 75

 80

 85

 90

 95

 0 10 20 30 40 50 60 70 80 90 100

R
u

n
ti
m

e(
se

cs
)

Trial

PACE / NPB LU-8 Class-B Run-time Performance

Baseline with TC1

LU/PACE with TC1

Baseline with TC2

LU/PACE with TC2

Baseline with TC3

LU/PACE with TC3

 35

 37.5

 40

 42.5

 45

 47.5

 50

 52.5

 55

 57.5

 0 10 20 30 40 50 60 70 80 90 100

R
u

n
ti
m

e(
se

cs
)

Trial

PACE / NPB LU-16 Class-B Run-time Performance

Baseline with TC1

LU/PACE with TC1

Baseline with TC3

LU/PACE with TC3

91

Figure 0.30 Class B LU32 Baseline and Sensitivity runtimes

 20

 22.5

 25

 27.5

 30

 32.5

 35

 37.5

 40

 42.5

 45

 47.5

 0 10 20 30 40 50 60 70 80 90 100

R
u

n
ti
m

e(
se

cs
)

Trial

PACE / NPB LU-32 Class-B Run-time Performance

Baseline with TC1

LU/PACE with TC1

Baseline with TC3

LU/PACE with TC3

	Purdue University
	Purdue e-Pubs
	7-27-2011

	Characterization of Parallel Application Runtime Sensitivity on Multi-core High Performance Computing Systems
	Padma Priya Veeraraghavan

	ETDForm9
	GSForm20
	priya-thesis-draft-Rev7

