14,576 research outputs found

    Quantifying perception of nonlinear elastic tissue models using multidimensional scaling

    Get PDF
    Simplified soft tissue models used in surgical simulations cannot perfectly reproduce all material behaviors. In particular, many tissues exhibit the Poynting effect, which results in normal forces during shearing of tissue and is only observed in nonlinear elastic material models. In order to investigate and quantify the role of the Poynting effect on material discrimination, we performed a multidimensional scaling (MDS) study. Participants were presented with several pairs of shear and normal forces generated by a haptic device during interaction with virtual soft objects. Participants were asked to rate the similarity between the forces felt. The selection of the material parameters – and thus the magnitude of the shear\ud and normal forces – was based on a pre-study prior to the MDS experiment. It was observed that for nonlinear elastic tissue models exhibiting the Poynting effect, MDS analysis indicated that both shear and normal forces affect user perception

    Specificity and coherence of body representations

    Get PDF
    Bodily illusions differently affect body representations underlying perception and action. We investigated whether this task dependence reflects two distinct dimensions of embodiment: the sense of agency and the sense of the body as a coherent whole. In experiment 1 the sense of agency was manipulated by comparing active versus passive movements during the induction phase in a video rubber hand illusion (vRHI) setup. After induction, proprioceptive biases were measured both by perceptual judgments of hand position, as well as by measuring end-point accuracy of subjects' active pointing movements to an external object with the affected hand. The results showed, first, that the vRHI is largely perceptual: passive perceptual localisation judgments were altered, but end-point accuracy of active pointing responses with the affected hand to an external object was unaffected. Second, within the perceptual judgments, there was a novel congruence effect, such that perceptual biases were larger following passive induction of vRHI than following active induction. There was a trend for the converse effect for pointing responses, with larger pointing bias following active induction. In experiment 2, we used the traditional RHI to investigate the coherence of body representation by synchronous stimulation of either matching or mismatching fingers on the rubber hand and the participant's own hand. Stimulation of matching fingers induced a local proprioceptive bias for only the stimulated finger, but did not affect the perceived shape of the hand as a whole. In contrast, stimulation of spatially mismatching fingers eliminated the RHI entirely. The present results show that (i) the sense of agency during illusion induction has specific effects, depending on whether we represent our body for perception or to guide action, and (ii) representations of specific body parts can be altered without affecting perception of the spatial configuration of the body as a whole

    Engineering data compendium. Human perception and performance. User's guide

    Get PDF
    The concept underlying the Engineering Data Compendium was the product of a research and development program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design and military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from the existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by systems designers. The present four volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is the first volume, the User's Guide, containing a description of the program and instructions for its use

    Towards a framework for investigating tangible environments for learning

    Get PDF
    External representations have been shown to play a key role in mediating cognition. Tangible environments offer the opportunity for novel representational formats and combinations, potentially increasing representational power for supporting learning. However, we currently know little about the specific learning benefits of tangible environments, and have no established framework within which to analyse the ways that external representations work in tangible environments to support learning. Taking external representation as the central focus, this paper proposes a framework for investigating the effect of tangible technologies on interaction and cognition. Key artefact-action-representation relationships are identified, and classified to form a structure for investigating the differential cognitive effects of these features. An example scenario from our current research is presented to illustrate how the framework can be used as a method for investigating the effectiveness of differential designs for supporting science learning

    Multisensory Motion Perception in 3\u20134 Month-Old Infants

    Get PDF
    Human infants begin very early in life to take advantage of multisensory information by extracting the invariant amodal information that is conveyed redundantly by multiple senses. Here we addressed the question as to whether infants can bind multisensory moving stimuli, and whether this occurs even if the motion produced by the stimuli is only illusory. Three- to 4-month-old infants were presented with two bimodal pairings: visuo-tactile and audio-visual. Visuo-tactile pairings consisted of apparently vertically moving bars (the Barber Pole illusion) moving in either the same or opposite direction with a concurrent tactile stimulus consisting of strokes given on the infant\u2019s back. Audio-visual pairings consisted of the Barber Pole illusion in its visual and auditory version, the latter giving the impression of a continuous rising or ascending pitch. We found that infants were able to discriminate congruently (same direction) vs. incongruently moving (opposite direction) pairs irrespective of modality (Experiment 1). Importantly, we also found that congruently moving visuo-tactile and audio-visual stimuli were preferred over incongruently moving bimodal stimuli (Experiment 2). Our findings suggest that very young infants are able to extract motion as amodal component and use it to match stimuli that only apparently move in the same direction

    Human performance prediction in man-machine systems. Volume 1 - A technical review

    Get PDF
    Tests and test techniques for human performance prediction in man-machine systems task

    Stochastic accumulation of feature information in perception and memory

    Get PDF
    It is now well established that the time course of perceptual processing influences the first second or so of performance in a wide variety of cognitive tasks. Over the last20 years, there has been a shift from modeling the speed at which a display is processed, to modeling the speed at which different features of the display are perceived and formalizing how this perceptual information is used in decision making. The first of these models(Lamberts, 1995) was implemented to fit the time course of performance in a speeded perceptual categorization task and assumed a simple stochastic accumulation of feature information. Subsequently, similar approaches have been used to model performance in a range of cognitive tasks including identification, absolute identification, perceptual matching, recognition, visual search, and word processing, again assuming a simple stochastic accumulation of feature information from both the stimulus and representations held in memory. These models are typically fit to data from signal-to-respond experiments whereby the effects of stimulus exposure duration on performance are examined, but response times (RTs) and RT distributions have also been modeled. In this article, we review this approach and explore the insights it has provided about the interplay between perceptual processing, memory retrieval, and decision making in a variety of tasks. In so doing, we highlight how such approaches can continue to usefully contribute to our understanding of cognition

    An Empirical Evaluation On Vibrotactile Feedback For Wristband System

    Full text link
    With the rapid development of mobile computing, wearable wrist-worn is becoming more and more popular. But the current vibrotactile feedback patterns of most wrist-worn devices are too simple to enable effective interaction in nonvisual scenarios. In this paper, we propose the wristband system with four vibrating motors placed in different positions in the wristband, providing multiple vibration patterns to transmit multi-semantic information for users in eyes-free scenarios. However, we just applied five vibrotactile patterns in experiments (positional up and down, horizontal diagonal, clockwise circular, and total vibration) after contrastive analyzing nine patterns in a pilot experiment. The two experiments with the same 12 participants perform the same experimental process in lab and outdoors. According to the experimental results, users can effectively distinguish the five patterns both in lab and outside, with approximately 90% accuracy (except clockwise circular vibration of outside experiment), proving these five vibration patterns can be used to output multi-semantic information. The system can be applied to eyes-free interaction scenarios for wrist-worn devices.Comment: 10 pages

    Molyneux's Question Within and Across the Senses

    Get PDF
    This chapter explores how our understanding of Molyneux’s question, and of the possibility of an experimental resolution to it, should be affected by recognizing the complexity that is involved in reidentifying shapes and other spatial properties across differing sensory manifestations of them. I will argue that while philosophers today usually treat the question as concerning ‘the relations between perceptions of shape in different sensory modalities’ (Campbell 1995, 301), in fact this is only part of the question’s real interest, and that the answer to the question also turns on how shape is perceived within each of sight and touch individually
    corecore